
UCLA
UCLA Previously Published Works

Title
Greenberg's L-invariants of adjoint square Galois representations

Permalink
https://escholarship.org/uc/item/0814b8zj

Journal
International Mathematics Research Notices, 2004(59)

ISSN
1073-7928

Author
Hida, Haruzo

Publication Date
2004
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0814b8zj
https://escholarship.org
http://www.cdlib.org/


GREENBERG’S L–INVARIANTS
OF ADJOINT SQUARE GALOIS REPRESENTATIONS

HARUZO HIDA

Abstract. For a two-dimensional p-adic Galois representation V associated
to a p–ordinary Hecke eigen cusp form f of weight k ≥ 2, we identify the L–

invariant (of R. Greenberg) of the (three dimensional) adjoint square Ad(V ) of
V with the derivative of the p–coefficient of the Λ–adic lift of f . By this result,

for a given p-adic analytic family of ordinary Hecke eigenforms, the L-invariant
does not vanish for almost all members in the p-adic family (as expected).

1. Introduction

After the conjecture of Mazur-Tate-Teitelbaum, many number theorists have
proposed diverse definitions of the L–invariant which are expected to give the error
term (or the difference) of the conjectural arithmetic part of the leading term of
the Taylor expansion of a given p–adic motivic L–function at an exceptional zero
from its archimedean counter-part. For an elliptic curve E/Q with multiplicative or
ordinary good reduction modulo p, its p–adic L–function Lp(s,E) has the following
evaluation formula at s = 1:

Lp(1, E) = (1− a−1
p )

L∞(1, E)
period

,

where L∞(s,E) is the archimedean L–function of E, and ap is the eigenvalue of
the arithmetic Frobenius element at p on the unramified quotient of the p–adic
Tate module T (E) of E. Thus if E has split multiplicative reduction, ap = 1, and
Lp(s,E) has zero at s = 1. This type of zero of a p–adic L–function resulted from
the modification Euler p–factor is called an exceptional zero, and it is generally
believed that if the archimedean L–values does not vanish, the order of the zero
is the number e of such Euler p–factors; so, in this case, e = 1. Then L′

p(1, E) =
dLp(s,E)

ds
|s=1 is conjectured to be equal to the archimedean value L∞(1,E)

period
times an

error factor L(E), the so-called L–invariant:

L′
p(1, E) = L(E)

L∞(1, E)
period

.

The problem regarding L–invariants is to find an explicit formula (without recourse
to p–adic L–functions) for general motivic p–adic Galois representations V . In
the case of E/Q split multiplicative at p, writing E(Qp) = Q×

p /q
Z for the Tate

period q ∈ pZp, the solution conjectured by Mazur-Tate-Teitelbaum and proved by
Greenberg-Stevens [GS] is

L(E) =
logp(q)
ordp(q)

.
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Since E is modular, it is associated to an elliptic Hecke eigenform fE of weight 2
with q–expansion

∑∞
n=1 a(n, fE)qn. In particular, a(p, fE) = ap = 1 and a(1, fE) =

1. We can lift fE to a unique Λ–adic Hecke eigenform F for a finite flat extension
Λ of Zp[[x]] (étale around x = 0) so that fE is a specialization of F at x = 0. Then
one of the key ingredients of their proof is the following formula:

L(E) = −2 logp(γ)
da(p,F)
dx

∣∣∣
x=0

,

where γ is the generator of Γ = 1 + pZp corresponding to 1 + x under the identifi-
cation: Zp[[Γ]] = Zp[[x]].

Greenberg has generalized in [G] the conjectural formula of his L–invariant to
general V when V is p–ordinary. We write L(V ) for the L-invariant of Greenberg.
Suppose that V is a modular ordinary two dimensional Galois representation as-
sociated to a p–ordinary elliptic Hecke eigenform f of weight k ≥ 2 with “Neben”
character having conductor prime to p. Thus V is a two dimensional Galois repre-
sentation over a p–adic field K with integer ring W , and a(p, f) ∈ W×. Then for
a suitable finite flat extension Λ of W [[x]] isomorphic to the normalization of the
irreducible component of the universal ordinary Hecke algebra carrying the Hecke
eigenform f , we have a unique Λ–adic Hecke eigenform F lifting f so that its spe-
cialization at a point Pf of Spf(Λ) over (x) gives f (see [LFE] Theorem 7.3.3).
Writing S for the set of primes ramifying for V including p and ∞, we write GS

for the Galois group over Q of the maximal extension of Q unramified outside
S. Then we have a Λ-adic ordinary Galois representation ρord

