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ABSTRACT OF THE DISSERTATION

Combinatorics in the Rational Shuffle Theorem and the Delta Conjecture

by

Dun Qiu

Doctor of Philosophy in Mathematics

University of California San Diego, 2019

Professor Brendon Rhoades, Chair

The Classical Shuffle Conjecture proposed by Haglund, Haiman, Loehr, Remmel and

Ulyanov gives a well-studied combinatorial expression for the bigraded Frobenius characteristic

of Sn-module of the ring of diagonal harmonics, which has been proved by Carlsson and Mellit

as the Shuffle Theorem, stating that a symmetric function expression ∇en equals a generating

function of combinatorial objects called parking functions. The Rational Shuffle Theorem of

the expression Qm,n(−1)n of Mellit and the Delta Conjecture of the expression ∆′ek
en proposed

by Haglund, Remmel and Wilson are two natural generalizations of the Shuffle Theorem. The

primary goal of this dissertation is to prove some special cases of the conjectures, and compute

the Schur function expansions of the corresponding symmetric function expressions. We explore

xii



several symmetries in the combinatorics of the coefficients that arise in the Schur function

expansion of Qm,n(−1)n in the Rational Shuffle Theorem. Especially, we study the hook-shaped

Schur function coefficients, and the Schur function expansion of Qm,n(−1)n in the case where m

or n equals 3. We give a combinatorial proof that the coefficient of sλ in the Delta expression

∆e2en has a non-negative expansion in terms of q, t-analogues. We propose a new valley version

conjecture of the expression ∆′ek
∆hren, and we give a proof of the valley version conjecture of

∆′ek
∆hren when t or q equals 0. Our work lead to many new results about the combinatorial objects

in the conjectures, such as the Mahonian distribution in extended ordered multiset partitions and

the straightening action in parking functions.
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Chapter 1

Introduction

The field of algebraic combinatorics is interested in analyzing algebraic structures using

combinatorial methods, such as bijections and generating functions. Many algebraic combinatorial

problems are related to symmetric functions or Macdonald polynomials. The Shuffle Theorem

of Carlsson and Mellit [CM18] is such an algebraic combinatorial problem which gives a well-

studied combinatorial expression for the bigraded Frobenius characteristic of the ring of diagonal

harmonics. The Rational Shuffle Theorem of Mellit [Mel16] and the Delta Conjecture are two

widely studied generalizations of the Shuffle Theorem.

In this chapter, we give an introduction of symmetric functions, Macdonald polynomi-

als and some combinatorial concepts related to the Rational Shuffle Theorem and the Delta

Conjecture.

1.1 Background about symmetric functions and Macdonald

polynomials

We shall define symmetric functions, Macdonald polynomials, and other combinatorial

terminologies related to symmetric functions in this section. Material related to this section can

1



be found in Chapter 7 of [Sta99] or in [Sag02].

1.1.1 Permutations, partitions, compositions and tableaux

For any integer n, a permutation σ = σ1 · · ·σn (in one-line notation) of size n is a rear-

rangement of the numbers 1, . . . ,n. The ith number in σ from left to right is denoted by σi. When

viewed as a function from the set [n] = {1, . . . ,n} to itself, σ sends i to σi, i.e. σ(i) = σi. Using

the function viewpoint, we can write a permutation in cycle notation that we use parenthesis to

denote the cycles of the map σ .

The symmetric group Sn is the set of permutations of size n. For example, σ = 3672451 ∈

S7 is a permutation of size 7, and the cycle notation for σ is σ = (1,3,7)(2,6,5,4).

Given any permutation σ = σ1 · · ·σn ∈ Sn, the descent number of σ is defined to be

des(σ) := |{i : σi > σi+1}|, and the major index of σ is maj(σ) := ∑σi>σi+1 i.

For any integer n, a weakly decreasing sequence of positive integers λ = (λ1, . . . ,λk) is a

partition (or an integer partition) of n if ∑
k
i=1 λi = n, written λ ` n. We let |λ |= n and `(λ ) = k

denote the size and length (number of parts) of the partition λ . We also write λ = nmn · · ·2m21m1

for the partition λ ` n with mi parts of size i. For example, λ = (4,2,1,1) ` 8 is a partition of the

integer 8 with `(λ ) = 4, and we also write λ = 4212.

The definition of compositions is similar to that of partitions. For an integer n, a weak

composition of n is defined to be a sequence of non-negative integers α = (α1, . . . ,αk) such that

∑
k
i=1 αi = n, written α � n; and a strong composition of n is defined to be a sequence of positive

integers α = (α1, . . . ,αk) such that ∑
k
i=1 αi = n, written α �strong n. We let |α| = n denote the

size of the composition α .

For any strong composition α = (α1, . . . ,αk) of n with k parts, we associate to it a subset

S(α) = {α1,α1 +α2, . . . ,α1 + · · ·+αk−1} of [n−1] with k−1 elements. This builds a bijective

relation between the set of strong compositions of n and the set of subsets of [n−1].

We still let `(α) denote the number of parts of α , and we let λ (α) be the partition

2



obtained by organizing the parts in α in a decreasing order and deleting all the 0’s. For example,

α = (2,1,0,1,3) ` 7 is a weak composition of 7 with `(α) = 5, and λ (α) = (3,2,1,1).

For each partition λ = (λ1, . . . ,λk) ` n, we can associate to the partition a Ferrers diagram

(or a Young diagram) in French notation, which is a diagram with n squares such that there are

λi squares in the ith row, counting from bottom to top. We let λ ′ be the conjugate of λ (i.e. the

Ferrers diagram of λ and λ ′ are symmetric about the main diagonal, turning the rows (columns)

of λ into the columns (rows) of λ ′). We say that λ is self-conjugate if λ = λ ′.

Figure 1.1 shows an example of the Ferrers diagram of a partition λ = (7,7,5,3,3) ` 25

in French notation, and λ ′ = (5,5,5,3,3,2,2). We shall also use λ to denote the Ferrers diagram

associated to λ .

For each cell c ∈ λ , we let the arm of c, aλ (c), be the number of cells to the left of c; the

coarm of c, a′
λ
(c), be the number of cells to the right of c; the leg of c, `λ (c), be the number of

cells on top of c; the coleg of c, `′
λ
(c), be the number of cells below c, as shown in Figure 1.1. We

usually let (a′
λ
(c), l′

λ
(c)) denote the coordinate of the cell c. We often abbreviate the notations to

a(c),a′(c), `(c), `′(c).

c

`λ (c)

`′
λ
(c)

aλ (c)a′
λ
(c)

aλ (c) = arm of c = 2,
a′

λ
(c) = coarm of c = 2,

`λ (c) = leg of c = 2,
`′

λ
(c) = coleg of c = 2.

cell c is at (2,2)

Figure 1.1: The Ferrers diagram of the partition λ = (7,7,5,3,3).

Now let λ be a partition of n. We can fill the cells of the Ferrers diagram of λ with

integers to obtain a tableau T (where λ is called the shape of the tableau). We also use T to

denote the multiset of the filled integers, and we write

XT := ∏
i∈T

xi.
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If we fill the cells with positive integers without other restrictions, then we obtain a

tableau. The set of tableaux of shape λ is denoted by Tab(λ ). Figure 1.2 shows an example of a

tableau T with XT = x1x2
2x2

4x5x6.

2
1
4

6
5

2 4

Figure 1.2: A tableau T with shape λ = (4,2,1).

If we fill the cells of λ with the integers {1, . . . ,n} such that the numbers in each row are

increasing from left to right and the numbers in each column are increasing from bottom to top,

then we get a standard Young tableau. The set of standard Young tableaux of shape λ is denoted

by SYT(λ ).

If we fill the cells of λ with positive integers such that the numbers in each row are

weakly increasing from left to right and the numbers in each column are strictly increasing from

bottom to top, then we get a semi-standard Young tableau (or a column strict tableau). The set of

semi-standard Young tableaux of shape λ is denoted by SSYT(λ ). Figure 1.3 shows examples of

such tableaux.

1
2
5

3
6

4 7 1
2
6

1
3

3 4

Figure 1.3: A standard Young tableau and a semi-standard Young tableau.

1.1.2 Symmetric functions

Let R[[X ]] be the ring formal power series with variables in X = {x1,x2, . . .}. For any

formal power series f [X ] = f [x1,x2, . . .] ∈ R[[X ]] and any permutation σ = σ1 · · ·σn ∈ Sn, we
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define the action σ ◦ f [X ] of σ on f [X ] by:

σ ◦ f [x1,x2, . . .] := f [xσ1 ,xσ2, . . .],

sending xi to xσi , here we use the convention that σi = i for i > n.

Given any f [X ] ∈ R[[X ]] with a finite degree in X , f [X ] is a symmetric function if and

only if:

∀n ∈ Z+ and ∀σ ∈ Sn, σ ◦ f [X ] = f [X ].

The ring of symmetric functions Λ consists of all symmetric functions f [X ] ∈ R[[X ]]. Let

Λ(n) denote the set of symmetric functions f [X ] ∈ R[[X ]] that are homogeneous of degree n. We

have Λ =
⊕

n≥0 Λ(n).

When taken as a vector space, Λ(n) has dimension p(n) which is the number of partitions

of the integer n, and it has six classical and natural basis:

• The monomial symmetric function basis {mλ [X ]}λ`n, defined by

mλ [X ] := ∑
i1,...,i`(λ )∈Z+ distinct

xλi
i1 · · · x

λ`(λ )

i`(λ )
.

• The elementary symmetric function basis {eλ [X ]}λ`n, defined by

ek[X ] := ∑
i1<···<ik

xi1 · · ·xik , and eλ [X ] := eλ1 · · ·eλ`(λ )
.

• The homogeneous symmetric function basis {hλ [X ]}λ`n, defined by

hk[X ] := ∑
i1≤···≤ik

xi1 · · ·xik , and hλ [X ] := hλ1 · · ·hλ`(λ )
.
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• The power-sum symmetric function basis {pλ [X ]}λ`n, defined by

pk[X ] := ∑
i≥1

xk
i , and pλ [X ] := pλ1 · · · pλ`(λ )

.

• The Schur symmetric function basis {sλ [X ]}λ`n, defined by

sλ [X ] := ∑
T∈SSYT(λ )

XT .

• The forgotten symmetric function basis { fλ [X ]}λ`n, defined by

fλ [X ] := (−1)|λ |−`(λ ) ∑
c=(c1,c2,c3,...)∈CR(λ )

xc1
1 xc2

2 xc3
3 · · · ,

where CR(λ ) is the set of sequences of compositions c = (c1,c2,c3, . . .) such that the parts

of all ci’s rearrange to λ .

We also abbreviate the bases to {mλ}λ`n, {eλ}λ`n, {hλ}λ`n, {pλ}λ`n, {sλ}λ`n and

{ fλ}λ`n. The first five bases are more famous, and more details about the forgotten basis can be

found in [MR15] and [GHQR19] Proposition 1.2.

As a remark, an easier way of defining the set Λ is

Λ := C-span{mλ : λ a partition}.

1.1.3 Operations on symmetric functions

We shall introduce three operations on symmetric functions: the omega involution, the

Hall scalar product and plethysm.
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The omega involution ω is an endomorphism of the symmetric function ring Λ defined by

ω(eλ ) := hλ , ∀λ .

It is a well-known result that ω(sλ ) = sλ ′ , and it follows immediately that ω is an involution (i.e.

ω2 = id) since ω2(sλ ) = ω(s′
λ
) = sλ .

The Hall scalar product is a scalar product of the space Λ(n) defined by

〈sλ ,sµ〉 := χ(λ = µ)

for any λ ,µ ` n, where χ(x) is the function that takes value 1 if the statement x is true, and 0

otherwise. As a consequence, one can prove the following:

〈mλ ,hµ〉 = χ(λ = µ),

〈eλ , fµ〉 = χ(λ = µ),

〈pλ , pµ〉 = zλ χ(λ = µ),

where for λ = nmn · · ·2m21m1 , zλ := ∏
n
i=1 imimi!.

The most important part of this section is the definition of plethysm. From now on, we let

C(q, t) denote the field of coefficients of the ring of symmetric functions Λ, i.e. we define

Λ := C(q, t)-span{mλ : λ a partition}.

If E = E(t1, t2, . . .) is a rational function of the variables t1, t2, . . . and F ∈ Λ. We define

the plethysm F [E] by the following rules:

• pk[E] = E(tk
1, t

k
2, . . .).

• Given F,G ∈ Λ, (F ·G)[E] = F [E] ·G[E].
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• For any scalar α , (αF +G)[E] = αF [E]+G[E].

Using the plethystic notation, we can state the Cauchy formula as follows: let {uλ}λ`n

and {vλ}λ`n be a pair of dual bases of the space Λ(n) with respect to the Hall scalar product, and

let X and Y be two sums of signed monomials. Then,

hn[XY ] = ∑
λ`n

uλ [X ]vλ [Y ].

1.1.4 The Frobenius map

For any group G, a representation M of G is uniquely associated to a function χM called the

character, which is computed by taking traces of the matrices associated with the representation.

Every character is a class function meaning it is constant on conjugacy classes.

Symmetric functions are closely related to the representation of the symmetric group Sn.

Due to Young’s work, the set of irreducible characters {χλ}λ`n of Sn has cardinality p(n) (the

number of partitions of n), which is the same as the dimension of class functions of Sn. The

Frobenius map can be defined by

Frob(χλ ) := sλ ∀λ ` n, (1.1)

which builds a bridge between the world of representation theory and the world of symmetric

functions. For a module M of Sn, we also write

Frob(M) = Frob(χM).

The symmetric function Frob(M) of an Sn-module M is called the Frobenius characteristic of

M. Other definitions and further details about the Frobenius map can be found in [Sag02] and

[Sta99].
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Thanks to the Frobenius map (1.1), one can simply expand the symmetric function

Frob(M) in Schur function basis in order to study the irreducible decomposition of an Sn-module

M. On the other hand, if a symmetric function expanded in Schur basis has non-negative integer

coefficients, then it must be the Frobenius characteristic of some Sn-module.

In this dissertation, many of our Sn-modules have natural gradings or bigradings. For such

Sn-modules, we can write M =
⊕

i≥0 Mi or N =
⊕

i, j≥0 Ni, j, where Mi (or Ni, j) is the component

of M (or N) of degree i (or (i, j)). The graded (bigraded) Hilbert series and the graded (bigraded)

Frobenius characteristic of M (or N) is defined by

Hilb(M;q) := ∑
i≥0

qi dim(Mi), Frob(M;q) := ∑
i≥0

qiFrob(Mi),

Hilb(N;q, t) := ∑
i, j≥0

qit j dim(Ni, j), Frob(N;q, t) := ∑
i, j≥0

qit jFrob(Ni, j).

From the formulas above, it is not difficult to see that the Hilbert series of a (bigraded) Sn-

module M can be obtained from its Frobenius characteristic by taking the scalar product with the

symmetric function pn
1, i.e.

Hilb(M;q, t) = 〈Frob(M;q, t), pn
1 〉. (1.2)

1.1.5 Quasi-symmetric functions

For any formal power series f [X ] ∈ R[[X ]] with a finite degree in X , f [X ] is said to be a

quasi-symmetric function if for any composition (α1, . . . ,αk), the coefficient of the monomial

xα1
1 xα2

2 · · ·x
αk
k is equal to the coefficient of the monomial xα1

i1 xα2
i2 · · ·x

αk
ik for any strictly increasing

sequence of positive integers i1 < i2 < · · ·< ik.

The ring of quasi-symmetric functions QSym consists of all quasi-symmetric functions

f [X ] ∈R[[X ]]. The set of quasi-symmetric functions that are homogeneous of degree n is denoted

by QSymn, and clearly QSym =
⊕

n≥0 QSymn. Note that each symmetric function is also a
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quasi-symmetric function, thus Λ is a subring of QSym.

The set QSymn can be viewed as a vector space, and its dimension is 2n−1 which equals

the number of strong compositions of the integer n. QSymn has two natural bases:

• The monomial quasi-symmetric function basis {Mα [X ]}α�strongn, defined by

Mα [X ] := ∑
i1<...<i`(α)

xα1
i1 · · ·x

α`(α)

i`(α)
.

• Gessel’s fundamental quasi-symmetric function basis {FS,n[X ]}S⊆[n−1], defined by

FS,n[X ] := ∑
i1≤i2≤...≤in,
i j<i j+1 if j∈S

xi1xi2 . . .xin .

Recall that for a strong composition α = (α1, . . . ,αk) �strong n with k parts, we associate

to it a subset S(α) of [n−1] where

S(α) = {α1,α1 +α2, . . . ,α1 + · · ·+αk−1}.

For example, if α = (2,3,2,1), then S(α) = {2,5,7}. Then, instead of indexing Gessel’s funda-

mental quasi-symmetric function by subsets of [n−1], we can associate one Gessel’s fundamental

quasi-symmetric function with each strong composition α by setting

Fα,n[X ] := ∑
1≤i1≤i2≤···≤in≤n
i∈S(α)→ii<ii+1

xi1xi2 · · ·xin. (1.3)

Then the Fα,n[X ]’s as α ranges over all strong compositions of n also form a basis for the space

of quasi-symmetric functions QSymn.

We abbreviate FS,n[X ] and Fα,n[X ] to FS[X ] and Fα [X ] when there is no ambiguity. We will

often omit the brackets to write Mα , FS and Fα for these polynomials. Another way of defining
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QSym is to set

QSym := C-span{Mα : α a strong composition}.

1.1.6 Macdonald polynomials

In [Mac98], Macdonald introduced a family of orthogonal symmetric polynomials

{Pλ [X ;q, t]}λ`n as a basis for the space Λ(n) that generalized many other existing families of

symmetric functions, such as Schur symmetric functions, Jack polynomials and Hall-Littlewood

polynomials. The polynomials Pλ [X ;q, t] are then known as Macdonald polynomials, which have

nice mathematical and physical properties that interest people in many areas, such as physics,

representation theory and algebraic geometry.

Macdonald polynomials have several transformations, and the form that we are using is

called the modified Macdonald polynomials H̃µ [X ;q, t] which are indexed by partitions µ ` n.

One combinatorial way to define H̃µ [X ;q, t] is due to the work of Haglund, Haiman and Loehr

[HHL05a]:

H̃µ [X ;q, t] := ∑
T∈Tab(µ)

qinv(T )tmaj(T )XT ,

where inv and maj are two statistics defined on the tableau T . We shall often abbreviate

H̃µ [X ;q, t] to H̃µ .

The above definition gives a monomial quasi-symmetric function expansion of

H̃µ [X ;q, t]. In fact, Macdonald polynomials are Schur positive (i.e. have non-negative coefficients

in Schur function expansion), which is conjectured by Garsia and Haiman [GH93] and proved by

Haiman [Hai01]. Further, in the expansion

H̃µ [X ;q, t] = ∑
λ`n

K̃λ ,µ(q, t)sλ ,

the coefficients K̃λ ,µ(q, t) ∈ N(q, t) are called q, t-Kostka polynomials.
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1.1.7 The operators nabla ∇, Delta ∆ and Delta prime ∆′

The symmetric function operators nabla ∇, Delta ∆ and Delta prime ∆′ are eigenoperators

of Macdonald polynomials defined by Bergeron and Garsia [BG99] that will be frequently used

in this dissertation.

For any partition µ ` n, we let

Bµ := ∑
c∈µ

qa′(c)t l′(c) and Tµ := ∏
c∈µ

qa′(c)t l′(c)

be polynomials defined from the Ferrers diagram of µ . Given a modified Macdonald polynomial

H̃µ [X ;q, t], the operator nabla (∇) defines the operation:

∇H̃µ := TµH̃µ .

Let f be a given symmetric function, then ∆ f and ∆′f are the operators such that

∆ f H̃µ := f [Bµ ]H̃µ , ∆
′
f H̃µ := f [Bµ −1]H̃µ ,

where f [Bµ ] and f [Bµ −1] are plethystic expressions.

For example, for the partition µ = (3,1) ` 4, we can first draw its Ferrers diagram, and

fill in each cell c ∈ µ the weight qa′(c)t l′(c). This process is pictured in Figure 1.4.

1 q q2

t

Figure 1.4: A partition µ = (3,1).

By definition, we have B(3,1) = 1+q+q2 + t, T(3,1) = q3t, and

∇H̃(3,1) = q3t H̃(3,1).
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Setting the symmetric function f = e2, then

∆e2H̃(3,1) = e2[1+q+q2 + t] H̃(3,1)

= (q+q2 + t +q3 +qt +q2t) H̃(3,1),

and

∆
′
e2

H̃(3,1) = e2[q+q2 + t] H̃(3,1)

= (q3 +qt +q2t) H̃(3,1).

Note that for µ ` n, en[Bµ ] = en−1[Bµ−1] = Tµ , thus for a symmetric function F ∈ Λ(n),

∇F = ∆enF = ∆
′
en−1

F. (1.4)

Furthermore, since ek[X + 1] = ek[X ] + ek−1[X ], we have the following relation between the

operators ∆ and ∆′:

∆ek = ∆
′
ek
+∆

′
ek−1

. (1.5)

1.1.8 q-analogues and q, t-analogues

We shall list a couple of notations we use when writing polynomials of q or q, t.

For an integer n, we define the q-analogue of n by setting

[n]q :=
1−qn

1−q
,

and we define the q, t-analogue of n by setting

[n]q,t :=
tn−qn

t−q
.
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When n is a non-negative integer, it follows from the definition that [n]q = 1+ · · ·+ qn−1 and

[n]q,t = tn + tn−1q+ · · ·+ tqn−1 +qn, which both equal n when setting t = q = 1.

Similarly, we define the q-analogue and the q, t-analogue of n! by setting

[n]q! := [1]q[2]q · · · [n]q and [n]q,t! := [1]q,t [2]q,t · · · [n]q,t ,

and we define the q-analogue and the q, t-analogue of binomial coefficients by setting

[n
k

]
q

:=
[n]q!

[k]q![n− k]q!
and

[n
k

]
q,t

:=
[n]q,t!

[k]q,t![n− k]q,t!
.

As a remark, our q-analogue and q, t-analogue of integers works for negative numbers. If

n ∈ Z+, then by definition,

[−n]q,t =
t−n−q−n

t−q
=
−[n]q,t
(qt)n .

Further, we also use the notation

[n→ m]q,t :=
m

∑
i=n

[i]q,t =
∑

m
i=n t i−∑

m
i=n qi

t−q
=

tn[m−n+1]t−qn[m−n+1]q
t−q

,

or alternatively (q−1)(tm+1−tn)−(t−1)(qm+1−qn)
(t−1)(q−1)(t−q) .

1.2 Background about parking functions

In this section, we define several combinatorial objects that are related to the Shuffle

Theorem, the Rational Shuffle Theorem and the Delta Conjecture. The material related to this

section can be found in [Hag08].
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1.2.1 Dyck paths and Catalan numbers

Let n be a positive integer. An (n,n)-Dyck path P is a lattice path from (0,0) to (n,n)

which always remains weakly above the main diagonal y = x. The number of Dyck paths of size

n is given by the nth Catalan number Cn =
1

n+1

(2n
n

)
. We let Dn denote the set of Dyck paths of

size n. We shall always refer to (n,n)-Dyck paths as classical Dyck paths or Dyck paths in the

classical case. Figure 1.5 shows a Dyck path of size 7.

For a Dyck path P ∈ Dn, the cells that are cut through by the main diagonal are called

diagonal cells, and the cells between the diagonal cells and the path are called area cells. We call

the main diagonal the 0th diagonal; we call the line that parallel to and above the main diagonal

with distance i the ith diagonal.

Figure 1.5: A (7,7)-Dyck path P.

We let area(P) be the number of area cells of path P. This is one of the most important

statistic of Dyck paths. In the example in Figure 1.5, area(P) = 13.

The collection of cells above a Dyck path P forms a Ferrers diagram (in English notation)

of a partition λ (P). For each cell c ∈ λ (P), we can count its arm a(c) and leg `(c). In Figure 1.5,

λ (P) = (3,3,1,1) or .

Another important statistic is called diagonal inversion, or dinv. For an (n,n)-Dyck path
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P, dinv(P) is given by

dinv(P) := ∑
c∈λ (P)

χ

(
a(c)

`(c)+1
≤ 1 <

a(c)+1
`(c)

)
.

The cells c ∈ λ (P) such that a(c)
`(c)+1 ≤ 1 < a(c)+1

`(c) are called dinv cells. Equivalently, dinv(P) is

the number of pairs of north steps of P such that they are either on the same diagonal, or they are

on consecutive diagonals and the north step on the left is one higher than the one on the right.

The example in Figure 1.5 has dinv 5, and the corresponding dinv cells are marked in λ (P).

The bounce statistic of a Dyck path is defined by the following steps: given a Dyck path

P, we draw a bounce path that starts from the lattice point (0,0) going north; then it bounces

back to the diagonal each time it hits the horizontal boundary of P, and starts going north again

from the place that it hits the diagonal until reaching the lattice point (n,n). Figure 1.6 shows a

Dyck path and its bounce path. We label the diagonal lattice points between (0,0) and (n,n) by

1, . . . ,n−1 from top to bottom, and bounce is defined to be the sum of the labels at all hits of the

bounce path on the diagonal. In Figure 1.6, bounce(P) = 4+2 = 6.

6

5

4

3

2

1

◦
◦

Figure 1.6: A Dyck path and its bounce path.

We shall mention the facts that the distribution of the statistics area, dinv and bounce are

equal on Dn; further, the pairs of statistics (dinv,area) and (area,bounce) are equi-distributed on

Dn, which implies that the following two definitions are well-defined.
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The q-Catalan number Cn(q) can be defined by

Cn(q) := ∑
P∈Dn

qarea(P) = ∑
P∈Dn

qdinv(P) = ∑
P∈Dn

qbounce(P).

The q, t-Catalan number Cn(q, t) can be defined by

Cn(q, t) := ∑
P∈Dn

tarea(P)qdinv(P) = ∑
P∈Dn

tbounce(P)qarea(P).

In fact, the polynomial Cn(q, t) is symmetric in (q, t) for any positive integer n, i.e.

Cn(q, t) =Cn(t,q), ∀n ∈ Z+,

and the q, t-symmetry of Cn(q, t) has no combinatorial proof.

1.2.2 Parking functions

The original definition of a parking function in [KW66] is a sequence α = (a1, . . . ,an) ∈

Zn
+ such that if b1 ≤ ·· · ≤ bn is the increasing rearrangement of α , then bi ≤ i. In this dissertation,

we are going to use another equivalent definition of parking functions that is related to Dyck

paths.

Given a Dyck path P, we can get an (n,n)-parking function PF by labeling the cells east

of and adjacent to north steps of P with numbers {1, . . . ,n} such that the labels (called cars) are

strictly increasing in each column. The set of parking functions of size n is denoted by PFn. The

cardinality of the set PFn is (n+1)n−1. Figure 1.7 gives an example of a 5×5 Dyck path and a

5×5 parking function.

