
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Provably-Correct and Efficient Motion Planning for Hybrid Dynamical Systems

Permalink
https://escholarship.org/uc/item/07s8n964

Author
Wang, Nan

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/07s8n964
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

PROVABLY-CORRECT AND EFFICIENT MOTION PLANNING
FOR HYBRID DYNAMICAL SYSTEMS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Nan Wang

December 2024

The Dissertation of Nan Wang
is approved:

Professor Ricardo G. Sanfelice, Chair

Professor Gabriel H. Elkaim

Professor Steve McGuire

Professor Daniel Fremont

Peter F. Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Nan Wang

2024

Table of Contents

Notations vii

List of Figures ix

List of Tables x

Dedication xi

Acknowledgments xii

Abstract xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Basic Operations on the Trajectory for Hybrid Dynamical Systems . . . 3

1.2.1 Related Work . 3
1.2.2 Contributions . 4

1.3 Sampling-based Feasible Motion Planning for Hybrid Dynamical Systems 6
1.3.1 Related Work . 6
1.3.2 Contributions . 7

1.4 A Bidirectional Sampling-based Motion Planning Approach for Hybrid
Dynamical Systems . 8
1.4.1 Related Work . 9
1.4.2 Contributions . 9

1.5 Sampling-based Optimal Motion Planning for Hybrid Dynamical Systems 10
1.5.1 Related Work . 10
1.5.2 Contributions . 11

1.6 Future Directions and Potential Applications 12

2 Preliminaries 13
2.1 Hybrid Dynamical System Model . 13

iii

3 Framework, Basic Operations, and Algorithm Template 17
3.1 Feasible Motion Planning Problem for Hybrid Dynamical Systems . . . 18
3.2 Reversal, Concatenation, and Truncation of Solutions to Hybrid Dynam-

ical Systems . 25
3.3 A Forward/Backward Propagation Algorithm Template 29

3.3.1 Backward-in-time Hybrid Dynamical Systems 30
3.3.2 Propagation Operation . 32
3.3.3 Construction of Motion Plans . 33
3.3.4 Forward/Backward Propagation Algorithm Template and Prop-

erty Analysis . 37
3.4 Time Complexity Analysis . 42
3.5 Software Tool for Motion Planning for Hybrid Dynamical Systems . . . 42

4 Sampling-based Feasible Motion Planning for Hybrid Dynamical Sys-
tems 47
4.1 Overview . 47
4.2 Hybrid Input Library . 51
4.3 Continuous Dynamics Simulator . 52
4.4 Discrete Dynamics Simulator . 55
4.5 HyRRT Algorithm . 57

4.5.1 T .init . 58
4.5.2 random state . 59
4.5.3 nearest neighbor . 59
4.5.4 new state . 60
4.5.5 T .add vertex and T .add edge 61
4.5.6 Solution Checking during HyRRT Construction 61

4.6 Probabilistic Completeness Analysis . 63
4.6.1 Clearance of Motion Plan and Inflation of a Hybrid Dynamical

System . 63
4.6.2 Assumptions . 69
4.6.3 Probabilistic Completeness Guarantee 75
4.6.4 Probabilistic Guarantees on the Function Calls nearest neighbor

and new state . 77
4.6.5 Probabilistic Completeness Guarantee of Finding a Motion Plan

with Positive Clearance . 81
4.6.6 Proof of Theorem 4.30 . 90

4.7 HyRRT Software Tool for Motion Planning for Hybrid Dynamical Systems
and Examples . 90

5 A Bidirectional Sampling-based Motion Planning Approach for Hy-
brid Dynamical Systems 96
5.1 Overview . 96
5.2 HyRRT-Connect Algorithm . 98

iv

5.2.1 T .init . 98
5.2.2 nearest neighbor . 100
5.2.3 new state . 101
5.2.4 T .add vertex and T .add edge 102

5.3 Motion Plan Identification and Reconstruction 102
5.3.1 Same State Associated with Vertices in T fw and T bw 103
5.3.2 Reconstruction Process . 105
5.3.3 Connecting Forward and Backward Search Trees via Jump . . . 110

5.4 Software Tool and Simulation Results 111
5.5 Discussion on Parallel Implementation 114
5.6 Discussion on Probabilistic Completeness 116

6 Sampling-based Optimal Motion Planning for Hybrid Dynamical Sys-
tems 118
6.1 Problem Statement . 118
6.2 Overview . 123
6.3 HySST Algorithm . 128

6.3.1 T .init . 128
6.3.2 is vertex locally the best . 129
6.3.3 prune dominated vertices . 129
6.3.4 random state . 131
6.3.5 best near selection . 131
6.3.6 new state . 133
6.3.7 Vactive.add vertex and E.add edge 133

6.4 Asymptotic Near-optimality Analysis . 134
6.5 HySST Software Tool for Optimal Motion Planning Problems for Hybrid

Dynamical Systems . 136

7 Conclusion and Future Work 140
7.1 Summary . 140
7.2 Future Directions . 143

A Proof for Results in Chapter 3 145
A.1 Proof of Proposition 3.9 . 145
A.2 Proof of Proposition 3.13 . 155
A.3 Proof of Proposition 3.19 . 170

B Proof for Results in Chapter 4 178
B.1 A Computational Framework to Simulate Continuous Dynamics 178

B.1.1 Numerical integration scheme model 178
B.1.2 Zero-crossing detection model to approximate t̂ 179
B.1.3 A computational framework to simulate continuous dynamics . . 181

B.2 Proof of Proposition 4.14 . 182
B.2.1 Theoretical Tools to Prove Proposition 4.14 182

v

B.2.2 Proof of Proposition 4.14 . 184
B.3 Proof of Lemma 4.15 . 184
B.4 Proof of Lemma 4.31 . 186
B.5 Proof of Lemma 4.33 . 188

B.5.1 Supporting Lemmas to Prove Lemma 4.33 188
B.5.2 Proof of Lemma 4.33 . 193

B.6 Proof of Lemma 4.35 . 196
B.7 Closeness Guarantee between the Concatenation Results of Hybrid Arcs 197

B.7.1 Supporting Lemma . 197
B.7.2 Closeness Guarantee . 198

B.8 Definition of Truncation and Translation Operation 201

C Proof for Results in Chapter 5 202
C.1 Proof of Lemma 5.3 . 202
C.2 Proof of Lemma 5.4 . 202

D Proof for Results in Chapter 6 204
D.1 Supporting Result for Theorem 6.9 . 204
D.2 Proof for Theorem 6.9 . 205

Bibliography 212

vi

Notations

Rn n-dimensional Euclidean space

R The set of all real numbers

R≥0 The set of all nonnegative real numbers

N The set of nonnegative integers

|x| The Euclidean norm of a vector x

int I The interior of the interval I

S The closure of the set S

∂S The boundary of the set S

P +Q The Minkowski sum of set P and set Q, namely, the set {p + q : p ∈

P, q ∈ Q}

P −Q The Minkowski difference of set P and set Q, namely, the set {p− q :

p ∈ P, q ∈ Q}

|x|S The distance between a point x ∈ Rn and a set S ⊂ Rn, i.e., |x|S :=

infs∈S |x− s|

B The closed unit ball of appropriate dimension in the Euclidean norm

vii

Prob(M) The probability of the probabilistic event M

µ(S) The Lebesgue measure of set S

ζn The Lebesgue measure of the n-th dimensional unit

ball, i.e.,

ζn :=


πk

k!
if n = 2k, k ∈ N

2(k!)(4π)k

(2k + 1)!
if n = 2k + 1, k ∈ N;

(0.1)

see [16]

rgef The range of the function f

dom f The domain of the function f

viii

List of Figures

3.1 Motion planning for hybrid dynamical systems. 19
3.2 A motion plan to the sample motion planning problem for actuated

bouncing ball system. 20
3.3 The actuated bouncing ball system in Example 3.2. 21
3.4 The biped system. 23
3.5 The concatenation φ of trajectory φ2 to trajectory φ1. 28
3.6 Motion plan for the bouncing ball system. 44
3.7 Trajectories of each state components of the generated motion plan for

the walking robot. 45

4.1 The association between states/solution pairs and the vertices/edges in
the search tree. 49

4.2 A sample motion plan without clearance for the bouncing ball system but
with clearance for its inflation. 66

4.3 The motion plan generated by HyRRT for the the actuated bouncing ball
system. 92

4.4 The motion plan generated by HyRRT for the biped system. 95

5.1 Motion plans for the actuated bouncing ball example. 113
5.2 Forward search tree and the forward partial motion plan. 114
5.3 Backward search tree and the backward partial motion plan. 115
5.4 Selected states of the forward and backward partial motion plan generated

by HyRRT-Connect for the walking robot system. 115

6.1 The environment around the collision-resilient tensegrity multicopter. . 121
6.2 The search tree witnessed by a witness set. 125
6.3 Motion plans for actuated bouncing ball example solved by HySST and

HyRRT in [56]. 138
6.4 The motion plan generated by HySST for the collision-resilient tensegrity

multicopter. 139

ix

List of Tables

3.1 The time consumption/number of generated vertices using different tol-
erance ε in (4.11). 46

3.2 The time consumption/number of generated vertices when using different
number of the input signals. 46

3.3 The time consumption/number of generated vertices when using input
signals of different time duration τ . 46

x

To my loving family, steadfast friends, and all who have graciously supported and

inspired me throughout this journey.

xi

Acknowledgments

I am profoundly grateful to my advisor and mentor, Ricardo Sanfelice, for his unwavering

support and invaluable guidance through both the academic and personal challenges I’ve

faced. His wisdom and altitude have inspired me to pursue rigorous and mathematically

sound research, making him an exemplary model for my academic journey and future

professional endeavors.

I am thankful to my other committee members, Prof. Gabriel Elkaim, Prof.

Daniel Fremont, and Prof. Steve McGuire for their wisdom and their help on my

dissertation. My gratitude also goes to my collaborators Dr. Stefano Di Cairano, Prof.

Adeel Akhtar, Eric Partika, Adam Ames and Beverly Xu for their insight and support.

A special thank you to my peers in the Hybrid Systems Laboratory: Dr.

Kunal Garg, Prof. Adnane Saoud, Dr. Berk Altin, Dr. Mohamed Maghenem, Dr.

Himadri Basu, Dr. Malladi BharaniPrabha, Dr. Nathalie Risso, Dr. Hyejin Han, Dr.

Marcello Guarro, Dr. Dawn Hustig-Schultz, Dr. Parmita Ojaghi, Dr. Ryan Johnson, Dr.

Santiago Jiminez Leudo, Masoumeh Ghanbarpour, Paul Wintz, Carlos Montenegro, Jan

de Priester, Piyush Jirawankar, Nathan Wu, Xi Luo, Tommy Snijders, Hyung Tae Choi,

Roger Berman, Eric Partika, David Kooi, Adam Ames, Haoyue Gao, Harsh Bhakta,

Zachary Lamb, Jake Nations, Ishan Madan, Indy Spott, Kevin Sandoval, Cdric Chartier,

and Akhil Datla. Your company during this journey has transformed the Hybrid Systems

Laboratory into a cherished second home.

I am immensely thankful for the support of my family and friends throughout

xii

my graduate studies. A heartfelt thank you to my mother, Liandong Gong, and my

father, Haiping Wang, for their unconditional love and encouragement. Their courage

in letting their only child study so far from home laid the most solid foundation for

this dissertation. Among the many friends I have been fortunate to meet over the last

six years, I would especially like to thank Pengyang Zhou and Dr. Jing Xiong, for

the delicious food they made, and treasured experiences we have shared through this

journey.

xiii

Abstract

Provably-Correct and Efficient Motion Planning for Hybrid Dynamical Systems

by

Nan Wang

Motion planning serves as a pivotal role in various robotics applications, endowing

robots with intelligence and autonomy. It translates human commands and tasks into a

reference trajectory, with a tracking controller steering the system along the reference

trajectory, eventually implementing the commands and tasks. Despite extensive study in

motion planning for continuous-time and discrete-time systems, the emergence of hybrid

dynamical systems underscores their limitations. Hybrid dynamical systems feature

state variables that may evolve continuously (flow) and, at times, evolve discretely

(jump). Compared with motion planning for pure continuous-time/discrete-time system,

only a few efforts have been devoted to motion planning for a special class of hybrid

dynamical systems. Motivated by these gaps, this dissertation focuses on developing

provably-correct and efficient motion planning algorithms for a broad class of hybrid

dynamical systems.

Firstly, this dissertation lays the groundwork by establishing the fundamental

theory of motion planning for hybrid dynamical systems. The motion planning problem

for hybrid dynamical systems is formulated using the hybrid equations framework, which

is general to capture most hybrid dynamical systems. To overcome the lack of the sys-

tematic analysis on the propagation, reversal, concatenation, and truncation operations,

xiv

which are used in almost all motion planning algorithms, on the solutions to hybrid

dynamical systems, this dissertation formalizes the definitions of those operations for the

hybrid dynamical systems. This dissertation proposes a bidirectional propagation algo-

rithm template that describes a general framework using the aforementioned operations

to solve the motion planning problem for hybrid dynamical systems.

Secondly, a rapidly-exploring random trees (RRT) implementation of the pro-

posed algorithm template is designed to solve the motion planning problem for hybrid

dynamical systems. At each iteration, the proposed algorithm, called HyRRT, randomly

picks a state sample and extends the search tree by flow or jump, which is also chosen

randomly when both regimes are possible. Through a definition of concatenation of

functions defined on hybrid time domains, we show that HyRRT is probabilistically

complete, namely, the probability of failing to find a motion plan approaches zero as the

number of iterations of the algorithm increases. This property is guaranteed under mild

conditions on the data defining the motion plan, which include a relaxation of the usual

positive clearance assumption imposed in the literature of classical systems. The motion

plan is computed through the solution of two optimization problems, one associated

with the flow and the other with the jumps of the system.

Thirdly, this dissertation proposes a bidirectional RRT algorithm to solve

the motion planning problem for hybrid dynamical systems, accelerating the search

process. The proposed algorithm, called HyRRT-Connect, propagates in both forward

and backward directions in hybrid time until an overlap between the forward and

backward propagation results is detected. Then, HyRRT-Connect constructs a motion

xv

plan through the reversal and concatenation of functions defined on hybrid time domains,

ensuring the motion plan thoroughly satisfies the given hybrid dynamics. To address

the potential discontinuity along the flow caused by tolerating some distance between

the forward and backward partial motion plans, we reconstruct the backward partial

motion plan by a forward-in-hybrid-time simulation from the final state of the forward

partial motion plan. By applying the reversed input of the backward partial motion

plan, the reconstruction process effectively eliminates the discontinuity and ensures that

as the tolerance distance decreases to zero, the distance between the endpoint of the

reconstructed motion plan and the final state set approaches zero.

At last, we formulate an optimal motion planning problem for hybrid dynam-

ical systems and design a stable sparse RRT (SST) algorithm to solve the optimal

motion planning problem for hybrid dynamical systems. At each iteration, the proposed

algorithm, called HySST, selects a vertex with minimal cost among all the vertices

within the neighborhood of a random sample, subsequently extending the search tree.

In addition, HySST maintains a static set of witness points where all vertices within

each witness’s neighborhood are pruned, except for the ones with lowest cost. We show

that HySST is asymptotically near-optimal, namely, the probability of failing to find a

motion plan with cost close to the optimal approaches zero as the number of iterations

of the algorithm increases to infinity.

The contributions of this dissertation go beyond the development of certain

motion planning algorithms. It introduces a novel motion planning problem for a general

dynamical system and furnishes theoretical tools, enabling researchers to design their

xvi

own algorithms for solving this problem while ensuring completeness guarantees. In

addition, a hybrid dynamical system serves as a powerful modeling tool for addressing

difficult motion planning problems. By employing a generic hybrid dynamical system

model, users can tackle challenging motion planning tasks efficiently, with minimal

modeling effort and theoretical guarantees.

Publication List:

1. Wang, Nan, and Ricardo G. Sanfelice. “Motion Planning for Hybrid Dynamical Systems:

Framework, Algorithm Template, and a Sampling-based Approach” International Journal of

Robotics Research (IJRR).

2. Wang, Nan, and Ricardo G. Sanfelice. “HyRRT-Connect: A Bidirectional Rapidly-Exploring

Random Trees Motion Planning Algorithm for Hybrid Systems.” 2024 IFAC 8th Conference on

Analysis and Design of Hybrid Systems (ADHS). IFAC, 2024.

3. Wang, Nan, Stefano Di Cairano, and Ricardo G. Sanfelice. “A Switched Reference Governor

for High Performance Trajectory Tracking.” 2024 the American Control Conference (ACC), July,

2024.

4. Wang, Nan, and Ricardo G. Sanfelice. “HySST: An Asymptotically Near-Optimal Motion

Planning Algorithm for Hybrid Systems.” 2023 IEEE 62nd Conference on Decision and Control

(CDC). IEEE, 2023.

5. Wang, Nan, and Ricardo G. Sanfelice. “A rapidly-exploring random trees motion planning

algorithm for hybrid dynamical systems.” 2022 IEEE 61st Conference on Decision and Control

(CDC). IEEE, 2022.

6. Xu, Beverly, Wang, Nan, and Ricardo G. Sanfelice. “cHyRRT and cHySST: Two Motion

Planning Tools for Hybrid Dynamical Systems.” 28th ACM International Conference on Hybrid

Systems: Computation and Control (HSCC). ACM, 2025. (submitted)

xvii

7. Ames, Adam, Wang, Nan, and Ricardo G. Sanfelice. “A Set-based Motion Planning Algorithm

for Aerial Vehicles in the Presence of Obstacles Exhibiting Hybrid Dynamics.” 2022 IEEE

Conference on Control Technology and Applications (CCTA). IEEE, 2022.

xviii

Chapter 1

Introduction

1.1 Motivation

Motion planning consists of finding a state trajectory and associated inputs,

connecting the initial and final state while satisfying the system dynamics and a given

safety criterion. Motion planning technology has been widely used to help robotics

applications, such as autonomous driving systems [52], satellites systems [45], walking

robots [19], quadrupeds [51], unmanned underwater vehicles [41], and quadrotors [37, 3],

to complete complicated tasks. Particularly, the system dynamics considered in the

motion planning not only depend on the mechanical design of the robot, but also depend

on the internal logic and specifications and the interaction between the robot systems

and the environment. The former usually leads to continuous dynamics while the later

usually leads to discrete dynamics. For example, the continuous evolution of the states

of the wheeled vehicle can be modeled by either its kinematic model [43, Page 26] or its

1

dynamic model [15]. On the other hand, in scenarios like designing a motion planner for

a robot to move to the highest floor in a building, a logic variable representing the floor

number should be employed and updated discretely [7]. In addition, a motion planner to

plan the motion of consecutive steps of a biped robot should consider discrete changes

over the foot’s speed when an impact between the foot and the ground occurs [30].

However, for some motion planning tasks, the states can both evolve contin-

uously and, from time to time, execute some discrete changes. For example, in [67],

collision-resilient motion planning for multicopters involves continuous evolution in open

space and discrete changes upon collisions with a wall. Another example is the Task

and Motion Planning (TAMP) problem, which contains elements of discrete task plan-

ning, discrete-continuous mathematical programming, and continuous motion planning

[14, 22]. The motion planning approach in [1] enables agile automated driving on a

slippery surface by planning a motion that switches between different driving modes. In

both mentioned examples, neither a continuous-time model nor a discrete-time model

adequately captures the behaviors of the systems. However, a hybrid dynamical sys-

tem model is comprehensive, encompassing not only purely continuous or discrete-time

systems but also those exhibiting both continuous and discrete behaviors. This moti-

vates the research on motion planning for hybrid dynamical systems in this dissertation.

Unlike purely continuous-time or discrete-time systems, typically modeled by a single

differential or difference equation, hybrid dynamical systems within specific classes can

be represented using different formulations. Previous research has explored motion

planning for certain classes of hybrid dynamical systems. This dissertation focuses on

2

motion planning problems for hybrid dynamical systems modeled as hybrid equations

[17]. In this modeling framework, differential and difference equations with constraints

are used to describe the continuous and discrete behavior of the hybrid dynamical sys-

tem, respectively. This general hybrid dynamical system framework can capture most

hybrid dynamical systems emerging in robotic applications, not only the class of hybrid

dynamical systems considered in [64] and [6], but also systems with memory states,

timers, impulses, and interaction with the environment.

To efficiently solve the motion planning problems for hybrid dynamical systems

with theoretical guarantees, we develop three RRT-type motion planning algorithms that

implement motion planning tasks [56, 61, 62], achieve rapid searching speeds [59, 60],

and optimize given cost functionals [58, 57], respectively.

1.2 Basic Operations on the Trajectory for Hybrid Dy-

namical Systems

1.2.1 Related Work

Most existing motion planning algorithms, such as RRT algorithm [34], in-

crementally construct a search tree in the state space and seek for a path in the

search tree connecting the initial and final states. Such algorithms typically require

propagation, concatenation, truncation, and, if they propagate in both forward and

backward time, reversal operations of trajectories. Definitions of these operations

for purely continuous-time systems and for purely discrete-time systems are avail-

3

able in the literature and heavily used for motion planning. For example, given a

continuous function x1 : [0, t1] → R where t1 is a positive real number, the rever-

sal of x1 is x′1 : [0, t1] → R such that x′1(t) = x1(t1 − t). The other example is

that given two discrete functions x1 : {0, 1, ..., j1} → R and x2 : {0, 1, ..., j2} → R

where j1 and j2 are some positive integers, the concatenation of x2 to the end of x1

is xc : {0, 1, ..., j1 + j2} → R such that xc(j) = x1(j) for all j ∈ {0, 1, ..., j1} and

xc(j) = x2(j − j1) for all t ∈ {j1 + 1, j1 + 2, ..., j1 + j2}. Those definitions are used in

most motion planning literature, see, e.g., [33, Chapter 14.3].

However, defining such operations for trajectories of hybrid dynamical systems

is challenging because of their much more complicated domain structure. In fact, it is all

possible that a trajectory of a hybrid dynamical system 1) evolves purely continuously,

2) exhibits jumps all the time, 3) evolves continuous and exhibits one or multiple jumps

at times, or 4) exhibits Zeno behavior. To the authors’ best knowledge, except for

the concatenation operation defined in [2, Definition 5.1], there is no existing work

formulating such operations for hybrid dynamical systems, let alone their properties.

1.2.2 Contributions

The main contributions of the forthcoming Chapter 3 are as follows.

1) Mathematical formulation of the motion planning problem for hybrid dynamical

systems: In Section 3.1, inspired by the motion planning formulation in the classic

literature [33] and the definition of solution to hybrid dynamical systems in [47],

we formulate a motion planning problem for a broad class of hybrid dynamical

4

systems modeled using the hybrid equation framework.

2) Formal definitions for operations used in motion planning algorithms for hybrid

dynamical systems: In Section 3.2, we rigorously establish the mathematical for-

mulations for the concatenation, reversal, truncation, and propagation operations,

while also providing theoretical validation for the exact implementation of those

operations.

3) A bidirectional propagation algorithm template: In Section 3.3, we design a bidirec-

tional propagation algorithm template that provides key insight on how to employ

the aforementioned operations to solve the motion planning problem for hybrid

dynamical systems.

4) A general method to construct backward-in-time hybrid dynamical systems: In

Section 3.3.1, we present a general method for constructing backward-in-time

hybrid dynamical systems, facilitating the backward propagation of solutions in

the bidirectional propagation algorithm. Building upon the earlier introduction of

reversal propagation in Section 3.2, we demonstrate that reversing the backward-

in-time hybrid dynamical systems preserves the original hybrid dynamics.

5

1.3 Sampling-based Feasible Motion Planning for Hybrid

Dynamical Systems

1.3.1 Related Work

In recent years, various planning algorithms have been developed to solve

motion planning problems, from graph search algorithms [36] to artificial potential [26]

and fluid-flow field methods [49, 63, 50]. A main drawback of graph search algorithms

is that the number of vertices grows exponentially as the dimension of states grows,

which makes computing motion plans inefficient for high-dimensional systems. The

artificial potential field method suffers from getting stuck at local minimum. Arguably,

the most successful algorithm to solve motion planning problems for purely continuous-

time systems and purely discrete-time systems is the sampling-based Rapidly-exploring

Random Tree (RRT) algorithm [32]. This algorithm incrementally constructs a tree of

state trajectories toward random samples in the state space. Similar to graph search

algorithms, RRT suffers from the curse of dimensionality, but, in practice, achieves rapid

exploration in solving high-dimensional motion planning problems [10]. Compared with

the artificial potential field method, RRT is probabilistically complete [34], which means

that the probability of failing to find a motion plan converges to zero, as the number of

samples approaches infinity.

While RRT algorithms have been used to solve motion planning problems for

purely continuous-time systems [34] and purely discrete-time systems [7], fewer efforts

have been devoted to applying RRT-type algorithms to solve motion planning prob-

6

lems for systems with combined continuous and discrete behavior. In [21], a modular

framework, called FaSTrack, is developed to enable motion planning that is fast, dy-

namically feasible, and with guaranteed safety in the presence of the static obstacles.

Though some discrete behavior is present in the algorithms in these references, those

are limited to changes of certain parameters (e.g., waypoints) and do not consider dis-

crete changes of the state in the dynamical model describing the system to generate a

motion planning for – namely, they do not consider hybrid dynamics. For a special class

of hybrid dynamical systems like continuous-time hybrid dynamical system or hybrid

automata, some RRT-type motion planning algorithms, such as hybrid RRT [7] and

R3T [64], have been developed to solve motion planning problems. These methodologies

have also found application in falsification of hybrid automata such as the Monte-Carlo

sampling algorithm [40] and the Breach toolbox [12]. These systems involve continuous

states evolving continuously and discrete states (modes) that switch within a finite set

of feasible modes. However, they do not encompass hybrid dynamical systems where

states evolve continuously and intermittently execute jumps, which can be modeled

using hybrid equation framework.

1.3.2 Contributions

The main contributions of the forthcoming Chapter 4 are as follows.

1. Tools for an RRT-type motion planning algorithm for hybrid dynamical systems:

In Sections 4.2 to 4.4, we detail the formulation of the input library, continuous

simulator, and discrete simulator essential for designing an RRT-type motion

7

planning algorithm for hybrid dynamical systems. The input library comprises

feasible candidate inputs necessary satisfying the hybrid dynamics, while the

continuous and discrete simulators compute solution pairs by applying inputs from

the input library.

2. An RRT-type motion planning algorithm for hybrid dynamical systems: In Section

4.5, we develop an RRT-type motion planning algorithm, providing a mathematical

formulation for each function within the algorithm.

3. Probabilistic completeness guarantee: In Section 4.6, we establish the probabilistic

completeness of our proposed algorithm, indicating that if a motion plan exists,

the probability of the algorithm failing to find one decreases to zero as the number

of iterations approaches infinity.

1.4 A Bidirectional Sampling-based Motion Planning Ap-

proach for Hybrid Dynamical Systems

It is significantly challenging for almost all motion planning algorithms to main-

tain efficient computation performance, especially in solving high-dimensional problems.

Although RRT-type algorithms have demonstrated notable efficiency in rapidly search-

ing for solutions to high-dimensional problems compared to other algorithm types, there

remains room for enhancing their computational performance.

8

1.4.1 Related Work

In [29], RRT-Connect algorithm is proposed that propagates both in forward

direction and backward direction, where a notable improvement in computational perfor-

mance is observed. Inspired by this work, we design a bidirectional RRT-type algorithm

for hybrid dynamical systems, called HyRRT-Connect, that incrementally constructs

two search trees, in which one tree is rooted in the initial state set and constructed

forward in hybrid time, while the other is rooted in the final state set and constructed

backward in hybrid time. However, the backward propagation is a nontrivial task for

hybrid dynamical systems. In recent years, machine learning technology has made sig-

nificant strides in the motion planning field. In [42], a learning-based neural planner is

proposed, which incorporates existing RRT-type algorithms to generate samples in the

subspace that is most likely to contain motion plans.

1.4.2 Contributions

The main contributions of the forthcoming Chapter 5 are as follows.

1. A bidirectional RRT-type motion planning algorithm for hybrid dynamical systems:

In Section 5.2, we introduce a bidirectional RRT-type algorithm to address the

motion planning problem for hybrid dynamical systems. Each function within the

algorithm is accompanied by a mathematical formulation.

2. A reconstruction process to remove the discontinuity at the concatenation point :

In Section 5.3, to address the potential discontinuity along the flow caused by

9

tolerating some distance between the forward and backward partial motion plans,

we reconstruct the backward partial motion plan by a forward-in-hybrid-time

simulation from the final state of the forward partial motion plan. By applying

the reversed input of the backward partial motion plan, the reconstruction process

effectively eliminates the discontinuity and ensures that as the tolerance distance

decreases to zero, the distance between the endpoint of the reconstructed motion

plan and the final state set approaches zero.

1.5 Sampling-based Optimal Motion Planning for Hybrid

Dynamical Systems

1.5.1 Related Work

A feasible solution is not sufficient in most applications as the quality of the

solution returned by the motion planning algorithms is critical. The optimality of the

heuristic graph search algorithm, such as A* algorithm, is only guaranteed when the

employed heuristics is admissible [20], which is difficult to verify in practice. The optimal

motion planning algorithms using artificial potential field method are also developed.

In [53], the artificial potential field method is combined with evolutionary algorithms to

derive optimal potential field called evolutionary artificial potential field. However, there

is no theoretical guarantee over the optimality of the solution when the system dynamics

is considered. Arguably, the sampling-based optimal motion planning algorithms are

most promising because of the success of the sampling-based algorithms in solving

10

the feasible motion planning problems. It has been shown in [39] that the solution

returned by RRT converges to a sub-optimal solution. Therefore, variants of PRM

and RRT, such as PRM* and RRT* [24], have been developed to solve optimal motion

planning problems with guaranteed asymptotic optimality. However, both PRM* and

RRT* require a steering function returning the solution of a two-point boundary value

problem (TPBVP). Unfortunately, solutions to TPBVPs are difficult to generate for

most dynamical systems, which prevents them from being widely applied. On the other

hand, the stable sparse RRT (SST) algorithm [35] does not require a steering function

and is guaranteed to be asymptotically near optimal, which means that the probability

of finding a solution that has a cost close to the minimal cost converges to one as the

number of iterations approaches infinity.

1.5.2 Contributions

The main contributions of the forthcoming Chapter 6 are as follows.

1. An optimal motion planning problem for hybrid dynamical systems: Building upon

the feasible motion planning outlined in Section 3.1, in Section 6.1, we propose an

optimal motion planning problem for a broad class of hybrid dynamical systems

modeled using the hybrid equation framework.