F : GS → GL2(Λ)
associated to F acting on TΛ = Λ2 (see [LFE] Theorem 7.5.1 and [MFG] 5.6.1).
Assume p > 2. The Galois character det(ρord

F )−1 det(ρ) has values in the p-profinite
group 1 + mΛ for the maximal ideal mΛ of Λ, and hence we have its unique square
root ψ. Define a representation ρF : GS → GL2(Λ) with det(ρF ) = det(ρ) by
(ρord

F ⊗ ψ)(σ) = ψ(σ)ρord
F (σ). Note that ρF ≡ ρord

F mod Pf .
We fix a W–lattice T ⊂ V stable under the Galois action. The lattice T and ρF

is unique up to isomorphisms if T = T/mT is absolutely irreducible for the maximal
ideal m of W , and hence we may assume that TΛ/PfTΛ = T (a result of Carayol
and Serre; e.g., [MFG] Proposition 2.13). Even if T is reducible, choosing a basis
of T over W , the matrix representation ρT : GS → GL2(K) is isomorphic to ρ :=
(ρF mod Pf ), because they are irreducible and have the same trace (e.g., [GME]
Theorem 4.2.7). We find αf ∈ GL2(K) with αfρTα

−1
f = ρ and αf (TΛ/PfTΛ) = T .

Taking αΛ ∈ GL2(ΛPf ) with αΛ mod Pf = αf and replacing TΛ by αΛTΛ, we
assume that ρ = (ρF mod Pf ) = ρT . Then we consider the deformation functor
into sets from the category of local profinite W–algebras with residue field W/m
whose value at a local W–algebra A is given by the set of isomorphism classes
of rank two free A–modules T̃ with continuous GS–action satisfying the following
three properties:
(D1) T̃ /mAT̃ ∼= T as GS–modules for T = T/mT ;
(D2) Writing ι : W → A for the structure homomorphism of W–algebras, we have

the identity of the determinant characters:

ι ◦ det(ρ) = det T̃ ;

(D3) Fix a decomposition group Dp of p in G. Then we have an exact sequence
0→ F+T̃ → T̃ → T̃ /F+T̃ → 0 stable under Dp such that T̃ /F+T̃ is free of
rank one over A and that F+T̃ /mAF

+T̃ ∼= F+T as Dp-modules.
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The condition (D3) is the near ordinarity, and we call the character of Dp giving
the action on T̃ /F+T̃ the nearly ordinary character of T̃ . A deformation T̃ is
ordinary if the nearly ordinary character of T̃ is unramified. This functor may not
be prorepresentable but almost always has a minimal versal hull R (unique up to
non-canonical isomorphisms) with a versal deformation ρ : GS → GL2(R) of T .
The nearly ordinary character δ of ρ gives rise to a character of the inertia group Ip
into R×. By local class field theory, the abelianization Iab

p is canonically isomorphic
to Z×

p , and through this character δ, we endow R with an algebra structure over
the Iwasawa algebra W [[x]] (sending x to γ − 1). It is known that ρF satisfies
(D1-3) (e.g., [GME] Theorem 4.2.7 (2)), and the algebra structure over W [[x]] of Λ
is given in the same way by the nearly ordinary character δF of ρF .

We assume the existence of the minimal versal hull. Since ρF satisfies (D1-3),
we have a morphism π : Spec(Λ) → Spec(R) such that π∗ρ ∼= ρF . Since the
action of Dp on F+T ramifies (because of k ≥ 2), we have π ◦ δ = δF . The Galois
module T gives rise to a W -point P = PT of Spec(R) such that π(Pf ) = PT and
(ρ mod PT ) ∼= ρ ∼= (ρF mod Pf ). Since π ◦ δ = δF , we have Pf ∩W [[x]] = (x).
We prove

Theorem 1.1. Let p be an odd prime, and assume that f has weight k ≥ 2 and
that the “Neben” character of f has conductor prime to p. Suppose that the versal
nearly p–ordinary deformation ring R, after localization and completion at P = PT ,
is isomorphic under π to the local completed ring ΛPf of Λ at Pf . Then we have

L(Ad(V )) = −2 logp(γ)a(p, f)−1 da(p,F)
dx

∣∣∣
x=0

.