We let the rank of a car c in cell (x,y) be rank(c) := (n+ 1)y− nx. We also define the

area of PF to be the area of the underlying Dyck path, and the dinv of PF to be the number of

pairs of cars (i < j) such that rank(i)< rank( j)≤ rank(i)+n.
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1
3

4
5

2

Figure 1.7: A (5,5)-Dyck path and a (5,5)-parking function.

To be more explicit, for a parking function PF ∈ PFn, let ai(PF) be the number of full

cells between the path and the diagonal in the ith row counting from bottom to top, let `i denote

the car in the ith row, and let

di(PF) :=
∣∣{(i, j) : i < j, ai(PF) = a j(PF) and `i < ` j}

∪{(i, j) : i < j, ai(PF) = a j(PF)+1 and `i > ` j}
∣∣,

then area(PF) := ∑
n
i=1 ai(PF) is the area of PF and dinv(PF) := ∑

n
i=1 di(PF) is the dinv of PF.

Figure 1.8 gives an example of a (7,7)-parking function with area 13 and dinv 2.

2
3
5

1
7

4
6

1 0 0
2 1 0
3 2 0
4 2 1
5 3 1
6 2 0
7 3 0
i ai(PF) di(PF)

Figure 1.8: A (7,7)-parking function with area 13 and dinv 2.

Let

Pn(q, t) := ∑
PF∈PFn

tarea(PF)qdinv(PF)

be a polynomial associated to PFn and set P0(q, t) := 1. As a consequence of the Shuffle

Theorem of Carlsson and Mellit [CM18], the polynomials Pn(q, t) are symmetric in q, t. If we let

18



Pn(q) = Pn(q,1) = Pn(1,q), then Kreweras in [Kre80] proved the following recursive formula:

Pn+1(q) =
n

∑
k=0

(
n
k

)
[k+1]qPk(q)Pn−k(q). (1.6)

We let the word (or diagonal word), σ(PF), of PF be the permutation obtained by reading

the cars in PF from the biggest rank to the smallest rank, and we let the inverse descent, ides(PF)

of PF be the descent set of σ(PF)−1. ides(PF) is a subset of [n− 1], which corresponds to a

strong composition of the integer n. We let pides(PF) be the composition corresponding to

ides(PF). In the parking function in Figure 1.7, the word σ(PF) = 52431, ides(PF) = {1,3,4}

and pides(PF) = (1,2,1,1). We shall give further details about these definitions when introducing

rational parking functions.

1.2.3 Rational Dyck paths and rational Catalan numbers

We shall generalize Dyck paths and Catalan numbers to rational cases.

Let m and n be positive integers. An (m,n)-Dyck path is a lattice paths from (0,0) to

(m,n) which always remains weakly above the main diagonal y = n
mx. The set of (m,n)-Dyck

paths is denoted by Dm,n. The cells that are cut through by the main diagonal will be called

diagonal cells. Figure 1.9(a) gives an example of a (5,7)-Dyck path, and Figure 1.9(b) gives an

example of a (4,6)-Dyck path, where the diagonal cells are the light blue cells.

Similar to classical Dyck paths, we have the statistics area and dinv defined on rational

Dyck paths. Given an (m,n)-Dyck path P ∈ Dm,n, the cells between the path and its diagonal

cells are called area cells, and we let area(P) denote the number of area cells. The paths in Figure

1.9 have 4 and 3 area cells respectively.

We call the cells above the path P coarea cells, and we let coarea(P) denote the number

of coarea cells. The coarea cells of P form a partition (in English notation), and we still denote

the partition by λ (P). In Figure 1.9(a), λ (P) = (3,3,1,1) or . Then for each cell c ∈ λ (P),
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(a) (b)

Figure 1.9: A (5,7)-Dyck path and a (4,6)-Dyck path.

we can count its arm a(c) and leg `(c).

In rational Dyck paths, we use the name path dinv (or pdinv) instead of dinv in order to

distinguish several types of dinv statistics. For a path P ∈ Dm,n, its path dinv is given by

pdinv(P) := ∑
c∈λ (P)

χ

(
a(c)

`(c)+1
≤ m

n
<

a(c)+1
`(c)

)
.

The rational Catalan number Cm,n is the number of rational Dyck paths in Dm,n, and it is

not difficult to prove the formula that Cm,n =
1

m+n

(m+n
m,n

)
, which is symmetric in m,n.

Similar to the classical case, there are q-analogues and q, t-analogues of rational Catalan

numbers. It is a fact but not obvious that the statistics area and pdinv are equi-distributed in Dm,n,

and the q-rational Catalan number Cm,n(q) can be defined by

Cm,n(q) := ∑
P∈Dm,n

qarea(P) = ∑
P∈Dm,n

qpdinv(P).

Further, the q, t-rational Catalan number Cm,n(q, t) can be defined by

Cm,n(q, t) := ∑
P∈Dm,n

tarea(P)qpdinv(P),

and Cm,n(q, t) is symmetric in q, t as a consequence of the Shuffle Theorem of Carlsson and Mellit
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[CM18].

1.2.4 Rational parking functions

Similar to the classical case, an (m,n)-parking function PF is obtained by labeling the

cells east of and adjacent to north steps of an (m,n)-Dyck path with the integers 1, . . . ,n in such

a way that the numbers increase in each column as we read from bottom to top. We will refer

to these labels as cars. The underlying Dyck path is denoted by Π(PF). The partition formed

by the collection of cells above the path Π(PF) is denoted by λ (PF) (i.e. λ (PF) = λ (Π(PF))).

The set of (m,n)-parking functions is denoted by PFm,n. Figure 1.10(a) pictures a (5,7)-parking

function based on the (5,7)-Dyck path pictured in Figure 1.9(a).

2
4
5

3
7

1
6

(a)
0

5

10

8

13

4

9

(b)

Figure 1.10: A (5,7)-parking function and its car ranks.

Next we define statistics ides(PF) and pides(PF) for any rational parking function PF.

For any pair of coprime positive integers m and n, we define the rank of a cell (x,y) in the

(m,n)-grid to be rank(x,y) := my−nx. If m and n are not coprime, we shall generalize the rank

to be rank(x,y) := my−nx+ bx·gcd(m,n)
m c. Figure 1.10(b) shows the ranks of the cars in Figure

1.10(a). σ(PF), the word (or diagonal word) of PF, is obtained by reading cars from highest to

lowest ranks. In our example in Figure 1.10(a), σ(PF) = 7563412.
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We define ides(PF) to be the descent set of σ(PF)−1. In other words,

ides(PF) := {i ∈ σ(PF) : i+1 is to the left of i in σ(PF)}

= {i : rank(i)< rank(i+1)}.

Then we define pides(PF) to be the composition set of ides(PF). If ides(PF) = {i1 < i2 <

· · ·< id}, then

pides(PF) := {i1, i2− i1, . . . ,n− id}.

In Figure 1.10(a), we have ides(PF) = ides(7563412) = {2,4,6}, and pides(PF) = {2,2,2,1}.

We have two remarks about the statistics word, ides and pides. If i < j and rank(i) >

rank( j), then i and j cannot be in the same column, otherwise j lies on top of i, which lead to a

contradiction that rank(i)> rank( j). Thus,

Remark 1.1. Let i < j be two cars in the parking function PF. If i is to the left of j in σ(PF),

then the cars i, j must be in different columns.

If M ∈ pides(PF) and M > m, then there exist M cars k,k+1, . . . ,k+M−1 with decreas-

ing ranks. By Remark 1.1, the M cars are in different columns, which is impossible, thus the

assumption M ∈ pides(PF) is not true, and we have the following remark.

Remark 1.2. The parts in the composition set pides(PF) of a parking function PF ∈ PFm,n are

less than or equal to m.

In many papers, the statistic dinv of a parking function is defined by 3 components – path

dinv (pdinv), max dinv (maxdinv) and temporary dinv (tdinv).

For a parking function PF ∈ PFm,n, the path dinv of PF is the path dinv of the underlying

Dyck path, i.e.

pdinv(PF) := pdinv(Π(PF)).
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Then, the temporary dinv is defined by

tdinv(PF) := ∑
cars i< j∈PF

χ(rank(i)< rank( j)< rank(i)+m).

In Figure 1.10(a), tdinv(PF) = 7 since the pairs of cars contributing to tdinv are (1,3), (1,4),

(3,5), (3,6), (4,6), (5,7) and (6,7).

Then, the statistic max dinv is defined as the maximum of temporary dinvs of parking

functions on the same path. Since max dinv is independent of the cars, it is also a statistic of

rational Dyck paths like pdinv. For a parking function PF, we have

maxdinv(PF) := max{tdinv(PF′) : Π(PF′) = Π(PF)};

for a rational Dyck path P, we write

maxdinv(P) := max{tdinv(PF) : Π(PF) = P}.

Finally, the statistic dinv is defined by setting

dinv(PF) := tdinv(PF)+pdinv(PF)−maxdinv(PF).

We shall use this definition of dinv in some combinatorial proofs in Chapter 2.

Notice that the statistics pdinv and maxdinv of a parking function PF are determined

by the underlying Dyck path Π(PF), thus the component (pdinv(PF)−maxdinv(PF)) in the

definition of dinv(PF) combines to a statistic of rational Dyck paths. Leven and Hicks in

[HL15] gave a simplified formula for dinv(PF) by defining the statistic dinvcorr that satisfies

dinvcorr(Π(PF)) = pdinv(PF)−maxdinv(PF).

To be more explicit, let P be an (m,n)-Dyck path and set 0
0 = 0 and x

0 = ∞ for all x 6= 0,
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then we define

dinvcorr(P) := ∑
c∈λ (P)

χ

(
a(c)+1
`(c)+1

≤ m
n
<

a(c)
`(c)

)
− ∑

c∈λ (P)
χ

(
a(c)
`(c)

≤ m
n
<

a(c)+1
`(c)+1

)
.

An alternative definition of dinv is

dinv(PF) := tdinv(PF)+dinvcorr(Π(PF)).

Note that as a statistic of rational Dyck paths, dinvcorr only depends on the path P, and it

is the difference of two sums ∑c∈λ (P) χ

(
a(c)+1
`(c)+1 ≤

m
n < a(c)

`(c)

)
and ∑c∈λ (P) χ

(
a(c)
`(c) ≤

m
n < a(c)+1

`(c)+1

)
,

of which at most one is nonzero.

If m = n, then there is no dinvcorr. When m 6= n, we count dinvcorr by checking the cells

c in the partition λ (P). Given a cell c ∈ λ (P), we high-light the vertical line segment N which is

a north step of the path P to the east of c, and the horizontal line segment E which is a east step

of P to the south of c. We draw two lines with slope n
m from the north end and south end of N.

(1) If n > m, the cells of type (a) and (b) in Figure 1.11 contribute −1 to dinvcorr.

(2) If m > n, the cells of type (c) and (d) in Figure 1.11 contribute 1 to dinvcorr.

c

(a)

E

N c

(b)

E

N

c

E

N

(c)

c

E

N

(d)

Figure 1.11: Types of cells that contribute to dinvcorr.

Following Hikita [Hik14], we define Hikita polynomials Hm,n[X ;q, t] where m and n are
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coprime by setting

Hm,n[X ;q, t] := ∑
PF∈PFm,n

tarea(PF)qdinv(PF)Fides(PF)[X ]. (1.7)

For non-coprime case, we formulate Hikita polynomials as follows. Given m,n coprime and

k≥ 1, we defined the return, ret(PF), of a (km,kn)-parking function PF to be the smallest positive

integer i such that the supporting path of PF goes through the point (im, in). Then following the

formulation of Garsia, Leven, Wallach, and Xin in [GLWX17], we define the extended Hikita

polynomial to be

Hkm,kn[X ;q, t] := ∑
PF∈PFkm,kn

[ret(PF)] 1
t
tarea(PF)qdinv(PF)Fides(PF)[X ]. (1.8)

The (extended) Hikita polynomials are proved to be symmetric functions in X in [Hik14].

Here we shall give a remark about Hikita polynomials in the Fuss-Catalan case. The

number of (kn,n)-parking functions is equal to the number of (kn+1,n)-parking functions. For

any (kn,n)-parking function PF, we let PF ′ be the (kn+1,n)-parking function obtained by adding

a east step at the right end of the path Π(PF). Then it follows immediately from the definition of

the statistics that area(PF) = area(PF′), dinv(PF) = dinv(PF′) and ides(PF) = ides(PF′). Thus,

Hkn+1,n[X ;q, t] = ∑
PF∈PFkn+1,n

tarea(PF)qdinv(PF)Fides(PF)[X ] = ∑
PF∈PFkn,n

tarea(PF)qdinv(PF)Fides(PF)[X ].

(1.9)

In particular, we have the following formula in the classical case:

Hn+1,n[X ;q, t] = ∑
PF∈PFn+1,n

tarea(PF)qdinv(PF)Fides(PF)[X ] = ∑
PF∈PFn

tarea(PF)qdinv(PF)Fides(PF)[X ].

(1.10)
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1.2.5 An alternative expression for Hikita polynomials

As we have mentioned, Hikita polynomials Hm,n[X ;q, t] are symmetric (in X) for any pair

of integers m,n. We shall introduce an alternative expression for Hikita polynomials from this

fact.

Suppose that α = (α1, . . . ,αk) is a strong composition of n into k parts (k ≤ n), then we

set α j = 0 for j > k. We let X = {x1, . . . ,xn} be the set of n variables and

∆α [X ] := det ||xα j+n− j
i ||= ∑

σ∈Sn

sgn(σ)σ(xα1+n−1
1 · · ·xαn+n−n

n ).

We let ∆[X ] := det ||xn− j
i || be the Vandermonde determinant. Then the Schur symmetric function

sα [X ] associated to α can be defined by

sα [X ] :=
∆α [X ]

∆[X ]
. (1.11)

It is well-known that for any such strong composition α , either we have sα [X ] = 0 or

there is a partition λ ` n such that sα [X ] =±sλ [X ]. In fact, there is a straightening relation which

allows us to prove that fact. Namely, if αi+1 > αi, then

s(α1,...,αi,αi+1,...,αk)[X ] =−s(α1,...,αi+1−1,αi+1,...,αk)[X ]. (1.12)

In a remarkable and important paper, Egge, Loehr and Warrington [ELW10] gave a

combinatorial description of how to start with the a quasi-symmetric function expansion of a

homogeneous symmetric function P[X ] of degree n,

P[X ] = ∑
α�strongn

aαFα [X ],
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and transform it into an expansion in terms of Schur functions,

P[X ] = ∑
λ`n

bλ sλ [X ].

The following theorem due to Garsia and Remmel [GR18] is implicit in the work of [ELW10],

but is not explicitly stated and it allows one to find the Schur function expansion by using the

straightening laws.

Theorem 1.1 (Garsia-Remmel). Suppose that P[X ] is a symmetric function which is homogeneous

of degree n and

P[X ] = ∑
α�strongn

aαFα [X ]. (1.13)

Then

P[X ] = ∑
α�strongn

aαsα [X ]. (1.14)

Recall that pides(σ) is the composition set of ides(σ), then Theorem 1.1 and the straight-

ening action allow us to transform Hm,n[X ;q, t] into Schur function expansion that

Hm,n[X ;q, t] = ∑
PF∈PFm,n

[ret(PF)] 1
t
tarea(PF)qdinv(PF)Fides(PF)

= ∑
PF∈PFm,n

[ret(PF)] 1
t
tarea(PF)qdinv(PF)spides(PF). (1.15)

From Chapter 2, we shall use the expression (1.15) for Hm,n[X ;q, t] to prove several facts

about the coefficients in the Schur function expansions of the Rational Shuffle Theorem.
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1.3 The Shuffle Theorem, the Rational Shuffle Theorem

and the Delta Conjecture

1.3.1 The ring of diagonal harmonics and the Shuffle Theorem

The Shuffle Theorem comes from the study of the ring of diagonal harmonics. Let

X = {x1,x2, . . . ,xn} and Y = {y1,y2, . . . ,yn} be two sets of n variables. The ring of diagonal

harmonics consists of those polynomials in Q[X ,Y ] which satisfy the following system of

differential equations

∂
a
x1

∂
b
y1

f (X ,Y )+∂
a
x2

∂
b
y2

f (X ,Y )+ . . .+∂
a
xn

∂
b
yn

f (X ,Y ) = 0

for each pair of integers a and b such that a+b > 0. Haiman in [Hai94] proved that the ring of

diagonal harmonics has dimension (n+1)n−1.

Further, Haiman [Hai94] proved that the bigraded Frobenius characteristic of the Sn-

module of diagonal harmonics, DHn(X ;q, t), is given by

DHn(X ;q, t) = ∇en. (1.16)

The Classical Shuffle Conjecture proposed by Haglund, Haiman, Loehr, Remmel and

Ulyanov [HHL+05b] gives a well-studied combinatorial expression for the bigraded Frobenius

characteristic of the ring of diagonal harmonics. The Shuffle Conjecture has been proved by

Carlsson and Mellit [CM18] as the Shuffle Theorem as follows.

Theorem 1.2 (Carlsson and Mellit). For any integer n≥ 0,

∇en = Hn+1,n[X ;q, t]. (1.17)
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By the identities (1.10) and (1.15), we also write the Shuffle Theorem as

∇en = ∑
PF∈PFn

tarea(PF)qdinv(PF)spides(PF)[X ], (1.18)

which is saying that the Frobenius characteristic of diagonal harmonics can be written as a

generating function of some combinatorial objects (parking functions in PFn). We shall refer to

the left hand side of the Shuffle Theorem as the symmetric function side or the algebraic side, and

refer to the right hand side as the parking function side or the combinatorial side.

1.3.2 The Rational Shuffle Theorem

The Rational Shuffle Theorem is a rational generalization of the Shuffle Theorem. In the

algebraic side of the conjecture, Gorsky and Negut [GN15] introduced the symmetric function

operator Qm,n and extended the algebraic side of the Shuffle Theorem from ∇en to Qm,n applied

to (−1)n.

As shown in [BGLX15], the Qm,n operators of the Gorsky-Negut conjecture can be

defined in terms of the operators Dk which were introduced by Bergeron and Garsia in [BG99].

In plethystic notation, the action of Dk on a symmetric function F [X ] is defined as

Dk F [X ] := F
[

X +
M
z

]
∑
i≥0

(−z)iei[X ]

∣∣∣∣
zk
, (1.19)

where M = (1− t)(1−q).

Then one can construct a family of symmetric function operators Qm,n for any pair of

coprime positive integers (m,n) as follows. First for any n ≥ 0, set Q1,n = Dn. Next, one can

recursively define Qm,n for m > 1 as follows. Consider the m×n lattice with diagonal y = n
mx. Let

(a,b) be the lattice point which is closest to and below the diagonal. Set (c,d) = (m−a,n−b).
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In such a case, we will write

Split(m,n) = (a,b)+(c,d). (1.20)

Note that the pairs (a,b) and (c,d) are coprime since any point of the form (kx,ky) is

further from the diagonal than the point (x,y). Then we have the following recursive definition of

the Qm,n operators:

Qm,n =
1
M
[Qc,d,Qa,b] =

1
M
(Qc,dQa,b−Qa,bQc,d). (1.21)

Figure 1.12 gives an example of Split(3,5) = (2,3)+(1,2), so that

Q3,5 =
1
M
[Q1,2,Q2,3] =

1
M
[D2,Q2,3]. (1.22)

Q3,5

Q2,3

Q1,2

Q1,1

Q1,2

Figure 1.12: The geometry of Split(3,5).

The same procedure gives Q2,3 =
1
M [Q1,2,Q1,1] =

1
M [D2,D1]. Therefore,

Q3,5 =
1

M2 [D2, [D2,D1]] =
1

M2 (D2D2D1−2D2D1D2 +D1D2D2). (1.23)

For the non-coprime case, we can define the Qkm,kn operator as follows. We choose one of
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the lattice points, (a,b), in the km× kn lattice that are strictly below and closest to the diagonal,

then we set

Qkm,kn =
1
M
[Qkm−a,kn−b,Qa,b]. (1.24)

This recursive definition is well-defined as it is proved in [BGLX15] that any choice of such point

(a,b) defines the same operation.

In the combinatorial side, the generalization is straightforward from the generating func-

tion Hn+1,n[X ;q, t] of classical parking functions to the generating function Hm,n[X ;q, t] of rational

parking functions (though the definition of dinv in the rational case is relatively complicated).

The Extended Rational Shuffle Theorem conjectured by Garsia, Leven, Wallach and Xin

[GLWX17] and Gorsky and Negut [GN15] is the following:

Theorem 1.3 (Mellit-Garsia-Leven-Wallach-Xin). For all pairs of coprime positive integers

(m,n) and any k ∈ Z+, we have

Qkm,kn(−1)kn = Hkm,kn[X ;q, t], (1.25)

which was proved by Mellit [Mel16] and Garsia, Leven, Wallach and Xin [GLWX17].

The original Rational Shuffle Theorem proposed by Gorsky and Negut [GN15] and

proved by Mellit [Mel16] in the case where m and n are relatively prime is the special case when

k = 1 in Theorem 1.3. In this case, ret(PF) is always 1 and the theorem can be described as

follows.

Theorem 1.4 (Mellit). For all pairs of coprime positive integers (m,n), we have

Qm,n(−1)n = Hm,n[X ;q, t]. (1.26)
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1.3.3 The Delta Conjecture

The Delta Conjecture of Haglund, Remmel and Wilson [HRW18] is another well studied

extension of the Shuffle Theorem. The Delta Conjecture has two versions, the rise version and

the valley version.

In order to introduce the Delta Conjecture, we need to define some more combinatorial

terminology about parking functions. For a parking function PF ∈ PFn, recall that we use

ai(PF) and di(PF) :=
∣∣{(i, j)|i < j, ai = a j and `i < ` j}∪{(i, j)|i < j, ai = a j +1 and `i > ` j}

∣∣
to denote the area and dinv component in the ith row counting from bottom to top (see Figure

1.8). We also let `i(PF) be the car in the ith row. We define

valley(PF) := {i : ai(PF)≤ ai−1(PF)},

Rise(PF) := {i : ai(PF) = ai−1(PF)+1}, and

Val(PF) := {i : ai(PF)< ai−1(PF) or ai(PF) = ai−1(PF) and `i(PF)> `i−1(PF)}

to be the sets of valleys, double rises and contractible valleys of PF.

We let

Risen,k[X ;q, t] := ∑
PF∈PFn

tarea(PF)qdinv(PF)Fides(PF) ∏
i∈Rise(PF)

(1+
z

tai(PF)
)

∣∣∣∣
zn−k−1

and

Valn,k[X ;q, t] := ∑
PF∈PFn

tarea(PF)qdinv(PF)Fides(PF) ∏
i∈Val(PF)

(1+
z

qdi(PF)+1
)

∣∣∣∣
zn−k−1

be two generating functions of PFn, then the rise and the valley version of the Delta Conjecture

are the following.
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Conjecture 1.1 (Haglund, Remmel and Wilson). For any integers n > k ≥ 0,

∆
′
ek

en = Risen,k[X ;q, t] = Valn,k[X ;q, t].

The Delta Conjecture is still open, but a lot of cases of the Delta Conjecture have been

proved. The conjecture for ∆e1en is proved by Haglund, Remmel and Wilson [HRW18]; the

rise version Delta Conjecture at q = 1 is proved by Romero [Rom17]; the Catalan case of the

conjecture is proved by Zabrocki [Zab16]. The Delta Conjecture at the case when t or q equals 0

is proved by Garsia, Haglund, Remmel and Yoo [GHRY17]; Wilson [Wil16]; Rhoades [Rho18];

Haglund, Rhoades and Shimozono [HRS18].
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Chapter 2

Schur function expansions of the Rational

Shuffle Theorem

It is an important combinatorial question to find the Schur function expansion of ∇en

since that would allow us to find the bigraded Sn-isomorphism type of the ring of diagonal

harmonics, see [Hai94]. More generally, we would like to find a combinatorial interpretation of

the coefficients that arise in the Schur function expansion of Qm,n(−1)n.

In this chapter, we study the combinatorics of the Schur function expansion of

Qm,n(−1)n. We explore several symmetries in the combinatorics of the coefficients that arise

in the Schur function expansion of Qm,n(−1)n. In particular, we study the hook-shaped Schur

function coefficients, and the Schur function expansion of Qm,n(−1)n in the case where m or n

equals 3.
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2.1 Introduction

Mellit [Mel16] and Garsia, Leven, Wallach and Xin [GLWX17] in 2016 proved the

Extended Rational Shuffle Theorem that for any pair of positive integers (m,n),

Qm,n(−1)n = Hm,n[X ;q, t]. (2.1)

Thus, we can find the Schur function expansion in one of two ways. That is, we can use the

properties of the operator Qm,n to find the Schur function expansion of Qm,n(−1)n which we will

refer to as working on the symmetric function side of the Rational Shuffle Theorem. Second,

one could start with the Hikita polynomial Hm,n[X ;q, t] and expand that polynomial into Schur

functions which we will call working on the combinatorial side of the Rational Shuffle Theorem.

We let [sλ ]m,n be the coefficient of the Schur function sλ in both polynomials Qm,n(−1)n and

Hm,n[X ;q, t].

The Schur function expansion of Qm,n(−1)n in the case where m and n are coprime and

either m or n equals 2 was given by Leven [Lev14] summarized in the following theorem.

Theorem 2.1 (Leven). For any integer k ≥ 0,

Q2k+1,2(1) = H2k+1,2[X ;q, t] = [k]q,ts2 +[k+1]q,ts1,1 (2.2)

and

Q2,2k+1(−1) = H2,2k+1[X ;q, t] =
k

∑
r=0

[k+1− r]q,ts2r12k+1−2r . (2.3)

By the combinatorial side of the Extended Rational Shuffle Theorem formulated in

[BGLX15], we can extend Leven’s theorem to compute the Schur function expansion of

Qm,n(−1)n where either m or n is equal to 2, but m and n are not coprime. That is, we can give a

combinatorial proof of the following.
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Theorem 2.2. For any integer k ≥ 0,

Q2k,2(1) = H2k,2[X ;q, t] = ([k]q,t +[k−1]q,t)s2 +([k+1]q,t +[k]q,t)s1,1 (2.4)

and

Q2,2k(1) = H2,2k[X ;q, t] =
k

∑
r=0

([k+1− r]q,t +[k− r]q,t)s2r12k+1−2r . (2.5)

As we have introduced in Chapter 1, the coefficient at s1n in Qm,n(−1)n is known as the

rational q, t-Catalan number, computed by Gorsky and Mazin [GM14] for the case n = 3 and

studied by Lee, Li and Loehr [LLL14] for the case n = 4. The coefficients at the hook-shaped

Schur functions were discussed by Armstrong, Loehr and Warrington [ALW16].

