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Lateral water structure connects metal oxide nanoparticle 

faces 

Piotr Zarzycki,a Christopher A. Colla, Benjamin Gilbert 
Energy Geosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 
Berkeley, California 94720, USA 
 
Kevin M. Rosso  
Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99352, USA 
 

When a metal oxide surface is immersed in aqueous solution it has the ability to bind, orient and 

order interfacial water, affecting both chemical and physical interactions with the surface. 

Structured interfacial water thus possesses time-averaged, spatially varying polarization charge 

and potential that are comparable to those arising due to ion accumulation. It is well established 

that interfacial water structure propagates from the surface into bulk solution. Here we show that 

interfacial water structure also propagates laterally, with important consequences. The constant-

pH molecular dynamics was used to impose a pH difference between opposite faces of a model 

goethite (a-FeOOH) nanoparticle and quantify water polarization charge on intervening faces. We 

find that the structure of water on one face is strongly affected by the structure on nearby surfaces, 

revealing the importance of long-range lateral hydrogen bonding networks with implications for 

particle aggregation, oriented attachment, and processes such as dissolution and growth. 

 

I. INTRODUCTION 

                                                
a Address all correspondence to this author. E-mail: ppzarzycki@lbl.gov 
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 Metal oxide minerals are an abundant and reactive component of the Earth’s crust.1 When 

oxides are immersed in aqueous solution, their surfaces acquire charge due to the ionization or 

dissociation of the surface oxo groups (i.e., protonation and deprotonation of surface exposed 

oxygen atoms) and preferential adsorption of ions.2-6 In electrolyte solutions, the surface excess 

charge is compensated by the layers of ions of opposite charge to the surface (counter-ions) and of 

similar charge (co-ions).2-6 As a result, the equilibrium charge distribution at the interface, known 

as the electrical double layer (EDL), is established (Fig. 1).2-6 The EDL strongly influences the 

reactivity of all hydrated oxide mineral surfaces, with impacts in environmental systems such as 

controlling pollutant remediation and element cycles in soils and groundwater. EDL models of the 

metal oxide/electrolyte interface consist of surface protonation reactions (e.g., 1-pK,10 2-pK11 

models), the ion binding reactions, as well as the spatial distribution of counter-ions and co-ions 

charge. The thermodynamic descriptions of the EDL are based upon models for the geometrical 

localization of the surface charge and electrolyte ions. The most detailed analytical descriptions of 

the EDL (e.g., the Triple Layer Model11,12 ) divide the interface structure into layers that neglect 

lateral heterogeneity2-6. Moreover, water is modeled as a structureless, inert medium with a 

dielectric constant between 4 and 10.3,13  The value of e is most frequently approximated as 6 

because it corresponds to the hypothetical situation of dielectrically saturated water in which all 

water dipoles are aligned with the electric field and act as though they are not associated (i.e., not 

hydrogen-bonded).14 This extreme regime corresponds to the dielectric constant of water at high 

frequency (e¥ = 5.2-6.0).15  

 Experimental studies16-21 and molecular simulations22-29 of the hydrated interface offer an 

entirely different view of the properties and roles of water in the EDL: interfacial water is highly 

structured and the structured water layers generate a polarization potential capable of screening 

effectively the surface potential. For instance, molecular dynamics (MD) simulations showed that 
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the electrostatic potential at the AgCl/KCl electrolyte interface due to water orientation is larger 

than the potential arising due to the electrolyte ion distribution.28,29 This is in striking contrast to 

the analytical electrochemical calculations in which water structure is considered as structureless 

continuum that only changes the strength of the electrostatic interactions by lowering the dielectric 

constant at the surface (e is supposed to be restored to its bulk value at distances > 6Å from the 

electrode surface).14  

 To date, there is lack of a complete understanding of the extent of interfacial water structure 

formation and the consequences for metal oxide surface processes that occur within the EDL. MD 

simulations predict that interfacial water layering causes significant energy barriers for ion 

adsorption and formation of outer- and inner-sphere complexes (e.g., Fe(II) at goethite, a-