2. An SST-type optimal motion planning algorithm for hybrid dynamical systems: In

Section 6.3, we devise an SST-type algorithm to tackle the optimal motion planning

problem for hybrid dynamical systems. Each function within the algorithm is

11

formulated mathematically.

3. Asymptotically near-optimality guarantee: In Section 6.4, we demonstrate that the

proposed algorithm is asymptotically near-optimal. Specifically, as the number of

iterations of the algorithm increases to infinity, the probability of failing to find a

motion plan with a cost close to the optimal diminishes to zero.

1.6 Future Directions and Potential Applications

The future work outlined in Chapter 7 includes motion planning for hybrid

dynamical systems under uncertainty, collaborative planning for multiple agents with

hybrid dynamics, and motion planning for feedback hybrid dynamical systems.

The planning algorithms introduced in this dissertation empower robotics

systems to leverage interactions with their environments to execute tasks previously

beyond their capacity. Moreover, incorporating temporal logic/task specifications into

the dynamics enables motion planning under logic specifications. The key advantage

lies in modeling all these tasks using the generic hybrid dynamical system model and

employing any motion planning algorithms for this model. To enhance the application,

the proposed RRT-type algorithms are implemented in C++, as detailed in [65]. The

resulting motion plan can be used as the reference for the tracking controllers as in [55,

54].

12

Chapter 2

Preliminaries

In this chapter, we present the hybrid dynamical systems framework and its

basic properties.

2.1 Hybrid Dynamical System Model

Following [47], a hybrid dynamical system H with inputs is modeled as

H :


ẋ = f(x, u) (x, u) ∈ C

x+ = g(x, u) (x, u) ∈ D
(2.1)

where x ∈ Rn is the state, u ∈ Rm is the input, C ⊂ Rn × Rm represents the flow set,

f : Rn ×Rm → Rn represents the flow map, D ⊂ Rn ×Rm represents the jump set, and

g : Rn × Rm → Rn represents the jump map, respectively. The continuous evolution of

x is captured by the flow map f . The discrete evolution of x is captured by the jump

map g. The flow set C collects the points where the state can evolve continuously. The

jump set D collects the points where jumps can occur.

13

Given a flow set C, the set UC := {u ∈ Rm : ∃x ∈ Rn such that (x, u) ∈ C}

includes all possible input values that can be applied during flows. Similarly, given

a jump set D, the set UD := {u ∈ Rm : ∃x ∈ Rn such that (x, u) ∈ D} includes all

possible input values that can be applied at jumps. These sets satisfy C ⊂ Rn×UC and

D ⊂ Rn × UD. Given a set K ⊂ Rn × U?, where ? is either C or D, we define

Π?(K) := {x : ∃u ∈ U? s.t. (x, u) ∈ K} (2.2)

as the projection of K onto Rn, and define

C ′ := ΠC(C) (2.3)

and

D′ := ΠD(D). (2.4)

In addition to ordinary time t ∈ R≥0, we employ j ∈ N to denote the number

of jumps of the evolution of x and u for H in (2.1), leading to hybrid time (t, j) for the

parameterization of its solutions and inputs. The domain of a solution to H is given by

a hybrid time domain as is defined as follows.

Definition 2.1 (Hybrid time domain). A set E ⊂ R≥0 × N is a hybrid time domain if,

for each (T, J) ∈ E, the set

E ∩ ([0, T]× {0, 1, ..., J})

can be written in the form
J⋃
j=0

([tj , tj+1]× {j})

for some finite sequence of times {tj}J+1
j=0 satisfying 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tJ+1 = T .

14

Given a compact hybrid time domain E, we denote the maximum of t and j

coordinates of points in E as

maxtE := max{t ∈ R≥0 : ∃j ∈ N such that (t, j) ∈ E} (2.5)

and

maxjE := max{j ∈ N : ∃t ∈ R≥0 such that (t, j) ∈ E}. (2.6)

The input to the hybrid dynamical systems is defined as a function on a hybrid

time domain as follows.

Definition 2.2 (Hybrid input). A function υ : dom υ → Rn is a hybrid input if dom υ

is a hybrid time domain and if, for each j ∈ N, t 7→ υ(t, j) is Lebesgue measurable and

locally essentially bounded on the interval Ijυ := {t : (t, j) ∈ dom υ}.

A hybrid arc describes the state trajectory of the system as is defined as follows.

Definition 2.3 (Hybrid arc). A function φ : dom φ→ Rn is a hybrid arc if dom φ is a

hybrid time domain and if, for each j ∈ N, t 7→ φ(t, j) is locally absolutely continuous

on the interval Ijφ := {t : (t, j) ∈ dom φ}.

Definition 2.4 (Types of hybrid arcs). A hybrid arc φ is called

• nontrivial if dom φ contains at least two points;

• purely discrete if nontrivial and dom φ ⊂ {0} × N;

• purely continuous if nontrivial and dom φ ⊂ R≥0 × {0}.

The definition of solution pair to a hybrid dynamical system is given as follows.

15

Definition 2.5 (Solution pair to a hybrid dynamical system). A hybrid input υ and a

hybrid arc φ define a solution pair (φ, υ) to the hybrid dynamical system H if

1) (φ(0, 0), υ(0, 0)) ∈ C ∪D and dom φ = dom υ(= dom (φ, υ)).

2) For each j ∈ N such that Ijφ has nonempty interior int(Ijφ), (φ, υ) satisfies

(φ(t, j), υ(t, j)) ∈ C

for all t ∈ int Ijφ, and

d

dt
φ(t, j) = f(φ(t, j), υ(t, j))

for almost all t ∈ Ijφ.

3) For all (t, j) ∈ dom (φ, υ) such that (t, j + 1) ∈ dom (φ, υ),

(φ(t, j), υ(t, j)) ∈ D

φ(t, j + 1) = g(φ(t, j), υ(t, j)).

(2.7)

In the main result, the following definition of closeness between hybrid arcs is

used.

Definition 2.6 ((τ, ε)-closeness of hybrid arcs). Given τ, ε > 0, two hybrid arcs φ1 and

φ2 are (τ, ε)-close if

1. for all (t, j) ∈ dom φ1 with t + j ≤ τ , there exists s such that (s, j) ∈ dom φ2,

|t− s| < ε, and |φ1(t, j)− φ2(s, j)| < ε;

2. for all (t, j) ∈ dom φ2 with t + j ≤ τ , there exists s such that (s, j) ∈ dom φ1,

|t− s| < ε, and |φ2(t, j)− φ1(s, j)| < ε.

16

Chapter 3

Framework, Basic Operations, and

Algorithm Template

This chapter focuses on the motion planning problem for hybrid dynamical sys-

tems. Firstly, the motion planning problem for hybrid dynamical systems is formulated

using the hybrid equation framework, which is general to capture most hybrid dynamical

systems. Secondly, to overcome the lack of the systematic analysis on the propagation,

reversal, concatenation, and truncation operations, which are used in almost all motion

planning algorithms, on the solutions to hybrid dynamical systems, this chapter formal-

izes the definitions of those operations for the hybrid dynamical systems and validates

them theoretically. Thirdly, this chapter proposes a bidirectional propagation algorithm

template that describes a general framework using the aforementioned operations to

solve the motion planning problem for hybrid dynamical systems.

17

3.1 Feasible Motion Planning Problem for Hybrid Dynam-

ical Systems

The motion planning problem for hybrid dynamical systems is formulated as

follows.

Problem 3.1 (Feasible motion planning problem for hybrid dynamical systems). Given

a hybrid dynamical system H with input u ∈ Rm and state x ∈ Rn, initial state set

X0 ⊂ Rn, final state set Xf ⊂ Rn, and unsafe set Xu ⊂ Rn × Rm, find a pair (φ, υ) :

dom (φ, u)→ Rn ×Rm, namely, a motion plan, such that for some (T, J) ∈ dom (φ, υ),

the following hold:

1. φ(0, 0) ∈ X0, namely, the initial state of the solution belongs to the given initial

state set X0;

2. (φ, υ) is a solution pair to H as defined in Definition 2.5;

3. (T, J) is such that φ(T, J) ∈ Xf , namely, the solution belongs to the final state set

at hybrid time (T, J);

4. (φ(t, j), υ(t, j)) /∈ Xu for each (t, j) ∈ dom (φ, υ) such that t+ j ≤ T + J , namely,

the solution pair does not intersect with the unsafe set before its state trajectory

reaches the final state set.

Therefore, given sets X0, Xf , and Xu, and a hybrid dynamical system H with data

(C, f,D, g), a motion planning problem for hybrid dynamical systems, denoted P, is

defined as P = (X0, Xf , Xu, (C, f,D, g)).

18

initial state

final state

unsafe set

flow set

jump set

Figure 3.1: Motion planning for hybrid dynamical systems.

There are some special cases of Problem 3.1. For example, when D = ∅ and C

is nonempty, then P denotes the motion planning problem for purely continuous-time

systems. In addition, when C = ∅ and D is nonempty, then P denotes the motion

planning problem for purely discrete-time systems. Therefore, Problem 3.1 covers the

motion planning problems for purely continuous-time and purely discrete-time systems

studied in [34] and [33], respectively. The algorithm template to solve the motion

planning problem is illustrated in the following examples.

Example 3.2 (Actuated bouncing ball system). Consider a ball bouncing on a fixed

horizontal surface as is shown in Figure 3.2. The surface is located at the origin and,

through control actions, is capable of affecting the velocity of the ball after the impact.

19

The dynamics of the ball while in the air is given by

ẋ =

 x2

−γ

 =: f(x, u) (x, u) ∈ C (3.1)

where x := (x1, x2) ∈ R2. The height of the ball is denoted by x1. The velocity of the

ball is denoted by x2. The gravity constant is denoted by γ. The flow is allowed when
h

ei
gh

t
(x

1
)

control

input (u)

Figure 3.2: A motion plan to the sample motion planning problem for actuated bouncing
ball system.

the ball is above the surface. Hence, the flow set is

C := {(x, u) ∈ R2 × R : x1 ≥ 0}. (3.2)

At every impact, the velocity of the ball changes from pointing down to pointing up

while the height remains the same. The dynamics at jumps of the actuated bouncing ball

20

system is given as

x+ =

 x1

−λx2 + u

 =: g(x, u) (x, u) ∈ D (3.3)

where u ≥ 0 is the input and λ ∈ (0, 1) is the coefficient of restitution. Jumps are allowed

when the ball is on the surface with negative velocity. Hence, the jump set is

D := {(x, u) ∈ R2 × R : x1 = 0, x2 ≤ 0, u ≥ 0}. (3.4)

The hybrid model of the actuated bouncing ball system is given by (2.1) where the flow

0 5 10 15
-20

-15

-10

-5

0

5

10

15

Figure 3.3: The actuated bouncing ball system in Example 3.2. The final state set is
denoted by a green square. The red trajectory denotes the state trajectory of a sample
motion plan.

map f is given in (3.1), the flow set C is given in (3.2), the jump map g is given in (3.3),

and the jump set D is given in (3.4). A sample motion planning problem for the actuated

bouncing ball system is given as follows. The initial state set is X0 = {(15, 0)}. The final

state set is Xf = {(10, 0)}. The unsafe set is Xu = {(x, u) ∈ R2 × R : u ∈ [5,∞)}. The

motion planning problem P is given as P = (X0, Xf , Xu, (C, f,D, g)). A state trajectory

21

solving this motion planning problem is shown in Figure 3.3. In the figure, the initial

state set is denoted by a blue square. The final state set is denoted by a green square.

The red trajectory denotes the state trajectory of a sample motion plan.

Example 3.3 (Walking robot). The state x of the compass model of a walking robot

is composed of the angle vector θ and the velocity vector ω [19]. The angle vector θ

contains the planted leg angle θp, the swing leg angle θs, and the torso angle θt. The

velocity vector ω contains the planted leg angular velocity ωp, the swing leg angular

velocity ωs, and the torso angular velocity ωt. The input u is the input torque, where

up is the torque applied on the planted leg from the ankle, us is the torque applied on

the swing leg from the hip, and ut is the torque applied on the torso from the hip. The

continuous dynamics of x = (θ, ω) are obtained from the Lagrangian method and are

given by θ̇ = ω, ω̇ = Df (θ)−1(−Cf (θ, ω)ω −Gf (θ) + Bu) =: α(x, u), where Df and Cf

are the inertial and Coriolis matrices, respectively, and B is the actuator relationship

matrix. In [48], the input torques that produce an acceleration a for a special state x are

determined by a function µ, defined as µ(x, a) := B−1(Df (θ)a+Cf (θ, ω)ω+Gf (θ)). By

applying u = µ(x, a) to ω̇ = α(x, u), we obtain ω̇ = a. Then, the flow map f is defined

as

f(x, a) :=

ω
a

 (x, a) ∈ C.

Flow is allowed when only one leg is in contact with the ground. To determine if

the biped has reached the end of a step, we define h(x) := φs−θp for all x ∈ R6 where φs

denotes the step angle. The condition h(x) ≥ 0 indicates that only one leg is in contact

22

x

z

θp

ωp

up

θt

ut

ωt

−θs

ωs

us

ml ml

mh

mt

Figure 3.4: The biped system in Example 3.3. The angle vector θ contains the planted
leg angle θp, the swing leg angle θs, and the torso angle θt. The velocity vector ω contains
the planted leg angular velocity ωp, the swing leg angular velocity ωs, and the torso
angular velocity ωt. The input u is the input torque, where up is the torque applied on
the planted leg from the ankle, us is the torque applied on the swing leg from the hip,
and ut is the torque applied on the torso from the hip.

23

with the ground. Thus, the flow set is defined as C := {(x, a) ∈ R6 × R3 : h(x) ≥ 0}.

Furthermore, a step occurs when the change of h is such that θp is approaching φs, and

h equals zero. Thus, the jump set D is defined as D := {(x, a) ∈ R6 × R3 : h(x) =

0, ωp ≥ 0}.

Following [19], when a step occurs, the swing leg becomes the planted leg, and

the planted leg becomes the swing leg. The function Γ is defined to swap angles and

velocity variables as θ+ = Γ(θ). The angular velocities after a step are determined by a

contact model denoted as Ω(x) := (Ωp(x),Ωs(x),Ωt(x)), where Ωp, Ωs, and Ωt are the

angular velocity of the planted leg, swing leg, and torso, respectively. Then, the jump

map g is defined as

g(x, a) :=

Γ(θ)

Ω(x)

 ∀(x, a) ∈ D. (3.5)

For more information about the contact model, see [19, Appendix A].

An example of a motion planning problem for the walking robot system is as

follows: using a bounded input signal, find a solution pair to (2.1) associated to the

walking robot system completing a step of a walking circle. One way to characterize a

walking cycle is to define the final state and the initial state as the states before and after

a jump occurs, respectively. One such motion planning problem is given by defining the

final state set as Xf = {(φs,−φs, 0, 0.1, 0.1, 0)}, the initial state set as X0 = {x0 ∈ R6 :

x0 = g(xf , 0), xf ∈ Xf} where the input argument of g can be set arbitrarily because input

does not affect the value of g; see (3.5), and the unsafe set as Xu = {(x, a) ∈ R6 × R3 :

a1 /∈ [amin
1 , amax

1] or a2 /∈ [amin
2 , amax

2] or a3 /∈ [amin
3 , amax

3] or (x, a) ∈ D}, where amin
1 ,

24

amin
2 , and amin

3 are the lower bounds of a1, a2, and a3, respectively, and amax
1 , amax

2 , and

amax
3 are the upper bounds of a1, a2, and a3, respectively. In this example, the step angle

φs is set as 0.70. The length of the torso lt and the legs ll are set as 1. The leg mass, hip

mass and torso mass are set as 1. The walking velocity is set as 0.6. amin
1 and amax

1 are

set as −3 and 3, respectively. amin
2 and amax

2 are set as −3 and 3, respectively. amin
3 and

amax
3 are set as −0.2 and 0.2, respectively. We also solve this motion planning problem

later.

3.2 Reversal, Concatenation, and Truncation of Solutions

to Hybrid Dynamical Systems

The operations related to our algorithm template include reversal and concate-

nation operations of solution pairs.

Definition 3.4 (Reversal of a solution pair). Given a compact solution pair (φ, υ) to H =

(C, f,D, g), where φ : dom φ→ Rn, υ : dom υ → Rm, and (T, J) = max dom (φ, υ), the

pair (φ′, υ′) is the reversal of (φ, υ), where φ′ : dom φ′ → Rn with dom φ′ ⊂ R≥0 × N

and υ′ : dom υ′ → Rm with dom υ′ = dom φ′, if the following hold:

1) The function φ′ is defined as

a) dom φ′ = {(T, J)} − dom φ, where the minus sign denotes Minkowski differ-

ence;

b) φ′(t, j) = φ(T − t, J − j) for all (t, j) ∈ dom φ′.

25

2) The function υ′ is defined as

a) dom υ′ = {(T, J)} − dom υ, where the minus sign denotes Minkowski differ-

ence.

b) For all j ∈ N such that Ij = {t : (t, j) ∈ dom υ′} has nonempty interior,

i) For all t ∈ int Ij, υ′(t, j) = υ(T − t, J − j);

ii) If I0 has nonempty interior, then υ′(0, 0) ∈ Rm is such that (φ′(0, 0), υ′(0, 0)) ∈

C;

iii) For all t ∈ ∂Ij such that (t, j + 1) /∈ dom υ′ and (t, j) 6= (0, 0), υ′(t, j) ∈

Rm.

c) For all (t, j) ∈ dom υ′ such that (t, j+1) ∈ dom υ′, υ′(t, j) = υ(T−t, J−j−1).

The reversal of a given solution pair is not always unique, since υ′(t, j) ∈ Rm

in item 2biii in Definition 3.4 is free. The value assigned to υ′ at such hybrid time can

be given by the continuous extension of υ′ at (t, j) in the interval Ij , if it exists.

Definition 3.5 (Concatenation operation). Given two functions φ1 : dom φ1 → Rn

and φ2 : dom φ2 → Rn, where dom φ1 and dom φ2 are hybrid time domains, φ2 can be

concatenated to φ1 if φ1 is compact and φ : dom φ→ Rn is the concatenation of φ2 to

φ1, denoted φ = φ1|φ2, namely,

1) dom φ = dom φ1 ∪ (dom φ2 + {(T, J)}), where (T, J) = max dom φ1 and the plus

sign denotes Minkowski addition;

26

2) φ(t, j) = φ1(t, j) for all (t, j) ∈ dom φ1\{(T, J)} and φ(t, j) = φ2(t− T, j − J) for

all (t, j) ∈ dom φ2 + {(T, J)}.

The following example in Figure 3.5 illustrates the concatenation of the func-

tions on hybrid time domains. Let φ1 and φ2 be two functions defined on hybrid time

domains and (T, J) = max dom φ1. When φ2 is concatenated to φ1, the domain of

the concatenation is constructed by translating the domain of φ2 by (T, J) and con-

catenating the translated domain to the domain of φ1. Particularly, if φ1 and φ2 are

hybrid arcs, their concatenation is not guaranteed to be a hybrid arc. The reason is that

the concatenation result may not be continuous at (T, J). The concatenation of two

trajectories is illustrated in Figure 3.5. In the figure, the solid lines denote the flows and

the dotted lines denote the jumps. In Figure 3.5(a), the trajectories φ1 and φ2 denote

the original trajectories and the trajectory φ in Figure 3.5(b) denotes the concatenation

of φ2 to φ1.

The truncation operation of the solution pair is used in the proofs of the main

results. The definition of the truncation operation is given as follows.

Definition 3.6 (Truncation and translation operation). Given a function φ : dom φ→

Rn, where dom φ is a hybrid time domain, and pairs of hybrid time (T1, J1) ∈ dom φ

and (T2, J2) ∈ dom φ such that T1 ≤ T2 and J1 ≤ J2, the function φ̃ : dom φ̃ → Rn is

the truncation of φ between (T1, J1) and (T2, J2) and translation by (T1, J1) if

1) dom φ̃ = (dom φ ∩ ([T1, T2] × {J1, J1 + 1, ..., J2})) − {(T1, J1)}, where the minus

sign denotes Minkowski difference;

27

φ1

φ1(0, 0)

φ1(T, J)

φ2(0, 0)

φ2

(a) The original trajectory φ1 and φ2.

concatenation point

φ

(b) The trajectory φ resulting from concatenating φ2 to φ1.

Figure 3.5: The concatenation φ of trajectory φ2 to trajectory φ1.

28

2) φ̃(t, j) = φ(t+ T1, j + J1) for all (t, j) ∈ dom φ̃.

3.3 A Forward/Backward Propagation Algorithm Template

In this section, a bidirectional propagation algorithm template, which we refer

to as forward/backward propagation algorithm template, is proposed to help design

motion planning algorithms to solve the motion planning problem for hybrid dynam-

ical systems P = (X0, Xf , Xu, (C, f,D, g)). The main steps of the forward/backward

propagation algorithm template are as follows.

Step 1: Propagate the state from the initial state set X0 forward in hybrid time and

from the final state set Xf backward in hybrid time without intersecting with

the unsafe set Xu.

Step 2: If an appropriate overlap between forward and backward propagation results is

found, reverse the solution pair generated by the backward-in-time propagation,

concatenate it to the solution pair generated by forward-in-time propagation

and return the concatenation result.

First, we construct the backward-in-time hybrid dynamical system, which is used to

implement the backward propagation. Then, we formalize the propagation operation

used in the algorithm template. After that, we show that the result constructed by

the propagation, reversal, and concatenation operations satisfies the requirements in

Problem 3.1. Finally, we present the template framework and analyze its soundness and

exactness properties.

29

3.3.1 Backward-in-time Hybrid Dynamical Systems

In the proposed template, a backward-in-time version of the hybrid dynamical

system H = (C, f,D, g), denoted Hbw = (Cbw, fbw, Dbw, gbw), is required when propa-

gating trajectories backward in hybrid time. The backward-in-time hybrid dynamical

system Hbw is constructed as follows.

Definition 3.7 (Backward-in-time hybrid dynamical system). Given a hybrid dynamical

system H = (C, f,D, g), the backward-in-time hybrid dynamical system of H, denoted

Hbw, is the hybrid dynamical system

H :


ẋ = fbw(x, u) (x, u) ∈ Cbw

x+ ∈ gbw(x, u) (x, u) ∈ Dbw

(3.6)

where

1) The backward-in-time flow set is constructed as

Cbw := C. (3.7)

2) The backward-in-time flow map is constructed as

fbw(x, u) := −f(x, u) ∀(x, u) ∈ Cbw. (3.8)

3) The backward-in-time jump map is constructed as

gbw(x, u) := {z ∈ Rn : x = g(z, u), (z, u) ∈ D} ∀(x, u) ∈ Rn × Rm. (3.9)

4) The backward-in-time jump set is constructed as

Dbw := {(x, u) ∈ Rn × Rm : ∃z ∈ gbw(x, u) : (z, u) ∈ D}. (3.10)

30

The above shows a general method of constructing the backward-in-time system

given the forward-in-time hybrid dynamical system. Note that although the jump map

g in the forward-in-time system H is a single-valued map, the jump map gbw in the

backward-in-time system Hbw is not necessarily single valued. Hence, a difference

inclusion is used in (3.6). The backward-in-time hybrid dynamical system of the hybrid

dynamical system in Example 3.2 is constructed next.

Example 3.8 (Actuated bouncing ball system in Example 3.2, revisited). The backward-

in-time hybrid dynamical system of the actuated bouncing ball system is constructed as

follows.

• From (3.7), the backward-in-time flow set Cbw is given by

Cbw := C = {(x, u) ∈ R2 × R : x1 ≥ 0}. (3.11)

• From (3.8), the backward-in-time flow map fbw is given by

fbw(x, u) := −f(x, u) =

−x2

γ

 (x, u) ∈ Cbw. (3.12)

• From (3.10), the backward-in-time jump set is given by

Dbw := {(x, u) ∈ R2 × R : x1 = 0, x2 ≥ u, u ≥ 0}. (3.13)

• From (3.9), the backward-in-time jump map gbw is given by

gbw(x, u) :=

 x1

−x2
λ + u

λ

 (x, u) ∈ Dbw. (3.14)

31

In conclusion, the backward-in-time hybrid dynamical system is given by:

Hbw :


ẋ = fbw(x, u) (x, u) ∈ Cbw

x+ = gbw(x, u) (x, u) ∈ Dbw

(3.15)

where the flow map f is given in (4.18), the flow set C is given in (4.17), the jump map

g is given in (4.20) and the jump set D is given in (4.19).

Proposition 3.9 shows that the reversal of the solution pair to a hybrid dynam-

ical system is a solution pair to its backward-in-time hybrid dynamical system.

Proposition 3.9. Given a hybrid dynamical system H and its backward-in-time system

Hbw, if ψ = (φ, u) is a compact solution pair to H, the reversal ψ′ = (φ′, u′) of ψ = (φ, u)

is a compact solution pair to Hbw.

Proof. This proof is in Appendix A.1.

3.3.2 Propagation Operation

The proposed template requires an operation to collect all solution pairs that

start from the initial/final state set, without reaching the unsafe set. The definition of

the propagation operation is formalized as follows.

Definition 3.10 (Propagation operation). Given a hybrid dynamical system H =

(C, f,D, g), an initial state set X0, and an unsafe set Xu, the propagation operation with

parameters (X0, Xu, (C, f,D, g)) constructs a set S that collects all the solution pairs

ψ = (φ, u) that satisfy the following conditions:

1. ψ = (φ, u) is a solution pair to H (see Definition 2.5);

32

2. φ(0, 0) ∈ X0;

3. ψ(t, j) /∈ Xu for all (t, j) ∈ dom ψ.

Remark 3.11. The result of the forward propagation operation is defined as the set

of all possible collision-free solution pairs to the hybrid dynamical system starting from the

given initial state set. The propagation operation with parameters (Xf , Xu, (C
bw, fbw, Dbw,

gbw)) corresponds to the backward propagation starting from the final state set. N

Remark 3.12. Note that Definition 3.10 describes an exact searching process since

it constructs a set that includes all possible solution pairs. The implementation of an

algorithm constructing such set is difficult in practice because there can be infinite many

possible values for the input at each hybrid time instance. Additionally, the solution pairs

collected in S are not limited to maximal solutions, which means that any truncation

of a solution pair in S should also be collected in S. However, this operation can be

implemented incrementally and numerically. For example, the search trees constructed

in the classic motion planning algorithm, such as RRT, can be seen as an approximation

of the set S because any path in the search trees starting from X0 can be seen as an

element in S. N

3.3.3 Construction of Motion Plans

In the proposed template, reversal and concatenation operations are executed

to build motion plans. The two operations are formalized in Definition 3.4 and Definition

3.5. Proposition 3.9 has shown that the reversal of a solution pair to a hybrid dynamical

33

system is a solution pair to its backward-in-time system. Proposition 3.13 below shows

that the concatenation of solution pairs satisfies the definition of the solution pair in

Definition 2.5 under mild conditions.

Proposition 3.13. Given two solution pairs ψ1 = (φ1, υ1) and ψ2 = (φ2, υ2) to a hybrid

dynamical system H, their concatenation ψ = (φ, υ) = (φ1|φ2, υ1|υ2), denoted ψ = ψ1|ψ2,

is a solution pair to H if the following hold:

1) ψ1 = (φ1, υ1) is compact;

2) φ1(T, J) = φ2(0, 0), where (T, J) = max dom ψ1;

3) If both IJψ1
and I0

ψ2
have nonempty interior, where Ijψ = {t : (t, j) ∈ dom ψ} and

(T, J) = max dom ψ1, then ψ2(0, 0) ∈ C.

Proof. This proof is in Appendix A.2.

Remark 3.14. Item 1 in Proposition 3.13 guarantees that ψ2 can be concatenated to

ψ1. Definition 3.5 suggests that if ψ2 can be concatenated to ψ1, ψ1 is required to be

compact. Item 2 in Proposition 3.13 guarantees that the φ is a hybrid arc or ψ satisfies

item 3 in Definition 2.5 at hybrid time (T, J), where (T, J) = max dom ψ1. Item 3 in

Proposition 3.13 guarantees that the concatenation result ψ satisfies item 2 in Definition

2.5 at hybrid time (T, J). Note that item 2 therein does not require that ψ1(T, J) ∈ C

and ψ2(0, 0) ∈ C since T /∈ int IJψ1
and 0 /∈ int I0

ψ2
. However, T may belong to the

interior of IJψ after concatenation. Hence, item 3 guarantees that if T belongs to the

interior of IJψ after concatenation, then ψ(T, J) ∈ C. N

34

The following assumption is imposed on the solution pairs that are used to

construct motion plans in the forthcoming forward/ backward propagation algorithm

template.

Assumption 3.15. Given a solution pair ψ1 = (φ1, υ1) to a hybrid dynamical system

H = (C, f,D, g) and a solution pair ψ2 = (φ2, υ2) to the backward-in-time hybrid

dynamical system Hbw associated to H, the following hold:

1) ψ1 and ψ2 are compact;

2) φ1(T1, J1) = φ2(T2, J2), where (T1, J1) = max dom ψ1 and (T2, J2) = max dom ψ2;

3) If both IJ1ψ1
and IJ2ψ2

have nonempty interior, where Ijψ = {t : (t, j) ∈ dom ψ},

(T1, J1) = max dom ψ1, and (T2, J2) = max dom ψ2, then ψ2(T2, J2) ∈ C.

Remark 3.16. Given a hybrid dynamical system H, its backward-in-time system Hbw,

a solution pair ψ1 to H, and a solution pair ψ2 to Hbw, Assumption 3.15 is imposed

on ψ1 and ψ2 to guarantee that the concatenation of the reversal of ψ2 to ψ1 is a

solution pair to H. Assumption 3.15 guarantees that the conditions needed to apply

Proposition 3.9 and Proposition 3.13 hold. Note that conditions that guarantee the

existence of nontrivial solutions have been proposed in Proposition 3.4 in [9]. For the

propagation with parameters (X0, Xu, (C, f,D, g)), if ξ ∈ X0 is such that1 ξ ∈ Π(D) or

there exist ε > 0, an absolutely continuous function z : [0, ε] → Rn with z(0) = ξ, and

a Lebesgue measurable and locally essentially bounded function2 υ̃ : [0, ε] → UC such

1Given a jump set D ⊂ Rn × Rm, define Π(D) := {x ∈ Rn : ∃u ∈ UD, s.t. (x, u) ∈ D} as the
projection of D onto Rn, where UD := {u ∈ Rm : ∃x ∈ Rn such that (x, u) ∈ D}

2Given a flow set C ⊂ Rn × Rm, the set denoted UC , includes all possible input values that can be
applied during flows and is defined as UC := {u ∈ Rn : ∃x ∈ Rn such that (x, u) ∈ C}.

