
UC Berkeley
UC Berkeley Previously Published Works

Title
Impact of sequencing depth in ChIP-seq experiments

Permalink
https://escholarship.org/uc/item/083887sq

Journal
Nucleic Acids Research, 42(9)

ISSN
0305-1048

Authors
Jung, Youngsook L
Luquette, Lovelace J
Ho, Joshua WK
et al.

Publication Date
2014-05-14

DOI
10.1093/nar/gku178

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/083887sq
https://escholarship.org/uc/item/083887sq#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


Published online 05 March 2014 Nucleic Acids Research, 2014, Vol. 42, No. 9 e74
doi: 10.1093/nar/gku178

Impact of sequencing depth in ChIP-seq experiments
Youngsook L. Jung1,2, Lovelace J. Luquette1, Joshua W.K. Ho1,2, Francesco Ferrari1,
Michael Tolstorukov2,3, Aki Minoda4,5, Robbyn Issner6, Charles B. Epstein6, Gary
H. Karpen4,5, Mitzi I. Kuroda2 and Peter J. Park1,2,7,*

1Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA, 2Division of Genetics,
Brigham and Women’s Hospital & Harvard Medical School, Boston, MA 02115, USA, 3Department of Molecular
Biology, Massachusetts General Hospital, Boston, MA 02114, USA, 4Department of Genome Dynamics, Life
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, 5Department of Molecular and
Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA, 6Broad Institute of MIT and Harvard,
Cambridge, MA 02142, USA and 7Informatics Program, Children’s Hospital, Boston, MA 02115, USA

Received July 11, 2013; Revised February 06, 2014; Accepted February 7, 2014

ABSTRACT

In a chromatin immunoprecipitation followed by
high-throughput sequencing (ChIP-seq) experiment,
an important consideration in experimental design
is the minimum number of sequenced reads re-
quired to obtain statistically significant results.
We present an extensive evaluation of the impact
of sequencing depth on identification of enriched
regions for key histone modifications (H3K4me3,
H3K36me3, H3K27me3 and H3K9me2/me3) using
deep-sequenced datasets in human and fly. We pro-
pose to define sufficient sequencing depth as the
number of reads at which detected enrichment re-
gions increase <1% for an additional million reads.
Although the required depth depends on the na-
ture of the mark and the state of the cell in each
experiment, we observe that sufficient depth is of-
ten reached at <20 million reads for fly. For human,
there are no clear saturation points for the exam-
ined datasets, but our analysis suggests 40–50 mil-
lion reads as a practical minimum for most marks. We
also devise a mathematical model to estimate the suf-
ficient depth and total genomic coverage of a mark.
Lastly, we find that the five algorithms tested do not
agree well for broad enrichment profiles, especially
at lower depths. Our findings suggest that sufficient
sequencing depth and an appropriate peak-calling
algorithm are essential for ensuring robustness of
conclusions derived from ChIP-seq data.

INTRODUCTION

Chromatin immunoprecipitation followed by high-
throughput sequencing (ChIP-seq) has become a standard

technique for profiling transcription factors, chromosomal
proteins and histone modifications (1–3). Identification
of binding sites for transcription factors is relatively easy,
as they are ‘point-source’ factors that produce localized,
sharp peaks; histone marks, on the other hand, range from
point-source (e.g. H3K4me3) to ‘broad-source’ factors
that produce large enrichment domains (e.g. H3K27me3),
Here, we focus on histone modifications, as these present
the most challenging case. Among the key considerations
in the design of ChIP-seq experiments are the following:
(i) quality of the antibody, as large-scale validation efforts
of the modENCODE and ENCODE consortia have found
that nearly ∼1/4 of the tested histone antibodies failed
specificity criteria by dot blot or western blot (4); (ii)
which set of histone modifications are sufficient to capture
the interested aspects of chromatin organization; (iii)
appropriate controls, either an ‘input’ chromatin without
an immunoprecipitation step or the use of a mock antibody
and (iv) number of replicates necessary to capture biologi-
cal variability. Recent guidelines by the modENCODE and
ENCODE consortia deal with some of these topics (5).

In this work, we address another critical question: how
many reads should we sequence to obtain reliable results
in a cost-effective manner? In the early days, the cost of
sequencing was the determining factor in deciding on the
depth of sequencing, and some of the initial papers had
only 3–6 million reads for DNA-binding factors in human
(1,2). With the rapidly decreasing cost of sequencing, the
average depth of sequencing per experiment has substan-
tially increased. With the relative ease of multiplexing (com-
bining multiple samples with barcoding on one unit of se-
quencing), an experimentalist now has a much greater con-
trol over the number of reads obtained in an experiment.
For instance, a ‘lane’ on the Illumina HiSeq 2000 currently
generates up to 200 million reads, and the experimentalist
can choose to sequence, for instance, 20 ChIP libraries for
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10 million reads per library, or 4 ChIP libraries for 50 mil-
lion reads per library. In any given genome, ChIP-seq en-
richment profiles are expected to saturate in terms of enrich-
ment regions if the library is sequenced to sufficient depth.
However, how many reads constitute a sufficient depth re-
mains unclear, especially for profiling broad histone modi-
fications.

