UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Knowledge Tracing in the ACT Programming Tutor

Permalink
https://escholarship.org/uc/item/0873k1nZ

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 14(0)

Authors
Corbett, Albert T.
Anderson, John R.

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0873k1nz
https://escholarship.org
http://www.cdlib.org/

Knowledge Tracing in the ACT Programming Tutor!

Albert T. Corbett and John R. Anderson
Psychology Department
Carnegie Mellon University
Pittsburgh, PA 15213
corbet @psy.cmu.edu
anderson @psy.cmu.edu

Abstract

The ACT Programming Tutor provides assistance to
students as they write short computer programs. The
tutor is constructed around a set of several hundred
programming rules that allows the tutor to solve
exercises step-by-step along with the student. This
paper evaluates the tutor's student modeling procedure
that is used to guide remediation. This procedure,
termed knowledge tracing, employs an overlay of the
tutor's programming rules. In knowledge tracing, the
tutor maintains an estimate of the probability that the
student has learned each of the rules. The probability
for a rule is updated at each opportunity to apply the
rule, based on the student's performance. The
predictive validity of the modeling procedure for tutor
performance accuracy and posttest performance
accuracy is assessed. Individual differences in leamning
parameters and cognitive rules are discussed, along
with possible improvements in the modeling

procedure.

The ACT Programming Tutor

This paper reports an assessment of student modeling
in the ACT Programming Tutor (APT). APT is a
practice environment for students learning to program
in Lisp, Pascal or Prolog (Anderson, et. al., in press).
The tutor presents exercises that require students to
write short programs and provides assistance as the
students code their solutions. This report focuses on
the initial seven sections of the Lisp curriculum.
Table 1 displays example exercises from the first and
last of these sections. The first section introduces
two basic data types, atoms (symbols) and lists

1 This research was supported by the Office of Naval
Research, grant N0O0014-91-J-1597.

623

(groupings of symbols), and three functions that
extract information from a list. By the seventh
section, students are learning to define new functions
that employ these three extractor functions in
combination with three other functions that construct
new lists.

In working with the tutor, students enter exercise
solutions top-down with an interface that is similar to
a structure editor. The first exercise requires two
coding cycles: first the student enters car (either by
typing or through menu selection) then types the
literal list ‘(c d €). The second example requires eight
coding cycles. The student enters defun (to define a
new function), then codes the new function name,
declares two variables (two cycles) and codes the body
of the function (four cycles). The last exercise also
requires three additional interface manipulation cycles
in which unneeded editor nodes are deleted. The tutor
monitors student performance on a cycle-by-cyle basis
and provides immediate feedback to keep the student
on a correct solution path. If the student makes a
mistake, the tutor notifies the student, and allows the
student to try again. The tutor does not volunteer any
verbal feedback on errors, but the student can request
help at each step.

We have been using such tutors to teach
programming courses over the past eight years and
the Lisp and Prolog modules are currently used to
teach a self-paced introductory course. Overall, the
tutors have proven effective. Students using the
tutor generally work through exercises more quickly
and perform as well or better on posttests (Anderson
& Reiser, 1985; Corbett & Anderson, 1990, 1991).
Despite this general effectiveness, however, some
students flounder. As a result, we incorporated a
student modeling and remediation mechanism into the
tutor. Recently we have begun evaluating the
validity of this mechanism,

http://cmu.edu
http://cmu.edu

Section 1 Example Exercise

Write a Lisp function call that returns ¢ from
the list (c d e).

Answer: (car'(cde))

Section 7 Example Exercise

Define a function named replace-first that takes
two arguments. Assume the second argument
will be a list. The function replaces the first
element of the list with the first argument.

For example,

(replace-first ‘rose '(tulip daisy iris))
returns (rose daisy iris).

Answer: (defun replace-first (itm lis)
(cons itm (cdr lis)))

Table 1. Two Lisp Exercises drawn from the
initial and final sections of the curriculum under
review.

