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ARTICLE

Deep learning-based transformation of H&E
stained tissues into special stains
Kevin de Haan 1,2,3, Yijie Zhang1,2,3, Jonathan E. Zuckerman4, Tairan Liu1,2,3, Anthony E. Sisk4,

Miguel F. P. Diaz5, Kuang-Yu Jen 6, Alexander Nobori4, Sofia Liou4, Sarah Zhang 4, Rana Riahi4,

Yair Rivenson 1,2,3✉, W. Dean Wallace 7✉ & Aydogan Ozcan 1,2,3,8✉

Pathology is practiced by visual inspection of histochemically stained tissue slides. While the

hematoxylin and eosin (H&E) stain is most commonly used, special stains can provide

additional contrast to different tissue components. Here, we demonstrate the utility of

supervised learning-based computational stain transformation from H&E to special stains

(Masson’s Trichrome, periodic acid-Schiff and Jones silver stain) using kidney needle core

biopsy tissue sections. Based on the evaluation by three renal pathologists, followed by

adjudication by a fourth pathologist, we show that the generation of virtual special stains

from existing H&E images improves the diagnosis of several non-neoplastic kidney diseases,

sampled from 58 unique subjects (P = 0.0095). A second study found that the quality of the

computationally generated special stains was statistically equivalent to those which were

histochemically stained. This stain-to-stain transformation framework can improve pre-

liminary diagnoses when additional special stains are needed, also providing significant

savings in time and cost.
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H istological analysis of stained human tissue samples is
the gold standard for evaluation of many diseases, as
the fundamental basis of any pathologic evaluation is the

examination of histologically stained tissue affixed on a glass slide
using either a microscope or a digitized version of the histologic
image following the image capture by a whole slide image (WSI)
scanner. The histological staining step is a critical part of the
pathology workflow and is required to provide contrast and color
to tissue by facilitating a chromatic distinction among different
tissue constituents. The most common stain (otherwise referred
to as the routine stain) is the hematoxylin and eosin (H&E),
which is applied to nearly all clinical cases, covering ~80% of all
the human tissue staining performed globally1. The H&E stain is
relatively easy to perform and is widely used across the industry.
In addition to H&E, there are a variety of other histological stains
with different properties which are used by pathologists to better
highlight different tissue constituents. For example, Masson’s
trichrome (MT) stain is used to view connective tissue2 and
periodic acid-Schiff (PAS) can be used to better scrutinize base-
ment membranes. The black staining in the Jones methenamine
silver (JMS) stain offers a sharp contrast to visualize glomerular
architecture and enables the pathologist to recognize subtle
basement membrane abnormalities resulting from remodeling
due to various forms of injury. These features have importance
for certain disease types such as nonneoplastic kidney disease3.
These non-H&E stains are also called special stains and their use
is the standard of care in the pathologic evaluation of certain
disease entities including nonneoplastic kidney, liver, and lung
diseases, among others.

The traditional histopathology workflow can be time-consum-
ing, expensive, and requires laboratory infrastructure. Tissue must
first be sampled from the patient, fixed either through freezing in
optimal cutting temperature (OCT) compound, or paraffin
embedding, sliced into thin (2–10 μm) sections, and mounted
onto a glass slide. Only then can these sections be stained using
the desired chemical staining procedure. Furthermore, if multiple
stains are needed, multiple tissue sections are cut, and a separate
procedure must be used for each stain. While H&E staining is
performed using a streamlined staining procedure, the special
stains often require more preparation time, effort, and monitoring
by a histotechnologist, which increases the cost of the procedure
and takes additional time to produce. This can in turn increase the
time for diagnosis, especially when a pathologist determines that
these additional special stains are needed after the H&E stained
tissue has been examined. The tissue sectioning and staining
procedure may therefore need to be repeated for each special stain,
which is wasteful in terms of resources, materials, and might place
a burden on both the healthcare system and patients if there is an
urgent need for a diagnosis.

Recognizing some of these limitations, different approaches
have been developed to improve the histopathology workflow.
Histological staining has been reproduced by imaging rapidly
labeled tissue sections (usually by a nuclear staining dye) using an
alternative contrast mechanism acquired by e.g., nonlinear
microscopy4 or ultraviolet tissue surface excitation5, and digitally
transforming the captured images into user-calibrated H&E-like
images6. These approaches mainly focus on eliminating tissue
fixation from the workflow, targeting rapid intraoperative con-
trast to unfixed specimens. More recently, computational staining
techniques known as virtual staining have been developed. Using
deep learning, virtual staining has been applied on label-free (i.e.,
unstained) fixed and glass slide affixed tissue sections using var-
ious modalities such as autofluorescence7,8, hyperspectral
imaging9, quantitative phase imaging10, and others11,12. Virtual
staining of label-free tissue not only has the ability to reduce costs
and allow for faster staining, but also allows the user to perform

further advanced analysis on the tissue since the destructive
additional sectioning and staining process is avoided that can
cause the specimen to be depleted leading to e.g., additional/
unnecessary biopsies from the patients13. Furthermore, virtual
staining of label-free tissue enables new capabilities such as the
use of multiple virtual stains upon a single tissue section, stain
normalization (i.e., standardization), the region-of-interest spe-
cific digital blending of multiple stains, all of which are challen-
ging or highly impractically with standard histochemical staining
workflows7,8.

An alternative approach that can be used to bypass histo-
chemical tissue staining is to computationally transform the WSI
of an already stained tissue into another stain (this will be referred
to as stain transformation). This allows users to reduce the
number of physical stains required without making any changes
to their traditional histopathology workflow, and also carries
many of the benefits of the virtual staining techniques such as
improving stain consistency and reduction in stain preparation
time. Different stain transformations have been demonstrated in
the literature, e.g., the transformation of H&E into MT14 or
transformation of fibroblast activation protein-cytokeratin (FAP-
CK), duplex immunohistochemistry (IHC) protocol15, from
images of Ki67-CD8 stained slides. Stain transformations have
also been used as a tool to improve the effectiveness of image
segmentation algorithms16,17. However, many of these stain
transformation techniques rely upon unsupervised approaches
which use distribution matching losses used by techniques such
as cycle consistent generative adversarial networks (GANs)—also
known as CycleGANs18. It has been shown that, when applied to
medical imaging, neural networks trained using only these types
of distribution matching losses are prone to hallucinations19.
Some researchers have been able to avoid the use of these dis-
tribution matching losses and unpaired image data by training
networks to perform other stain-to-stain transformations. For
example, a stain transformation network was trained using image
pairs acquired from adjacent tissue sections20, while another work
used image pairs captured by chemically destaining and then re-
staining the same tissue sections21.

In this paper, we present a supervised deep learning-based stain
transformation framework, outlined in Fig. 1. The training of this
technique is based on spatially-registered (i.e., perfectly paired)
image datasets which allow the stain transformation network to be
trained without relying on unpaired image data and correspond-
ing distribution matching losses. We demonstrate the efficacy of
this technique by evaluating kidney tissues with various non-
neoplastic diseases. Nonneoplastic kidney disease relies on special
stains to provide the standard of care pathologic evaluation. In
many clinical practices, H&E stains are available well before the
special stains are prepared, and pathologists may provide a pre-
liminary diagnosis to enable the patient’s nephrologist to begin
any necessary treatment. In a setting when only H&E slides are
initially available, the preliminary diagnosis is followed by the final
diagnosis made by examining the special stain images, which are
often provided the next working day. Using the presented stain
transformation technique (Fig. 1) would alleviate the need to wait
for the special stains to be available. This is especially useful for
some urgent medical conditions such as crescentic glomerulone-
phritis or transplant rejection where quick and accurate diagnosis
followed by rapid initiation of treatment may lead to significant
improvements in clinical outcomes.