Evaluating the influence of sequencing depth on the re-
sult of a ChIP-seq experiment is not simple. Even for tran-
scription factors, the number of peaks increases without
saturation as more reads are sequenced if only statistical
significance is used, since even very small peaks become
statistically significant when the number of reads at those
peaks gets larger. Thus, an additional criterion (e.g. 2-fold
enrichment in ChIP over background) is needed to reach
saturation. This means that the exact criteria used in a spe-
cific peak-calling algorithm have a significant impact on the
number of peaks detected. The problem is exacerbated for
broad histone modifications, where the enrichment ratios
are lower and it is more difficult to define a biologically
meaningful enrichment ratio.

The diminishing return for additional reads beyond
some minimal number is clear. In fly, Chen and colleagues
analyzed deep-sequenced ChIP-seq data for two factors
(Su(HW) and H3K36me3) and found that more than half
of the Su(HW) peaks (a point-source insulator protein)
detected at 120 million reads were recaptured at 2.7–5.4
million reads (6). However, this effect is much less dra-
matic for broad-source factors. How the saturation point
for the enriched regions in each of the broad histone mod-
ifications scales with the number of reads is largely unex-
plored (e.g. the same analysis as Su(HW) was not done for
H3K36me3 in (6)) and is the subject of this study. We also
study how genome size impacts the saturation point. The
human genome is ∼18 times larger than the fly genome, but
the saturation point depends heavily on the type of histone
mark, and the required increase in the read number is typi-
cally much less than 18-fold, depending on the mark distri-
bution. For example, H3K36me3 should scale with the size
of expressed exons, while H3K9me3 should scale with the
size of the heterochromatic regions.

Numerous algorithms have been developed to detect en-
riched regions in ChIP-seq data, mainly for transcription
factor (TF) binding proteins (7–9). Some have been de-
signed or modified to identify broad enrichment regions
(10–12). Several studies have reported comparisons of the
performance of peak callers. However, whether and how
their performance depends on sequencing depth has not
been studied previously. The present study utilizes multiple
peak callers to ensure that the main conclusions do not de-
pend on specific features of a single peak caller.

In this study, we generated deep-sequenced fly and
human ChIP-seq datasets for select histone mod-
ifications (H3K4me3, H3K36me3, H3K27me3 and
H3K9me2/H3K9me3), which are representative of marks
associated with promoters, transcriptional elongation,
Polycomb-regulated repression and heterochromatin, re-
spectively. Using these data, we explore several features of
ChIP signals as a function of sequencing depth, including
tag density profiles, genomic coverage, size and number
of ChIP enriched regions. We also compare the perfor-

mance of five popular peak-calling algorithms at different
sequencing depths on these datasets, as well as on public
mouse datasets that include ChIP-qPCR validation data
(13,14). Furthermore, we predict genomic coverage at full
saturation and sufficient sequencing depths for >20 marks
in the fly.

MATERIAL AND METHODS

ChIP-seq datasets

The procedures for ChIP sample preparation and se-
quencing were previously described for human (15)
and fly (16). Additional details including the informa-
tion on cell lines/tissue types can be found at http://
www.modENCODE.org (fly) and http://encodeproject.org/
ENCODE (human). Datasets generated and analyzed in
this study, including accession numbers, are summarized in
Supplementary Table S1. To ensure high quality and consis-
tency of ChIP profiles, we performed the cross-correlation
analysis and compared enriched regions between replicates,
as described in (5).

Alignments

For deep-sequenced datasets in fly and human, reads that
passed default parameters of the Illumina quality filter were
aligned using Bowtie (17). To build reference indices, Fly-
base reference r5.22 and hg19 were used for fly and human,
respectively, using the Bowtie-build function with default
parameters. The parameters of alignments were -n 2 -l 28 -e
70 -m 1 for unique mapping.

Correlation analysis in tag density profiles

To examine whether ChIP profiles reached saturation, we
calculated the genome-wide Pearson correlation coefficients
between full and subsampled data. The tag density profiles
were generated using get.smoothed.tag.density() with the
parameters of bandwidth = 100 bp and step size = 50 bp
in the SPP R package (11).