FeOOH).29,30 However, the development of interfacial polarization potentials has not been 

included in any EDL models of the oxide/electrolyte interface. Recently, we developed a constant-

pH molecular dynamics (cpHMD)31,32 method incorporating surface charge constraints30 that is 

capable of simulating oxide surface protonation/deprotonation processes, and associated solution 

dynamics, over timescales inaccessible to conventional MD. Here we describe a simulation 

method designed to obtain further insight into the coupling between water ordering and a resulting 

polarization potential at vicinal surfaces exposed by a goethite nanoparticle (a-FeOOH). Our 

simulation results have important new implications for a wide range of chemical and physical 

processes controlled by the structure and dynamics at metal oxide/water interfaces, including 

particle aggregation and oriented attachment, precipitation-dissolution, mineral recrystallization 

and coupled reactivity of confined hydrated surfaces.  

 

 
II. THEORY AND IMPLEMENTATION 
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 There are numerous molecular simulation studies of charged metal oxide/electrolyte 

interfaces, but there are very few that implicitly considered the pH-dependent surface charge 

dynamics.33-40 Most of the reported molecular modeling studies were carried using the charge 

neutral surfaces, and therefore describe the surfaces at the pH corresponding to the Point of Zero 

Charge (PZC). One of the first approaches to actually model proton release and binding to the 

metal oxide surfaces and to computationally validate the surface protonation models (e.g., 1-pK) 

was introduced by Borovec et al. 33,34 Inspired by these papers, a similar stochastic simulation 

model was implemented, which also includes surface heterogeneity effects, electrolyte ion binding 

and correlation.36-39,41-45 These early simulation models, however, considered water only implicitly 

(as a dielectric continuum) and reduced the actual metal oxide surfaces to the lattice composed of 

the protonatable surface sites (i.e., as a discrete charge Ising model).33,34,36-39,41-45 The first fully-

atomistic simulations of the charged metal oxide/electrolyte interface with pH-dependent surface 

charge and the explicit water models were carried out by Rustad et al.35,40 Here, the simulation 

results obtained by using the cpHMD algorithm are presented. The cpHMD methodology has been 

developed originally for the biological systems,31 but recently it was also adopted for the goethite 

/electrolyte interface.32 

 The cpHMD algorithm alternates Monte Carlo (MC) sampling of the accessible protonation 

configurations and molecular dynamics (MD) simulations of the response to altered charge 

distributions.31,32 As described in more detail elsewhere,30,32 we use the replica-exchange approach 

to model dynamical proton redistribution. From a given protonation state i our code generates a 

number of new protonation states (replicas) by swapping H+ between surface hydroxyl groups with 

the constraint that the total surface charge of a given crystal face remains unchanged. This 

constraint allows the dynamic redistribution of H+ ions on a given crystal face, but does not allow 

them to move from one crystal face to another. The atomic configuration of each new protonation 



 5 

replica is subsequently optimized (using steepest descent energy minimization) and the solvent is 

allowed to reorganize for 100 ps using the MD simulation routine. Among all replicas, our 

simulation algorithm selected the lowest energy one as a candidate for the new protonation state j, 

which is accepted if either it has a lower energy than the current H+ proton redistribution i or if it 

satisfies the Metropolis-Hastings acceptance function: 

𝑃(𝑖 → 𝑗) = min +1, 𝑒𝑥𝑝 1− ∆4
567

89			               (1) 

where 	∆𝑈 = ∆𝑈<=> + ∆𝑈@A@B is the potential energy difference between j and i protonation states. 

In the MC and MD steps, the long-range electrostatic energy was calculated using the 

classical Ewald summation scheme, in which the electrostatic energy 𝑈@A@B is given by: 46 

4𝜋𝜀F𝑈@A@B =
GH
I
∑5K⃗ MF

|O(5K⃗ )|P

5P
𝑒Q5P/ST + U

G
∑VWMX

YZY[
\Z[

erfc(𝑟WX√𝛼) − d
T
H
∑VW 𝑞WG (2) 

 where 𝑛,𝑚 run over ion indexes, 𝑁 is the total number of charged ions in the system, 𝑉 is the cell 

volume, 𝑘K⃗  is a vector in the reciprocal (Fourier) space, 𝑟WX is the distance between ions 𝑛 and 𝑚, 

and erfc is the complementary error function (i.e., G
√H
∫l\Z[√T 𝑒

QmP𝑑𝑥) and 𝑖 is the imaginary unit. 