We write ε (resp. δ) for the character of Dp with values in F = W/m given by
F+T (resp. T/F+T ). The assumption of the theorem has been verified by Wiles
and other mathematicians working in Galois deformation theory (see [W], [SW],
[SW1] and [BCDT]), for example, if the following three conditions are satisfied:

1. p > 2;
2. ε 6= δ (the p–distinguishedness condition);
3. The cusp form f has square free prime-to–p level N and ρ mod m ramifies

at each prime factor of N .
The above three conditions are listed for the reader’s convenience, and as long as the
condition (2) (which implies the existence of the minimal versal hull R) is satisfied,
the assumption of the theorem is verified in almost all cases.

The above theorem combined with Theorem 6.3 (4) and Proposition 7.1 of [H00]
(or Theorem 5.51 of [MFG]) confirms, for many modular adjoint square Galois
representations, the conjectures of Greenberg (see [G]) predicting the non-vanishing
of L(Ad(V )). Indeed, in Proposition 7.1 of [H00], the derivative da(p,F)

dx
(possibly

in the quotient field of Λ) before specializing at x = 0 is proven to be nonzero, and
hence, it vanishes only at finitely many (unspecified) points in Spf(Λ)(W ). Thus
in the infinite family of Hecke eigenforms obtained as specializations of the Λ-adic
form F , the Hecke eigenforms have nonzero L-invariant except for finitely many
members of the family.

In our subsequent paper, we hope to prove a similar result also in the Hilbert
modular case, which certainly involves more technicality. The author wishes to
thank the referee of this paper for pointing him out a missing factor from an earlier
version of the formula of L(Ad(V )).
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In the following sections, we shall start with a brief review of the definition by
Greenberg of the Selmer group and the L–invariant of the adjoint square of a two
dimensional modular ordinary p–adic Galois representation. After the review, we
shall give a proof of the theorem. Hereafter we suppose that p > 2.

2. Selmer Groups

We shall describe the definition due to Greenberg of his Selmer group asso-
ciated to the adjoint square Galois representation. Let K be a finite extension
of Qp with p-adic integer ring W . Let M/Q be a subfield of Q. All Galois co-
homology groups with coefficients in a finite Galois module are continuous coho-
mology groups as defined in [MFG] 4.3.3. We write p for a prime of M over p
and q for general primes of M . Write Dq for the decomposition group at q in
GM = Gal(Q/M ) and Iq for the inertia subgroup of Dq. For a general K-vector
space V with a continuous action of G = GQ and a G-stable W -lattice T of V , we
define Hq(X,T ) = lim←−nH

q(X,T/pnT ), Hq(X,V/T ) = lim−→nH
q(X, p−nT/T ) and

Hq(X,V ) = Hq(X,T ) ⊗W K for X = M and Mq. Here Hq(M, ?) = Hq(GM , ?)
and Hq(Mq, ?) = Hq(Dq, ?).

Assume now V to be a two dimensional vector space over K with a continuous
action of G = Gal(Q/Q) associated to a Hecke eigen cusp form f whose “Neben”
character has conductor prime to p. Thus the Galois action is unramified at almost
all primes. We let G act on EndK(V ) by conjugation and define Ad(V ) ⊂ EndK(V )
by the trace 0 subspace of dimension 3.

We assume given a filtration as in (D3):

V ) F+V ) {0}(ord)

stable under the decomposition group Dp such that the inertia group Ip ⊂ Dp acts
on the quotient V/F+V trivially. Then Ad(V ) has the following three step filtration
stable under Dp:

Ad(V ) ⊃ F−Ad(V ) ⊃ F+Ad(V ) ⊃ {0},(2.1)

where
F−Ad(V ) = {φ ∈ Ad(V )|φ(F+V ) ⊂ F+V },
F+Ad(V ) = {φ ∈ Ad(V )|φ(F+V ) = 0}.