Results
In order to prove the utility of our stain transformation techni-
que, we investigated whether it can be used to improve pre-
liminary diagnoses made by pathologists when only H&E is
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available. To do this, we used stain-to-stain transformation net-
works to create three additional computationally generated spe-
cial stains, i.e., PAS, MT, and JMS, from existing H&E tissue
sections. These WSIs were reviewed alongside the existing his-
tochemically stained H&E images by pathologists (i.e., entirely
bypassing the need to stain and wait for new slides). Based on
tissue samples from 58 unique patients that are evaluated by three
independent renal pathologists (i.e., N= 174 total diagnoses), our
results revealed that the generation of the three stain-transformed
special stains (PAS, MT, and JMS) improved the diagnoses in
various nonneoplastic kidney diseases. These computationally
generated panels of special stains transformed from existing H&E
images using deep learning give the pathologists the additional
information channels needed for a standard of patient care. We
show that this unique stain-to-stain transformation workflow can
be applied to a variety of diseases, and significantly improves the
quality of the preliminary diagnosis when additional special stains
are needed. We believe that this technique has significant utility
in enhancing preliminary diagnoses, and could also provide time
savings and help to reduce healthcare costs and burden for his-
topathology labs and patients.

Design and training of stain transformation networks. Deep
neural networks were used to perform the transformation
between H&E stained tissue and the special stains. To train these
networks, a set of additional deep neural networks were used in
conjunction with one another. This training workflow relies upon
the ability for virtual staining of unlabeled tissue to generate
images of different stains using a single unlabeled tissue section
(Fig. 2a). By using a single neural network to generate both the
H&E images alongside the special stains (PAS, MT, and JMS), a
perfectly matched training image dataset can be created. How-
ever, due to the standardization of the output images generated
using the staining network, the virtually stained images (to be
used as inputs when training the stain transformation network)
must be augmented with additional staining styles to ensure
generalization. In other words, we designed our network to be
able to handle inevitable variability in histochemical H&E stain-
ing that is a natural result of (i) differing staining procedures and
reagents among histotechnologists and pathology labs and (ii)
differences among digital WSI scanners that are being used. This
augmentation is performed by K= 8 unique style transfer
(staining normalization) networks (Fig. 2b), which ensured that a
broad sample space is covered for the presented method to be

effective when applied to H&E stained tissue samples regardless
of the inter-technician, inter-lab, or inter-equipment (e.g., WSI)
variations observed at different institutions. Note here that these
style transfer networks and the underlying training methods (e.g.,
CycleGANs) were solely used for H&E stain data augmentation.
The use of CycleGANs only expands the sample space of the
network inputs during the training, and their outputs were
therefore not part of our stain transformation network loss
function. This was possible since we utilized perfectly registered
training images created by virtual staining of label-free auto-
fluorescence images of tissue. This process simultaneously gen-
erated both the H&E and special stain images with a nanoscopic
match in the local coordinates of each virtually stained image pair
of our training dataset, which eliminated the need for the use of
CycleGANs for stain-to-stain transformation.

Using this image dataset, the stain transformation network is
trained, following the scheme shown in Fig. 2c. The network is
randomly fed with image patches either coming from the virtually
stained tissue, or the virtually stained images passing through one
of the eight style transfer networks. The corresponding special
stain (virtually stained from the same unlabeled field of view) is
used as the ground truth regardless of the H&E style transfer.
After its training, the network is then blindly tested on a variety of
digitized H&E slides taken from UCLA repository, which
represent a cohort of diseases and staining variations (all taken
from patients that the network was not trained with). The network
performs the stain transformation at the rate of ~1.5 mm2/s which
takes in total ~0.5–1min for a typical needle core kidney biopsy
slide that was used in this study.

Evaluation of stain transformation networks for kidney disease
diagnoses. To validate the presented stain transformation tech-
nique, a study was performed using WSI data from 58 different
H&E stained tissue sections (each corresponding to a unique
patient) obtained from an existing database of nonneoplastic
kidney diseases. In this blinded study, three board-certified
pathologists filled out diagnostic information for each H&E WSI
(see the Methods section for details). Following a >3-week
washout period, the same pathologists were asked to fill out the
same diagnostic information, but along with the H&E, they were
also provided the stain-transformed WSIs corresponding to
special stains PAS, MT, and JMS, all generated from the existing
H&E images. Following a second >3-week washout period, the
pathologists were asked to fill out the same diagnostic

Fig. 1 Overview of deep learning-based H&E stain transformation into special stains. Histochemical staining of H&E is digitally transformed using a deep
neural network into the special stains: (i) generation of JMS (purple arrow); (ii) generation of MT (red arrow); (iii) generation of PAS (blue arrow).
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information. For this third phase, instead of using computa-
tionally generated, stain-transformed special stains, histochemi-
cally stained serial tissue sections were given to the pathologists
along with the H&E (these sections originated from different
depths within the tissue block). A diagram visualizing this study
process can be seen in Fig. 3. Following the third round of
diagnoses, a fourth board-certified pathologist adjudicated all the
results/diagnoses and determined whether the viewing of the
neural network generated special stains resulted in an Improve-
ment (I), Concordance (C), or Discordance (D) with respect to
the original H&E-only diagnoses. It is important to note that the
official reported diagnosis that we used as our ground truth for
this study also utilized additional information, such as electron
microscopy and immunofluorescence images in order to make
these diagnoses. The complete diagnostic information given by
each pathologist, along with the adjudication for each report can
be found in Supplementary Data 1.

Adjudication of the preliminary diagnoses made by using H&E
only and the use of both H&E and stain-transformed special
stains across the 58 cases revealed that using stain-to-stain
transformations resulted in an average of 13 improved diagnoses
(22.4%), 38.3 concordant diagnoses (66.1%), and 6.7 discordant
diagnoses (11.5%) across the three pathologists. A total of ten
cases had an improved preliminary diagnosis by two or more
pathologists, while three cases had a discordant diagnosis by more
than one pathologists (see Fig. 4). When comparing the diagnoses
made with only H&E against those made with H&E alongside the
histochemically stained special stains from serial tissue sections,
an average of 15 improved diagnoses (25.8%), 38.6 concordant
diagnoses (66.6%), and 4.3 discordant diagnoses (7.4%) were
found across the three pathologists and 58 cases. For this second
comparison, 12 cases were improved by two or more pathologists,
while two cases were discordant for more than one pathologist
(see Fig. 4).

Unpaired target domain
Histological stain 

(ground truth)
Virtually 

stained �ssue

b) CycleGan style transfer network (Generates training inputs)

50 μm

Histochemically stained
�ssue (ground truth)

a) Virtual staining network (Generates stain transfer data)

Virtually 
stained �ssue

style transferred

DAPI channel Texas Red channel

Unlabeled autofluorescence kidney �ssue
Virtual stain 

generator network
Virtually 

stained �ssue

Style transfer 
network

50 μm

Digital staining 
matrix

Ground truth
(Virtually stained PAS)

OR

Virtually 
stained �ssue

Virtually 
stained �ssue

style transferred

50 μm
Stain-transformed PAS

Stain transforma�on 
networkStyle transfer 

network

c) Stain transforma�on network training

Fig. 2 Deep neural networks used to generate the training data for the stain transformation network. a Virtual staining network (pink arrow) which can
generate both the H&E and special stain images. b Style transfer network (green arrow) that is used just to augment the training data. c Scheme used to
train the stain transformation network. During its training, the stain transformation network is randomly given, as the input, either the virtually stained H&E
tissue, or an image of the same field of view after passing through one of the eight style transfer networks. A perfectly matched virtually stained tissue
image with the desired special stain (in this example shown: PAS) is used as the ground truth to train this neural network.
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1 mm

