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Abstract

Next generation wireless networks face the challenge of increasing energy consumption while satis-

fying the unprecedented increase in the data rate demand. Toaddress this problem, we propose a utility-

based energy-efficient resource allocation algorithm for the downlink transmissions in heterogeneous

networks (HetNets). We consider the fractional frequency reuse (FFR) method in order to mitigate the

intra- and inter-cell interference. The proposed algorithm divides the resource allocation problem into

frequency and power assignment problems and sequentially solves them. The proposed power control

algorithm uses the gradient ascent method to control the transmit power of macrocell base stations as

most of the power in the network is consumed there. We also present the optimality conditions of the

resource allocation problem and the convergence of the proposed algorithm. We study the performance

of the proposed algorithm in a Long Term Evolution (LTE) system. Our simulation results demonstrate

that the proposed algorithm provides substantial improvements in the energy efficiency and throughput

of the network.

This work was partially supported by the National Science Foundation under Grant No. 1307551. Any opinions, findings, and
conclusions or recommendations expressed in this materialare those of the authors and do not necessarily reflect the view of
the National Science Foundation.
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Index Terms

Energy efficiency, heterogeneous cellular networks, powercontrol, Long Term Evolution (LTE),

OFDM.

I. INTRODUCTION

Energy efficiency is an important issue in the next generation wireless networks. In particular,

the high data rate demands of the LTE and LTE-Advanced standards bring the hidden cost of

increasing energy consumption. These have been studied in the literature under the topic of

“Green Communications” [1]. Network operators are also seeking green solutions in order to

reduce their operational expenses. Several methods have been investigated and standardized to

increase the energy efficiency of the networks, see, e.g., [1]–[5]. Among these solutions, we

study the FFR method in this paper to reduce both the intra- and inter-cell interference. In the

FFR method, cells are divided into cell-center and cell-edge regions and orthogonal subbands

are allocated in these regions. In an interference dominated region, increasing the transmit

power slightly improves the throughput, but it significantly degrades the energy efficiency. The

frequency allocation of the FFR method significantly increases the energy efficiency and reduces

the outages.

The resource allocation problem for multicell networks hasbeen widely investigated in the

literature, see, e.g., [6]–[12]. The study in [6] finds that the network sum throughput is maximized

when the radius of the cell-center region is chosen as 0.6 times the cell radius for single-

layer networks employing omnidirectional antennas. A similar study is presented in [7] for

two-layer networks with three and six sector antennas in which 0.61 and 0.54 times the cell

radius, respectively, are determined to be the cell-centerregion radii that maximize the network

throughput. In contrast to the studies that maximize the network throughput, in this paper,

we investigate the cell-center radius that maximizes the energy efficiency, which has not been

investigated in the literature. Several studies have been reported investigating energy-efficient

resource allocation in multicell networks, see, e.g. [8]–[10]. These works consider the static

power consumption along with the transmit power to develop better link adaptation schemes. In

our paper, this problem is also addressed but in a large scalesuch that the energy efficiency of
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the complete network is maximized. In [11], the effects of the cell-center region radius have been

investigated. The authors identify that as the number of users increases the optimal cell-center

radius needs to decrease. Reference [12] investigates resource allocation in time, frequency, and

both time and frequency domains. Considering the complexity of the problem and practical

constraints, [12] proposes to use constant energy across subbands instead of using a multi-user

water-filling algorithm. It needs to be noted that the same constraints also apply to the LTE and

LTE-Advanced systems, where the standards define the smallest scheduling granularity to be per

resource block and constant power is allocated to the subcarriers within a resource block [2].

In this paper, we also employ this approach and find the optimal power levels that maximize

the energy efficiency of the network. A recent study in [7] proposed a novel FFR scheme for

HetNet deployments with sectorized macrocell base stations, we use the same scheme.

In this paper, we address the resource allocation problem inOrthogonal Frequency Division

Multiple Access (OFDMA) systems employing the FFR method inHetNets deployments. We

propose a novel resource allocation algorithm in which the objective is to maximize the energy

efficiency in each sector. We account for both the transmit and static power consumed at base

stations. The proposed algorithm divides the resource allocation problem into frequency and

power allocation problems. To solve the frequency assignment problem, we investigate two well-

known schedulers, the sum rate maximization (SRM) and equalbandwidth (EBW) schedulers

[13]. For the power control assignments, the gradient ascent method is applied. We note that

power control is applied only at the macrocell base station (MeNB) and not at the picocell base

station (pico eNB) in order to eliminate excessive traffic overhead among base stations, which is

especially critical as the network becomes denser with small cell deployments. This also makes

sure that full coverage is provided in the small cells.

The remainder of this paper is organized as follows. SectionII introduces the system model and

presents the base station power consumption models. Section III formulates the energy-efficient

resource allocation problem in OFDMA systems employing theFFR method. The proposed

algorithm is presented in Section III, along with the optimality conditions and the convergence

proof of the proposed algorithm. Numerical results demonstrating the performance improvements
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are presented in Section IV and concluding remarks are made in Section V.

II. SYSTEM MODEL

In this section, we first present the FFR method used in this paper. Then we identify the

interference conditions in each region and present the system model. Finally we discuss the base

station power consumption models that are used to derive energy-efficient algorithms.

Interference is a key problem in mobile wireless communication systems. In today’s mobile

communication networks, base station distances are typically on the order of less than a kilometer

for urban deployments. This poses a challenging interference problem for HetNet deployments

due to the large downlink transmit power differences. For example, the MeNBs and pico eNBs

differ by 16 dB in their transmit power levels [2], [14]. In order to mitigate interference, several

methods have been proposed such as FFR [7], enhanced inter-cell interference cancellation

[2], coordinated multipoint transmissions [15], and carrier aggregation [2]. In the FFR method,

different subbands are allocated in different geographical regions. Each cell is divided into two

regions as the cell-center and cell-edge region. Dependingon the locations, the macrocell and

picocell associated users, abbreviated as MUEs and PUEs, respectively, are assigned to different

subbands. This orthogonal frequency assignment significantly reduces both the intra- and inter-

cell interference. In this paper, we denote the cell-centerregion radius asrth. This distance sets

the region boundaries. For example, users that are closer thanrth to the MeNB are considered to

be in the cell-center region and those that are farther are considered to be in the cell-edge region.

Similarly, users connected to a pico eNB located closer thanrth to the MeNB are considered to

be in the cell-center region.

Consider the FFR scheme depicted in Fig. 1. In the macrocell tier, the system bandwidth

is partitioned into subbands such that subbandA is assigned to the cell-center region for the

macrocell tier, and the rest of the spectrum is divided into three subbands, one for each sector.