If we take a basis of V containing a generator of F+V and we identify EndK(V ) with
M2(K) by this basis, F−Ad(V ) (resp. F+Ad(V )) is made up of upper triangular
matrices with trace zero (resp. upper nilpotent matrices). Note that Dp acts
trivially on F−Ad(V )/F+Ad(V ); so, F−Ad(V )/F+Ad(V ) ∼= K as Dp-modules. In
particular, the p-adic L-function of Ad(V ) has an exceptional zero at s = 1.

We denote by χ : G→ Z×
p the cyclotomic character given by ζσ = ζχ(σ) for all

ζ ∈ µp∞ . Taking the dual Ad(V )∗(1) = HomK(Ad(V ),K) ⊗ χ ∼= Ad(V )(1), we de-
fine subspaces F−Ad(V )∗(1) = F+Ad(V )⊥(1) = F−Ad(V )(1) and F+Ad(V )∗(1) =
F−Ad(V )⊥(1) = F+Ad(V )(1). Thus we have

Ad(V )∗(1) ⊃ F−Ad(V )∗(1) ⊃ F+Ad(V )∗(1) ⊃ {0}.(2.2)

On F−Ad(V )∗(1)
F+Ad(V )∗(1)

, Dp acts by χ, using the conventional notation, F−Ad(V )∗(1)
F+Ad(V )∗(1)

∼=
K(1).

We define Ad(T ) = EndW (T )∩Ad(V ) and Ad(T )∗(1) = Hom(Ad(T ),W )⊗χ ⊂
Ad(V )∗(1). Taking intersection with Ad(T ) and Ad(T )∗(1), we have three step
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filtrations of Ad(T ) and Ad(T )∗(1) induced from the above filtrations. We put
Ad(V/T )∗(1) = Ad(V )∗(1)/Ad(T )∗(1).

For each prime q of M , we put

Uq(Ad(V )) =

{
Ker(Res : H1(Mq, Ad(V ))→ H1(Iq, Ad(V ))) if q - p,
Ker(Res : H1(Mq, Ad(V ))→ H1(Iq,

Ad(V )
F+(Ad(V ))

)) if q = p|p.

For Ad(V/T ) := Ad(V )/Ad(T ), we define Uq(Ad(V/T )) by the image of Uq(Ad(V ))
in the cohomology group H1(Mq, Ad(V/T )). Then we define for A = Ad(V ) and
Ad(V/T )

SelM (A) = Ker(H1(M,A)→
∏

q

H1(Mq, A)
Uq(A)

).(2.3)

The classical Selmer group of Ad(V ) is given by SelM (Ad(V/T )) equipped with
the discrete topology (which is denoted by Sel(Ad(T ))/M in [MFG] 5.2.1). Here
we use the slightly different notation SelM (A), because A can be Ad(V/T ) and
also Ad(V ). Write Q∞ for the cyclotomic Zp–extension of Q. The Selmer group
SelQ∞(Ad(V/T )) is an Iwasawa module of co-finite type. Replacing Up(Ad(V )) by
the bigger

U−
p (Ad(V )) = Ker(Res : H1(Mq, Ad(V ))→ H1(Iq,

Ad(V )
F−(Ad(V ))

))

for p|p (and keeping Uq(Ad(V )) intact for q - p), we can define a bigger “−” Selmer
group Sel−M(A) ⊃ SelM (A).

We also need balanced Selmer groups SelQ(Ad(V )) and SelQ(Ad(V )∗(1)) intro-
duced in [G] (16) under the notation of SA(Q). We call this Selmer group balanced
since SelQ(Ad(V )) and the dual SelQ(Ad(V )∗(1)) have equal dimensions (cf., [G]
Proposition 2). We define SelQ(A) for A = Ad(V ) and Ad(V/T ) by slightly shrink-
ing Up(Ad(V )) to Up(Ad(V )) ⊂ Up(Ad(V )) and keeping Uq(Ad(V )) = U q(Ad(V ))
for q 6= p intact. Then we define Uq(Ad(V )∗(1)) by the orthogonal complement
Uq(Ad(V ))⊥ under the Tate pairing for all q including p. Then U q(Ad(V/T )) and
U q(Ad(V/T )∗(1)) are defined by the image of U q(Ad(V )) and U q(Ad(V )∗(1)) in
H1(Qq , Ad(V/T )) and H1(Qq , Ad(V/T )∗(1)), respectively. The new Selmer group
is defined by the same formula as in (2.3):