Fig. 3 Overview of the study design. Phase 1 shows the initial portion of the study where three pathologists review H&E WSIs of N= 58 different tissue
sections (each from a unique patient). After a >3-week washout period, the second phase of diagnosis is performed, where the same three pathologists
view the same WSIs, where, in addition to the H&E, the special stains generated by the stain transformation technique (PAS, Masson’s Trichrome, Jones)
are provided as well. After an additional >3-week washout period, the third phase of diagnosis is performed, where the same three pathologists again
review the same WSIs. For this phase, instead of using special stains generated through the stain transformation technique, the images of all four stains
(H&E, PAS, Masson’s Trichrome, and Jones) come from histochemically stained serial sections. (i) Generation of JMS. (ii) Generation of MT. (iii)
Generation of PAS.
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These results show that the additional three virtual special
stains improve the diagnostic outcome over a single histochemi-
cally stained H&E slide for a myriad of nonneoplastic diseases
(P= 0.0095, using a one-tailed t-test). Our stain-to-stain
transformation results are also in line with the level of
improvement demonstrated when the pathologists had access to
the H&E and three additional sections that are histochemically
stained with the corresponding special stains (P= 0.0003, using a
one-tailed t-test) over a single histochemically stained H&E slide.
In addition to these, a secondary analysis was used to compare
differences in the proportion of improvements, concordances,
and discordances for each of these two comparisons reported in
Fig. 4a, b. To do this, three separate chi-square tests were used—
one for each pathologist (see the Methods section). These tests
found that, while the histochemically stained tissue performed
better for all three pathologists, the differences between the two
comparisons were not statistically significant (with P values of
0.60, 0.34, and 0.92 for the first, second, and third pathologist,
respectively).

For each of the diagnoses marked as improvements, the
pathologists were able to provide more accurate characterization

or a more complete diagnosis. As an example, Fig. 5 demonstrates
the improvement using the presented stain transformation
technique for a case used for the preliminary evaluation of our
technique (diagnosed with acute cellular rejection and acute
antibody-mediated rejection), where all three pathologists had the
quality of their diagnoses improved. These improvements appear
to be based on the clearer definition of the tubular and glomerular
basement membranes in the computationally generated special
stains. This biopsy contains very pronounced cellular inflamma-
tion that is difficult to precisely localize on a standard H&E stain,
as H&E does not give clear contrast to structures such as basement
membranes. The computationally generated special stains high-
light the tubular basement membranes which allowed all three
pathologists to see the location of the inflammatory cells and give
a more precise characterization of the organ rejection process.
Another example is case #2, where two pathologists were able to
provide a diagnosis of membranous nephropathy only after a
review of the stain-transformed JMS stain, which is demonstrated
in Fig. 6a. In this case, the generated JMS helped the visualization
of changes to the basement membrane which are characteristic of
membranous nephropathy.

Case #

Improvement

Concordance

Discordance

Case #

Improvement

Concordance

Discordance

a)

b)

H&E vs. H&E + Stain-transformed special stains

H&E vs. H&E + Histochemical special stains

Sta�s�cally 
significant 
improvement
P=0.0095

Sta�s�cally 
significant 
improvement
P=0.0003

Fig. 4 Visualization of the improvements, concordances, and discordances by case number for the two comparisons. a Comparison of H&E only vs. H&E
and the three stain-transformed special stains coming from the same tissue section. The use of the three stain-transformed special stains results in a
statistically significant improvement over H&E only (P= 0.0095). b Comparison of H&E only vs. H&E and the three special stains (all histochemically
stained) coming from serial tissue sections. The use of the three histochemically stained special stains results in a statistically significant improvement over
H&E only (P= 0.0003). P values were calculated using a one-sided t-test. No adjustments for multiple comparisons were needed.
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The discordances were broken up into two categories: those
which were determined to be due to pathologist interpretation
error (e.g., case #7), and those which are likely due to
misrepresentation of the image on the virtual stains (see
Supplementary Data 1 for details). As an example, in case #1,
the fibrin thrombi in a case of thrombotic microangiopathy
(TMA) appeared too pale on the stain-transformed PAS stain. An
example field of view (FOV) with the matching histochemically
stained FOV from an adjacent serial tissue section can be seen in
Fig. 6b. As a second example, in case #3 (amyloidosis), amyloid
deposits were darker on the stain-transformed JMS stain than
would be typical in histologically stained slides (an example FOV
can be seen in Supplementary Fig. 1). It is worth emphasizing that
in both of these cases (#1 and #3), two of the three pathologists
were able to make concordant diagnoses. Furthermore, one
pathologist made a more definitive diagnosis of TMA with the aid
of the stain-transformed special stains in case #1 in addition to
the original images of the histochemically stained H&E.

We should note that previous research on statistical evaluation
of intra-observer decisions revealed a small intra-observer
disagreement rate of ~4% when the same cases are viewed by the
same pathologist at two different time points22. This could
potentially account for the discordance in some of the cases such
as #7, which was determined to be due to pathologist
interpretation error.

Evaluation of the quality of stain-transformed special stain
images. An additional study was performed to assess the quality
of the stains generated by the stain transformation network. For
this study, three pathologists rated the quality of various aspects
of the stains generated using the stain transformation network as
well as the images of histochemically stained tissue from serial
tissue sections. The pathologists each viewed 16 unique rectan-
gular FOVs (with dimensions ranging from ~150 μm× 175 μm to
~375 μm× 500 μm) coming from the three validation slides used
during the training of our neural network. These same FOVs were
scored for each of the three generated special stains, as well as for
the same region of the tissue in a serial histochemically stained

tissue section. The 16 FOVs were randomly chosen by one of the
pathologists to be representative of the tissue sections used, and
only in-focus areas where the tissue is unbroken in all of the tissue
sections were selected. The FOVs were ordered randomly, and
each pathologist rated every image twice—before and after the
image randomly being rotated or flipped (resulting in a total of 32
ratings for each stain and image type). Overall, each one of the
three pathologists rated 192 FOVs (half virtually stained and half
histologically stained).

The pathologists scored four aspects of each FOV on a scale
from 1 to 4, where 4 is perfect, 3 is very good, 2 is good enough
(passable), and 1 is not acceptable, for a total of 2304 unique
assessments/ratings made by three pathologists. The MT stain
was rated for overall stain quality, nuclear detail, cytoplasmic
detail, and extracellular fibrosis quality. The PAS and Jones Silver
stains were rated based on their overall stain quality, along with
nuclear detail, cytoplasmic detail, and basement membrane detail.

Supplementary Table 1 shows the mean score for each stain
type and quality metric. This table shows that the difference in
stain quality for all of the measured aspects of each stain is
significantly smaller than the standard error between the ratings.
This indicates that the stain-to-stain transformation technique
achieves the quality of stain equivalent to that of the
histochemically stained tissue used as our ground truth. A non-
randomized version of the images used for this stain quality
evaluation study can be found in the Supplementary Data 2 file.