35

that (z(t), υ̃(t)) ∈ C for all t ∈ (0, ε) and d
dtz(t) = f(z(t), υ̃(t)) for almost all t ∈ [0, ε],

where3 υ̃(t) ∈ Ψu
c (z(t)) for every t ∈ [0, ε], then the existence of nontrivial solution pairs

is guaranteed from ξ. Items 2 and 3 in Assumption 3.15 relate the final states and their

“last” interval of flow of the given solution pairs. N

The following result validates that a solution pair constructed using solution

pairs satisfying Assumption 3.15 satisfies Definition 2.5.

Lemma 3.17. Given a hybrid dynamical system H and its backward-in-time hybrid

dynamical system Hbw, if ψ1 is a solution pair to H and ψ2 is a solution pair to Hbw

such that ψ1 and ψ2 satisfy Assumption 3.15, then the concatenation ψ = ψ1|ψ′2 is a

solution pair to H, where ψ′2 is the reversal of ψ2.

Proof. According to Definition 3.4, the reversal operation is executable on ψ2 when

ψ2 is compact. The first condition in Assumption 3.15 guarantees that ψ2 is compact.

According to Proposition 3.9, the reversal ψ′2 of ψ2 is a solution pair to H.

Next, we show that the conditions in Proposition 3.13 are satisfied.

1) The first condition in Assumption 3.15 shows that ψ1 is compact. Therefore, the

first condition in Proposition 3.13 is satisfied.

2) Note that the second condition in Assumption 3.15 suggests that φ1(T1, J1) =

φ2(T2, J2). Since φ′2(0, 0) = φ2(T2, J2), then φ1(T1, J1) = φ′2(0, 0) is satisfied.

Hence, ψ1 and ψ′2 satisfy the second condition in Proposition 3.13.

3Given a flow set C ⊂ Rn × Rm, the set-valued maps Ψu
c : Rn → UC is defined for each x ∈ Rn as

Ψu
c (x) := {u ∈ UC : (x, u) ∈ C}.

36

3) Since IJ2ψ2
= I0

ψ′2
and ψ2(T2, J2) = ψ′2(0, 0), then the third condition in Assumption

3.15 implies that ψ1 and ψ′2 satisfy the third condition in Proposition 3.13.

Since the conditions in Proposition 3.13 are satisfied, Proposition 3.13 guarantees that

the concatenation of ψ′2 to ψ1 is a solution pair to H.

Lemma 3.17 is exploited by our forthcoming algorithm template, which also

checks numerically if Assumption 3.15 holds.

3.3.4 Forward/Backward Propagation Algorithm Template and Prop-

erty Analysis

With all the components introduced above, the forward/backward propagation

algorithm is given in Algorithm 1. The inputs of the proposed algorithm are given as

follows.

• The motion planning problem is given as P = (X0, Xf , Xu, (C, f,D, g)) (defined

in Problem 3.1).

• The backward-in-time hybrid dynamical system of the system H = (C, f,D, g),

denoted as Hbw and constructed following (3.6).

• Sets of solution pairs S fw and Sbw to store forward and backward propagation

operation results, respectively.

The algorithm template collects all collision-free solution pairs to H (Hbw) starting

from X0 (Xf) and stores them in the set Sfw (Sbw, respectively) (Line 1). Then, the

37

Algorithm 1 Forward/backward propagation algorithm template

1: Propagate with parameters (X0, Xu, (C, f,D, g)) (see Definition 3.10) and propagate

with parameters (Xf , Xu, (C
bw, fbw, Dbw, gbw)) (see Definition 3.10), with respective

results stored in S fw and Sbw.

2: if ∃ψfw ∈ S fw and ψbw ∈ Sbw that satisfy Assumption 3.15 then

3: Reverse ψbw to get ψbw′ (see Definition 3.4).

4: Concatenate ψbw′ to ψfw to get ψ (see Definition 3.5).

5: return ψ.

6: else

7: return Failure.

8: end if

algorithm template searches for two solution pairs in the sets Sfw and Sbw, respectively,

that satisfy Assumption 3.15 (Line 2). If such two solution pairs are found, then the

algorithm reverses the solution pair found in Sbw, concatenates the reversal result to

the solution pair found in Sfw, and returns the concatenation result (Line 3 - 5). If such

two solution pairs are not found, then the algorithm template returns a failure signal

(Line 7).

Soundness and exactness are important properties of any planning algorithm.

Before discussing soundness and completeness of the algorithm, Proposition 3.19 shows

that the truncation of a solution pair of a given hybrid dynamical system following

a translation remains a solution pair to the same hybrid dynamical system, provided

that Assumption 3.18 is satisfied. Assumption 3.18 is imposed on the hybrid time at

38

which the solution pair is truncated to guarantee that the initial state-input pair of the

truncation result belongs to C ∪D, as required in Definition 2.5.

Assumption 3.18. Given a function ψ defined on a hybrid time domain and a hybrid

time (T, J) ∈ dom ψ, one of the following is satisfied:

1) T = 0, J = 0;

2) T ∈ int IJψ , where IJψ has nonempty interior; or

3) If (T, J) 6= (0, 0), (T, J) ∈ dom ψ and (T, J + 1) ∈ dom ψ.

Proposition 3.19. Given a solution pair ψ = (φ, υ) to a hybrid dynamical system H

and a pair of hybrid times (T1, J1) ∈ dom ψ and (T2, J2) ∈ dom ψ such that

1) T1 ≤ T2, J1 ≤ J2;

2) ψ and (T1, J1) satisfy Assumption 3.18,

then ψ̃ = (φ̃, υ̃) is a solution pair to H, where (φ̃, υ̃) is the truncation of (φ, υ) between

(T1, J1) and (T2, J2) following translation by (T1, J1).

Proof. This proof is in Appendix A.3.

Soundness guarantees the correctness of the returned solution, as defined next.

Definition 3.20 (Soundness [13]). An algorithm is said to be sound for a problem if for

any possible data defining the problem (e.g., (X0, Xf , Xu, (C, f,D, g)) in Problem 3.1),

the result returned by the algorithm for the problem is always a correct solution to it.

39

The next result shows that the proposed forward/backward propagation algo-

rithm template is sound for the motion planning problem in Problem 3.1.

Theorem 3.21. The forward/backward propagation algorithm in Algorithm 1 is sound

for the motion planning problem P in Problem 3.1.

Proof. This proof is divided into two cases:

1) When a non-failure result is returned, we show that the result is a motion plan to

the given motion planning problem;

2) When a failure result is returned, we show that there does not exist a motion plan

to the given motion planning porblem.

For case 1), Lemma 3.17 shows that the returned result is a solution pair to

the given hybrid dynamical system. Note that in Algorithm 1, the returned result is

constructed by concatenating ψbw′ to ψfw, where ψfw and ψbw are from propagatgion

operations with parameters (X0, Xu, (C, f,D, g)) and (Xf , Xu, (C
bw, fbw, Dbw, gbw)),

respectively. Therefore, the constructed solution starts from X0, ends in Xf , and does

not intersect with Xu, due to Definition 3.10, Definition 3.4, and Definition 3.5.

For case 2), we proceed by contradiction. Assume that there exists a motion

plan ψ when a failure result is returned. Then, there exist ψfw ∈ S fw and ψbw ∈ Sbw

that satisfy Assumption 3.15 in line 2 in Algorithm 1 and a motion plan, rather than a

failure signal, is returned. The existence of ψfw and ψbw can be proved by truncating ψ

into two pieces and showing the two pieces belong to the sets S fw and Sbw, respectively,

according to Proposition 3.19.

40

Exactness guarantees that the algorithm will always return a solution when

one exists, as defined next.

Definition 3.22 (Exactness [18]). An algorithm is said to be exact for a problem if for

any possible data defining the problem (e.g., (X0, Xf , Xu, (C, f,D, g)) in Problem 3.1),

it finds a solution when one exists.

The next result shows that the proposed forward/backward propagation algo-

rithm template is exact for the motion planning problem in Problem 3.1.

Theorem 3.23. The forward/backward propagation algorithm in Algorithm 1 is an

exact algorithm for the motion planning problem P in Problem 3.1.

Proof. If a solution ψ to the given motion planning problem exists, then we can truncate

ψ into ψ1 and ψ2, and reverse ψ2 to get ψ′2. Note that ψ1 should be collected in S fw

and ψ′2 should be collected in Sbw according the settings of propagation operations and

Proposition 3.19. Then, it follows that ψ1 and ψ′2 satisfy Assumption 3.15. Hence,

the condition in line 2 in Algorithm 1 is satisfied and ψ is constructed and returned.

Therefore, if a motion plan exists, Algorithm 1 is able to find and return it.

Remark 3.24. The exactness property guarantees that the proposed algorithm returns a

solution when one exists. However, when no solution exists, the proposed algorithm is not

guaranteed to return a failure signal in finite time because the propagation operations are

not always guaranteed to be completed within finite time. This is not a unique problem

of our algorithm template, but rather a general issue in motion planning algorithms; see

[25] [28] [44]. N

41

3.4 Time Complexity Analysis

Let nf be the number of input signals in UC and ng be the number of input

values in UD. Assume there exists a solution ψ = (φ, υ) to the given motion planning

problem that can be generated by applying the input signals/values in U . Let (T, J) =

max dom ψ. Note that each possible input is applied to each existing vertex in the

search graph. Therefore, at most nf + nj input signals/values are applied. When

nf + nj input signals/values are applied, at most nf + nj new vertices are generated.

Then if a motion plan is not found, at most nf + nj input signals/values will be applied

to each newly generated vertices. Therefore, the number of vertices grows exponentially

during the search. Hence, since the proposed algorithm propagates both forward and

backward in hybrid time, the time complexity of the proposed implementation is O((nf +

nj)
(T/tmin+J)/2), where tmin

4 denotes the minimal time duration of the input signals in

UC .

3.5 Software Tool for Motion Planning for Hybrid Dynam-

ical Systems

Following the proposed algorithm template, a motion planning algorithm is

implemented leading to a software tool to solve motion planning problems for hybrid

systems. In this algorithm, the propagation operation is implemented by incrementally

constructing the search tree using the well-known Breadth-First-Search (BFS) strategy.

4tmin = minυ̃∈UC t(υ̃) where given υ̃ ∈ UC , the functional t : UC → [0,∞) returns the time duration
of υ̃. Namely, given any υ̃ : [0, t∗]→ UC , t(υ̃) = t∗.

42

This tool only requires the motion planning problem data (X0, Xf , Xu, (C, f,D, g)).

The data of the backward-in-time system (Cbw, fbw, Dbw, gbw) can be either filled in

automatically, or imported from input files. Note that item 2 in Assumption 3.15 requires

equality between φ1(T1, J1) and φ2(T2, J2). Given ε > 0 representing the tolerance for

the satisfaction of this condition, we implement item 2 in Assumption 3.15 as

|φ1(T1, J1)− φ2(T2, J2)| ≤ ε. (3.16)

Next, the proposed algorithm and this tool are illustrated in the bouncing ball

in Example 3.2 and a walking robot.

Example 3.25 (Actuated bouncing ball system in Example 3.2, revisited). This part

illustrates that the proposed implementation is able to solve the sample motion planning

problem in Example 3.2. The inputs fed to the proposed implementation are given as

follows.

• The backward-in-time system Hbw of the actuated bouncing ball system is given in

Example 3.8.

• The tolerance ε in (4.11) is set to 0.2.

The simulation result is shown in Figure 3.6. The simulation is implemented

in MATLAB software and processed by a 2.2 GHz Quad-Core Intel Core i7 processor.

The simulation takes 0.65 seconds to complete.

Example 3.26 (Walking robot in Example 3.3, revisited). Inputs fed to the proposed

implementation are given as follows.

43

0 10 20 30

-20

-10

0

10

20

Figure 3.6: The above shows search graphs constructed for the sample motion planning
problem in Example 3.2. The states represented by vertices in the search graphs are
denoted by ∗. The lines between ∗’s denote the state trajectories of the solution pairs
represented by edges in the search graphs.

• The backward-in-time model of the walking robot is filled automatically.

• The tolerance ε in (4.11) is set to 0.3.

This simulation is processed on an HPC cluster 5. Simulation results are shown in Figure

4.4. Table 3.1 shows that when a smaller ε in (4.11) is applied, the algorithm takes more

time to find the solution. Tables 3.2 and 3.3 show that when input signals of shorter

time duration are applied, or when the input library includes more input signals, the

algorithm generates more vertices and takes more time to find the motion plan. It is

consistent with our time complexity analysis in Section 3.4.

5Configuration information available at https://hummingbird.ucsc.edu.

44

https://hummingbird.ucsc.edu

0 1 2
-1

-0.5

0

0.5

1

0 1 2
-1

-0.5

0

0.5

1

0 1 2
0

0.01

0.02

0.03

0 0.5 1 1.5 2

0

0.5

1

1.5

2

0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

0 1 2
-0.05

0

0.05

0.1

Figure 3.7: Trajectories of each state components of the generated motion plan for the
walking robot.

45

ε Time (seconds) Vertices

0.3 1608.2 3796

0.5 300.1 511

0.8 234.3 200

Table 3.1: The time consumption/number of generated vertices using different tolerance
ε in (4.11).

Input signals Time (minutes) Vertices

125 26.8 3796

1000 55.9 3084

3375 185.7 3108

Table 3.2: The time consumption/number of generated vertices when using different
number of the input signals.

τ (seconds) Time (minutes) Vertices

0.2 511.9 6452

0.3 178.7 6696

0.5 26.8 3796

1.0 1.1 193

Table 3.3: The time consumption/number of generated vertices when using input signals
of different time duration τ .

46

Chapter 4

Sampling-based Feasible Motion

Planning for Hybrid Dynamical Systems

In this chapter, we introduce HyRRT, an RRT-type motion planning algorithm

for hybrid dynamical systems, designed to solve Problem 3.1. HyRRT is a one-directional

sampling-based implementation of the algorithm template in Algorithm 1, which ap-

proximates the propagation operation outlined in Definition 3.10 by incrementally con-

structing a search tree.

4.1 Overview

HyRRT searches for a motion plan by incrementally constructing a search tree.

The search tree is modeled by a directed tree. A directed tree T is a pair T = (V,E),

where V is a set whose elements are called vertices and E is a set of paired vertices whose

elements are called edges. The edges in the directed tree are directed, which means

47

the pairs of vertices that represent edges are ordered. The set of edges E is defined as

E ⊆ {(v1, v2) : v1 ∈ V, v2 ∈ V, v1 6= v2}. The edge e = (v1, v2) ∈ E represents an edge

from v1 to v2. A path in T = (V,E) is a sequence of vertices p = (v1, v2, ..., vk) such

that (vi, vi+1) ∈ E for all i = 1, 2, ..., k − 1.

Each vertex in the search tree T is associated with a state value of H. Each

edge in the search tree is associated with a solution pair to H that connects the state

values associated with their endpoint vertices. The state value associated with vertex

v ∈ V is denoted as xv and the solution pair associated with edge e ∈ E is denoted as

ψe, as shown in Figure 4.1. The solution pair that the path p = (v1, v2, ..., vk) represents

is the concatenation of all the solutions associated with the edges therein, namely,

ψ̃p := ψ(v1,v2)|ψ(v2,v3)| ... |ψ(vk−1,vk) (4.1)

where ψ̃p denotes the solution pair associated with the path p. An example of the path

p and its associated solution pair ψ̃p is shown in Figure 4.1.

The proposed HyRRT algorithm requires a library of possible inputs. The input

library (UC ,UD) includes the input signals that can be applied during flows (collected in

UC) and the input values that can be applied at jumps (collected in UD). More details

about the input library are presented in the forthcoming Section 4.2.

Next, we introduce the main steps executed by HyRRT. Given the motion

planning problem P = (X0, Xf , Xu, (C, f,D, g)) and the input library (UC ,UD), HyRRT

performs the following steps:

Step 1: Sample a finite number of points from X0 and initialize a search tree T = (V,E)

48

X0

xvcur
xnew Xf

Xu

xv1 xv2 xv3

ψnew

xrand

ψe1 ψe2 ψe3

(a) States and solution pairs.

X0 Xf
vcur vnewv1 v2

e1 e2 e3 e4

v3

(b) Search tree associated with the states and solution pairs in Figure

4.1(a).

Figure 4.1: The association between states/solution pairs and the vertices/edges in the
search tree. The blue region denotes X0, the green region denotes Xf , and the black
region denotes Xu. The dots and lines between dots in Figure 4.1(b) denote the vertices
and edges associated with the states and solution pairs in Figure 4.1(a). The path
p = (v1, v2, v3, vcur, vnew) in the search graph in Figure 4.1(b) represents the solution
pair ψ̃p = ψe1 |ψe2 |ψe3 |ψnew in Figure 4.1(a).

49

by adding vertices associated with each sampling point.

Step 2: Randomly select one regime among flow regime and jump regime for the

evolution of H.

Step 3: Randomly select a point xrand from C ′ (D′) if the flow (jump, respectively)

regime is selected in Step 2.

Step 4: Find the vertex associated with the state value that has minimal Euclidean

distance to xrand, denoted vcur, as is shown in Figure 4.1(b).

Step 5: Randomly select an input signal (value) from UC (UD) if the flow (jump,

respectively) regime is selected. Then, compute a solution pair using continuous

(discrete, respectively) dynamics simulator starting from xvcur with the selected

input applied, denoted ψnew = (φnew, υnew). Denote the final state of φnew as

xnew, as is shown in Figure 4.1(a). If ψnew does not intersect with Xu, add

a vertex vnew associated with xnew to V and an edge (vcur, vnew) associated

with ψnew to E. Then, go to Step 2.

In the remainder of this chapter, first, we formalize the input library for the motion plan-

ning problem for hybrid dynamical systems. Then, the continuous dynamics simulator

and discrete dynamics simulator to compute a new solution pair from the given starting

state and input are introduced. After those components being nicely introduced, the

HyRRT algorithm to solve the motion planning problem for hybrid dynamical systems

is presented.

50

4.2 Hybrid Input Library

HyRRT requires a library of inputs to simulate solution pairs. Note that inputs

are constrained by the flow set C and the jump set D of the hybrid dynamical system

H. Specifically, given C and D, the set of input signals allowed during flows, denoted

UC , and the set of input values at jumps, denoted UD, are described as follows.

1. The input signal applied during flows is a continuous-time signal, denoted υ̃, that

is specified by a function from an interval of time of the form [0, t∗] to UC , namely,

for some t∗ ∈ R≥0,

υ̃ : [0, t∗]→ UC .

Definition 2.2 also requires that υ̃ is Lebesgue measurable and locally essentially

bounded. Then, the set UC collects each such υ̃. Given υ̃ ∈ UC , the functional

t : UC → [0,∞) returns the time duration of υ̃. Namely, given υ̃ : [0, t∗] → UC ,

t(υ̃) = t∗.

2. The input applied at a jump is specified by the set UD. The set UD collects possible

input values that can be applied at jumps, namely,

UD ⊂ UD.

The pair of sets (UC ,UD) defines the input library, denoted U , namely,

U := (UC ,UD).

Input Library Construction Procedure: A procedure to construct UC

using constant inputs is given as follows:

51

Step 1: Set Tm to a positive constant. Construct the safe input set during the flows

from UC as U sC := {u ∈ UC : ∃x ∈ C ′, (x, u) /∈ Xu}.

Step 2: For each point us ∈ U sC and tm ∈ (0, Tm], construct an input signal [0, tm]→

{us} and add it to UC .

Set UD can be constructed as UD := {u ∈ UD : ∃x ∈ D′, (x, u) /∈ Xu} from UD.

4.3 Continuous Dynamics Simulator

HyRRT requires a simulator to compute the solution pair starting from a given

initial state x0 ∈ C ′ with a given input signal υ̃ ∈ UC applied, following continuous

dynamics. The initial state x0, the flow set C, and the flow map f are used in the

simulator.

Note that when the simulated solution enters the intersection between the flow

set C and the jump set D, it can either keep flowing or jump. In [46], the hybrid

dynamical system simulator HyEQ uses a scalar priority option flag rule to show

whether the simulator gives priority to jumps (rule = 1), priority to flows (rule = 2),

or no priority (rule = 3) when both x ∈ C and x ∈ D hold. When no priority is

selected, then the simulator randomly selects to flow or jump. The case rule = 3 is not

considered1.

The proposed simulator should be able to solve the following problem.

1rule = 3 is not considered since the input signal υ̃ is randomly selected from UC which satisfies the
forthcoming Assumption 4.20. Therefore, the time duration of the simulation result has been randomized.
However, rule = 3 requires an additional random process to determine whether to proceed with the
flow or the jump when the simulation result enters C ∩D leading to a redundant random procedure.

52

Problem 4.1. Given the flow set C, the flow map f , and the jump set D of a hybrid

dynamical system H with input u ∈ Rm and state x ∈ Rn, a priority option flag rule ∈

{1, 2}, an initial state x0 ∈ Rn, and an input signal υ̃ ∈ UC such that (x0, υ̃(0)) ∈ C,

find a pair (φ, υ) : [0, t∗]× {0} → Rn × Rm, where t∗ ∈ [0, t(υ̃)], such that the following

hold:

1. φ(0, 0) = x0;

2. For all t ∈ [0, t∗], υ(t, 0) = υ̃(t);

3. If [0, t∗] has nonempty interior,

(a) the function t 7→ φ(t, 0) is locally absolutely continuous,

(b) for all t ∈ (0, t∗),

(φ(t, 0), υ(t, 0)) ∈ C\D if rule = 1

(φ(t, 0), υ(t, 0)) ∈ C if rule = 2,

(c) for almost all t ∈ [0, t∗],

d

dt
φ(t, 0) = f(φ(t, 0), υ(t, 0)). (4.2)

Remark 4.2. In general, a solution pair to H that solves Problem 4.1 may not be

unique. Note that we can impose assumptions to get uniqueness as in [17, Proposition

2.11], as follows:

1. for every x0 ∈ C\D, T > 0 and υ̃ ∈ UC , if two absolutely continuous z1, z2 :

[0, T]→ Rn are such that zi(t) = f(zi(t), υ̃(t)) for almost all t ∈ [0, T], (zi(t), υ̃(t)) ∈

C for all t ∈ (0, T], and zi(0) = x0, i = 1, 2, then z1(t) = z2(t) for all t ∈ [0, T];

53

2. for every x0 ∈ C ∩ D, there does not exist ε > 0 and an absolutely continuous

function z : [0, ε] → Rn such that z(0) = x0, ż(t) = f(z(t), υ(t)) for almost all

t ∈ [0, ε] and (zi(t), υ(t)) ∈ C for all t ∈ (0, ε].

The simulator is designed to simulate a maximal solution pair (φ, υ) solving

Problem 4.1. The definition of maximal solution is given as follows; see [17].

Definition 4.3. (Maximal solution) A solution pair ψ to H that solves Problem 4.1

is said to be maximal if there does not exist another solution pair ψ′ to H that solves

Problem 4.1 such that dom ψ is a proper subset of dom ψ′ and ψ(t, 0) = ψ′(t, 0) for all

t ∈ dom tψ.

The module to simulate the maximal solution pair to H that solves Problem

4.1 is called the continuous dynamics simulator. The inputs of this module are the flow

set C, the flow map f , the jump set D, the priority option rule, the initial state x0,

and the input signal υ̃. The output of this module is the maximal solution pair (φ, u)

to H that solves Problem 4.1. This module is denoted as

(φ, u)← continuous simulator(C, f,D, rule, x0, υ̃). (4.3)

The continuous dynamics simulator performs the following steps. Given the

flow set C, the flow map f , the jump set D the priority option rule, the initial state

x0, and the input signal υ̃,

Step 1: Solve for φ̂ : [0, t(υ̃)]→ Rn to satisfy

φ̂(t) = x0 +

∫ t

0
f(φ̂(τ), υ̃(τ))dτ t ∈ [0, t(υ̃)]. (4.4)

54

Step 2: Calculate the largest time t such that over [0, t), (φ, υ) is in C\D if rule = 1,

or, if rule = 2, is in C, as follows:

t̂ :=



max{t ∈ [0, t(υ̃)] : (φ̂(t′), υ̃(t′)) ∈ C\D,∀t′ ∈ (0, t)}

if rule = 1,

max{t ∈ [0, t(υ̃)] : (φ̂(t′), υ̃(t′)) ∈ C, ∀t′ ∈ (0, t)}

if rule = 2.

(4.5)

Step 3: Construct the solution function pair (φ, υ) : [0, t̂]× {0} → Rn × Rm by

φ(t, 0) = φ̂(t), υ(t, 0) = υ̃(t) ∀t ∈ [0, t̂]. (4.6)

The solution function pair (φ, u) is a maximal solution to H that solves Problem 4.1 and,

hence, the output of module continuous simulator. The construction of φ̂ in Step 1

can be approximated by employing numerical integration methods. To determine t̂ in

Step 2, zero-crossing detection algorithms can be used to detect the largest time t such

that over [0, t), (φ, υ) is in C\D if rule = 1, or, if rule = 2, is in C. For the computation

framework that implements the simulator of continuous dynamics, see Appendix B.1.

4.4 Discrete Dynamics Simulator

HyRRT algorithm also requires a simulator to compute the solution pair with

a single jump, starting from an initial state x0 ∈ D′ with a given input value uD ∈ UD

applied. Such a simulator only requires evaluating g as the following problem states.

55

Problem 4.4. Given the jump set D and jump map g of hybrid dynamical system H

with input u ∈ Rm, state x ∈ Rn, an initial state x0 ∈ Rn, and an input value uD ∈ UD

such that (x0, uD) ∈ D, find a pair (φ, υ) : {0} × {0, 1} → Rn × Rm such that the

following hold:

1. φ(0, 0) = x0;

2. υ(0, 0) = uD;

3. φ(0, 1) = g(φ(0, 0), υ(0, 0)).

Problem 4.4 can be solved by constructing a function pair (φ, υ) : {0}×{0, 1} →

Rn × Rm in the following way:

φ(0, 0)← x0, φ(0, 1)← g(x0, uD)

υ(0, 0)← uD, υ(0, 1)← p ∈ Rm.
(4.7)

In (4.7), we can implement υ(0, 1) ← p ∈ Rm by selecting an arbitrary point p in Rm

such that (φ(0, 1), p) /∈ Xu.

The function pair in (4.7) can be constructed by a module called discrete

dynamics simulator. The inputs of this module are the jump set D, the jump map g,

the initial state x0 ∈ D′, and the input uD ∈ UD such that (x0, uD) ∈ D. The output of

this module is the solution pair (φ, υ) constructed in (4.7). This module is denoted as

(φ, υ)← discrete simulator(D, g, x0, uD). (4.8)

56

4.5 HyRRT Algorithm

Following the overview in Section 4.1, the proposed algorithm is given in

Algorithm 2. The inputs of Algorithm 2 are the problem P = (X0, Xf , Xu, (C, f,D, g)),

the input library (UC ,UD), a parameter pn ∈ (0, 1), which tunes the probability of

proceeding with the flow regime or the jump regime, an upper bound K ∈ N>0 for the

number of iterations to execute, and two tunable sets Xc ⊃ C ′ and Xd ⊃ D′, which

act as constraints in finding a closest vertex to xrand. HyRRT is implemented in the

following algorithm:

Algorithm 2 HyRRT algorithm
Input: X0, Xf , Xu,H = (C, f,D, g), (UC ,UD), pn ∈ (0, 1), K ∈ N>0

1: T .init(X0).

2: for k = 1 to K do

3: randomly select a real number r from [0, 1].

4: if r ≤ pn then

5: xrand ← random state(C′).

6: extend(T , xrand, (UC ,UD),H, Xu, Xc).

7: else

8: xrand ← random state(D′).

9: extend(T , xrand, (UC ,UD),H, Xu, Xd).

10: end if

11: end for

12: return T .

Step 1 in the overview provided in Section 4.1 corresponds to the function call

T .init in line 1 of Algorithm 2. Step 2 is implemented in line 3. Step 3 is implemented

57

Algorithm 3 Extend function
1: function extend((T , x, (UC ,UD),H, Xu, X∗))

2: vcur ← nearest neighbor(x, T ,H, X∗);

3: (is a new vertex generated, xnew, ψnew)← new state(vcur, (UC ,

UD),H, Xu)

4: if is a new vertex generated = true then

5: vnew ← T .add vertex(xnew);

6: T .add edge(vcur, vnew, ψnew);

7: return Advanced;

8: end if

9: return Trapped;

10: end function

by the function call random state in lines 5 and 8. Step 4 corresponds to the function

call nearest neighbor in line 1 of the function call extend. Step 5 is implemented by

the function calls new state, T .add vertex, and T .add edge in lines 3, 4, and 5 of the

function call extend.

Each function in Algorithm 2 is defined next.

4.5.1 T .init(X0)

The function call T .init is used to initialize a search tree T = (V,E). It

randomly selects a finite number of points from X0. For each sampling point x0 ∈ X0,

a vertex v0 associated with x0 is added to V . At this step, no edge is added to E.

58

4.5.2 xrand←random state(S)

The function call random state randomly selects a point from the set S ⊂ Rn.

Rather than to select from C ′ ∪ D′, it is designed to select points from C ′ and D′

separately depending on the value of r. The reason is that if C ′ (or D′) has zero

measure while D′ (respectively, C ′) does not, the probability that the point selected

from C ′ ∪ D′ lies in C ′ (respectively, D′) is zero, which would prevent establishing

probabilistic completeness.

4.5.3 vcur←nearest neighbor(xrand,T ,H, X∗)

The function call nearest neighbor searches for a vertex vcur in the search

tree T = (V,E) such that its associated state value has minimal distance to xrand. This

function is implemented as solving the following optimization problem over X?, where

? is either c or d.

Problem 4.5. Given a hybrid dynamical system H = (C, f,D, g), xrand ∈ Rn, and a

search tree T = (V,E), solve

arg min
v∈V

|xv − xrand|

s.t. xv ∈ X?.

The data of Problem 4.5 comes from the arguments of the nearest neighbor

function call. This optimization problem can be solved by traversing all the vertices in

T = (V,E).

59

4.5.4 (is a new vertex generated, xnew, ψnew)← new state(vcur, (UC ,UD),H =

(C, f,D, g), Xu)

Given vcur, if xvcur ∈ C ′\D′, the function call new state randomly selects an

input signal υ̃ from UC such that (xvcur , υ̃(0)) ∈ C and generates a new maximal solution

pair, denoted ψnew = (φnew, υnew), by

ψnew ← continuous simulator(C, f,D, 2, xvcur , υ̃) (4.9)

where continuous simulator is formulated as in (4.3).

If xvcur ∈ D′\C ′, the function call new state randomly selects an input signal

uD from UD such that (xvcur , uD) ∈ D and generates a new solution pair, denoted

ψnew = (φnew, υnew), by

ψnew ← discrete simulator(D, g, xvcur , uD) (4.10)

where discrete simulator is formulated as in (4.8).