In this chapter, we explore the combinatorics of the Schur function expansion of

Qm,n(−1)n in several special cases, and the organization of this chapter is as follows.

In Section 2.2, we prove a number of symmetries of the coefficients of Schur functions.

We can combinatorially prove

Theorem 2.3. For all m,n > 0 and λ ′ ` (n−am),

(a) [s1n]m,n = [sn]m+n,n,

(b) [smaλ ′]m,n = [sλ ′]m,n−am,

(c) [sk1n−k ]m,n = [sk1m−k ]n,m.

In Section 2.3, we prove the following theorem to give an explicit formula for the Schur

function expansion of Qm,3(−1) from both symmetric function side and combinatorial side.
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Theorem 2.4. For any integer k ≥ 0,

Q3k+1,3(−1) = H3k+1,3[X ;q, t] =

(
k−1

∑
i=0

(qt)k−1−i[3i+1]q,t

)
s3

+

(
k−1

∑
i=0

(qt)k−1−i([3i+2]q,t +[3i+3]q,t)

)
s2,1 +

(
k

∑
i=0

(qt)k−i[3i+1]q,t

)
s13, (2.6)

Q3k+2,3(−1) = H3k+2,3[X ;q, t] =

(
k−1

∑
i=0

(qt)k−1−i[3i+2]q,t

)
s3

+

(
k−1

∑
i=−1

(qt)k−1−i([3i+3]q,t +[3i+4]q,t)

)
s2,1 +

(
k

∑
i=0

(qt)k−i[3i+2]q,t

)
s13, (2.7)

Q3k,3(−1) = H3k,3[X ;q, t] =

(
k−1

∑
i=0

(qt)k−1−i([3i−1]q,t +[3i]q,t +[3i+1]q,t)

)
s3

+

(
(qt)k+1([3]q,t +2[2]q,t +[1]q,t)+

k−1

∑
i=1

(qt)k−1−i([3i]q,t +2[3i+1]q,t +2[3i+2]q,t

+[3i+3]q,t)

)
s2,1 +

(
k

∑
i=0

(qt)k−i([3i−1]q,t +[3i]q,t +[3i+1]q,t)

)
s13. (2.8)

Note that this independently proves the Rational Shuffle Theorem and the Shuffle Theorem in the

case when n≤ 3.

In Section 2.4, we study several Schur function coefficient formulas and symmetries in

Q3,n(−1)n (some of which are consequences of Theorem 2.3), and conjecture a concise recursive

formula for Schur function coefficients [sλ ]3,n generally for any λ ` n. In particular, we study a

new symmetry that

[s2a1b ]3,n = [s2b1a]3,3(a+b)−n, (2.9)

and a combinatorial action on parking functions called the switch map S.
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2.2 Combinatorial results about Schur function expansions of

the (m,n) case

We shall work on the combinatorial side by studying the Hikita polynomials in this section.

By Equation (1.15) in Section 1.2.5, we use the alternative expression for Hikita polynomials

Hm,n[X ;q, t] = ∑
PF∈PFm,n

[ret(PF)] 1
t
tarea(PF)qdinv(PF)spides(PF).

In the rational (m,n) case, we have n cars, i.e. the word of an (m,n)-parking function

is a permutation of [n] = {1, . . . ,n}. Recall that [sλ ]m,n is the coefficient of sλ in Hm,n[X ;q, t].

By Remark 1.2 in Section 1.2.4, [sλ ]m,n 6= 0 implies that λ must be of the form mαm · · ·1α1 with

∑
m
i=1 iαi = n, i.e. [sλ ]m,n 6= 0 only if the partition λ only has parts of size less than or equal to m.

In this section, we shall prove the 3 symmetries about [sλ ]m,n described in Theorem 2.3, stated as

the following three results.

Result 1. [s1n]m,n = [sn]m+n,n.

Note that a parking function with pides n must have word 12 · · ·n, and a parking function

with pides 1n must have word n · · ·21.

1
2

3

3
2

1

Figure 2.1: Bijection between PFm,3 with word 123 and PFm+3,3 with word 321.

A parking function in PFm,n with word n · · ·21 corresponds to a unique (m,n)-Dyck

path, and a parking function in PFm+n,n with word 12 · · ·n corresponds to an (m+n,n)-Dyck

path with no consecutive north steps. As shown is Figure 2.1, we can obtain a parking function

PFm+n,n with word 12 · · ·n by pushing a staircase into a parking function PF ∈ PFm,n with
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word n · · ·21. Given a parking function PF ∈ PFm,n with word n · · ·21, let λ = λ (PF), we define

hstr(PF) ∈ PFm+n,n, the horizontal stretch of PF, to be the parking function with word 12 · · ·n

and λ (hstr(PF)) = (λ1 +n−1,λ2 +n−2, . . . ,λn−1 +1), then

Theorem 2.5.

hstr : {PF ∈ PFm,n : word(PF) = n · · ·21} → {PF ∈ PFm+n,n : word(PF) = 12 · · ·n},

PF 7→ hstr(PF)

is a bijection, and

area(hstr(PF)) = area(PF), (2.10)

dinv(hstr(PF)) = dinv(PF), (2.11)

ret(hstr(PF)) = ret(PF). (2.12)

Proof. The bijectivity of the map hstr is clear since the map is invertible. Comparing the coarea

of both parking functions immediately proves Equations (2.10) and (2.12). To prove Equation

(2.11), recall that dinv(PF) = tdinv(PF)+dinvcorr(PF), we shall compare the two components

of dinv, i.e. tdinv and dinvcorr.

For a parking function PF ∈ PFm,n with word(PF) = n · · ·21, its temporary dinv statistic

tdinv(PF) reaches the maximum possible value of the path Π(PF), i.e. any two north step with

rank difference less than m will contribute 1 to tdinv. For any two north steps, we fire two lines

from the two end points of the upper north step, then rank difference less than m means that either

the upper line or the lower line intersects the lower north step. The two cases are pictured in

Figure 2.2.

On the other hand, the parking function hstr(PF) ∈ PFm+n,n always has no tdinv since

word(hstr(PF)) = 12 · · ·n. We want to show that the increase of the dinvcorr statistic makes up
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for the missing tdinv.

N

N

(a)

N

N

(b)

Figure 2.2: Pair of north steps contributing to tdinv.

For a parking function PF ∈ PFm,n, suppose that in the English partition λ (PF), there

are j cells in row r of PF (counting from bottom to top of the n rows) with leg i, and their arms

are a,a+1, . . . ,a+ j−1, pictured in Figure 2.3 (a). We fire two lines with slope n
m from the two

end points of the north step (called N1) in row r, then they intersect the east steps (called EEs)

below the j cells at points A,B which have horizontal distances mi
n and m(i+1)

n to N1.

Now consider the parking function hstr(PF) ∈ PFm+n,n. By definition of the map hstr,

there are j+1 cells in row r with leg i in the partition λ (hstr(PF)), and their arms are a+ i,a+

i+1, . . . ,a+ i+ j, pictured in Figure 2.3 (b). We again fire two lines with slope n
m+n from the

two end points of the north step N1 in row r, then they intersect the east steps below the j+1

cells at points A,B which have horizontal distances mi
n + i and m(i+1)

n + i+1 to N1.

j cells a

i
N2

N1row r

EEs

m(i+1)
n

mi
n

(a)

A B

j+1 cells a+ i

i
N2

N1row r

EEs

m(i+1)
n + i+1

mi
n + i

A B

(b)

Figure 2.3: Cells in row r with leg i.

Now recall the definition of the dinv correction. The dinvcorr contribution of N1 in each
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picture is equal to the whole east steps contained in line segment AB. The line segment AB in

hstr(PF) contains one more east step than AB in PF in the following 2 cases:

(1) In PF, A is not on EEs but B is on EEs.

(2) In PF, A is on EEs.

In case (1), the car in row r of PF produces a tdinv with the car in the row immediately below

EEs; in case (2), the car in row r of PF produces a tdinv with the car in the row of the next north

step that the upper line fired from N1 intersects. Thus, the new dinvcorr in case (1) and case (2)

matches the tdinv in the two cases in Figure 2.2, and the increase of dinv correction is equal to

tdinv(PF), which proves the theorem.

Since hstr is an (area,dinv,ret)-preserving bijection, [s1n]m,n = [sn]m+n,n follows immedi-

ately.

Result 2. [smαm ···1α1 ]m,n = [smαm+1···1α1 ]m,n+m

This is a rewording of Theorem 2.3 (b). For a parking function PF ∈ PFm,n, we define

a map vstr, vertical stretch, that we push a staircase down to PF, then replace the car i in PF by

i+m, and fill the bottom of the m columns of the new parking function with cars 1, . . . ,m in a

rank decreasing way to get vstr(PF), as shown in Figure 2.4.

Similar to Theorem 2.5, we have the following theorem about the vertical stretch action.

Theorem 2.6.

vstr : {PF ∈ PFm,n : pides(PF) = mαm · · ·1α1}→{PF ∈ PFm,n+m : pides(PF) = mαm+1 · · ·1α1},

PF 7→vstr(PF)
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Figure 2.4: Bijection between PF3,n with pides 3a2b1c and PF3,n+3 with pides 3a+12b1c.

is a bijection, and

area(vstr(PF)) = area(PF), (2.13)

dinv(vstr(PF)) = dinv(PF), (2.14)

ret(vstr(PF)) = ret(PF). (2.15)

Proof. The bijectivity is true since the map is invertible. Equations (2.13) and (2.15) are true

for the same reason as Equations (2.10) and (2.12). The proof of Equation (2.14) is based on

the same idea as the proof of (2.11): the action vstr changes each car i in PF into i+m, and the

rank is also increased by m, thus the temporary dinv of PF is equal to the temporary dinv of the

cars m+1, . . . ,m+n in vstr(PF). Since the dinv correction is negative, we can match each tdinv

between cars 1,2, . . . ,m and m+1, . . . ,m+n with a new negative dinv correction, showing that

the change of dinv is zero.

Result 3. [sk1n−k ]m,n = [sk1m−k ]n,m.

We shall prove the special case when k = 1 first. That is, we first show [s1n]m,n = [s1m ]n,m.

The bijection for this identity is that we can transpose the path of PF ∈ PFm,n and fill the word

(m,m−1, . . . ,1) to get PF′ ∈ PFn,m.

It is obvious that PF′ has the same area as PF since their underlying Dyck paths are
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transposes of each other. For the statistic dinv, recall that the tdinv of a parking function with

word (n,n−1, . . . ,1) is equal to the maxdinv of the path, thus

dinv(PF) = tdinv(PF)+pdinv(Π(PF))−maxdinv(PF)

= pdinv(Π(PF))

= ∑
c∈λ (Π)

χ

(
arm(c)

leg(c)+1
≤ m

n
<

arm(c)+1
leg(c)

)
. (2.16)

From the Equation (2.16), we see that dinv is symmetric about m and n, and preserved by the

transpose action. Figure 2.5 shows an example of this bijection.

1
2

3

1
2
4

3

Figure 2.5: Bijection between PF4,3 with pides 13 and PF3,4 with pides 14.

Then we consider the equality [sk1n−k ]m,n = [sk1m−k ]n,m. This bijective proof is similar to

that of [s1n]m,n = [s1m]n,m.

That is, given a parking function PF ∈ PFm,n with pides k1n−k, one transposes the path

and labels the path to produce pides k1m−k. If there are only k peaks (which means k different

columns) in the Dyck paths, then the filling of cars in both (m,n) and (n,m) cases are unique

since the cars 1, . . . ,k must be filled in a rank-decreasing way at bottom of each column in the

two parking functions, while the remaining cars should be filled in a rank-increasing way in the

remaining north steps. One can check that they have the same area and dinv values.

Otherwise, in any rational (m,n)-Dyck path Π with j > k peaks, the car k must be in the

first row since it has the smallest rank, and there are
( j−1

k−1

)
ways to choose columns to place the

cars 1, . . . ,k−1 in the north steps of both Π and its transpose, while the remaining cars should be

filled in a rank-increasing way in the remaining north steps. Using the idea of analyzing dinv in
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the proof of Theorem 2.5, we can match the
( j−1

k−1

)
possible positions of cars 1, . . . ,k−1 in both

(m,n) and (n,m) cases by the dinv statistic, thus prove the result.

Note that Theorem 2.3 (c) is a result about the hook-shaped Schur functions. As we

proved within this result, Theorem 2.3 (c) implies the following corollary.

Corollary 2.7. For all m,n > 0,

[s1n]m,n = [s1m]n,m.

2.3 Schur function expansions of the (m,3) Case

The Rational Shuffle Theorem when n = 3 has a nice Schur function expansion, summa-

rized in Theorem 2.4. For example, one can compute the Schur function expansion of Q3k+1,3(−1)

by Maple to get Table 2.1.

In this section, we give two proofs of Theorem 2.4 by both working on the symmetric func-

tion side and the combinatorial side of the Rational Shuffle Theorem. Our proofs independently

prove the Rational Shuffle Theorem and the Shuffle Theorem when n≤ 3.

2.3.1 Algebraic proof — Qm,3(−1)

We shall use Leven’s method in [Lev14] to prove the theorem by induction. We use the

following lemma about q, t-analogue integers to simplify our computation.

Lemma 2.8. Let n,k ≥ 0 be two non-negative integers, we have

[n]q,t [k]q,t = [n+ k−1]q,t +qt[k−1]q,t [n−1]q,t . (2.17)
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Table 2.1: Coefficients of sλ in Q3k+1,3(−1).

XXXXXXXXXXXXQ3k+1,3(−1)
sλ s3 s21 s13

Q1,3(−1) 0 0 [1]q,t

Q4,3(−1) [1]q,t [2]q,t +[3]q,t [1]q,t

+qt[4]q,t

Q7,3(−1) [4]q,t [5]q,t +[6]q,t [7]q,t

+qt[1]q,t +qt([2]q,t +[3]q,t) +qt[4]q,t

+(qt)2[1]q,t

Q10,3(−1) [7]q,t [8]q,t +[9]q,t [10]q,t

+qt[4]q,t +qt([5]q,t +[6]q,t) +qt[7]q,t

+(qt)2[1]q,t +(qt)2([2]q,t +[3]q,t) +(qt)2[4]q,t

+(qt)3[1]q,t

Q13,3(−1) [10]q,t [11]q,t +[12]q,t [13]q,t

+qt[7]q,t +qt([8]q,t +[9]q,t) +qt[10]q,t

+(qt)2[4]q,t +(qt)2([5]q,t +[6]q,t) +(qt)2[7]q,t

+(qt)3[1]q,t +(qt)3([2]q,t +[3]q,t) +(qt)3[4]q,t

+(qt)4[1]q,t

· · · · · · · · · · · ·

Proof.

[n]q,t [k]q,t = (qn−1 +qn−2t + · · ·+qtn−2 + tn−1)(qk−1 +qk−2t + · · ·+qtk−2 + tk−1)

= qn−1(qk−1 +qk−2t + · · ·+qtk−2 + tk−1)+(qn−2t + · · ·+qtn−2 + tn−1)tk−1

+(qn−2t + · · ·+qtn−2 + tn−1)(qk−1 +qk−2t + · · ·+qtk−2)

= [n+ k−1]q,t +qt[k−1]q,t [n−1]q,t .

We need the following lemma from [BGLX15] to prove the symmetric function side of

the theorem.
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Lemma 2.9. For any positive integers m,n,

∇Qm,n∇
−1 = Qm+n,n. (2.18)

Since ∇a = a for any constant a, Lemma 2.9 allows us to write a recursion for Qm,n

operator that

Qm+n,n(−1)n = ∇Qm,n∇
−1(−1)n = ∇Qm,n(−1)n. (2.19)

Using the recursion, we can prove Theorem 2.4 by inducting on m. We shall give the complete

algebraic proof of Equation (2.6) in Theorem 2.4 and omit the algebraic proof of Equations (2.7)

and (2.8).

Proof of Equation (2.6). When k = 0, we can obtain by direct computation that

Q1,3(−1) = s13, (2.20)

which satisfies Equation (2.6). Then we induct on k to prove Equation (2.6) that suppose the

Schur function coefficients of Q3k+1,3(−1) are the following:

[s3]3k+1,3 =
k−1

∑
i=0

(qt)k−1−i[3i+1]q,t , (2.21)

[s21]3k+1,3 =
k−1

∑
i=0

(qt)k−1−i([3i+2]q,t +[3i+3]q,t), (2.22)

[s13]3k+1,3 =
k

∑
i=0

(qt)k−1−i[3i+1]q,t , (2.23)
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we want to show that

[s3]3(k+1)+1,3 =
k

∑
i=0

(qt)k−1−i[3i+1]q,t , (2.24)

[s21]3(k+1)+1,3 =
k

∑
i=0

(qt)k−1−i([3i+2]q,t +[3i+3]q,t), and (2.25)

[s13]3(k+1)+1,3 =
k+1

∑
i=0

(qt)k−1−i[3i+1]q,t . (2.26)

One can directly compute that

∇s3 = (qt)2s21 +(qt)2[2]q,ts13, (2.27)

∇s21 = (qt)[2]q,ts21− (qt)[3]q,ts13 , (2.28)

∇s13 = s3 +([2]q,t +[3]q,t)s21 +(qt +[4]q,t)s13. (2.29)

By Equation (2.19), we have

Q3(k+1)+1,3(−1) = [s3]3k+4,3s3 +[s21]3k+4,3s21 +[s13]3k+4,3s13

= ∇Q3k+1,3(−1)

= ∇([s3]3k+1,3s3 +[s21]3k+1,3s21 +[s13]3k+1,3s13)

= [s3]3k+1,3∇s3 +[s21]3k+1,3∇s21 +[s13]3k+1,3∇s13

= [s13]3k+1,3s3

+
(
(qt)2[s3]3k+1,3−qt[2]q,t [s21]3k+1,3 +([2]q,t +[3]q,t)[s13]3k+1,3

)
s21

+
(
(qt)2[2]q,t [s3]3k+1,3−qt[3]q,t [s21]3k+1,3 +(qt +[4]q,t)[s13]3k+1,3

)
s13,
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which implies that

[s3]3k+4,3 = [s13 ]3k+1,3, (2.30)

[s21]3k+4,3 = (qt)2[s3]3k+1,3−qt[2]q,t [s21]3k+1,3 +([2]q,t +[3]q,t)[s13]3k+1,3, (2.31)

[s13]3k+4,3 = (qt)2[2]q,t [s3]3k+1,3−qt[3]q,t [s21]3k+1,3 +(qt +[4]q,t)[s13]3k+1,3. (2.32)

By the recursions above, we can apply Lemma 2.8 and verify Equations (2.24), (2.25) and (2.26)

inductively:

[s3]3k+4,3 = [s13 ]3k+1,3 =
k

∑
i=0

(qt)k−i[3i+1]q,t ,

[s21]3k+4,3 = (qt)2
k−1

∑
i=0

(qt)k−1−i[3i+1]q,t−qt[2]q,t
k−1

∑
i=0

(qt)k−1−i([3i+2]q,t +[3i+3]q,t)

+([2]q,t +[3]q,t)
k

∑
i=0

(qt)k−i[3i+1]q,t

= (qt)2
k−1

∑
i=0

(qt)k−1−i[3i+1]q,t−qt
k−1

∑
i=0

(qt)k−1−i([3i+3]q,t +qt[3i+1]q,t)

−qt[2]q,t
k−1

∑
i=0

(qt)k−1−i[3i+3]q,t

+
k

∑
i=0

(qt)k−i([3i+2]q,t +[3i+3]q,t +qt[3i]q,t +qt[2]q,t [3i]q,t)

=
k

∑
i=0

(qt)k−i([3i+2]q,t +[3i+3]q,t),
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and

[s13]3k+4,3 = (qt)2[2]q,t [s3]3k+1,3−qt[3]q,t [s21]3k+1,3 +(qt +[4]q,t)[s13]3k+1,3

= (qt)2[2]q,t
k−1

∑
i=0

(qt)k−1−i[3i+1]q,t−qt
k−1

∑
i=0

(qt)k−1−i([3i+4]q,t +qt[2]q,t [3i+1]q,t)

−qt[3]q,t
k−1

∑
i=0

(qt)k−1−i[3i+3]q,t

+
k

∑
i=0

(qt)k−i(qt[3i+1]q,t +[3i+4]q,t +qt[3]q,t [3i]q,t)

=
k+1

∑
i=0

(qt)k+1−i[3i+1]q,t .

2.3.2 Combinatorial side — Hm,3[X ;q, t]

Now we consider the Hikita polynomial defined by

Hm,n[X ;q, t] = ∑
PF∈PFm,n

[ret(PF)] 1
t
tarea(PF)qdinv(PF)spides(PF). (2.33)

Any parking function PF ∈PFm,3 has 3 rows, thus only has 3 cars: {1,2,3}, and the word σ(PF)

can be any permutation σ ∈ S3. Table 2.2 shows the spides contribution of the 6 permutations in

S3.

Table 2.2: spides contribution of permutations in S3.

σ ∈ S3 123 132 213 231 312 321
spides s3 s21 s12 = 0 s21 s12 = 0 s13

By our notation, Hm,3[X ;q, t] = [s3]m,3s3 +[s21]m,3s21 +[s13 ]m,3s13 . We can work out the

combinatorial side of the Rational Shuffle Theorem in the case where n = 3 by using (2.33).
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2.3.2.1 Combinatorics of H3k+1,3[X ;q, t]

We show the combinatorics of H3k+1,3[X ;q, t] by enumerating the parking functions on

the (3k+1)×3 lattice to prove the following formulas of the coefficients of H3k+1,3[X ;q, t]:

[s3]3k+1,3 =
k−1

∑
i=0

(qt)k−1−i[3i+1]q,t , (2.34)

[s21]3k+1,3 =
k−1

∑
i=0

(qt)k−1−i([3i+2]q,t +[3i+3]q,t), (2.35)

[s13]3k+1,3 =
k

∑
i=0

(qt)k−1−i[3i+1]q,t . (2.36)

Given a parking function PF ∈ PF3k+1,3, we let Π = Π(PF) be the path of PF. Since

3k+1 > 3 for k ≥ 1, dinv correction is non-negative by definition, and

dinvcorr(PF) = ∑
c∈λ (Π)

χ

(
arm(c)+1
leg(c)+1

≤ m
n
<

arm(c)
leg(c)

)
. (2.37)

The partition corresponding to the Dyck path Π of PF has at most 2 parts, so leg(c) of a

cell c ∈ λ (Π) is either 0 or 1. Taking Figure 2.6 for reference, we have

(a) c ∈ λ (Π) with leg(c) = 0 and 1≤ arm(c)< k contributes 1 to dinv correction, marked© in

Figure 2.6,

(b) c ∈ λ (Π) with leg(c) = 1 and k < arm(c)≤ 2k−1 contributes 1 to dinv correction, marked

4 in Figure 2.6.

© © ©
© © ©
4 4 4

×
× ×

Figure 2.6: The dinv correction of a (3k+1,3)-Dyck path when k = 4.

Further, we can directly count the statistics area and dinv correction (dinvcorr) from the
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partition λ (Π) of the path Π. We write λ = (λ1,λ2) = λ (Π), then λ ⊆ λ0 = (2k,k), i.e. λ1 ≤ 2k

and λ2 ≤ k. Clearly, the area of Π is counted by |λ0|− |λ |, thus

area(Π) = 3k−λ1−λ2. (2.38)

We can also write the formula for dinv correction according to the partition λ :

dinvcorr(Π) =



λ1−1 if λ2 = 0 and λ1 ≤ k,

k−1 if λ2 = 0 and λ1 > k,

λ1−1 if λ2 = λ1 ≥ 1,

λ1−2 if λ2 ≥ 1,1≤ λ1−λ2 ≤ k, and λ1 ≤ k,

2λ1− k−3 if λ2 ≥ 1,1≤ λ1−λ2 ≤ k, and λ1 ≥ k+1,

2λ2 + k−2 if λ2 ≥ 1 and λ1−λ2 ≥ k+1.

(2.39)

Note that the return statistic is always 1 since 3k+1 and 3 are coprime. We shall compute

[s3]3k+1,3 first.

From Table 2.2, we see that only the parking functions in PF3k+1,3 with word 123

contribute to the coefficient of s3. We also notice that the 3 cars should be in different columns,

otherwise there are cars i < j with rank(i)< rank( j), contradicting with the restriction that the

word of the parking function is 123. Thus we have one PF ∈ PF3k+1,3 with word 123 on each

(3k+1,3) Dyck path which has no two consecutive north steps.

Let λ (PF) = (λ1,λ2) be the partition associated to the Dyck path Π(PF) (see Figure 2.7),

then area(PF) is counted by Equation (2.38). Since the ranks of cars 1,2,3 are decreasing, there

is always no tdinv, thus dinv(PF) = dinvcorr(Π), which is counted by the latter 3 cases (since

λ1 > λ2 > 0) of Equation (2.39).

For [s3]3k+1,3 = ∑
k−1
i=0 (qt)k−1−i[3i+1]q,t , we construct each term (qt)k−1−i[3i+1]q,t as a
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3
2

1λ1

λ2
λ (PF)

Figure 2.7: Example: a parking function PF ∈ PF7,3 with word 123.

sequence of parking functions. Since each parking function corresponds to a unique partition

λ ⊂ (2k,k) with 2 distinct parts, we shall use partitions to represent parking functions inPF3k+1,3

with diagonal word 123. For each i, we define the following 3 branches of partitions (parking

functions with word 123):

Λ1 = {(k+ i+1,k),(k+ i,k−1), . . . ,(k+2,k− i+1)},

Λ2 = {(2k, i),(2k−1, i−1), . . . ,(2k+1− i,1)},

Λ3 = {(k+1,k− i),(k, i+1), . . . ,(k− i+1,k− i)}.

k+ i+1
k

k+ i
k−1

k+ i+1− r
k− r

k+2
k− i+1

k+1
k− i

2k
i

2k−1
i−1

2k− r
i− r

2k+1− i
1

k
k− i

k−1
k− i

k− i+1
k− i

q3i · (qt)k−1−i

q3i−2t2 · (qt)k−1−i

q3i−2rt2r · (qt)k−1−i

qi+2t2i−2 · (qt)k−1−i

qit2i · (qt)k−1−i

q3i−1t · (qt)k−1−i

q3i−3t3 · (qt)k−1−i

q3i−2r−1t2r+1 · (qt)k−1−i

qi+1t2i−1 · (qt)k−1−i

qi−1t2i+1 · (qt)k−1−i qi−2t2i+2 · (qt)k−1−i

t3i · (qt)k−1−i

Λ1 Λ2

Λ3

Figure 2.8: The construction of (qt)k−1−i[3i+1]q,t .