Discussion
While different approaches have been explored over the past few
years to perform a transformation between two stains, the
approach presented here has several unique advantages: (1) it
involves less chemical processing applied to tissue, without the
need for destaining and re-staining; and (2) our approach is based
on supervised training of the stain transformation network using
pairs of perfectly registered training images that are created by
label-free virtual staining, which constitutes a precise structural
fidelity constraint for the distribution loss that is learned by the
discriminator, significantly helping its generalization. Stated

1 mm 

50 m 

Fig. 5 Examples of improved diagnoses fostered by the stain-transformed special stains. We report here WSIs that are generated using the stain
transformation technique. In this case, the addition of the computationally generated special stains improved all three of the diagnoses made by the
pathologists. The red arrows point to a region, where the special stains help highlight inflammatory cells within the tubule, otherwise, the boundary of the
tubules cannot be seen with the H&E stain only. (i) Generation of JMS. (ii) Generation of MT. (iii) Generation of PAS. A total of 58 cases were viewed by
three pathologists to perform the statistical analysis.
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differently, no stain-to-stain image aberrations or misalignments
exist in this training data due to the fact that the source of
information (autofluorescence of the label-free tissue) is common
for all the virtually stained images. This feature significantly
improves the reliability and accuracy of the stain-to-stain trans-
formation that is learned using our method. These important
advantages are enabled by using autofluorescence-based virtual
staining of label-free tissue sections with multiple stains to create
perfectly paired training image datasets. While in this paper we
used autofluorescence to generate contrast from label-free tissue,
other contrast mechanisms such as quantitative phase imaging,
multi-photon-microscopy, fluorescence lifetime imaging, and
photoacoustic microscopy, among others, can also support this

supervised training of the presented stain transformation method.
The resulting networks that are trained with our methodology
can digitally transform any existing chemically stained tissue
image into new types of stains.

Similar to the validation of digital pathology systems in general, a
perfect stain-to-stain transformation is not required; the standard of
practice is to demonstrate a lack of inferiority, which is what we
have endeavored to do. Substituting chemically stained slides for
stain-transformed slides leads to several advantages, including e.g.,
decreased slide preparation time, decreased laboratory costs, and
preservation of tissue for subsequent analysis, if necessary. In the
future, the use of computationally generated special stains may
make it possible to selectively omit the need for performing actual

50 m 

50 m 

Fig. 6 Examples of improved and discordant diagnosis achieved by the stain-transformed special stains. a Example of improved diagnosis fostered by
the stain-transformed special stains. For case #2 (in Fig. 4 and the Supplementary Data 1), the basement membrane changes that are characteristic of
membranous nephropathy (subepithelial spikes and basement membrane holes) are only appreciated after reviewing the stain-transformed JMS. The
bottom images exemplify histochemically stained images of adjacent serial sections of the patient sample; that is why they correspond to different sections
within the tissue block. b Example of the discordance demonstrated between the H&E and computationally generated special stains for case #1 (in Fig. 4
and the Supplementary Data 1). In this field of view, the fibrin thrombi are gray-yellow in color on the stain-transformed PAS stain rather than pink-red. (i)
Generation of JMS. (ii) Generation of MT. (iii) Generation of PAS. A total of 58 cases were viewed by three pathologists to perform the statistical analysis.
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special stains and save time and laboratory expenses in some
settings.

The ability of this stain-to-stain transformation network to
generalize across stain variations is also highly beneficial as there
are significant differences among stains produced by different labs
and even across stains performed by the same histotechnician
(e.g., Supplementary Fig. 2a demonstrates three examples of such
variations for stains produced by the same lab). However, in
order for a stain transformation technique to be effective for any
practical application, the network must generalize across this
wide sample space. As one of the key features of virtual staining is
stain normalization7, the network requires data augmentation to
better facilitate the learning across a wide input staining dis-
tribution. For this purpose, we used a set of eight CycleGAN
networks to perform this stain data augmentation of the H&E
dataset used to train our stain transformation network. The use of
CycleGAN networks to perform a stain normalizing style transfer
has been shown to be more effective than traditional stain nor-
malization algorithms23. Furthermore, they have proven to be
highly effective at performing data augmentation for medical
imaging24. By applying these CycleGAN augmentation networks
to our training image dataset, we were able to successfully gen-
eralize to various slides used for blind testing. Three examples of
this CycleGAN-based stain augmentation results are reported in
Supplementary Fig. 2b, which demonstrates that the three dif-
ferent networks are capable of converting the virtually stained
tissue to have H&E distributions which match the distributions
seen in Fig. S2a. Furthermore, the results show that the same stain
transformation network is consistent across these various dis-
tributions as there is little variation among the virtual PAS out-
puts (Supplementary Fig. 2b). These style normalization/transfer
networks used in data augmentation can be easily further
expanded upon, if needed, using existing databases of H&E
images.

As we have emphasized earlier, these style transfer networks
were only used for H&E stain data augmentation and were not
included in our stain transformation loss function. We utilized
perfectly registered training images generated by virtual staining
of label-free tissue; as a result of this, potential hallucinations or
artifacts related to unsupervised training with CycleGANs and
unpaired training data are eliminated (as can be seen in Sup-
plementary Fig. 3). When the same CycleGAN architecture used
for the data augmentation is applied to the various stain trans-
formations, a number of clear hallucinations occur. These hal-
lucinations are particularly evident for the PAS and Jones Silver
stain, where the networks incorrectly label the tubular basement
membranes (see Supplementary Fig. 3). The tubules are com-
posed of epithelial cells lining basement membranes that stain
black on the Jones stain and magenta on the PAS stain. The brush
border lining the luminal surface of the epithelial cells is also
normally lightly stained black and magenta by the Jones and PAS
stains, respectively. The CycleGAN method incorrectly recog-
nized the basement membranes and tubular brush borders lead-
ing to incorrect image generation, which is a very significant
error. In contrast, the quality and features of the MT stain appear
to be more similar between the two techniques. This is believed to
be due to the MT stain being relatively similar to H&E, while the
other stains require significant structural changes which can cause
hallucinations for CycleGANs. These results and observations
highlight the significant advantages of our stain-to-stain trans-
formation network compared to standard CycleGAN-based
methods.

It is important to note that the current stain-to-stain network is
trained to work with H&E stains performed at a few institutions
and imaged by different microscopes from the same vendor/
model (Leica Biosystems Aperio AT2 slide scanner). Additional

data would be required for the network to generalize to samples
imaged using microscopes with different specifications or ven-
dors, or any H&E stains which are performed in a significantly
different manner. Furthermore, while this study covers a broad
range of diseases, it is still a proof of concept. Future studies
should be performed which contain both larger training and test
datasets in order to conclusively show the technique may be
suitable for diagnostic use. Future work may also apply this
technique that we have presented to other biomarkers that are
currently labeled with IHC to help target specific conditions.

In addition to histological stains, immunofluorescence and
electron microscopy25 based evaluation play significant roles in
the standard of care for nonneoplastic kidney biopsy evaluation.
In this study, we have attempted to isolate the role of standard
light microscopy in the nonneoplastic kidney disease evaluation
and therefore these other modalities were not included. However,
their application in clinical cases would only serve to support the
pathologic final diagnosis and add a layer of further confirmation
and safety to this resource-saving stain transformation technique.

In this work, we focused on image transformations from H&E
to special stains, since H&E is used as the bulk of the staining
procedures, covering ~80% of all the human tissue staining
procedures1. However, other stain-to-stain transformations can
also be considered. For example, transformations from special
stains to H&E or from immunofluorescence to H&E or special
stains could be performed using the presented method. Our
approach allows pathologists to visualize different tissue con-
stituents without waiting for additional slides to be stained with
special stains, and we demonstrated it to be effective for the
clinical diagnosis of multiple renal diseases. Another advantage of
the presented technique is that it can rapidly perform the stain
transformation (at a rate of 1.5 mm2/s on a consumer-grade
desktop computer with two GPUs), while saving labor, time,
chemicals, and can significantly benefit the patient as well as the
healthcare system.