The term 𝑆(𝑘K⃗ ) is the charge structure factor and describes the Gaussian-smeared charge density in 

the reciprocal space (i.e., ∑VW 𝑞Wexp(𝑖𝑘K⃗ ⋅ 𝑟W)). 

The electrostatic contribution to forces acting on an ion 𝑛 is obtained by differentiation 

𝑈@A@Bs with respect to 𝑟W (i.e., 𝑓W = −𝑑𝑈/𝑑\⃗Z):  

−4𝜋𝜀F𝑓W@A@B =
YZuH
I
∑5K⃗ MF 𝑘K⃗

O(5K⃗ )
5P
𝑒u5K⃗ ⋅\⃗ZQ5P/ST − 𝑞W ∑VXMW

Y[
\Z[

vwxyz(\Z[√T)
\Z[

+ 2dT
H
𝑒QT\Z[P | \⃗Z[

\Z[
 (3) 

 derived using =wxyz(\Z√T)
=\Z

= −2𝑒QT\ZPdT
H
 and =|O(5

K⃗ )|P

=\Z
= 2𝑞W𝑖𝑘K⃗ 𝑒u5

K⃗ \Z𝑆(𝑘K⃗ ). The cutoff distance 

(10Å) was applied for the short-range interactions and the real part of the Ewald sum. Eq. (11) is 
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used in calculating forces in MD part of the cpHMD algorithm.  The time evolution of the system 

in the MD part is obtained by using the three step velocity Verlet algorithm:47 

𝑟}KK⃗ (𝑡 + 𝛿𝑡) = 𝑟}KK⃗ (𝑡) + 𝑣}KKK⃗ (𝑡)	𝛿𝑡	 +	
U
G
(𝛿𝑡)G�𝐹}KK⃗ (𝑡)	/𝑚u� (4) 

𝑣}KKK⃗ 1𝑡 +
U
G
𝛿𝑡8 = 𝑣}KKK⃗ (𝑡) +	

U
G
	𝛿𝑡�𝐹}KK⃗ (𝑡)	/𝑚u�  (5) 

𝑣}KKK⃗ (𝑡 + 𝛿𝑡) = 𝑣}KKK⃗ 1𝑡 +
U
G
𝛿𝑡8 +		 U

G
	𝛿𝑡�𝐹}KK⃗ (𝑡 + 𝛿𝑡)	/𝑚u� (6) 

where 𝑟}KK⃗  ,	𝑣}KKK⃗ 	are the i-atom position and velocity vectors, dt is the timestep and 𝐹}KK⃗ 	/𝑚u is 

acceleration of atom i. The rigid structure of the water molecule was preserved using the two step 

RATTLE algorithm with the effective force 𝐹}KK⃗ (𝑡) in eqs. (4-6) corrected by the bond-constraining 

force if atom i is bonded to any other atom.48 

 MD simulations for a newly accepted protonation state is carried out for another 10 ps with 

a time step dt = 1fs before attempting to change the protonation state by using the MC scheme.30 

A new protonation state used further in MD is the lowest energy replica among several generated 

from the current protonation state in parallel MC runs. The simulation algorithm is illustrated in 

Fig. 2.  

The goethite nanoparticle used in this study, and the force-field parameters, are identical to 

our previous reports,30,32 and inspired by related Fe(II)-catalyzed goethite recrystallization 

experiments (Fig. 3).49 The particle exposes dominant {110} (in Pbnm space group) prismatic face 

terminations typical of needle-shaped crystallites. The charge-neutral particle is generated by 

protonating active surface oxygen sites in accordance with their expected proton affinities,50 with 

immersion in SPC/E water and relaxation using the steepest descent algorithm. The subsequent 

temperature and density optimization steps were carried out using the NVT and NPT ensembles 

(T=298K, p=1 atm., the Langevin thermostat with collision frequency g = 2 ps-1 and the Berendsen 

thermostat—barostat).30 The cpHMD simulations were carried out for 30 ns and the configurations 
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were saved every 0.1 ps. The parallelization was provided by the Message Passing Interface 

(MPI)51,52 library, and it allows to run the simulation in parallel using 4 nodes, each with 16 CPU 

cores (3.1 GHz Intel Xeon E52687W). The major performance bottlenecks were the Ewald 

summation procedure and writing simulation trajectory to the hard drive. A single cpHMD 

simulation run of 30 ns took around 9 days.  