Detecting enriched regions

To identify significantly enriched regions, we used the same
sequencing depth for ChIP and input data in human and
fly, with an assumption that in practice a similar num-
ber of reads for ChIPs and inputs are likely to be se-
quenced. It has also been suggested that equal numbers of
ChIP and input reads result in best performance of peak
callers (6). For Figures 1–3, we detected ChIP-enriched
regions by comparing scaled ChIP and input tag counts
to see if their ratio exceeded that expected from a Pois-
son process, using get.broad.enrichment.cluster() in the SPP
R package (11) with a sliding window of 1 kb (default)
(find.binding.positions() is typically used instead for point-
source peaks). The clusters of significant windows with Z-
score > 3 (default) were determined as enriched regions.
The same parameters were used throughout this study. In
Figure 5, to detect enriched regions, we used SPP, MACS2,
PeakSeq, Scripture and ZINBA (7,8,10–12) with default

http://www.modencode.org/
http://encodeproject.org/ENCODE
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Figure 1. Deep-sequenced ChIP-seq profiles for key histone modifications in human and fly. (a) Data overview. Bar graphs indicate the number of uniquely
aligned reads (dark gray), multiply aligned reads (light gray) and unaligned reads (white). See also Supplementary Table S1 for full datasets analyzed in
this study. Fly data are from late embryos and human data are from the A549 cell line. (b) Genome-wide Pearson correlation coefficients between tag
density profiles from the 100 million reads and those from subsampled data in fly (left) and human (right). (c) ChIP tag density profiles at the HOXD loci
for human H3K4me3 at different sequencing depths. Numbers on the y-axis denote the tag density ranges with a Gaussian kernel smoothing (� = 100
bp). An input profile is on the top row for comparison. The green boxes below the ChIP profiles correspond to the significantly enriched regions based
on the broad peak detection method of SPP (11). The enriched region highlighted is not detected at 5 million reads for this mark. (d) Same as (c) but for
H3K27me3. The enriched regions at HOXD11 and HOXD-AS1 loci highlighted are not detected at low depths for this mark.



e74 Nucleic Acids Research, 2014, Vol. 42, No. 9 PAGE 4 OF 10

parameters, except for MACS2 and ZINBA. The param-
eters for model estimation were turned off for MACS2
and ZINBA. MACS2, which is a newer version of MACS,
was modified to perform peak calling in a distinctive mode
for the broad peak detection, by adding the parameter ‘-
broad’. Additional details can be found at https://github.
com/taoliu/MACS/. For Figure 5, the results from human
chromosome 1 were used.

In Figure 2c and d, the genomic coverage was defined as∑N
i=1 si , where si was each enriched region identified and N

is the total number of the enriched regions. The mean size
of enriched regions was 1/N

∑N
i=1 si .

Derivation of a model for genomic coverage as a function of
sequencing depth

We assume that the observed tag distribution along a
genome follows a Poisson distribution. If we assume a
perfect ChIP, where tag distributions are only constrained
within protein-binding sites, the Poisson rate � would be ap-
proximately proportional to d/γ , where d is the total num-
ber of mappable reads and γ is total genomic coverage of
the true protein-binding sites. Then the probability that we
observe a read count c at a particular genomic location is

p(C = c) = λce−λ

c!
,

where c is the number of reads at each bin (or bp), and �
is the mean coverage at each bin. The probability that we
observe c > 0 becomes

p(C > 0) = 1 − p(C = 0) = 1 − e−λ = 1 − e−
(

θ1d
γ

+θ2

)
,

where θ1 is a factor that determines how steep the curve is,
including the sizes of each enriched region. θ2 incorporates
background noise, such as antibody efficiency. Although the
Poisson model tends to underestimate the variance and we
introduced additional simplifications such as using p(C >
0), this model explains the exponential behavior and results
in reasonable estimates, in agreement with our observed val-
ues. From this, we modeled the observed genomic coverage
(GC) as a function of sequencing depth d:

GC(d) = γ p(C > 0) = γ

(
1 − e−

(
θ1d
γ

+θ2

))
∼ γ − β e−αd ,

where γ is genomic coverage when d is infinite. The values
of α, β and γ could be estimated from the observed ge-
nomic coverage at each sequencing depth d (i.e. the number
of bases found in peaks called at depth d) using a nonlin-
ear regression. The sufficient depth is d (in million reads),
beyond which (GC(d + 1) − GC(d))/γ falls below 0.01.

Measurement of variability in the detected regions by various
algorithms

To assess agreement in the identified regions between the
methods in Figure 5a, we calculated the Jaccard similarity
coefficient between the enriched regions detected by each
pair as J(Sa, Sb) = |Sa ∩ Sb| / |Sa ∪ Sb|, where Sa and Sb
are the enriched regions in base pairs detected by the pair
of algorithms denoted as a and b and | • | refers to the size
of the set.