Methods
Training of stain transformation network. All of the stain transformation net-
works and virtual staining networks used in this paper were trained using GANs.
Each of these GANs consists of a generator (G) and a discriminator (D). The
generator is used to perform the transformation of the input images (xinput), while
the discriminator network is used to help train the network to generate images,
which match the distribution of the ground truth stained images. It does this by
trying to discriminate between the generated images (G(xinput)) and the ground
truth images (zlabel). The generator is in turn taught to generate images, which
cannot be classified correctly by the discriminator. This GAN loss is used in
conjunction with two additional losses: a mean absolute error (L1) loss and a total
variation (TV) loss. The L1 loss is used to ensure that the transformations are
performed accurately in space and color, while the TV loss is used as a regularizer,
and reduces noise created by the GAN loss. Together, the overall loss function is
described as:

lgenerator ¼ L1fzlabel;GðxinputÞg þ α ´TVfGðxinputÞg þ β ´ ð1� DðGðxinputÞÞÞ2 ð1Þ
where α and β are constants used to balance the various terms of the loss function.
The stain transformation networks are tuned such that the L1 loss makes up ~1% of
the overall loss, the TV loss makes up only ~0.03% of the overall loss, and the
discriminator loss makes up the remaining ~99% of the loss (relative ratios change
over the course of the training). The L1 portion of the loss can be written as:

L1 z;Gð Þ ¼ 1
P ´Q

∑
p
∑
q
jzp;q � GðxinputÞp;qj ð2Þ

where p and q are the pixel indices and P and Q are the total number of pixels in
each image. The total variation loss is defined as:

TVðGðxinputÞÞ ¼ ∑
p
∑
q
jGðxinputÞpþ1;q

� GðxinputÞp;qj þ jGðxinputÞp;qþ1
� GðxinputÞp;qj

ð3Þ
The discriminator network has a separate loss function which is defined as:

ldiscriminator ¼ DðGðxinputÞÞ2 þ ð1� DðzlabelÞÞ2 ð4Þ
A modified U-net1 neural network architecture was used for the generator,

while the discriminator used a VGG-style2 network. The U-net architecture uses a
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set of four up-blocks and four down-blocks, each containing three convolutional
layers with a 3 × 3 kernel size, activated upon by the LeakyReLU activation function
which is described as:

LeakyReLU xð Þ ¼ x for x > 0

0:1 x otherwise

�
ð5Þ

The first down-block increases the number of channels to 32, while the rest each
increase the number of channels by a factor of two. Each of these down-blocks ends
with an average pooling layer which has both a stride and a kernel size of two. The
up-blocks begin with a bicubic up-sampling prior to the application of the
convolutional layers. Between each of the blocks of a certain layer, a skip
connection is used to pass data through the network without needing to go through
all the blocks. After the final up-block, a convolutional layer maps back to three
channels.

The discriminator is made up of five blocks. These blocks contain two
convolutional layers and LeakyReLU pairs, which together increase the number of
channels by a factor of two. These are followed by an average pooling layer with a
stride of two. After the five blocks, two fully connected layers reduce the output
dimensionality to a single value, which in turn is input into a sigmoid activation
function to calculate the probability that the input to the discriminator network is
real, i.e., not generated.

Both the generator and discriminator were trained using the adaptive moment
estimation (Adam)26 optimizer to update the learnable parameters. A learning rate
of 1 × 10−5 was used for the discriminator network while a rate of 1 × 10−4 was
used for the generator network. For each iteration of the discriminator training, the
generator network is trained for seven iterations. This ratio reduces by one every
4000 iterations of the discriminator to a minimum of one discriminator iteration
for every three generator iterations. The network was trained for 50000 iterations of
the discriminator, with the model being saved every 1000 iterations. The best
generator model was chosen manually from these saved models by visually
comparing different models. For all three of the generator networks (MT, PAS, and
JMS), the 15,000th iteration of the discriminator was chosen as the optimal model.

The stain transformation networks were trained using pairs of 256 × 256-pixel
image patches generated by the class conditional virtual staining network (label-free),
downsampled by a factor of 2 (to match 20× magnification). These patches were
randomly cropped from one of 1013 712 × 712-pixel images coming from ten unique
tissue sections, leading to ~7836 unique patches usable for training. Seventy-six
additional images coming from three unique tissue sections were used to validate the
network. These images were augmented using the eight stain augmentation networks
and further augmented through random rotation and flipping of the images. The
diagnoses of each of the samples used for training and validation have been added to
Supplementary Tables 2 and 3. Each of the three stain transformation networks (MT,
PAS, and JMS) were trained using images generated by the label-free virtual staining
networks from the same input autofluorescence images. Furthermore, the images were
converted to the YCbCr color space27 before being used as either the input or ground
truth for the neural networks.

As this stain transformation neural network performs an image-to-image
transformation, it learns to transform specific structures using the ~513 million
pixels in the dataset that are independently accounted for in the loss function.
Furthermore, since the network learns to convert structures which are common
throughout many different types of samples, it can be applied to tissues with
diseases that the network was not trained with. When used in conjunction with the
eight data augmentation networks which convert the values of these pixels, as well
as random rotation and flipping (for an additional 8×) augmentation, there are
effectively many billions of pixels which are used to learn the desired stain-to-stain
transformation. Because of these advantages, a much smaller number of training
samples from unique patients can be used than would be required for a typical
classification neural network.

Image data acquisition. All of the neural networks were trained using data
obtained by microscopic imaging of thin tissue sections coming from needle core
kidney biopsies. Unlabeled tissue sections were obtained from the UCLA Trans-
lational Pathology Core Laboratory (TPCL) under UCLA IRB 18-001029, from an
existing specimen. The autofluorescence images were captured using an Olympus
IX-83 microscope (controlled with the MetaMorph microscope automation soft-
ware, version 7.10.161), using a DAPI filter cube (Semrock OSFI3-DAPI5060C, EX
377/50 nm EM 447/60 nm) as well as a Texas Red filter cube (Semrock OSFI3-
TXRED-4040C, EX 562/40 nm EM 624/40 nm) to generate the second auto-
fluorescence image channel.

In order to create the training dataset for the virtual staining network, pairs of
matched unlabeled autofluorescence images and brightfield images of the
histochemically stained tissue were obtained. H&E, MT, and PAS histochemical
staining were performed by the Tissue Technology Shared Resource at UC San
Diego Moores Cancer Center. The JMS staining was performed by the Department
of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles,
CA, USA. These stained slides were digitally scanned using a brightfield scanning
microscope (Leica Biosystems Aperio AT2 slide, using 40x/0.75NA objective). All
the slides and digitized slide images were prepared from an existing specimen.
Therefore, this work did not interfere with standard practices of care or sample
collection procedures. The H&E image dataset used for the study came from the

existing UCLA pathology database containing WSIs of stained kidney needle core
biopsies, under UCLA IRB 18-001029. These slides were similarly imaged using
Aperio AT2 slide scanning microscopes.

Image co-registration. To train label-free virtual staining networks, the auto-
fluorescence images of unlabeled tissue were co-registered to brightfield images of
the same tissue after it had been histochemically stained. This image co-registration
was done through a multistep process28, beginning with a coarse matching which
was progressively improved until subpixel level accuracy is achieved. The regis-
tration process first used a cross-correlation-based method to extract the most
similar portions of the two images. Next, the matching was improved using mul-
timodal image registration29. This registration step applied an affine transforma-
tion to the images of the histochemically stained tissue to correct for any changes in
size or rotations. To achieve pixel-level co-registration accuracy, an elastic regis-
tration algorithm was then applied. However, this relies upon a local correlation-
based matching. Therefore, to ensure that this matching could be accurately per-
formed, an initial rough virtual staining network is applied to the autofluorescence
images7,8. These roughly stained images were then co-registered to the brightfield
images of the stained tissue using a correlation-based elastic pyramidal co-
registration algorithm30.

Once the image co-registration is complete, the autofluorescence images were
normalized by subtracting the average pixel value of the tissue area for the WSI and
subsequently dividing it by the standard deviation of the pixel values in the
tissue area.