The branch Λ1 contains all the partitions λ such that λ1−λ2 = i+1≤ k with λ2 > k− i,
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the branch Λ2 contains all the partitions λ such that λ1−λ2 = 2k− i > k, and the branch Λ3

contains all the partitions λ such that λ2 = i+1 and λ1−λ2 ≤ k− i. Notice that |Λ1|= |Λ2|. As

shown in Figure 2.8, the construction begins with alternatively taking partitions from Λ1 and Λ2,

ending with the last partition of Λ2. Then continue the chain by taking partitions in Λ3 and end

the chain with the last partition (k− i+1,k− i) in Λ3. The weights of the parking functions are

(qt)k−1−iq3i,(qt)k−1−iq3i−1t, . . . ,(qt)k−1−it3i following the order of the chain.

To be more precise, it is not difficult to check that each parking function with diagonal

word 123 is contained in Λ1∪Λ2∪Λ3 for some i, and the parking function weights are

∑
PF∈Λ1

tarea(PF)qdinv(PF) = (qt)k−i−1qi+2[i]q2,t2, (2.40)

∑
PF∈Λ2

tarea(PF)qdinv(PF) = (qt)k−i−1qi+1t[i]q2,t2, and (2.41)

∑
PF∈Λ3

tarea(PF)qdinv(PF) = (qt)k−i−1t2i[i+1]q,t , (2.42)

which sum up to (qt)k−1−i[3i+1]q,t . This proves that [s3]3k+1,3 =∑
k−1
i=0 (qt)k−1−i[3i+1]q,t . Figure

2.9 shows an example of the combinatorial construction of the coefficient [s3]10,3.
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2

1

3
1

2

3
1

2

3
2

1
[7]q,t

3
2

1

3
2

1

3
1

2

3
2

1
(qt)[4]q,t

3
2

1
(qt)2[1]q,t

Figure 2.9: The construction of [s3]10,3 = [7]q,t +(qt)[4]q,t +(qt)2[1]q,t .

We can combinatorially prove [s21]3k+1,3 = ∑
k−1
i=0 (qt)k−1−i([3i+ 2]q,t + [3i+ 3]q,t) in a

similar way. In this case, we have 2 possible diagonal words: 132 and 312. In both cases, the car

2 has the smallest rank, which means the label of the first (lowest) row must be 2. Thus, the pair
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of cars (1,2) does not produce a tdinv. If we let λ = (λ1,λ2) be the partition corresponding to

the path Π, and let the labels of row 1, row 2, row 3 (counting from bottom to top) be `1, `2, `3,

then we have the following formula for temporary dinv:

tdinv(PF) =



χ(`3 > `2) if λ2 = 0 and λ1 ≤ k,

χ(`3 > `1)+χ(`2 > `3) if λ2 = 0 and λ1 > k,

χ(`2 > `1) if λ2 = λ1 ≥ 1,

χ(`2 > `1)+χ(`3 > `2) if λ2 ≥ 1,1≤ λ1−λ2 ≤ k, λ1 ≤ k

χ(`2 > `1)+χ(`3 > `1)+χ(`3 > `2) if λ2 ≥ 1,1≤ λ1−λ2 ≤ k, λ1 ≥ k+1

χ(`2 > `1)+χ(`3 > `1)+χ(`2 > `3) if λ2 ≥ 1 and λ1−λ2 ≥ k+1.
(2.43)

In the construction of the coefficient [s21]3k+1,3 = ∑
k−1
i=0 (qt)k−1−i([3i+2]q,t +[3i+3]q,t),

we construct each term (qt)k−1−i[3i + 2]q,t or (qt)k−1−i[3i + 3]q,t as a sequence of parking

functions. First, we define the following 3 branches of parking functions to obtain the term

(qt)k−1−i[3i+3]q,t for each i:

Λ1 = {PF : λ (PF) ∈ {(2k, i+1),(2k−1, i), . . . ,(2k− i,1)},(`1, `2, `3) = (2,1,3)},

Λ2 = {PF : λ (PF) ∈ {(2k, i),(2k−1, i−1), . . . ,(2k− i,0)},(`1, `2, `3) = (2,3,1)},

Λ3 = {PF : λ (PF) ∈ {(k,k− i−1), . . . ,(k− i,k− i−1)},(`1, `2, `3) = (2,3,1)}.

With the 3 branches defined, the construction is similar to the construction of

(qt)k−1−i[3i+ 1]q,t as a term of [s3]3k+1,3. We alternatively take parking functions from Λ1

and Λ2, ending with the last partition of Λ2. Then continue the chain by taking partitions

in Λ3 and end the chain with the last parking function corresponding to the partition (k−

i,k− i− 1) with labels (`1, `2, `3) = (2,3,1) in Λ3. The weights of the parking functions are

(qt)k−1−iq3i+2, . . . ,(qt)k−1−it3i+2, which add up to (qt)k−1−i[3i+3]q,t .
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Second, we define another three branches of parking functions to obtain the term

(qt)k−1−i[3i+2]q,t for each i:

Λ4 = {PF : λ (PF) ∈ {(k+ i+1,k),(k+ i,k−1), . . . ,(k+1,k− i)},(`1, `2, `3) = (2,3,1)},

Λ5 = {PF : λ (PF) ∈ {(k+ i,k),(k+ i−1,k−1), . . . ,(k,k− i)},(`1, `2, `3) = (2,1,3)},

Λ6 = {PF : λ (PF) ∈ {(k−1,k− i), . . . ,(k− i,k− i)},(`1, `2, `3) = (2,1,3)}.

The construction is the same as that of (qt)k−1−i[3i+3]q,t , and the weights of the parking

functions are (qt)k−1−iq3i+1, . . . ,(qt)k−1−it3i+1 which add up to (qt)k−1−i[3i+2]q,t .

Thus we have proved that [s21]3k+1,3 = ∑
k−1
i=0 (qt)k−1−i([3i+ 2]q,t + [3i+ 3]q,t). Figure

2.10 shows an example of the combinatorial construction of the coefficient [s21]7,3.
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2
1
3

(qt)[2]q,t

Figure 2.10: The construction of [s21]7,3 = [6]q,t +[5]q,t +(qt)([3]q,t +[2]q,t).

The equality that [s13]3k+1,3 = ∑
k
i=0(qt)k−i[3i+ 1]q,t = [s3]3k+4,3 follows immediately

from the following corollary of Theorem 2.3 (a):

Corollary 2.10. For any m > 0, [s13]m,3 = [s3]m+3,3.
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2.3.2.2 Combinatorics of H3k+2,3[X ;q, t]

We study the combinatorics of H3k+2,3[X ;q, t] in a similar manner by enumerating the

parking functions on the (3k+2)×3 lattice to prove that

[s3]3k+2,3 =
k−1

∑
i=0

(qt)k−1−i[3i+2]q,t , (2.44)

[s21]3k+2,3 =
k−1

∑
i=−1

(qt)k−1−i([3i+3]q,t +[3i+4]q,t), and (2.45)

[s13 ]3k+2,3 =
k

∑
i=0

(qt)k−i[3i+2]q,t . (2.46)

Given a parking function PF ∈ PF3k+2,3 with Π(PF) = Π, we can compute the dinv

correction of PF by examining the cells c ∈ λ (Π). Taking Figure 2.11 for reference,

(a) c ∈ λ (Π) with leg(c) = 0 and 1≤ arm(c)< k contributes 1 to dinv correction, marked© in

Figure 2.11,

(b) c ∈ λ (Π) with leg(c) = 1 and k < arm(c)≤ 2k contributes 1 to dinv correction, marked4

in Figure 2.11.

© © ©
© © ©
4 4 4 4

×
× ×

Figure 2.11: The dinv correction of a (3k+2,3)-Dyck path when k = 4.

Further, we can directly count the statistics area and dinv correction (dinvcorr) from the

partition λ (Π) = (λ1,λ2)⊆ (2k+1,k) of a (3k+2,3)-Dyck path Π. Similar to Equation (2.38),

we have

area(Π) = 3k+1−λ1−λ2. (2.47)

The dinv correction formula is the same as Equation (2.39), and the return statistic is still always

equal to 1.
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To prove [s3]3k+2,3 = ∑
k−1
i=0 (qt)k−1−i[3i+2]q,t , we shall construct the following 3

branches of partitions (parking functions with word 123) for each term (qt)k−1−i[3i+2]q,t :

Λ1 = {(2k+1, i+1),(2k, i), . . . ,(2k+1− i,1)},

Λ2 = {(k+ i+1,k),(k+ i,k−1), . . . ,(k+1,k− i)},

Λ3 = {(k,k− i),(k−1, i+1), . . . ,(k− i+1,k− i)}.

Then, we can follow the same construction as the (3k+ 1,3) case to get all parking functions

with word 123 and weights (qt)k−1−iq3i+1, . . . ,(qt)k−1−it3i+1.

To prove [s21]3k+2,3 = ∑
k−1
i=−1(qt)k−1−i([3i+ 3]q,t + [3i+ 4]q,t), we have 6 branches of

parking functions as follows (which are similar to the (3k+1,3) case):

Λ1 = {PF : λ (PF) ∈ {(k+ i+2,k), . . . ,(k+2,k− i)},(`1, `2, `3) = (2,3,1)},

Λ2 = {PF : λ (PF) ∈ {(k+ i+1,k), . . . ,(k+1,k− i)},(`1, `2, `3) = (2,1,3)},

Λ3 = {PF : λ (PF) ∈ {(k+1,k− i−1), . . . ,(k− i,k− i−1)},(`1, `2, `3) = (2,3,1)},

Λ4 = {PF : λ (PF) ∈ {(2k+1, i+1), . . . ,(2k− i+1,1)},(`1, `2, `3) = (2,1,3)},

Λ5 = {PF : λ (PF) ∈ {(2k+1, i), . . . ,(2k− i+1,0)},(`1, `2, `3) = (2,3,1)},

Λ6 = {PF : λ (PF) ∈ {(k,k− i), . . . ,(k− i,k− i)},(`1, `2, `3) = (2,1,3)}.

Then, the total weight of parking functions in the first 3 branches is (qt)k−1−i[3i+4]q,t , and the

total weight of parking functions in the last 3 branches is (qt)k−1−i[3i+3]q,t .

The proof of [s13]3k+2,3 = [s3]3(k+1)+2,3 = ∑
k
i=0(qt)k−i[3i+2]q,t follows from Corollary

2.10.
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2.3.2.3 Combinatorics of H3k,3[X ;q, t]

Notice that the area and dinv of parking functions in PF3k,3 are equal to those of the

parking functions in PF3k+1,3 (as we discussed in Section 1.2.4). Given a parking function

PF ∈ PF3k+1,3, let λ = λ (PF), then the return statistic of PF is formulated as

ret(PF) = 2χ(λ1 = 2k)+χ(λ2 = k)−2χ(λ1 = 2k) ·χ(λ2 = k).

By the Extended Rational Shuffle Theorem in the non-coprime case,

H3k,3[X ;q, t] = ∑
PF∈PF3k,3

[ret(PF)] 1
t
tarea(PF)qdinv(PF)Fides(PF)[X ]

= ∑
PF∈PF3k+1,3

[ret(PF)] 1
t
tarea(PF)qdinv(PF)spides(PF). (2.48)

To prove that

[s3]3k,3 =
k−1

∑
i=0

(qt)k−1−i([3i−1]q,t +[3i]q,t +[3i+1]q,t), (2.49)

[s21]3k,3 = (qt)k+1([3]q,t +2[2]q,t +[1]q,t)

+
k−1

∑
i=1

(qt)k−1−i([3i]q,t +2[3i+1]q,t +2[3i+2]q,t +[3i+3]q,t), (2.50)

[s13 ]3k,3 =
k

∑
i=0

(qt)k−i([3i−1]q,t +[3i]q,t +[3i+1]q,t), (2.51)

we use the constructions of [s3]3k+1,3, [s21]3k+1,3, [s13]3k+1,3 and modify the weight of parking

functions with nonzero returns. We use the set of partitions Λ1,Λ2,Λ3,Λ4,Λ5,Λ6 in Section

2.3.2.1.

For [s3]3k,3, the first parking function in each set Λ1 and Λ2 has return statistic 1, except

that the first parking function in Λ1 when i = k− 1 has return 2. All the remaining parking

functions have return 3. Then we prove Equation (2.49) by summing up the parking function
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weights.

For [s21]3k,3, the first parking function in each set Λ1,Λ2,Λ4,Λ5 has return statistic 1 since

the second parts of these partitions are k, except that the first parking function in Λ1 and Λ4 when

i = k−1 has return 2. All the remaining parking functions have return 3. Then again we obtain

Equation (2.50) by direct computation.

The proof of [s13]3k,3 = [s3]3(k+1),3 follows from Corollary 2.10.

2.4 Combinatorial results about Schur function expansions of

the (3,n) case

2.4.1 Recursive formula for [sλ ]3,n

In (3,n) case, we have n cars, i.e. the word of a (3,n) parking function is a permutation of

[n]. By Remark 1.2, [sλ ]3,n 6= 0 implies that λ must be of the form 3a2b1c with 3a+2b+ c = n,

i.e. [sλ ]3,n 6= 0 only if the partition λ only has parts of sizes less than or equal to 3.

We have the following corollary of Theorem 2.3 summarizing some symmetries about

[sλ ]3,n.

Corollary 2.11. For all m,n > 0 and a,b,c≥ 0,

(a) [s3a2b1c ]3,n = [s2b1c ]3,n−3a,

(b) [s1n]3,n = [s13]n,3,

(c) [s21n−2]3,n = [s21]n,3,

Further, we conjecture another important symmetry.

Conjecture 2.1. For all a,b,n≥ 0,

[s2a1b]3,n = [s2b1a]3,3(a+b)−n.
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We have found the straightening action in parking functions combinatorially from parking

functions with pides {· · · ,1,3, · · ·} to parking functions with pides {· · · ,2,2, · · ·}, which is an

involution whose fixed points are the coefficients of [s2a1b ]3,n. Further, we have conjectured a

bijection between the fixed parking functions with pides 2a1b and the fixed parking functions

with pides 2b1a, mapping the 2 cars (or 1 car) causing part 2 (or 1) in pides 2a1b to 1 car (or 2

cars) causing part 1 (or 2) in pides 2b1a. We will state the details later.

The results above show that the problem of computing the Schur function expansion of

Q3,n(−1)n can be reduced to the problem of finding the coefficients of Schur functions of the form

s2a1b where a < b in Q3,n(−1)n. Finally, we conjecture a recursive formula for such coefficients

[s2a1b ]3,n where a < b.

Conjecture 2.2. Let a < b, then

[s2a1b ]3,n =
a

∑
i=0

[b+ i]q,t +(qt)[s2a1b−3 ]3,n−3.

We have verified this formula by Maple for n < 27. If the conjectures are true, then we

have solved the Schur function expansion in the (3,n) case.

2.4.2 The symmetry [s2a1b]3,n = [s2b1a]3,3(a+b)−n

For this symmetry, we shall first introduce an involution on (3,n)-parking functions whose

pides contain 1,3 or 2,2. The fixed points of the involution is a subset of parking functions whose

pides do not contain 1,3. Then, we give a bijection between the fixed parking functions with

pides 2a1b and the fixed parking functions with pides 2b1a.

2.4.2.1 The involution Φ

An involution f of a set S is a bijection from S to itself, such that f 2 = id is the identity

map. An element s ∈ S such that f (s) = s is called a fixed point of the involution.

60



Suppose that there is a weight function w(s) of the elements s in the set S. A sign-reversing

involution f of the set S (with respect to the weight w) is an involution such that for all s ∈ S, if

f (s) 6= s, then w( f (s)) =−w(s). As a consequence of a sign-reversing involution f , we have

∑
s∈S

w(s) = ∑
s∈S

w( f (s)) = ∑
s∈S, f (s)=s

w(s), (2.52)

i.e. we only need to consider the fixed points of f when computing the total weight of the set S.

Note that by the straightening action on Schur functions, we have

sλ13µ =−sλ22µ , (2.53)

where λ and µ are two compositions, and λ13µ (or λ22µ) is the composition obtained by first

listing all the parts in λ , then adding two parts of sizes 1 and 3 (or 2 and 2), finally listing all the

parts in µ .

Let PF3,n|λ13µ be the set of all the parking functions in PF3,n with pides λ13µ and

PF3,n|λ22µ be the set of all the parking functions in PF3,n with pides λ22µ , then we can give

an involution Φ of the set PF3,n|λ13µ ∪PF3,n|λ22µ , such that

• all the fixed points of Φ are in the set PF3,n|λ22µ , and

• the set of non-fixed points in PF3,n|λ22µ are in bijection with the set PF3,n|λ13µ .

Let PF be a parking function in PF3,n. If pides(PF) = λ13µ , then without loss of

generality, we suppose that the cars that cause pides 13 are 1,2,3,4, which means that rank(1)<

rank(2)> rank(3)> rank(4). Then, there are 3 possible subwords (subsequences of the words

of PF) formed by the 4 cars, which are

2341, 2314, 2134.
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On the other hand, the cars 2,3,4 are in different columns since rank(2) > rank(3) >

rank(4). Since there are only 3 columns, we have three possible placement of the four cars:

(I) Cars 1 and 4 are in the same column.

(II) Cars 1 and 2 are in the same column.

(III) Cars 1 and 3 are in the same column.

If the four cars form a word 2341, then (I), (II), (III) are all possible; if the four cars form

a word 2314, then only (II), (III) are possible; if the four cars form a word 2134, then only (II) is

possible.

Next, we consider the case when pides(PF) = λ13µ , i.e. the cars 1,2,3,4 cause pides 22,

and rank(1)> rank(2)< rank(3)> rank(4). The possible words are

3412, 3142, 3124, 1324, 1342.

The cars 1,2 and the cars 3,4 have to be in different columns since rank(1) > rank(2) and

rank(3)> rank(4), thus we have the following 5 possible placement of the four cars:

(i) Both cars 1,3 and 2,4 are in the same column.

(ii) Only cars 1 and 4 are in the same column.

(iii) Only cars 2 and 4 are in the same column.

(iv) Only cars 1 and 3 are in the same column.

(v) Only cars 2 and 3 are in the same column.

If the four cars form a word 3412, then (i), (ii), (iii), (iv) and (v) are all possible; if the four cars

form a word 3142, then only (i), (iii), (iv) and (v) are possible; if the four cars form a word 3124,
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then only (iv) and (v) are possible; if the four cars form a word 1324, then only (v) is possible; if

the four cars form a word 1342, then only (iii) and (v) are possible.

For any permutation σ ∈ Sn and any PF ∈ PF3,n, we let σ ·PF be the parking function

obtained by permuting the cars of PF by the permutation σ . We also let word(PF) be the word of

cars 1,2,3,4. Then we can define the map

Φ|PF3,n|λ13µ
: PF3,n|λ13µ → PF3,n|λ22µ .

Following is the detailed definition, while the words and the placements of the images are recorded

in each case:

Φ(PF) =



(1,2)PF if word(PF) = 2341 and placement is (I). Φ(PF) has word 1342 (iii).

(1,2,3)PF if word(PF) = 2341 and placement is (II). Φ(PF) has word 3142 (v).

(1,2)PF if word(PF) = 2341 and placement is (III). Φ(PF) has word 1342 (v).

(1,2,3)PF if word(PF) = 2314 and placement is (II). Φ(PF) has word 3124 (v).

(1,2)PF if word(PF) = 2314 and placement is (III). Φ(PF) has word 1324 (v).

(2,3)PF if word(PF) = 2134 and placement is (II). Φ(PF) has word 3124 (iv).
(2.54)

Then we shall define the map Φ on the set PF3,n|λ22µ that

Φ|PF3,n|λ22µ
: PF3,n|λ22µ → PF3,n|λ13µ ∪PF3,n|λ22µ .

Notice that other than the fixed points, all the parking functions in PF3,n|λ22µ are mapped into
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the set PF3,n|λ13µ . We define

Φ(PF)=



PF if word(PF) = 3412 or word(PF) = 3142 and placement is (i),(iii),(iv).

(1,3,2)PF if word(PF) = 3142 and placement is (v). Φ(PF) has word 2341 (II).

(2,3)PF if word(PF) = 3124 and placement is (iv). Φ(PF) has word 2134 (II).

(1,3,2)PF if word(PF) = 3124 and placement is (v). Φ(PF) has word 2314 (II).

(1,2)PF if word(PF) = 1324 and placement is (v). Φ(PF) has word 2314 (III).

(1,2)PF if word(PF) = 1342 and placement is (iii). Φ(PF) has word 2341 (I).

(1,2)PF if word(PF) = 1342 and placement is (v). Φ(PF) has word 2341 (III).
(2.55)

The first case in the definition above defines the fixed points of Φ.

It is easy to check that the map Φ does not change the area and the dinv of PF since Φ

does not change the Dyck path of PF, and it also preserves the cars other than {1,2,3,4}. Since

Φ changes the sign of the non-fixed points, it follows immediately that Φ forms a sign-reversing

involution of the set of parking functions in PF3,n with pideses of either λ13µ or λ22µ . As we

mentioned, the set of fixed points of this involution is

fp(Φ) = {PF ∈ PF3,n|λ22µ : word(PF) = 3412, or word(PF) = 3142 (i), (iii), (iv)}.

If we apply the involution Φ to all the parking functions PF ∈ PF3,n that we compute

pides(PF) and scan from left to right to find the first occurrence of either (1,3) or non-fixed (2,2)

and apply Φ at that position. Then, the fixed points in PF3,n have weakly decreasing pides in

the form 3a2b1c, and these parking functions contribute to the coefficients of the Schur function

64



bases. Thus, we have the Schur positivity of the m = 3 case that

[s2a1b ]3,n = ∑
PF∈PF3,n, pides(PF)=2a1b,

PF fixed by Φ

tarea(PF)qdinv(PF). (2.56)

We will write fixed parking functions for the parking functions fixed by Φ.

2.4.2.2 The conjectured bijection implying [s2a1b]3,n = [s2b1a]3,3(a+b)−n

For any parking function PF ∈ PF3,n with pides(PF) = 2a1b, we are interested in the

placement of the a pairs of numbers

{(1,2),(3,4), . . . ,(2a−1,2a)}

and the b singletons

{2a+1, . . . ,2a+b}.

Note that the two cars in each pair cannot be placed in the same column since the rank of the

smaller car is bigger than the rank of the bigger car.

Since there are 3 columns, we have
(3

2

)
ways to choose columns for each pair (2i−1,2i).

We name the 3 columns from left to right by `,c,r. Once we determine the 2 columns of the pair,

the filling of the two cars in the pair is fixed by their ranks since rank(2i−1)> rank(2i). Now,

we define the notation for the placement of a pair (2i−1,2i):

1. L means (2i−1,2i) are in the left 2 columns `,c,

2. R means (2i−1,2i) are in the right 2 columns c,r,

3. C means (2i−1,2i) are in columns `,r.

Similarly, we have
(3

1

)
ways to choose a column for each singleton. For a singleton j, we define

the notation for the placement:
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1. L means j is in the left column `,

2. R means j is in the right column r,

3. C means j is in column c.

Now we state our conjectured bijection between the fixed parking functions in PF3,n

with pides(PF) = 2a1b and the fixed parking functions in PF3,n′ with pides(PF) = 2b1a, where

n′ = 3(a+b)−n.

Given a parking function PF ∈ PF3,n with pides(PF) = 2a1b fixed by Φ, we track the

placements of the a pairs of cars {(1,2), . . . ,(2a−1,2a)} and b singleton cars {2a+1, . . . ,2a+b}.

Let the a+b placements of these a+b objects be p1, . . . , pa, pa+1, . . . , pa+b (here pi is one of L,

R or C).

Then we consider b pairs of cars {(1,2), . . . ,(2b− 1,2b)} and a singleton cars {2b+

1, . . . ,2b+a}. We assign the b+a placements pa+b, . . . , p1 to the b+a objects, then we build a

new parking function S(PF) by first counting how many cars in each column, then constructing

the path according to the numbers of cars of the columns. Finally, we fill from first pair (1,2) to

last singleton 2b+a based on the rule that rank(2i−1)< rank(2i) for i≤ b about the b pairs of

cars and the column placement choice pa+b, . . . , p1. We call this map the switch map S. Figure

2.12 shows an example that we can construct a parking function in PF3,5 with pides 213 from a

parking function in PF3,7 with pides 231.
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Figure 2.12: Bijection between PF3,7 with pides 231 and PF3,5 with pides 213.

In order to show that the map S is a bijection, we need to prove several properties of this

66



map. It is even not obvious that the image of a parking function is still above the diagonal, thus

we shall show that

Theorem 2.12. If PF is a (3,n)-parking function with pides 2a1b, then S(PF) is also a parking

function.

Proof. We still consider the a pairs of cars {(1,2), . . . ,(2a−1,2a)} and b singleton cars {2a+

1, . . . ,2a+b} of PF. Suppose that there are `1,c1,r1 placements of the first a pairs of cars which

are L, R and C, and `2,c2,r2 placements of the last b singleton cars which are L, R and C. Without

loss of generality, we suppose that n = 3k+1. Then we have that

`1 + c1 + r1 = a, (2.57)

`2 + c2 + r2 = b, (2.58)

2a+b = 3k+1. (2.59)

Since PF is a parking function, the path of the parking function should be above the

diagonal, thus the number of cars in the left column is at least k+1 and the number of cars in the

left two columns is at least 2k+1.

Note that an L placement of a pair contribute 1 left car and 1 center car, a C placement

of a pair contribute 1 left car and 1 right car, and an R placement of a pair contribute 1 right

car and 1 center car. The contribution of the singleton cars are obvious. Thus the number

of cars in the left column is `1 + c1 + `2, and the number of cars in the left 2 columns is

2`1 + r1 + c1 + `2 + c2 = a+ `1 + `2 + c2, and we have that

`1 + c1 + `2 ≥ k+1, (2.60)

a+ `1 + `2 + c2 ≥ 2k+1. (2.61)

Next, for S(PF), it has `2,c2,r2 placements of the first b pairs of cars, and `1,c1,r1
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placements of the last a singleton cars. The total number of cars is equal to 2a+b = 3(a+b)−

(2b+a) = 3(a+b)−3k−1 = 3(a+b− k−1)+2, and the number of cars in the left column

should be at least a+ b− k = (2a+ b)− a− k = 3k+ 1− a− j = 2k+ 1− a and the number

of cars in the left two columns should be at least 2a+2b−2k = b+(3k+1)−2k = b+ k+1.

S(PF) is a parking function if the following is true:

`1 + c2 + `2 ≥ 2k+1−a, (2.62)

b+ `1 + `2 + c1 ≥ b+ k+1. (2.63)

Clearly, (2.60) implies (2.63), (2.61) implies (2.62).

Next, we have the formula for area.