SelQ(A) = Ker(H1(Q, A)→
∏

q

H1(Qq , A)
U q(A)

)(2.4)

for A = Ad(V ), Ad(V/T ), Ad(V )∗(1) and Ad(V/T )∗(1). Actually, the new Selmer
group SelQ(Ad(V )) often coincides with our Selmer group defined by (2.3). In-
deed, unless f is multiplicative at p, we simply set U q(Ad(V )) = Uq(Ad(V ))
for all q; thus, SelQ(A) = SelQ(A) for A = Ad(V ) and Ad(V/T ) in this case.
Here we call f multiplicative at p if f is of weight 2 and is associated to an
abelian variety with multiplicative reduction at p (not necessarily split). Thus
we only need to define Up(Ad(V )) if f is multiplicative. In this case, we sim-
ply put Up(Ad(V )) = F+H1(Qp, Ad(V )) ⊂ Up(Ad(V )), which is the image of
H1(Qp, F

+Ad(V )) in H1(Qp, Ad(V )).
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The above definition coincides with the one given in [G], because as we already
remarked, F+Ad(V )∗(1) (resp. F−Ad(V )

F+Ad(V ) ) is the smallest (resp. the largest) sub-

space of F−Ad(V )∗(1) (resp. Ad(V )
F+Ad(V ))

) stable under Dp so that Dp acts on it

by χ (resp. by the trivial character); so, F−Ad(V )∗(1)
F+Ad(V )∗(1)

∼= K(1) and F−Ad(V )
F+Ad(V )

∼= K.
Therefore the space F+Ad(V )∗(1) (resp. F−Ad(V )) is the subspace written as
F 11Ad(V )∗(1) (resp. F 00Ad(V )) in [G].

We now verify the following condition in [G] necessary to define L(Ad(V )):

Lemma 2.1. Suppose that f satisfies the assumptions of Theorem 1.1. Then we
have SelQ(Ad(V )) = 0 and

SelQ(Ad(V )) = SelQ(Ad(V )∗(1)) = 0.(V)

Proof. Using the global Tate duality (e.g., [MFG] Theorem 4.50), Greenberg ([G]
Proposition 2) has shown dimK SelQ(Ad(V )) = dimK SelQ(Ad(V )∗(1)). Since the
Selmer group SelQ(Ad(V/T )) contains SelQ(V/T ), we have

|SelQ(Ad(V/T ))| <∞ (⇒ |SelQ(Ad(V/T ))| <∞).(V1)

If the deformation problem (D1-3) is representable and the universal ring R is
isomorphic to an appropriate Hecke algebra, Rk = R/PR for P = Pf ∩ W [[Γ]]
is isomorphic to a suitable Hecke algebra of weight k and of finite level (possibly
a multiple of N ) by the control theorem of the universal ordinary Hecke algebra
(cf., [MFG] Theorem 5.28, [H86] and [H88] Theorem II). Thus Rk = R/PR is a
W -module of finite type and its W -free quotient is reduced. Then by a standard
argument (e.g., [MFG] Theorem 5.14), the Pontryagin dual of SelQ(Ad(V/T )) is
isomorphic to the finite module ΩRk/W ⊗Rk W , where the tensor product is taken
with respect to the algebra homomorphism Rk → W associated to ρ. This shows
(V1) and the vanishing of SelQ(Ad(V )).

Now suppose that we are in the worst case where R only has a surjection onto a
local ring of an appropriate Hecke algebra finite torsion-free over W [[Γ]]. Since ΛPf

is generated by the trace of the Galois representation ρF (the local étaleness of the
Hecke algebra around x = 0), the assumed identity ΛPf

∼= RPT in the theorem tells
us that ρ : G→ GL2(RPT ) is universal among all continuous deformations over K
of ρ into GL2(A) satisfying (P1-3) in Section 4. Here A runs over Artinian local K-
algebras with residue field K (for a sketch of a proof of this fact, see the argument
in Section 4 after (P1-3)). Since Rk := RPT /PTRPT

∼= ΛPf /PfΛPf = K and
ΛPf = W [[Γ]](x), again the K-dual of SelQ(Ad(V )) is isomorphic to ΩRk/K⊗RkK =
ΩK/K = 0. As already remarked, SelQ(Ad(V )) = 0 implies SelQ(Ad(V )) = 0,
which in turn implies SelQ(Ad(V )∗(1)) = 0 by [G] Proposition 2. This finishes the
proof.