In the picocell tier, two of these subbands are allocated to the PUEs in the cell-center region,

while subbandA is also available for those in the cell-edge region. Due to different spectrum

allocations, interference conditions vary depending on the cell region and the associated tier. Let

us identify the interference conditions for the MUEs and PUEs in the cell-center and cell-edge
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X1 Macro: B
Pico: A,C,D

X2
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Macro:
D
Pico:
A,B,C

X3

Macro: A
Pico: B,C

C3

C1

Macro: A
Pico: C,D

C2

Macro: A
Pico: B,D

A B C D

Figure 1. A multi-tier FFR scheme with dynamic cell-center region boundaries is depicted in a uniform hexagonal grid of
19 cells. The MeNBs employ three sector antennas, whereas pico eNBs have omnidirectional antennas.

regions of each sector. For example, in Sector 1, the MUEs in the cell-center region are assigned

to subbandA, while the PUEs in the same region are allocated to subbandsC andD. On the

other hand, in the cell-edge region, the MUEs are scheduled on subbandB, whereas the PUEs

operate on subbandsA, C, andD.

First, consider the MUEs in the cell-center region that are scheduled on subbandA. The

strongest interfering base stations for the users in this region are the six MeNBs in the first

ring surrounding this cell. Also, note that the surrounding12 MeNBs in the second ring create

interference although at smaller magnitudes. As for the cross-tier interference, the picocells

transmiting on subbandA located in the cell-edge region create interference for these users.

Then, we can express the signal-to-interference-plus-noise ratio (SINR) of an MUEk in the

cell-center region on subcarriern as

γ
(n)
k =

P
(n)
M g

(n)
k,b∑

b′∈BA
M
,b′ 6=b

P
(n)
M g

(n)
k,b′ +

∑
b′′∈BA

P

P
(n)
P g

(n)
k,b′′ +N0∆f

(1)

whereP (n)
M andP (n)

P denote the downlink transmit powers of macrocellM and picocellP on

subcarriern, respectively. The channel gain between userk and base stationb is denoted by

g
(n)
k,b on subcarriern. Also, BAM andBAP denote the set of MeNBs and pico eNBs operating on
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subbandA. The thermal noise power per Hz is denoted byN0. The bandwidth of a subcarrier

is represented as∆f , ∆f = 15 kHz for LTE systems [2].

Similarly, we can express the SINR of the MUEs in the cell-edge region of Sector 1 as

γ
(n)
k =

P
(n)
M g

(n)
k,b∑

b′∈BB
M
,b′ 6=b

P
(n)
M g

(n)
k,b′ +

∑
b′′∈BB

P

P
(n)
P g

(n)
k,b′′ +N0∆f

(2)

whereBBM andBBP are the set of MeNBs and pico eNBs operating on subbandB, respectively.

Note that in this region, the number of interfering MeNBs in the first ring is reduced from six to

two due to the frequency reuse of 1/3. This comes from the sectorization at the MeNBs. As in

the cell-center region, the picocells operating on subbandB still interfere with the MUEs in the

cell-edge region. The five MeNBs in the second ring also create interference, but relatively less

compared to those from the first tier. It is straightforward to derive the interference conditions

for the cell-center and cell-edge MUEs in Sectors2 and3, and these are omitted due to space

considerations.

Let us now discuss the interference conditions for the PUEs.Assume that a PUEk is located

in the cell-center region of Sector1. This user can be scheduled on the resources over the

subbandsC andD. The interference from the picocell tier comes from the picoeNBs operating

over these subbands. These correspond to the pico eNBs within the same cell and those in the

neighboring cells. The interference from the macrocell tier is mainly caused by the four MeNBs

in the first ring, in which each MeNB creates interference foreither one of these subbands. Note

that the closest MeNB does not interfere with the pico eNBs inthe cell-center region as they

are allocated to different subbands. Hence, this spectrum allocation significantly decreases the

number of interfering MeNBs for the picocell tier, and thereby reduces the cross-tier interference.

Following our previous notation, the SINR of a PUE in the cell-center region scheduled to the

subcarriers in subbandC is given by

γ
(n)
k =

P
(n)
P g

(n)
k,b∑

b′∈BC
M

P
(n)
M g

(n)
k,b′ +

∑
b′′∈BC

P
,b′′ 6=b

P
(n)
P g

(n)
k,b′′ +N0∆f

(3)

whereBCM andBCP denote the set of MeNBs and pico eNBs operating on subbandC. Similar
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expressions can be obtained for the other PUEs, in which the only differences will be the

interfering base stations.

Constant power allocation over subbands is considered in this paper, which follows the

standards for LTE systems [2]. The proposed algorithm in Section III-A introduces two power

control parametersβ and ε to adjust the downlink transmit power levels. The first parameter

β scales the transmit power of each MeNB. The second parameterε denotes the ratio of the

power allocated to the subcarriers in the cell-edge region to those in the cell-center region. By

this way,ε characterizes the fairness between the MUEs in the cell-center and cell-edge regions.

Let NA, NB, NC , andND denote the total number of subcarriers in subbandsA, B, C, andD,

respectively. Then, for Sector1, the maximum transmit power of an MeNB satisfies

βPmax,M = PMNA + εPMNB, (4)

and therefore

PM =
βPmax,M

NA + εNB
(5)

wherePM andPmax,M are the MeNB transmit power per subcarrier in the cell-center region and

the MeNB maximum transmit power, respectively. The termεPM denotes the transmit power

per subcarrier for the MUEs in the cell-edge region. Similarexpressions can be obtained for

Sectors2 and 3 by replacingNB with NC andND, respectively. For completeness, we also

express the picocell transmit power per subcarrier. For a pico eNB in Sector1, the transmit

power per subcarrier, denoted byPP , depends on the picocell’s location in the cell, and it is

given by

PP =





Pmax,P/ (NC +ND) if dp ≤ rth

Pmax,P/ (NA +NC +ND) if dp > rth

(6)

wherePP andPmax,P are the transmit power of a pico eNB per subcarrier and the maximum

transmit power of a pico eNB, respectively. The distance between the closest macrocell and the

pico eNB is denoted bydp. Similar expressions can be obtained for Sectors2 and3 by replacing
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NC with NB andND with NB, respectively.