Class conditional virtual staining of label-free tissue. A class conditional GAN
was used to generate both the input and the ground truth images to be used during
the training of the presented stain transformation networks (Fig. 2a). This class
conditional GAN allows multiple stains to be created simultaneously using a single
deep neural network8. To ensure that the features of the virtually stained images are
highly consistent between stains, a single network must be used to generate the
stain transformation network input (virtual H&E) and the corresponding ground
truth images (virtual special stains) that are automatically registered to each other
as the information source is the same image. This is only required for the training
of the stain transformation neural networks and is rather beneficial as it allows
both the H&E and special stains to be perfectly matched. Furthermore, an alter-
native image dataset made up of co-registered virtually stained and histochemically
stained fields of view will present limitations due to imperfect co-registration and
deformities caused by the staining process. These are eliminated by using a single
class conditional GAN to generate both the input and the ground truth images.

This network uses the same general architecture as the network described in the
previous section, with the addition of a Digital Staining Matrix concatenated to the
network input for both the generator and discriminator8. This staining matrix
defines the stain coordinates within a given image FOV. Therefore, the loss
functions for the generator and discriminator are:

lgenerator ¼ L1fzlabel;Gðxinput;ecÞg þ α ´TVfGðxinput;ecÞg þ β ´ ð1� DðGðxinput;ecÞ;ecÞÞ2 ð6Þ

ldiscriminator ¼ DðGðxinput;ecÞ;ecÞ2 þ ð1� Dðzlabel;ecÞÞ2 ð7Þ
where ec is a one-hot encoded digital staining matrix with the same pixel
dimensions as the input image. When used in the testing phase, the one-hot
encoding allows the network to generate two separate stains (H&E and the
corresponding special stain) for each FOV.

The number of channels in each layer used by this deep neural network was
increased by a factor of two compared to the stain transformation architecture
described above to account for the larger dataset size and the need for the network
to perform two distinct stain transformations.

A set of four adjacent tissue sections were used to train the virtual staining
networks for H&E and the three special stains. The H&E portion of all three of the
networks was trained with 1058 1424 × 1424-pixel images coming from ten unique
patients, the PAS network was trained with 946 1424 × 1424-pixel images coming
from 11 unique patients, the Jones network was trained with 816 1424 × 1424-pixel
images coming from ten unique patients, and the MT network was trained with
966 1424 × 1424-pixel images coming from ten unique patients. A list of the
samples used to train the various networks, and the original diagnoses of the
patients can be seen in Supplementary Table 2. All of the stains were validated
using the same three validations slides.

Style transfer for H&E image data augmentation. In order to ensure that the stain
transformation neural network is capable of being applied to a wide variety of histo-
chemically stained H&E images, we use the CycleGAN18 model to augment the training
dataset by performing style transfer (Fig. 2b). As discussed, these CycleGAN networks
only augment the image data used as inputs in the training phase. This CycleGAN
model learns to map between two domains X and Y given the training samples x and y,
where X is the domain for the original virtually stained H&E and Y is the domain for
the H&E image generated by a different lab or hospital. This model performs two
mappings G : X ! Y and F : Y ! X. In addition, two adversarial discriminators DX
and DY are introduced. A diagram showing the relationship between these various
networks is shown in Supplementary Fig. 4.
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The loss function of the generator lgenerator contains two types of terms:
adversarial losses ladv to match the stain style of the generated images to the style of
histochemically stained images in target domain; and cycle consistency losses lcycle
to prevent the learned mappings G and F from contradicting each other. The
overall loss is therefore described by:

lgenerator ¼ λ ´ lcycle þ φ ´ ladv ð8Þ
whereλ and φ are relative weights/constants. For each of the networks, we set λ=
10 and φ= 1. Each generator is associated with a discriminator, which ensures that
the generated image matches the distribution of the ground truth. The adversarial
losses for each of the generator networks can be written as:

ladvX!Y ¼ 1� DY G xð Þð Þ� �2 ð9Þ

ladvY!X ¼ 1� DX F y
� �� �� �2 ð10Þ

And the cycle consistency loss can be described as:

lcycle ¼ L1 y;G F y
� �� �� �þ L1 x; F G xð Þð Þ� �

ð11Þ
The adversarial loss terms used to train DX and DY are defined as:

lDX
¼ 1� DX xð Þ� �2 þ DX F y

� �� �2 ð12Þ

lDY
¼ 1� DY y

� �� �2 þ DY G xð Þð Þ2 ð13Þ
For these CycleGAN models, G and F use U-net architectures similar to the

stain transformation network. It consists of three down-blocks followed by three
up-blocks. Each of these down-blocks and up-blocks are identical to the
corresponding blocks in the stain transformation network. DX and DY also have
similar architectures to the discriminator network of stain transformation network.
However, they have four blocks rather than five blocks as in the previous model.

During the training, the Adam optimizer was used to update the learnable
parameters with learning rates of 2 × 10−5 for both the generator and discriminator
networks. For each step of discriminator training, one iteration of training was
performed for the generator network, and the batch size for training was set to 6.

A list of the original diagnoses of the samples used to train the CycleGAN stain
augmentation networks can be seen in Supplementary Table 3. The same table also
indicates how many FOVs were used for each sample used to train the CycleGAN
network.

Training of single-stain virtual staining networks. In addition to performing
multiple virtual stains using a single neural network, separate networks which only
generate one individual virtual stain each were also trained. These networks were
used to perform the rough virtual staining that enables the elastic co-registration.
These networks use the same general architecture as the stain transformation
networks, with the only difference being that the first block in both the generator
and the discriminator increases the number of channels to 64. The input and
output images are the autofluorescence images and the histochemically stained
images, respectively, processed using the image registration described in the image
co-registration section.

Implementation details. The image co-registration was implemented in MATLAB
using version R2018a (The MathWorks Inc.). The neural networks were trained
and implemented using Python version 3.6.2 with TensorFlow version 1.8.0. The
timing was measured on a Windows 10 computer with two Nvidia GeForce GTX
1080 Ti GPUs, 64GB of RAM, and an Intel I9-7900X CPU.

Pathologic evaluation of kidney biopsies. An initial study of 16 sections—
comparing the diagnoses made with H&E only against the diagnoses made with
H&E as well as the stain-transformed special stains—was first performed to
determine the feasibility of the technique. For this initial evaluation, 16 non-
neoplastic kidney cases were selected by a board-certified kidney pathologist (J.E.Z.)
to represent a variety of kidney diseases (listed in Supplementary Data 1). For each
case, the WSI of the histochemically stained H&E slide, along with a worksheet that
included a brief clinical history, were presented to three board-certified renal
pathologists (W.D.W, M.F.P.D., and A.E.S.). The diagnostic worksheet can be seen
in Supplementary Table 4. The WSIs were exported to the Zoomify format31, and
uploaded to the GIGAmacro32 website to allow the pathologists to confidentially
view the images using a standard web browser. The WSIs were viewed using
standard displays (e.g., LCD Monitor, FullHD, 1920 × 1080 pixels).

In the diagnostic worksheet, the reviewers were given the H&E WSI and brief
patient history and asked to make a preliminary diagnosis and quantify certain
features of the biopsy (i.e., number of glomeruli and arteries) and provide
additional comments if necessary. After a >3-week washout period to reduce the
pathologists’ familiarity with the cases, the three reviewing pathologists received, in
addition to the same histologically stained H&E WSIs and the same patient medical
history, three computationally generated special stain WSIs for each case: MT, PAS,
and JMS. Being given these slides, they were asked to provide a preliminary
diagnosis for a second time. This >3-week washout period was chosen to be 1 week

greater than the College of American Pathologists Pathology and Laboratory
Quality Center guidelines33, ensuring that the pathologists were not influenced by
previous diagnoses.