Student Modeling

APT is constructed around a set of several hundred
production rules for writing programs, called the ideal
student model, which allows the tutor to solve the
exercises step-by-step along with the student. The
tutor attempts to match the student's action at each
step to an applicable rule in the ideal model in a
process we call model tracing. The ideal student
model also serves as an overlay model of the
individual student's knowledge state (Goldstein,
1982). As the student works, the tutor maintains an
estimate of the probability that the student has learned
each rule in the ideal model. At each opportunity to
apply a rule, the probability that the student knows
the rule is updated contingent on the accuracy of the
student's action. This process, which we call
knowledge tracing, serves as the basis for remediation
in the tutor. A small set of coding rules is introduced
in each section of the curriculum and after the student
completes a minimal set of required exercises, the
tutor continues presenting remedial exercises in the
section until the student has "mastered” each rule in

624

the set. Mastery is defined in the tutor as a leaming
probability of at least 0.95.

The knowledge tracing mechanism passed a
minimal validity test when it was first introduced.
Posttest scores were higher when the remediation
mechanism was in operation (Anderson, Conrad, &
Corbett, 1989). Recently, we completed a more
detailed assessment of knowledge tracing on the basis
of both tutor and posttest data (Corbett & Anderson,
1992). While knowledge tracing is intended to infer a
student's knowledge state for the purpose of guiding
practice, the underlying cognitive and learing models
can be used to predict a student's accuracy in
completing tutor exercises. At each goal (step) in
solving the exercises, we can estimate the probability
of a correct response given the student's history. To
assess the model, we compared actual and predicted
accuracy across subjects at each goal. Knowledge
tracing performed moderately well in this validity
check. Across the 158 coding steps in the required
exercises, actual and predicted accuracy were reliably
correlated, r = 0.47.

In principle, the final production rule learning
probabilities should predict posttest performance just
as they predict tutor accuracy. However, the final
probabilities are tightly distributed between 0.95 and
1.0 after knowledge tracing, so there is little potential
to test this hypothesis. A related prediction is that if
mastery leaming is successful, posttest performance
should not correlate with the number of mistakes
students make in achieving mastery. The student
modeling mechanism did not do as well by this
criterion. The number of exercises required to reach
criterion was reliably correlated with posttest
performance, r =-0.52. The more exercises students
completed in reaching criterion, the worse they did on
the quiz.

Revising the Models

While the model predicted tutor performance
reasonably well, there were systematic deviations in
the fit that could be traced to deficiencies in both the
underlying mathematical and cognitive models. As
described below, the mathematical model employs
four parameters. The values employed by the tutor,
which were estimated from prior tutor data and held
constant across production rules in the ideal model,
resulted in a substantial underprediction of the
variability in accuracy across goals in the lesson. We
refit the data after the fact, allowing the four
parameter values to vary across productions. The best
fitting estimates yielded a substantially better fit, r =

0.85. In this fit, predicted and actual accuracy still
deviated substantially for some rules, suggesting that
the ideal model requires revision. In this paper we
report an evaluation of a revised model.

The Study

The study assesses the internal and external validity of
the APT knowledge tracing mechanism over the first
seven sections of the Lisp curriculum.

The Students

Twenty five students worked through the curriculum
in the course of completing a class in introductory
programming. This was the first college level
exposure to programming for all students and the first
exposure 1o Lisp.

Procedure

Students worked through the exercises at their own
pace. In each section of the tutor curriculum students
read about Lisp in a text, completed a set of required
exercises that covers all the rules introduced in the
section, then completed remedial exercises as needed.
Remedial exercises are selected by the tutor to bring
all productions introduced in the section to a
minimum leaming probability of 0.95. At the end of
the first lesson the students completed a quiz.