A. Base Station Power Consumption Models

Recent studies have quantified the energy consumption of a base station down to the component

level and several power consumption models have been proposed, see, e.g., [16]–[18]. These

models include the contributions of the power amplifier, radio frequency (RF) transceiver parts,

baseband unit, power supply, and cooling devices [16]. Using these models each component’s

contribution can be identified and efficient methods can be developed to introduce energy savings

[1]. In this paper, we study the load-dependent power consumption model presented in [16],

which is given by

PTotal =





NTRX (P0 +∆ · PTX) 0 < PTX ≤ Pmax

NTRXPsleep Pout = 0

(7)

wherePTotal andPTX are the overall base station power consumption and RF transmit output

powers, respectively.NTRX is the number of transceiver chains,P0 is the power consumption at

the minimum non-zero output power, and∆ is the slope of the load-dependent power consump-

tion.Psleep denotes the power consumption of the sleep mode. Notice thatthe power consumption

at a base station depends on the RF transmit power,PTX , and thereby this model is referred to

as load-dependent power consumption model. Using this definition, the power consumption at

an MeNB and a pico eNB can be expressed as

PMacro = NTRX,M (P0,M +∆MPTX,M) andPPico = NTRX,P (P0,P +∆PPTX,P ) (8)

where P0,M , P0,P , PMacro, and PPico are the power consumption at the minimum non-zero

output power and the total power consumption of the MeNBs andpico eNBs, respectively.

NTRX,M andNTRX,P represent the number of transceiver chains at the MeNBs and pico eNBs,

respectively. The corresponding slopes of the load-dependent power consumption are denoted as

∆M and∆P , in the same order as before. Note that (8) is true for0 < PTX,M ≤ Pmax,M and

0 < PTX,P ≤ Pmax,P , wherePmax,M andPmax,P are the maximum RF transmit power for MeNBs

and pico eNBs, respectively. IfPTX,M = 0 (or PTX,P = 0), thenPMacro = NTRX,MPsleep,M (or
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Table I
BASE STATION POWER CONSUMPTIONMODEL PARAMETER VALUES [16]

Base Station P0 Psleep Pmax ∆

Type (W) (W) (W)

MeNB 130 75.0 20 4.7
Pico eNB 56 39.0 6.3 2.6

PPico = NTRX,PPsleep,P ), wherePsleep,M andPsleep,P are the power consumption of the sleep

modes of MeNBs and pico eNBs, respectively. Table I presentsthe corresponding parameter

values of the linearized power consumption model for various base station types.

III. ENERGY-EFFICIENT RESOURCEALLOCATION PROBLEM

In this section, we formulate a non-cooperative resource allocation problem in OFDM systems

employing the FFR method. Our objective is to maximize the energy efficiency per sector by

determining the optimal resource block allocation and the optimal power level assignment on

each subband. In the sequel, we define the energy efficiency per sector, formulate the problem,

and present its complexity analysis. Then, we proceed to propose our algorithm, along with its

complexity analysis, optimality conditions, and convergence analysis.

Let Rk(γk) denote the throughput of userk that depends on its SINRγk. Also, letKC
M,i, K

X
M,i,

KC
P,i, andKX

P,i denote the set of MUEs in sectori connected to the MeNB in the cell-center

and cell-edge regions, and the set of PUEs connected to the pico eNBs in the cell-center and

cell-edge regions of this sector, respectively. Note that the subscripti denotes the sector indices.

Then, the energy efficiency per sectori is given by

ηEE,i =

∑
k∈KC

M,i
∪KX

M,i

Rk(γk) +
∑

k∈KC
P,i

∪KX
P,i

Rk(γk)

ψi
(9)

where the total power consumed per sectori is denoted byψi which can be expressed as

ψi = NTRX,M,i (P0,M +∆MPTX,M) +NpicosNTRX,P,i (P0,P +∆PPTX,P ) (10)

whereNpicos is the number of picocells in sector. The energy efficiency isgiven in units of
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bits/Joule.

The energy-efficient resource allocation problem can be formulated as

max
F,PM ,PP

ηEE,i (11)

whereF denotes the resource block allocation vector, andPM andPP are the MeNB and pico

eNB power assignment vectors. The solution requires a jointsearch over the frequency and power

domains. It is shown in [12] that the optimal solution is the multilevel water-filling solution.

However, finding the optimal resource block assignments among K users andNRB resource

blocks requiresKNRB searches [12]. Therefore, this approach is impractical forreal applications

and it can lead to large latencies in practice as there are more users in the system. In the next

subsection, we present our proposed algorithm that dividesthe resource allocation problem into

two stages decoupling the frequency and power allocation problems.

A. Proposed Solution

Obtaining the instantaneous interference conditions of the complete network is often imprac-

tical for real applications due to excessive traffic overhead it would require. Therefore, recent

studies have focused on non-cooperative or clustered base station resource allocation algorithms

in multicell systems, see, e.g., [9], [10], and Chapter 11 of[2]. In this paper, we investigate a

non-cooperative solution in which each MeNB sector maximizes its own energy efficiency. We

assume that there is a fast and reliable information exchange between the MeNB and the pico

eNBs in the same sector such that the channel conditions of the PUEs are known at the MeNB.

In LTE and LTE-Advanced, this is exchanged over the X2 interface [2].

The proposed algorithm starts with determining the cell-center region boundaries. We propose

two different algorithms which are described below. Then, we decouple the frequency and power

allocation problems into two stages. First, we solve the frequency assignment problem. Once

these are obtained, we assign the power levels that maximizethe energy efficiency at each sector.

1) Setting The Cell-Center Region Boundaries:The cell-center region radius per sector,rth,

is an important design parameter that affects the system performance in OFDMA systems

employing the FFR method. It determines the set of MUEs and PUEs in the cell-center and
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cell-edge regions. Once these regions are defined, the picocells that are located in each region

can be identified as well. Considering the spatial and temporal variations of the user distribution

in each cell, this parameter needs to be dynamically adjusted per sector. For this purpose, we

study two algorithms. The first algorithm maximizes the sector throughput, whereas the second

one increases the fairness.

In the first algorithm, the MUE with the lowest path loss, thatis the closest MUE to the

MeNB, is selected to be in the cell-center region, while the rest of the MUEs are assigned to

the cell-edge region subbands. The SINR of this user is expected to be greater than the other

MUEs because it has the lowest path loss and it is farthest away from the neighboring MeNBs.

Consequently, the cell-center region subbands are allocated to only one MUE maximizing its

throughput. In general, this algorithm achieves the maximum throughput at the cost of system

fairness. We refer to this algorithm as AdaptiveRth Algorithm 1.

In the second algorithm, the cell-center region boundary isdetermined such that the ratio of

cell-center and cell-edge MUEs is proportional to the ratioof the subbands allocated in these

regions. First, the MUEs are sorted in ascending order basedon their path losses. LetNC
M

andNX
M denote the number of subcarriers that the MeNB uses in the cell-center and cell-edge

regions. ForK MUEs in sectori, we round(NC
M/(N

C
M +NX

M) ·K) to the nearest integer, and

⌊0.5+NC
M/(N

C
M +NX

M) ·K⌋ users are considered in the cell-center region. The rest of the users

are assigned to the cell-edge subbands. This achieves higher fairness, but this comes at the cost

of a decrease in the sector throughput. We refer to this algorithm as AdaptiveRth Algorithm 2.