To test the hypothesis that using additional stain-transformed WSIs can be used
to improve the preliminary diagnosis, the adjudicator pathologist (J.E.Z.) who was
not among the three diagnosticians provided judgment to determine Concordance
(C), Discordance (D), or Improvements (I) between the diagnosis quality of the
first and second round of preliminary diagnoses provided by the group of
diagnosticians (see Supplementary Table 4).

To expand the total number of cases to 58 and perform the third study, (Fig. 3)
the same set of steps were repeated. To allow for higher throughput, in this case,
the WSIs were uploaded to a custom-built online file viewing server based on the
Orthanc server package34. Using this online server, the user is able to swap between
the various cases. For each case, the patient history is presented, along with the
WSI and the option to swap between the various stains, where applicable. The
pathologists were asked to input their diagnosis, the chronicity, and any comments
that they might have into text boxes within the interface.

Once the pathologists completed the diagnoses with H&E only as well as with
H&E and the stain-transformed special stains, another >3-week washout period
was observed. Following this second washout period, the pathologists were given
WSIs of the original histochemically stained H&E along with the three
histochemically stained special stains coming from serial tissue sections. Two of
these cases used in the preliminary study were excluded from the final analysis, as
WSIs of the three special stains could not be obtained from serial tissue sections.
For the first of these excluded cases, all of the pathologist’s diagnoses were
improved using stain-to-stain transformation, and for the second, one of the
diagnoses was improved while the other two pathologists’ diagnoses were
concordant.

The pathologists’ diagnoses and comments can be found in the file
Supplementary Data 1. Pathologist 2 was replaced for the expanded study due to
time availability. Therefore, there is a separate page containing the initial study
diagnoses for this pathologist.

Statistical analysis. Using the preliminary study of 16 samples, we calculated that
a total of 41 samples are needed to show statistical significance (using a power of
0.8 and an alpha level of 0.05 and using a one-tailed t-test). Therefore, the total
number of patients was increased to 58 to ensure that the study was sufficiently
powered.

A one-tailed t-test was used to determine whether a statistically significant
number of improvements were made when using either [H&E and stain-
transformed special stains], or [H&E and histochemically stained special stains]
over only [H&E] images. The statistical analyses were performed by giving a score
of +1 to any improvement, −1 to any discordance, and 0 to any concordance. The
score for each case was then averaged among the three pathologists who evaluated
the case, and the test showed that the amount of improvement (i.e., if the average
score is greater than zero) across the 58 cases was statistically significant.

A chi-squared test with two degrees of freedom was used to compare the
proportion of improvements, concordances, and discordances between the
methods tested above. The improvements, concordances, and discordances for
each pathologist was compared individually.

For all tests, a P value of 0.05 or less was considered to be significant.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the results demonstrated by this study are available within the main text
and the Supplementary Information. The full set of images used for the stain quality
assessment study can be found in the Supplementary Data 2 file as well as at: https://
github.com/kevindehaan/stain-transformation. The full pathologist reports and
adjudication results can be found in the Supplementary Data 1 file and on GitHub.
Examples of patient sample fields of view can also be found on GitHub at https://github.
com/kevindehaan/stain-transformation. For each example, the histochemically stained
H&E and stain transformed special stains are shown for the same FOV, while the
histochemically stained special stains that are shown come from the same biopsy,
through serial tissue sections. Raw whole slide images corresponding to patient specimen
were obtained under UCLA IRB 18-001029 from the UCLA Health private database for
the current study and therefore cannot be made publicly available.

Code availability
The stain-to-stain transformation-related TensorFlow codes used in this manuscript can
be found on GitHub at https://github.com/kevindehaan/stain-transformation.

Received: 9 September 2020; Accepted: 29 July 2021;

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25221-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4884 | https://doi.org/10.1038/s41467-021-25221-2 | www.nature.com/naturecommunications 11

https://github.com/kevindehaan/stain-transformation
https://github.com/kevindehaan/stain-transformation
https://github.com/kevindehaan/stain-transformation
https://github.com/kevindehaan/stain-transformation
https://github.com/kevindehaan/stain-transformation
www.nature.com/naturecommunications
www.nature.com/naturecommunications


References
1. Global Transformational Health Research Team at Frost & Sullivan. Global

Tissue Diagnostics Market, Forecast to 2022 (Frost and Sullivan 2018).
2. Alturkistani, H. A., Tashkandi, F. M. & Mohammedsaleh, Z. M. Histological

stains: a literature review and case study. Glob. J. Health Sci. 8, 72–79 (2016).
3. Walker, P. D., Cavallo, T. & Bonsib, S. M., Ad Hoc Committee on Renal

Biopsy Guidelines of the Renal Pathology Society. Practice guidelines for the
renal biopsy. Mod. Pathol. 17, 1555–1563 (2004).

4. Tao, Y. K. et al. Assessment of breast pathologies using nonlinear microscopy.
Proc. Natl Acad. Sci. USA 111, 15304–15309 (2014).

5. Fereidouni, F. et al. Microscopy with ultraviolet surface excitation for rapid
slide-free histology. Nat. Biomed. Eng. 1, 957–966 (2017).

6. Glaser, A. K. et al. Light-sheet microscopy for slide-free non-destructive
pathology of large clinical specimens. Nat. Biomed. Eng. 1, 1–10 (2017).

7. Rivenson, Y. et al. Virtual histological staining of unlabelled tissue-
autofluorescence images via deep learning. Nat. Biomed. Eng. https://doi.org/
10.1038/s41551-019-0362-y (2019).

8. Zhang, Y. et al. Digital synthesis of histological stains using micro-
structured and multiplexed virtual staining of label-free tissue. Light. Sci. Appl. 9,
78 (2020).

9. Bayramoglu, N., Kaakinen, M., Eklund, L. & Heikkilä, J. Towards virtual H
and E staining of hyperspectral lung histology images using conditional
generative adversarial networks. In IEEE International Conference on
Computer Vision Workshops (ICCVW) (Cucchiara R., Matsushita, Y. Sebe, N.
& Soatto, S.) 64–71 (IEEE, 2017).

10. Rivenson, Y. et al. PhaseStain: the digital staining of label-free quantitative phase
microscopy images using deep learning. Light. Sci. Appl. 8, 23 (2019).

11. Rana, A. et al. Use of deep learning to develop and analyze computational
hematoxylin and eosin staining of prostate core biopsy images for tumor
diagnosis. JAMA Netw. Open 3, e205111–e205111 (2020).

12. Borhani, N., Bower, A. J., Boppart, S. A. & Psaltis, D. Digital staining through
the application of deep neural networks to multi-modal multi-photon
microscopy. Biomed. Opt. Express 10, 1339–1350 (2019).

13. Roy-Chowdhuri, S. et al. Collection and handling of thoracic small biopsy and
cytology specimens for ancillary studies: guideline from the College of
American Pathologists in collaboration with the American College of Chest
Physicians, Association for Molecular Pathology, American Society of
Cytopathology, American Thoracic Society, Pulmonary Pathology Society,
Papanicolaou Society of Cytopathology, Society of Interventional Radiology,
and Society of Thoracic Radiology. Arch. Pathol. Lab. Med. https://doi.org/
10.5858/arpa.2020-0119-CP (2020).

14. Levy, J. J., Jackson, C. R., Sriharan, A., Christensen, B. C. & Vaickus, L. J.
Preliminary Evaluation of the Utility of Deep Generative Histopathology
Image Translation at a Mid-sized NCI Cancer Center. in Proceedings of the
13th International Joint Conference on Biomedical Engineering Systems and
Technologies (BIOSTEC 2020) - Volume 3: BIOINFORMATICS,(eds. Maria, E.
D., Fred, A. L. N. & Gamboa, H.) 302–311 (SCITEPRESS, 2020).