Theorem 2.13. Let PF be a (3,n)-parking function with pides 2a1b. Using the definition of

`1,c1,r1, `2,c2,r2 in the proof of Theorem 2.12. Let L = `1 + `2,R = r1 + r2,C = c1 + c2, then

area(PF) = L−R−1. (2.64)

Proof. We want to compute the area of a parking function as the difference of its coarea and the

maximum coarea of a (3,2a+b)-parking function. The maximum coarea of a (3,2a+b)-parking

function is equal to (2a+b−1)(3−1)
2 = 2a+b−1.

Notice that the cars in the right column contribute 2 to coarea, and the cars in the center

column contribute 1 to coarea, thus the coarea of PF is

`1 +3r1 +2c1 +2r2 + c2 = a+2(r1 + r2)+(c1 + c2) = a+2R+C. (2.65)

Then,

area(PF) = 2a+b−1−(a+2R+C) = a+(L+R+C)−1−(a+2R+C) = L−R−1. (2.66)
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It follows immediately from Theorem 2.13 that

Theorem 2.14. For any PF ∈ PF3,n with pides(PF) = 2a1b,

area(PF) = area(S(PF)). (2.67)

We have not yet proved, but verified all parking functions with less than or equal to 10

rows for the following conjecture:

Conjecture 2.3. For any PF ∈ PF3,n with pides(PF) = 2a1b,

(a) dinv(PF) = dinv(S(PF)).

(b) If PF is a fixed point of the map Φ, then so is S(PF), and pides(S(PF)) = 2b1a.

By (2.56), it follows from Conjecture 2.3 immediately that

[s2a1b ]3,n = [s2b1a]3,3(a+b)−n.

2.4.2.3 The switch map S in the m column case

We haven’t completely understood how to use straightening to compute the coefficients

of sλ for general (m,n) case, but computations in Maple have led us to conjecture the following:

Conjecture 2.4. For all m,n > 0 and αi ≥ 0,

[s(m−1)αm−1(m−2)αm−2 ···1α1 ]m,n = [s(m−1)α1(m−2)α2 ···1αm−1 ]m,(m∑
m−1
i=1 αi−n). (2.68)

On the other hand, the switch map S that we have defined for the three column case can

be naturally generalized to the m column case, which conjecturally has many nice properties and
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is considered to be useful in proving Conjecture 2.4. The definition of an m columns switch map

will need some new definitions.

Given any parking function PF ∈ PFm,n, we suppose that s,s+ 1, . . . ,s+ r− 1 is an

increasing subsequence of the word σ(PF), then by Remark 1.1, the cars s,s+1, . . . ,s+ r−1

must be placed in r different columns in a rank decreasing way.

There are
(m

r

)
possible choices to pick r columns for such cars s,s+1, . . . ,s+ r−1. Let

p = {s1,s2, . . . ,sr} ⊂ {1, . . . ,m} be a possible placement, then we define the reverse complement

of p to be prc = {1, . . . ,m}\{m+1− sr, . . . ,m+1− s1}, which is a placement for m− r cars.

Given µ = µ1 · · ·µk |= n. Now suppose that σ(PF), the word of PF, is a shuffle of the

increasing sequences (1, . . . ,µ1),(µ1+1, . . . ,µ1+µ2), . . . ,(n−µk +1, . . . ,n), and the placement

(i.e. the choice of columns) of the sequence (µ1 + . . .+µi−1 +1, . . . ,µ1 + . . .+µi) is pi, then we

construct S(PF) as follows:

let µ∨ = µ∨1 · · ·µ∨k , where µ∨i = m− µk+1−i. We make the word of S(PF) to be a shuffle of

(1, . . . ,µ∨1 ),(µ
∨
1 + 1, . . . ,µ∨1 + µ∨2 ), . . . ,(n− µ∨k + 1, . . . ,n), and the placement of (µ∨1 + . . .+

µ∨i−1 + 1, . . . ,µ∨1 + . . .+ µ∨i ) is prc
k+1−i. This construction is well defined, and for each given

composition µ , we can invert the the map easily.

For example, suppose that there are m = 4 columns. Take µ = (2,2,3) � n where n = 7.

For a (4,7)-parking function PF whose word σ(PF) = 5613472 is a shuffle of (1,2),(3,4),

(5,6,7) with placements {1,3},{1,2},{1,2,4}, we construct S(PF) such that its word is a shuffle

of (1),(2,3),(4,5) and the placements are {2},{1,2},{1,3}, shown in Figure 2.13.

2
4
6

3
5

1
7

1 2
3 4
5 6 7

{1,3}
{1,2}
{1,2,4}

1
2 3
4 5{1,3}

{1,2}
{2} 3
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Figure 2.13: An example of PF and S(PF).
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Like the 3 column case, we have:

Theorem 2.15. PF is an (m,n)-parking function if and only if S(PF) is a parking function.

Further,

area(PF) = area(S(PF)).

For a composition µ = µ1 · · ·µk |= n, we say a permutation σ is a shuffle of µ if σ is

a shuffle of the increasing sequences (1, . . . ,µ1),(µ1 + 1, . . . ,µ1 + µ2), . . . ,(n− µk + 1, . . . ,n).

Then we have:

Theorem 2.16. The switch map S is a bijection between (m,n)-parking functions whose words

are shuffle of µ = µ1 · · ·µk and (m,mk−n)-parking functions whose words are shuffle of µ∨ =

(m−µk) · · ·(m−µ1).

The switch map of m column case still keeps the dinv statistic experimentally (summarized

in the following conjecture), which we are not able to prove.

Conjecture 2.5. For any PF ∈ PFm,n where σ(PF) is a shuffle of µ |= n,

dinv(PF) = dinv(S(PF)).

Thus conjecturally, the switch map S is an area,dinv-preserving bijective map between

(m,n)-parking functions whose words are shuffle of µ and (m,mk−n)-parking functions whose

words are shuffle of µ∨. In the end, we shall discuss a consequence of Conjecture 2.5 and the

switch map S.

Referring to Haglund’s work in [Hag08], for any parking function whose word is a shuffle

of µ = µ1 · · ·µk |= n, we can replace the cars µ1 + . . .+µi−1 +1, . . . ,µ1 + . . .+µi with number i

to obtain a parking function with cars 1µ1 · · ·kµk with the same area and dinv statistics. Further, it
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is a fact that

Qm,n(−1)n
∣∣∣∣
mµ

= Hm,n[X ;q, t]
∣∣∣∣
mµ

= ∑
PF∈PFm,n, σ(PF) is a shuffle of µ

tarea(PF)qdinv(PF). (2.69)

By definition of the Hall scalar product, for any symmetric function f , we have

〈 f ,hµ〉= f
∣∣
mµ

. (2.70)

Thus, the properties of the switch map S (Theorem 2.15, Theorem 2.16 and Conjecture 2.5) imply

the following identities:

Conjecture 2.6. For m,n > 0, µ = µ1 · · ·µk ` n and µ∨ = (m−µk) · · ·(m−µ1),

〈Qm,n(−1)n,hµ〉 = 〈Qm,mk−n(−1)mk−n,hµ∨〉, (2.71)

〈Hm,n[X ;q, t],hµ〉 = 〈Hm,mk−n[X ;q, t],hµ∨〉. (2.72)

Since the area-preserving property of S has been proved in Theorem 2.15, we have the

following theorem which is a special case of Conjecture 2.6 at q = 1:

Theorem 2.17. For m,n > 0, µ = µ1 · · ·µk ` n and µ∨ = (m−µk) · · ·(m−µ1),

〈Qm,n(−1)n∣∣
q=1,hµ〉 = 〈Qm,mk−n(−1)mk−n∣∣

q=1,hµ∨〉, (2.73)

〈Hm,n[X ;q, t]
∣∣
q=1,hµ〉 = 〈Hm,mk−n[X ;q, t]

∣∣
q=1,hµ∨〉. (2.74)

The majority of Chapter 2 has been submitted for publication. Qiu, Dun; Remmel,

Jeffrey Brian. “Schur function expansions and the Rational Shuffle Conjecture (full version)",

available in Mathematics arXiv:1806.04348v2. An extended abstract of this work has been

published in the Proceedings of Formal Power Series and Algebraic Combinatorics 2017. Qiu,

Dun; Remmel, Jeffrey Brian. “Schur function expansions and the Rational Shuffle Conjecture",
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Séminaire Lotharingien de Combinatoire, vol. 78B, 2017. The dissertation author was the primary

investigator and author of this work.
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Chapter 3

The Schur positivity of ∆e2en

Haglund, Remmel and Wilson [HRW18] have conjectured that the coefficient of any

Schur function sλ in ∆eken is a polynomial in N[q, t]. In this section, we give a combinatorial

proof in the case when k = 2 that the coefficient of sλ in ∆e2en has a non-negative expansion in

terms of q, t-analogues.

3.1 Introduction

We have introduced the Delta Conjecture of Haglund, Remmel and Wilson [HRW18]

about the expression ∆′ek
en in Section 1.3.3. There is another version of the Delta Conjecture,

which is about the expression ∆eken also due to the work of Haglund, Remmel and Wilson in

[HRW18] that

Conjecture 3.1 (Haglund, Remmel and Wilson). For any integers n≥ k ≥ 0,

∆eken = ∑
PF∈PFn

tarea(PF)qdinv(PF)Fides(PF)(1+ z) ∏
i∈Rise(PF)

(1+
z

tai(PF)
)

∣∣∣∣
zn−k−1

= ∑
PF∈PFn

tarea(PF)qdinv(PF)Fides(PF)(1+ z) ∏
i∈Val(PF)

(1+
z

qdi(PF)+1
)

∣∣∣∣
zn−k−1

.
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They also conjectured that coefficients in the Schur function expansion of ∆eken are

polynomials in q, t with non-negative integer coefficients. There are two cases that are known.

Namely, when k = n, the expression ∆enen =∇en is proved by Haiman [Hai02] to be the Frobenius

characteristic of the ring of diagonal harmonics, as we have mentioned in Section 1.3.1. Thus in

this case, representation theory tells us that the coefficient of the Schur function sλ , 〈∇en,sλ 〉, is

a polynomial in q, t with non-negative integer coefficients.

The other known case is when k = 1. In [HRW18], Haglund, Remmel and Wilson proved

that

∆e1en =
bn/2c

∑
m=0

s2m,1n−2m

n−m

∑
p=m

[p]q,t . (3.1)

The main goal of this chapter is to give a proof of the fact that ∆e2en is Schur positive, i.e.

for all λ ` n, 〈∆e2en,sλ 〉 ∈ N[q, t], in hopes that some of the ideas in the proof can be adapted to

prove the Schur positivity of ∆eken for k ≥ 3.

Our proof starts with the following result of Haglund [Hag04].

Lemma 3.1. For all integers n,d > 0 and symmetric functions F [X ],

〈∆ed−1en, F〉= 〈∆ωF ed, sd〉. (3.2)

Let λ be any partition of n. By setting F = sλ , we have

〈∆ed−1en, sλ 〉= 〈∆s
λ ′ed, sd〉. (3.3)

The formula works nicely when d is small, since we can compute an explicit expansion of

ed in terms of modified Macdonald polynomials. In the case when d = 2 we have

e2 =
1

t−q
H̃1,1[X ;q, t]− 1

t−q
H̃2[X ;q, t].
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This leads to

〈∆e1en, sλ 〉= 〈∆s
λ ′e2, s2〉

=
〈 1

t−q
sλ ′[1+t]H̃1,1[X ;q, t]− 1

t−q
sλ ′[1+q]H̃2[X ;q, t], s2

〉
=

1
t−q

sλ ′[1+t]− 1
t−q

sλ ′[1+q],

which is easily seen to be an element of N[q, t].

In the case when d = 3, the expansion of e3 leads to the following formula:

gλ := 〈∆e2en, sλ 〉

=
(t−q2)sλ ′[1+t+t2]− (q+t+1)(t−q)sλ ′[1+q+t]+ (t2−q)sλ ′[1+q+q2]

(t−q)(t2−q)(t−q2)
. (3.4)

At first glance, this formula does not seem to be useful. Indeed, it is not immediately obvious that

this quotient is a polynomial. Our approach to proving that gλ is in N[q, t] relies on the following

alternative representation of gλ .

Lemma 3.2. Let τ be the operation which switches t and q. Then

gλ = 〈∆e2en, sλ 〉=
Fλ ′− τFλ ′

t−q
=

id−τ

t−q
Fλ ′, (3.5)

where τF = F
∣∣
q=t,t=q and

Fλ ′ =
sλ ′[1+t+t2]− sλ ′[1+t+q]

t2−q
. (3.6)

Proof. By using the formula

(t−q)(1+q+t) = (t−q2)− (q−t2) = (id−τ)(t−q2),
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Equation (3.4) becomes

〈∆e2en, sλ 〉=
(id−τ)(t−q2)sλ ′[1+t+t2]− (id−τ)(t−q2)sλ ′[1+q+t]

(t−q)(t2−q)(t−q2)

=
1

t−q
(id−τ)

(
sλ ′[1+t+t2]− sλ ′[1+t+q]

t2−q

)
.

This is just the desired Equation (3.5).

From this formula, it is clear that gλ is in Z[q, t] where Z= {0,±1,±2, . . .} is the set of

integers. In Section 3.2, we present our proof that gλ is in N[q, t] by directly computing gλ by

breaking gλ into a sum of terms where each term is easily seen to be a polynomial in q, t with

non-negative coefficients. By this proof, we can recursively produce explicit formulas for gλ .

In Section 3.3, we give a formula of ∆e3en. However, it is not clear how we can split up

this formula into polynomials in N[q, t]. Thus, the general problem of establishing the Schur

positivity of ∆eken seems to require new ideas.

3.2 Proof of gλ ∈ N[q, t] by direct computation

To show that gλ ∈ N[q, t], it is sufficient to show that gλ has a non-negative q, t-analogue

expansion, which is a stronger condition than gλ ∈ N[q, t]. For instance, q2+t2 ∈ N[q, t], but

q2+t2 = [3]q,t−qt [1]q,t does not have non-negative q, t-analogue expansion.

In this section, we shall give a recursive formula for gλ for any λ ` n to show that gλ has

non-negative q, t-analogue expansion.

3.2.1 Preliminaries

First, we should mention the fact that

(id−τ)t jqi

t−q
=−(id−τ)t iq j

t−q
and

(id−τ)t iq j

t−q
= (tq) j[i− j]q,t , if i≥ j.
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Recall that by plethystic notation, we have

sλ ′[x0+x1+x2] := ∑
T

xω0(T )
0 xω1(T )

1 xω2(T )
2 ,

where the sum is over all semi-standard Young tableaux T of shape λ ′ filled with numbers 0,1,2,

and ωi(T ) is the number of i’s in T . Generic semi-standard Young tableaux T of shape λ ′ are

pictured in Figure 3.1. There is no semi-standard Young tableau with fillings 0,1,2 of more than

three rows, thus

sλ ′[x0+x1+x2] = 0 if `(λ ′)> 3.

Recall that by Lemma 3.2, we have the following formula for gλ :

gλ =
id−τ

t−q
sλ ′[1+t+t2]− sλ ′[1+t+q]

t2−q

=
sλ ′[1+t+t2]− sλ ′[1+t+q]

(t−q)(t2−q)
+

sλ ′ [1+q+q2]− sλ ′[1+q+t]
(t−q)(t−q2)

.

It follows that gλ = 0 if λ ′ has more than 3 rows. Thus we only consider gλ where λ ′ has 3 or

fewer rows.

We let SSYT(λ ′,012) denote the set of all semi-standard Young tableaux T of shape

λ ′ with cells filled by {0,1,2}. Given a semi-standard Young tableau T ∈ SSYT(λ ′,012), we

suppose that T has ω1 1’s and ω2 2’s. Then we define the weight of T to be

gT :=
tω1+2ω2−tω1qω2

(t−q)(t2−q)
+

qω1+2ω2−qω1tω2

(t−q)(t−q2)

=
tω1[ω2]t2,q−qω1 [ω2]q2,t

t−q
.

Then it is clear that

gλ = ∑
T∈SSYT(λ ′,012)

gT .
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We will use the weight gT to deduce a formula for gλ . Note that the weight of T only depends on

the numbers of 1’s and 2’s it contains. We shall use the notation

w(ω1,ω2) :=
tω1[ω2]t2,q−qω1 [ω2]q2,t

t−q
,

thus a tableau T ∈ SSYT(λ ′,012) with ω1 1’s and ω2 2’s has weight

gT = w(ω1,ω2).

Given a tableau T ∈ SSYT(λ ′,012), we can write T in 4 parts as shown in Figure 3.1: a1

is the part with 3 rows, k1 is the part with two rows and the bottom row is filled with 0’s, a2 is

the part with two rows and the bottom row is filled with 1’s, k2 is the part with one row and the

fillings are not 0. If there is no a2 part, there can be a part called a0 at the same place as a2 which

consists of one row filled with 0’s.

In our weighting scheme for T ∈ SSYT(λ ′,012) given below, the weight of any 0 will be 1.

Hence a0 will not contribute anything to gT and we will not consider a0 in our formulas. We define

the set Sλ [a1,k1,a2,k2] to be the collections of T ’s having the part composition [a1,k1,a2,k2].

Since a1 and a2 have the same kind of contribution to the formula, we can define

gλ [a1+a2,k1,k2] := ∑
T∈Sλ [a1,k1,a2,k2]

gT .

· · · 0 · · · 0 · · · 0 1 · · · 1 1 · · · 2

· · · 1 · · · 1 · · · 2 2 · · · 2

· · · 2 · · ·

a1 k1 a2 k2

(a)

or
· · · 0 · · · 0 · · · 0 0 · · · 0 1 · · · 2

· · · 1 · · · 1 · · · 2

· · · 2 · · ·

a1 k1 a0 k2

(b)

Figure 3.1: T ∈ SSYT(λ ′,012).
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Clearly for any λ ` n, gλ can be expressed as a sum of gλ [a,k1,k2]’s by classifying the

tableaux in SSYT(λ ′,012) by part compositions [a1,k1,a2,k2]. We will deduce a formula for

gλ [a,k1,k2], which will in turn allow us to compute an explicit formula for gλ .

3.2.2 The computation of gλ [a,k1,k2]

3.2.2.1 A formula for gλ [0,0,k]

The set S[0,0,0,k] contains the tableaux T of shape
1· · ·2

k
. If there are i 1’s, then there

will be k− i 2’s. Thus we have the following theorem:

Theorem 3.3. gλ [0,0,1] = 0. For k ≥ 2,

gλ [0,0,k] =
b(2k−2)/3c−χ(k=1(mod3))

∑
i=0

(qt)i
[
k−i−b i+1

2 c → 2k−2−3i
]

q,t
. (3.7)

Proof. It is easy to see by direct computation that gλ [0,0,1] = 0. Next observe that for any r ≥ 1,

ω(r,0) = 0. Thus we only need to consider the cases where there is at least one 2 in the tableau.

It follows that

gλ [0,0,k] = ∑
T∈S[0,0,0,k]

gT

=
k−1

∑
i=0

w(i,k−i)

=
k−1

∑
i=0

t i[k−i]t2,q−qi[k−i]q2,t

t−q

=
k−1

∑
i=0

∑
k−1−i
j=0 t2k−2 j−i−2q j−q2k−2 j−i−2t j

t−q

=
k−1

∑
i=0

k−1−i

∑
j=0

(qt) j[2k−3 j−i−2]q,t .
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Now let A(k)
i, j = (qt) j[2k−3 j−i−2]q,t . We have the array {A(8)

i, j : 0≤i≤7 & 0≤ j≤i} pictured

in Figure 3.2 as an example. In general, if one looks at the first row of A(k)
i, j which is the

sequence ((qt) j[2k−3 j−2]q,t), the terms will be non-negative if 2k−2≥ 3 j, or equivalently, if

j≤ b(2k−2)/3c. We shall show that for any negative terms in the first row of the form (qt) j[−m],

the first m+1 terms along the anti-diagonal starting at that position will sum to 0. This will leave

us only with positive terms corresponding to sum stated in the theorem.

For example, in Figure 3.2, one can easily compute that the sum of the first two terms of

the anti-diagonal starting at the term (qt)5[−1]q,t equals 0, the sum of the first five terms of the

anti-diagonal starting at the term (qt)6[−4]q,t equals 0, and the sum of the first eight terms of the

anti-diagonal starting at the term (qt)7[−7]q,t equals 0. These are the terms corresponding to the

green, blue and red diagonals respectively. In this case, we see that gλ [0,0,8] equals

[8→ 14]q,t +qt[6→ 11]q,t +(qt)2[5→ 8]+ (qt)3[3→ 5]+ (qt)4[2→ 2],

which are exactly the terms predicted by the theorem.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

i
j

q,t

q,t

q,t q,t q,t q,t q,t q,t q,t
7(qt)  [−7]

q,t

q,t q,t q,t q,t q,t q,t

q,t q,t q,t q,t q,t

q,tq,tq,tq,tq,t

q,t

q,t

q,t

q,t

q,t

q,t

q,t

q,t

q,t q,t

[14]

[13]

[12]

[11]

[10]

[9]

[8]

[7]

1

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

4

4

4

5

5

5

6

6

(qt)  [11] (qt)   [8] (qt)   [5] (qt)   [2] (qt)  [−1] (qt)  [−4]

(qt)  [10] (qt)   [7] (qt)   [4] (qt)   [1] (qt)  [−2] (qt)  [−5]

(qt)   [9] (qt)   [6] (qt)   [3] (qt)   [0] (qt)  [−3]

(qt)   [8] (qt)   [5] (qt)   [2] (qt)  [−1]

(qt)   [7] (qt)   [4] (qt)   [1]

4

(qt)   [6] (qt)   [3]

(qt)   [5]

Figure 3.2: The table of A(8)
i, j .

The proof requires a careful case by case analysis by considering the parity of k modulo 3.

Note that
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1. if k = 3t, then b(2k−2)/3c= 2t−1,

2. if k = 3t+1, then b(2k−2)/3c= 2t, and

3. if k = 3t+2, then b(2k−2)/3c= 2t.

Case 1. k = 3t.

The negative terms in the first row are

(qt)2t−1+s[6t−2−3(2t−1+s)]q,t = (qt)2t−1+s[−3s+1]q,t

for s = 1, . . . , t. In particular, the last term in the first row equals (qt)3t−1[−3t+1] and the first

negative term is A(3t)
0,2t = (qt)2t [−2].

Then we have two subcases depending on whether s is even or odd.

Subcase 1.1. s = 2r.

In this case, A(3t)
0,2t−1+2r = q2t+2r−1[−6r+1]q,t . We claim that ∑

6r−1
a=0 A(3t)

a,2t−1+2r−a = 0. We shall

prove this by showing that for all 0≤ a≤ 3r−1,

A(3t)
a,2t−1+2r−a =−A(3t)

6r−1−a,2t−1+2r−(6r−1−a) =−A(3t)
6r−1−a,2t−4r+a.
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Note that

A(3t)
a,2t−1+2r−a = (qt)2t−1+2r−a[6t−2−a−3(2t−1+2r−a)]q,t

= (qt)2t−1+2r−a[−6r+1+2a]q,t

= −(qt)2t−1+2r−a−(6r−1−2a)[6r−1+2a]q,t

= −(qt)2t−4r+a[6r−1+2a]q,t .

On the other hand,

A(3t)
6r−1−a,2t−4r+a =

(qt)2t−4r+a[6t−2−(6r−1−a)−3(2t−4r+a)]q,t = (qt)2t−4r+a[6t−1+2a]q,t

as desired.

Subcase 1.2. s = 2r+1.

In this case, A(3t)
0,2t−1+2r+1 = q2t+2r−1[−6r−2]q,t . We claim that ∑

6r+2
a=0 A(3t)

a,2t+2r−a = 0. First

note that

A(3t)
3r+1,2t+2r−(3r+1) = A(3t)

3r+1,2t−r−1 =

(qt)2t−r−1[6t−2−(3r+1)−3(2t−r−1)]q,t = (qt)2t−r−1[0]q,t = 0.

Thus we can prove our claim if we show that if 0≤ a≤ 3r,

A(3t)
a,2t+2r−a =−A(3t)

6r+2−a,2t+2r−(6r+2−a) =−A(3t)
6r+2−a,2t−4r−2+a.
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Note that

A(3t)
a,2t+2r−a = (qt)2t+2r−a[6t−2−a−3(2t+2r−a)]q,t

= (qt)2t+2r−a[−6r−2+2a]q,t

= −(qt)2t+2r−a−(6r+2−2a)[6r+2−2a]q,t

= −(qt)2t−4r−2+a[6r+2−2a]q,t .

On the other hand,

A(3t)
6r+2−a,2t−4r−2+a = (qt)2t−4r−2+a[6t−2−(6r+2−a)−3(2t−4r−2+a)]q,t

= (qt)2t−4r+a[6r+2−2a]q,t .

Observe that the bottom term of the r-th column of the array {A(3t)
i, j }i=0,...,3t−1&0≤ j≤i

is A(3t)
3t−1−r,r. Our computations above show that in the array {A(3t)

i, j }i=0,...,3t−1&0≤ j≤i, the first

3s terms of any anti-diagonal starting at A(3t)
0,2t−1+s sum to 0 for s = 1, . . . , t. This means that

the corresponding terms in the array make no contribution to gλ [0,0,k]. It follows that we can

ignore all the terms in columns 2t, . . . ,3t−1. Note that the first 3t terms of the anti-diagonal

starting at A(3t)
0,3t−1 cancel out the bottom term in each column. Next, the first 3t−3 terms of the

anti-diagonal starting at A(3t)
0,3t−2 reach only to column 2 so they will cancel out the next to last

terms in columns 2, . . . ,2t−1. Then the first 3t−6 terms of the anti-diagonal starting at A(3t)
0,3t−3

reach only to column 4 so they will cancel out the second to last terms in columns 4, . . . ,2t−1.

Continuing on in this way, we finally see that the 3 anti-diagonal terms starting at A(3t)
0,2t will only

cancel out terms in columns 2t−2 and 2t−1. It follows that for r = 0, . . . , t−1, we can ignore that

last r+1 terms in columns 2r and 2r+1. This means that if 0≤ r ≤ t−1, the lowest term that can
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contribute to gλ [0,0,k] in column 2r is

A(3t)
3t−1−2r−(r+1),2r = A(3t)

3t−3r−2,2r = (qt)2r[6t−2−(3t−3r−2)−3(2r)]q,t

= (qt)2r[3t−3r]q,t = [3t−(2r)−b2r+1/2c]q,t .

Note that the top element in column 2r is A(3t)
0,2r = (qt)2r[3t−2−3(2r)]q,t . Since the q, t-numbers

of the terms in column 2r increase by 1 as one moves up, it follows that the contribution of column

2r to gλ [0,0,k] is (qt)2r[k−(2r)−b2r+1/2c → 2k−2−3(2r)]q,t as predicted by our formula.

