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Abstract

We describe an extension of CaMeRa, a Computational
model of Multiple Representations in problem solving
(Tabachneck, Leonardo, & Simon, 1994, 1995). CaMeRa
provides a general architecture for LTM, STM and their
interactions, and illustrates how experts integrate pictorial
and verbal reasoning processes while solving problems. A
linked production system and parallel network are used to
further resolve the communication between pictorial and
verbal knowledge by simulating how a diagram is
understood by an expert. Low-level scanning processes
and an attention window, based on both psychological and
biological evidence, are incorporated into CaMeRa, and
productions are developed that allow these processes to
interface with the high-level visual rules and
representations already in the model. These processes can
explain interruptibility during problem solving, and show
how understanding is reached when reading a novel
diagram.

Introduction

While an expert is solving a problem in economics, there is
a knock at the door. She answers it, and is drawn by a
colleague into a conversation about new astrophysical data
suggesting the existence of a black hole of forty million
solar masses. Eventually her friend leaves, and the expert
returns to her desk, somewhat muddled. But after glancing
only briefly at the economics diagram she had been drawing,
she immediately resumes where she left off, as if the
interruption had never occurred. The contents of her short-
term memory were written and re-written many times during
the course of the distracting discussion. All she has left
from her previous efforts are a sketchy diagram, a few
carelessly scrawled equations, and the contents of her long-
term memory. Yet she does not have to begin the problem
anew, or even take much time to reconstruct her position
prior to the interruption. She is able to resume working
quickly, at the correct place in the problem solving
sequence. How is such a feat accomplished?
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Clearly, a number of factors are at play -- the features of
the diagram, the processes of recognition, long-term
memory (LTM), and short-term memory (STM). This
interruption task is a good example of the fact that
recognition is faster than recall. When beginning the
problem, the expert must recall everything from long-term
memory. When reconstructing her position after the
interruption, she needs only to recognize the meanings of
the various cues on the diagram and the associations between
them. A properly built diagram summarizes all the critical
information processed thus far, and reasoning can be
continued as long as this external summary is available.

Recognizing a diagram's components is necessary both for
reconstructing the meaning of a diagram and for
understanding a novel diagram. In each case, perceptually
significant features must be identified. These features must
be scanned into STM using low-level visual processes.
Finally, the information in STM must be matched to
information in LTM (if it exists) and analyzed for its
implications. In this paper, we will present a computational
model which simulates each step of this process, basing the
implementation of each process on both psychological and
biological evidence. The remainder of the paper will make
each of these steps specific, and finally, present a framework
in which they come together to produce the behaviors
described above.

CaMeRa

CaMeRa is a computational model of the use of multiple
representations in expert problem solving (Tabachneck,
Leonardo, & Simon, 1994, 1995). It demonstrates how an
economics expert, by carefully combining pictorial and
verbal knowledge, is able to produce a coherent and effective
explanation to problems that novices are unable to
understand. The work described in this paper represents an
extension of CaMeRa. One of the motivations for this
research, in addition to giving an account of the behaviors
described above, was to expand CaMeRa's abilities by
providing it with processes for reading diagrams and
pictures. This will ultimately allow the model to understand
problems from many different domains.

CaMeRa consists of a linked production system and
parallel network. It contains representations of (1) a
pictorial external display, (2) pictorial short-term memory,
(3) pictorial long-term memory, (4) verbal short-term
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Figure 1: The Architecture of CaMeRa

memory, and (5) verbal long-term memory (see Figure 1).
The model uses the external display (the "blackboard") just
as the expert does, for drawing, reasoning, recognition, and
input to STM. Recognition consists of matching
information placed in STM from the blackboard to
information stored in LTM. Because the recognition of cues
on the blackboard drives the problem solving forward,
CaMeRa has little need for an explicit goal stack. This type
of control architecture places a minimal load on short-term
memory capacity.

Pictorial long-term memory (pLTM) has a node-link
representation. Verbal long-term memory (vLTM)
knowledge is represented by instances of a generic
propositional relation. This single relation was sufficient to
model all of the knowledge needed by CaMeRa in the
limited economics domain we examined. LTM knowledge
is represented in the brain as associations among symbols,
with structure and hierarchy being a function of these
associations. The images which are generated from pLTM
are computationally equivalent to those generated from
perception, as are the processes which operate on them
(Kosslyn, 1994). The same applies for vVLTM.