We write S for the set of ramified primes for V including p. We have the Poitou-
Tate exact sequence (e.g., [MFG] Theorem 4.50 (5)):

0→ SelQ(Ad(V ))→ H1(GS , Ad(V ))→
∏

q∈S

H1(Qq , Ad(V ))
Uq(Ad(V ))

→ SelQ(Ad(V )∗(1))∗,
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where GS is the absolute Galois group of the maximal extension unramified outside
S ∪ {∞}. Thus by (V), we have

H1(GS , Ad(V )) ∼=
∏

q∈S

H1(Qq , Ad(V ))
U q(Ad(V ))

.(2.5)

3. Greenberg’s L–invariant

Greenberg defined in [G] his invariant L(Ad(V )) in the following way. By the
definition of Up(Ad(V )), the subspace F−H1(Qp, Ad(V ))/Up(Ad(V )) inside the
right-hand side of (2.5) is isomorphic to F−Ad(V )/F+Ad(V ) ∼= K (see just below
(21) in Section 2 of [G]). By (2.5), we have a unique subspace T of H1(GS , Ad(V ))
projecting down isomorphically onto

F−H1(Qp, Ad(V ))
Up(Ad(V ))

↪→
∏

q∈S

H1(Qq, Ad(V ))
U q(Ad(V ))

.

Then by the restriction, T gives rise to a subspace L of

Hom(Dab
p , F

−Ad(V )/F+Ad(V ))

isomorphic to F−Ad(V )/F+Ad(V ) ∼= K. Note that

Hom(Dab
p ,

F−Ad(V )
F+Ad(V )

) ∼=
(
F−Ad(V )
F+Ad(V )

)2

∼= K2

canonically by φ 7→ (φ([u,Qp])
logp(u) , φ([p,Qp])) for any u ∈ Z×

p of infinite order. Here
[x,Qp] is the local Artin symbol (suitably normalized).

If a cocycle c representing an element in T is unramified, it gives rise to an element
in SelQ(Ad(V )). By the vanishing (V) of SelQ(Ad(V )), this implies c = 0; so, the
projection of L to the first factor F−Ad(V )/F+Ad(V ) (via φ 7→ φ([u,Qp])/ logp(u))
is surjective. Thus this subspace L is a graph of a K–linear map

L : F−Ad(V )/F+Ad(V )→ F−Ad(V )/F+Ad(V ),

which is given by the multiplication by an element L(Ad(V )) ∈ K.
The cocycle c as above becomes unramified at p after restriction to GQ∞ (be-

cause the p–ramification of c is consumed by Q∞/Q), it gives rise to an ele-
ment c∞ in SelQ∞(Ad(V )). The map c 7→ c∞ is injective (under the trivial-
ity of H0(GQ∞ , Ad(V ))) by the inflation-restriction sequence. Thus the image
T∞ ⊂ SelQ∞(Ad(V )) gives rise to a zero of the characteristic power series of
SelQ∞(Ad(V/T )) at the augmentation ideal of W [[Γ]] (see [G] Proposition 1).

4. Proof of the theorem

We take a p–ordinary Hecke eigenform f of weight k ≥ 2 as in the theorem
and its two dimensional Galois representation V . We take a matrix form ρ : G →
M2(W ) of the Galois representation T so that its restriction to Dp is given by

ρ(σ) =
(

ε(σ) β(σ)
0 δ(σ)

)
. We now identify Ad(T ) with the following subspace of M2(W ):

{
ξ ∈M2(W ) = EndW (T )

∣∣Tr(ξ) = 0
}
.

Then F−Ad(T ) is the subspace of Ad(T ) made up of upper triangular matrices,
and F+Ad(T ) is made up of upper nilpotent matrices on which Dp acts by the
character εδ−1.
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Recall the versal nearly ordinary deformation ρ : GS → GL2(R) with det(ρ) =
det(ρ) and the point P = PT ∈ Spf(R)(W ) carrying ρ. Recall the subspace T of
H1(GS , Ad(V )) studied in the previous section. We know

1. dimK T = 1,
2. T is made up of the classes of cocycles c which is upper triangular on Dp and

unramified at the `–inertia group for ` ∈ S different from p,
3. SelQ(Ad(V )) = {0} (Lemma 2.1).