Note that a similar method is proposed in [19] to determine the cell-center boundaries.

2) Frequency Assignment Problem:In order to solve the frequency assignment problem we

study two schedulers. First, we study the SRM scheduler discussed in [13]. In this scheduler,

the resource blocks are assigned to users such that the throughput is maximized. This scheduler

is investigated to maximize the throughput, although this comes at the cost of a decrease in the

system fairness. The second scheduler we study is the EBW scheduler. ConsiderK users sharing

NRB resource blocks. Then,Kh = mod (NRB, K) users get⌊NRB/K⌋ + 1 resource blocks,

whereasKi = K −Kh users are given⌊NRB/K⌋ resource blocks. This scheduler is discussed
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in [14] to calibrate system level simulations.

3) Power Assignment Problem:Second stage of the proposed algorithm solves the power

assignment problem by assigning the optimal power levels tothe subbands. The proposed

algorithm uses the gradient ascent method to solve this problem. First we observe that by

controlling the transmissions for the MUEs in the cell-center region, we also determine how much

interference is created for the PUEs in the cell-edge region. Similarly, the downlink transmissions

for the MUEs in the cell-edge region determines the interference for the PUEs in the cell-center

region. In order to capture these two effects, we introduce two variables into the optimization

problem asβ andε, as discussed earlier in Section II.

Consider the following functionηi(ε, β) that only includes the throughput of users in sectori

that are affected by the optimization variablesε andβ. Those users are the MUEs in both regions

and the PUEs in the cell-edge region. While calculatingηi(ε, β) only the interference created

within each sector is considered. The energy efficiency function in sectori can be modified as

ηi(ε, β) =

∑
k∈KC

M,i

Rk(γk) +
∑

k∈KX
M,i

Rk(γk) +
∑

k∈KX
P,i

Rk(γk)

ψi
(12)

whereRk(γk) denotes the user capacity of the corresponding region and tier associations. The

power consumed in sectori is denoted byψi. We modify (10) to account for the power control

parameterβ such thatψi can be expressed as

ψi = NTRX,M,i (P0,M +∆MβPmax,M) +NpicosNTRX,P,i (P0,P +∆PPmax,P ) . (13)

Hence,β can be used to introduce energy savings in the total RF transmit power.

The energy efficiency per sector definition in (12) can be expanded as

ηi(ε, β) =∆f

∑
k∈KC

M,i

∑
n∈NC

Mk

log2

(
1 +

βPmax,M g
(n)
k,m

(NC
M

+εNX
M

)I
(n)
k

)
+

∑
k∈KX

M,i

∑
n∈NX

Mk

log2

(
1 +

βεPmax,M g
(n)
k,m

(NC
M

+εNX
M

)N0∆f

)

ψi

+∆f

∑
k∈KX

P,i

∑
n∈NX

Pk
∩NC

M

log2


1 +

Pmax,P g
(n)
k,p
/NX

P

βPmax,M g
(n)
k,M

NC
M

+εNX
M

+N0∆f




ψi
(14)
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where I(n)k is the interference from the picocells using subbandA in cell-edge region plus

the thermal noise effective over a subcarrier at the PUE. Theexpressionn ∈ NX
Pk

∩ N C
M in

(14) denotes the subcarriers that the downlink transmissions of the cell-center MUEs creates

interference for the cell-edge PUEs, which are the subcarriers in subbandA for the FFR scheme

in Fig. 1. It needs to be emphasized that (14) considers only the intracell interference and not the

inter-cell interference. This enables fast implementation as it does not necessitate information

exchange between MeNBs and asynchronous implementation ateach MeNB sector. For that

reason, this type of formulation is robust against intercell backhaul transmission delays.

The optimization problem that maximizes the energy efficiency per sector can be written as

max
ε,β

ηi(ε, β)

s.t. ε ≥ 1

0 ≤ β ≤ 1.

(15)

The first constraint is to favor the MUEs in the cell-edge region such that they are transmitted

at leastε times the power allocated for the MUEs in the cell-center region. This parameter also

affects the interference incurred at the PUEs in the cell-edge region. The second constraint scales

the total RF transmit power of the MeNB and sets the boundary conditions. Hence, the variable

β not only determines the interference, but it also introduces energy savings to the system.

B. Optimality Conditions

The Lagrangian of the problem in (15) can be written as

L(ε, β,λ) = ηi(ε, β) + λ1(1− ε)− λ2β + λ3(β − 1) (16)

whereλ1, λ2, andλ3 are the Lagrange multipliers andλ = (λ1, λ2, λ3). Note that if (ε∗, β∗)

solves (15), thenηi (ε∗, β∗) ≥ ηi (ε, β) for all ǫ ≥ 1 and 0 ≤ β ≤ 1. Furthermore, there exists
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λ∗ ≥ 0 such that the following optimality conditions are satisfied

∂L(ε∗, β∗,λ∗)

∂ε
=
∂ηi(ε

∗, β∗)

∂ε
− λ∗1 = 0,

∂L(ε∗, β∗,λ∗)

∂β
=
∂ηi(ε

∗, β∗)

∂β
− λ∗2 + λ∗3 = 0,

(17)

and the complementary slackness conditions are

(1− ε∗)λ∗1 = 0, β∗λ∗2 = 0, (β∗ − 1)λ∗3 = 0, and λ∗1, λ
∗
2, λ

∗
3 ≤ 0. (18)

The equations in (17)-(18) are commonly known as the Karush-Kuhn-Tucker (KKT) conditions

[20]. It needs to be emphasized that the power control parametersε andβ depend on the number

of resource blocks allocated to the cell-center and cell-edge regions, the channel conditions, the

maximum transmit powers, and the bandwidth of each subcarrier.

C. Gradient Ascent Method

The gradient ascent method starts at an initial(ε, β) value evaluated at timet and the

parametersε andβ are updated

εt+1 = εt + µt∇ε ηi(εt, βt) andβt+1 = βt + µt∇β ηi(εt, βt) (19)

whereεt+1 andβt+1 are the updated values at timet+1, respectively.∇ε ηi(ε, β) = ∂ηi(ε, β)/∂ε

and ∇β ηi(ε, β) = ∂ηi(ε, β)/∂β are the partial derivatives ofηi with respect toε and β,

respectively, evaluated at timet. These partial derivatives are multiplied by a sufficientlysmall

and positive step sizeµt. The step size at each iteration is chosen according to the Armijo rule

[21]. In this rule, the step size is chosen asµt = µm0 s, wheres is a constant andm is the first

non-negative integer that satisfies the following inequality

ηi(εt+1, βt+1)− ηi(εt, βt) ≥ ρµt∇ηi(εt, βt)
Tdt (20)

whereρ is a fixed constant anddt is a feasible direction. The gradient is shown by∇ηi(ε, β) =

[∇εηi(ε, β) ∇β ηi(ε, β)]
T , where[·]T denotes the transpose operator. Starting fromm = 0, it is

successively increased until (20) is satisfied. Note that the gradient ascent method without the
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Armijo rule can fail to converge to a stationary point as illustrated in [21, p. 26], but when the

step size is determined with the Armijo rule, it is guaranteed that the energy efficiency per sector

increases per iteration until the algorithm converges. This enables selecting the increment that

sufficiently improves the current objective value. Typicalvalues of these constants are such that

ρ ∈ [10−5, 10−1] andµ0 is usually between1/2 and 1/10 [21]. The directional vectordt is an

ascent direction if it satisfies

∇ηi(εt, βt)
Tdt > 0 if ∇ηi(εt, βt) 6= 0,

∇ηi(εt, βt)
Tdt = 0 if ∇ηi(εt, βt) = 0.