In order to simulate the interface structure at a given solution pH, protons are added or 

removed from surface sites to achieve a surface charge density consistent with experimentally 

determined titration curves. 30  

Here we study the effect of a surface charge imbalance between separated, 

crystallographically equivalent faces. Protons are transferred between opposite faces to achieve a 

protonation imbalance (DH+) and then allowed to redistribute among sites on a single face but not 

to migrate between faces. Although this condition is not achievable in experimental systems, it 

provides a simple approach for studying lateral communication of water structure between mineral 

particle faces. Here, we report the simulation results of a goethite particle in the bulk water without 

any explicit electrolyte ions to isolate the effect of the water polarization potential. We will present 

the more complex simulation scenarios with a fully developed EDL of varying thickness in the 

future.  

The most relevant analysis for this study is the calculation of surface electrostatic properties, 

which are defined via the Poisson’s equation:  

∇G𝜓 = −
𝜌
𝜖F
		= 	−∇ ∙ 𝐸																																																																																																																														(7) 

where y is the electrostatic potential, r is the charge density, E is the electrostatic field, e0 is the 

static dielectric constant, and ∇,∇G are divergence and divergence of a gradient (Laplacian) 

operators, respectively. 
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The y-axis projections of the charge density, r(y) and the electrostatic potential, y(y), are 

obtained as follows:22-30 

𝜌(𝑦) =�𝑒𝑞�𝛿�𝑦� − 𝑦�
V

��U

,							〈𝜌(𝑦)〉 =
1
𝑁�
�𝜌(𝑦)

V�

u�U

																																																																									(8) 

𝜓(𝑦) = −
1
𝜖F
�𝑑𝑦�〈𝜌(𝑦)〉𝑑𝑦																																																																																																																(9) 

where d is the Dirac delta function, e is the elementary charge, qj is the charge on j-atom, e0 is the 

vacuum permittivity and 〈𝜌(𝑦)〉	is the time-averaged charge density profile (averaged over all 

trajectory frames, Nf). The two-dimensional charge density profile (projected on the x,y-plane) is 

given by:  

〈𝜌(𝑥, 𝑦)〉 =
1
𝑁�
��𝑒𝑞�𝛿�𝑦� − 𝑦�𝛿�𝑥� − 𝑥�

V

��U

V�

u�U

																																																																																		(10) 

Finally, the net-difference in the charge density between two simulation runs (i,j) that differ in 

the proton imbalance between the mirrored [110] and [1�1�0] faces, is given by: 

∆〈𝜌(𝑥, 𝑦)〉 = 〈𝜌(𝑥, 𝑦)〉u −	 〈𝜌(𝑥, 𝑦)〉�																																																																																																				(11) 

The electrostatic properties and atomic densities calculated in this study are the time-averaged 

properties of the system that reflect the time-dependent evolution of all atoms and stochastic 

evolution of the protonation states.  
 
III. RESULTS  

 We first summarize the water ordering on a charge-neutral, proton-balanced goethite 

particle. The overall charge on the nanoparticle is neutral, corresponding to a solution pH equal to 

the Point of Zero Charge (pHPZC ~ 9.1).30 There is no potential difference imposed between 

equivalent faces so DH+=0. In Fig. 4a, the atomic densities and electrostatic potential are projected 

on the y-axis. The particle surface is defined by the peaks of surface protons (Fig 4a,b). The 

calculated electrostatic potential profile along the y-axis (eq. (9)) shows near-surface modulation 
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due to the layering of interfacial water (Fig. 4b,c). The ordering decays with distance from the 

surface in an oscillating fashion, with a period corresponding to a typical water-water distance 

(3.1-3.2 Å). The predicted layering effect disappears at distances above ~15 Å for both the neutral 

(Fig. 4b,c)  and charged surfaces. Water layer development has been observed in prior 

simulations,22-29 but the present cpHMD simulation shows that the time-averaged structure 

develops even when surface protons are allowed redistribute dynamically as expected for natural 

interfaces.  