Analysis of mouse data

We obtained the datasets for H3K27me3 and H3K36me3
ChIP-seq profiles in mouse myoblasts and myotubes from
Asp et al. (13). The uniquely aligned reads were downloaded
from Gene Expression Omnibus (accession no. GSE25308).
We used the ChIP-qPCR validated sites available in Asp
et al. and Micsinai et al. (13,14). In (14), the number of val-
idated sites in myoblasts were 197 and 94 for H3K27me3
and H3K36me3, respectively. Since the data in (14) were
mainly designed to maximize the differences in detected
peaks between algorithms, we used data in (13) as a pri-
mary dataset for our analysis. The sensitivity and speci-
ficity were calculated by comparing enriched regions in bp
identified by SPP, MACS2, PeakSeq, Scripture and Hotspot
(7,8,11,12,18) for positively and negatively validated sites.
For mouse datasets, because the library size for input data
was smaller than for ChIP data, the full dataset for the input
was not subsampled.

RESULTS

Generation of deep-sequenced ChIP-seq data in human and
fly

To investigate the effect of sequencing depths in histone
modification experiments, we generated ∼150 million reads
for some key histone modifications in fly embryos (50 bp
reads) and human A549 (lung adenocarcinoma epithelial
cell line, 35 bp reads), as part of the fly modENCODE
and human ENCODE consortia (Figure 1a). Our approach
is to compare these datasets with their read-subsampled
datasets, considering the full data as an approximation of
the true profile. As we will discuss later, most of the deep-
sequenced data reached saturation based on several mea-
sures. The percentage of uniquely mappable reads is the
highest for H3K4me3, followed by H3K27me3, H3K36me3
and H3K9me2 or H3K9me3, in both fly and human data
(Figure 1a). Since reads that originate from the repeat-
enriched regions are often not uniquely mappable, it is not
surprising that the percentage of uniquely mappable reads
in H3K9me2/H3K9me3 marks is substantially lower than
other marks (Figure 1a). Although including multiply map-
pable reads for marks involving predominantly repetitive re-
gions may increase the overall mappability, this operation
would introduce additional uncertainty in genomic map-
ping and therefore was not considered in this study. In sub-
sequent analyses, ‘sequencing depth’ refers to the number of
uniquely mappable reads; this number divided by the map-
ping rate is the total number of reads to be sequenced.

To perform a fair comparison across multiple marks with
different numbers of uniquely mapped reads, we first ran-
domly sampled 100 million uniquely mapping reads for
H3K4me3, H3K36me3, H3K27me3 and input. A different
threshold was used for H3K9me3 (55 million) or H3K9me2
(35 million) because they have smaller numbers of uniquely
mapped reads. We considered the 100 (or 35 or 55) million
reads as the full data, and always performed subsampling
from these reads.

https://github.com/taoliu/MACS/
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Figure 2. Enriched regions with variable sequencing depths. (a) Percentage of significantly enriched regions from the full data recovered in each subsample
for H3K4me3, H3K36me3 and H3K27me3 in fly (upper) and human (lower). The five lines correspond to the top 20%, 40%, 60%, 80% and all enriched
regions from the full data. (b) Percentage of increase in enriched regions recaptured when an additional 1 million reads were sequenced for fly H3K4me3,
H3K36me3, H3K27me3 and H3K9me2 (upper) and human H3K4me3, H3K36me3 and H3K27me3 (lower). (c) Genomic coverage of significantly enriched
regions for fly H3K4me3, H3K36me3, H3K27me3 and H3K9me2 (upper) and human H3K4me3, H3K36me3, H3K27me3 and H3K9me3 (lower). (d)
Mean enriched region size in fly (upper) and human (lower). The shaded lines indicate 95% confidence intervals.
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Figure 3. Estimation of fully saturated genomic coverage and sufficient
depth. (a) Diagram of how fully saturated genomic coverage and sufficient
depth were estimated. (b) Example of observed and estimated genomic
coverage for H3K27me3 in fly (left) and human (right). (c) Comparison
between the estimated sufficient depth using the model and the observed
sufficient depth calculated from the full data in Figure 2b. (d) Estimated ge-
nomic coverage at full saturation and sufficient depth. Human H3K9me3
was not included because 55 million reads were insufficient for this estima-
tion. (e) Predicted genomic coverage at full saturation and sufficient depths
for 22 fly marks in late embryos. Marks in blue indicate results from the
deep-sequenced data, as in panel (c).