If xvcur∈ C ′∩D′, then this function generates ψnew by randomly selecting flows

or jump. This random selection is implemented by randomly selecting a real number rD

from the interval [0, 1] and comparing rD with a user-defined parameter pD ∈ (0, 1). If

rD ≤ pD, then the function call new state generates ψnew by flow, otherwise, by jump.

The final state of ψnew is denoted as xnew.

After ψnew and xnew are generated, the function new state checks if ψnew is

trivial. If so, then ψnew does not explore any unexplored space and is not necessary

to be added into T . Hence, is a new vertex generated ← false and the function

60

call new state is returned. Else, the function new state checks if there exists (t, j) ∈

dom ψnew such that ψnew(t, j) ∈ Xu. If so, then ψnew intersects with the unsafe set

and is a new vertex generated← false. Otherwise, is a new vertex generated←

true.

4.5.5 vnew ← T .add vertex(xnew) and T .add edge(vcur, vnew, ψnew)

The function call T .add vertex(xnew) adds a new vertex vnew associated with

xnew to T and returns vnew. The function call T .add edge(vcur, vnew, ψnew) adds a new

edge enew = (vcur, vnew) associated with ψnew to T .

4.5.6 Solution Checking during HyRRT Construction

When the function call extend returns Advanced, HyRRT checks if a path in

T can be used to construct a motion plan solving the given motion planning problem.

If this function finds a path p = ((v0, v1), (v1, v2), ..., (vn−1, vn)) =: (e0, e1, ..., en−1) in T

such that

1) xv0 ∈ X0,

2) xvn ∈ Xf ,

3) for i ∈ {0, 1, ..., n−2}, if ψei and ψei+1
are both purely continuous, then ψei+1

(0, 0) ∈

C,

then the solution pair ψ̃p associated with path p, defined in (4.1), is a motion plan to

the given motion planning problem. More specifically, the items listed above guarantee

61

that ψ satisfies all the conditions in Problem 3.1. Items 1 and 2 guarantee that ψ̃p starts

from X0 and ends within Xf . Then, we show that each condition in Proposition 3.13 is

satisfied such that Proposition 3.13 guarantees that ψ is a solution pair to H as follows:

1. Because the input signal in UC is compact, the solution pairs generated by

new state by flow are compact. The solution pairs generated by new state by

jump are compact for free. Therefore, the first condition in Proposition 3.13 is

satisfied.

2. Note that for i ∈ {0, 1, 2, ..., n − 2}, the final state of ψei = ψ(vi,vi+1) equals the

initial state of ψei+1
= ψ(vi+1,vi+2) because both of them are xvi+1 . Then, the

second condition in Proposition 3.13 is satisfied.

3. Then, item 3 above guarantees that the third condition in Proposition 3.13 is

satisfied.

Therefore, Proposition 3.13 guarantees that ψp is a solution pair to H. Note that for

each e in p, ψe does not intersect with unsafe set because the solution pairs that intersect

the unsafe set have been excluded by the function new state. Therefore, ψp satisfies all

the conditions in Problem 3.1.

Remark 4.6. Note that the choices of inputs in the fucntion call new state are random.

Some RRT variants choose the optimal input that drives xnew closest to xrand. However,

[31] proves that such a choice makes the RRT algorithm probabilistically incomplete. N

Remark 4.7. In practice, item 2 above is too restrictive. Given ε > 0 representing the

62

tolerance associated with this condition, we implement item 2 as

|xvn |Xf ≤ ε. (4.11)

N

4.6 Probabilistic Completeness Analysis

This section establishes probabilistic completeness of the HyRRT algorithm.

Probabilistic completeness means that the probability that the planner fails to return a

motion plan, if one exists, approaches zero as the number of samples approaches infinity.

4.6.1 Clearance of Motion Plan and Inflation of a Hybrid Dynamical

System

The clearance of a motion plan captures the distance between the motion plan

and the boundary of the constraint sets, which in Problem 3.1, includes the initial state

set X0, the final state set Xf , the unsafe set Xu, the flow set C, and the jump set D. We

propose two different clearances, safety clearance and dynamics clearance, that capture

the distance to the constraint sets (X0, Xf , Xu) and (C,D), respectively.

Definition 4.8 (Safety clearance of a motion plan). Given a motion plan ψ = (φ, υ)

to the motion planning problem P = (X0, Xf , Xu, (C, f,D, g)), the safety clearance of

ψ = (φ, υ) is given by δs > 0 if, for each δ′ ∈ [0, δs], the following conditions are satisfied:

1) φ(0, 0) + δ′B ⊂ X0;

63

2) φ(T, J) + δ′B ⊂ Xf , where (T, J) = max dom ψ;

3) For all (t, j) ∈ dom ψ, (φ(t, j) + δ′B, υ(t, j) + δ′B) ∩Xu = ∅.

Definition 4.9 (Dynamics clearance of a motion plan). Given a motion plan ψ = (φ, υ)

to the motion planning problem P = (X0, Xf , Xu, (C, f,D, g)), the dynamics clearance

of ψ = (φ, υ) is given by δd > 0 if, for each δ′ ∈ [0, δd], the following conditions are

satisfied:

1) For all (t, j) ∈ dom ψ such that Ij has nonempty interior, (φ(t, j) + δ′B, υ(t, j) +

δ′B) ⊂ C;

2) For all (t, j) ∈ dom ψ such that (t, j+1) ∈ dom ψ, (φ(t, j)+δ′B, υ(t, j)+δ′B) ⊂ D.

Remark 4.10. The definition of the two types of clearance is analogous to the clearance

in [27], albeit with a specific consideration for the boundaries of different constraint sets.

Safety clearance in Definition 4.8 is defined as the minimal positive distance between

the motion plan and the nearest boundaries of the initial state set, final state set, and

the unsafe set. Dynamics clearance in Definition 4.9, on the other hand, represents the

minimal positive distance between the motion plan and the closest boundaries of the flow

set and the jump set, depending on whether the motion plan is during a flow or at a

jump.

With both safety clearance and dynamics clearance defined, we are ready to

define the clearance of a motion plan.

64

Definition 4.11 (Clearance of a motion plan). Given a motion plan ψ = (φ, υ) to the

motion planning problem P = (X0, Xf , Xu, (C, f,D, g)), the clearance of ψ, denoted δ,

is defined as the minimum between its safety clearance δs and dynamics clearance δd,

i.e., δ := min{δs, δd}.

In the probabilistic completeness result in [27, Theorem 2], a motion plan with

positive clearance is assumed to exist. However, the assumption that there exists a

positive dynamics clearance is restrictive for hybrid dynamical systems. Indeed, if the

motion plan reaches the boundary of the flow set or of the jump set, then the motion

plan has no (dynamics) clearance; see Definition 4.9. Figure 4.2(a) shows a motion

plan to the sample motion planning problem for the actuated bouncing ball system in

Example 3.2 without clearance.

To overcome this issue and to assure that HyRRT is probabilistically complete,

we inflate the hybrid dynamical system H = (C, f,D, g) as follows.

Definition 4.12 (δ-inflation of a hybrid dynamical system). Given a hybrid dynamical

system H = (C, f,D, g) and δ > 0, the δ-inflation of the hybrid dynamical system H,

denoted Hδ with data (Cδ, fδ, Dδ, gδ), is given by2

Hδ :


ẋ = fδ(x, u) (x, u) ∈ Cδ

x+ = gδ(x, u) (x, u) ∈ Dδ

(4.12)

where

2The flow set C (and the jump set D) inflates the state x and input u, respectively, yielding their
independent ranges. This ensures that the sampling process is a Bernoulli process.

65

-5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20
Flow set

Jump set

Initial state

Final state

Motion plan

(a)

-5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20
Inflated flow set

Inflated jump set

Initial state

Final state

Motion plan

(b)

Figure 4.2: Figure 4.2(a) shows a sample motion plan for the bouncing ball system in
Example 3.2 without clearance. The dark green trajectory shows the motion plan. The
blue region denotes the projection of flow set on the state space. The circles denote the
boundaries of the balls along the motion plan at specific hybrid time instances. Note
that the red balls depicted in Figure 4.2(a), which encircle the state of the motion plan
at the boundary of the flow set, are not subsets of the flow set. In this case, the clearance
δ is zero. However, for the inflated system in (4.12), the existence of the circles along
the motion plan with radius δ, as shown in Figure 4.2(b), implies the positive clearance
δ of the motion plan.

66

1) The δ-inflation of the flow set is constructed as

Cδ := {(x, u) ∈ Rn × Rm : ∃(y, v) ∈ C : x ∈ y + δB, u ∈ v + δB}, (4.13)

2) The δ-inflation of the flow map is constructed as

fδ(x, u) := f(x, u) ∀(x, u) ∈ Cδ, (4.14)

3) The δ-inflation of the jump set is constructed as

Dδ := {(x, u) ∈ Rn × Rm : ∃(y, v) ∈ D : x ∈ y + δB, u ∈ v + δB}, (4.15)

4) The δ-inflation of the jump map is constructed as

gδ(x, u) := g(x, u) ∀(x, u) ∈ Dδ. (4.16)

The above outlines a general method of constructing the δ-inflation of the given

hybrid dynamical system. Next, this method is exemplified in the actuated bouncing

ball system.

Example 4.13 (Actuated bouncing ball system in Example 3.2, revisited). Given

δ > 0, the δ-inflation of hybrid dynamical system of the actuated bouncing ball system

is constructed as follows.

• From (4.13), the δ-inflation of flow set C, denoted Cδ, is given by

Cδ = {(x, u) ∈ R2 × R : x1 ≥ −δ}. (4.17)

67

• From (4.14), the δ-inflation of flow map f , denoted fδ, is given by

fδ(x, u) = f(x, u) =

 x2

−γ

 ∀(x, u) ∈ Cδ. (4.18)

• From (4.15), the δ-inflation of jump set D, denoted Dδ, is given by

Dδ := ({(0, 0)}+ δB) ∪ {(x, u) ∈ R2 × R : x2 ≤ 0 and − δ ≤ x1 ≤ δ}. (4.19)

• From (4.16), the δ-inflation of jump map g, denoted gδ, is given by

gδ(x, u) := g(x, u) =

 x1

−λx2 + u

 ∀(x, u) ∈ Dδ. (4.20)

As is shown in Figure 4.2(b), the inflation of a hybrid dynamical system defined

above serves to extend the boundary of both the flow and jump sets in H by δ and

to capture the same continuous and discrete dynamics in those extended sets as in

H. Consequently, under the assumption that a motion plan to P with positive safety

clearance exists, this methodology facilitates the establishment of such a motion plan

with positive dynamics clearance and, in turn, with positive clearance.

Next, we show that a motion plan to the original motion planning problem is

also a motion plan to the motion planning problem for its δ-inflation.

Proposition 4.14. Given a motion planning problem P = (X0, Xf , Xu, (C, f,D, g)) in

Problem 3.1 with positive safety clearance, if ψ is a motion plan to P, then for each δ > 0,

ψ is also a motion plan to the motion planning problem Pδ = (X0, Xf , Xu, (Cδ, fδ, Dδ, gδ)),

where (Cδ, fδ, Dδ, gδ) is the δ-inflation of the hybrid dynamical system defined by (C, f,D, g).

68

Proof. See Appendix B.2.

Next we show that the existing motion plan with positive safety clearance has

positive clearance for the motion planning problem for the δ-inflation of the original

hybrid dynamical system H.

Lemma 4.15. Let ψ be a motion plan to the motion planning problem P = (X0, Xf , Xu,

(C, f,D, g)) formulated as Problem 3.1 with positive safety clearance δs > 0. Then, for

each δf > 0, ψ is a motion plan to the motion planning problem Pδf = (X0, Xf , Xu, (Cδf ,

fδf , Dδf , gδf)) with clearance δ = min{δs, δf}, where Hδf = (Cδf , fδf , Dδf , gδf) is the δf -

inflation of H = (C, f,D, g).

Proof. See Appendix B.3.

4.6.2 Assumptions

Similar to [27, Definition 2], we consider input functions that are piecewise

constant in the following sense.

Definition 4.16 (Piecewise-constant function). A function υ̃c : [0, T]→ UC is said to

be a piecewise-constant function for probabilistic completeness if there exists ∆t ∈ R>0,

called resolution, such that

1) k := T
∆t ∈ N;

2) for each i ∈ {1, 2, ..., k}, t 7→ υ̃c(t) is constant over [(i− 1)∆t, i∆t).

From Definition 4.16, we define a motion plan notion with piecewise-constant

inputs as follows.

69

Definition 4.17 (Motion plan with piecewise-constant input). Given a motion planning

problem P, a motion plan (φ, υ) to P is said to be a motion plan with piecewise-constant

input with resolution ∆t if, for all j ∈ N such that Ijυ has nonempty interior, t 7→ υ(t, j)

is a piecewise constant function with resolution ∆t.

Similar to [35], HyRRT is assumed to be executed uniformly in relation to the

random selection involved in Step 1, Step 3, and Step 5 of HyRRT, in the following

sense.

Definition 4.18 (Uniform HyRRT). HyRRT is said to be executed uniformly if the prob-

ability distribution of the random selection in the function calls T .init, random state,

and new state is the uniform distribution.

Remark 4.19. By Definition 4.18, the computation of the probability of randomly

selecting a point that lies in a given set is simplified. When randomly selecting a point s

from a set S, according to [4, Page 257 (20.9)], the probability that s belongs to a subset

R ⊂ S is

Prob[s ∈ R] =

∫
s∈R

1

µ(S)
ds =

µ(R)

µ(S)
(4.21)

where µ denotes the Lebesgue measure of a set.

Subsequently, we define a complete input library that encompasses each possible

input value that can be utilized either during the flow or at a jump.

Definition 4.20 (Complete input library). The input library (UC ,UD) is said to be a

complete input library if

70

1) UC is the set of constant input signals and includes all possible input signals such

that, for some Tm > 0, their time domains are closed subintervals of the interval

[0, Tm] including zero and their images belong to UC . In other words, there exists

Tm > 0 such that UC = {υ̃ : dom υ̃ = [0, T] ⊂ [0, Tm], υ̃ is constant, υ̃ ∈ UC};

2) UD = UD.

Remark 4.21. From Definition 4.20, the input signals in UC are all constant functions.

This property of UC allows for the inputs of a motion plan with piecewise-constant input

to be constructed by concatenating constant input signals in UC . The set UC collects

each possible constant input signal taking values from UC and with maximal duration

[0, Tm]. The upper bound Tm on their duration ensures a positive lower bound on the

probability of sampling an appropriate input duration by the function call new state

in Section 4.5.4, where an input signal υ̃ is randomly selected from UC . Without this

upper bound Tm, according to (4.21), the probability of selecting any finite subintervals

from [0,∞) is 0 because the Lebesgue measure of [0,∞) is infinity. The selection process

involves a random choice of tm from the interval [0, Tm] and uC from UC , from where a

constant input signal is constructed as υ̃ : [0, tm]→ {uC}. N

To ensure that each random process in HyRRT, specially within the function

calls T .init, random state, and new state, returns a suitable sample with positive

probability, it is essential to assume that the Lebesgue measure of the sets being sampled

is both nonzero and finite.

71

Assumption 4.22. The sets X0, C ′, D′, UC , UD, which HyRRT makes random selec-

tion from, have finite and positive Lebesgue measure.

Remark 4.23. Under Assumption 4.22, it is guaranteed that µ(S) < ∞. Then, if

HyRRT is executed uniformly and µ(R) is positive, from (4.21), it follows that Prob[s ∈

R] ∈ (0, 1]. N

The following assumption is imposed on the flow map f of the hybrid dynamical

system H in (2.1).

Assumption 4.24. The flow map f is Lipschitz continuous. In particular, there exist

Kf
x ,K

f
u ∈ R>0 such that, for each (x0, x1, u0, u1) such that (x0, u0) ∈ C, (x0, u1) ∈ C,

and (x1, u0) ∈ C,

|f(x0, u0)− f(x1, u0)| ≤ Kf
x |x0 − x1|

|f(x0, u0)− f(x0, u1)| ≤ Kf
u |u0 − u1|.

Remark 4.25. Assumption 4.24 adheres to the Lipschitz continuity assumption on

differential constraints, as outlined in [27]. Assumption 4.24 guarantees that the flow map

is Lipschitz continuous for both state and input arguments. This assumption establishes

an explicit upper bound, parameterized by both state and input, on the distance between

the motion plan and the simulated purely continuous solution pair in the forthcoming

Lemma 4.33. Following the methodology in the proof of [27, Lemma 3], by ensuring

this upper bound below the motion plan’s clearance, a range of the input signals in UC

with positive Lebesgue measure is determined that are capable of simulating a purely

continuous solution pair that stays within the motion plan’s clearance. As per (4.21),

72

there is a guaranteed positive probability of randomly sampling an input signal from UC

that falls within this specified range. This positive probability is instrumental in ensuring

that in each Bernoulli trials in the proof of the upcoming Proposition 4.37, there is

a positive probability of achieving a successful outcome, which eventually leads to the

probabilistic completeness guarantee. N

Example 4.26 (Actuated bouncing ball system in Example 3.2, revisited). In the

bouncing ball system, the flow map is defined as f(x, u) =

 x2

−γ

. The flow set is defined

as C := {(x, u) ∈ R2 × R : x1 ≥ 0}. For each (x0, x1, u0) such that (x0, u0) ∈ C and

(x1, u0) ∈ C, we have

|f(x0, u0)− f(x1, u0)| =

∣∣∣∣∣∣∣∣
x0,2 − x1,2

0


∣∣∣∣∣∣∣∣ = |x0,2 − x1,2|

≤ |x0 − x1|

where x0,2 and x1,2 denote the second component of x0 and x1, respectively. Therefore,

Kf
x = 1 > 0 is such that |f(x0, u0)− f(x1, u0)| ≤ Kf

x |x0 − x1| for each (x0, x1, u0) such

that (x0, u0) ∈ C and (x1, u0) ∈ C. Now, for each (x0, u0, u1) such that (x0, u0) ∈ C

and (x0, u1) ∈ C, we have |f(x0, u0) − f(x0, u1)| = 0. Therefore, any Kf
u > 0 is such

that |f(x0, u0)−f(x0, u1)| ≤ Kf
u |u0−u1| for each (x0, u0, u1) such that (x0, u0) ∈ C and

(x0, u1) ∈ C. Therefore, the flow map and flow set in Example 3.2 satisfy Assumption

4.24.

The following assumption is imposed on the jump map g of the hybrid dynam-

ical system H in (2.1).

73

Assumption 4.27. The jump map g is such that there exist Kg
x,K

g
u ∈ R>0 such that,

for each (x0, u0) ∈ D and each (x1, u1) ∈ D,

|g(x0, u0)− g(x1, u1)| ≤ Kg
x|x0 − x1|+Kg

u|u0 − u1|.

Remark 4.28. Assumption 4.27 enables to establish an explicit upper bound for the

distance between the motion plan and the simulated purely discrete solution pair, as will

be further detailed in the Lemma 4.35, which is forthcoming. Adopting the approach

from the proof of [27, Lemma 3], by keeping this upper bound beneath the motion plan’s

clearance, a specific range of the input values in UD, possessing a positive Lebesgue

measure, is identified that are capable of simulating a purely discrete solution pair that

stays within the motion plan’s clearance. As per (4.21), there is a guaranteed positive

probability of randomly sampling an input value from UD that falls within this specified

range. This positive probability ensures that, in the Bernoulli trials in the proof of the

upcoming Proposition 4.37, aside from those already covered by Assumption 4.24, each

trial has a positive probability of yielding a successful outcome, eventually ensuring the

probabilistic completeness of HyRRT. N

Example 4.29 (Actuated bouncing ball example in Example 3.2, revisited). In Example

3.2, the jump map is defined as g(x, u) =

 x1

−λx2 + u

. The jump set is defined as

D := {(x, u) ∈ R2 × R : x1 = 0, x2 ≤ 0, u ≥ 0}. For each pair of (x0, u0) ∈ D and

74

(x1, u1) ∈ D, we have

|g(x0, u0)− g(x1, u1)| =

∣∣∣∣∣∣∣∣
 x0,1 − x1,1

−λ(x0,2 − x1,2) + u0 − u1


∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
 x0,1 − x1,1

−λ(x0,2 − x1,2)

+

 0

u0 − u1


∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
 x0,1 − x1,1

−λ(x0,2 − x1,2)


∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
 0

u0 − u1


∣∣∣∣∣∣∣∣

≤
√

1 + λ2|x0 − x1|+ |u0 − u1|.

Therefore, Kg
x =
√

1 + λ2 and Kg
u = 1 are such that |g(x0, u0) − g(x1, u1)| ≤ Kg

x|x0 −

x1|+Kg
u|u0 − u1| for each pair of (x0, u0) ∈ D and (x1, u1) ∈ D.

4.6.3 Probabilistic Completeness Guarantee

Our main result shows that HyRRT is probabilistically complete without as-

suming positive clearance, achieved through properly exploiting the inflation Hδf .

Theorem 4.30. Given a motion planning problem P = (X0, Xf , Xu, (C, f,D, g)), sup-

pose that Assumptions 4.22, 4.24, and 4.27 are satisfied, and that there exists a compact

motion plan (φ, υ) to P with safety clearance δs > 0 and piecewise-constant input. Then,

using a complete input library and when executed uniformly (as defined in Definition 4.18)

to solve the problem Pδf = (X0, Xf , Xu, (Cδf , fδf , Dδf , gδf)), where, for some δf > 0,

(Cδf , fδf , Dδf , gδf) denotes the δf -inflation of (C, f,D, g) in (4.12), the probability that

HyRRT fails to find a motion plan ψ′ = (φ′, υ′) to Pδf such that φ′ is (τ̃ , δ̃)-close to φ

75

after k iterations is at most a exp(−bk), where a, b ∈ R>0, τ̃ = max{T + J, T ′ + J ′},

(T, J) = max dom ψ, (T ′, J ′) = max dom ψ′, and δ̃ = min{δs, δf}.

The proof of Theorem 4.30 is established as follows. By the positive safety

clearance assumption and exploiting the inflation of H in (4.12), we establish that (φ, υ)

is a motion plan to Pδ with positive clearance (see Lemma 4.15 in Section 4.6.1). Then,

given that (φ, υ) is a motion plan to Pδ with positive clearance, we demonstrate that the

probability of HyRRT failing to find a motion plan with positive clearance is converging

to zero as the number of iterations approaches infinity. To demonstrate this result, we

first establish that the probabilities of the following probabilistic events are positive:

E1) The function call nearest neighbor in Section 4.5.3 returns a current vertex in

the search tree within the clearance of (φ, υ) (see Lemma 4.31 in the forthcoming

Section 4.6.4);

E2) If E1 occurs, the function call new state in Section 4.5.4 adds a new vertex and

a new edge within the clearance of (φ, υ) to the search tree (see Lemma 4.33 and

Lemma 4.35 in the forthcoming Section 4.6.4).

Therefore, the probability that both E1 and E2 occur, which is denoted as E, resulting

in adding a new vertex and a new edge within the clearance of (φ, υ) to the search tree,

is positive. By the truncation operation in Definition B.11, the compact motion plan

(φ, υ) is discretized into a finite number, say m ∈ N, of segments. Each of those segments

can be approximated by a solution pair associated with an edge that was added when

the event E occurs. Therefore, if E occurs less than m times, then HyRRT will fail

76

to generate a motion plan that is close to (φ, υ). Proposition 4.37 in the forthcoming

Section 4.6.5 demonstrates that the probability that E occurs less than m times, leading

to the failure of HyRRT, approaches zero as the number of iterations increases, thereby

establishing the property in Theorem 4.30. A proof of Theorem 4.30 following these

steps is given in the forthcoming Section 4.6.6.

4.6.4 Probabilistic Guarantees on the Function Calls nearest neighbor

and new state

We first characterize the probability that a vertex in the search tree that is close

to an existing motion plan is selected as vcur by the function call nearest neighbor in

Algorithm 2.

Lemma 4.31. Given a hybrid dynamical system H = (C, f,D, g) with state x ∈ Rn

and some δ ∈ R>0, let xc ∈ Rn be such that xc + δB ⊂ S, where S is either C ′ or

D′. Suppose that there exists a vertex v in the search graph T = (V,E) such that

xv ∈ xc + 2δ/5B. Denote by vcur the return of the function call nearest neighbor in

Algorithm 3. When HyRRT is executed uniformly as defined in Definition 4.18, the

probability that xvcur ∈ xc + δB is at least ζn(δ/5)n

µ(S) , where ζn is given in (0.1) and µ(S)

denotes the Lebesgue measure of set S.

Proof. See Appendix B.4.

Remark 4.32. Lemma 4.31 shows that given xc ∈ Rn, when there exists a vertex v

such that xv ∈ xc + 2δ/5B, then the probability that the function call nearest neighbor

77

selects a vertex that is close to xc is bounded from below by a positive constant. This

lemma is used to provide a positive lower bound over the probability that a vertex that

is close enough to the motion plan is returned by the function nearest neighbor in

Algorithm 2. N

The following lemma characterizes the probability that, given an initial state

near a specific motion plan as input to the function call new state, the simulated

solution pair in the flow regime is within the clearance of this motion plan.

Lemma 4.33. Given a hybrid dynamical system H with state x ∈ Rn and input u ∈ Rm

that satisfies Assumption 4.24 and an input library that satisfies item 1 of Definition

4.20, let ψ = (φ, υ) be a purely continuous solution pair to H with clearance δ > 0,

(τ, 0) = max dom ψ, and constant input function υ. Suppose that τ ∈ (0, Tm], where Tm

comes from item 1 in Definition 4.20. Let ψnew = (φnew, υnew) be the purely continuous

solution pair generated by (4.9) in the function call new state and initial state xvcur =

φnew(0, 0) ∈ φ(0, 0) + κ1δB for some κ1 ∈ (0, 1/2). When HyRRT is executed uniformly

as defined in Definition 4.18, for each κ2 ∈ (2κ1, 1) and each ε ∈ (0, κ2δ2), there exists

pt ∈ (0, 1] such that

Prob[E1&E2] ≥ pt
ζn

(
max

{
min

{
κ2δ
2
−ε−exp(Kf

x τ)κ1δ

Kf
uτ exp(Kf

x τ)
, δ

}
, 0

})m
µ(UC)

(4.22)

where

1. E1 denotes the probabilistic event that φ and φnew are (τ , κ2δ)-close, where (τ ′, 0) =

max dom φnew and τ = max{τ, τ ′};

78

2. E2 denotes the probabilistic event that xnew = φnew(τ ′, 0) ∈ φ(τ, 0) + κ2δB, where

xnew stores the final state of φnew in the function call new state as is introduced

in Section 4.5.4,

ζn is given in (0.1), µ(UC) denotes the Lebesgue measure of UC , and Kf
x and Kf

u come

from Assumption 4.24.

Proof. See Appendix B.5.

Remark 4.34. Since κ1 ∈ (0, 1/2), κ2 ∈ (2κ1, 1) and δ > 0, therefore, we have

κ1δ <
1

2
δ (4.23a)

κ2δ < δ, (4.23b)

ensuring that there is no intersection between ψnew and Xu, which prevents the function

call new state from returning ψnew, as stated in Section 4.5.4.

To ensure that Lemma 4.33 provides a positive lower bound, the following

additional requirement is imposed on κ1 and κ2:

κ2

2
> κ1. (4.24)

Then, then there exists ε ∈ (0, κ2δ2) satisfying

ε <
κ2δ

2
− exp(Kf

x τ)κ1δ (4.25)

to guarantee that the first argument in the min operator in (4.22) is positive. From (4.25)

and ε > 0, any τ ∈ R>0 satisfying the following condition suffices for the existence of ε

79

satisfying (4.25):

τ <
ln κ2

2κ1

Kf
x

(4.26)

where, by (4.24),
ln

κ2
2κ1

Kf
x

>
ln

2κ1
2κ1

Kf
x

= 0.

Therefore, if κ1 and κ2 adhere to the constraints in (4.23a), (4.23b) and (4.24)

and if κ1, κ2, and τ satisfy the conditions in (4.26), then the lower bound in (4.22) is

guaranteed to be positive.

The following result characterizes the probability that, given an initial state

near a specific motion plan as input to the function call new state, the simulated

solution pair computed by the function call new state in the jump regime is within the

clearance of this motion plan.

Lemma 4.35. Given a hybrid dynamical system H with state x ∈ Rn and input u ∈ Rm

that satisfies Assumption 4.27 and an input library that satisfies item 2 of Definition

4.20, let ψ = (φ, υ) be a purely discrete solution pair to H with a single jump, i.e.,

max dom ψ = (0, 1) and clearance δ > 0. Let ψnew = (φnew, υnew) be the purely discrete

solution pair generated by (4.10) in the function call new state and initial state xvcur =

φnew(0, 0) ∈ φ(0, 0) + κ1δB for some positive κ1 ∈ (0, 1). When HyRRT is executed

uniformly as defined in Definition 4.18, for each κ2 ∈ (0, 1), we have that

Prob[E] ≥
ζn

(
max

{
min

{
(κ2−Kg

xκ1)δ
Kg
u

, δ
}
, 0
})m

µ(UD)
(4.27)

where E denotes the probabilistic event that xnew = φnew(0, 1) ∈ φ(0, 1) + κ2δB, xnew

stores the final state of φnew in the function call new state as is introduced in Section

80

4.5.4, ζn is given in (0.1), µ(UD) denotes the Lebesgue measure of UD, and Kg
x and Kg

u

come from Assumption 4.27.

Proof. See Appendix B.6.

Remark 4.36. Since κ1 ∈ (0, 1], κ2 ∈ (0, 1] and δ > 0, therefore, we have

κ1δ < δ (4.28a)

κ2δ < δ, (4.28b)

ensuring that there is no intersection between ψnew and Xu, which prevents the function

call new state from returning ψnew.

To ensure that the lower bound in (4.27) is positive, an additional requirement

is imposed on κ1 and κ2:

κ2

κ1
> Kg

x. (4.29)

Since this implies that (κ2−Kg
xκ1)δ

Kg
u

> 0, the first argument of the min operator in (4.27)

is positive. Therefore, if κ1 and κ2 adhere to the constraints in (4.28a), (4.28b), and

(4.29), then the lower bound in (4.27) is guaranteed to be positive.

Note that if φnew(0, 0) ∈ φ(0, 0) + κ1δB and φnew(0, 1) ∈ φ(0, 1) + κ2δB are

satisfied, φ and φnew are (1,max{κ1δ, κ2δ})-close. N

4.6.5 Probabilistic Completeness Guarantee of Finding a Motion Plan

with Positive Clearance

We then establish a preliminary result demonstrating that, if there exists a

motion plan to P with positive clearance and all assumptions outlined in Section 4.6.2

81

are met, HyRRT is probabilistically complete.