15. Lahiani, A., Klaman, I., Navab, N., Albarqouni, S. & Klaiman, E. Seamless
virtual whole slide image synthesis and validation using perceptual embedding
consistency. IEEE J. Biomed. Health Inform. https://doi.org/10.1109/
JBHI.2020.2975151 (2020).

16. Gadermayr, M., Appel, V., Klinkhammer, B. M., Boor, P. & Merhof, D. In
Medical Image Computing and Computer Assisted Intervention – MICCAI
2018 (eds Frangi, A. F., Schnabel, J. A., Davatzikos, C., Alberola-López, C. &
Fichtinger, G.) 165–173 (Springer, 2018).

17. Kapil, A. et al. DASGAN–Joint domain adaptation and segmentation for the
analysis of epithelial regions in histopathology PD-L1 images. Preprint at
arXiv:1906.11118 [cs, eess] (2019).

18. Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In 2017 IEEE
International Conference on Computer Vision (ICCV) (eds Cucchiara, R.,
Matsushita, Y., Sebe, N. & Soatto, S.) 2242–2251 (IEEE, 2017).

19. Cohen, J. P., Luck, M. & Honari, S. Distribution Matching Losses Can
Hallucinate Features in Medical Image Translation. in Medical Image
Computing and Computer Assisted Intervention – MICCAI 2018 (eds. Frangi,
A. F., Schnabel, J. A., Davatzikos, C., Alberola-López, C. & Fichtinger, G.)
529–536 (Springer International Publishing, 2018). https://doi.org/10.1007/
978-3-030-00928-1_60.

20. Fujitani, M. et al. Re-staining pathology images by FCNN. In 16th
International Conference on Machine Vision Applications (MVA) (eds Maki,
A. & Favaro, P.) 1–6 (IEEE, 2019).

21. Mercan, C. et al. Virtual Staining for Mitosis Detection in Breast
Histopathology. in 2020 IEEE 17th International Symposium on
Biomedical Imaging (ISBI) (IEEE, 2020). https://doi.org/10.1109/
isbi45749.2020.9098409.

22. Bauer, T. W. et al. Validation of whole slide imaging for primary diagnosis in
surgical pathology. Arch. Pathol. Lab. Med. 137, 518–524 (2013).

23. Shaban, M. T., Baur, C., Navab, N. & Albarqouni, S. Staingan: stain style
transfer for digital histological images. In 2019 IEEE 16th International
Symposium on Biomedical Imaging (ISBI 2019) (eds Carbayo, M. L., Ángel, M.
& Ballester, G.) 953–956 (IEEE, 2019).

24. Sandfort, V., Yan, K., Pickhardt, P. J. & Summers, R. M. Data augmentation
using generative adversarial networks (CycleGAN) to improve generalizability
in CT segmentation tasks. Sci. Rep. 9, 16884 (2019).

25. Erlandson, R. A. Role of electron microscopy in modern diagnostic surgical
pathology. Mod. Surg. Pathol. https://doi.org/10.1016/B978-1-4160-3966-
2.00005-9 (2009).

26. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR (eds. Bengio, Y. &
LeCun, Y.) (2015).

27. Convert RGB color values to YCbCr color space - MATLAB rgb2ycbcr.
https://www.mathworks.com/help/images/ref/rgb2ycbcr.html (2020).

28. Wang, H. et al. Deep learning enables cross-modality super-resolution in
fluorescence microscopy. Nat. Methods 16, 103–110 (2019).

29. Register Multimodal MRI Images - MATLAB & Simulink Example. https://
www.mathworks.com/help/images/registering-multimodal-mri-images.html
(2020).

30. Culley, S. et al. Quantitative mapping and minimization of super-resolution
optical imaging artifacts. Nat. Methods 15, 263–266 (2018).

31. Zoomify—Zoomable web images! http://zoomify.com/ (2020).
32. GIGAmacro: Exploring Small Things in a Big Way. https://viewer.gigamacro.com/

(2020).
33. Pantanowitz, L. et al. Validating whole slide imaging for diagnostic purposes

in pathology: guideline from the College of American Pathologists Pathology
and Laboratory Quality Center. Arch. Pathol. Lab. Med. 137, 1710–1722
(2013).

34. Jodogne, S. The orthanc ecosystem for medical imaging. J. Digit. Imaging 31,
341–352 (2018).

Acknowledgements
The authors acknowledge the funding of the NSF Biophotonics Program (USA). Mei
Leng from the Department of Medicine Statistics Core at the UCLA Clinical and
Translational Science Institute is also acknowledged for helping to perform the statistical
analysis.

Author contributions
T.L. imaged the unlabeled tissue sections. K.d.H. and Y.Z. processed the data. A.E.S., M.F.P.D.,
and W.D.W. performed the diagnoses for the initial study. A.E.S., W.D.W, and K.Y.J per-
formed the diagnoses for the expanded study. J.E.Z. chose the cases used to test the study and
performed the adjudication. A.E.S., W.D.W., and J.E.Z. performed the stain quality assess-
ment study. A.N., S.L, S.Z., and R.R. digitized and performed quality checks on the digital
slides. K.d.H., Y.Z., Y.R., W.D.W., and A.O. prepared the manuscript, and all authors con-
tributed to the manuscript. A.O. supervised the research.

Competing interests
Y.R. and A.O. are co-inventors of a pending patent application US20210043331A1,
which covers the use of label-free autofluorescence images to generate virtually stained
images. K.d.H., Y.Z., Y.R., and A.O. have a pending patent application (PCT/US2020/
066708), which covers the use of the stain transformation network and the use of
multiple stains being performed through a single neural network. K.d.H., Y.R., W.D.W.,
and A.O. have a financial interest in the commercialization of deep learning-based tissue
staining. J.E.Z. is a paid consultant for Leica Biosystems. The remaining authors declare
no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-25221-2.

Correspondence and requests for materials should be addressed to Y.R., W.D.W. or A.O.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25221-2

12 NATURE COMMUNICATIONS |         (2021) 12:4884 | https://doi.org/10.1038/s41467-021-25221-2 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41551-019-0362-y
https://doi.org/10.1038/s41551-019-0362-y
https://doi.org/10.5858/arpa.2020-0119-CP
https://doi.org/10.5858/arpa.2020-0119-CP
https://doi.org/10.1109/JBHI.2020.2975151
https://doi.org/10.1109/JBHI.2020.2975151
https://doi.org/10.1007/978-3-030-00928-1_60
https://doi.org/10.1007/978-3-030-00928-1_60
https://doi.org/10.1109/isbi45749.2020.9098409
https://doi.org/10.1109/isbi45749.2020.9098409
https://doi.org/10.1016/B978-1-4160-3966-2.00005-9
https://doi.org/10.1016/B978-1-4160-3966-2.00005-9
https://www.mathworks.com/help/images/ref/rgb2ycbcr.html
https://www.mathworks.com/help/images/registering-multimodal-mri-images.html
https://www.mathworks.com/help/images/registering-multimodal-mri-images.html
http://zoomify.com/
https://viewer.gigamacro.com/
https://doi.org/10.1038/s41467-021-25221-2
http://www.nature.com/reprints
www.nature.com/naturecommunications


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25221-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4884 | https://doi.org/10.1038/s41467-021-25221-2 | www.nature.com/naturecommunications 13

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Deep learning-based transformation of H&E stained tissues into special stains
	Results
	Design and training of stain transformation networks
	Evaluation of stain transformation networks for kidney disease diagnoses
	Evaluation of the quality of stain-transformed special stain images

	Discussion
	Methods
	Training of stain transformation network
	Image data acquisition
	Image co-registration
	Class conditional virtual staining of label-free tissue
	Style transfer for H&E image data augmentation
	Training of single-stain virtual staining networks
	Implementation details
	Pathologic evaluation of kidney biopsies
	Statistical analysis

	Reporting Summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