(21)

In this paper, we consider the steepest descent method, thatis dt = ∇ηi(εt, βt)
T . The expressions

of the partial derivatives∇ε ηi(ε, β) and∇β ηi(ε, β) can be found in the Appendix.

D. Convergence Analysis

In what follows, we investigate the convergence of the proposed algorithm. To this end, we first

show the quasiconcavity of the objective functionηi with respect to the optimization variables

ε andβ. Then, we study the optimality of the solutions obtained by the gradient ascent method.

Definition 1. A functionf is called quasiconcave if its domain, denoted bydom f , is convex

and for anyx, y ∈ dom f ,

f(φx+ (1− φ)y) ≥ min{f(x), f(y)} (22)

where0 ≤ φ ≤ 1 [20]. Similarly, a functionf is called strictly quasiconcave if it satisfies (22)

with strict inequality forx 6= y and 0 < φ < 1 [20].

Proposition 1. (First-Order Characterization) Letf(x) be a continuously differentiable function

on an open and convex setD ⊂ R
n. Then,f is quasiconcave if and only if

f(y) ≥ f(x) =⇒ ∇f(x)T (y − x) ≥ 0, (23)

for all x, y ∈ D [20].
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Proposition 2. (Second-Order Characterization) Letf(x) be a twice differentiable function and

its dimensions be denoted byn. If f(x) is quasiconcave, then for allx ∈ dom f

yT∇2f(x)y ≤ 0 (24)

for all y ∈ R
n satisfyingyT∇f(x) = 0 [22].

We now present a lemma and a simple proof.

Lemma 1. Let D be a nonempty convex set andf be a strictly quasiconcave function. Then,

any local maximum is a global solution of the problemP = sup{f(x)|x ∈ D} [22].

Proof: Assume that̂x ∈ D is a local maximum. This means that there exists a real positive

number τ such thatf(x) ≤ f(x̂) holds for anyx ∈ D with ||x − x̂|| ≤ τ . Let us prove

by contradiction. Assume that̂x is not global maximum. Then, there existsy ∈ D such that

f(y) > f(x̂) holds. Let 0 ≤ φ ≤ 1 and definexφ = φy + (1 − φ)x̂. The convexity ofD

implies thatxφ ∈ D for all φ ∈ [0, 1]. If φ is small enough, we have||xφ − x|| ≤ τ . Using the

quasiconcavity property off , we have

f(xφ) = f(φy + (1− φ)x̂) > min{f(x̂), f(y)} = f(x̂) (25)

which holds for a small enough and positiveφ. However, this contradicts the assumption thatx̂

is a local maximum.

In cases where the concavity (or similarly convexity) of theproblem cannot be assumed, the

results of Lemma 1 are important to determine global extremepoints. In fact, these are directly

applicable to problems in several research fields such as those in economics. We refer the reader

to Appendix C.6 of [22] for an example problem in economics, the standard consumer demand

problem in a deterministic framework. It needs to be emphasized that care needs to be taken in

applying Lemma 1. The local extreme point of a quasiconcave (or quasiconvex) problem should

not be confused with the stationary points as for determining the global extreme point. Next,

using the definitions and lemmas above, we present Lemma 2, whose proof is provided in the

Appendix due to its length.
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Lemma 2. The energy efficiency per sector expressionηi in (12) is strictly quasiconcave inε

and β.

Theorem 1. The proposed update rules forε and β in (19) converge to the global optimal

solution of the problem (15) ast→ ∞ for a sufficiently small step sizeµt.

Proof: It follows from Lemma 1 that if there exists a local solution to the maximization

problem, then there is a global maximum. It is straightforward to show that the solutions obtained

by the gradient ascent method with sufficiently small step sizes converge to the globally maximum

solution.

IV. NUMERICAL RESULTS

In this section, the performance of the proposed algorithm is evaluated. We quantify the

individual contributions of power control, frequency scheduling, cell-center region radius, and

spectrum allocation. We compare the performance of the proposed algorithm to the orthogonal

and cochannel spectrum allocation methods, and demonstrate the achievable gains. In addition,

we investigate three algorithms for determining the cell-center region boundaries. We investigate

the AdaptiveRth Algorithms1 and2, described in Section III-A. Also, we consider the case with

the fixed FFR boundaries, in which the cell radius that maximizes the average energy efficiency

is chosen through enumeration methods. Note that this analysis is presented in Figs. 5 and 6.

Based on this analysis, we find that when the cell-center region radius is taken as 0.3 times the

cell radius, it maximizes the average energy efficiency. In terms of spectrum allocation, MeNBs

and pico eNBs transmit over all subcarriers in the cochannelallocation, whereas the spectrum

is divided into 32 and 18 non-overlapping resource blocks for the MeNBs and pico eNBs,

respectively, in the orthogonal channel allocation. For the FFR method, there are32 resource

blocks in the subbandA and 6 resource blocks are allocated to subbandsB, C, andD, i.e.,

NC
M = 32, NX

M = 6, NC
P = 12, andNX

P = 44 [6]. The same spectrum allocation is employed for

the no power control FFR algorithm case. In the cochannel andorthogonal frequency allocation

methods, base stations transmit at full power and no power control algorithm has been applied.