Proposition 4.37. Given a motion planning problem P = (X0, Xf , Xu, (C, f,D, g)),

suppose that Assumptions 4.22, 4.24, and 4.27 are satisfied, and there exists a compact

motion plan (φ, υ) to P with clearance δ > 0 and piecewise-constant input. Then, using

a complete input library and when executed uniformly as defined in Definition 4.18, the

probability that HyRRT fails to find a motion plan ψ′ = (φ′, υ′) such that φ′ is (τ̃ , δ)-close

to φ after k iterations is at most ae−bk, where a, b ∈ R>0, τ̃ = max{T + J, T ′ + J ′},

(T, J) = max dom ψ, and (T ′, J ′) = max dom ψ′.

Proof. To show the claim, first, given a compact motion plan (φ, υ) to P with clearance

δ > 0, we construct a sequence of hybrid time instances

T := {(Ti, Ji) ∈ dom (φ, υ)}mi=0 (4.30)

for some m ∈ R≥0\{0} to be chosen later. Alongside, we construct a corresponding

geometric sequence3 of positive real numbers

D := {ri ∈ R>0}mi=0, (4.31)

with positive common ratio q ∈ R>0, in which case,

ri := qir0 ∀i ∈ {0, 1, ...,m}.

Later in this proof, for each i ∈ {0, 1, ...,m− 1}, Lemmas 4.31, 4.33, and 4.35

are utilized to provide positive lower bounds for their respective probabilistic events

3A geometric sequence is a sequence of non-zero numbers where each term after the first is found by
multiplying the previous one by a fixed, non-zero number called the common ratio.

82

for the balls φ(Ti, Ji) + riB and φ(Ti+1, Ji+1) + ri+1B, where (Ti, Ji), (Ti+1, Ji+1) ∈ T

and ri, ri+1 ∈ D. This requires that φ(Ti, Ji) + riB and φ(Ti+1, Ji+1) + ri+1B meet each

condition to establish these positive lower bounds.

The construction of D starts with selecting a proper common ratio q and the

initial term r0 in D. To ensure that the positive lower bounds stated in Lemmas 4.31,

4.33, and 4.35 hold, the geometric sequence D must meet the following conditions:

D1) For each i ∈ {0, 1, ...,m− 1}, 5
2ri < ri+1 to meet the requirements for Lemma 4.31;

D2) For each i ∈ {0, 1, ...,m−1}, 2ri < min{δ, ri+1} to meet the conditions for Lemma

4.33 in (4.23a) and (4.24) and the condition for Lemma 4.35 in (4.28). In addition,

it is required that rm < δ as per (4.23b);

D3) For each i ∈ {0, 1, ...,m−1}, the condition Kg
xri < ri+1 is essential to comply with

the prerequisites for Lemma 4.35 in (4.29), where Kg
x comes from Assumption 4.27

and is fixed;

D4)
∑m

i=0 ri < δ, thereby ensuring, as per Proposition B.10, that the concatenation of

all the φnew’s, which are returned by the function call new state in Section 4.5.4

and satisfy the properties introduced in probabilistic events in Lemmas 4.33 and

4.35, remains within the clearance δ.

To satisfy D1 - D3, the common ratio q is selected as any positive number satisfying the

following inequality:

q > max

{
5

2
, 2,Kg

x

}
= max

{
5

2
,Kg

x

}

83

which inherently implies q > 5
2 . Given that q > 5

2 > 1, the sequence D is, therefore,

monotonically increasing. With the selected q, the initial term in D is selected as

r0 =
δ

qm+1
,

ensuring that, for each i ∈ {0, 1, ...,m− 1}, 2ri < 2rm−1 = 2δ
q2
< 8δ

25 < δ and rm = δ
q <

2δ
5 < δ. Furthermore, the sum4 of D, given by

m∑
i=0

ri =
δ

qm+1(1− q)
− δ

1− q
=

δ

q − 1

(
1− 1

qm+1

)
<

δ

q − 1

where q > 5
2 , demonstrates that

∑m
i=0 ri <

δ
5
2
−1

= 2δ
3 < δ, thereby satisfying D4.

Therefore, this selection method satisfies D1 - D4 for each m ∈ R≥0\{0}, with the

specific value of m to be selected subsequently.

The sequence T is constructed such that for each i ∈ {0, 1, ...,m− 1}, (Ti, Ji)

and (Ti+1, Ji+1) satisfy one of the following two conditions:

T1) Ti = Ti+1 and Ji+1 = Ji + 1, indicating a jump from (Ti, Ji) to (Ti+1, Ji+1);

T2) Ti+1 − Ti = ∆t′ and Ji+1 = Ji for some ∆t′ = ∆t
k , implying a purely continuous

evolution from (Ti, Ji) to (Ti+1, Ji+1), where ∆t is the resolution of the piecewise-

constant input as in Definition 4.16, Tm is the upper bound for the time duration

of the input signals in the complete UC as outlined in Definition 4.20, and k ∈

R≥0\{0} is chosen large enough such that ∆t′ = ∆t
k is small enough to satisfy

∆t′ ≤ ln q
2

Kf
x
, thereby satisfying (4.26), and ∆t′ ≤ Tm to establish a positive lower

bound in Lemma 4.33.

4The closed-form of the sum of a geometric sequence is
∑m
i=0 ri = r0(1−qm+1)

1−q

84

Since υ is piecewise-constant, as per Definition 4.16, for any k ∈ R≥0\{0}, ∆t′ = ∆t
k is

also a resolution of the piecewise-constant input υ. Furthermore, Definition 4.17 implies

that if (t, j) ∈ dom υ, (t, j + 1) /∈ dom υ and t + ∆t′ ≤ maxt dom υ, it follows that

(t + ∆t′, j) ∈ dom (φ, υ); see (2.5) for the definition of maxt. Therefore, it is indeed

feasible to construct T by sweeping through the hybrid time domain of (φ, υ) as follows:

Starting from the initial assignment i← 0 and (Ti, Ji)← (0, 0),

1. if (Ti, Ji+1) ∈ dom (φ, υ), it follows that (Ti+1, Ji+1)← (Ti, Ji+1), which satisfies

T1;

2. if (Ti, Ji + 1) /∈ dom (φ, υ), it follows that (Ti+1, Ji+1) ← (Ti + ∆t′, Ji), which

satisfies T2.

This process is continued by incrementing i ← i + 1 until (Ti, Ji) = max dom (φ, υ).

This construction of T results in

m =
T

∆t′
+ J + 1

where (T, J) = max dom (φ, υ).

With this construction, the motion plan between (Ti, Ji) and (Ti+1, Ji+1) is

either purely continuous or purely discrete, which allows the use of Lemmas 4.33 and

4.35 in each respective regime. Therefore, the construction of T and D adheres to all

the conditions required to apply Lemmas 4.31, 4.33, and 4.35.

Next, we partition the compact motion plan into a finite number of segments.

By demonstrating that the probability of HyRRT generating φnew close to each segment

85

is positive, we establish that the probability of HyRRT failing to find a motion plan

converges to zero as the number of iterations approaches infinity. Using the truncation

and translation operations defined in Definition B.11, for each i ∈ {0, 1, ...,m− 1}, let

(φi, υi) represent the truncation of (φ, υ) between (Ti, Ji) and (Ti+1, Ji+1) following the

translation by (Ti, Ji). Given that (Ti, Ji) and (Ti+1, Ji+1) satisfy T1 or T2, it follows

that each element in {φi}m−1
i=0 is either purely continuous with a constant input or purely

discrete with a single jump. Then, with the search tree denoted T = (V,E), the proof

proceeds by showing that the probability of each of the following probabilistic events is

positive:

P1) The function call T .init(X0) in Section 4.5.1 adds a vertex associated with some

x0 ∈ φ(T0, J0) + 2
5r0B to T .

P2) For each i ∈ {0, 1, ,m − 1}, given the existence of a vertex v ∈ V such that

xv ∈ φ(Ti, Ji) + 2
5riB, the function call extend in Algorithm 3 adds a new vertex

to T associated with xnew, along with a corresponding new edge to T associated

with ψnew = (φnew, υnew), such that

PE1) xnew ∈ φ(Ti+1, Ji+1) + 2
5ri+1B;

PE2) φnew is (τ , ri+1)-close to φi, where5

τ =


max{maxtdom φnew,maxtdom φi} if φi is purely continuous

1 if φi is purely discrete.

5Given that φi is purely continuous, by T2 and Definition B.11, it follows that maxt dom φi = ∆t′

86

The process of HyRRT in finding a motion plan can be viewed as a Bernoulli trial6 (P1)

following repeated Bernoulli trials (P2). Denote the probability that the probabilistic

event P1 occurs as pinit and that P2 occurs as pextend. Next, we show that pinit and

pextend are positive.

1. Given that HyRRT is executed uniformly (see Definition 4.18), by (4.21) and

µ(φ(T0, J0)+2
5r0B) > 0, where µ(φ(T0, J0)+2

5r0B) represents the Lebesgue measure

of the ball φ(T0, J0) + 2
5r0B, it follows that pinit > 0.

2. The function calls nearest neighbor and new state are executed in the function

call extend. We first show the probability that each of nearest neighbor and

nearest neighbor contributes to an output of extend satisfying PE1 and PE2 is

positive:

(a) Given the existence of a vertex v ∈ V such that xv ∈ φ(Ti, Ji)+ 2
5riB, Lemma

4.31 implies that the probability that the function call nearest neighbor

returns a vertex vcur such that xvcur ∈ φ(Ti, Ji) + riB, denoted pnear, is

positive.

(b) Under the condition that xvcur ∈ φ(Ti, Ji) + riB and ri <
2
5ri+1 ensured by

D1, the probability that the function call new state generates a new solution

pair ψnew = (φnew, υnew) satisfying PE1 and PE2, denoted pnew, is positive.

This property is guaranteed by Lemma 4.33, if φi is purely continuous and

by Lemma 4.35 if φi is purely discrete.

6In the theory of probability and statistics, a Bernoulli trial is a random experiment with exactly
two possible outcomes, success and failure.

87

Therefore, since pnear and pnew are positive, it follows that pextend := pnearpnew is

positive.

Given that the probability of P2 occurring is positive, and denoting the total number

of occurrences of P2 trials as Xn, where n ∈ N\{0}, we characterize the probability of

HyRRT failing to identify a motion plan, which is equivalent to P2 occurring fewer than

m times, as follows:

lim
n→∞

Prob[Xn < m] = lim
n→∞

m−1∑
i=0

n
i

 piextend(1− pextend)n−i. (4.32)

Since i ∈ {0, 1, ...,m − 1}, we have 0 ≤ i ≤ m − 1. As n → ∞, there exists an N ∈ N

such that for all n ≥ N , we have 0 ≤ i ≤ m − 1 ≤ n
2 . Such an N can be chosen as

2(m− 1). Due to the monotonicity of

n
k

 for k from 0 to n
2 and 0 ≤ i ≤ m− 1 ≤ n

2 ,

we have

n
i

 ≤
 n

m− 1

. Hence,

lim
n→∞

Prob[Xn < m] ≤ lim
n→∞

m−1∑
i=0

 n

m− 1

 piextend(1− pextend)n−i

≤ lim
n→∞

 n

m− 1

m−1∑
i=0

piextend(1− pextend)n−i.

(4.33)

88

Define p := max{pextend, 1− pextend} ∈ (0, 1). It follows that

lim
n→∞

Prob[Xn < m] ≤ lim
n→∞

 n

m− 1

m−1∑
i=0

pipn−i

≤ lim
n→∞

 n

m− 1

m−1∑
i=0

pn.

(4.34)

Since pn is not related to i, we have
∑m−1

i=0 pn = mpn. It follows that

lim
n→∞

Prob[Xn < m] ≤ lim
n→∞

 n

m− 1

mpn

≤ lim
n→∞

n!

(m− 1)!(n−m+ 1)!
mpn.

(4.35)

Since n!
(n−m+1)! = Πn

i=n−m+2i ≤ Πn
i=n−m+2n = nm−1, it follows that

lim
n→∞

Prob[Xn < m] ≤ lim
n→∞

nm−1

(m− 1)!
mpn. (4.36)

Since p ∈ (0, 1) and m is finite, then limn→∞
nm−1

(m−1)!mp
n = 0. Therefore, the probability

that HyRRT fails to find a motion plan is converging to zero as the number of iterations

approaches infinity.

In addition, Proposition B.10 establishes that the concatenation of all the

φnew’s satisfying PE2, which is returned by HyRRT as φ′, is (τ̃ ,
∑m

i=0 ri)-close to φ =

φ0|φ1|...|φm, where
∑m

i=0 ri < δ is guaranteed by D4.

89

4.6.6 Proof of Theorem 4.30

Given that ψ is a motion plan to P with safety clearance δs > 0 and that

δf > 0, Lemma 4.15 establishes that ψ is a motion plan to Pδ with clearance δ =

min{δs, δf} > 0. Furthermore, by Proposition 4.37, it follows that the probability that

HyRRT fails to find ψ′ = (φ′, υ′) is at most ae−bk and the generated φ′ is (τ̃ , δ̃)-close

to φ where τ̃ = max{T + J, T ′ + J ′}, (T, J) = max dom ψ, (T ′, J ′) = max dom ψ′, and

δ̃ = min{δs, δf}.

4.7 HyRRT Software Tool for Motion Planning for Hybrid

Dynamical Systems and Examples

Algorithm 2 leads to a software tool7 to solve the motion planning problems for

hybrid dynamical systems. This software only requires the motion planning problem data

(X0, Xf , Xu, (C, f,D, g)), an input library (UC ,UD), a tunable parameter pn ∈ (0, 1), an

upper bound K over the iteration number and two constraint sets Xc and Xd. The tool

is illustrated in Examples 3.2 and 3.3.

Example 4.38 (Actuated bouncing ball system in Example 3.2, revisited). This example

serves to demonstrate that the HyRRT algorithm is proficient in solving the specific

instance of the motion planning problem as illustrated in Example 3.2. The inputs fed

to the proposed algorithm are given as follows:

1. The tune parameter pn is set as 0.5.

7Code at https://github.com/HybridSystemsLab/hybridRRT.

90

https://github.com/HybridSystemsLab/hybridRRT

2. The upper bound K is set to 1000.

3. The construction of the input library (UC ,UD) adheres to the methodology delin-

eated in Input Library Construction Procedure, as referenced in Section 4.2.

Here, the upper bound Tm is explicitly configured to 0.1. From the setting of Xu,

It is imperative to note that each input falling outside the interval (0, 5) is unsafe.

As a result, both U sC and UD are restricted to (0, 5). Consequently, both UC and

UD are constructed in compliance with the specifications outlined in the Input

Library Construction Procedure.

4. The constraint sets Xc and Xd are set as Xc = C ′ and Xd = D′.

5. The tolerance ε in (4.11) is set to 0.2.

The simulation result is shown in Figure 4.3. The simulation is implemented in

MATLAB software and processed by a 2.2 GHz Intel Core i7 processor. On average, over

the course of 20 runs, the simulation is observed to require approximately 0.72 seconds

for completion and results in the generation of 34.2 vertices during the propagation phase.

Example 4.39 (Walking robot system in Example 3.3, revisited). The settings for

HyRRT planner are given as follows:

1) The tune parameter pn is set as 0.9 to encourage the flow regime.

2) The upper bound K is set as 2000.

91

-5 0 5 10 15 20 25

-20

-10

0

10

20

Figure 4.3: The above shows the search results of HyRRT algorithm to solve the sample
motion planning problem in Example 3.2. Green square denotes X0 and blue square
denotes Xf . The states represented by vertices in the search tree are denoted by ?’s.
The lines between ?’s denote the state trajectories of the solution pairs associated with
edges in the search tree. The red trajectory denotes the state trajectory of a motion
plan to the given motion planning problem.

92

3) The input library (UC ,UD) is formulated in accordance with Input Library Con-

struction Procedure. Specifically, the upper bound Tm is set to 0.4. Given the

constraints imposed by Xu, each input deviating from the set (−3, 3) × (−3, 3) ×

(−0.2, 0.2) is classified as unsafe. Consequently, both U sC and UD are restricted to

(−3, 3)× (−3, 3)× (−0.2, 0.2).

4) The constraint set Xc is chosen as {(x, a) ∈ R6 × R3 : h(x) ≥ −s} and Xd as

{(x, a) ∈ R6 × R3 : h(x) = 0, ωp ≥ −s} with a tunable parameter s set to 0, 0.3,

0.5, 1, and 2, such that C = Xc|s=0 (Xc|s=0.3 (Xc|s=0.5 (Xc|s=1 (Xc|s=2 and

D = Xd|s=0 (Xd|s=0.3 (Xd|s=0.5 (Xd|s=1 (Xd|s=2.

5) The input library (UC ,UD) is constructed as follows. In this illustration, U sC is

constructed as U sC = {−2.0,−1.0, 0.0, 1.0, 2.0}×{−2.0,−1.0, 0.0, 1.0, 2.0}×{−0.15,

−0.0875,−0.0250, 0.0375,0.10}. There are 125 elements in U sC . For each us ∈ U sC ,

an input signal [0, 0.2]→ {us} is constructed and added to UC . In the biped system,

since input has no effect on the jump, then UD is constructed as {(0, 0, 0)}.

6) The tolerance ε in (4.11) is set to 0.3

The simulation result in Figure 4.4 shows that HyRRT is able to solve the instance

of motion planning problem for the walking robot. The simulation is implemented in

MATLAB and processed by a 3.5 GHz Intel Core i5 processor. Over the course of 20

runs, on average, the simulation takes 63.26/78.3/100.4/183.7/280.8 seconds with s set

to 0/0.3/0.5/1.0/2.0, respectively. Among all the runs conducted, the simulation takes a

minimum of 31.2 seconds to complete. In contrast, when employing the forward/backward

93

propagation algorithm based on breadth-first search operating under identical settings, the

motion planner takes 1608.2 seconds to solve the same problem. The results demonstrate

a noteworthy improvement provided by the rapid exploration technique, with average and

fastest run computation time improvements of 96.1% and 98.1%, respectively. It is also

observed that as the sets Xc and Xd grow, HyRRT considers more vertices in solving

Problem 4.5 leading to higher computation time.

94

0 1 2 3 4 5
-1

-0.5

0

0.5

1

(a) The trajectory of x1 component

of the generated motion plan.

0 1 2 3 4 5
-1

-0.5

0

0.5

1

(b) The trajectory of x2 component

of the generated motion plan.

0 1 2 3 4 5
-0.05

0

0.05

0.1

(c) The trajectory of x3 component

of the generated motion plan.

0 1 2 3 4 5
-0.2

0

0.2

0.4

0.6

0.8

(d) The trajectory of x4 component

of the generated motion plan.

0 1 2 3 4 5

-1

-0.5

0

0.5

(e) The trajectory of x5 component

of the generated motion plan.

0 1 2 3 4 5
-0.1

-0.05

0

0.05

0.1

0.15

(f) The trajectory of x6 component

of the generated motion plan.

Figure 4.4: The above shows the trajectories of each state components of the generated
motion plan to the sample motion planning problem for biped system. In each figure in
Figure 4.4, green square denotes the corresponding component of X0 and blue square
denotes the corresponding component of Xf .

95

Chapter 5

A Bidirectional Sampling-based Motion

Planning Approach for Hybrid

Dynamical Systems

5.1 Overview

In this chapter, a bidirectional RRT-type motion planning algorithm for hybrid

systems, called HyRRT-Connect, is proposed. HyRRT-Connect searches for a motion

plan by incrementally constructing two search trees: one starts from the initial state

set and propagates forward in hybrid time, while the other starts from the final state

set and propagates backward in hybrid time. Upon detecting overlaps between the two

search trees, a connection is established, subsequently yielding a motion plan, which is

elaborated in Section 5.3.

The proposed HyRRT-Connect algorithm requires a library of possible inputs

96

to construct T fw, denoted U fw = (U fw
C ,U fw

D), and to construct T bw, denoted Ubw =

(Ubw
C ,Ubw

D). The input library U fw (respectively, Ubw) includes the input signals for the

flows of Hfw (respectively, Hbw), collected in U fw
C (respectively, Ubw

C), and the input

values for the jumps of Hfw (respectively, Hbw), collected in U fw
D (respectively, Ubw

D).

HyRRT-Connect addresses the motion planning problem P = (X0, Xf , Xu, (C
fw,

f fw, Dfw, gfw)) using input libraries U fw and Ubw through the following steps:

Step 1: Sample a finite number of points from X0 (respectively, Xf) and initialize

a search tree T fw = (V fw, Efw) (respectively, T bw = (V bw, Ebw)) by adding

vertices associated with each sampling point.

Step 2: Incrementally construct T fw forward in hybrid time and T bw backward in

hybrid time, executing both procedures in an interleaved manner1.

Step 3: If an appropriate overlap between T fw and T bw is found, reverse the solu-

tion pair in T bw, concatenate it to the solution pair in T fw and return the

concatenation result.

An appropriate overlap between T fw and T bw implies the paths in both trees that can

collectively be used to construct a motion plan to P. Details on these overlaps are

discussed in Section 5.3.

1It is imperative to underscore that the information used in forward propagation remains unaffected by
the backward propagation, and vice versa. This independence allows for the potential of executing both
forward and backward propagation simultaneously, as opposed to an interleaved approach. Nonetheless,
the nature of motion planning algorithm, which involves frequently joining the results computed in
parallel to check overlaps between the forward and backward search trees, may prevent the computation
improvement associated with parallel computation. More discussion and experiment results can be
found in the forthcoming Section 5.5.

97

5.2 HyRRT-Connect Algorithm

The proposed algorithm is given in Algorithm 4. The inputs of Algorithm

4 are the problem P = (X0, Xf , Xu, (C
fw, f fw, Dfw, gfw)), the backward-in-time hybrid

dynamical system Hbw obtained from (3.6), the input libraries U fw and Ubw, two param-

eters pfw
n ∈ (0, 1) and pbw

n ∈ (0, 1), which tune the probability of proceeding with the flow

regime or the jump regime during the forward and backward construction, respectively,

an upper bound K ∈ N>0 for the number of iterations to execute, and four tunable

sets X fw
c ⊃ C fw′ , X fw

d ⊃ Dfw′ , Xbw
c ⊃ Cbw′ and Xbw

d ⊃ Dbw′ where C fw′ , Cbw′ , Dfw′

and Dbw′ are defined as in (2.3) and (2.4), which act as constraints in finding a closest

vertex to xrand. Step 1 in Section 5.1 corresponds to the function calls T fw.init and

T bw.init in line 1 of Algorithm 4. The construction of T fw in Step 2 is implemented

in lines 3 - 10. The construction of T bw in Step 2 is implemented in lines 11 - 18. The

solution checking in Step 3 is executed depending on the return of the function call

extend and will be further discussed in2 Section 5.3. Each function in Algorithm 4 is

defined next.

5.2.1 T .init(X)

The T .init function initializes the search tree T = (V,E) by randomly select-

ing points from set X, which can be either X0 or Xf . For each sampling point x0 ∈ X,

a corresponding vertex v0 is added to V , while no edges are added to E at this stage.

2The solution checking process in Step 3 is not reflected in Algorithm 4. This omission is intentional,
as practitioners might devise varied termination conditions for the HyRRT-Connect algorithm.

98

Algorithm 4 HyRRT-Connect algorithm

Input: X0, Xf , Xu,Hfw = (C fw, f fw, Dfw, gfw),Hbw

= (Cbw, fbw, Dbw, gbw), (UC ,UD), pfw
n , p

bw
n ∈ (0, 1), K ∈ N>0, X fw

c ⊃ C fw′ , X fw
d ⊃ Dfw′ ,

Xbw
c ⊃ Cbw′ and Xbw

d ⊃ Dbw′ .

1: T fw.init(X0), T bw.init(Xf)

2: for k = 1 to K do

3: randomly select a real number rfw from [0, 1].

4: if rfw ≤ pfw
n then

5: xfw
rand ← random state(C fw′).

6: extend(T fw, xfw
rand, (U fw

C ,U fw
D),Hfw, Xu, X

fw
c).

7: else

8: xfw
rand ← random state(Dfw′).

9: extend(T fw, xfw
rand, (U fw

C ,U fw
D),Hfw, Xu, X

fw
d).

10: end if

11: randomly select a real number rbw from [0, 1].

12: if rbw ≤ pbw
n then

13: xbw
rand ← random state(Cbw′).

14: extend(T bw, xbw
rand, (Ubw

C ,Ubw
D),Hbw, Xu, X

bw
c).

15: else

16: xbw
rand ← random state(Dbw′).

17: extend(T bw, xbw
rand, (Ubw

C ,Ubw
D),Hbw, Xu, X

bw
d).

18: end if

19: end for

99

Algorithm 5 Extend function

1: function extend((T , x, (UC ,UD),H, Xu, X∗))

2: vcur ← nearest neighbor(x, T ,H, X∗);

3: (is a new vertex generated, xnew, ψnew)← new state(vcur, (UC ,UD),H, Xu)

4: if is a new vertex generated = true then

5: vnew ← T .add vertex(xnew);

6: T .add edge(vcur, vnew, ψnew);

7: return Advanced;

8: end if

9: return Trapped;

10: end function

5.2.1.1 xrand←random state(S)

The function call random state randomly selects a point from the set S ⊂ Rn.

Rather than to select from C ′ ∪ D′, it is designed to select points from C ′ and D′

separately depending on the value of r. The reason is that if C ′ (or D′) has zero

measure while D′ (respectively, C ′) does not, the probability that the point selected

from C ′ ∪ D′ lies in C ′ (respectively, D′) is zero, which would prevent establishing

probabilistic completeness.

5.2.2 vcur←nearest neighbor(xrand,T ,H, X∆
∗)

The function call nearest neighbor searches for a vertex vcur in the search

tree T = (V,E) such that its associated state value has minimal distance to xrand. This

100

function is implemented as solving the following optimization problem over X∆
? , where

? is either c or d and ∆ is either fw or bw.

Problem 5.1. Given a hybrid dynamical system H = (C, f,D, g), xrand ∈ Rn, and a

search tree T = (V,E), solve

arg min
v∈V

|xv − xrand|

s.t. xv ∈ X∆
? .

The data of Problem 5.1 comes from the arguments of the nearest neighbor

function call. This optimization problem can be solved by traversing all the vertices in

V .

5.2.3 (is a new vertex generated, xnew, ψnew)← new state(vcur, (UC ,UD),H =

(C, f,D, g), Xu)

If xvcur ∈ C ′\D′ (xvcur∈D′\C ′), the function call new state generates a new

solution pair ψnew to hybrid dynamical system H starting from xvcur by applying a

input signal ũ (respectively, an input value uD) randomly selected from UC (respectively,

UD). If xvcur∈ C ′ ∩D′, then this function generates ψnew by randomly selecting flows or

jump. The final state of ψnew is denoted as xnew. After ψnew and xnew are generated,

the function new state evaluates if ψnew is trivial. If it is, indicating no exploration

of new space, addition to T is unnecessary, setting is a new vertex generated ←

false. The function call new state then returns. Else, the function new state finds

(t, j) ∈ dom ψnew such that ψnew(t, j) ∈ Xu, implying intersection with the unsafe

101

set, then it sets is a new vertex generated ← false. If neither condition is met,

is a new vertex generated← true.

5.2.4 vnew ← T .add vertex(xnew) and T .add edge(vcur, vnew, ψnew)

The function call T .add vertex(xnew) adds a new vertex vnew associated with

xnew to T and returns vnew. The function call T .add edge(vcur, vnew, ψnew) adds a new

edge enew = (vcur, vnew) associated with ψnew to T .

5.3 Motion Plan Identification and Reconstruction

The following two scenarios are identified where a motion plan can be con-

structed by utilizing one path from T fw and another from T bw:

S1) A vertex in T fw is associated with the same state in the flow set as some vertex

in T bw.

S2) A vertex in T fw is associated with a state such that a forward-in-hybrid time

jump from such state results in the state associated with some vertex in T bw, or

conversely, a vertex in T bw is associated with a state such that a backward-in-

hybrid time jump from such state results in the state associated with some vertex

in T fw.

These scenarios provide solution pairs that can be used to construct a motion plan by

reversing a solution pair in T bw and concatenating its reversal to a solution pair in

T fw, as guaranteed by Lemma 3.17. In the HyRRT-Connect algorithm, each of these

102

scenarios is evaluated whenever an Advanced signal is returned by the extend function.

However, the random selection of the inputs prevents the exact satisfaction of S1 in

Assumption 3.15. Neglecting approximation errors due to numerical computation, it is

typically possible to solve for an exact input at a jump from one state to an other, as

required in S2. However, due to the random selection of the inputs and the family of

signals used, satisfying S1 is not typically possible. This may lead to a discontinuity

along the flow in the resulting motion plan. A reconstruction process is introduced

below to address this issue. This process propagates forward in hybrid time from the

state associated with the vertex identified in T fw. Next, we present an implementation

of identifying two paths from T fw and T bw in S1 and S2, respectively.

5.3.1 Same State Associated with Vertices in T fw and T bw

In S1, HyRRT-Connect identifies if there exists a path

pfw := ((vfw
0 , vfw

1), (vfw
1 , vfw

2), ..., (vfw
m−1, v

fw
m)) =: (efw

0 , e
fw
1 , ..., e

fw
m−1) (5.1)

in T fw, where m ∈ N, and a path

pbw := ((vbw
0 , vbw

1), (vbw
1 , vbw

2), ..., (vbw
n−1, v

bw
n)) =: (ebw

0 , ebw
1 , ..., ebw

n−1) (5.2)

in T bw, where n ∈ N, satisfying the following conditions:

C1) xvfw0
∈ X0,

C2) for i ∈ {0, 1, ...,m − 2}, if ψefwi
and ψefwi+1

are both purely continuous, then

ψefwi+1
(0, 0) ∈ C fw,

103

C3) xvbw0
∈ Xf ,

C4) for i ∈ {0, 1, ..., n − 2}, if ψebwi
and ψebwi+1

are both purely continuous, then

ψebwi+1
(0, 0) ∈ Cbw,

C5) xvfwm = xvbwn ,

C6) if ψefwm−1
and ψebwn−1

are both purely continuous, then ψebwn−1
(T bw, 0) ∈ C fw where

(T bw, 0) = max dom ψebwn−1
.