Similarly, if 0 ≤ r ≤ t− 1, the lowest term that can contribute to gλ [0,0,k] in column

2r+1 is

A(3t)
3t−1−(2r+1)−(r+1),2r+1 = A(3t)

3t−3r−3,2r+1 = (qt)2r+1[6t−2−(3t−3r−3)−3(2r+1)]q,t

= (qt)2r+1[3t−3r−2]q,t = [3t−(2r+1)−b2r+2/2c]q,t .

Note that the top element in column 2r+1 is A(3t)
0,2r+1 = (qt)2r+1[3t−2−3(2r+1)]q,t . Since the

q, t-numbers in the terms in column 2r+1 increase by 1 as one moves up, it follows that the con-

tribution of column 2r+1 to gλ [0,0,k] is (qt)2r+1[k−(2r+1)−b2r+1/2c → 2k−2−3(2r+1)]q,t

as predicted by our formula.

Thus our formula holds in this case.

Case 2. k = 3t+1.

The negative terms in the first row are

(qt)2t+s[6t+2−2−3(2t+s)]q,t = (qt)2t+s[−3s]q,t

for s = 1, . . . , t. In particular, the last term in the first row equals (qt)3t [−3t] and the first negative
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term is A(3t+1)
0,2t+1 = (qt)2t+1[−3].

Then as in Case 1, we have two subcases depending on whether s is even or odd.

Subcase 2.1. s = 2r.

In this case, A(3t+1)
0,2t+2r = q2t+2r[−6r]q,t . We claim that ∑

6r
a=0 A(3t)

a,2t−1+2r−a = 0. First observe

that

A(3t+1)
3r,2t+2r−(3r) = q2t−r[6t+2−2−3r−3(2t−r)]q,t = q2t−r[0]q,t .

Thus we can prove our claim by showing that for 0≤ a≤ 3r−1,

A(3t+1)
a,2t+2r−a =−A(3t+1)

6r−a,2t+2r−(6r−a).

This is a straightforward computation so we will not include the details here.

Subcase 2.2. s = 2r+1.

In this case, A(3t+1)
0,2t+2r+1 = q2t+2r+1[−6r−3]q,t . We claim that ∑

6r+3
a=0 A(3t+1)

a,2t+2r+1−a = 0. In this

case, one can easily check that 0≤ a≤ 3r+1,

A(3t+1)
a,2t+2r+1−a =−A(3t+1)

6r+3−a,2t+2r+1−(6r+3−a)

so we shall not include the details here.

Next observe that the bottom term of the array {A(3t+1)
i, j }i=0,...,3t & 0≤ j≤i in the r-th column

is A(3t+1)
3t−r,r . Our computations above show that in the array {A(3t+1)

i, j }i=0,...,3t & 0≤ j≤i, the first 3s+1

terms of any anti-diagonal terms starting at A(3t+1)
0,2t+s sum to 0 for s = 1, . . . , t. This means that

the corresponding terms in the array make no contribution to gλ [0,0,k]. It follows that we can
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ignore all the terms in columns 2t+1, . . . ,3t. One can use a similar reasoning as we used in

Case 1 to show that for r = 0, . . . , t−1, we can ignore the bottom r+1 terms in columns 2r and

2r+1. Moreover, we can ignore the bottom t terms in column 2t. This is because A(3t+1)
0,2t+1 = [−3],

which means that the first four terms of the anti-diagonal starting at A(3t+1)
0,2t+1 will cancel terms in

columns 2t−2, 2t−1, and 2t. It follows that if 0≤ r ≤ t−1, the lowest term that can contribute to

gλ [0,0,k] in column 2r is

A(3t+1)
3t−2r−(r+1),2r = A(3t+1)

3t−3r−1,2r = (qt)2r[6t+2−2−(3t−3r−1)−3(2r)]q,t

= (qt)2r[3t−3r+1]q,t = [3t+1−(2r)−b2r+1/2c]q,t .

Note that the top element in column 2r is A(3t+1)
0,2r = (qt)2r[2(3t+1)−2−3(2r)]q,t . Since the q, t-

numbers in the terms in column 2r increase by 1 as one moves up, it follows that the contribution

of column 2r to gλ [0,0,k] is (qt)2r[k−(2r)−b2r+1/2c → 2k−2−3(2r)]q,t as predicted by our

formula.

Similarly, if 0 ≤ r ≤ t−1, the lowest term that can contribute to gλ [0,0,k] in column

2r+1 is

A(3t+1)
3t−(2r+1)−(r+1),2r+1 = A(3t+1)

3t−3r−2,2r+1 = (qt)2r+1[6t+2−2−(3t−3r−2)−3(2r+1)]q,t

= (qt)2r+1[3t−3r−1]q,t = [(3t+1)−(2r+1)−b2r+2/2c]q,t .

Note that the top element in column 2r+1 is A(3t+1)
0,2r+1 = (qt)2r+1[2k−2−3(2r+1)]q,t . Since the

q, t-numbers in the terms in column 2r+1 increase by 1 as one moves up, it follows that the con-

tribution of column 2r+1 to gλ [0,0,k] is (qt)2r+1[k−(2r+1)−b2r+1/2c → 2k−2−3(2r+1)]q,t

as predicted by our formula.
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Finally in column 2t, the lowest term that can contribute to gλ [0,0,k] is

A(3t+1)
3t−(2t)−(t),2r+1 = A(3t+1)

0,2t = (qt)2t [6t+2−2−3(2t)]q,t

= (qt)2t [0]q,t .

Thus this column makes no contribution which is why we exclude this term from the sum.

Note that in this case, 3t+1−2t−b2t+1c = 1 while 2k−2−3(2t) = 6t+2−2−6t = 0 so that

[k−2t−b2t+1c → 2k−2−3(6t)] = [1→ 0] which is an empty sum.

Thus our formula holds in this case.

Case 3. k = 3t+2.

The negative terms in the first row are

(qt)2t+s[6t+4−2−3(2t+s)]q,t = (qt)2t+s[−3s+2]q,t

for s = 1, . . . , t+1. In particular, the last term in the first row equals (qt)3t+1[−3t−1] and the first

negative term is A(3t+2)
0,2t+1 = (qt)2t+1[−1].

Then as before, we have two subcases depending on whether s is even or odd.

Subcase 3.1. s = 2r.

In this case, A(3t+2)
0,2t+2r = q2t+2r[−6r+2]q,t . We claim that ∑

6r−2
a=0 A(3t)

a,2t−1+2r−a = 0. First observe

that

A(3t+2)
3r−1,2t+2r−(3r−1) = q2t−r+1[6t+4−2−(3r−1)−3(2t−r+1)]q,t = q2t−r+1[0]q,t .
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Thus we can prove our claim by showing that for 0≤ a≤ 3r−2,

A(3t+2)
a,2t+2r−a =−A(3t+2)

6r−2−a,2t+2r−(6r−2−a).

This is a straightforward computation so we will not include the details here.

Subcase 3.2. s = 2r+1.

In this case, A(3t+2)
0,2t+2r+1 = q2t+2r+1[−6r−1]q,t . We claim that ∑

6r+1
a=0 A(3t+2)

a,2t+2r+1−a = 0. One can

easily check that for 0≤ a≤ 3r,

A(3t+1)
a,2t+2r+1−a =−A(3t+1)

6r+1−a,2t+2r+1−(6r+1−a),

so we shall not include the details here.

Next we observe that the bottom term of the array {A(3t+2)
i, j }i=0,...,3t & 0≤ j≤i in the r-th

column is A(3t+2)
3t+1−r,r. Our computations above have shown that in the array {A(3t+2)

i, j }i=0,...,3t+1
0≤ j≤i

,

the first 3s− 1 terms of any anti-diagonal starting at A(3t+2)
0,2t+s sum to 0 for s = 1, . . . , t+1. This

means that the corresponding terms in the array make no contribution to gλ [0,0,k]. It follows

that we can ignore all the terms in columns 2t+1, . . . ,3t+1. One can use a similar reasoning

as we used in Case 1 to show that for r = 0, . . . , t−1, we can ignore the bottom r+1 terms in

columns 2r and 2r+1. We can also ignore the bottom t+1 terms in column 2t. This is because

A(3t+2)
0,2t+1 = (qt)2t+1[−1], so that the sum of the first two anti-diagonal terms starting at A(3t+2)

0,2t+1 will

only cancel elements in columns 2t and 2t+1.

This means that if 0≤ r≤ t−1, the lowest term that can contribute to gλ [0,0,k] in column
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2r is

A(3t+2)
3t+1−2r−(r+1),2r = A(3t+2)

3t−3r,2r = (qt)2r[6t+4−2−(3t−3r)−3(2r)]q,t

= (qt)2r[3t−3r+2]q,t = [3t+2−(2r)−b2r+1/2c]q,t .

Note that the top element in column 2r is A(3t+2)
0,2r = (qt)2r[2(3t+2)−2−3(2r)]q,t . Since the q, t-

numbers in the terms in column 2r increase by 1 as one moves up, it follows that the contribution

of column 2r to gλ [0,0,k] is (qt)2r[k−(2r)−b2r+1/2c → 2k−2−3(2r)]q,t as predicted by our

formula.

Similarly, if 0≤ r≤ t−1, the lowest term that can contribute to gλ [0,0,k] in column 2r+1

is

A(3t+2)
3t+1−(2r+1)−(r+1),2r+1 = A(3t+2)

3t−3r−1,2r+1 = (qt)2r+1[6t+4−2−(3t−3r−1)−3(2r+1)]q,t

= (qt)2r+1[3t−3r]q,t = [(3t+2)−(2r+1)−b2r+2/2c]q,t .

Note that the top element in column 2r+1 is A(3t+2)
0,2r+1 = (qt)2r+1[2(3t+2)−2−3(2r+1)]q,t . Since

the q, t-numbers in the terms in column 2r+1 increase by 1 as one moves up, it follows that the

contribution of column 2r+1 to gλ [0,0,k] is

(qt)2r+1[k−(2r+1)−b2r+1/2c → 2k−2−3(2r+1)]q,t as predicted by our formula.

Finally for column 2t, the lowest term that can contribute to gλ [0,0,k] in column 2t is

A(3t+2)
3t+1−(2t)−(t+1),2t = A(3t+2)

0,2t = (qt)2t [6t+4−2−3(2t)]q,t

= (qt)2t [2]q,t = [(3t+2)−(2t)−b2t+1/2c]q,t .

It follows that the contribution of column 2t to gλ [0,0,k] is

(qt)2t [k−(2t)−b2t+1/2c → 2k−2−3(2t)]q,t = (qt)2t [2] as predicted by our formula.

Thus our formula holds in this case which completes our proof.
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For example, we have

gλ [0,0,12] =
7

∑
i=0

(qt)i
[
12−i−b i+1

2 c → 22−3i
]

q,t

= [12→ 22]q,t +(qt)[10→ 19]q,t +(qt)2[9→ 16]q,t +(qt)3[7→ 13]q,t

+(qt)4[6→ 10]q,t +(qt)5[4→ 7]q,t +(qt)6[3→ 4]q,t +(qt)7[1]q,t .

3.2.2.2 A formula for gλ [a,0,k]

We have the following theorem about gλ [a,0,k].

Theorem 3.4. For any a,k ≥ 0, we have

gλ [a,0,k] = (qt)agλ [0,0,k]+
a

∑
i=1

(qt)a−i[k+3i→ 2k+3i]q,t .

Proof. We have

gλ [a,0,k] = ∑
T∈S[a,0,0,k]

gT

=
k

∑
i=0

w(a+i,a+k−i)

=
k

∑
i=0

ta+i[a+k−i]t2,q−qa+i[a+k−i]q2,t

t−q
.

Notice that

[a+k−i]t2,q = qa[k−i]t2,q +
a−1

∑
j=0

t2(k−i+a− j−1)q j (3.8)

and

[a+ k− i]q2,t = ta[k−i]q2,t +
a−1

∑
j=0

q2(k−i+a− j−1)t j, (3.9)
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we can get the following equation by plugging in Equation (3.8) and Equation (3.9):

gλ [a,0,k] = taqa
k

∑
i=0

t i[k−i]t2,q−qi[k−i]q2,t

t−q

+
k

∑
i=0

a−1

∑
j=0

(qt) j t
2k−i+3a−3 j−2−q2k−i+3a−3 j−2

t−q

= (qt)agλ [0,0,k]+
a−1

∑
j=0

(qt) j
k

∑
i=0

[2k−i+3a−3 j−2]q,t

= (qt)agλ [0,0,k]+
a−1

∑
i=0

(qt)i[k+3a−3i−2→ 2k+3a−3i−2]q,t

= (qt)agλ [0,0,k]+
a

∑
i=1

(qt)a−i[k+3i−2→ 2k+3i−2]q,t .

3.2.2.3 The computation of gλ [a,k1,k2]

We shall add the component k1 to complete the formula. Note that the function

gλ [a,k1,k2] = gλ [a,k2,k1]. Without loss of generality, we suppose k1 ≤ k2.

Theorem 3.5. For non-negative integers k1 ≤ k2 and a, we have

gλ [a,k1,k2] =
k1

∑
i=0

gλ [a+i,0,k1+k2−2i].

Proof.

gλ [a,k1,k2] = ∑
T∈S[a,k1,0,k2]

gT

=
k1

∑
j=0

k2

∑
i=0

w(a+i+ j,a+k1+k2−i− j)

=
k1

∑
i=0

k1+k2−2i

∑
j=0

w(a+i+ j,a+k1+k2−i− j)

=
k1

∑
i=0

gλ [a+ i,0,k1 + k2−2i].
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3.2.3 The formula for gλ

For any λ = (3a2b1c), λ ′ has the shape a b c . We can then write the formula of gλ

in terms of gλ [x,y,z].

Theorem 3.6. Let λ = (3a2b1c) where a,b,c are non-negative integers. Then

gλ =
b

∑
i=0

gλ [a+i,b−i,c]+
c

∑
i=1

gλ [a,b,c−i].

Proof. The first term ∑
b
i=0 gλ [a+i,b−i,c] sums over all the cases in Figure 3.1(a) and the second

term ∑
c
i=0 gλ [a,b,c−i] sums over all the cases in Figure 3.1(b).

Thus, we have a complete recursive formula for gλ . The recursive formula for gλ not

only shows that gλ is Schur positive in q, t-analogues, also gives us a way of writing gλ into

q, t-analogues and powers of (qt). For example, suppose λ = 14. Then λ ′ = (4) so that taking

into account the possible numbers of 0’s in a tableau T ∈ SSY T ((4),012), we see that

g(14) = gλ [0,0,0]+gλ [0,0,1]+gλ [0,0,2]+gλ [0,0,3]+gλ [0,0,4].

In the right hand side, gλ [0,0,0] = gλ [0,0,1] = 0, and we can apply Theorem 3.3 to compute

gλ [0,0,2] =
0

∑
i=0

(qt)i[2−i−b(i+1)/2c → 4−2−3i]q,t = [2]q,t ,

gλ [0,0,3] =
1

∑
i=0

(qt)i[3−i−b(i+1)/2c → 6−2−3i]q,t

= [3→ 4]+ (qt)[1→ 1] = [3]q,t +[4]q,t +(qt)[1]q,t ,
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and

gλ [0,0,4] =
1

∑
i=0

(qt)i[4−i−b(i+1)/2c → 8−2−3i]q,t

= [4→ 6]+ (qt)[2→ 3]

= [4]q,t +[5]q,t +[6]q,t +qt([2]q,t +[3]q,t).

Thus

g(14) = [2]q,t +[3]q,t +2[4]q,t +[5]q,t +[6]q,t +qt([1]q,t +[2]q,t +[3]q,t).

In general, we see that

〈∆e2en,en〉=
n

∑
s=2

gλ [0,0,s].

We claim that gλ [0,0,n] is a q, t-analogue of 2
(n+1

3

)
. To see this, we shall use a formula of

[HRW18] to show that

〈∆e2en,en〉|q=t=1 = 2
(

n+2
4

)
from which it follows that

gλ [0,0,n]|q=t=1 = 〈∆e2en,en〉|q=t=1−〈∆e2en−1,en−1〉|q=t=1

= 2
(

n+2
4

)
−2
(

n+1
4

)
= 2
(

n+1
3

)
.

It is proved in [HRW18] that

∆eken|t=1/q =
q(

k
2)−k(n−1)

[k+1]q

[n
k

]
q

en[X(1+q+ · · ·+qk)]. (3.10)
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Repeatedly applying the sum rule that

sλ [X +Y ] = ∑
µ⊆λ

sµ [X ]sλ/µ [Y ],

we see that

∆eken|t=1/q =
q(

k
2)−k(n−1)

[k+1]q

[n
k

]
q

∑
is≥0

i0+i1+···+ik=n

k

∏
s=0

eis[q
sX ]

=
q(

k
2)−k(n−1)

[k+1]q

[n
k

]
q

∑
is≥0

i0+i1+···+ik=n

k

∏
s=0

qsiseis.

It follows that

〈∆eken,en〉|t=1/q =
q(

k
2)−k(n−1)

[k+1]q

[n
k

]
q

∑
is≥0

i0+i1+···+ik=n

k

∏
s=0

qsis.

It is easy to see that

∑
is≥0

i0+i1+···+ik=n

k

∏
s=0

qsis =

[
n+ k

k

]
q

since the LHS is the sum of q|λ | over all partitions λ contained in the n× k rectangle. Thus,

〈∆eken,en〉|t=1/q =
q(

k
2)−k(n−1)

[k+1]q

[n
k

]
q

[
n+ k

k

]
q
. (3.11)

Setting q = 1 and k = 2 in (3.11), we see that

〈∆e2en,en〉|q=t=1 =
1
3

n!
2!(n−2)!

(n+2)!
2!n!

=
4
2

(n+2)!
4!(n−2)!

= 2
(

n+2
4

)
.

We shall apply our formula to compute another example at the end of this section. Consider

λ = (2,12) so that λ ′ = (3,1). In this case, we can classify the tableaux
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T ∈ SSYT((3,1),012) by whether the bottom left corner square contains a 1, in which case we

get a term gλ [1,0,2], or the bottom corner square contains a 0, in which case we get a contribution

of gλ [0,1,2], gλ [0,1,1], or gλ [0,1,0], depending on the number of 0’s in the first row. Since

gλ [0,1,0] = gλ [0,0,1] = 0, by Theorem 3.5, we have

gλ [0,1,1] =
1

∑
i=0

gλ [i,0,2−2i]

= gλ [0,0,2]+gλ [1,0,0]

= [2]q,t +gλ [1,0,0],

and

gλ [0,1,2] =
1

∑
i=0

gλ [i,0,3−2i]

= gλ [0,0,3]+gλ [1,0,1]

= [3]q,t +[4]q,t +qt +gλ [1,0,1].

By Theorem 3.4, we have

gλ [1,0,0] = (qt)gλ [0,0,0]+ [3→ 3] = [1]q,t ,

gλ [1,0,1] = (qt)gλ [0,0,1]+ [4→ 5] = [2]q,t +[3]q,t , and

gλ [1,0,2] = (qt)gλ [0,0,2]+ [3→ 5]

= (qt)[2]q,t +[3]q,t +[4]q,t +[5]q,t .

It follows that

g12,2 = [1]q,t +2[2]q,t +3[3]q,t +2[4]q,t +[5]q,t +(qt)([1]q,t +[2]q,t).
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3.3 The ∆e3en case

For the case ∆e3en, we shall do a similar computation. First we compute the modified

Macdonald polynomial expansion of e4:

e4 =
H̃4[X ;q, t]

(q−t)(q2−t)(q3−t)
−
(
q2+q+t+1

)
H̃3,1[X ;q,t]

(q+t)(q3−t)(q−t)2 −
(qt−1) H̃2,2[X ;q, t]

(−t2+q)(q2−t)(q−t)2

+

(
t2+q+t+1

)
H̃2,1,1[X ;q, t]

(q+t)(−t3+q)(q−t)2 −
H̃1,1,1,1[X ;q, t]

(q−t)(−t3+q)(−t2+q)
.

By applying Lemma 3.1, we have

〈∆e3en, sλ 〉= 〈∆s
λ ′e4, s4〉

=
sλ ′[B4]

(q−t)(q2−t)(q3−t)
−
(
q2+q+t+1

)
sλ ′[B3,1]

(q+t)(q3−t)(q−t)2 −
(qt−1)sλ ′[B2,2]

(−t2+q)(q2−t)(q−t)2

+

(
t2+q+t+1

)
sλ ′ [B2,1,1]

(q+t)(−t3+q)(q−t)2 −
sλ ′[B1,1,1,1]

(q−t)(−t3+q)(−t2+q)
.

By applying partial fraction decomposition, the best formula we obtain is

〈∆e3en, sλ 〉=
Fλ (q, t)−Fλ (t,q)

q− t
−sλ ′[1+q+t+q2]/q2− sλ ′[1+q+t+t2]/t2

2(q2−t2)
, (3.12)

where Fλ = Fλ (q, t) is given by

Fλ =
sλ ′[1+q+q2+q3]− sλ ′[1+q+t+qt]

(q−1)q2 (q2−t)
− sλ ′[1+q+q2+q3]− sλ ′[1+q+t+q2]

q2 (q−1)(q3−t)

− (q+1)(sλ ′[1+q+t+q2]− sλ ′[1+q+t+qt])
2(q−t)q2 (q−1)

+
sλ ′[1+q+t+qt]

2q2t
.

One can use this formula to prove that 〈∆e3en, sλ 〉 is a polynomial in N[q, t]. Nevertheless,

it is clear that this approach becomes more and more complicated so that the proof of the general

∆eken case seems to require new ideas.
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Chapter 4

Conjectures about the expression ∆′ek
∆hren

We have introduced the Delta Conjecture of Haglund, Remmel and Wilson [HRW18]

about the expressions ∆′ek
en and ∆eken, which are important open problems in algebraic combina-

torics. In the same paper, Haglund et al. gave a conjecture about the Delta operator expression

∆′ek
∆hren, which is analogous to the rise version of the Delta Conjecture of ∆′ek

en. Very recently,

D’Adderio, Iraci and Wyngaerd in [DIW19] proved the rise version conjecture of the expression

∆′ek
∆hren at the case when t = 0.

In this chapter, we shall propose a new valley version conjecture of the expression ∆′ek
∆hren.

Then, we work on the combinatorial side on extended ordered multiset partitions to prove that the

two conjectures about ∆′ek
∆hren are equivalent at the cases when t or q equals 0, thus give a proof

of the valley version conjecture of ∆′ek
∆hren when t or q equals 0.

4.1 Introduction

In the origin Delta Conjecture paper of Haglund, Remmel and Wilson [HRW18], the

authors used an alternative combinatorial object called labeled Dyck path (we shall also use the

name word parking function), which makes an equivalent combinatorial formulation as normal

parking functions.
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Given an (n,n)-Dyck path P, an (n,n)-word parking functions PF is obtained by labeling

the north steps of P with positive integers such that the labels (called cars) are strictly increasing

along each column of P. We still let `i(PF) be the ith row label of PF. Notice that the only

difference with a normal parking function is that we use any positive integers as cars (with

repetitions allowed) rather than the distinct integers {1, . . . ,n}. We letWPFn denote the set of

(n,n)-word parking functions. We shall call PF ∈WPFn a parking function without causing

ambiguity.

The statistics of parking functions can be naturally generalized to the set of word parking

functions. Thus we have the statistics area, dinv, word, rank, ides, pides defined onWPFn in

the same way as in Section 1.2.2. Further, we have the sets valley(PF), Rise(PF) and Val(PF)

defined in the same way as in Setion 1.3.3. For a word parking function PF ∈WPFn, we define

the label weight (or car weight) of PF to be

XPF :=
n

∏
i=1

x`i(PF).

Then the Delta Conjecture can also be stated as

Conjecture 4.1 (Haglund, Remmel and Wilson). For any integers n > k ≥ 0,

∆
′
ek

en = ∑
PF∈WPFn

tarea(PF)qdinv(PF)XPF
∏

i∈Rise(PF)
(1+

z
tai(PF)

)

∣∣∣∣
zn−k−1

(4.1)

= ∑
PF∈WPFn

tarea(PF)qdinv(PF)XPF
∏

i∈Val(PF)
(1+

z
qdi(PF)+1

)

∣∣∣∣
zn−k−1

. (4.2)

Notice that the component Fides(PF) in the previous version of the Delta Conjecture is replaced by

the car weight XPF. Based on our previous definition, the right hand sides of Equations (4.1) and

(4.2) are denoted by Risen,k[X ;q, t] and Valn,k[X ;q, t].

Consider the factor tarea(PF)
∏i∈Rise(PF)(1+

z
tai(PF) )

∣∣∣
zn−k−1

in Equation (4.1). Each term in

the expansion of this factor is a power of t, and the power is area(PF) minus n− k−1 row-areas
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ai(PF) of the double rise rows. Similarly in the factor qdinv(PF)
∏i∈Val(PF)(1+

z
qdi(PF)+1 )

∣∣∣
zn−k−1

in

Equation (4.2), each term is a power of q, and the power is dinv(PF) minus n− k−1 row-dinvs

(di(PF)+1) of the contractible valley rows. Thus, if we define

WPFRise
n,k := {(PF,R) : P ∈WPFn,R⊆ Rise(PF), |R|= k},

WPFVal
n,k := {(PF,V ) : P ∈WPFn,V ⊆ Val(PF), |V |= k}

and let

area−(PF,R) := ∑
i∈[n]\R

ai(PF),

dinv−(PF,V ) := ∑
i∈[n]\V

di(PF)−|V |,

then

Risen,k[X ;q, t] = ∑
(PF,R)∈WPFRise

n,n−k−1

tarea−(PF,R)qdinv(PF)XPF,

Valn,k[X ;q, t] = ∑
(PF,V )∈WPFVal

n,n−k−1

tarea(PF)qdinv−(PF,V )XPF.

We call a pair (PF,R) ∈WPFRise
n,k (or (PF,V ) ∈WPFVal

n,k ) a rise-decorated (or valley-

decorated) parking function, which can be seen as a parking function PF with k rows in Rise

(or Val) marked with a star ∗. Figure 4.1 shows examples of rise-decorated and valley-decorated

parking functions.

In [HRW18], the author also conjectured a combinatorial formula for the expression

∆′ek
∆hren, and the combinatorial side is a generating function of the set of extended word parking

functions with blank valleys.
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∗

Figure 4.1: Examples: parking functions inWPFRise
7,2 andWPFVal

7,2 .

Given an (n,n)-Dyck path P, remind that the valley set of P is defined to be

valley(P) := {i : ai < ai−1}.

We say that a word-labeling of a Dyck path has r blank valleys if there are r valleys not receiving

a label. Such labeled Dyck paths are called extended word parking functions. We letWPFn;r

denote the set of extended word parking functions of size n+ r with r blank valleys. Figure 4.2

shows an example of a parking function in the setWPF5;2.

2
3
4

5
1

1 0 0
2 1 0
3 2 0
4 2 1
5 3 2
6 2 0
7 2 0
i ai(PF) di(PF)

Figure 4.2: A (7,7)-extended parking function with 2 blank valleys.