The Curriculum

In the seven sections of the curriculum under
investigation, students are introduced to (1) two data
types, atoms (symbols) and lists (hierarchical
groupings of symbols), (2) function calls (operations)
and (3) function definitions. The first section in the
curriculum introduces simple lists (flat lists of atoms)
and three basic extractor functions, car, cdr and
reverse, that return components of or a transformation
of a list. The second section introduces three basic
functions that form new lists, append, cons and list.
In the third and fourth sections students learn to apply
the same six functions to hierarchically nested lists.
In the fifth section, students are introduced to
extractor algorithms - nested function calls applying
multiple extractor functions to lists. In the sixth
section, students learn to define new functions that
perform such extractor algorithms. In the final

625

section students define functions that employ both
extractor and constructor functions. A minimum of
forty exercises is required to complete this
curriculum.

The Cognitive Model

The cognitive model consists of 35 productions rules.
Three rules govern the coding of a single extractor
function, either, car, cdr and reverse with a simple
list in section 1. A single rule governs the transfer of
all these extractors to nested lists in section 2. Five
additional rules govern the coding of these three
functions in more complex algorithms in section 5.
The model distinguishes five additional extraction
contexts in the last two sections on function
definitions. A single rule governs the coding of any
extractor or extractor algorithm in each of these five
contexts.

The three constructor functions are employed in
three contexts across sections 2, 4 and 7 - simple
lists, nested lists and functional arguments. Given
students' difficulty with constructor functions, the
tutor makes no assumptions concerning the
generalization of constructor knowledge. Thus, nine
rules are employed to model the three rules in the
three contexts. Twelve additional rules model the
coding of data structures, the elements of function
definitions, notably variable declaration and usage,
and some editor manipulations.

This model incorporates three revisions stemming
from the prior assessment: (1) separate rules for
coding functions with flat and with nested lists, (2)
the modeling of extractor algorithms with five
functionally defined rules rather than two syntactically
defined rules and (3) two distinct rules for declaring
the first variable and subsequent variables in a
function definition.

Knowledge Tracing

Knowledge tracing in the tutor assumes a simple
two-state learning model with no forgetting, Each
rules is either in a learned or an unlearned state. A
rule can make the transition from the unleamned to the
learned state at each opportunity to apply the rule, but
rules cannot make the transition in the opposite
direction. The goal in knowledge tracing is to
estimate the probability that each rule is in the
learned state. After each step in problem solving, the
tutor updates this learning probability estimate for the
applicable production rule, based on the student's

the probability that a rule is in the
learned state before the rule is
employed in problem solving for
the first time (i.e., from reading)

Po

the probability that a rule will make
the transition from the unleamed to
the learned state following an
opportunity to apply the rule

the probability a student will guess
correctly if the rule is in the
unlearned state

the probability a student will slip
and make an error when the applicable
rule is in the learned state

Table 2. The four parameters employed in
knowledge tracing.

action. The Bayesian computational procedure is a
variation of one described by Atkinson (1972). It
employs two learning parameters and two
performance parameters, as displayed in Table 2.
These parameter values are estimated empirically from
the previous study and vary freely across the thirty-
five rules in the tutor. See Corbett and Anderson
(1992) for complete details on estimating learning
probabilities and performance accuracy.

Results

Students completed an average of 23 remedial
exercises in addition to the 40 required exercises in
working through the curriculum. The number of
remedial exercises ranged from 1 to 49. The revised
cognitive model and parameter estimates improved the
fit of the student model to the tutor accuracy data. A
correlation of (.71 was obtained between empirical
and predicted values across the 203 goals in the
required exercises. However, a moderate correlation
persisted between number of tutor exercises required
to reach criterion and posttest performance, r = -0.44,
We again refit the data after the fact, and the best
fitting parameter estimates yielded a better fit to the
tutor data, r = 0.90. The final learning probabilities
in this fit are still tightly distributed and do not
correlate reliably with posttest performance.