All problem solving, reasoning, and modification of
memory systems are done through STM. CaMeRa's current
STM does not yet have any limitations on the quantity of
information it can store (for more on STM capacity, see
Simon, 1976). Implementing the diagram-reading processes

will allow us to model the capacity limits of STM in
CaMeRa at a later time, as the blackboard can now be used
to refresh STM through constant low-level scanning of the
diagram. STM structures can be defined as specific
exemplars of LTM structures. They may also be associated
with STM structures in their own and other modalities. The
highly regulated and limited interaction that takes place
between pSTM and vSTM, allowing for these associations
to emerge, is a critical feature of the model (see Tabachneck,
Leonardo, & Simon, 1994, 1995).

The Mind's Eye (MI) represents a synthesis of a number
of pictorial short-term memory data structures and the
productions that operate on them. Three types of
representations appear in the MI: the visual buffer, object
structures, and spatial structures. The visual buffer, which
is the physical location of mental images, is the area in
which feature extraction and other low-level, highly parallel,
visual processes operate. The projection of an image onto
the visual buffer facilitates complex visual reasoning which
could not be done using only the object and spatial
structures of STM (e.g., the perception of geometrical
relations, etc.).

As the visual buffer is the focus of much of our
improvements to CaMeRa, its properties will be further
specified in the following section. The remaining two
structures are used to simulate the interaction between two
of the visual sub-systems of the brain, namely the spatial
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properties of the object (location, distance, etc., represented
in the posterior parietal lobes), and the form properties of
the object (shape, color, size; represented in the inferior
temporal lobes) (Farah, 1990).

The Mind's Ear (ME) is a combination of the verbal short-
term memory data representations and the productions that
operate on them. It contains knowledge represented as
propositional list structures, like its vVLTM counterpart.

Diagram Reading

The visual buffer is the geometrically organized, multi-
layered bitmap representation of pictorial STM. It contains
images generated from light striking the retina, and from
intemal pSTM and pLTM structures. Feature extraction and
simple recognition take place in the visual buffer, analogous
to computations being performed in the early visual cortex
(Kosslyn & Koneig, 1992; Kosslyn, 1994). Because it is
represented as a bitmap, CaMeRa's visual buffer exhibits a
topographic organization similar to that of the visual cortex.
Perception results from using a feedforward parallel network
to perform the feature extraction, and Gestalt principles to
use these features to scan the buffer for structure and form.
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Figure 2: Topology Parallel Network

The network functions by perceiving non-modal areas in
the local topology of the object. As all connections
between pixels on the bitmap are presumed to be of equal,
positive weight, no training is necessary. By detecting
points that depart from the local modal value, the network
identifies all perceptually significant areas on the visual
buffer!. This is accomplished through the three layered
process depicted in Figure 2.

I We have recently learned that the topology network is
similar to a class of pyramid-based segmentation techniques
developed for computer vision by Rosenfeld (1986, 1988). It
also has parallels to the methods devised by Marr (1982).

The first layer of the visual buffer represents information
projected directly into the brain from the external world.
Pixels are either on (activation = 1) or off (activation = 0).
The first filtering process sums the activations of all units
around a given unit Uj ; this summation is the activation of
Uj in layer 2. For example, if the input was a 3x3 square,
the activation of the center of the square in the second layer
of the visual buffer would be eight (one for each of the eight
units surrounding the center point).

The processing in the first layer builds a representation of
the topology of the object. Points in clusters mutually
increase each other's activations, while isolated points retain
only their initial activation. Processes in the second layer
determine which areas of the entire topology are the most
significant, by calculating how similar the activation of unit
Ujis to the average activation of its local area. The
function A(n, Uj) gives the average activation of the local
area around Uj (a square array of length n) in layer 2. Uj is
turned on in the third layer if its the ratio of its activation to
A(n, Uj) exceeds the threshold :

Ui
—_— =1 >t
A(n,U.)

Consequently, if the activation of Uj in layer 2 equals the
average activation of its local area, Uj's activation in layer 3
will be zero -- it is not perceptually significant as it can
not be distinguished from the points surrounding it.

The result of this process is a saliency map in layer 3 of
all the perceptually significant features found in the image
on the visual buffer, such as intersection points, line
endpoints, labels, object outlines. The coordinates of these
points are sent to the high-level object and spatial
representations of the pictorial STM for further processing.
Productions may then request the visual buffer to identify a
specific feature by matching the fovea-sized area around the
point to patterns stored in pictorial LTM, or to scan a line
or other object by applying gestalt principles.