In order to demonstrate the FFR gain over FR methods, we studytwo different frequency
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Table II
SIMULATION PARAMETERS

Parameter Setting

Channel bandwidth 10 MHz
Total number of data RBs 50 RBs
Freq. selective channel model (CM) Extended Typical Urban CM
UE to macro BS PL model 128.1 + 37.6 log10(d)
UE to pico BS PL model 140.7 + 36.7 log10(d)
Effective thermal noise power,N0 −174 dBm/Hz
UE noise figures 9 dB
Macro and Picocell BS antenna gain14 dBi and5 dBi
UE antenna gain 0 dBi
Antenna horizontal pattern,A(θ) −min(12(θ/θ3dB)

2, Am)
Am andθ3dB 20 dB and70◦

Penetration loss 20 dB
Macro- and picocell shadowing 8 dB and10 dB
Inter-site distance 500 m
Minimum macro- to user distance 50 m
Minimum pico- to user distance 10 m
Minimum pico- to macro- distance 75 m
Minimum pico- to pico- distance 40 m
Traffic model Full buffer

reuse (FR) spectrum allocation schemes in the HetNet architecture. In both FR methods, the

system bandwidth is divided into three subbands, subbandsA, B, and C. In the first FR

method, abbreviated as FR1 in Fig. 3 and Fig. 4, each macrocell sector uses one of the three

subbands, while the rest two subbands are allocated to the picocell tier. In the second FR method,

abbreviated by FR2, only one subband is assigned to the macrocell and picocell tiers. Note that

the FR1 method aims to maximize throughput, whereas the FR2 method is designed to reduce

interference, especially at the cell-edge region.

The simulation layout is shown in Fig. 1. It assumes a HetNet deployment with19 hexagonal

cells in which MeNBs are employed with 3-sector antennas. Ineach sector, there is a single

antenna, i.e.,NTRX,M,i = 1, ∀i. For the pico eNBs, omnidirectional antennas are employed,i.e.,

NTRX,P,i = 1, ∀i. There are 4 randomly placed pico eNBs in each sector. In order to observe

the clustering effects and potential energy savings, we consider nonuniform user distribution and

generate 20 users per sector. First, we place one user per pico eNB within a40 meter radius,

while the rest of the users are randomly generated within thesector area. The users are associated

to the base stations with the highest reference signal received power (RSRP) method [23]. While
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Figure 2. Illustration of the energy efficiency region of a sector and the proposed algorithm solutions per iteration using the
gradient ascent method.

generating the pico eNBs and users, several minimum distance constraints are considered and

these are presented in Table II, along with the other parameters and simulation models used in

our numerical results. These parameters and channel modelsare in accordance with [14] for

the baseline simulation of HetNets. Furthermore, we consider ρ = 10−2 andµ0 = 1/10 in the

gradient ascent power control algorithm.

Fig. 2 illustrates the energy efficiency of a sector for different(ε, β) pairs. The improvement of

the proposed algorithm at each iteration is denoted by the red circles. Armijo rule is implemented

to select the step sizes. As studied in Section III-A, this rule guarantees that energy efficiency

increases at every iteration until it converges. Fig. 2 shows that the energy efficiency of the

network is mostly affected byβ. On the other hand, the effects ofε on energy efficiency is

minor for the sameβ. This is expected sinceβ determines the macrocell transmit power level

which directly affects the total consumed power in the network, whereasε does not change the

total consumed power, but its effects are mostly observed onthe total throughput.

In Figs. 3(a)-(b) and Figs. 4(a)-(b), we investigate the individual contributions of the methods to

determine the cell-center boundaries, frequency scheduling, and power control gains for different

schedulers. In Figs. 3(a)-(b) the EBW scheduler is studied and Figs. 4(a)-(b) depict the results
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Figure 3. Average energy efficiency per sector (a) and average sector throughput (b) are depicted per iteration for the EBW
scheduler.

for the SRM scheduler. The average energy efficiency of 57 sectors is plotted in Fig. 3(a) and

Fig. 4(a), and the average sum throughput of sectors is depicted in Fig. 3(b) and Fig. 4(b). The

proposed algorithm starts at full transmit power at the MeNBand iteratively updatesε and β

along the derivative using the update rule in (19). The initial values are chosen as(ε0, β0) = (2, 1).

It can be observed that both the energy efficiency and throughput increase monotonically at each

iteration.
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Figure 4. Average energy efficiency per sector (a) and average sector throughput (b) are depicted per iteration for the SRM
scheduler.

Let us first identify the power control gain. In Fig. 3(a), when we compare the power control

and no power control cases of the FFR specrum allocation withEBW scheduler, it can be

observed that the energy efficiency of the FFR spectrum allocation increases2.38 times with

the power control. In addition, we observe from Fig. 3(b) that power control brings a37%

throughput increase. Similar gains are observed with the SRM scheduler in Figs. 4(a)-(b) such

that the energy efficiency gain is2.29 times and the throughput gain is40%. These gains are due
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to adjusting the downlink transmit power and reducing both the intra- and inter-cell interference

in the network. Notice that in Figs. 3(a)-(b) and Figs. 4(a)-(b) both the power control and no

power control curves start almost at the same points and at each iteration we observe the power

control curves monotonically increase their values indicating the power control gain.

Second, we analyze the effects of frequency scheduling on the energy efficiency. Comparing

Fig. 3(a) and Fig. 4(a), we observe that the energy efficiencyof the FFR scheme with the SRM

scheduler is10% better than that of the EBW scheduler. The throughput gain difference between

these two schedulers is similar. This shows that the energy efficiency gain is mostly related to

the throughput gain of the scheduler and the scheduler type has a relatively small effect on the

power consumption.

Third, we analyze the performance of different spectrum allocation schemes in two-tiers. We

observe that the FFR scheme outperforms the cochannel allocation by24% and the orthogonal

channel allocation by47% in terms of energy efficiency. Similar gains are observed in the

throughput performance as well. For the SRM scheduler, the cochannel allocation method has

20% better performance in both metrics compared to the orthogonal and FFR methods. This

result, in fact, highlights the importance of the schedulerin use for different spectrum allocations.

Fourth, we compare the FR scheme to the FFR spectrum allocation in the HetNet architecture.

We employ the proposed power control method and the SRM scheduler in both cases. As

previously mentioned, two types of FR schemes in two-tier network are investigated. From

Figs. 4(a)-(b), we observe that the energy efficiency of FR1 and FR2 are269 and403 kbits/Joule,

respectively, whereas it is510 kbits/Joule for the FFR allocation with adaptive cell-center regions.

The average sector throughput of FR1, FR2, and FFR spectrum allocations are75, 112.1 and

140.2 Mbits/sec, respectively. These results show that the FFR spectrum allocation provides

27−90% more energy efficient transmissions and25−87% more throughput per sector compared

to the FR spectrum allocation. These results also show that FFR is an effective spectrum

allocation method that effectively utilizes the availablespectrum by reducing the interference and

increasing the achievable throughput. Similar conclusions can be drawn based on Figs. 3(a)-(b).

Fifth, we study the effects of the cell-center region boundaries. The proposed AdaptiveRth
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Figure 5. Average energy efficiency per sector versus the ratio of the cell-center region radius to cell radius.

Algorithm 1 has similar energy efficiency and throughput performance compared to the fixed

radius FFR method withrth = 0.3R in both schedulers. However its performance is significantly

higher compared to other constant radii values as depicted in Fig. 5 and Fig. 6.