If HyRRT-Connect is able to find a path pfw in T fw and a path pbw in T bw satisfying

C1-C6, then a motion plan to P can be constructed by ψfw|ψbw′ , where, for notation

simplicity, ψfw = (φfw, υfw) := ψ̃pfw denotes the solution pair associated with the path

pfw in (5.1) and is referred to as forward partial motion plan, ψbw = (φbw, υbw) := ψ̃pbw

denotes the solution pair associated with the path pbw in (5.2) and is referred to as

backward partial motion plan, and ψbw′ denotes the reversal of ψbw. The result ψfw|ψbw′

is guaranteed to satisfy each item in Problem 3.1 as follows:

1. By C1, it follows that ψfw|ψbw′ starts from X0. Namely, item 1 in Problem 3.1 is

satisfied.

2. Due to C2 (respectively, C4), by iterative applying Proposition 3.13 to each pair of

ψefwi
and ψefwi+1

(respectively, ψebwi
and ψebwi+1

) where i ∈ {0, 1, ...,m−2} (respectively,

i ∈ {0, 1, ..., n − 2}), it follows that ψfw (respectively, ψbw) is a solution pair to

Hfw (respectively, Hbw). Furthermore, given C5 and C6, Lemma 3.17 establishes

that ψfw|ψbw′ is a solution pair to Hfw.

104

3. C3 ensures that ψfw|ψbw′ ends within Xf . This confirms the satisfaction of item

3 in Problem 3.1.

4. For any edge e ∈ pfw ∪ pbw, the trajectory ψe avoids intersecting the unsafe set

as a result of the exclusion of solution pairs that intersect the unsafe set in the

function call new state. Therefore, item 4 in Problem 3.1 is satisfied.

Since each requirement in Problem 3.1 is satisfied, it is established that ψfw|ψbw′ is a

motion plan to P.

In practice, as guaranteeing C5 above is not possible in most hybrid dynamical

systems, given δ > 0 representing the tolerance associated with this condition, we

implement C5 as

|xvfwm − xvbwn | ≤ δ (5.3)

leading to a potential discontinuity during the flow.

5.3.2 Reconstruction Process

To smoothen and control the discontinuity associated with (5.3), we propose

a reconstruction process. Given the hybrid input υbw of ψbw identified in S1, which

is backward in hybrid time, the reconstruction process involves simulating a hybrid

arc, denoted φr, such that it starts from the final state of φfw, flows when υbw′ flows,

jumps when υbw′ jumps, and applies the input (t, j) 7→ υbw′(t, j) where υbw′ denotes

the reversal of υbw; see item 2 in Definition 3.4 for the reversal of a hybrid input. We

generate φr via the following hybrid dynamical system, denoted Hυbw′ , with state x ∈ Rn

105

and dynamics:

Hυbw′ :


ẋ = fυbw′ (x, υ

bw′(t, j)) (t, j) ∈ Cυbw′

x+ = gυbw′ (x, υ
bw′(t, j)) (t, j) ∈ Dυbw′

(5.4)

where

1. Dυbw′ := {(t, j) ∈ dom υbw′ : (t, j + 1) ∈ dom υbw′};

2. Cυbw′ := dom υbw′\Dυbw′ ;

3. gυbw′ (x, u) := g(x, u) for all3 (x, u) ∈ Rn × Rm;

4. fυbw′ (x, u) := f(x, u) for all (x, u) ∈ Rn × Rm.

In addition to satisfying the hybrid dynamics in (5.4), we also require that the recon-

struction result φr satisfies the following conditions:

R1) φr(0, 0) = φfw(T fw, J fw), where φfw is the state trajectory of ψfw identified in S1

and (T fw, J fw) = max dom φfw;

R2) φr is a maximal solution to Hυbw′ such that dom φr = dom υbw′ .

Remark 5.2. The definitions of Cυbw′ and Dυbw′ indicate that φr follows the flow or

jump of υbw′. R1 ensures that the reconstructed motion plan begins at the final state of

the forward partial motion plan, effectively eliminating any discontinuity. Given that R2

ensures that φr is maximal, it follows that

dom φr = dom υbw′ = dom φbw′ . (5.5)

3The flow map f and the jump map g in (2.1) are defined on the domain Rn × Rm.

106

5.3.2.1 Convergence of φr to Xf

We first show the dependency between the difference |φr(T r, J r) − φbw(0, 0)|

and the tolerance δ in (4.11) where (T r, J r) = max dom φr. The following lemma is a

slight modification of [27, Lemma 2].

Lemma 5.3. Given a hybrid dynamical system H satisfying Assumption 4.24, if there

exists a purely continuous solution pair ψbw = (φbw, υbw) to Hbw, then the reconstructed

solution φr, which is a solution to Hυbw′ satisfying R1 and R2 where υbw′ is the reversal

of υbw, satisfies the following properties:

P1) dom φr = dom υbw′; thus, φr is purely continuous;

P2) if |φr(0, 0) − φbw′(0, 0)| ≤ δ, then |φr(T, 0) − φbw′(T, 0)| ≤ exp (Kf
xT)δ, where

(T, 0) = max dom φr = max dom φbw′, and max dom φr = max dom φbw′ is valid

because dom φr = dom φbw′ in P1.

Proof. This proof is in Appendix C.1.

Lemma 5.4. Given a hybrid dynamical system H satisfying Assumption 4.27, if there

exists a purely discrete solution pair ψbw = (φbw, υbw) to Hbw, then the reconstructed

solution φr, which is a solution to Hυbw′ satisfying R1 and R2 where υbw′ is the reversal

of υbw, satisfies the following properties:

P1) dom φr = dom υbw′; thus, φr is purely discrete;

P2) if |φr(0, 0) − φbw′(0, 0)| ≤ δ, then |φr(0, J) − φbw′(0, J)| ≤ exp(J ln(Kg
x))δ, where

(0, J) = max dom φr = max dom φbw′, and max dom φr = max dom φbw′ is valid

107

because dom φr = dom φbw′ in P1.

Proof. This proof is in Appendix C.2.

Next, we show that the final state of the reconstructed motion plan φr converges

to φbw(0, 0) ∈ Xf as the tolerance δ in (5.3) approaches zero.

Theorem 5.5. Suppose Assumptions 4.24 and 4.27 are satisfied, and there exist a solu-

tion pair ψfw = (φfw, υfw) to Hfw and a solution pair ψbw = (φbw, υbw) to Hbw identified

in S1. For each ε > 0, there exists a tolerance δ > 0 in (5.3) such that |φfw(T fw, J fw)−

φbw(T bw, Jbw)| ≤ δ leads to |φr(T r, J r)−φbw(0, 0)| ≤ ε where (T fw, J fw) = max dom φfw,

(T bw, Jbw) = max dom φbw, φr is a solution to Hυbw′ following R1 and R2, and (T r, J r) =

max dom φr.

Proof. Given that ψbw = (φbw, υbw) is a solution pair to Hbw, Proposition 3.9 guar-

antees that ψbw′ = (φbw′ , υbw′) is a solution pair to Hfw. By (5.5), it follows that

dom φr = dom φbw′ . Since |φfw(T fw, J fw)− φbw(T bw, Jbw)| = |φr(0, 0)− φbw′(0, 0)| ≤ δ,

by iteratively applying Lemma 5.3 and Lemma 5.4 throughout dom φr = dom φbw′ , it

follows that

|φr(T r, J r)− φbw(0, 0)| = |φr(T r, J r)− φbw′(T r, J r)| ≤ exp(Kf
xT

r + J r ln(Kf
x))δ,

which establishes the existence of δ > 0. In particular, δ can be taken to be equal to

ε

exp(Kf
xT r+Jr ln(Kf

x))
.

Furthermore, if φbw(0, 0) is not on the boundary of Xf , the following result

shows there is a tolerance ensuring that φr concludes within Xf .

108

Corollary 5.6. Suppose Assumptions 4.24 and 4.27 are satisfied, and there exist a solu-

tion pair ψfw = (φfw, υfw) to Hfw, and a solution pair ψbw = (φbw, υbw) to Hbw identified

in S1, and some ε′ > 0 such that φbw(0, 0) + ε′B ⊂ Xf . Then, there exists a tolerance

δ > 0 in (5.3) such that |φfw(T fw, J fw) − φbw(T bw, Jbw)| ≤ δ leads to φr(T r, J r) ∈ Xf

where (T fw, J fw) = max dom φfw, (T bw, Jbw) = max dom φbw, φr is a solution to Hυbw′

following R1 and R2, and (T r, J r) = max dom φr.

Proof. By selecting ε = ε′, Theorem 5.5 ensures the existence of some δ > 0 such

that |φr(T r, J r) − φbw(0, 0)| ≤ ε′. By φbw(0, 0) + ε′B ⊂ Xf , it is established that

φr(T r, J r) ∈ Xf .

Then, by replacing φbw with φr and concatenating the reconstructed pair

ψr := (φr, υbw′) to ψfw = (φfw, υfw), HyRRT-Connect generates the motion plan ψfw|ψr,

where the discontinuity associated with (5.3) is removed. Note that the tolerance δ in

(5.3) is adjustable. Setting δ to a smaller value brings the endpoint of φr closer to Xf ,

However, it also reduces the possibility of finding a motion plan, thereby increasing the

time expected to find forward and backward partial motion plans.

Remark 5.7. Connecting two points via flow typically involves solving a two point

boundary value problem constrained by the flow set. Solving such problems is difficult.

This is the reason why we do not consider to actively connect two paths in T fw and T bw

via flow.

109

5.3.3 Connecting Forward and Backward Search Trees via Jump

In S2, HyRRT-Connect checks the existence of pfw in (5.1) and pbw in (5.2)

which, in addition to meeting C1-C4 in Section 5.3.1, results in a solution to the following

constrained equation, denoted u∗, provided one exists4:

xvbwn = g(xvfwm , u
∗), (xvfwm , u

∗) ∈ Dfw. (5.6)

The constrained equation above can be solved analytically for certain hybrid dynamical

systems such as the one in Example 3.2 and numerically in general using numerical

techniques like root-finding methods [8] or optimization methods [5]. A solution to (5.6)

implies that xvfwm and xvbwn can be connected by applying u∗ at a jump from xvfwm to xvbwn .

Hence, a motion plan is constructed by concatenating ψfw, a single jump from xvfwm to

xvbwn , and ψbw′ .

Remark 5.8. This approach enables the construction of a motion plan prior to the

detection of any overlaps between T fw and T bw, potentially leading to improved compu-

tational efficiency, as illustrated in the forthcoming Section 5.4. Furthermore, as this

connection is established through a jump, it prevents the discontinuity during the flow

introduced in (5.3).

4It is indeed possible that all the motion plans are purely continuous. In this case, no solution to
(5.6) would be found since no jumps exist in every motion plan.

110

5.4 Software Tool and Simulation Results

Algorithm 4 leads to a software tool5 to solve Problem 3.1.This software only

requires the inputs listed in Algorithm 4. Next, we illustrate the HyRRT-Connect

algorithm and this tool in Example 3.2 and Example 3.3.

Example 5.9 (Actuated bouncing ball system in Example 3.2, revisited). We initially

showcase the simulation results of the HyRRT-Connect algorithm without the function-

ality of connecting via jumps discussed in Section 5.3.3. We consider the case where

HyRRT-Connect precisely connects the forward and backward partial motion plans. This

is demonstrated by deliberately setting the initial state set as X0 = {(14, 0)} and the

final state set as Xf = {(0,−16.58)}. In this case, no tolerance is applied, and thus, no

reconstruction process is employed. Instead, strict equality in C5 in Section 5.3.1 is used

to identify the motion plan. The motion plan detected under these settings is depicted

in Figure 5.1(a), where the forward and backward partial motion plans identified in S1

are depicted by the green and magenta lines, respectively. However, for most scenarios,

such as X0 = {(14, 0)} and Xf = {(10, 0)} in Example 3.2, if we require strict equality

without allowing any tolerance, then HyRRT-Connect fails to return a motion plans

in almost all the runs. This demonstrates the necessity of allowing a certain degree of

tolerance in HyRRT-Connect. The simulation results, allowing a tolerance of δ = 0.2,

are shown in Figure 5.1(b). A discontinuity during the flow between the forward and

backward partial motion plans is observed, as depicted in the red circle in Figure 5.1(b).

5Code at https://github.com/HybridSystemsLab/HyRRTConnect.git.

111

This discontinuity is addressed through the reconstruction process, as is shown in Figure

5.1(c). A deviation between the endpoint of the reconstructed motion plan and the final

state set is also observed in Figure 5.1(c), which, according to Theorem 5.5, is bounded.

Next, we proceed to perform simulation results of HyRRT-Connect showcasing

its full functionalities, including the ability to connect partial motion plans via jumps.

Figure 6.3(a) shows this situation. This feature enables HyRRT-Connect to avoid

discontinuities during the flow, as it computes exact solutions at jumps to connect

forward and backward partial motion plans. Furthermore, we compare the computational

performance of the proposed HyRRT-Connect algorithm, its variant Bi-HyRRT (where

the function to connect partial motion plans via jumps is disabled), and HyRRT given

in [56, 61]. Conducted on a 3.5GHz Intel Core i7 processor using MATLAB, each

algorithm is run 20 times on the same problem. HyRRT-Connect on average creates 78.8

vertices in 0.27 seconds, Bi-HyRRT 186.5 vertices in 0.76 seconds, and HyRRT 457.4

vertices in 3.93 seconds. Compared to HyRRT, both HyRRT-Connect and Bi-HyRRT

show considerable improvements in computational efficiency. Notably, HyRRT-Connect,

with its jump-connecting capability, achieves a 64.5% reduction in computation time and

57.7% fewer vertices than Bi-HyRRT, demonstrating the benefits of jump connections.

Example 5.10 (Walking robot system in Example 3.3, revisited). The simulation

results demonstrate that HyRRT-Connect successfully finds a motion plan for the high-

dimensional walking robot system with a tolerance δ of 0.3. The forward search tree

T fw, with its partial motion plan shown in green, is displayed in Figure 5.2. Similarly,

112

0 5 10 15

-15

-10

-5

0 Forward Partial Motion Plan

Backward Partial Motion Plan

Initial state

Final state

(a) Precise connection during the flow is achieved.

0 5 10 15
-20

-15

-10

-5

0

5

10

15

20

25

Forward Partial Motion Plan

Backward Partial Motion Plan

Initial state

Final state

(b) A discontinuity during the flow in red circle.

0 5 10 15
-20

-15

-10

-5

0

5

10

15

20

25
Forward Partial Motion Plan

Backward Partial Motion Plan

Initial state

Final state

Reconstructed Partial Motion Plan

(c) The backward partial motion plan is recon-

structed.

0 5 10 15 20 25 30

-20

-10

0

10

20 Initial state

Final state

Forward Search Tree

Backward Search Tree

Motion plan

(d) HyRRT-Connect

Figure 5.1: Motion plans for the actuated bouncing ball example.

113

the backward search tree T bw, with its partial motion plan in magenta, is shown in

Figure 5.3. These simulations were performed in MATLAB on a 3.5 GHz Intel Core i7

processor. Running HyRRT-Connect and HyRRT 20 times each for the same problem,

HyRRT-Connect generates 470.2 vertices and takes 19.8 seconds, while HyRRT generates

2357.1 vertices and takes 71.5 seconds. This indicates a significant 72.3% improvement

in computation time and 80.1% in vertex creation for HyRRT-Connect compared to

HyRRT, highlighting the efficiency of bidirectional exploration.

Figure 5.2: Forward search tree and the forward partial motion plan.

5.5 Discussion on Parallel Implementation

In this section, we discuss the computation performance on the parallel im-

plementation of the HyRRT-Connect algorithm. We have ascertained that when im-

114

Figure 5.3: Backward search tree and the backward partial motion plan.

Figure 5.4: Selected states of the forward and backward partial motion plan generated
by HyRRT-Connect for the walking robot system.

115

plementing HyRRT-Connect using MATLAB’s internal parallel computation toolbox,

parpool, there is no improvement in computational performance compared to the inter-

leaved implementation.This observation is based on the results obtained from solving the

two example problems discussed. On average, the parallel implementation of HyRRT-

Connect takes approximately 2.47 seconds to compute a motion plan for the actuated

bouncing ball system. This time cost is significantly longer than the time required by the

interleaved implementation, which averages around 0.27 second. A similar conclusion is

observed in the case of the walking robot system. The parallel computation approach

requires 167.8 seconds to complete, in contrast to the interleaved implementation, which

completes the task in significantly less time, taking only 19.8 seconds. It is important to

note that the time required for halting and restarting parallel computation is contingent

upon factors like the specific parallel computation software toolbox used, the hardware

platform, and other implementation details. Consequently, the conclusions regarding

performance may differ with varying implementations.

5.6 Discussion on Probabilistic Completeness

The HyRRT-Connect algorithm renders probabilistic completeness, implying

that as the number of samples approaches infinity, the probability of failure to find a

motion plan converges to zero if one exists. This property extends from the probabilistic

completeness of the HyRRT algorithm shown in [56], which propagates in a forward

direction. By truncating an existing motion plan into two segments, HyRRT maintains

116

probabilistic completeness in finding each segment, thereby ensuring the probabilistic

completeness of HyRRT-Connect.

117

Chapter 6

Sampling-based Optimal Motion

Planning for Hybrid Dynamical Systems

6.1 Problem Statement

The formulation of the feasible motion planning problem for hybrid dynamical

systems can be found in Problem 3.1 and is denoted as P = (X0, Xf , Xu, (C, f,D, g)),

where the initial state set is denoted as X0 ⊂ Rn, the final state set is denoted as

Xf ⊂ Rn, and the unsafe set is denoted as Xu ⊂ Rn ×Rm. Let ŜH denote the set of all

solution pairs to H. Let ŜφH denote the set of state trajectories of all the solution pairs

in ŜH. The optimal motion planning problem for hybrid dynamical systems consists of

finding a feasible motion plan with minimum cost [24, Problem 3].

Problem 6.1 (Optimal motion planning problem for hybrid dynamical systems). Given

a motion planning problem P = (X0, Xf , Xu, (C, f,D, g)) and a cost functional c :
ˆSφH →

118

R≥0, find a feasible motion plan (φ∗, u∗) to P such that (φ∗, u∗) = arg min(φ,u)∈ŜH c(φ).

Given sets X0, Xf , and Xu, a hybrid dynamical system H with data (C, f,D, g), and

a cost functional c, an optimal motion planning problem P∗ is formulated as P∗ =

(X0, Xf , Xu, (C, f,D, g), c).

Example 6.2 (Actuated bouncing ball system in Example 3.2, revisited). Consider a

ball bouncing on a fixed horizontal surface in Example 3.2. Given the initial state set

X0 = {(15, 0)}, the final state set Xf = {(10, 0)}, and the unsafe set Xu = {(x, u) ∈

R2 × R : x1 ∈ [20,∞), u ∈ [5,∞)}, an instance of the optimal motion planning problem

for the actuated bouncing ball system is to find a motion plan that has minimal hybrid

time. To capture the hybrid time domain information, an auxiliary state τ ∈ R≥0

representing the normal time and an auxiliary state k ∈ N representing the jump numbers

are imported. An auxiliary hybrid dynamical system H := (C, f,D, g) with state x :=

(x, τ, k) ∈ R2 × R≥0 × N is constructed as follows

C :=
{

(x, u) ∈ R2
≥0 × R≥0 × N× R : (x, u) ∈ C

}
(6.1)

f(x, u) :=


f(x, u)

1

0

 ∀(x, u) ∈ C (6.2)

D :=
{

(x, u) ∈ R2 × R≥0 × N× R≥0 : (x, u) ∈ D
}

(6.3)

g(x, u) :=


g(x, u)

τ

k + 1

 ∀(x, u) ∈ D (6.4)

119

with the sets X0, Xf , and Xu extended to

X0 := X0 × (0, 0) (6.5)

Xf := Xf × R≥0 × N (6.6)

Xu := Xu × R≥0 × N. (6.7)

Then the cost functional c can be defined as

c(φ) = c(φ, τ, k) := τ(T, J) + k(T, J) (6.8)

where φ = (φ, τ, k) denotes a state trajectory of the solution pair to H, and (T, J) =

max dom φ. Then the example optimal motion planning problem for the bouncing ball

is defined as P∗ = (X0, Xf , Xu, (C, f,D, g), c).

Example 6.3 (Collision-resilient tensegrity multicopter system [66, 67]). Consider

a planar collision-resilient tensegrity multicopter that is resilient to collisions with a

wall. The state of the multicopter involves the position vector p := (px, py) ∈ R2, the

velocity vector v := (vx, vy) ∈ R2, and the acceleration vector a := (ax, ay) ∈ R2, where,

respectively, px and py denote the position, vx and vy denote the velocity, and ax and

ay denote the acceleration along the x-axis and y-axis. The state of the system is

x := (p, v, a) ∈ R6 and its input is u := (ux, uy) ∈ R2 which represents the effect of

the torque. The environment is assumed to be known. Define the walls as the region

W ⊂ R2, which is a closed set represented by the blue rectangles in Figure 6.1. Flow is

allowed when the multicopter is in

C := (R2\W)× R4 × R2, (6.9)

120

which defines the flow set. The dynamics of the multicopter when no collision occurs is

0 1 2 3 4 5 6

0

1

2

3

4

5

Figure 6.1: The environment around the collision-resilient tensegrity multicopter. In
the figure above, the blue rectangles denote the obstacles that may cause the collision
with the multicopter. The cyan circle denotes the initial state and the magnet circle
denotes the final state set.

captured as

ẋ =


v

a

u

 =: f(x, u), (x, u) ∈ C. (6.10)

At collisions, the position is assumed to remain constant. To model the change

of v, denote the velocity component of v = (vx, vy) that is normal to the wall as vN and

the velocity component that is tangential to the wall as vT . Then, the velocity component

vN after the jump is modeled as

vN
+ = −λvN =: g̃N (v) (6.11)

121

where λ ∈ (0, 1) is the coefficient of restitution. The velocity component vT after the

jump is modeled as

vT
+ = vT + κ(−λ− 1) arctan

vT
vN

vN =: g̃T (v), (6.12)

where κ ∈ R is a constant; see [67]. Denoting the projection of the updated vector (v+
N , v

+
T)

onto the x-axis as Πx(v+
N , v

+
T) and the projection of the updated vector (v+

N , v
+
T) onto the

y-axis as Πy(v
+
N , v

+
T), we have v+ = (Πx(g̃N (v), g̃T (v)),Πy(g̃N (v), g̃T (v))) =: g̃(v). We

assume that a+ = 0, which, through a post-impact hovering maneuver, can be mitigated

in the control layer. The discrete dynamics capturing the collision process is modeled as

x+ =


p

g̃(v)

0

 =: g(x, u) (x, u) ∈ D. (6.13)

Jumps are allowed when the multicopter is on the wall surface with positive velocity

towards the wall. Hence, the jump set is

D := {((p, v, a), u) ∈ R6 × R2 : p ∈ ∂W, vN ≤ 0}. (6.14)

The hybrid model of the collision-resilient tensegrity multicopter system is given

by (2.1) where the flow map f is given in (6.10), the flow set C is given in (6.9), the jump

map g is given in (6.13), and the jump set D is given in (6.14). Given the initial state

set as X0 = {(1, 2, 0, 0, 0, 0)}, the final state set as Xf = {(5, 4)}×R4, and the unsafe set

as Xu = {(x, u) ∈ R6 × R2 :
√

(px − 5)2 + (py − 3)2| ≤ 0.3} which represents the green

ball in Figure 6.4 that is forbidden to fly into or collide with, an instance of the optimal

122

motion planning problem for the collision-resilient tensegrity multicopter system is to

find the motion plan with minimal hybrid time. To capture the hybrid time domain infor-

mation, an auxiliary state τ ∈ R≥0 representing the ordinary time and an auxiliary state

k ∈ N representing the number of jumps associated to collisions are included. The result-

ing hybrid dynamical system H := (C, f,D, g) with state x := (x, τ, k) ∈ R2 × R≥0 × N,

input u ∈ R2, and data C :=
{

(x, u) ∈ R2 × R≥0 × N× R : (x, u) ∈ C
}

; f(x, u) :=

(f(x, u), 1, 0) for each (x, u) ∈ C; D :=
{

(x, u) ∈ R2 × R≥0 × N× R : (x, u) ∈ D
}

;

g(x, u) := (g(x, u), τ, k + 1) for each (x, u) ∈ D with the X0, Xf , and Xu extended

as X0 := X0 × {0} × {0}, Xf := Xf × R≥0 × N, Xu := Xu × R≥0 × N. Then, with

φ = (φ, τ, k) being a state trajectory of the solution pair to H, the cost functional c can

be defined as

c(φ) := τ(T, J) + k(T, J), (6.15)

where (T, J) = max dom φ. The resulting optimal motion planning problem is defined

as P∗ = (X0, Xf , Xu, (C, f,D, g), c).

In the forthcoming Example 6.10 and Example 6.11, we employ HySST to solve

these motion planning problems.

6.2 Overview

HySST searches for the optimal motion plan by incrementally constructing

a search tree. Each vertex v ∈ V in the search tree T = (V,E) is associated with a

state value of H, denoted xv, and a cost value that, via addition, compounds the cost

123

from the root vertex up to the vertex v, denoted cv. Each edge e ∈ E in the search

tree T = (V,E) is associated with a solution pair to H, denoted ψe. HySST requires

a library of possible inputs. The input library (UC ,UD) includes the input signals that

can be applied during flows (collected in UC) and the input values that can be applied

at jumps (collected in UD).

HySST selects the vertex associated with the lowest cost within the vicinity

of a randomly selected state. This vicinity is referred to as random state neighborhood

and defined by a ball of radius δBN ∈ R>0. Then, HySST employs a pruning process

to decrease the number of vertices in the search tree. It is not required to keep all the

vertices in the search tree because some of the vertices may be close to a vertex with

much lower cost. This observation allows for a pruning operation to ignore some vertices

generated during the search. This pruning operation is implemented by maintaining

a witness state set, denoted S, such that all the vertices within the vicinity of the

witnesses are deleted except the ones with lowest cost. This vicinity is referred to as

closest witness neighborhood and defined by a ball of radius δs ∈ R>0, For every witness

s kept in S, a single vertex in the tree represents that witness. Such a vertex is stored

in s.rep for each witness s ∈ S. Note that a vertex, say, va, may be associated with a

higher cost than other vertices within the same witness’s neighborhood, but has a child

vertex, say, vb, associated with the lowest cost compared with other vertices in the same

witness’s neighborhood. In this case, va should not be removed from the search tree

because, if it is removed, then all of its child vertices, including vb with the lowest cost,

are consequently removed. However, even va is not removed, it will not be selected, and,

124

therefore, will be kept in a separate set called inactive vertex set, denoted Vinactive. On

the other hand, the vertices that are not pruned are stored in a set called the active

vertex set, denoted Vactive.

δs

δs

δs

δs

δs

δs

δs

δs
vnew

xrand

δs

δBN

vcur

Figure 6.2: The search tree witnessed by a witness set. In this figure, the black dots
and lines denote the active vertices and the edges in the search tree. The blue dots
denote the inactive vertices. The red dots denote the witness states. The green dot
denotes the randomly selected state xrand. Any single witness has an active vertex as
its representative.

Next, we introduce the main steps executed by HySST. Given the optimal mo-

tion planning problem P∗ = (X0, Xf , Xu, (C, f,D, g), c) and the input library (UC ,UD),

HySST performs the following steps:

Step 1: Initialize a search tree T = (V,E) by sampling a finite number of points from

X0. For each sampling point x0, add a vertex v0 and assign xv0 ← x0. Initialize

E by E ← ∅. Initialize the witness state set S ⊂ Rn by S ← ∅. For each v ∈ V

125

such that |xv − xv′ | > δs for all v′ ∈ V \v, add the witness state s = xv to S

and set the representative of s as s.rep← v. Initialize the active vertices set

Vactive by Vactive ← {s.rep ∈ V : s ∈ S}. Initialize the inactive vertices set

Vinactive by Vinactive ← ∅.

Step 2: Randomly select flow regime or jump regime for the evolution of H.

Step 3: Randomly select a point xrand from C ′ (D′) if the flow (respectively, jump)

regime is selected in Step 2.

Step 4: Find all the vertices in Vactive associated with the state values that are within

δBN to xrand and collect them in the set VBN . Then, find vertex in VBN that

has minimal cost, denoted vcur. If no vertex is collected in VBN , then find

vertex in the search tree that has minimal distance to xrand and assign it to

vcur.

Step 5: Randomly select an input signal (respectively, value) from UC (respectively,

UD) if xvcur ∈ C ′\D′ (respectively, xvcur ∈ D′\C ′). Then, compute a solution

pair denoted ψnew = (φnew, unew) starting from xvcur with the selected input

applied via flow (respectively, jump). If xvcur ∈ D′ ∩ C ′, a random process is

employed to decide whether to proceed the computation with flow or jump.

Denote the final state of φnew as xnew. Compute the cost at xnew, denoted

cnew, by cnew ← cvcur +c(φnew). If ψnew intersects with Xu, then go to Step 2.

Step 6: Find the witness in S that is closest to xnew, denoted snear, and proceed as

126

follows:

• If xnew is not in the closest witness neighborhood of snear, namely, |snear−

xnew| > δs, then add a vertex vnew associated with xnew to Vactive and

an edge (vcur, vnew) associated with ψnew to E. Add a new witness

snew ← xnew to S and set its representative as vnew. Then, go to Step 2.

• If |snear − xnew| ≤ δs,

– if csnear.rep > cnew, add a vertex vnew associated with xnew to Vactive

and an edge (vcur, vnew) associated with ψnew to E. Then, update the

representative of snear with vnew and prune the vertex, say, vpre near

which is previously witnessed by snear. If vpre near is an active vertex,

then add vpre near to Vinactive. Otherwise, remove vpre near and all its

child vertices from the search tree. Then, go to Step 2.

– if csnear.rep ≤ cnew, go to Step 2 directly.

The steps above are illustrated in Figure 6.2. First, the algorithm initializes the search

tree and the witness state set from the data in P∗ as Steps 1 - 2 show. Then, HySST

randomly selects between flow regime and jump regime, followed by choosing a random

state, which is denoted xrand and represented by a green dot in Figure 6.2 following

Steps 3 - 4. The green circle in Figure 6.2 denotes the random state neighborhood

of xrand defined by δBN in Step 5. Then, among all the active vertices represented by

black dots in Figure 6.2, HySST finds one within the ball of radius δBN associated to

lowest cost, denoted vcur as is described in Step 5. The inactive vertices represented

127

by blue dots are ignored at this step. Next, HySST propagates forward by applying a

randomly selected input to generate vnew, shown in Figure 6.2, as is described in Step 6.

Note that in Figure 6.2, vnew is not in the closest witness neighborhood of any existing

witness, represented by the red circles. In this case, vnew is added to Vactive, no vertices

need to be pruned, and, therefore, Vinactive is not updated. A witness that equals xvnew

and whose representative is vnew is added to the witness state set as is presented in

Step 7.