We have chosen to implement the network in this fashion
for two reasons -- 1) it is more cognitively plausible than
other Al feature extraction mechanisms, and ii) we were
unable to perform the feature extraction successfully with
these other mechanisms. For example, matching small
areas of the diagram to a finite set of feature patterns will
not identify the salient points because it runs into the
problem of computational overload -- countless variations
of the same pattern are needed to recognize tiny perturbations
in the original image. The topology network circumvents
this dilemma. In short, our path solves the problem
effectively, and has some features in common with what is
known of the relevant neurology. However, we refer to
CaMeRa's low-level perceptual system as a "parallel
network"” to emphasize that its components are units, not
neurons, and while its architecture has certain similarities to
the visual cortex, it is not a model of this brain area. It
should be kept in mind that there is no mathematical basis
for assuming that the functional properties of a real neuron
are preserved in the abstraction to a formless connectionist
unit. We assume that the results of the topology network
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are computed somewhere in the visual cortex, but most
likely through different mechanisms than we have used here.

After the perceptually significant areas on the visual buffer
are determined, the entire image is recognized as a set of
associated objects, using gestaltist low-level rules of
organization. CaMeRa employs Good Continuation, Good
Form, Proximity, and Familiarity (Goldstein, 1984). Rules
related to motion, convexity, etc., were not required in our
tasks. We have implemented these serially, rather than in
parallel, because the serial design captured the relevant
cognitive principles in a lucid and explainable manner.

To coordinate the four gestalt rules, the model first
saccades to the closest perceptually significant point on the
visual buffer. This is the point in layer 3 which is the
shortest distance from CaMeRa's current focus of attention.
It then determines whether the small area of CaMeRa's fovea
surrounding this point contains a familiar pattern. If the
fovea's contents match a pictorial LTM pattern, action is
taken. For example, a label (an icon) causes a structure to
be created in pSTM to represent it. A line segment evokes
Good Continuation and Good Form. This causes the model
to focus its attention on the nearest endpoint of the line, and
then scan the entire line through a series of short saccades.
Individual lines are processed by looking at the points near
the initial line segment feature, applying the rules of Good
Continuation and Good Form, and thereby following the
simplest connected path. If a salient point falls into the
attention window as CaMeRa scans the line, it immediately
focuses on that point and processes the area around it for
familiar patterns, which are then associated with the line
through Proximity. Finally, if a point in the fovea is not
recognized, or processing on it has been completed, the
model focuses on the nearest perceptually significant feature.

Using feedback from the results of these computations,
the model keeps track of the salient points it has already
seen, and thus avoids re-processing them. As it scans,
CaMeRa removes each feature it processes from layer 3 of
the visual buffer, continually shifting its attention to
unprocessed points, and elaborating further its representation
of the diagram.

Mozer et al. (1992; see also Behrmann, Zemel, & Mozer,
1995) have designed a connectionist model of object
segmentation based on the phase-locking of related features,
which develops the properties of some of the gestalt rules
we employ. Comparison of the behavior of the two
systems suggests that many of the differences between our
serial design and a parallel one may be only
implementational and not functional. In further support of
this point, although CaMeRa was not intended to segment
images, it has the capability to do so by virtue of the
architecture of its visual buffer and the processes that operate
on it. CaMeRa is able to discriminate the component lines
of geometrical objects (squares, diamonds, triangles, etc.)
that are overlaid or each other (so far we have tested up to
four overlaid objects). These lines could be bound into
appropriately segmented objects by implementing the gestalt
rule of Closure.

We have based the implementation of CaMeRa's fovea and
attention window on biological and psychological data as
much as possible. CaMeRa's fovea is the area within which

it can see high levels of detail and recognize patterns. This
is intended to correspond to the central area of the eye where
almost all of the cones are located (Humphreys & Bruce,
1991), subtending about one degree of visual angle. This
corresponds to a circle of approximately six letters in
diameter at a reading distance of 15 inches. It is less clear
how to set the size of the attention window: if too small, it
is useless for detecting features close to a point in focus; if
too large, the model is frequently distracted and unable to
scan consistently. We have chosen a size of three fovea
diameters, a magnitude that allows fairly smooth and
efficient processing of the image.

The attention productions that control the movement of
the fovea and attention window always cause the two to
move in unison -- the center of the attention window is
always at the center of the fovea. However, CaMeRa will
eventually be modified to allow the focus of attention to be
outside the fovea.