Tag profiles with variable sequencing depth

To assess variations in tag density profiles with respect to
sequencing depth, we calculated genome-wide Pearson cor-
relation coefficients between the tag profiles from the 100
million-read full data and the subsamples. We observed that
the correlation increases at greater sequencing depth as ex-
pected, reaching a plateau after a rapid initial increase (Fig-
ure 1b). The saturation points differ depending on the his-
tone modification and the genome under study. H3K4me3,
a point-source modification, is saturated at a lower depth,
while H3K27me3, a broad-source modification, requires
more reads for saturation. We found that human profiles
tend to have a higher saturation point than fly profiles: for
the three marks (H3K4me3, H3K36me3 and H3K27me3),
the human profiles reach a plateau at around 40–50 mil-
lion reads, whereas the fly profiles reach a plateau by ∼20
million reads. These patterns are evident when viewed in a
genome browser (Figure 1c and d for human H3K4me3 and
H3K27me3; see Supplementary Figures S1–S3 for other
marks in human and fly). For most fly histone modifica-
tions, the tag density profiles become highly similar to that
of the full data at >20 million reads (Supplementary Figures
S2–S3). In human, for H3K4me3, the profiles at different
sequencing depth are largely identical, and most enriched
regions are identified at <20 million reads (Figure 1c). In
contrast, for H3K27me3, the profile at 40 million reads was

different from those at greater depths; some regions are not
detected at low depths for this mark. In the HOXD clus-
ters that are often targeted by Polycomb group proteins
(19), the enriched regions of H3K27me3 at the HOXD11
and HOXD-AS1 loci are not consistently identified until the
read count is >40 million.

Enriched regions with variable sequencing depths

We examined significantly enriched genomic regions in sub-
sampled and full datasets, using SPP as the base method
(11). This method (developed in the senior author’s labora-
tory) features options for sharp and broad profiles and has
been used to process ChIP-seq data for ENCODE along
with MACS (12). With the broad peak detection option,
enriched regions are determined by comparing scaled ChIP
and input tag counts to assess if their ratio exceeds that ex-
pected from a Poisson process. The clusters of significant
windows are determined as enriched regions. We then calcu-
lated the percentage of significantly enriched regions from
the full data, recaptured in each subsample (Figure 2a; see
Supplementary Figure S4 for H3K9me2/me3). This mea-
sure is analogous to sensitivity; specificity is not informa-
tive since the enriched regions identified from a subsam-
ple are almost entirely a subset of the regions identified
from the full data. For fly marks, our analysis suggests that
80% of enriched regions in the H3K4me3, H3K36me3 and
H3K27me3 data are detected at 3, 6 and 15 million reads,
respectively (Figure 2a, upper panels). Human data exhibit
a similar trend, although a higher sequencing depth is re-
quired to reach saturation: 80% of enriched regions in the
full data are called at 50 million reads for both H3K4me3
and H3K36me3, and at 60 million reads for H3K27me3
(Figure 2a, lower panels). Notably, we did not observe satu-
ration for H3K9me3 regions in human at any depth exam-
ined (up to 55 million reads) (Supplementary Figure S4).

To explore the relationship between the strength of ChIP
signal and sequencing depths, we analyzed peaks with dif-
ferent ChIP signal strength as measured by the ChIP/Input
ratio. The top 20% of regions sorted by ChIP signal strength
are detected even at low depth of coverage (Figure 2a). In
fly, 90% of these regions are identified at depths of 3, 4 and
5 million reads for H3K4me3, H3K36me3 and H3K27me3,
respectively (Figure 2a, upper panels). In humans, 90% of
the top 20% regions are identified at slightly higher depths:
20, 40 and 55 million reads for H3K4me3, H3K36me3 and
H3K27me3, respectively (Figure 2a, lower panels). This
suggests that saturation in human requires a large number
of reads if the peaks display low ChIP/input ratios.

Defining sufficient sequencing depth

To further quantitate the relationship between sequencing
depth and detection sensitivity, as measured by recovery of
true enrichment region, we computed the percent increase
in enriched regions recaptured when an additional 1 mil-
lion reads are sequenced. Here we define a ‘sufficient depth’
to be the sequencing depth at which the percent gain per 1
million additional sequence reads falls below 1%––a point
at which we deem the gain of additional sequencing to be
minimal. The 1% threshold is arbitrary but reasonable in
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our experience. In fly, the sufficient depth was 9, 11, 17 and
20 million reads for H3K4me3, H3K36me3, H3K27me3
and H3K9me2, respectively (Figure 2b, upper). For the hu-
man marks, the sufficient depth was 25, 35 and 40 million
reads for H3K4me3, H3K36me3 and H3K27me3, respec-
tively (Figure 2b, lower). H3K9me3 does not fall below 1%
gain within the total 55 million reads that we have. These
results suggest that there is little gain in identification of en-
riched regions for fly data beyond 20 million reads, and that
40–50 million reads is a cost-effective choice for most hu-
man data.

We also measured genomic coverage and mean size of
enrichment regions as a function of sequencing depth. As
observed in Figure 2a, the genomic coverage for fly marks
saturates at >20 million reads, except for H3K9me2. In hu-
man, the genomic coverage continues to increase even at
very high depth, although it does slow down. The coverage
for H3K9me3 in particular appears to increase linearly with
the number of reads (Figure 2c). Examination of the mean
enriched region size exhibits a similar trend. In fly, the mean
enriched region size becomes stable beyond 10 million reads
for most marks. In human, the size of enriched regions still
increases with more reads, except for H3K4me3 (Figure 2d).