Finally, we compare a single-tier macrocell only deployment to a HetNet architecture when the

proposed power control method is applied along with the FFR scheme and the SRM scheduler.

From Figs. 4(a)-(b), we observe that the energy efficiency ofthe single-layer network is271

bits/Joule and it increases to550 bits/Joule when picocells are deployed, indicating a 2x gain.

Moreover, the spectral efficiency increases from39 to 140 Mbits/sec from a single-layer to two-

tier HetNet deployment, respectively. These results demonstrate the substantial gains that can

be achieved with the picocell deployment. Again, similar conclusions can be drawn based on

Figs. 3(a)-(b).

Fig. 5 shows the average energy efficiency per sector for different constant cell-center radii for

the EBW scheduler. In this figure, the performance of the proposed adaptiveRth algorithms is

also presented. First, we observe that the performance of the FFR system strictly depends on the

cell-center region boundaries. For example, when the fixed radius FFR methods are considered

and different radii values are enumerated, the system energy efficiency varies between69 and456



24

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

40

60

80

100

120

140

Adaptive R
th

 Algorithm 1

Adaptive R
th

 Algorithm 2

Ratio of Cell−Center Radius and Cell Radius

A
ve

ra
ge

 S
ec

to
r 

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
) Adaptive R

th
 Algorithm 1

Adaptive R
th

 Algorithm 2

Figure 6. Average sector throughput versus the ratio of the cell-center region radius to cell radius.

kbits/Joule. Our simulation results show that the proposedAdaptiveRth Algorithm 1 outperforms

all FFR methods with constant radii in both metrics. On the other hand, AdaptiveRth Algorithm 2

performs significantly worse as it prioritizes fairness rather than throughput. Note that there is

a 5x gain between the two algorithms in terms of energy efficiency which illustrates the energy

efficiency and fairness trade-off.

Fig. 6 compares the average sector throughput per sector of the fixed fractional cell-center radii

to the adaptiveRth algorithms for the EBW scheduler. Similar to the energy efficiency, throughput

performance strictly depends on the cell-center region boundaries such that the average sector

throughput varies between21 and 126 Mbps for different constant cell-center radii values. An

important result is that the cell-center radius that maximizes the throughput is the same as that

maximizes the energy efficiency. Note that these two points are not necessarily the same. For

example, with another power consumption model, these two radii can take different values.

V. CONCLUSION

Energy consumption of a wireless network is a serious concern for the next generation cellular

networks such as LTE systems. To address this problem, we have proposed an energy-efficient

resource allocation algorithm for OFDMA HetNet systems with the FFR scheme. The proposed



25

algorithm decouples the frequency and power allocation problems and successively solves each

of them. It employs the gradient ascent method to solve the power allocation problem. The

optimality conditions and the convergence of the proposed algorithm are also studied. Based

on the simulation results, we show that the proposed algorithm significantly improves both the

throughput and energy efficiency of the system. We also quantify the individual contributions

of the effects of cell-center region, power control, and frequency scheduling gains in order to

provide design guidelines. It is demonstrated that the proposed power control algorithm provides

the most significant gains, while moderate gains can be achieved by different schedulers and

adaptive cell-center region algorithms. Finally, we show that significant energy savings are also

possible with the proposed algorithm which reduces the operational expenditures for the network

operators and the Carbon footprint for the environment.

APPENDIX

In what follows, we prove thatηi(ε, β) is quasiconcave inε andβ. It follows from Proposition 2

that ηi(ε, β) is a quasiconcave function if and only if the following holds

yT∇ηi(ε, β) = 0 andyT ∇2ηi(ε, β) y ≤ 0 (26)

wherey = [y1 y2]
T . First, we introduce new definitions for the proof, and then express the first

and second order derivatives. LetRi(ε, β) denote the aggregate throughput of sectori which is

given by

Ri(ε, β) =
∑

k∈KC
M

∑

n∈NC
Mk

R
(n)
1 (ε, β) +

∑

k∈KX
M

∑

n∈NX
Mk

R
(n)
2 (ε, β) +

∑

k∈KX
P

∑

n∈NX
Pk

∩NC
M

R
(n)
3 (ε, β) (27)

where

R
(k,n)
1 (ε, β) = log

(
1 +

βa

b+ εc

)
, R

(k,n)
2 (ε, β) = log

(
1 +

εβd

b+ εc

)

R
(k,n)
3 (ε, β) = log

(
1 +

f
βg
b+εc

+ h

) (28)
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wherea = Pmax,Mg
(n)
k,m/I

(n)
k , b = NC

M , c = NX
M , d = Pmax,Mg

(n)
k,m/(N0∆f), f = Pmax,P/N

X
P g

(n)
l,p ,

g = Pmax,Mg
(n)
k,m, andh = N0∆f . Due to space considerations, we denoteRi (ε, β), R

(k,n)
1 (ε, β),

R
(k,n)
2 (ε, β), andR(k,n)

2 (ε, β) by Ri, R
(k,n)
1 , R

(k,n)
3 , andR(k,n)

3 , respectively. Using these defini-

tions, the first derivative ofRi with respect toε can be expressed as

∂Ri

∂ε
=
∑

k∈KC
M

∑

n∈NC
Mk
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1

∂ε
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M
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3
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where

∂R
(k,n)
1

∂ε
= −

acβ

(b+ cε) (aβ + b+ cε)
,

∂R
(k,n)
2

∂ε
=

bdβ

(b+ cε) (b+ ε (c+ dβ))

∂R
(k,n)
3

∂ε
=

cfgβ

(h (b+ cε) + gβ) ((f + h) (b+ cε) + gβ)
.

(30)

The second derivative ofRi with respect toε is given by

∂2Ri

∂ε2
=
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where
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c2fgβ (2h (f + h) (b+ cε) + gβ (f + 2h))

(h (b+ cε) + gβ)2 ((f + h) (b+ cε) + gβ)2
.

(32)

Similarly, the first derivative ofRi with respect toβ is

∂Ri

∂β
=
∑

k∈KC
M

∑

n∈NC
Mk

∂R
(k,n)
1

∂β
+
∑

k∈KX
M

∑

n∈NX
Mk

∂R
(k,n)
2

∂β
+
∑

k∈KX
P

∑

n∈NX
Pk

∩NC
M

∂R
(k,n)
3

∂β (33)

where
∂R

(k,n)
1

∂β
=

a

aβ + b+ cε
,

∂R
(k,n)
2

∂β
=

dε

b+ ε (c+ dβ)

∂R
(k,n)
3

∂β
= −

fg (b+ cε)

(h (b+ cε) + gβ) ((f + h) (b+ cε) + gβ)
.