By (2), T ⊂ Sel−Q (Ad(V )) which is defined just below (2.3). By (2.5), Sel−Q (Ad(V )) =
T⊕SelQ(Ad(V )) = T, because the image of T inH1(Qp, Ad(V ))/Up(Ad(V )) is given
by U−

p (Ad(V ))/Up(Ad(V )). This fact can be also seen from [H00] Corollary 5.4 if
we further assume that R is isomorphic to a local ring of the universal ordinary
Hecke algebra.

First suppose that the deformation functor Φ of T defined by (D1-3) is rep-
resentable by R. Then by Theorem 5.14 of [MFG], the K-dual Sel−Q (Ad(V ))∗ of
Sel−Q (Ad(V )) is canonically isomorphic to Ω1

R/W ⊗RRP/PRP where P = PT is the
point of Spf(R) corresponding to ρ and RP is the localization completion of R at
P (so RP/PRP = K). Here Ω1

R/W is the module of continuous differentials of R
over W under the profinite topology of R. Thus T = Sel−Q (Ad(V )) is isomorphic to
the tangent space at P of RP .

We now suppose the weaker assumption: RP = ΛPf . Then as already remarked,
RP is topologically generated by trace of ρF , and hence (RP ,ρ : GS → GL2(RP ))
is the universal couple pro-representing the following localized functor ΦP (see
[HT] Section 2 for a general discussion of the “localized” deformation theory). The
functor ΦP associates to each local Artinian K-algebra A with residue field K the
set of isomorphism classes of p-adically continuous defomations ρ̃ : GS → GL2(A)
satisfying the following three conditions:
(P1) ρ̃ mod mA

∼= ρ for the maximal ideal mA of A;
(P2) Writing ι : K → A for the structure homomorphism of K–algebras, we have

the identity of the determinant characters:

ι ◦ det(ρ) = det ρ̃;

(P3) ρ̃|Dp
∼=

(
ε̃ ∗
0 δ̃

)
with δ̃ mod mA = δ, writing ρ|Dp

∼= ( ε ∗
0 δ ).

Indeed, if we have such ρ̃ : GS → GL2(A), moving ρ̃ by conjugation in GL2(A) if
necessary, we find by continuity a compact W -subalgebra B ⊂ A such that ρ̃ has
image in GL2(B) and ρ̃ mod (mA∩B) ∼= ρ. This point can be also verified by using
the technique of pseudo representation of Wiles (e.g., [MFG] 2.2.1). Then by the
versality of R, we have a W -algebra homomorphism ϕ : R→ B such that ϕ◦ρ ∼= ρ̃
in GL2(B). This morphism induces ϕP : RP → A after localization. Since RP

is topologically generated by the traces of ρ, the localized version ϕP is uniquely
determined by ρ̃, and hence (RP ,ρ) prorepresents ΦP . Then in the same manner
as in the proof of Theorem 5.14 in [MFG], we have Sel−Q (Ad(V ))∗ ∼= ΩRP /K⊗RP K,
and hence once again, we obtain the isomorphisms of T onto Sel−Q (Ad(V )) and onto
the tangent space of Spf(RP ) at P .

We only need to assume the existence of π : R→ Λ which is an isomorphism at
the level of the tangent spaces after localization at P . Since ΛPf is generated by the
trace of ρF , the natural morphism π : RP → ΛPf is surjective. We suppose that this
surjection induces the isomorphism of the tangent space PRP/P

2RP of Spf(RP )
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for the localization completion RP of R at P onto the tangent space (x)/(x)2 of
Spf(K[[x]]) at x = 0. Since ΛPf is the one variable power series ring K[[x]], the
surjection π : RP � ΛPf inducing the identification of the tangent space is actually
an isomorphism RP

∼= ΛPf . Thus the assumption (weaker in appearance) of the
tangential isomorphism is actually equivalent to having the isomorphismRP