Mathematical modeling of genomic coverage and sufficient
depth

For most datasets, sequencing is not as deep as in these test
datasets. Thus, we devised a simple mathematical model for
the relationship between sequencing depth and maximum
genomic coverage of the enriched region (i.e. when an in-
finite number of reads are available) (see Methods). This
model allows one to estimate genomic coverage and suf-
ficient sequencing depth from less deep datasets (this ex-
trapolation obviously does not work if the coverage of the
available data is too low). By fitting the genomic coverage
of subsampled reads in a ChIP-seq dataset to the model,
we estimated the maximum genomic coverage of a partic-
ular enrichment mark, as well as the sufficient sequencing
depth (Figure 3 and Supplementary Figures S5–S6). For
H3K4me3, H3K36me3 and H3K27me3 in both fly and hu-
man, this model predicts that the genomic coverage at 100
million reads captured > 95% of the estimated genomic cov-
erage at full saturation (Figure 3b; see Supplementary Fig-
ure S5 for other marks). The estimated genomic coverage
was in agreement with the observed genomic coverage (R2

> 0.98; Supplementary Figure S5). The estimated sufficient
depth was concordant with those calculated from the full
data in Figure 2b (R2 = 0.998; Figure 3c and Supplemen-
tary Figure S6) and was also highly correlated with the esti-
mated full genomic coverage on a log scale (Pearson corre-
lation coefficient r = 0.96; Figure 3d). Our method can be
applied to TF data as well because the number of peaks de-
tected in a TF binding profile is analogous to the number of
basepairs identified in broad marks (Supplementary Figure
S6).

We then predicted the maximum genomic coverage and
sufficient sequencing depth for 18 additional fly histone
modifications generated by the modENCODE consortium,
ranging from 17 to 35 million reads. Similar to above, the es-
timated sufficient depth was positively correlated with the

Table 1. Estimated genomic coverage when fully saturated and sufficient
depth for 22 fly marks. A factor is the ratio of sufficient depths between the
given mark and H3K4me3. To infer the total library size from the sufficient
depth, we used the mapping rates from fly late embryos data (estimated
total library size = sufficient depth/mapping rate).

Mark

Genomic
coverage
(Mbp)

Sufficient
depth
(million) Factor

Required
total
library size
(million)

H1 75 36 4 ∼55
H2AV 32 14 1.5 ∼20
H3K18Ac 31 23 2.5 ∼30
H3K23ac 61 30 3.3 ∼35
H3K27ac 35 16 1.8 ∼20
H3K27me2 63 21 2.3 ∼30
H3K27me3 20 17 1.8 ∼25
H3K36me1 37 21 2.3 ∼30
H3K36me2 30 9 1 ∼10
H3K36me3 27 12 1.3 ∼15
H3K4me1 43 14 1.5 ∼15
H3K4me2 20 10 1.1 ∼10
H3K4me3 18 9 1 ∼10
H3K79me1 45 12 1.3 ∼15
H3K79me2 34 11 1.2 ∼15
H3K9ac 36 24 2.6 ∼30
H3K9acS10P 44 25 2.7 ∼35
H3K9me1 41 24 2.6 ∼35
H3K9me2 39 19 2.1 ∼60
H4 62 22 2.3 ∼30
H4K16ac 20 17 1.8 ∼25
H4K20me1 38 13 1.4 ∼15

estimated genomic coverage on a log scale (r = 0.67; Fig-
ure 3e, also see Table 1). The genomic coverage and suffi-
cient depths were the smallest for marks associated with ac-
tive promoters, such as H3K4me3 and H3K4me2, followed
by transcription-related marks such as H3K36me3 and
enhancer-related marks such as H3K4me1 and H3K27ac.
Repressive marks such as H3K27me3 and H3K9me2 were
located in the middle. Core histones (e.g. H1 and H4) and
some ubiquitous histone modifications such as H3K23ac
exhibited maximum genomic coverage, requiring greatest
sequencing depth. Although we provide the estimated ge-
nomic coverage, sufficient depth, and required total library
size, it is important to note that these numbers could vary
depending on the mapping rate of each sample, which is af-
fected by several factors including the library protocol and
the genomic locations where the marks are enriched.