Diagram Understanding

Figure 3 illustrates how CaMeRa would read a diagram.
The time series contains a sequence of four images exactly
as they would appear on the computer screen as CaMeRa
processes the diagram. In 3a, the model has identified all the
perceptually significant points on the graph (small clusters
and isolated points), and has projected them onto layer 3 of
the visual buffer. CaMeRa's fovea and attention window are
focused on the upper left-hand corner of the diagram, its
default starting position. The model will now shift its
attention to the closest meaningful feature, in this case, the
endpoint of the Price axis (arrow, 3a).

Next, CaMeRa will try to match the fovea sized area
around this point to patterns it has stored in pLTM. The
match is successful, and the point is identified as part of a
vertical line segment, evoking Good Continuation and Good
Form. CaMeRa now scans in the entire vertical line
through a series of saccades. Figure 3b illustrates part of
this event -- it has written to the text screen that a vertical
line (VLINE) has been found. The fovea and attention
window are now midway down the line, approaching the
lower endpoint. While CaMeRa is scanning the image, the
fovea and attention window in figure 3 move dynamically,
giving the observer a clear understanding of what the model
is doing at each moment.

Upon processing the vertical line, CaMeRa creates a
spatial structure in pSTM for the endpoints of the line, and
an object structure in pSTM for the form of the line
(represented as an equation). This is shown in 3c as
"VLINE (15 15 15 135)". Then, CaMeRa focuses its
attention on the closest point of interest, in this case the
endpoint of the supply line. Again, CaMeRa will recognize
this as part of a diagonal line, and will scan the entire
supply line (arrow, 3c). Finally, 3d shows the model as it
finishes scanning the supply line, and notices near the line
endpoint a cluster of significant points. It focuses on these
points, recognizing the label for the supply line. This label
is associated with the diagonal line which was just
processed, using Proximity.

To return to the example cited in the introduction, how
would CaMeRa resume problem solving after being
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Figure 3: Diagram Reading Time Series

interrupted? This process can be simulated by allowing
CaMeRa 1o reach a certain depth in the problem solving
sequence, and then erasing the contents of STM. To
continue processing, CaMeRa must now rescan the diagram
it has drawn, using the processes described above. As the
low-level functions read in data and interact with the high-
level STM productions, the lost contents of STM could be
quickly reconstructed. With a novel diagram, the system
would try to match the scanned objects to objects in LTM as
best it could. A partial explanation, emerging from
successful LTM matches, in conjunction with inference
processes, would produce an interpretation of the diagram.
As an image is scanned into pSTM through the low-level
visual processes described above, the higher-level
productions activate and claborate the reasoning chain.
When the system has come to rest, the low-level processing

would continue where they had left off and more input would
be sent to STM until further high-level processing could
take place.

Hybrid Models

By combining a feedforward parallel network and a
production system in its architecture, CaMeRa demonstrates
that hybrid models can be extremely advantageous in
modeling complex cognitive tasks. Previous hybrid models
have tended to focus on artificial intelligence problems, with
limited concern for cognitive plausibility. For example,
ALVINN, developed by Pomerleau, Gowdy & Thorpe
(1991), enables a robot to perform autonomous navigation.
Other types of hybrid models include expert systems with
dual production and neural network knowledge bases (Rose,
1990), and spreading-activation semantic networks (Just &
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Carpenter, 1992; Lange et al., 1990), used to simulate a
cognitive theory of language processing?.

We believe that certain tasks are best accomplished and
understood within a serial design, while others arc more
suited to a parallel one. We found that a serial feature
detection algorithm was slow and ineffective, whercas a
parallel one was highly efficient. Likewise, we could have
designed small parallel networks for each of the gestalt
principles, but these would have produced results identical to
those of their production rule counterparts, while yielding a
significant increase in design complexity and only a
minimal increase in structural plausibility. Our goal has
been to develop a clear account of the cognitive processes
involved in expert reasoning. Combining serial and parallel
methodologies, as we have in CaMeRa, allows one to build
more sophisticated simulations by both broadening the
potential task domain and facilitating implementation and
analysis of the system.

Conclusion

CaMeRa is a cognitive model of the interaction of visual
and verbal elements in reasoning. In this paper, we have
described a parallel network that extends CaMeRa's
capabilities into a cognitively plausible model of the basic
structure of visual perception. The model is able to
construct, read, and reason about diagrams, using both verbal
and visual information. Frequent interaction between high-
level and low-level visual processes allows CaMeRa to
build an elaborate representation of the diagrams it is
reading. Employing both a production system and a parallel
network has allowed us to develop a computational model
which would be extremely difficult to design in either of
these frameworks alone.
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