 In Fig. 5a, the water charge density is averaged over the z-direction onto the xy-plane (eq. 

10). The charge maps were obtained from 30-ns simulation trajectories that were re-centered on 

the goethite particle. The negative charge (blue) corresponds to water oxygen atoms and the 

positive charge (red) to water hydrogen atoms. The semispherical shapes of the charge density 

spots in the first three water layers, as seen previously in conventional MD studies, 53 is a 

manifestation of the limited rotational and translational mobilities of the interfacial water.  

Although the goethite surfaces have no net charge they impart net polarization to the interfacial 

water. The charge density layers appear to be packed more densely on the particle edges than at 

the mid-surfaces. This is in good agreement with the predictions of a fully dissociable water 

model.40 In each case, edge atoms that are more water solvated exhibit higher proton affinity. As 

expected for the proton-balanced simulation, there are no differences in the polarization charge 

distribution on the equivalent faces.  

 To study the lateral propagation of water structure we simulated a net-charge-neutral but 

proton imbalanced goethite nanoparticle in which protons were transferred between two mirrored 

faces. Fig. 5b displays the surface charge densities for a proton imbalance of DH+=50 applied to 

the top and bottom surfaces, corresponding to an equivalent solution pH of ~2.7 and ~13.4, 

respectively. The difference in the surface charge of our particle is much larger than expected in 
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the actual system to more clearly observe the long-range correlation in the interfacial water 

polarization, but it represents the actual interactions between two adjacent surfaces. A visual 

comparison shows that the predicted structure of the polarized interface differs for DH+=0 (Fig 5a) 

and DH+=50 (Fig 5b). For visual clarity, in Fig. 5c we plot the charge-density difference between 

the proton-balanced and the proton-imbalanced nanoparticles. If the water structure on each face 

is affected only by the net charge density on that face we would expect that the difference maps 

for the bystander faces will be close to zero. Instead, the charge-density difference maps reveal 

that water structure on all six faces is highly sensitive to protonation changes made at only two of 

the faces.  

 In Fig. 6, we provide simulation-averaged quantification of the effect by integrating the 

relative change in the net water polarization charge density (i.e., Fig. 5C) at charged surfaces (DH+ 

=50) and vicinal surfaces where (DH+ =0). When two mirrored surfaces become charged we 

observe a significant change in the water polarization on those surfaces compared to the case in 

which the goethite nanoparticle has only net neutral surfaces (left columns in Fig. 6). We further 

observe that the unaltered surfaces also exhibit an increase in water polarization (right columns in 

Fig. 6). For all surfaces, the effect increases with increasing charge imbalance. The present study 

is limited to a single-geometry goethite nanoparticle with ~21Å dimensions and more work will 

be required to determine the distance over which water polarization can propagate laterally. 

Nevertheless, as discussed below, this phenomenon is relevant to a range of processes such as 

particle oriented aggregation, dissolution, precipitation and interfacial reactivity. 

 

 

IV. DISCUSSION 
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The present study is to our knowledge the first demonstration that the structure of interfacial water 

on an oxide mineral termination face is not independent of the water structure on neighboring 

faces. Rather, lateral hydrogen bond networks propagating from a highly-charged face with 

polarized water molecules can strongly influence the order on neighboring faces. The actual 

particle will have a lower potential gradient and less pronounced polarization of interfacial water 

than shown in our simulations, but the same type of interactions between two adjacent surfaces 

will be present. This work demonstrates that the development of a polarized interface affects the 

time-averaged orientation of water at least three molecular distances away in both the 

perpendicular and lateral directions. This is important finding, because it shows that the water 

structuring at the interface is due to a competition between the water propensity to preserve a 