6.3 HySST Algorithm

Following the overview above, the proposed algorithm is given in Algorithm 6.

The inputs of Algorithm 6 are the problem P∗ = (X0, Xf , Xu, (C, f,D, g), c), the input

library (UC ,UD), a parameter pn ∈ (0, 1), which tunes the probability of evolving with

the flow regime or the jump regime, an upper boundK ∈ N>0 for the number of iterations

to execute, and two tunable sets Xc ⊃ C ′ and Xd ⊃ D′, which act as constraints in

finding a closest vertex to xrand. In addition, HySST requires parameters δBN and δs

to tune the radius of random state neighborhood and closest witness neighborhood,

respectively. Each function in Algorithm 2 is defined next.

6.3.1 T .init(X0)

The function call T .init is used to initialize a search tree T = (V,E). It

randomly selects a finite number of points from X0. For each sampling point x0, a

vertex v0 associated with x0 is added to V . At this step, no edge is added to E.

128

6.3.2 return← is vertex locally the best(x, cost, S, δs)

The function call is vertex locally the best describes the conditions under

which the state x is considered for addition to the search tree as is shown in Algorithm

7. First, this function searches for the closest witness snew to x from the witness set S

(line 1). If the closest witness distance to x is larger than δs, a new witness is added

to S (lines 2 - 6). If snew is just added as a witness or cost is less than the cost of the

closest witness’s representatives (line 7), then the state x with the cost cost is locally

optimal and a true signal is returned (line 8). Otherwise, a false signal is returned.

6.3.3 (S, Vactive, Vinactive, E)← prune dominated vertices(v, S, Vactive,

Vinactive, E)

The function call prune dominated vertices describes the pruning process

as in Algorithm 8. First, this function searches for the witnesses snew that are closest

to xv and their representatives vpeer (lines 1 - 2). Then, vpeer is moved from Vactive to

Vinactive (lines 4 - 5) and, consequently, v replaces vpeer as the representative of snew

(line 7). If vpeer is a leaf vertex, then it can also safely be removed from the search

tree (lines 8 - 13). The removal of vpeer may cause a cascading effect for its parents,

if they have already been in the inactive set Vinactive and the only reason they were

maintained in the search tree was because they were leading to vpeer. Here, the function

call isleaf(vpeer) returns true signal if vpeer is a leaf vertex, which means vpeer have

no child vertices (line 8). The function call parent(vpeer) returns the parent vertex of

vpeer (line 9).

129

Algorithm 6 HySST algorithm
Input: X0, Xf , Xu, c,H = (C, f,D, g), (UC ,UD), pn ∈ (0, 1), K ∈ N, Xc, Xd, δBN and δs

1: T .init(X0);

2: Vactive ← V , Vinactive ← ∅, S ← ∅;

3: for all v0 ∈ V do

4: if is vertex locally the best(xv0 , 0, S, δs) then

5: (S, Vactive, Vinactive, E)← prune dominated vertices(v0, S, Vactive, Vinactive, E)

6: end if

7: end for

8: for k = 1 to K do

9: randomly select a real number r from [0, 1];

10: if r ≤ pn then

11: xrand ← random state(C′);

12: vcur← best near selection(xrand, Vactive,δBN , Xc);

13: else

14: xrand ← random state(D′);

15: vcur ← best near selection(xrand, Vactive, δBN , Xd);

16: end if

17: (is a new vertex generated, xnew, ψnew, costnew)← new state(vcur, (UC ,UD),H, Xu)

18: if is a new vertex generated & is vertex locally the best(xnew, costnew, S, δs) then

19: vnew ← Vactive.add vertex(xnew, costnew);

20: E.add edge(vcur, vnew, ψnew);

21: (S, Vactive, Vinactive, E)← prune dominated vertices(vnew, S, Vactive, Vinactive, E);

22: end if

23: end for

24: return T ;

130

Algorithm 7 is vertex locally the best(x, cost, S, δs)

1: snew ← nearest(S, x);

2: if |x− snew| > δs then

3: snew ← x

4: snew.rep← NULL

5: S ← S ∪ {snew};

6: end if

7: if snew.rep == NULL or cost < csnew.rep then

8: return true;

9: end if

10: return false;

6.3.4 xrand ← random state(S)

The function call random state randomly selects a point from S ⊂ Rn.

6.3.5 vcur ← best near selection(xrand, Vactive, δBN , X?)

The function call best near selection searches for a vertex vcur in the active

vertex set Vactive such that its associated state value is in the intersection between the

set X? and xrand + δBNB, and has minimal cost, where ? is either c or d. This function

is implemented by solving the following optimization problem.

Problem 6.4. Given xrand ∈ Rn, a radius δBN > 0 of the random state neighborhood,

131

Algorithm 8 (S, Vactive, Vinactive, E)← prune dominated

vertices(v, S, Vactive, Vinactive, E)

1: snew ← nearest(S, xv);

2: vpeer ← snew.rep;

3: if vpeer! = NULL then

4: Vactive ← Vactive\{vpeer};

5: Vinactive ← Vinactive ∪ {vpeer};

6: end if

7: snew.rep← v;

8: while isleaf(vpeer) and vpeer ∈ Vinactive do

9: vparent ← parent(vpeer);

10: E ← E\{(vparent, vpeer)};

11: Vinactive ← Vinactive\vpeer;

12: vpeer ← vparent;

13: end while

132

a tunable state constraint set X?, and an active vertex set Vactive, solve

arg min
v∈Vactive

cv

s.t. |xv − xrand| ≤ δBN

xv ∈ X?.

Data of Problem 4.5 comes from the arguments of best near selection func-

tion call. This optimization problem is solved by traversing all the vertices in Vactive.

6.3.6 (is a new vertex generated, xnew, ψnew, costnew)← new state(vcur,

(UC ,UD),H, Xu)

If xvcur ∈ C ′\D′ (respectively, xvcur∈D′\C ′), the function call new state gen-

erates a new solution pair ψnew to the hybrid dynamical system H starting from xvcur

by applying an input signal ũ (respectively, an input value uD) randomly selected from

UC (respectively, UD). If xvcur∈ C ′ ∩D′, then this function generates ψnew by randomly

selecting flow or jump. The final state of ψnew = (φnew, unew) is denoted as xnew. The

cost costnew at xnew is computed by costnew ← cvcur + c(φnew). After ψnew and xnew

are generated, the function new state checks if there exists (t, j) ∈ dom ψnew such that

ψnew(t, j) ∈ Xu. If so, we have is a new vertex generated ← false. Otherwise, we

have is a new vertex generated← true.

6.3.7 vnew ← Vactive.add vertex(xnew, costnew) and E.add edge(vcur, vnew, ψnew)

The function call Vactive.add vertex adds a new vertex vnew to Vactive such

that xvnew ← xnew and cvnew ← costnew and, consequently, returns vnew. The function

133

call E.add edge adds a new edge enew = (vcur, vnew) associated with ψnew to E.

6.4 Asymptotic Near-optimality Analysis

This section analyzes the asymptotic optimality property of HySST algorithm.

The following assumption assumes that the cost functional is Lipchitz continuous along

the purely continuous solution pairs, locally bounded at jumps, and satisfies additivity,

monotonicity, and non-degeneracy.

Assumption 6.5. The cost functional c : ŜφH → R≥0 satisfies the following:

1. It is Lipschitz continuous for all continuous solution pairs (φ0, u0) and (φ1, u1)

to H such that φ0(0, 0) = φ1(0, 0); specifically, there exists Kc > 0 such that

|c(φ0)− c(φ1)| ≤ Kc sup(t,0)∈dom φ0∩dom φ1{|φ0(t, 0)− φ1(t, 0)|}.

2. For each pair of purely discrete solution pairs (φ0, u0) and (φ1, u1) to H such that

dom φ0 = dom φ1 = {0} × {0, 1} and φ0(0, 0) = φ1(0, 0), there exists Kd > 0 such

that |c(φ0)− c(φ1)| ≤ Kd supj∈{0,1}{|φ0(0, j)− φ1(0, j)|}.

3. Consider two solution pairs ψ0 = (φ0, u0) and ψ1 = (φ1, u1), and let their concate-

nation be ψ0|ψ1. The following hold:

(a) c(φ0|φ1) = c(φ0) + c(φ1) (additivity);

(b) c(φ1) ≤ c(φ0|φ1) (monotonicity);

(c) For each t2 > t1 ≥ 0 such that (t1, j) ∈ dom ψ0 and (t2, j) ∈ dom ψ0 for some

j ∈ N, there exists Mc > 0 such that t2 − t1 ≤ Mc|c(φ0(t2, j))− c(φ0(t1, j))|

134

(non-degeneracy during flows).

(d) For each j1, j2 ∈ N such that j2 > j1, (t, j1) ∈ dom ψ0 and (t, j2) ∈ dom ψ0

for some t ∈ R≥0, there exists Md > 0 such that j2 − j1 ≤ Md|c(φ0(t, j2))−

c(ψ0(t, j1))| (non-degeneracy at jumps).

Remark 6.6. Items 1) and 2) above guarantee that the cost of the nearby solution pairs

are bounded by the distance between the solutions. Item 3) above guarantees that the cost

of the solution pairs can be computed incrementally and that the global minimum of the

cost functional can be found by the optimal motion planning problem.

Assumption 6.7. The optimal motion plan to the optimal motion planning problem

has positive safety clearance.

The following assumption relating the safety clearance δs of the optimal motion

plan and the inflation parameter δf with the algorithm parameters δBN and δs guarantees

that the pruning process maintains at least one vertex close to the optimal motion

planning if such vertex has been generated.

Assumption 6.8. The parameters δBN and δs need to satisfy δBN + 2δs < min{δs, δf}.

We are ready to provide our main result, which states that, by feeding the infla-

tion Hδf , HySST returns a motion plan with cost that is close to the minimal cost regard-

less of the positive dynamics clearance. Note that Lemmas D.3, 4.33, and 4.35 provide

lower bounds over the probability of executing correct selection in best near selection

and correct propagation in new state, and Lemma D.1 guarantees that the pruning

135

process will not prune any vertex that help decrease the cost of the generated motion

plan.

Theorem 6.9. Given an optimal motion planning problem P∗ = (X0, Xf , Xu, (C, f,D, g), c),

suppose Assumptions 6.5, 6.8, 4.24, and 4.27 are satisfied and that there exists an optimal

motion plan ψ∗ = (φ∗, u∗) to P∗ satisfying Assumption 6.7 for some δs > 0. Then, using

a complete input library and when executed uniformly (as defined in Definition 4.18) to

solve the motion planning problem P∗δf = (X0, Xf , Xu, (Cδf , fδf , Dδf , gδf), c) where, for

some δf > 0, (Cδf , fδf , Dδf , gδf) denotes δf -inflation of (C, f,D, g), the probability that

HySST finds a motion plan ψ = (φ, u) such that c(φ) ≤ (1 + αδ)c(φ∗) converges to one

as the number of iterations k approaches infinity, where α ≥ 0 and δ = min{δs, δf}.

Proof. See Appendix D.2.

6.5 HySST Software Tool for Optimal Motion Planning

Problems for Hybrid Dynamical Systems

Algorithm 6 has been implemented in a software tool1 to solve the optimal

motion planning problems for hybrid dynamical systems. This software only requires the

inputs listed in Algorithm 6. Next, the HySST algorithm and this tool are illustrated

in Example 6.2 and Example 6.3.

Example 6.10 (Actuated bouncing ball system in Example 6.2, revisited). The simula-

tion result in Figure 6.3 shows that HySST is able to find a motion plan for the instance

1Code at https://github.com/HybridSystemsLab/hybridSST.

136

of optimal motion planning problem for the actuated bouncing ball system. The simula-

tion is implemented in MATLAB and processed by a 3.5 GHz Intel Core i7 processor.

Both HySST and HyRRT are run for 20 times to solve the same problem. The HySST

creates 154 active vertices and 35 inactive vertices and takes 3.30 seconds, while HyRRT

creates 660 vertices in total and takes 18.4 seconds on average. As is shown in Figure

6.3(a), only one jump occurs in the motion plans generated by HySST. Compared to

the motion plans generated by HyRRT in Figure 6.3(b) where multiple jumps occur, the

motion plan generated by HySST takes less hybrid time.

Example 6.11. (Collision-resilient tensegrity multicopter in Example 6.3, revisited) In

this example, the restitution coefficient in 6.11 is set as 0.43 and the constant κ in (6.12)

is set as 0.20. The simulation result in Figure 6.4 shows that HySST is able to ultilize

the collision with the wall to decrease the hybrid time of the motion plan for multicopter.

The simulation for this problem takes 54.7 seconds and creates 2094 active vertices on

average.

137

0 5 10 15 20 25 30

-20

-10

0

10

20 Initial state

Final state

Search tree

Motion plan

Active vertex

Inactive vertex

Witness

(a) HySST

(b) HyRRT

Figure 6.3: Motion plans for actuated bouncing ball example solved by HySST and
HyRRT in [56].

138

Figure 6.4: The motion plan generated by HySST for the collision-resilient tensegrity
multicopter in Example 6.3. The blue rectangles denote the walls where collisions
potentially occur. The green circle denotes the forbidden zone. The yellow arrows point
to the location where collisions occur.

139

Chapter 7

Conclusion and Future Work

In this dissertation, we proposed algorithms for motion planning and tracking

control for hybrid dynamical systems. In this chapter, we present a summary of the

major contributions and describe several potential future research directions.

7.1 Summary

In chapter 3, we first define the motion planning problem for hybrid dynamical

systems using the hybrid equation framework, which is general to capture most hybrid

dynamical systems. To overcome the lack of the systematic analysis on the propagation,

reversal, concatenation, and truncation operations, which are used in almost all motion

planning algorithms, on the solutions to hybrid dynamical systems, we formalized the

definitions of those operations for the hybrid dynamical systems and validated them

theoretically. We proposed a bidirectional propagation algorithm template that describes

a general framework using the aforementioned operations to solve the motion planning

140

problem for hybrid dynamical systems.

In chapter 4, we designed an RRT implementation of the proposed algorithm

template. At each iteration, the proposed algorithm, called HyRRT, randomly picks a

state sample and extends the search tree by flow or jump, which is also chosen randomly

when both regimes are possible. Through a definition of concatenation of functions

defined on hybrid time domains, we showed that HyRRT is probabilistically complete,

namely, the probability of failing to find a motion plan approaches zero as the number of

iterations of the algorithm increases. This property is guaranteed under mild conditions

on the data defining the motion plan, which include a relaxation of the usual positive

clearance assumption imposed in the literature of classical systems. The motion plan is

computed through the solution of two optimization problems, one associated with the

flow and the other with the jumps of the system. The proposed algorithm is applied

to an actuated bouncing ball system and a walking robot system so as to highlight its

generality and computational features.

In chapter 5, we designed a bidirectional RRT-type algorithm to solve the

motion planning problem for hybrid dynamical systems. The proposed algorithm, called

HyRRT-Connect, propagates in both forward and backward directions in hybrid time

until an overlap between the forward and backward propagation results is detected. Then,

HyRRT-Connect constructs a motion plan through the reversal and concatenation of

functions defined on hybrid time domains, ensuring the motion plan thoroughly satisfies

the given hybrid dynamics. To address the potential discontinuity along the flow caused

by (5.3), we reconstruct the backward partial motion plan by a forward-in-hybrid-time

141

simulation from the final state of the forward partial motion plan. By applying the

reversed input of the backward partial motion plan, the reconstruction process effectively

eliminates the discontinuity and ensures that as the tolerance distance decreases to zero,

the distance between the endpoint of the reconstructed motion plan and the final state

set approaches zero. The proposed algorithm is applied to an actuated bouncing ball

example and a walking robot example so as to highlight its generality and computational

improvement.

In chapter 6, we proposed a SST-type algorithm to solve the optimal motion

planning problem for hybrid dynamical systems. At each iteration, the proposed algo-

rithm, called HySST, selects a vertex with minimal cost among all the vertices within

the neighborhood of a random sample, subsequently extending the search tree through

flow or jump, which is also chosen randomly when both regimes are possible. In addition,

HySST maintains a static set of witness points where all vertices within each witness’s

neighborhood are pruned, except for the ones with lowest cost. We show that HySST

is asymptotically near-optimal, namely, the probability of failing to find a motion plan

with cost close to the optimal approaches zero as the number of iterations of the algo-

rithm increases to infinity. The proposed algorithm is applied to an actuated bouncing

ball system and a collision-resilient tensegrity multicopter system so as to highlight its

generality and computational features.

142

7.2 Future Directions

The following research directions arise from the results in this dissertation.

• Motion planning for hybrid dynamical systems under uncertainty: While

the algorithms in this dissertation operate under the assumption of a fully de-

terministic hybrid dynamical system, it is essential to recognize the prevalence

of uncertainty in robotics applications. Uncertainty permeates various aspects,

including perception, sensor measurements, numerical computations in motion

planning and control, control actuation on the plant, and system dynamics. Ana-

lyzing uncertainty within hybrid dynamics poses additional challenges, particularly

regarding uncertainties related to flow and jump sets, potentially resulting in prob-

ability distributions across numerous possible hybrid time domains. This research

holds significant practical value; for instance, in scenarios like walking robots and

collision-resilient aerial vehicles, accurately estimating the time to collide (jump)

and the state before the jump is exceedingly difficult. This uncertainty can lead

to entirely different hybrid time domain structures and potentially different states

after the jump. Incorporating uncertainty into motion planning and minimizing

its impact would greatly benefit practical applications.

• Reactive motion planning for hybrid dynamical systems: When multiple

robotics agents with hybrid dynamics collaborate to accomplish a task, a central-

ized sampling-based algorithm may not be optimal. In such scenarios, distributed

reactive planning methods could be more suitable. Approaches guided by Control

143

Lyapunov Functions (CLF) and Control Barrier Functions (CBF) show promise

in this regard, as foundational research has already been conducted in these areas.

These methods enable decentralized decision-making and coordination among mul-

tiple agents, making them well-suited for multi-agent hybrid dynamical systems.

• Feedback planning for hybrid dynamical systems: In this dissertation, our

focus lies on an open-loop hybrid dynamical system as the plant. However, to

execute the motion plan effectively, an additional tracking controller must be

designed to close this loop. Alternatively, closed-loop hybrid dynamical systems

with an external reference can be explored, where stability is inherently achieved,

obviating the need for specific tracking controller designs. Additionally, leveraging

constrained control technology in feedback hybrid dynamical systems offers the

benefit of bypassing the time-consuming collision checking process.

144

Appendix A

Proof for Results in Chapter 3

A.1 Proof of Proposition 3.9

Given the solution pair ψ = (φ, υ) to a hybrid dynamical system H, we need

to show that the reversal ψ′ = (φ′, υ′) of ψ is a compact solution pair to its backward-

in-time hybrid dynamical system Hbw. The following items are showing that ψ′ satisfies

each condition in Definition 2.5.

• The first item is to prove that the domain dom φ′ equals dom υ′ and dom ψ′ :=

dom φ′ = dom υ′ is a compact hybrid time domain.

Since ψ = (φ, υ) is a solution pair to H, then

dom φ = dom υ.

Due to Definition 3.4, dom φ′ = {(T, J)}−dom φ and dom υ′ = {(T, J)}−dom υ

145

where (T, J) = max dom ψ. Therefore,

dom φ′ = {(T, J)} − dom φ = {(T, J)} − dom υ = dom υ′.

Thus, dom φ′ = dom υ′ is proved.

Then we want to show that dom ψ′ = dom φ′ = dom υ′ is a hybrid time domain.

Since ψ is a compact solution pair, then dom ψ is a compact hybrid time domain.

Therefore,

dom ψ = ∪Jj=0([tj , tj+1], j) (A.1)

holds for some finite sequence of times,

0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tJ+1 = T (A.2)

where (T, J) = max dom ψ.

Since dom ψ′ = {(T, J)} − dom ψ, then

dom ψ′ = {(T, J)} − dom ψ

= {(T, J)} − ∪Jj=0([tj , tj+1], j)

= ∪Jj=0([T − tj+1, T − tj], J − j).

(A.3)

Let t′j = T − tJ+1−j , where tj is the sequence of time in (A.2). Since (A.2) holds,

then

0 = t′0 ≤ t′1 ≤ t′2 ≤ ... ≤ t′J+1 = T.

Therefore, (A.3) can be written as

dom ψ′ = ∪Jj=0([t′j , t
′
j+1], j). (A.4)

Hence, dom ψ′ is a compact hybrid time domain.

146

• The second item is to prove that ψ′(0, 0) ∈ Cbw ∪Dbw. Since ψ is compact, the

hybrid time (T, J) ∈ dom ψ, where (T, J) = max dom ψ. The state φ(T, J) is

either reached during a flow or at a jump.

1. Consider the case when φ(T, J) is reached during a flow. In this case, IJψ = I0
ψ′

has nonempty interior.

Definition 3.4 suggests that

φ′(0, 0) = φ(T, J)

and υ′(0, 0) is such that (φ′(0, 0), υ′(0, 0)) ∈ C = Cbw. Therefore, ψ′(0, 0) =

(φ′(0, 0), υ′(0, 0)) ∈ Cbw ⊂ Cbw ∪Dbw.

2. Consider the case when ψ(T, J) is reached at a jump. In this case,

(T, J − 1) ∈ dom ψ (T, J) ∈ dom ψ.

According to Definition 2.5, the state input pair

ψ(T, J − 1) = (φ(T, J − 1), υ(T, J − 1)) ∈ D

φ(T, J) = g(φ(T, J − 1), u(T, J − 1)).

According to Definition 3.4,

φ′(0, 0) = φ(T, J) υ′(0, 0) = υ′(T, J − 1).

Therefore,

(φ′(0, 1), υ′(0, 0)) ∈ D φ′(0, 0) = g(φ′(0, 1), υ′(0, 0)).

147

Since Dbw is defined as

Dbw = {(x, u) : ∃z ∈ gbw(x, u) : (z, u) ∈ D},

where gbw is defined as

gbw(x, u) = {z : x = g(z, u), (z, u) ∈ D},

therefore,

φ′(0, 1) ∈ gbw(φ′(0, 0), υ′(0, 0))

and

ψ′(0, 0) = (φ′(0, 0), υ′(0, 0)) ∈ Dbw.

Thus, ψ′(0, 0) = (φ′(0, 0), υ′(0, 0)) ∈ Dbw ⊂ Cbw ∪Dbw.

In conclusion, ψ′(0, 0) = (φ′(0, 0), υ′(0, 0)) ∈ Cbw ∪Dbw.

• This item is to prove that ψ′ satisfies the conditions in the first item in Definition

2.5. The following items are to prove each of these conditions is satisfied.

(a) This item is to prove that for all j ∈ N such that Ijψ′ has nonempty interior,

φ′ is absolutely continuous on each Ijφ′ = {t : (t, j) ∈ dom φ′} with nonempty

interior.

Due to dom ψ′ = {(T, J)} − dom ψ, then (t, j) ∈ dom ψ′ implies (T − t, J −

j) ∈ dom ψ. Hence,

Ijψ′ = {T} − IJ−jψ . (A.5)

Therefore, int Ijψ′ 6= ∅ implies that int IJ−jψ 6= ∅.

148

Since ψ = (φ, υ) is a solution pair to H, the function t 7→ φ(t, j) is locally

absolutely continuous for each Ijψ with nonempty interior. Therefore, t 7→

φ(T − t, J − j) is locally absolutely continuous for each {T} − IJ−jψ with

nonempty interior.

According to Definition 3.4,

φ′(t, j) = φ(T − t, J − j)

for all (t, j) ∈ dom φ′. Therefore, the function t 7→ φ′(t, j) = φ(T − t, J − j)

is locally absolutely continuous for each Ijψ′ = {T} − IJ−jψ with nonempty

interior.

(b) This item is to prove that for all j ∈ N such that Ijψ′ has nonempty interior,

ψ′(t, j) = (φ′(t, j), υ′(t, j)) ∈ Cbw for all t ∈ int Ijψ′ .

Since Ijψ′ = {T} − IJ−jψ and Ijψ′ has nonempty interior, then {T} − IJ−jψ has

nonempty interior. Because ψ = (φ, υ) is a solution pair to H, according to

Definition 2.5, then ψ(t, j) ∈ C for all t ∈ int Ijψ, where Ijψ has nonempty

interior.

Since {T} − IJ−jψ has nonempty interior, then

ψ(T − t, J − j) = (φ(T − t, J − j), υ(T − t, J − j)) ∈ C

for all T − t ∈ IJ−jψ .

According to Definition 3.4, since Ijψ′ has nonempty interior, then

φ′(t, j) = φ(T − t, J − j) υ′(t, j) = υ(T − t, J − j).

149

Hence, state input pair ψ′(t, j) = (φ′(t, j), υ′(t, j)) ∈ C = Cbw for all t ∈

int Ijψ′ , where Ijψ′ has nonempty interior.

(c) This item is to prove that for all j ∈ N such that Ijψ′ has nonempty interior,

the function t 7→ υ′(t, j) is Lebesgue measurable and locally bounded.

– This item is to show that t 7→ υ′(t, j) is Lebesgue measurable for all

j ∈ N such that Ijυ′ has nonempty interior.

If Ijυ′ has nonempty interior, then IJ−jυ = {T}−Ijυ′ has nonempty interior.

Therefore, t 7→ u(t, J − j) is Lebesgue measurable. Let υi denote the ith

component of υ. For all a ∈ R and i ∈ {1, 2, ...,m}, since t 7→ υ(t, J − j)

is Lebesgue measurable, Si := {t ∈ IJ−jυi : υi(t, J − j) > a} is Lebesgue

measurable.

Note that

Si = {t ∈ IJ−jυi : υi(t, J − j) > a}

= {t ∈ {T} − IJ−jυi : υi(T − t, J − j) > a}

= {t ∈ Ijυ′ : υi(T − t, J − j) > a}

= {t ∈ int Ijυ′ : υi(T − t, J − j) > a}

∪ {t ∈ ∂Ijυ′ : υi(T − t, J − j) > a}

= {t ∈ int Ijυ′ : υ′i(t, j) > a} ∪ {t ∈ ∂Ijυ′ : υi(T − t, J − j) > a}

=: Sint
i ∪ S∂i .

(A.6)

Therefore, Sint
i = Sint

i ∪ S∂i is Lebesgue measurable. Let Ijυ′ = [T1, T2],

150

then S∂i can be one of the following:

∅, {T1}, {T2}, {T1, T2}.

Since all of the above are Lebesgue measurable, then S∂i is Lebesgue mea-

surable. Since S∂i is measurable, then its complement R\S∂i is Lebesgue

measurable. Hence,

Sint
i = Si ∩ (R\S∂i)

is Lebesgue measurable.

Since we want to show that t 7→ υ′(t, j) is Lebesgue measurable for all

j ∈ N such that Ijυ′ has nonempty interior, it is equivalent to show that

S′i := {t ∈ Ijυ′ : υ′i(t, j) > a} is Lebesgue measurable for all a ∈ R,

i ∈ {1, 2, ...,m} and j ∈ N such that Ijυ′ has nonempty interior.

Note that

S′i = {t ∈ int Ijυ′ : υ′i(t, j) > a} ∪ {t ∈ ∂Ijυ′ : υ′i(t, j) > a}

= Sint
i ∪ {t ∈ ∂I

j
υ′ : υ′i(t, j) > a}

=: Sint
i ∪ S∂

′
i

(A.7)

and Sint
i is Lebesgue measurable. Hence, the Lebesgue measurability of

S′i depends on that of set S∂
′

i . Similarly, let Ijυ′ = [T ′1, T
′
2], then S∂

′
i can

be one of the following:

∅, {T ′1}, {T ′2}, {T ′1, T ′2}.

Since all of the above are Lebesgue measurable, then S∂
′

i is Lebesgue

measurable. Therefore, S′i = Sint
i ∪ S∂

′
i is Lebesgue measurable for all

151

a ∈ R, i ∈ {1, 2, ...,m} and j ∈ N such that Ijυ′ has nonempty interior.

Hence, t 7→ υ′(t, j) is Lebesgue measurable for all j ∈ N such that Ijυ′ has

nonempty interior.

– This item is to show that t 7→ υ′(t, j) is locally bounded for all j ∈ N such

that Ijυ′ := {t ∈ R≥0 : (t, j) ∈ dom υ′}. In other words, we want to show

that for all j ∈ N such that Ijυ′ has nonempty interior, i ∈ {1, 2, ...,m}

and any t0 ∈ Ijυ′ , there exists a neighborhood A′ of t0 such that for some

number M ′ > 0, one has

|υ′i(t, j)| ≤M ′

for all t ∈ A′.

Note that for all the j ∈ N such that Ijυ has nonempty interior, t 7→ υ(t, j)

is locally bounded. Therefore, for all i ∈ {1, 2, ...,m} and any t0 ∈ Ijυ,

there exists a neighborhood A of t0 such that for some number M > 0

one has

|υi(t, j)| ≤M

for all t ∈ A, where υi denotes the ith component of υ.

Note that dom υ′ = (T, J) − dom υ. Hence, Ijυ′ = {T} − IJ−jυ . If Ijυ′

has nonempty interior, then {T} − IJ−jυ has nonempty interior. Since

{T}− IJ−jυ has nonempty interior, t 7→ u(T − t, J − j) is locally bounded.

Therefore, for all i ∈ {1, 2, ...,m} and any t0 ∈ {T} − IJ−jυ = Ijυ′ , there

152

exists a neighborhood A of t0 such that for some number M > 0 one has

|υi(T − t, J − j)| ≤M

for all t ∈ A.

Note that A = (A ∩ int Ijυ′) ∪ (A ∩ ∂Ijυ′). For all the t ∈ (A ∩ int Ijυ′),

υ(T − t, J − j) = υ′(t, j).

Therefore, |υ′i(t, j)| ≤M for all t ∈ A ∩ int Ijυ′ .

Let Ijυ′ = [T1, T2]. Since Ijυ′ has nonempty interior, then T1 < T2. Hence,

∂Ijυ′ = {T1, T2}. Therefore, A ∩ ∂Ijυ′ ⊂ {T1, T2}.

Therefore, for all t ∈ A,

υ′i(t, j) ≤ max{M,υ′(T1, j), υ
′(T2, j)}.

We can select A′ = A and M ′ = max{M,υ′(T1, j), υ
′(T2, j)}. Hence, the

local boundness of t 7→ υ′(t, j) is proved.

(d) This item is to prove that for all j ∈ N such that Ijψ′ has nonempty interior,

for almost all t ∈ Ijψ′ ,

φ̇′(t, j) = fbw(φ′(t, j), υ′(t, j)). (A.8)

153

For almost all t ∈ Ijψ′ , the following holds:

φ̇′(t, j) = φ̇(T − t, J − j) =
dφ(T − t, J − j)

d(T − t)

= −f(φ(T − t, J − j), υ(T − t, J − j))

= −f(φ′(t, j), υ′(t, j))

= fbw(φ′(t, j), υ′(t, j)).