626

There are a variety of reasons that the posttest
performance may correlate with number of errors
required to reach criterion in the tutor. First, the quiz
involves transfer to a different coding environment.
We might expect such transfer to correlate with the
amount of practice required to reach criterion in the
tutor. Second, students may be preparing
differentially for the posttest, since the assessment
draws on data from a course. Again, study habits
may correlate with learning rate in the tutor. As a
result, some correlation of number of tutor exercises
and posttest performance might be expected even if
the student model is essentially valid. Nevertheless,
we plan to explore alternatives that do reflect on the
validity of the student model: individual differences in
parameter estimates and the nature of cognitive rules.

Individual Differences in Parameter
Estimates. While the four parameter estimates
vary across productions, they are held constant across
subjects. Consequently, we may be underestimating
the learning probabilities for students who are
performing well and overestimating for students
making more errors. As a result, students who are
doing few remedial exercises would nevertheless tend
to be overlearning while students doing many
remedial exercises would tend to be underlearning.
This pattern would result in a negative correlation of
posttest performance with the number of errors in
reaching criterion in the tutor. To assess the
magnitude of individual differences, we divided the
students into two groups based on posttest accuracy
and generated best fitting parameter estimates for their
tutor performance. The average estimates for the two
learning parameters, P and P, for twelve production
rule categories are displayed in Table 3. As can be
seen, the mean estimates for the two parameters are
roughly 30% and 10% higher respectively, for
students who performed well on the quiz. This
suggests that we may obtain better fits by
individualizing parameter estimates. An immediate
goal is to investigate whether applying an
individualized multiplicative constant to the group
parameter estimates improves the performance of the
model.

Individual Differences in Cognitive
Rules. A second possibility is that different
students acquire different cognitive rules. While we
can track a student's ability to manipulate symbols in
specific contexts, we cannot directly track the
student’s understanding of those manipulations.
Knowledge tracing may insure that students are

Production Rule Category

Extractors - Flat Lists

Constructors - Flat Lists

Literal Data Structures

Extractors - Nested Lists
Constructors - Nested Lists
Extractor Algorithms
Defun/Function Name

Variables

Extractor Algorithms Function Body
Extractor Algorithms Novel Contexts
Constructor Function Body

Interface

Mean

High Low
Test Accuracy Test Accuracy
P PT Py PT
0.78 1.00 0.68 0.97
0.73 0.73* 0.76 0.93*
0.45 0.48 0.06 0.72
0.87 1.00 0.68 0.69
0.68 0.37 0.35 0.37
0.69 0.58 0.70 0.28
0.96 0.00* 0.93 0.00*
0.32 0.53 0.24 0.40
0.58 0.10 0.70 0.24
0.63 0.31 0.25 0.09
0.31 0.35 0.03 0.22
0.56 091 0.51 0.81
0.63 0.53 0.49 0.48
*One rule in this set is excluded in computing pT.
p0 = 1 for that rule, so pT is inestimable

Table 3. Best fitting estimates for P((the probability a production is in leamed state initially) and P1
(the probability of a transition to the learned state) for twelve production rule categories

learning rules that enable them to complete exercises,
but they may not be the rules assumed in the ideal
student model. For example, one of the earliest
stumbling blocks in learning Lisp is understanding
the hierarchical structure of lists. In section 1,
however, students are introduced to extractor functions
and constructor functions with flat, non-hierarchical
lists. As a result, students can apply everyday
knowledge of lists to learn the extractor functions
without fully grasping the structure of lists.
Constructor functions are a second stumbling block
in learning Lisp. To master constructors, students
must understand the structure of lists and grasp the

627

relationship between the arguments to the constructor
function and structure of the resulting list. However,
when constructor functions are introduced in the tutor
curriculum with flat lists, students can learn rules
based on the structure of the arguments alone that do
not generalize to later sections.

The parameter estimates in Table 3 suggest that
this may be happening. The two learning parameter
estimates are quite similar across the two groups for
the extractor function rules in section 1 and the
constructor functions in section 2. However, when
these functions are employed with more complex data
structures and in more complex algorithms in later

sections (rows 4, 5, 10 and 11 of Table 3) the
leaming parameter estimates are generally higher for
the high posttest accuracy group. Students read text
at the beginning of each section, so these parameter
estimates may partly reflect differential initial
comprehension of each section. However, such
differences would be expected if some students are
learning rules that generalize more readily to later
contexts.