A more convenient way to draw an extended word parking function is that, we can fill the

blank valleys with 0’s, thus an extended word parking function is a parking function with labels

in Z≥0 such that 0 does not appear in the first row (since the first row is not a valley).

With 0’s labeled in the blank valley positions, we can define the area and dinv components

ai(PF) and di(PF) on each parking functions inWPFn;r in the same way. We still let Rise(PF) =

{i : ai(PF) = ai−1(PF)+1} denote the double rise set. For sake of labeling the blank valleys with
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0’s, we can define the contractible valley set Val(PF) in the same way as Section 1.3.3.

Further, we can define the set of rise-decorated (or valley-decorated) parking functions

with blank valleys. The set of rise-decorated (or valley-decorated) parking functions with n cars,

r blank valleys and k marked double rises (or contractible valleys) is denoted byWPFRise
r;n,k (or

WPFVal
r;n,k).

The conjecture of Haglund, Remmel and Wilson [HRW18] is

Conjecture 4.2 (rise conjecture of ∆′ek
∆hren of Haglund, Remmel and Wilson). For any positive

integers n, k, and r with k < n,

∆
′
ek

∆hren+r = ∑
PF∈WPFn;r

tarea(PF)qdinv(PF)xPF
∏

i∈Rise(PF)

(
1+

z
tai(PF)

)∣∣∣∣
zn−k−1

.

By labeling the blank valleys with 0’s, we are able to conjecture that

Conjecture 4.3 (valley conjecture of ∆′ek
∆hren). For any positive integers n, k, and r with k < n,

∆
′
ek

∆hren+r = ∑
PF∈WPFn;r

tarea(PF)qdinv(PF)xPF
∏

i∈Val(PF)

(
1+

z
qdi(PF)+1

)∣∣∣∣
zn−k−1

.

We let Riser;n,k[X ;q, t] denote the combinatorial side of Conjecture 4.2 and Valr;n,k[X ;q, t]

denote the combinatorial side of Conjecture 4.3. Notice that the combinatorial sides of the

two conjectures could also be written as generating functions of the sets WPFRise
r;n,n−k−1 and

WPFVal
r;n,n−k−1.

The rise version conjecture of ∆′ek
∆hren is well studied. Very recently, D’Adderio, Iraci

and Wyngaerd [DIW19] proved this conjecture in the case t = 0. However, the valley version

conjecture of ∆′ek
∆hren is new and has not appeared anywhere before. We believe that the valley

version conjecture is true since we have verified the conjecture for n≤ 10 by Maple programs,

and we have also proved the valley version conjecture at the case when t or q is zero.

In Section 4.2, we shall introduce ordered multiset partitions, extended ordered multiset
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partitions and their connections to the Delta expression conjectures. In Section 4.3, we shall

prove that the statistics inv, maj and dinv are equi-distributed by three insertion algorithms. In

Section 4.4, we shall prove that the statistics inv and minimaj are equi-distributed by generalizing

a method of Rhoades [Rho18], which completes a proof of the valley version conjecture of

∆′ek
∆hren when t or q equals 0.

4.2 Extended ordered multiset partitions

4.2.1 Ordered set partitions and ordered multiset partitions

Let n ≥ 0 be any integer. A set partition π of the set [n] = {1, . . . ,n} is a family of

nonempty, pairwise disjoint subsets B1,B2, . . . ,Bk of [n] called parts (or blocks) such that∪k
i=1Bi =

[n]. We let `(π) denote the number of parts in π and |π|= n denote the size of π . We let min(Bi)

and max(Bi) denote the minimum and maximum elements of Bi and we use the convention

that we order the parts so that min(B1) < · · · < min(Bk). To simplify notation, we shall write

π as B1/ · · ·/Bk. Thus we would write π = 134/268/57 for the set partition π of [8] with parts

B1 = {1,3,4}, B2 = {2,6,8} and B3 = {5,7}.

An ordered set partition with underlying set partition π is just a permutation of the

parts of π , i.e. δ = Bσ1/ · · ·/Bσk for some permutation σ in the symmetric group Sk. For

example, δ = 57/134/268 is an ordered set partition of the set [8] with underlying set partition

π = 134/268/57.

Let π = B1/ · · ·/Bk be an ordered set partition of [n]. The strong composition λ (π) =

(|B1|, . . . , |Bk|) is called the shape of π . We let OPn denote the set of ordered set partitions of

[n], and OPn,k denote the set of ordered set partitions of [n] with k parts. Further, we let OPn,α

denote the set of ordered set partitions of [n] with shape α .

More generally, for a weak composition β = β1 · · ·β` � n, an ordered multiset partition

with content β is defined to be a partition of the multiset A(β ) = {iβi : 1 ≤ i ≤ `} into several
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ordered sets called blocks where repetition is not allowed in each block. We denote the set of

ordered multiset partitions with content β by OPβ . Similar, we have OPβ ,k and OPβ ,α . For

example, π = 234/26/123 is an ordered multiset partition in OP(1,3,2,1,0,1),(3,2,3).

We shall define 4 statistics: inv, maj, dinv and minimaj on ordered multiset partitions.

Given π = B1/ · · ·/Bk ∈ OPβ ,k, the inversion statistic inv(π) is defined to be the number

of pairs a > b such that b is the minimum of its block, and a is in some block that is strictly left of

b’s block. Such pairs are called inversion pairs. For example, π = 134/268/57 has 4 inversions,

and the inversion pairs are (3,2),(4,2),(6,5),(8,5).

For an ordered partition π = B1/ · · ·/Bk ∈ OPβ ,k, let Bh
i denote the hth smallest element

in part Bi, then the diagonal inversion of π is defined to be

dinv(π) := |{(h, i, j) : i < j,Bh
i > Bh

j}∪{(h, i, j) : i < j,Bh
i > Bh+1

j }|,

where the triples in the left set are called primary dinvs, and the triples in the right set are called

secondary dinvs. For example, π = 134/268/57 has 4 dinvs, which are all secondary dinvs:

(1,1,2),(1,1,3),(1,2,3),(2,1,2).

We let σ =σ(π) of a partition π ∈OPβ ,k be the word obtained by writing each block Bi in

decreasing order for i = 1 · · ·k. We also define the index word index(π) = 0|B1|1|B2| · · ·(k−1)|Bk|.

Then the major index of π is

maj(π) := ∑
i:σi>σi+1

index(π)i+1.

For example, if π = 134/268/57, then σ = 43186275, index(π) = 00011122 and maj(π) =

0+0+1+1+2 = 4.

Given π = B1/ · · ·/Bk ∈ OPβ ,α where α = (α1, . . . ,αk), we first construct a word

miniword(π) by organizing the elements in each block and list the organized blocks B1, . . . ,Bk.

We first organize the numbers in Bk in increasing order. Then suppose that we have processed
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block Bi+1, we shall organize the numbers in Bi by placing the numbers strictly bigger than

the first number of Bi+1 first in increasing order, followed by the remaining numbers also in

increasing order, then we place the organized numbers on the left of the existing sequence. For

example, if π = 2/34/13/13/2, then miniword(π) = 23413312. The minimum major index of π

is defined by

minimaj(π) := maj(miniword(π)).

The four statistics are closely related to the Delta Conjecture. Let

Dstat
β ,k(q) := ∑

π∈OPβ ,k

qstat(π)

where stat is one of the statistics inv, maj, dinv, minimaj, Haglund, Remmel and Wilson in

[HRW18] proved that

Theorem 4.1 (Haglund, Remmel and Wilson). For any integers n,k and weak composition β ,

Risen,k[X ;q,0]|Mβ
= Ddinv

β ,k+1(q), (4.3)

Risen,k[X ;0,q]|Mβ
= Dmaj

β ,k+1(q), (4.4)

Valn,k[X ;q,0]|Mβ
= Dinv

β ,k+1(q), (4.5)

Valn,k[X ;0,q]|Mβ
= Dminimaj

β ,k+1 (q). (4.6)

They proved Theorem 4.1 by constructing 4 bijections of the form γstat for stat = dinv,

maj, inv and minimaj between ordered multiset partitions and word parking functions. We present

the four bijections in Appendix A. It is a fact that for any ordered multiset partition π , each

bijection γstat maps the the minimum element in the last part of π to the car in the first row in the

parking function γstat(π) mentioned in Appendix A. We are going to use the fact when we prove

Theorem 4.3.

On the combinatorial side, Wilson [Wil16] and Rhoades [Rho18] proved the following
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theorem:

Theorem 4.2 (Rhoades and Wilson). For any integers n,k,

Risen,k(X ;q,0) = Risen,k(X ;0,q) = Valn,k(X ;q,0) = Valn,k(X ;0,q). (4.7)

4.2.2 Extended permutations, extended ordered set and multiset partitions

We shall generalize the definitions of permutations, ordered set partitions and ordered

multiset partitions in the way that the number 0 is allowed to be an entry.

Let β = {β1, . . . ,β`} � n be a weak composition and A(β ) = {iβi : 1 ≤ i ≤ `} be its

corresponding multiset. A permutation of A(β ) is an ordering of the entries in the multiset A(β ).

We let Sβ denote the set of permutations of A(β ).

Given a weak composition β � n and an integer r ≥ 0, an extended permutation (or a tail

positive permutation) is a permutation of the multiset A(β )∪{0r} such that the last entry is not 0.

We let Sr;β denote the set of extended permutations of A(β )∪{0r}. Clearly, S0;β = Sβ .

In a similar way, one can define extended ordered set and multiset partitions. We let

OP1;n denote the set of extended ordered set partitions, which are ordered set partitions of the set

{0}∪{1, . . . ,n} such that the number 0 is not contained in the last block. Similar to the definition

of OPn,k and OPn,α , we have OP1;n,k and OP1;n,α .

An extended ordered multiset partition with content β � n with r 0’s is an ordered multiset

partition of the set A(β )∪{0r} such that 0 is not contained in the last block. We letOPr;β denote

the set of all such extended ordered multiset partitions. Similarly, we have OPr;β ,k and OPr;β ,α .

The above three new combinatorial objects are defined from the same idea that they do not

end with 0, and extended ordered multiset partitions have nice combinatorial properties. It is easy

107



to check that all the for statistics: inv, maj, dinv, minimaj are well defined on the set OPr;β ,α . Let

Dstat
r;β ,k(q) := ∑

π∈OPr;β ,k

qstat(π)

where stat is one of the statistics inv, maj, dinv, minimaj. Using the notation of decorated parking

functions with blank valleys, we have

Riser;n,k[X ;q, t] = ∑
(PF,R)∈WPFRise

r;n,n−k−1

tarea−(PF,R)qdinv(PF)xPF,

Valr;n,k[X ;q, t] = ∑
(PF,V )∈WPFVal

r;n,n−k−1

tarea(PF)qdinv−(PF,V )xPF.

We can prove the following theorem:

Theorem 4.3. For any integers n,k,r and weak composition β ,

Riser;n,k[X ;q,0]|Mβ
= Ddinv

r;β ,k+1(q), (4.8)

Riser;n,k[X ;0,q]|Mβ
= Dmaj

r;β ,k+1(q), (4.9)

Valr;n,k[X ;q,0]|Mβ
= Dinv

r;β ,k+1(q), (4.10)

Valr;n,k[X ;0,q]|Mβ
= Dminimaj

r;β ,k+1(q). (4.11)

Proof. Similar to the definition of OPr;β , we shall let OPall
r;β denote the set of ordered multiset

partitions of the set A(β )∪{0r}, but there is no restriction of the placement of 0 (i.e. 0 is allowed

to be in the last block). Similarly, we have OPall
r;β ,k and OPall

r;β ,α .

Haglund et al. proved Theorem 4.1 by constructing 4 bijections γdinv,γmaj,γ inv,γminimaj
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between ordered multiset partitions and decorated word parking functions:

γ
dinv :OPβ ,k+1 → {(PF,R) ∈WPFRise

n,n−k−1, XPF =
`(β )

∏
i=1

xβi
i , area−(PF,R) = 0},

γ
maj :OPβ ,k+1 → {(PF,R) ∈WPFRise

n,n−k−1, XPF =
`(β )

∏
i=1

xβi
i , dinv(PF) = 0},

γ
inv :OPβ ,k+1 → {(PF,V ) ∈WPFVal

n,n−k−1, XPF =
`(β )

∏
i=1

xβi
i , area(PF) = 0},

γ
minimaj :OPβ ,k+1 → {(PF,V ) ∈WPFVal

n,n−k−1, XPF =
`(β )

∏
i=1

xβi
i , dinv−(PF,V ) = 0}.

The details can be found in Appendix A. If we allow 0 as an element of an ordered multiset

partition, then the four maps can be naturally generalized to the set OPall
r;β ,k, and the range of the

maps are parking functions that allow 0 as a car, i.e. if we letWPFRise+
r;n,k andWPFVal+

r;n,k be the

set of rise and valley decorated word parking function with r 0’s (car 0 is allowed in the first row),

then we have bijections

γ
dinv :OPall

r;β ,k+1 → {(PF,R) ∈WPFRise+
r;n,n−k−1, XPF =

`(β )

∏
i=1

xβi
i , area−(PF,R) = 0},

γ
maj :OPall

r;β ,k+1 → {(PF,R) ∈WPFRise+
r;n,n−k−1, XPF =

`(β )

∏
i=1

xβi
i , dinv(PF) = 0},

γ
inv :OPall

r;β ,k+1 → {(PF,V ) ∈WPFVal+
r;n,n−k−1, XPF =

`(β )

∏
i=1

xβi
i , area(PF) = 0},

γ
minimaj :OPall

r;β ,k+1 → {(PF,V ) ∈WPFVal+
r;n,n−k−1, XPF =

`(β )

∏
i=1

xβi
i , dinv−(PF,V ) = 0}.

We have mentioned the fact below Theorem 4.1 and in Appendix A that each bijection

γstat maps the minimum element in the last part of π into the car in the first row of γstat(π). Since

the set OPr;β ,k contains ordered multiset partitions in OPall
r;β ,k that 0 is not contained in the

last block, the restriction of the maps γstat on the set OPr;β ,k ⊆OPall
r;β ,k is a bijection between

OPr;β ,k and the corresponding set of parking functions with r 0’s but 0 is not allowed in the first
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row, which exactly matches the setWPFRise
r;n,n−k−1 orWPFVal

r;n,n−k−1, and the restriction of the

maps γstat on OPr;β ,k ⊆OPall
r;β ,k are bijections:

γ
dinv :OPr;β ,k+1 → {(PF,R) ∈WPFRise

r;n,n−k−1, XPF =
`(β )

∏
i=1

xβi
i , area−(PF,R) = 0},

γ
maj :OPr;β ,k+1 → {(PF,R) ∈WPFRise

r;n,n−k−1, XPF =
`(β )

∏
i=1

xβi
i , dinv(PF) = 0},

γ
inv :OPr;β ,k+1 → {(PF,V ) ∈WPFVal

r;n,n−k−1, XPF =
`(β )

∏
i=1

xβi
i , area(PF) = 0},

γ
minimaj :OPr;β ,k+1 → {(PF,V ) ∈WPFVal

r;n,n−k−1, XPF =
`(β )

∏
i=1

xβi
i , dinv−(PF,V ) = 0}.

Theorem 4.3 follows from the fact that γstat maps the statistic stat into parking function statistics

dinv,area−,dinv−,area.

Thus, the combinatorial sides of the conjectures about the expression ∆′ek
∆hren at the

case when q or t equals 0 become generating functions about generalized ordered multiset

partitions. We shall show in the following two sections that the statistics inv, maj, dinv, minimaj

are equi-distributed on OPr;β ,k.

4.3 The identity Ddinv
r;β ,k(q) = Dmaj

r;β ,k(q) = Dinv
r;β ,k(q)

Recall that we letOPall
r;β denote the set of ordered multiset partitions of the set A(β )∪{0r}

and 0 is allowed to be in the last block. We also have OPall
r;β ,k and OPall

r;β ,α .

In fact, OPall
r;β ,k only enlarge the alphabet of OPβ ,k from Z+ to Z≥0, and it will inherit

all the properties of OPβ ,k. For a composition β = (β1, . . . ,βn) and integers r,k, we let

Dstat+
r;β ,k(q) := ∑

π∈OPall
r;β ,k

qstat(π)
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where stat is one of the statistics inv, maj, dinv, minimaj, then clearly

Dstat+
r;(β1,...,βn),k

(q) = Dstat
(r,β1,...,βn),k(q),

since we can add 1 to all the entries of a multiset partition in OPall
r;(β1,...,βn),k

to get a multiset

partition in OP(r,β1,...,βn),k. It follows from Theorem 4.2 that,

Corollary 4.4. For any integers n,r and composition β ,

Dinv+
r;β ,k(q) = Dmaj+

r;β ,k (q) = Ddinv+
r;β ,k (q) = Dminimaj+

r;β ,k (q).

For a composition β = (β1, . . . ,βn), we let β− = (β1, . . . ,βn−1) be the composition

obtained by removing the last part of β . We also let [0, `] be the set {0,1, . . . , `}. In order to prove

the result about ordered multiset partition that Dinv
β ,k(q) = Dmaj

β ,k (q) = Ddinv
β ,k (q), Wilson in [Wil16]

constructed 3 insertion maps:

φ
stat
β ,k,` :OPβ−,`×

(
[0, `−1]

βn− k+ `

)
×
((

[0, `]
k− `

))
→OPβ ,k,

where stat is one of the statistics inv, maj, dinv, and he proved that

stat
(

φ
stat
β ,k,`(π,U,B)

)
= stat(π)+ ∑

u∈U
u+ ∑

b∈B
b

for all the three statistics. In this section, we shall generalize Wilson’s insertion maps to extended

ordered multiset partitions to prove the identity that

Ddinv
r;β ,k(q) = Dmaj

r;β ,k(q) = Dinv
r;β ,k(q).

This identity is also proved by D’Adderio, Iraci and Wyngaerd in [DIW19] independently.
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4.3.1 The insertion map for inv

We shall generalize the map φ inv
β ,k,` of Wilson to the extended case as

φ
inv
r;β ,k,` :OPr;β−,`×

(
[0, `−1]

βn− k+ `

)
×
((

[0, `]
k− `

))
+
(
OPall

r;β−,`−OPr;β−,`

)
×
(

[0, `−1]
βn− k+ `

)
×
((

[0, `]
k− `−1

))
→OPr;β ,k

such that

inv
(

φ
inv
r;β ,k,`(π,U,B)

)
= inv(π)+ ∑

u∈U
u+ ∑

b∈B
b. (4.12)

Given β = (β1, . . . ,βn) and π ∈ OPr;β−,`, we label each block plus the space to the left

of π from right to left with numbers 0,1, . . . , `. Then for any U ∈
( [0,`−1]

βn−k+`

)
and B ∈

((
[0,`]
k−`

))
, we

construct φ inv
r;β ,k,`(π,U,B) as follows.

We repeatedly remove the largest number i from the multiset U ∪B, taking from U first if

the largest numbers are equal. If i ∈U , then we place an n to the block with label i; if i ∈ B, then

we add a new block of a singleton n to the right of the block with label i. This process constructs

all the ordered multiset partitions in OPr;β ,k such that the last block that is not a singleton {n}

does not contain 0.

In order to construct the remaining ordered partitions inOPr;β ,k, we take ordered multiset

partitions π in the set
(
OPall

r;β−,`−OPr;β−,`

)
(which means the last block of π contains 0). Then

for any U ∈
( [0,`−1]

βn−k+`

)
and B′ ∈

((
[0,`]

k−`−1

))
, we set the multiset B = B′∪{n}, and we construct

φ inv
r;β ,k,`(π,U,B) by repeatedly inserting numbers in the multiset U ∪B in the same way. One can

check easily that this gives all the ordered multiset partitions in OPr;β ,k, and the inv statistic

increases by i each time we insert an i, thus Equation (4.12) follows.
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4.3.2 The insertion map for maj

In order to define the map φ
maj
r;β ,k,`, we shall introduce the descent-starred permutation

notation of an ordered partition. For any ordered partition π = B1/ · · ·/Bn, we write the numbers

of each block in decreasing order, remove the slashes and add stars at the descent positions that is

entirely contained in some block of π . This permutation with stars is called the descent-starred

permutation notation of π .

The set of the positions with stars is denoted by S(π), and the permutation is denoted

by σ(π) introduced in Section 4.2.1. For example, if π = 134/47/23, then σ(π) = 4317432,

S(π) = {1,2,4,6} and 4∗3∗17∗43∗2 is the corresponding descent-starred permutation.

The map

φ
maj
r;β ,k,` :OPr;β−,`×

(
[0, `−1]

βn− k+ `

)
×
((

[0, `]
k− `

))
+
(
OPall

r;β−,`−OPr;β−,`

)
×
(

[0, `−1]
βn− k+ `

)
×
((

[0, `]
k− `−1

))
→OPr;β ,k

is defined as follows.

Given β = (β1, . . . ,βn) and π ∈ OPr;β−,`, we write π in descent-starred notation and let

σ = σ(π). We label the rightmost position firstly, and label the unstarred descent positions of π

secondly, then label the unstarred non-descent positions (including the leftmost position) thirdly

with labels 0, . . . , `.

For any U ∈
( [0,`−1]

βn−k+`

)
and B ∈

((
[0,`]
k−`

))
, we construct φ

maj
r;β ,k,`(π,U,B) by setting U+ =

{u+1 : u ∈U}, then repeatedly remove the largest number i from the multiset U+∪B, taking

from B first if the largest numbers are equal. The algorithm of inserting i is as follows:

1. Insert the number n at the position with label i.

2. Move each star that appears to the right of the new n one descent to the left.

3. If i ∈U+, then star the rightmost descent.
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4. Relabel the starred permutation as before, stopping at i if i ∈ B and i−1 if i ∈U+.

This process constructs all the ordered multiset partitions in OPr;β ,k such that the last block that

is not a singleton {n} does not contain 0.

In order to construct the remaining ordered partitions inOPr;β ,k, we take ordered multiset

partitions π in the set
(
OPall

r;β−,`−OPr;β−,`

)
that the last block contains 0. Then for any

U ∈
( [0,`−1]

βn−k+`

)
and B′ ∈

((
[0,`]

k−`−1

))
, we set U+ = {u+ 1 : u ∈ U} and B = B′ ∪ {n}, and we

construct φ
maj
r;β ,k,`(π,U,B) by repeatedly inserting numbers in the multiset U+∪B in the same way.

One can check easily that this gives all the ordered multiset partitions inOPr;β ,k. Wilson [Wil16]

gave a proof that the maj statistic increases by i each time we insert an i in the non-extended case,

which works naturally for the extended case, thus we have

maj
(

φ
maj
r;β ,k,`(π,U,B)

)
= maj(π)+ ∑

u∈U
u+ ∑

b∈B
b. (4.13)

4.3.3 The insertion map for dinv

We define a map

φ
dinv
r;β ,k,` :OPr;β−,`×

(
[0, `−1]

βn− k+ `

)
×
((

[0, `]
k− `

))
+
(
OPall

r;β−,`−OPr;β−,`

)
×
(

[0, `−1]
βn− k+ `

)
×
((

[0, `]
k− `−1

))
→OPr;β ,k.

Given β = (β1, . . . ,βn) and π ∈ OPr;β−,`, we label the `+1 spaces (the spaces between

parts as well as the spaces in the two ends) of π from right to left with numbers 0,1, . . . , ` which

we call the gap labels. Next, we label the blocks from highest to lowest length (from left to right

for each length) with numbers 0,1, . . . , `−1 which we call the block labels.

For any U ∈
( [0,`−1]

βn−k+`

)
and B ∈

((
[0,`]
k−`

))
, we can construct φ dinv

r;β ,k,`(π,U,B) by inserting an

n into each block whose label is in U and inserting a singleton block {n} at the gap b for each
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b ∈ B. This process constructs all the ordered multiset partitions in OPr;β ,k such that the last

block that is not a singleton {n} does not contain 0.

In order to construct the remaining ordered partitions inOPr;β ,k, we take ordered multiset

partitions π in
(
OPall

r;β−,`−OPr;β−,`

)
. Then for any U ∈

( [0,`−1]
βn−k+`

)
and B′ ∈

((
[0,`]

k−`−1

))
, we set

the multiset B = B′ ∪{n}, and we construct φ dinv
r;β ,k,`(π,U,B) in the same way. One can check

easily that this gives all the ordered multiset partitions in OPr;β ,k, and the dinv statistic increases

by i each time we insert an i, thus we have

dinv
(

φ
dinv
r;β ,k,`(π,U,B)

)
= dinv(π)+ ∑

u∈U
u+ ∑

b∈B
b. (4.14)

According to the definitions of maps φ inv
r;β ,k,`, φ

maj
r;β ,k,`, φ dinv

r;β ,k,` and Equations (4.12), (4.13)

and (4.14), one can conclude that

Theorem 4.5. For any integers n,r and composition β ,

Dinv
r;β ,k(q) = Dmaj

r;β ,k(q) = Ddinv
r;β ,k(q).

4.4 The identity Dinv
r;β ,k(q) = Dminimaj

r;β ,k (q)

The goal of this section is to generalize the (inv,minimaj) equi-distribution theorem of

Rhoades [Rho18] from the setOPβ ,k to the setOPr;β ,k. For our convenience, we shall abbreviate

Dinv and Dminimaj to I and M, i.e. we shall use the notations

Iβ ,k(q) = Dinv
β ,k(q), Iβ ,α(q) = Dinv

β ,α(q), Ir;β ,k(q) = Dinv
r;β ,k(q), Ir;β ,α(q) = Dinv

r;β ,α(q),

Mβ ,k(q) = Dminimaj
β ,k (q), Mβ ,α(q) = Dminimaj

β ,α (q),

Mr;β ,k(q) = Dminimaj
r;β ,k (q), Mr;β ,α(q) = Dminimaj

r;β ,α (q).
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Further, we let

Iall
r;β ,k(q) = Dinv+

r;β ,k(q), Iall
r;β ,α(q) = Dinv+

r;β ,α(q)

Mall
r;β ,k(q) = Dminimaj+

r;β ,k (q), and Mall
r;β ,α(q) = Dminimaj+

r;β ,α (q)

denote the generating functions that 0 is allowed in the last block.

4.4.1 The recursion for inv

For any integer m and set S⊆ [m], we let χS = (χS(1), . . . ,χS(m)) be the sequence such

that χS(i) = χ(i ∈ S). For two sequences γ1 and γ2 of the same length, we write γ1 ≤ γ2 if each

entry of γ1 is less than or equal to the corresponding entry of γ2.

Given an integer n, a weak composition β = (β1, . . . ,βm) � n and a strong composition

α = (α1, . . . ,αk) �strong n, we still use the notation α− = (α1, . . . ,αk−1) for the composition of

n−αk that the last part of α is removed.