tetrahedral hydrogen-bond network and to align with the electric field generated by the charged 

surface. This prediction is consistent with recent experimental and simulation studies that have 

provided an increasingly detailed three-dimensional depiction of the molecular structure of EDLs 

in aqueous systems and macromolecular systems including ionic liquids.58-61  

 It remains a challenge to incorporate nanoscale and molecular scale phenomena into 

computationally tractable analytical models of EDL properties. Recent contributions have 

described modified EDL models incorporating interface roughness41-45,62 or finite ion 

correlations.42,63-66 In principle, classical EDL models could incorporate both vertical and lateral 

water polarization phenomena if the Poisson equation (eq. (7)) is solved in all three dimensions, 

that is:  

∇𝜖(𝑥, 𝑦, 𝑧)∇ψ(𝑥, 𝑦, 𝑧) = −
𝜌(𝑥, 𝑦, 𝑧)

𝜖F
∆〈𝜌(𝑥, 𝑦)〉																																																																										(12) 

where the lateral and vertical water ordering and polarization is included via the spatially 

dependent dielectric constant 𝜖(𝑥, 𝑦, 𝑧). Similar to the 1D case, the pH-dependent surface charge 

of metal oxides with acidic surface sites will provide a boundary condition. In order to develop 
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and test new EDL models that incorporate lateral water polarization it will be essential to further 

apply the cpHMD approach described here. Planned future work includes elucidating the general 

functional form of 𝜖(𝑥, 𝑦, 𝑧), its relationship with the nature and charge state of the oxide surface 

(i.e., boundary conditions to eq. (12)) and the influence of counter- and co-ions.  

 Although the present simulation concerns a single nanoparticle, the consequences are broad 

because they show that the reactivity of all faces exposed by a particle is coupled through the 

hydrogen bond network. For example, in an important non-classical pathway for mineral growth—

oriented attachment of nanoparticles—interfacial water ordering appears to play an important 

guiding role in the establishment of matching crystal lattice orientations between mineral grains 

required for fusion.54 Indeed, Zhang et al.55,67 showed that the self-organization of intervening 

water between two approaching zinc oxide particles is critical for establishing a rotational force 

between misoriented surfaces. Our work demonstrates that interfacial water is connected across 

all exposed particle surfaces.  Hence, the vicinal surfaces can influence the orientation forces 

between two opposed faces, and through lateral reorganization of water on adjacent surfaces 

successful attachment events could alter the propensity for subsequent attachment events.  

 There is also increasing evidence that interfacial redox processes at iron oxide surfaces are 

influenced by long-range coupling between electron and proton transfer. Yanina et al. 68 

demonstrated the action of internal electron conduction between crystallographically distinct faces 

of hematite undergoing redox reaction. Internal conduction is likely an important mechanism 

enabling atom exchange in systems of goethite and aqueous Fe(II) as identified by isotope tracer 

studies.49 Interfacial processes that can contribute to electrical conduction include fluctuations in 

protonation/deportation, which create transient field gradients that can couple to charge transfer.32  

Fast conduction channels that run parallel to the interfacial plane29 would therefore be susceptible 

the structure and repolarization dynamics of interfacial water molecules.  The present work 
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indicates that the propagation of water structure between faces will alter the surface polarization 

responsible for establishing internal electric fields.  

   

 

V. CONCLUSIONS 

 The orientation of water in the first few layers at a given metal oxide nanoparticle surface 

is sensitive to the surface charge state of neighboring surfaces. The phenomenon is caused by the 

lateral propagation of ordered water structure, a new type of long-range electrostatic 

communication between oxide surfaces. Such lateral water ordering implies the need for more 

sophisticated models for EDL structure, with anisotropic dynamics in three dimensions, 

incorporating lateral polarization structure within single faces and between faces. Although our 

simulation study employs a particle with the exaggerated charge difference between faces, the 

lateral communication through the interfacial water polarization exists in any mineral particle 

suspension. Many important metal oxide-water chemical and physical processes, including ion-

by-ion growth, oriented aggregation, and interfacial charge-transfer reactions are likely to be 

influenced by these long-range interactions.  
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