(34)
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The second derivative ofRi with respect toβ is given by

∂2Ri

∂β2
=
∑

k∈KC
M

∑

n∈NC
Mk

∂2R
(k,n)
1

∂β2
+
∑

k∈KX
M

∑

n∈NX
Mk

∂2R
(k,n)
2

∂β2
+
∑

k∈KX
P

∑

n∈NX
Pk

∩NC
M

∂2R
(k,n)
3

∂β2 (35)

where

∂2R
(k,n)
1

∂β2
= −

a2

(aβ + b+ cε)2
,

∂2R
(k,n)
2

∂β2
= −

d2ε2

(b+ ε (c+ dβ))2

∂2R
(k,n)
3

∂β2
=

fg2 (b+ cε) ((f + 2h) (b+ cε) + 2gβ)

(h (b+ cε) + gβ)2 ((f + h) (b+ cε) + gβ)2
. (36)

The derivative ofRi with respect toε andβ is

∂2Ri

∂ε∂β
=
∑

k∈KC
M

∑

n∈NC
Mk

∂2R
(k,n)
1

∂ε∂β
+
∑

k∈KX
M

∑

n∈NX
Mk

∂2R
(k,n)
2

∂ε∂β
+
∑

k∈KX
P

∑

n∈NX
Pk

∩NC
M

∂2R
(k,n)
3

∂ε∂β (37)

where

∂2R
(k,n)
1

∂ε∂β
= −

ac

(aβ + b+ cε)2
,

∂2R
(k,n)
2

∂ε∂β
=

bd

(b+ ε (c + dβ))2

∂2R
(k,n)
3

∂ε∂β
=

cfg
(
(f + h)h (b+ cε)2 − g2β2

)

(h (b+ cε) + gβ)2 ((f + h) (b+ cε) + gβ)2
.

(38)

The gradient ofη (ε, β) can be expressed as

∇η (ε, β) =




∂η (ε, β)

∂ε
∂η (ε, β)

∂β


 =




∂Ri

∂ε

1

ψ
∂Ri

∂β

1

ψ
−
Ri

ψ2

∂ψ

∂β


 (39)

where

∂Ri

∂ε
=
∂R1

∂ε
+
∂R2

∂ε
+
∂R3

∂ε
and

∂Ri

∂β
=
∂R1

∂β
+
∂R2

∂β
+
∂R3

∂β
. (40)

Consider thatyT∇ηi = 0 is satisfied and use (39) to rearrange terms, we have

∂Ri

∂ε
y1 +

∂Ri

∂β
y2 =

∂ψ

∂β

1

ψ
Riy2. (41)
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The Hessian ofηi is given by

∇2η(ε, β) =
1

ψ




∂2Ri

∂ε2
∂2Ri

∂ε∂β
−
∂Ri

∂ε

∂ψ

∂β

1

ψ
∂2Ri

∂ε∂β
−
∂Ri

∂ε

∂ψ

∂β

1

ψ
Φ


 (42)

where

Φ =
∂2Ri

∂β2
−

2

ψ

∂Ri

∂β

∂ψ

∂β
−
Ri

ψ

(
∂2ψ

∂β2

)2

+ 2
Ri

ψ2

(
∂ψ

∂β

)2

. (43)

For the power consumption model in (13),∂2ψ
∂β2 = 0. When we expand the terms, we get

yT∇2ηi(ε, β)y =
∂2Ri

∂ε2
y21 + 2

(
∂2Ri

∂ε∂β
−
∂Ri

∂ε

∂ψ

∂β

1

ψ

)
y1y2 + Φy22. (44)

Substituting (41) in (44) and rearranging terms, we have

yT ∇2ηi y =
1

ψ

(
∂2Ri

∂ε2
y21 + 2

∂2Ri

∂ε∂β
y1y2 +

∂2Ri

∂β2
y22

)
=

1

ψ
yT ∇2Ri y. (45)

where∇2Ri denotes the Hessian ofRi. This means thatηi is quasiconcave if and only ifRi is

quasiconcave. Next, we analyze the quasiconcavity ofRi. Using in (32), (36), and (38) in (45)

to obtainyT∇2Riy ≤ 0, we need to show that

∑

k∈KC
M

∑

n∈NC
Mk

(
∂2R

(n)
1

∂ε2
y21 + 2

∂2R
(n)
1

∂ε∂β
y1y2 +

∂2R
(n)
1

∂β2
y22

)

+
∑

k∈KX
M

∑

n∈NX
Mk

(
∂2R

(n)
2

∂ε2
y21 + 2

∂2R
(n)
2

∂ε∂β
y1y2 +

∂2R
(n)
2

∂β2
y22

)

+
∑

k∈KX
P

∑

n∈NX
Pk

∩NC
M

(
∂2R

(n)
3

∂ε2
y21 + 2

∂2R
(n)
3

∂ε∂β
y1y2 +

∂2R
(n)
3

∂β2
y22

)
≤ 0.

(46)

Notice that the summations in (46) are grouped into subcarriers based on their locations within

the cell. The contributions of the cell-center and cell-edge MUEs are captured in the first two

summations in (46), while the third is of the cell-edge PUEs.For the proof, it is necessary to

show that the sum of these summations is non-positive.

First, we identify the condition for the first summation in (46), that is the terms for the
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cell-center MUEs, as

βac2 (aβ + 2 (b+ cε))

(b+ cε)2
y21 − 2acy1y2 − a2y22 ≤ 0. (47)

Adding and subtracting the term(cky1)2 from (47) and rearranging terms, we get

(βac+ c (b+ cε))2 y21 ≤ (c (b+ cε) y1 + a (b+ cε) y2)
2 . (48)

Notice that this is the condition that relates to the cell-center MUEs.

Next, we investigate the condition for the second summationin (46) to hold, that is

−
bdβ ((b+ cε) (2c+ dβ) + cdεβ)

(b+ cε)2
y21 + 2bdy1y2 − d2ε2y22 ≤ 0 (49)

When we rearrange terms, we have the necessary condition forthe cell-edge MUEs which is

given by

2bd (b+ cε)2 y1y2 ≤ bdβ ((b+ cε) (2c+ dβ) + cdεβ) y21 + d2ε2 (b+ cε)2 y22. (50)

Finally, we see that the condition for the cell-edge PUEs is

− c2fgβ (2h (f + h) (b+ cε) + gβ (f + 2h)) y21 + 2cfg
(
(f + h)h (b+ cε)2 − g2β2

)
y1y2

+ fg2 (b+ cε) ((f + 2h) (b+ cε) + 2gβ) y22 ≤ 0. (51)

In our extensive simulations, we have observed that (47)-(51) are always satisfied. This makes us

conjecture thatRi andηi are negative semi-definite, as we have observed numerically. Therefore,

we conclude that the functionηi should be quasiconcave inε andβ.
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