∼= ΛPf .
Then the tangent space at P of Spf(RP ) is one-dimensional over K generated by
π∗

d
dx

∣∣
x=0

.
Here is how the isomorphism of T with the tangent space is computed, for ex-

ample, in [MFG] 5.2.4: Each inhomogeneous cocycle c (representing an element of
T) gives rise to an infinitesimal nearly ordinary deformation ρ̃c with det(ρ̃) = det ρ:

ρ̃c : GS → GL2(K[x]/(x2))

given by ρ̃c(σ) = ρ(σ)+ c(σ)ρ(σ)x. The tangent space at P of Spf(R)/W is isomor-
phic to

{ρ̃ ∈ Φ(K[x]/(x2))|ρ̃ mod (x) = ρ}
∼

= ΦP (K[x]/(x)2)

by a standard argument (which can be found in [MFG] 5.2.4). Here “∼” is the
conjugation under 1 + xM2(K) ⊂ GL2(K[x]/(x2)) and (as one can check easily)
corresponds to the cohomologous relation in T. Thus c 7→ ρ̃c induces the isomor-
phism from T to the tangent space of Spf(RP ) at P .

Taking an inhomogeneous cocycle c : GS → Ad(V ) representing a generator
of T, we write c(σ) =

(
−a(σ) b(σ)

0 a(σ)

)
for σ ∈ Dp. If c restricted to Dp mod-

ulo upper nilpotent cocycles is unramified, it gives rise to a nontrivial element
of SelQ(Ad(V )). By the vanishing of SelQ(Ad(V )) (Lemma 2.1), we find a 6= 0 on
Ip. Then L(Ad(V )) = a([p,Qp]) ·

logp(γ)

a([γ,Qp])
for a generator γ of 1+pZp. We therefore

need to compute this value.
Since PRP/P

2RP
∼= T as already remarked, dρ

dx gives rise to a generator of T by
the universality of (RP ,ρ = ρF ); so, we have c(σ)ρ(σ) = C · dρ

dx (σ) with a constant

C ∈ K×. Writing ρ(σ) =
(

ε(σ) β(σ)
0 δ(σ)

)
for σ ∈ Dp, we have therefore

a([p,Qp])δ([p,Qp]) = C · dδ([p,Qp])
dx

∣∣∣
x=0

,

a([γ,Qp])δ([γ,Qp]) = C ·
dδ([γ,Qp])

dx

∣∣∣
x=0

.

(4.1)

The factors δ([p,Qp]) and δ([γ,Qp]) on the left-hand side come from the left mul-
tiplication by ρ(σ) in the identity: c(σ)ρ(σ) = C · dρ

dx (σ).
For the modular p–ordinary deformation ρord

F , its determinant det(ρord
F ) is the

universal deformation on GS of det(ρ) mod m (at least locally around Pf ). Write
the universal deformation of the trivial character of G{p} as γs 7→ (1 + x)s. Thus
the character (1 + x)−s/2 sends σ ∈ G inducing χ−1(γs) on Gal(Q∞/Q) for a
generator γ ∈ 1 + pZp to (1 + x)−s/2. This shows ρ = ρF = ρord

F ⊗ (1 + x)−s/2

after localization at P . Then the character δ is given by δ([γs,Qp]) = (1 + x)−s/2

because the character δord at the lower right corner of ρord
F |Dp is unramified. Then

we have

δ([γ,Qp]) = δ([γ,Qp])|x=0 =
(
δord([γ,Qp])(1 + x)−s/2

) ∣∣
x=0

= 1
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by the unramifiedness of δord, and
dδ([γs,Qp])

dx

∣∣∣
x=0

= − s
2

and
dδ([γs,Qp])

dx

∣∣∣
x=0

logp(γs)−1 = − 1
2 logp(γ)

.

As for the value at [p,Qp], we have δord([p,Qp]) = a(p,F) (e.g., [GME] Theo-
rem 4.2.7 (3)). Since χ([p,Qp]) = 1 and the character (1 + x)s/2 interpolates
χm(p−1) for all integer m, (1 + x)s/2 has value 1 at [p,Qp]. We should not forget
the factor δ([p,Qp]) in the first equation of (4.1) which is equal to

δord([p,Qp])|x=0 = a(p,F)|x=0 = a(p, f).

Thus we get the desired result from the definition of L(Ad(V )).
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