Recall that by definition, OPr;β ,α is the set of extended ordered multiset partition of the

multiset A(β )∪{0r} and shape α such that 0 is not contained in the last block, while OPall
r;β ,α

allows 0 in the last block. Their generating functions tracking the statistic inv are Ir;β ,α(q) and

Iall
r;β ,α(q) respectively. Then we have the following theorem which is analogous to Lemma 3.2 in

[Rho18].

Theorem 4.6. The generating function Ir;β ,α(q) satisfies the following equation:

Ir;β ,α(q) = ∑
S⊆[m], |S|=αk,

χS≤β

q∑
m
i=min(S)+1(βi−χS(i))Iall

r;β−χS,α−
(q). (4.15)

Proof. Consider an ordered multiset partition µ = B1/ · · ·/Bk ∈ OPr;β ,α . Writing S = Bk, we

have that B1/ · · ·/Bk−1 ∈OPall
r;β−χS,α−

. Since each element in the ordered partition B1/ · · ·/Bk−1
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that is bigger than min(S) creates an inversion with the last block, Equation (4.15) follows

immediately.

Summing over all the strong compositions α of n with k parts, we have the following

corollary.

Corollary 4.7. The generating function Ir;β ,k(q) satisfies the following equation:

Ir;β ,k(q) = ∑
S⊆[m], χS≤β

q∑
m
i=min(S)+1(βi−χS(i))Iall

r;β−χS,k−1(q). (4.16)

We shall prove a similar result about the statistic minimaj in the following subsection.

4.4.2 The recursion for minimaj

In our new notation, Corollary 4.4 shows that

Iall
r;β ,k(q) = Mall

r;β ,k(q). (4.17)

We shall prove in this subsection that

Theorem 4.8. The generating function Mr;β ,k(q) satisfies the following equation:

Mr;β ,k(q) = ∑
S⊆[m], χS≤β

q∑
m
i=min(S)+1(βi−χS(i))Mall

r;β−χS,k−1(q). (4.18)

Then as a consequence of Corollary 4.7, Theorem 4.8 and Equation (4.17), we have

Theorem 4.9. For any integers n,r and composition β ,

Dinv
r;β ,k(q) = Dminimaj

r;β ,k (q).
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In order to prove Theorem 4.8, we need to state some combinatorial actions and properties

about the statistic minimaj. We always use the setting that for any integers n,r, we consider ordered

multiset partitions of the form µ = B1/ · · ·/Bk ∈ OPr;β ,α , where β = (β1, . . . ,βm) � n is a weak

composition and α = (α1, . . . ,αk) �strong n is a strong composition. We let α− = (α1, . . . ,αk−1).

A k-segmented word is a pair (w,α) such that w = w1 · · ·wn is a length n word and α is

a strong composition of n. We write such k-segmented word in the form of a word w with dots

after wα1,wα1+α2 , . . . ,wα1+···+αk−1 . The components of the words separated by the dots are called

segments. For example, the 3-segmented word (3342412,(2,3,2)) can be written as 33 ·424 ·12.

For an ordered multiset partition µ = B1/ · · ·/Bk ∈OPr;β ,α where Bi = { j(i)1 < .. . < j(i)αi },

we let w(µ) = µ[1] ·µ[2] · · · · ·µ[k] denote the k-segmented word obtained in the following way:

we let the last segment µ[k] be the increasing word j(k)1 · · · j
(k)
αk . For 1 ≤ i ≤ k−1, assume that

the i+1st segment µ[i+1] is defined and let r be the first letter of µ[i+1]. Let j(i)1 , . . . , j(i)m be

the numbers that are less than or equal to r, and let j(i)m+1, . . . , j(i)αi be the numbers that are greater

than r, then we define µ[i] = j(i)m+1 · · · j
(i)
αi j(i)1 · · · j

(i)
m . We also refer to w(µ) as the permutation

component of the segmented word without causing ambiguity. Note that w(µ) as a permutation

coincides with our definition of miniword(µ). Thus we have the following lemma:

Lemma 4.10. Let µ be an ordered multiset partition, then minimaj(µ) = maj(w(µ)).

Rhoades in [Rho18] defined an action on ordered multiset partitions µ to interchange

the number of i and i+1 in µ , called the ti-switch map. Let si be the action on a sequence that

interchange its ith and i+1st component, then Rhoades proved the following theorem:

Theorem 4.11 (Rhoades). There exists a bijective map

ti : OPβ ,k→OPsi·β ,k

such that minimaj(ti(µ)) = minimaj(µ).
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Recall that we can add 1 to all the entries of a multiset partition in OPall
r;(β1,...,βn),k

to get a

multiset partition in OP(r,β1,...,βn),k, we can naturally generalize this result to the set OPall
r;β ,k that

allows us to rearrange the component of β and the number r:

Corollary 4.12. Let (γ0,γ1, . . . ,γm) be any rearrangement of the sequence (r,β1, . . . ,βm), then

there is a minimaj-preserving bijection ψ between the sets OPall
γ0;(γ1,...,γm),k

and OPall
r;(β1,...,βm),k

.

It is obvious that for an ordered multiset partition, the contribution of the last block to

minimaj only depends on the minimum element of the last block. Thus we have the following

lemma.

Lemma 4.13. Let B1/ · · ·/Bk be an ordered multiset partition. Then

minimaj(B1/ · · ·/Bk) = minimaj(B1/ · · ·/min(Bk)). (4.19)

Rhoades in [Rho18] defined an action of the group Zm = 〈c〉 on OPβ ,α by decrementing

all the letters by 1 modulo m. Analogously, we define the group action of Zm+1 = 〈c〉 onOPall
r;β ,α

by decrementing all the letters by 1 modulo m+1. Rhoades in [Rho18] proved that

Lemma 4.14 (Lemma 3.4 in [Rho18]). If the last component of α is 1, then w(c.µ) = c.w(µ)

for any µ ∈ OPβ ,α .

Recall that there is a bijective relation between OPall
r;(β1,...,βm),α

and OP(r,β1,...,βm),α . It

follows from Lemma 4.14 and our new group action of Zm+1 that

Lemma 4.15. If the last component of α is 1, then w(c.µ) = c.w(µ) for any µ ∈ OPall
r;β ,α .

Another property about the action c is summarized in the following lemma:

Lemma 4.16. For any word w = w1 · · ·wn with content {0r,1β1, . . . ,mβm} such that wn 6= 0, we

have maj(c.w) = maj(w)+ r.
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Proof. The map c moves every descent occurring before a maximal contiguous run of 0’s in w to

the position at the end of this run.

Now we can prove the following lemma.

Lemma 4.17. Given integers n,r. Let α = (α1, . . . ,αk) �strong n be a strong composition with

αk = 1 and let β = (β1, . . . ,βm) � n be a weak composition. We have

Mr;β ,α(q) = ∑
βi>0

qβi+1+···+βmMall
r;(βi+1,...,βm,β1,...,βi−1),α−(q). (4.20)

Proof. We shall prove the recursion above about the generating function Mr;β ,α(q) where αk = 1.

Without loss of generality, we assume that β is a strong composition. Consider an ordered

multiset partition µ ∈ OPr;β ,α . If the last block of µ is a singleton {m}, then clearly it does not

contribute anything to minimaj(µ). Writing µ = µ ′/m, then minimaj(µ) = minimaj(µ ′).

Next consider the case when µ = µ ′/m− i end with m− i for some i ∈ {1, . . . ,m− 1},

then µ ′ ∈OPall
r;(β1,...,βm−i−1,...,βm),α−

. It follows that we have the following consequence of Lemma

4.15 and Lemma 4.16:

minimaj(µ ′/m− i) = minimaj(ci.(c−i.µ ′|m))

= minimaj(c−i.µ ′|m)+βm−i+1 + · · ·+βm

where c−i.µ ′ ∈ OPall
βm−i+1,(βm−i+2,...,βm,r,β1,...,βm−i−1),α− , and we have

Mr;β ,α(q) = ∑
βm−i>0

qβm−i+1+···+βmMall
βm−i+1;(βm−i+2,...,βm,r,β1,...,βm−i−1),α−(q). (4.21)

Equation (4.20) follows immediately from Equation (4.21) and Corollary 4.12 since we can

permute r and entries of β .

Now we are ready to prove Theorem 4.8.
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Proof of Theorem 4.8. Let µ = B1/ · · ·/Bk ∈OPr;β ,α . For the case when α = (α1, . . . ,αk−1,1),

we have the following recursion as a consequence of Lemma 4.17:

∑
α−

Mr;β ,α(q) = ∑
α−

∑
βi>0

qβi+1+···+βmMall
r;(βi+1,...,βm,β1,...,βi−1),α−(q)

= ∑
βi>0

∑
α−

qβi+1+···+βmMall
r;(βi+1,...,βm,β1,...,βi−1),α−(q)

= ∑
βi>0

qβi+1+···+βmMall
r;(βi+1,...,βm,β1,...,βi−1),k−1(q)

= ∑
βi>0

qβi+1+···+βmMall
r;(β1,...,βi−1,...,βm),k−1(q). (4.22)

The first line is Equation (4.20) summed over all compositions α− �strong (n−1) with k−1 parts;

the second line interchanges the order of the two summations; the third line evaluates the inner

sum over all possible α−’s; the last line is an application of Corollary 4.12.

More generally, if the last block is of size αk ≥ 1, then the following equation follows as

a consequence of Equation (4.22):

Mr;β ,k(q) = ∑
Bk⊆[m], χBk≤β

q∑
m
i=min(Bk)+1(βi−χBk (i))Mall

r;β−χBk ,k−1(q), (4.23)

which proves Theorem 4.8.

4.5 The Mahonian distribution on OP r;β ,k

Following from Theorem 4.5 and Theorem 4.9, we have

Corollary 4.18. For any integers n,r and composition β ,

Dinv
r;β ,k(q) = Dmaj

r;β ,k(q) = Ddinv
r;β ,k(q) = Dminimaj

r;β ,k (q).

Benkart et al. [BCH+18] proved the equi-distributivity of the statistics minimaj and maj
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on ordered multiset partitions using a crystal structure. This provides another idea of proving

Corollary 4.18.

Given that D’Adderio, Iraci and Wyngaerd [DIW19] have proved the following,

Theorem 4.19 (D’Adderio, Iraci and Wyngaerd). For any integers n,k≥ 0, we have the equality

Riser;n,k[X ;q,0] = Riser;n,k[X ;0,q] = ∆
′
ek

∆hren|t=0 = ∆
′
ek

∆hren|q=0,t=q. (4.24)

We have the following corollary as a consequence of Corollary 4.18 and Theorem 4.19

which gives a proof of the valley version Delta Conjecture about the expression ∆′ek
∆hren at the

case when t or q is zero.

Corollary 4.20. For any integers n,k ≥ 0, we have the equality

Riser;n,k[X ;q,0] = Riser;n,k[X ;0,q] = Valr;n,k[X ;q,0] = Valr;n,k[X ;0,q]

= ∆
′
ek

∆hren|t=0 = ∆
′
ek

∆hren|q=0,t=q. (4.25)

Define the Mahonian distribution on OPr;β ,k to be the polynomial

Dr;β ,k(q) := Dinv
r;β ,k(q) = Dmaj

r;β ,k(q) = Ddinv
r;β ,k(q) = Dminimaj

r;β ,k (q)

and let D+
r;β ,k(q) :=Dinv+

r;β ,k(q) =Dmaj+
r;β ,k (q) =Ddinv+

r;β ,k (q) =Dminimaj+
r;β ,k (q), then Dr;β ,k(q) generalizes

the Mahonian distribution on ordered multiset partitions Dβ ,k(q) of Wilson [Wil16] that

Dβ ,k(q) = D0;β ,k(q).

By either of the Equations (4.12), (4.13) and (4.14), we have the base case that D0; /0,0(q) = 1,
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Dr; /0,k(q) = 0 for r+ k > 0 and the recursion:

Dr;β ,k(q) =
k

∑
`=0

q(
βn−k+`

2 )
[

`

βn− k+ `

]
q

[
k
`

]
q
Dr;β−,`(q)

+q(
βn−k+`

2 )
[

`

βn− k+ `

]
q

[
k−1
`

]
q

(
D+

r;β−,`(q)−Dr;β−,`(q)
)

=
k

∑
`=0

q(
βn−k+`

2 )
[

`

βn− k+ `

]
q

([
k−1
`−1

]
q
Dr;β−,`(q)+

[
k−1
`

]
q
D+

r;β−,`(q)

)
.

Note that Dr;β ,k(q) is a generalization of the q-Stirling number Sn,k(q) defined by

Sn,k(q) = Sn−1,k−1(q)+ [k]qSn−1,k(q) (4.26)

as a consequence of the following equation due to the work of Wilson [Wil16]:

D0;1n,k(q) = Sn,k(q). (4.27)

The content of Chapter 4 is currently being prepared for submission for publication of the

material. Qiu, Dun; Wilson, Andrew Timothy. “Conjectures about the expression ∆′ek
∆hren". The

dissertation author was the primary investigator and author of this material.
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Chapter 5

Conclusion and future directions

In this chapter, we give a brief summary of our research projects mentioned in this

dissertation. In the meanwhile, we discuss several directions that our work can be extended in.

We also give some other open problems which are closely related to our work for research in the

future.

5.1 The Rational Shuffle Theorem in more general cases

As a generalization of the Shuffle Theorem, the Rational Shuffle Theorem gives rise to

a great number of combinatorial problems about Macdonald polynomials and rational parking

functions, which will generalize the rational q, t-Catalan theory.

Our work presented in Chapter 2 gives a proof of the Rational Shuffle Theorem at the

3-row case, and conjecturally gives the Schur function expansion of the 3 column case parking

function generating function.

Recall that our method on the algebraic side about the 3-row case uses a recursion that

Qm+n,n(−1)n = ∇Qm,n(−1)n (5.1)
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where n = 3. Using the same recursion for bigger n, the algebraic side results can be easily

generalized to the n-row case, and the proof can be fulfilled with help of mathematical software

such as Maple when n is relatively small. We have run the data for the 4-row case, and the

Schur function expansions with q, t-analogue coefficients are as nice as the 3-row case. Thus we

can compute the Schur function expansion of the 4-row case (or even 5, 6-row cases) using the

recursion in Equation (5.1).

On the 3 column case, we have more open problems to be solved in the future. By

checking a large volume of program data, we are able to discover the straightening action on

3-column parking functions, which in fact proves the Schur positivity of the 3-column case. The

data of parking functions with more than 3 columns will be hard to be looked into, but it will be a

meaningful research problem to generalize our result about the straightening action on parking

functions.

Problem 5.1. Define the straightening action of the m column rational parking functions for any

positive integer m. This will prove the Schur positivity of the parking function side of the Rational

Shuffle Conjecture.

Lascoux, Leclerc and Thibon in [LLT97] defined an important class of symmetric func-

tions called LLT polynomials. The Shuffle Theorem and its generalizations are closely related

to a subclass of it called column LLT polynomials. In fact, the following generating function of

parking functions on a particular rational Dyck path Π ∈ PFm,n,

∑
Π(PF)=Π

tarea(PF)qdinv(PF)Fides(PF) = tarea(Π)
∑

Π(PF)=Π

qdinv(PF)Fides(PF)

is a column LLT polynomial (up to a power of t). Notice that our straitening action on 3-column

parking functions does not change the path, thus it would be useful to prove the Schur positivity

of (column) LLT polynomials combinatorially if it is generalizable to n-column case.
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Problem 5.2. Prove the Schur positivity of LLT polynomials combinatorially using parking

functions.

About the other action S called the switch map, we hit an iceberg when proving that S

preserves the statistic dinv, from which Conjecture 2.5 and Conjecture 2.6 follows immediately.

Problem 5.3. Prove that the action S preserves dinv for any rational parking function.

5.2 The Delta expression conjectures

As another generalization of the Shuffle Theorem, the Delta Conjecture still remains open,

though a number of special cases have been proved.

In Chapter 3, we prove that the expression ∆eken when k = 2 is Schur positive. The Schur

positivity of the case when k ≥ 3 is still open. Note that the Schur positivity of ∆eken follows if

Problem 5.2 or Problem 5.3 is proved.

Problem 5.4. Prove the Schur positivity of ∆eken when k ≥ 3.

Haglund, Remmel and Wilson gave a conjecture (called the Extended Delta Conjecture)

about the Delta operator expression ∆′ek
∆hren which is analogous to the rise version of the

Delta Conjecture about ∆′ek
en. In Chapter 4, we propose a new valley version conjecture of

the expression ∆′ek
∆hren, making the Extended Delta Conjecture completely analogues to the

two-versioned Delta Conjecture. Further, we give a proof of the valley version conjecture of

∆′ek
∆hren when t or q equals 0. The main goal of this study is:

Problem 5.5. Prove the Extended Delta Conjecture in general.

This includes the origin Delta Conjecture.

It is proved that the two versions of the Delta Conjecture and the Extended Delta Conjec-

ture are equivalent at the case when q or t is 0. However, there is no proof that the combinatorial

side of the two versions are equivalent in general.
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Problem 5.6. Prove that

Riser;n,k[X ;q, t] = Riser;n,k[X ; t,q] = Valr;n,k[X ;q, t]. (5.2)

This includes the problem that Risen,k[X ;q, t] = Risen,k[X ; t,q] = Valn,k[X ;q, t].

Finally, the Delta operator satisfies ∆hrek = ∆sr,1k +∆sr+1,1k−1 and

∆hrek = ∆′ek
∆hr +∆′ek−1

∆hr , which is saying that the sum of two expressions in the Extended Delta

Conjecture is also a sum of two Delta hook-Schur functions. We want to explore a conjecture for

∆sλ
for hook shape partition λ .

Problem 5.7. Give a combinatorial conjecture about the expression ∆sλ
en, where λ ` n is of

hook shape.
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Appendix A

Four bijections between ordered multiset

partitions and parking functions

In this appendix, we present four bijections, γdinv,γmaj,γ inv,γminimaj, of Haglund, Remmel

and Wilson [HRW18] when they were proving the following equations appear in Theorem 4.1:

Risen,k[X ;q,0]|Mβ
= Ddinv

β ,k+1(q), (A.1)

Risen,k[X ;0,q]|Mβ
= Dmaj

β ,k+1(q), (A.2)

Valn,k[X ;q,0]|Mβ
= Dinv

β ,k+1(q), (A.3)

Valn,k[X ;0,q]|Mβ
= Dminimaj

β ,k+1 (q). (A.4)

We shall omit the proof of bijectivity which can be found in [HRW18].

A.1 The bijection γdinv of Risen,k[X ;q,0]|Mβ
= Ddinv

β ,k+1(q)

Recall that

Ddinv
β ,k+1(q) = ∑

π∈OPβ ,k+1

qdinv(π), and
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Risen,k[X ;q,0]|Mβ
= ∑

(PF,R)∈WPFRise
n,n−k−1, XPF=∏

`(β )
i=1 xβi

i , area−(PF,R)=0

qdinv(PF).

The map

γ
dinv :OPβ ,k+1→{(PF,R) ∈WPFRise

n,n−k−1, XPF =
`(β )

∏
i=1

xβi
i , area−(PF,R) = 0}

that satisfies dinv(γdinv(π)) = dinv(π) is defined as follows.

Given π = π1/ · · ·/πk+1 ∈ OPβ ,k+1 where |πi|= αi, we construct a Dyck path

Nαk+1Eαk+1NαkEαk · · ·Nα1Eα1 which is of size n. Then, the rise-decorated parking function

γdinv(π) is obtained by labeling the north steps Nαi with entries in the block πi, and mark all the

n− k−1 double rises. Clearly, the resulting parking function has area− 0, and the map γdinv is

invertible.

For example, for an ordered multiset partition π = 24/13/235 with dinv(π) = 8, its image

under the map γdinv is given in Figure A.1 which also has dinv 8.

2
3
5

1
3

2
4

∗
∗

∗

∗

Figure A.1: The image γdinv(π) for π = 24/13/235.

A.2 The bijection γmaj of Risen,k[X ;0,q]|Mβ
= Dmaj

β ,k+1(q)

In this section, we construct the map

γ
maj :OPβ ,k+1→{(PF,R) ∈WPFRise

n,n−k−1, XPF =
`(β )

∏
i=1

xβi
i , dinv(PF) = 0}
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that satisfies area−(γmaj(π)) = maj(π).

Given π = π1/ · · ·/πk+1 ∈ OPβ ,k+1 where |πi|= αi, we shall write the descent-starred

permutation notation of π: we first write π as a permutation σ(π) = σ1 · · ·σn of the multiset

A(β ) = {iβi : 1≤ i≤ `(β )} by organizing the elements in each block πi in decreasing order. We

mark a star ∗ at the lower-right corner of each number in σ(π) that is in the same block with the

next number. Now we are ready to construct the rise-decorated parking function γmaj(π).

We read σ(π) from right to left. We start with drawing a north step and labeling it with

σn when reading the rightmost number σn (notice that σn cannot have a star mark). Inductively,

suppose that the next number we read is σi. If σi ≤ σi+1, we add 2 steps EN at the end of the

previous path, and label the new north step with σi. Otherwise when σi > σi+1, we add another

north step and label it with σi (this must be a double rise). We decorate the new north step with a

star if σi has a star ∗. Then we proceed to the next number σi−1.

In this way, we construct a parking function with no dinv. For example, for an ordered

multiset partition π = 24/13/35/2 with maj(π) = 6, we have σ(π) = 4∗23∗15∗32, and its image

under the map γmaj is given in Figure A.2 which has area− 6.

2
3
5

1
3

2
4

∗

∗

∗

Figure A.2: The image γmaj(π) for π = 24/13/35/2.
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A.3 The bijection γ inv of Valn,k[X ;q,0]|Mβ
= Dinv

β ,k+1(q)

In this section, we construct the map

γ
inv :OPβ ,k+1→{(PF,V ) ∈WPFVal

n,n−k−1, XPF =
`(β )

∏
i=1

xβi
i , area(PF) = 0}

that satisfies dinv−(γ inv(π)) = inv(π).

Given π = π1/ · · ·/πk+1 ∈OPβ ,k+1 where |πi|= αi, we construct a diagonal (n,n)-Dyck

path (NE)n. Then we proceed from the lowest to the highest north step and from the last to the

first block of π . We label the first αk+1 north steps increasingly with numbers in πk+1, and add

stars to the north steps from the second row to the αk+1th row. Suppose that we have completed

the procedure for block πi+1. For block πi, we label the next αi north steps increasingly with

numbers in πi while adding stars to all except the first step in the αi steps. Then we proceed to

the next block πi−1.

In this way, we construct a valley-decorated parking function with no area. For example,

for an ordered multiset partition π = 24/13/235 with inv(π) = 4, its image under the map γ inv is

given in Figure A.3 which has dinv− 4.

2
3

5
1

3
2

4

∗
∗

∗

∗

Figure A.3: The image γ inv(π) for π = 24/13/235.
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A.4 The bijection γminimaj of Valn,k[X ;0,q]|Mβ
= Dminimaj

β ,k+1 (q)

In this section, we construct the map

γ
minimaj :OPβ ,k+1→{(PF,V ) ∈WPFVal

n,n−k−1, XPF =
`(β )

∏
i=1

xβi
i , dinv−(PF,V ) = 0}

that satisfies area(γminimaj(π)) = minimaj(π). γminimaj is most technical among the four maps.

Given π = π1/ · · ·/πk+1 ∈OPβ ,k+1 where |πi|= αi, we construct τ = miniword(π) as in

the definition of minimaj. We define the runs of τ as its maximal, contiguous, weakly increasing

subsequences. Suppose that τ has s runs, then we label the runs with 0, . . . ,s−1 from right to

left. We shall construct the parking function γminimaj(π) inductively by reading from the 0th to

the (s−1)st run of τ , such that the row has number in the ith run has area i (this is sufficient for

showing area(γminimaj(π)) = minimaj(π)).

Suppose that τa,τa+1, . . . ,τn is the 0th run, and the numbers from τb to τn are contained in

blocks πp, . . . ,πk+1 that only consist of numbers in the 0th run (for some b≥ a). Suppose that the

numbers τc, . . . ,τb−1 form the first block from right to left containing elements in run 1. Starting

from the empty path, we first construct steps (NE)n−b+1, filling the north steps with entries in

πk+1, . . . ,πp increasingly for each block from bottom to top. We add star mark on the north steps

where its label is in the same block as the label in the row immediately below it. Then we find

the biggest number τd among τb to τn that is smaller than τc (which must exist by definition of

miniword). We insert steps (NE)a−c above the north step of τd , label the steps with τc, . . . ,τa−1

from bottom to top, and add stars to the rows of τc+1, . . . ,τa−1. Then we insert steps (NE)b−a

after the east step after (NE)a−c that we just inserted, and label the steps with τa, . . . ,τb−1 from

bottom to top, adding stars to all these rows. We let A denote the north step of τa.

For greater value i ∈ {1, . . . ,s− 1}, we suppose that the procedures for runs 0, . . . , i−

1 have been completed and we proceed the algorithm inductively as follows. Suppose that

τa,τa+1, . . . ,τn′ is the ith run that has not been read, and the numbers from τb to τn′ are contained
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in blocks πp, . . . ,πk′ that only consist of numbers in the ith run (for some b≥ a). Suppose that

the numbers τc, . . . ,τb−1 form the first block from right to left containing elements in run i+1.

Starting from the top of A in the previous procedure, we first insert steps (NE)n′−b+1,

filling the north steps with entries in πk′, . . . ,πp increasingly for each block from bottom to top.

We add star mark on the north steps where its label is in the same block as the label in the row

immediately below it.

Then we find the biggest number τd among τb to τn′ that is smaller than τc. We insert

steps (NE)a−c above the north step of τd , label the steps with τc, . . . ,τa−1 from bottom to top,

and add stars to the rows of τc+1, . . . ,τa−1. Then we insert steps (NE)b−a after the east step after

(NE)a−c that we just inserted, and label the steps with τa, . . . ,τb−1 from bottom to top, adding

stars to all these rows. We renew A to be the north step of the new τa in this procedure.

For example, for π = 13/23/14/234, its miniword is τ = 312341234 which has 3 runs:

1234, 1234, 3 from right to left. The procedure of computing γminimaj(π) is given in Figure A.4.
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2
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1
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4

∗

∗

∗
∗

∗

Figure A.4: The procedure of computing γminimaj(π) for π = 13/23/14/234.

A.5 Summary

We have presented the four bijective maps of the form γstat for stat = dinv,maj, inv and

minimaj. In [HRW18], Haglund, Remmel and Wilson proved that the maps γstat are bijective,

and they map the statistic stat into some parking function statistic (stated in each section of this
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appendix).

Further, by checking the four bijections, we notice that each bijection γstat maps the

minimum element in the last part of π into the car in the first row of γstat(π). We use this fact to

prove Theorem 4.3.
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