Comparison of detected enrichment regions by various algo-
rithms

To explore the variability in broad enrichment regions iden-
tified by different algorithms at different sequencing depths,
we used the human data to compare the results from five
widely used peak callers: ZINBA (10), PeakSeq (7), MACS2
(12), Scripture (8) and SPP (11). The examples of tag den-
sity profiles along with enrichment regions detected by these
algorithms are shown in Figure 4. For human H3K4me3,
the regions called by these methods are concordant at both
20 and 100 million reads, with higher consistency at 100
million (Figure 4a). In contrast, the enriched regions de-
tected for H3K27me3 differ drastically, especially at a low
sequencing depth (Figure 4b). For example, at the HFE2
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Figure 4. Enriched regions detected by various algorithms. (a) ChIP tag
density profiles for human H3K4me3 at a sequencing depth of 20 million
(upper panel) and 100 million (lower) reads. An input profile is on the top
row for comparison. The boxes below the ChIP profiles indicate the en-
riched regions identified by SPP, MACS2, PeakSeq, Scripture and ZINBA
(7,8,10–12). (b) Same as above but for H3K27me3.

locus, all the algorithms identified some part of the region
as H3K27me3-enriched at 100 million reads, but with vari-
able levels of fragmentation. At 20 million reads, the differ-
ences from the 100 million case and between the methods
were dramatic, with only three methods calling tiny frac-
tions of the region. The algorithms designed to detect both
broad peaks and sharp peaks (SPP, MACS2 and ZINBA)
tend to be more stable at identifying broader enrichment
domains across different read depths, compared to those
designed primarily for sharp peaks. Examination of the ge-
nomic coverage and cluster sizes of the enrichment regions
shows that the results vary between the methods, with the
largest variation observed for H3K27me3 and H3K9me3
(Supplementary Figures S7–S8). We also observed that the
genomic coverage and number of the enrichment regions
tend to increase at higher sequencing depths.

To assess genome-wide agreement in the identified re-
gions between the methods, we calculated the Jaccard sim-
ilarity coefficient between the enriched regions detected
by each pair of methods at 20 and 100 million reads for
H3K4me3, H3K36me3 and H3K27me3 (for H3K9me3,
the coefficients were obtained at 20 and 55 million reads).
Our results show that identified regions are most consis-
tent for H3K4me3 followed by H3K36me3, H3K27me3 and
H3K9me3 (Figure 5a). Similarity of identified regions was
higher for the full data compared to subsets of 20 million
reads. This indicates that enriched regions detected by dif-
ferent algorithms tend to be more variable at a lower depth
for broader marks, and that use of multiple algorithms
might be beneficial in such cases. Next, we repeated our cal-

Figure 5. Comparison of enriched regions detected by various algorithms.
(a) Each cell in the heatmaps shows the Jaccard similarity coefficient be-
tween the enriched regions (in bp) by each pair of methods at 20 million
and 100 million reads for H3K4me3, H3K36me3 and H3K27me3, and
at 20 million and 55 million reads for H3K9me3. (b) Percentage of the
enriched regions recaptured at different sequencing depths for all regions
(upper panels) and percentage of top 20% enriched regions recaptured at
different sequencing depths (lower).

culation of the percentage of genomic coverage recovered
at each sequencing depth for each of the algorithms (Figure
5b; see Supplementary Figure S9 for H3K9me3). A simi-
lar trend was found as before, but there was also a substan-
tial variation among the methods and across marks. The re-
sults were more consistent for the top 20% enriched regions
(the top regions were ordered based on ChIP fold enrich-
ment values when the algorithm outputs those; otherwise,
P-values were used).

Comparison of peak calling algorithms using validated loci

Instead of considering the enriched regions from the full
data as the true set, another approach is to use an exter-
nally validated set. In a study of epigenetic changes un-
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Figure 6. Performance of peak calling algorithms using the qPCR-
validated loci. Sensitivity (upper) and specificity (lower) for H3K27me3
in mouse muscle cells MB (myoblasts; left) and MT (myotubes; right) (13),
considering qPCR-validated sites as the true set. Sensitivity and specificity
were calculated based on the overlapped regions in bp.

derlying myogenesis, several histone marks were profiled
in mouse myoblasts and terminally differentiated myotubes
(13), ranging from 25 to 29 million reads for H3K27me3 and
H3K36me3. Importantly, they also provided H3K27me3
ChIP-qPCR data for 200 loci. We determined the sensitiv-
ity and specificity as a function of sequencing depth for
the H3K27me3 profiles from this paper (Figure 6) using
the same subsampling analysis as before and using these
five algorithms: SPP (11), MACS2 (12), PeakSeq (7), Scrip-
ture (8) and Hotspot (18). We also analyzed different ChIP-
qPCR datasets for H3K36me3 and H3K27me3 in mouse
myoblasts (14) (Supplementary Figure S10). As expected,
all algorithms showed increased sensitivity at greater se-
quencing depths. For most methods, the sensitivity began to
saturate at 15–20 million reads, but there was a fair amount
of variation between the algorithms (Figure 6 and Supple-
mentary Figure S10).