A final result is also consistent with this
possibility. We generated best fitting parameter
estimates for just the required exercises that every
student completes at the beginning of a section.
These estimates fit the required exercise data quite
well, r = 0.91. We employed these parameter
estimates to generate production leaming probabilities
on the basis of just the required exercises, as if
students had not completed the remedial exercises.
The mean probability estimates obtained from the
required exercises correlated reliably with postiest
accuracy, r = 0.43. This pattern would be expected if
the number of opportunities required to master a rule
is inversely related to the probability of acquiring an
optimal understanding. Some suboptimal rules may
capitalize on accidental characteristics of the tutor
environment that do not transfer to the posttest
environment. Other suboptimal rules may transfer
in principle, but may in fact be retained less well.
We might be able to model this possibility by
decreasing the transition probability PT with practice.
However, it also suggests that students may benefit
from explanatory feedback in the context of correct
actions as well as in the context of errors.

Conclusion

On balance, the tutor's knowledge tracing procedure
performed fairly well in this assessment. The model
accounted for about 50% of the variance in students’
performance with the tutor, and about 80% when best
fitting parameter estimates were derived. On the other
hand, students' learning rate (the number of errors
students made in satisfying the model's mastery
criterion) correlated negatively with posttest
performance. While the student's final knowledge
state should predict posttest performance, learning rate
in reaching that state should not. We plan to explore
possibilities for accomodating individual differences
in learning rates by adjusting the model's learning
parameters and the underlying cognitive rule set.

The correlation of tutor learning rate and posttest
performance in this study may also reflect the fact
that the tutor allows students to practice one

628

programming skill, code generation, while the
posttest environment allows the students to exercise
other skills, e.g., debugging. It should be possible to
generalize the knowledge tracing mechanism to other
skills, however. Knowledge tracing does not depend
on a unique solution path for each exercise, nor on
immediate feedback, although these characteristics
simplify the task. Rather, what is required is a
cogntive model of the task consisting of rules that
map onto observable behavior. As a result it should
be possible to trace debugging and other skills.

References

Anderson, J.R., Conrad, F.G. and Corbett, A.T.,
1989. Skill acquisition and the Lisp Tutor.
Cognitive Science 13: 467-505.

Anderson, J.R., Corbeu, A.T., Fincham, J.M,,
Hoffman, D. and Pelletier, R., in press. General
principles for an intelligent tutoring architecture. In
V. Shute an W. Regian (eds.) Cognitive approaches
to automated instruction. Hillsdale, NJ: Erlbaum.

Anderson, J.R. and Reiser, B.J., 1985. The Lisp
Tutor. Byte, 10, (4), 159-175.

Atkinson, R.C., 1972. Optimizing the learning of a
second-language vocabulary. Journal of Experimental
Psychology, 96, 124-129,

Corbett, A.T. and Anderson, J.R., 1990. The effect
of feedback control on leaming to program with the
Lisp Tutor. In The Proceedings of the Twelfth
Annual Conference of the Cognitive Science Society.
Hillsdale, NJ: Erlbaum.

Corbett, A.T. and Anderson, J.R., 1991. Feedback
control and learning to program with the CMU Lisp
Tutor. Paper presented at the Annual Meeting of the
American Educational Research Association.

Corbett, A.T. and Anderson, J.R., 1992. Student
modeling and mastery leaming in a computer-based
programming tutor. In The Proceedings of the
Second International Conference on Intelligent
Tutoring Systems. New York: Springer-Verlag.

Goldstein, LP., 1982. The genetic graph: A
representation for the evolution of procedural
knowledge. In D, Sleeman and J.S.Brown (eds.)
Intelligent tutoring systems. New York: Academic.

	cogsci_1992_623-628