DISCUSSION

This subsampling analysis shows that most fly histone mod-
ification profiles saturate at 10–20 million reads, depending
on the mark. For human data, the saturation point is not ap-
parent from the subsampling analysis, except for H3K4me3.
We proposed to define sufficient sequencing depth based
on the incremental change in the size of the enriched re-
gion per one million additional reads, and overall the es-
timates of sufficient sequencing depth obtained this way is
in accordance with results using the full data. This defini-
tion suggests that in human ∼20 million reads is likely to

be sufficient for H3K4me3 and ∼40 million for H3K36me3
and H3K27me3 (Figure 2b). We also observed that for the
strongest 20% of the peaks, 90% of the enriched regions
from the full data were reproduced at > 40–50 million reads
for H3K36me3 and H3K27me3 (Figure 2a). Based on these
results, we suggest that 40–50 million reads is a practical
minimum depth for human marks, except for few special
cases such as H3K9me3 that cover very large contiguous
domains. Although we generated deep-sequenced data for
just four marks, the estimated genomic coverage and suf-
ficient depths in Table 1 and the nature of the marks (i.e.
how broad they are) can be used to estimate the number
of reads needed. For H3K9me3, core histones, and other
broadly distributed factors, a future study with much larger
datasets will be helpful in determining what depth is re-
quired. Here we showed the results using the cell/tissue
types for which deep-sequenced dataset was available. The
estimated sequencing depth is expected to change slightly
for other cell/tissue types.

Although the human genome is ∼18 times larger than
the fly genome, the ratio between sufficient fly and human
H3K27me3 depth is only ∼2–3, suggesting that the required
read count does not increase proportionally with genome
size. This might be explained by the relationship between
the predicted sequencing depth and genomic coverage we
estimated in Figure 3c, where the sufficient depth increased
linearly as a function of genomic coverage on the log scale.
Thus, although the ratio of genomic coverage between fly
and human may be ∼10–20, the resulting ratio on the log
scale becomes much smaller (generally 2- to 3-fold, as seen
in Figure 3c).

Determining the enriched regions and their boundaries
for broad marks is more challenging due to several factors.
First, the size of the enriched region differs significantly
depending on the modification, and a single algorithm is
unlikely to perform optimally at all length scales. Second,
the enriched regions are more sensitive to the depth of se-
quencing compared to TF binding sites, because their ChIP
fold enrichment values tend to be lower. Third, larger do-
mains enriched for broad histone marks will have higher
variability in genomic coverage and other sequence features,
introducing greater fluctuations in profiles that may need
to be accounted for through effective normalizations. Our
results show high variability in the performance of differ-
ent algorithms, especially at lower sequencing depth and for
very large domains (e.g. H3K27me3). This suggests that re-
searchers should choose proper algorithms that are specifi-
cally designed for broad marks in the study using histone
modification profiles and that use of multiple algorithms
can help reduce false positive regions.

Although this is typically not done in practice, our study
makes it clear that it is more cost-effective to employ differ-
ent depth of sequencing for different factors, using the ex-
pected genomic coverage as a guide. Fewer reads are needed
for point-source protein factors that bind to a relatively
small number of sites in the genome, whereas more reads are
needed for broad histone modifications that cover large do-
mains. If target numbers are set for read counts (constrained
by the discrete units allowed by the number of barcodes),
they can be achieved by appropriate barcoding of the sam-
ples. We provided the estimated genomic coverage at full
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saturation for >20 marks, and those numbers can serve as
a valuable guide in inferring the optimal sequencing depth
for each mark.

Finally, it is important to note that, although we de-
scribed ‘sufficient’ depth here, this definition refers to how
accurately the true underlying genome-wide features are
captured by the data. At a higher level, a ‘sufficient depth’
depends on the purpose of the study. Although the cost of
sequencing has decreased dramatically, sequencing multiple
marks in multiple time points or cell types can be expen-
sive. Thus, it is important that the investigator makes a judi-
cious choice in experimental design to maximize biological
insight given limited resources. In some cases, a ‘sufficient
depth’ in a study may be substantially less than what we
describe in this paper. For instance, when using transcrip-
tion factor profiling to discover binding motifs, identifying
even 10% of the true peaks may be sufficient. To under-
stand the general characteristics of where enhancers are lo-
cated genome-wide, a subset of the H3K27ac or H3K4me1
sites may be sufficient to give a reasonable approximation of
the overall distribution. In a community mapping projects
such as ENCODE or Epigenomics Roadmap, comprehen-
sive mapping is important; in individual projects where a
particular mark will be the subject of further studies, it may
also be important to have detailed information including
gene-specific features. In all cases, it is imperative to under-
stand how many reads are needed to accurately character-
ize a mark using the framework and the numbers described
in this paper and to realize what the limitations of under-
sequenced datasets are.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online, including
Supplementary Table S1 and Supplementary Figures S1–
S10.
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