(A.9)

Therefore,

φ̇′(t, j) = fbw(φ′(t, j), υ′(t, j)) for almost all t ∈ Ijψ′ . (A.10)

• The last item is to prove that for all (t, j) ∈ dom ψ′ such that (t, j + 1) ∈ dom ψ′,

(φ′(t, j), υ′(t, j)) ∈ Dbw

φ′(t, j + 1) = gbw(φ′(t, j), υ′(t, j)).

(A.11)

Since the hybrid time domain dom ψ′ = {T, J} − dom ψ, for all (t, j) ∈ dom ψ′

such that (t, j + 1) ∈ dom ψ′, the hybrid times (T − t, J − j − 1) ∈ dom ψ and

(T −t, J−j) ∈ dom ψ. Since (T −t, J−j−1) ∈ dom ψ and (T −t, J−j) ∈ dom ψ,

then

ψ(T − t, J − j − 1) ∈ D

φ(T − t, J − j) = g(φ(T − t, J − j − 1), υ(T − t, J − j − 1)).

(A.12)

According to Definition 3.4,

φ′(t, j) = φ(T − t, J − j)

φ′(t, j + 1) = φ(T − t, J − j − 1)

υ′(t, j) = υ(T − t, J − j − 1).

(A.13)

154

Since the state φ(T − t, J − j) = g(φ(T − t, J − j − 1), υ(T − t, J − j − 1)), then

φ′(t, j + 1) = φ(T − t, J − j − 1)

∈ gbw(φ(T − t, J − j), υ(T − t, J − j − 1))

∈ gbw(φ′(t, j), υ′(t, j)).

(A.14)

Since the state input pair ψ(T−t, J−j−1) = (φ(T−t, J−j−1), υ(T−t, J−j−1)) ∈

D, then

(φ′(t, j + 1), υ′(t, j)) ∈ D. (A.15)

Since φ′(t, j + 1) ∈ gbw(φ′(t, j), υ′(t, j)) and the jump set of the backward-in-time

hybrid dynamical system is defined as (3.10), the state input pair (φ′(t, j), υ′(t, j)) ∈

Dbw.

Because all the conditions in Definition 2.5 are satisfied, ψ′ = (φ′, υ′) is a solution pair

to Hbw.

A.2 Proof of Proposition 3.13

The proof is to show that ψ = (φ, υ) = (φ1|φ2, υ1|υ2) satisfies the conditions in

Definition 2.5. The following items are to show that ψ satisfies each of the conditions.

• The first item is to prove that dom φ = dom υ and the domain dom ψ := dom φ =

dom υ is a hybrid time domain.

Since ψ1 and ψ2 are solution pairs to H, according to Definition 2.5,

dom ψ1 = dom φ1 = dom υ1,

155

dom ψ2 = dom φ2 = dom υ2

and dom ψ1 and dom ψ2 are both hybrid time domains.

Due to dom φ = dom φ1 ∪ (dom φ2 + {(T, J)}) and dom υ = dom υ1 ∪ (dom υ2 +

{(T, J)}), therefore,

dom φ = dom φ1∪ (dom φ2 +{(T, J)}) = dom υ1∪ (dom υ2 +{(T, J)}) = dom υ.

Because dom ψ1 and dom ψ2 are hybrid time domains, then for each (T1, J1) ∈

dom ψ1 and (T2, J2) ∈ dom ψ2, the intersection can be written as

dom ψ1 ∩ ([0, T1]× {0, 1, ..., J1}) = ∪J1j=0([t1j , t
1
j+1], j) (A.16)

for some finite sequence of times 0 = t10 ≤ t11 ≤ t12 ≤ ... ≤ t1J1+1 = T1 and

dom ψ2 ∩ ([0, T2]× {0, 1, ..., J2}) = ∪J2j=0([t2j , t
2
j+1], j) (A.17)

for some finite sequence of times 0 = t20 ≤ t21 ≤ t22 ≤ ... ≤ t2J2+1 = T2. Since

dom ψ = dom ψ1 ∪ (dom ψ2 + {(T, J)}), then for each (T ′, J ′) ∈ dom ψ,

dom ψ ∩ ([0, T ′]× {0, 1, ..., J ′})

= dom ψ1 ∪ (dom ψ2 + {(T, J)}) ∩ ([0, T ′]× {0, 1, ..., J ′})

= (dom ψ1 ∩ ([0, T ′]× {0, 1, ..., J ′}))∪

(dom ψ2 + {(T, J)}) ∩ ([0, T ′]× {0, 1, ..., J ′})

(A.18)

156

If T ′ ≤ T and J ′ ≤ J , then the intersection

dom ψ ∩ ([0, T ′]× {0, 1, ..., J ′}) = (dom ψ1 ∩ ([0, T ′]× {0, 1, ..., J ′}))∪

(dom ψ2 + {(T, J)}) ∩ ([0, T ′]× {0, 1, ..., J ′})

= ∪J ′j=0([t1j , t
1
j+1], j) ∪ ∅ = ∪J ′j=0([t1j , t

1
j+1], j)

(A.19)

for some finite sequence of times 0 = t10 ≤ t11 ≤ t12 ≤ ... ≤ t1J ′+1 = T ′.

If T ′ ≥ T and J ′ ≥ J , then the intersection

dom ψ ∩ ([0, T ′]× {0, 1, ..., J ′})

= (dom ψ1 ∩ ([0, T ′]× {0, 1, ..., J ′}))∪

(dom ψ2 + {(T, J)}) ∩ ([0, T ′]× {0, 1, ..., J ′})

= (dom ψ1 ∩ ([0, T]× {0, 1, ..., J}))∪

(dom ψ2 + {(T, J)}) ∩ ([T, T ′]× {J, J + 1, ..., J ′})

= (dom ψ1 ∩ ([0, T]× {0, 1, ..., J}))∪

(dom ψ2 ∩ ([0, T ′ − T]× {0, 1, ..., J ′ − J}) + {(T, J)})

= ∪Jj=0([t1j , t
1
j+1], j) ∪ (∪J ′−Jj=0 ([t2j , t

2
j+1], j) + {(T, J)})

= ∪Jj=0([t1j , t
1
j+1], j) ∪ (∪J ′−Jj=0 ([t2j + T, t2j+1 + T], j + J))

(A.20)

for some finite sequence of times 0 = t10 ≤ t11 ≤ t12 ≤ ... ≤ t1J+1 = T and

T = t20 + T ≤ t21 + T ≤ t22 + T ≤ ... ≤ t2J ′−J+1 + T = T ′. Hence, a finite sequence

{ti}J
′
i=0 can be constructed as follows such that 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tJ ′ = T ′:

ti =


t1i i ≤ J

t2i−J + T J + 1 ≤ i ≤ J ′.
(A.21)

157

Therefore,

dom ψ ∩ ([0, T ′]× {0, 1, ..., J ′}) = ∪J ′j=0([tj , tj+1], j) (A.22)

for a finite sequence of {ti}J
′
i=0. Hence, dom φ = dom υ and the domain dom ψ :=

dom φ = dom υ is a hybrid time domain.

• This item is to prove that ψ(0, 0) = (φ(0, 0), u(0, 0)) ∈ C ∪D.

Since ψ1 is a solution pair to H, ψ1(0, 0) ∈ C ∪ D. According to Definition

3.5, ψ(t, j) = ψ1(t, j) for all (t, j) ∈ dom ψ1. Since (0, 0) ∈ dom ψ1, ψ(0, 0) =

ψ1(0, 0) ∈ C ∪D.

• This item is to prove that for all j ∈ N such that Ijψ has nonempty interior, ψ

satisfies conditions in the first item in Definition 2.5. The following items prove

that ψ satisfies each of the conditions.

(a) This item proves that for all j ∈ N such that Ijψ has nonempty interior, the

function t 7→ φ(t, j) is locally absolutely continuous.

Since dom ψ = dom ψ1 ∪ (dom ψ2 + {(T, J)}), then

(t, j) ∈ dom ψ = dom ψ1 ∪ (dom ψ2 + {(T, J)})

implies that

(t, j) ∈ dom ψ1

or

(t, j) ∈ (dom ψ2 + {(T, J)}).

158

Hence, t ∈ Ijψ implies that

t ∈ Ijψ1

when j < J and

t ∈ Ij−Jψ2
+ {T}

when j > J . Therefore, the interval Ijψ = Ijψ1
if j < J and Ijψ = Ij−Jψ2

+ {T}

if j > J .

When it comes to j = J , we want to show that the interval IJψ = IJψ1
∪

(I0
ψ2

+ {T}). The two cases for time t ∈ IJψ are (t, J) ∈ dom ψ1 or (t, J) ∈

dom ψ2 + {(T, J)}. Therefore, t ∈ IJψ leads to that t ∈ IJψ1
or t ∈ I0

ψ2
+ {T}

which indicates that

IJψ = IJψ1
∪ (I0

ψ2
+ {T}).

The following cases are considered to prove that φ is absolutely continuous.

I Consider the case of j < J such that Ijψ = Ijψ1
has nonempty interior.

Since ψ1 is a solution pair to H, according to Definition 2.5, t 7→ φ1(t, j)

is locally absolutely continuous for Ijψ1
with nonempty interior. Because

φ(t, j) = φ1(t, j) for all (t, j) ∈ dom ψ1\(T, J) and φ(T, J) = φ2(0, 0) =

φ1(T, J), then φ(t, j) = φ1(t, j) for all t ∈ Ijψ1
.

Since Ijψ = Ijψ1
, when Ijψ has nonempty interior, it implies that Ijψ1

has

nonempty interior. Therefore, t 7→ φ(t, j) = φ1(t, j) is locally absolutely

continuous for all Ijψ with nonempty interior.

II Consider the case of all j > J such that Ijψ = Ij−Jψ2
+ {T} has nonempty

159

interior. Since ψ2 is a solution pair to H, according to Definition 2.5,

then t 7→ φ2(t, j) is locally absolutely continuous for interval Ijψ2
with

nonempty interior.

Since Ijψ = Ij−Jψ2
+ {T}, when Ijψ has nonempty interior, it implies that

Ij−Jψ2
+{T} has nonempty interior. Due to Definition 3.5, φ(t, j) = φ2(t−

T, j − J) for all t ∈ Ij−Jψ2
+ {T}. Therefore, t 7→ φ(t, j) = φ2(t− T, j − J)

is locally absolutely continuous for all Ijψ = Ij−Jψ2
+ {T} with nonempty

interior.

III If j = J and IJψ = IJψ1
∪ (I0

ψ2
+ {T}) has nonempty interior, there are

three cases to consider.

i. If IJψ1
has nonempty interior and (I0

ψ2
+{T}) has empty interior, then

the interval IJψ = IJψ1
. Since φ(t, J) = φ1(t, J) for all t ∈ IJψ1

and

t 7→ φ1(t, J) is locally absolutely continuous for IJψ1
with nonempty

interior , the function t 7→ φ(t, J) = φ1(t, J) is locally absolutely

continuous for IJψ = IJψ1
.

ii. If IJψ1
has empty interior and (I0

ψ2
+ {T}) has nonempty interior,

then the interval IJψ = (I0
ψ2

+ {T}). Since φ(t, J) = φ2(t − T, 0) for

all t ∈ (I0
ψ2

+ {T}) and t 7→ φ2(t, 0) is locally absolutely continuous

for I0
ψ2

, the function t 7→ φ(t, J) = φ2(t − T, 0) is locally absolutely

continuous for IJψ = (I0
ψ2

+ {T}).

iii. If both IJψ1
and (I0

ψ2
+ {T}) has nonempty interior, since t 7→ φ(t, J)

is locally absolutely continuous for IJψ1
and (I0

ψ2
+ {T}), respectively.

160

Because φ1(T, J) = φ2(0, 0) = φ(T, J), then t 7→ φ(t, j) is locally

absolutely continuous for IJψ = IJψ1
∪ (I0

ψ2
+ {T}).

Therefore, the function t 7→ φ(t, j) is locally absolutely continuous for all

j ∈ N such that Ijψ has nonempty interior.

(b) This item proves that for all j ∈ N such that Ijψ has nonempty interior,

ψ(t, j) ∈ C for all t ∈ int Ijψ.

I Consider the case of all j < J such that Ijψ1
has nonempty interior. Since

ψ1 is a solution pair to H, according to Definition 2.5,

ψ1(t, j) ∈ C

for all

t ∈ int Ijψ1
.

Because ψ(t, j) = ψ1(t, j) for all t ∈ int Ijψ1
, then ψ(t, j) = ψ1(t, j) ∈ C

for all t ∈ int Ijψ = Ijψ1
.

II Consider the case of all j > J such that Ij−Jψ2
+{T} has nonempty interior.

Since ψ2 is a solution pair to H, according to Definition 2.5, then

ψ2(t, j) ∈ C

for all

t ∈ int Ijψ2
.

Therefore,

ψ2(t− T, j − J) ∈ C

161

for all

t ∈ Ij−Jψ2
+ {T}.

Because ψ(t, j) = ψ2(t− T, j − J) for all t ∈ Ij−Jψ2
+ {T}, then

ψ(t, j) = ψ2(t− T, j − J) ∈ C

holds for all t ∈ int Ijψ = Ij−Jψ2
+ {T}.

III If j = J and IJψ = IJψ1
∪ (I0

ψ2
+ {T}) has nonempty interior, there are

three cases to consider.

i. if IJψ1
has nonempty interior and (I0

ψ2
+ {T}) has empty interior,

then the interval IJψ = IJψ1
. And ψ(t, j) = ψ1(t, j) ∈ C holds for all

t ∈ int IJψ = IJψ1
.

ii. if IJψ1
has empty interior and I0

ψ2
+ {T} has nonempty interior, then

the interval IJψ = I0
ψ2

+{T}.Then ψ(t, j) = ψ2(t−T, j−J) ∈ C holds

for all t ∈ int IJψ = I0
ψ2

+ {T}.

iii. if both IJψ1
and (I0

ψ2
+{T}) has nonempty interior, since we have had

ψ(t, j) = ψ1(t, j) ∈ C ∀t ∈ int IJψ1

and

ψ(t, j) = ψ2(t− T, j − J) ∈ C ∀t ∈ int I0
ψ2

+ {T},

then ψ(t, j) ∈ C for all t ∈ int Ijψ∪(int I0
ψ2

+{T}). Because ψ2(0, 0) =

ψ(T, J) ∈ C, then ψ(t, j) ∈ C holds for all t ∈ int IJψ = int(IJψ1
∪

(I0
ψ2

+ {T})).

162

Therefore, ψ(t, j) ∈ C holds for all t ∈ int Ijψ for all j ∈ N such that Ijψ has

nonempty interior.

(c) This item proves that for all j ∈ N such that Ijψ has nonempty interior, the

function t 7→ υ(t, j) is Lebesgue measurable and locally bounded.

I Consider the case of all j < J such that Ijψ = Ijψ1
has nonempty interior.

Since ψ1 is solution pairs to H, the functions t 7→ υ1(t, j) is Lebesgue

measurable and locally bounded for all the j ∈ N such that Ijψ1
has

nonempty interior.

Note that υ(t, j) = υ1(t, j) holds for all t ∈ Ijψ such that j < J . Then

t 7→ υ(t, j) = υ1(t, j) is Lebesgue measurable and locally bounded for all

j < J such that Ijψ = Ijψ1
has nonempty interior.

II Consider the case of all j > J such that Ijψ = Ij−Jψ2
+ {T} has nonempty

interior. Since ψ2 is a solution pair, then t 7→ υ2(t, j) is Lebesgue mea-

surable and locally bounded for Ijψ2
with nonempty interior.

Note that υ(t, j) = υ2(t− T, j − J) for all t ∈ Ijψ such that j > J . Then

t 7→ υ(t, j) = υ2(t−T, j−J) is Lebesgue measurable and locally bounded

for all j > J such that Ijψ = Ij−Jψ2
+ {T} has nonempty interior.

III If j = J and IJψ = IJψ1
∪(I0

ψ2
+{T}) has nonempty interior, then according

to Definition 3.5,

υ(t, j) =


υ1(t, J) t ∈ IJψ1

\{T}

υ2(t− T, 0) t ∈ I0
ψ2

+ {T}.
(A.23)

163

Note that t 7→ υ1(t, J) is Lebesgue measurable if IJψ1
has nonempty

interior and t 7→ υ2(t, 0) is Lebesgue measurable if I0
ψ2

has nonempty

interior. Therefore, for all a ∈ R and i ∈ {1, 2, ...,m}, if IJψ1
has nonempty

interior, set

Si1 := {t ∈ IJψ1
: υi1(t, J) > a}

is Lebesgue measurable, where υi1 denotes the ith component of υ1. For

all a ∈ R and i ∈ {1, 2, ...,m}, if I0
ψ2

has nonempty interior, set

Si2 := {t ∈ I0
ψ2

: υi2(t, 0) > a}

is Lebesgue measurable, where υi2 denotes the ith component of υ2.

In order to show that t 7→ υ(t, J) is Lebesgue measurable, we want to

show that for all a ∈ R and i ∈ {1, 2, ...,m},

Si := {t ∈ IJψ : υi(t, J) > a}

is Lebesgue measurable. Note that for all a ∈ R and i ∈ {1, 2, ...,m},

Si = (Si1\{T}) ∪ (Si2 + {T}) = (Si1 ∩ (R\{T})) ∪ (Si2 + {T})

and both Si1 and Si2 are Lebesgue measurable. (R\{T}) is Lebesgue

measurable because {T} is Lebesgue measurable and so is its complement.

Then, Si is Lebesgue measurable. Therefore, t 7→ υ(t, J) is Lebesgue

measurable, if IJψ has nonempty interior.

Then we want to show that t 7→ υ(t, J) is locally bounded. Note that t 7→

υ1(t, j) is locally bounded, for all the j ∈ N such that Ijψ1
has nonempty

164

interior. Therefore, if IJψ1
has nonempty interior, for all i ∈ {1, 2, ...,m}

and any t0 ∈ Ijψ1
, there exists a neighborhood A1 of t0 such that for some

number M1 > 0, one has

|υi1(t, J)| ≤M1 (A.24)

for all t ∈ A1, where υi1 denotes the ith component of υ1.

Similarly, if I0
ψ2

has nonempty interior, for all i ∈ {1, 2, ...,m} and any

t0 ∈ I0
ψ2

, there exists a neighborhood A2 of t0 such that for some number

M2 > 0, one has

|υi2(t, 0)| ≤M2 (A.25)

for all t ∈ A2, where υi2 denotes the ith component of υ2.

We want to show that if IJψ has nonempty interior, for all i ∈ {1, 2, ...,m}

and any t0 ∈ Ijψ, there exists a neighborhood A of t0 such that for some

number M > 0 one has

|υi(t, J)| ≤M (A.26)

for all t ∈ A, where υi denotes the ith component of u.

When IJψ has nonempty interior, then IJψ = IJψ1
∪(I0

ψ2
+{T}) has nonempty

interior. If IJψ1
has nonempty interior, then, for i ∈ {1, 2, ...,m} and any

t0 ∈ IJψ1
\{T}, there exists a neighborhood A1 of t0 such that for some

number M1 > 0 one has

|υi1(t, J)| = υi(t, J) ≤M1 (A.27)

165

for all t ∈ A1, where υi1 denotes the ith component of υ1.

If (I0
ψ2

+ {T}) has nonempty interior, then for i ∈ {1, 2, ...,m} and any

t0 ∈ I0
ψ2

+ {T}, there exists a neighborhood A2 of t0 such that for some

number M2 > 0 one has

|υi2(t− T, 0)| = υi(t, J) ≤M2 (A.28)

for all t ∈ A2, where υi2 denotes the ith component of υ2.

In conclusion, when IJψ has nonempty interior, for any t0 ∈ IJψ1
\{T},

there exists A = A1 such that for the number M = M1, (A.26) holds for

all t ∈ A; when (I0
ψ2

+{T}) has nonempty interior, for any t0 ∈ I0
ψ2

+{T},

there exists A = A2 such that for the number M = M2, (A.26) holds for

all t ∈ A.

Therefore, t 7→ υ(t, j) is Lebesgue measurable and locally bounded for

j = J such that IJψ has nonempty interior.

Therefore, t 7→ υ(t, j) is Lebesgue measurable and locally bounded for all

j ∈ N such that Ijψ has nonempty interior.

(d) This item proves that for all j ∈ N such that Ijψ has nonempty interior, for

almost all t ∈ Ijψ,

φ̇ = f(φ(t, j), υ(t, j)). (A.29)

I Consider the case of all j < J such that Ijψ1
has nonempty interior. Since

ψ1 is a solution pair, then φ̇1(t, j) = f(φ1(t, j), υ1(t, j)) for almost all

166

t ∈ int Ijψ1
. Because

(φ(t, j), υ(t, j)) = (φ1(t, j), υ1(t, j))

for all (t, j) ∈ dom ψ1\(T, J), therefore,

φ̇(t, j) = φ̇1(t, j) = f(φ1(t, j), υ1(t, j)) = f(φ(t, j), υ(t, j)) (A.30)

for almost all t ∈ int Ijψ.

II Consider the case of all j > J such that Ij−Jψ2
has nonempty interior.

Since ψ2 is a solution pair and Ij−Jψ2
has nonempty interior, φ̇2(t, j) =

f(φ2(t − T, j − J), υ2(t − T, j − J)) for almost all t ∈ int Ij−Jψ2
+ {T}.

Because

(φ(t, j), υ(t, j)) = (φ2(t− T, j − J), υ2(t− T, j − J))

for all t ∈ Ij−Jψ2
+ {T}, then

φ̇(t, j) = φ̇2(t− T, j − J)

= f(φ2(t− T, j − J), υ2(t− T, j − J))

= f(φ(t, j), υ(t, j))

(A.31)

for almost all t ∈ int Ijφ.

III If j = J and IJψ = IJψ1
∪ (I0

ψ2
+ {T}) has nonempty interior, there are

three cases to consider.

i. If IJψ1
has nonempty interior and I0

ψ2
+ {T} has empty interior, then

the interval IJψ = IJψ1
. Since φ̇1(t, j) = f(φ1(t, J), υ1(t, J)) for almost

167

all t ∈ int IJψ1
and ψ(t, J) = ψ1(t, J) for all t ∈ IJψ1

\{T}, then

φ̇(t, J) = φ̇1(t, J) = f(φ1(t, J), υ1(t, J)) = f(φ(t, J), υ(t, j)) (A.32)

for almost all t ∈ int Ijψ.

ii. If IJψ1
has empty interior and (I0

ψ2
+{T}) has nonempty interior, then

the interval IJψ = (I0
ψ2

+ {T}). Since φ̇2 = f(φ2(t− T, 0), υ2(t− T, 0))

for almost all t ∈ int I0
ψ2

+ {T} and ψ(t, J) = ψ2(t − T, 0) for all

t ∈ I0
ψ2

+ {T}, then

φ̇(t, J) = φ̇2(t− T, 0)

= f(φ2(t− T, 0), υ2(t− T, 0))

= f(φ(t, J), υ(t, j))

(A.33)

for almost all t ∈ int IJφ .

iii. If both IJψ1
and (I0

ψ2
+ {T}) has nonempty interior, then the interval

IJψ = IJψ1
∪ (I0

ψ2
+{T}). Since we have had φ̇(t, J) = f(φ(t, J), υ(t, j))

for almost all t ∈ IJψ1
and t ∈ I0

ψ2
+{T}, then φ̇(t, j) = f(φ(t, j), υ(t, j))

holds for t ∈ IJψ = IJψ1
∪ (I0

ψ2
+ {T}).

Therefore, φ̇(t, j) = f(φ(t, j), υ(t, j)) holds for almost all t ∈ Ijψ.

• The last item is to prove that for all (t, j) ∈ dom ψ such that (t, j + 1) ∈ dom ψ,

ψ(t, j) ∈ D

φ(t, j + 1) = g(φ(t, j), υ(t, j)).

(A.34)

168

1. For all (t, j) such that (t, j) ∈ dom ψ1 and (t, j + 1) ∈ dom ψ1, since ψ1 is a

solution pair, then

ψ1(t, j) ∈ D

φ1(t, j + 1) = g(φ1(t, j), υ1(t, j)).

(A.35)

Due to (t, j + 1) ∈ dom ψ1, then (t, j) 6= (T, J). Since ψ(t, j) = ψ1(t, j) for

all (t, j) ∈ dom ψ1\(T, J), then

ψ(t, j) = ψ1(t, j) ∈ D

φ(t, j + 1) = φ1(t, j + 1) = g(φ1(t, j), υ1(t, j)) = g(φ(t, j), υ(t, j)).

(A.36)

2. For all (t, j) such that (t, j) ∈ dom ψ2 + {(T, J)} and (t, j + 1) ∈ dom ψ2 +

{(T, J)}, we can have (t−T, j−J) ∈ dom ψ2 and (t−T, j−J+1) ∈ dom ψ2.

Since ψ2 is a solution pair, then

ψ2(t− T, j − J) ∈ D

φ2(t− T, j − J + 1) = g(φ2(t− T, j − J), υ2(t− T, j − J)).

(A.37)

Since ψ(t, j) = ψ2(t− T, j − J) for all (t− T, j − J) ∈ dom ψ2, then

ψ(t, j) = ψ2(t− T, j − J) ∈ D

φ(t, j + 1) = φ2(t− T, j − J + 1)

= g(φ2(t− T, j − J), υ2(t− T, j − J))

= g(φ(t, j), υ(t, j)).

(A.38)

Because all of the four conditions above are satisfied, the result ψ of concatenation is a

solution pair to H.

169

A.3 Proof of Proposition 3.19

The following items are to prove that ψ̃ satisfies all conditions in Definition

2.5.

• The first item is to prove that dom φ̃ equals dom υ̃ and dom ψ̃ = dom φ̃ = dom υ̃

is a hybrid time domain.

Note that

dom υ̃ = dom υ ∩ [T1, T2]× {J1, J1 + 1, ..., J2} − {(T1, J1)} (A.39)

and

dom φ̃ = dom φ ∩ [T1, T2]× {J1, J1 + 1, ..., J2} − {(T1, J1)}. (A.40)

Since ψ = (φ, υ) is a solution pair of H, then dom φ = dom υ. Thus,

dom φ̃ = dom φ ∩ [T1, T2]× {J1, J1 + 1, ..., J2} − {(T1, J1)}

= dom υ ∩ [T1, T2]× {J1, J1 + 1, ..., J2} − {(T1, J1)}

= dom υ̃.

(A.41)

Therefore, dom φ̃ = dom υ̃.

Since ψ is a solution pair of H, dom ψ is a hybrid time domain. Hence, for each

(T, J) ∈ dom ψ, dom ψ ∩ [0, T]× {0, 1, ..., , J} can be written as ∪Jj=0([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tJ+1 = T . In the

truncation operation definition,

dom φ̃ = dom φ ∩ [T1, T2]× {J1, J1 + 1, ..., J2} − {(T1, J1)}. (A.42)

170

Hence, for each (T, J) ∈ dom ψ̃,

dom φ̃ ∩ [0, T]× {0, 1, ..., , J}

= (dom φ ∩ [T1, T2]× {J1, J1 + 1, ..., J2} − {(T1, J1)}) ∩ [0, T] ∩ {0, 1, ..., , J}

= ∪Jj=0([tj , tj+1], j) ∩ [T1, T2]× {J1, J1 + 1, ..., J2} − {(T1, J1)}

= ∪J2−J1j=0 ([t′j , t
′
j+1], j)

(A.43)

where {t′j} is constructed by

t′j = tj+J1 − T1 ∀j ∈ {1, ..., J2 − J1} (A.44)

such that

0 = t′0 ≤ t′1 ≤ t′2 ≤ ... ≤ t′J2−J1+1 = T2 − T1.

Hence, dom φ̃ is a hybrid time domain. For the same reason, the domain dom υ̃

is a hybrid time domain.

• The second item is to prove that ψ̃(0, 0) ∈ C ∪D.

According to Definition B.11, the state input pair ψ̃(0, 0) = ψ(T1, J1). In Assump-

tion 3.18, there are three cases to consider.

1. If (T1, J1) = (0, 0), since ψ is a solution pair to H, then ψ(0, 0) ∈ C ∪ D.

Therefore, ψ̃(0, 0) = ψ(T1, J1) = ψ(0, 0) ∈ C ∪D.

2. If T1 ∈ int IJ1ψ , where IJ1ψ has nonempty interior, Definition 2.5 implies that

ψ(T1, J1) ∈ C ⊂ C.

171

3. If (T1, J1) ∈ dom ψ and (T1, J1 + 1) ∈ dom ψ, Definition 2.5 implies that

ψ(T1, J1) ∈ D.

Therefore, ψ̃(0, 0) = ψ(T1, J1) ∈ C ∪D.

• The third item is to prove that ψ̃ satisfies the conditions in the first item in

Definition 2.5 for all j ∈ N such that Ij
ψ̃

= {t : (t, j) ∈ dom ψ̃} has nonempty

interior. The following items is to prove that each of these conditions is satisfied.

(a) This item is to prove that for all j ∈ N such that Ij
ψ̃

= {t : (t, j) ∈ dom ψ̃} has

nonempty interior, the function t 7→ φ̃(t, j) is locally absolutely continuous.

Since the domain of ψ̃ is constructed by

dom ψ̃ = dom ψ ∩ [T1, T2]× {J1, J1 + 1, ..., J2} − {(T1, J1)}, (A.45)

then (t, j) ∈ dom ψ̃ implies (t + T1, j + J1) ∈ dom ψ ∩ [T1, T2] × {J1, J1 +

1, ..., J2}. Therefore, t ∈ Ij
ψ̃

implies t+ T1 ∈ Ij+J1ψ . Thus,

Ij
ψ̃

= (Ij+J1ψ − {T1}) ∩ [0, T2 − T1] (A.46)

holds. When the interval Ij
ψ̃

has nonempty interior, then interval Ij+J1ψ has

nonempty interior.

Since ψ is a solution pair to H, according to Definition 2.5, t 7→ φ(t, j) is

locally absolutely continuous for all j ∈ N such that Ijψ has nonempty interior.

Thus, the function t 7→ φ(t+ T1, j + J1) is locally absolutely continuous for

all j such that Ij
ψ̃

has nonempty interior.

172

According to Definition B.11,

φ̃(t, j) = φ(t+ T1, j + J1)

holds for all (t, j) ∈ dom φ̃. Therefore, the function t 7→ φ̃(t, j) = φ(t+T1, j+

J1) is locally absolutely continuous for all j such that Ij
ψ̃

= Ij+J1ψ − {T1} has

nonempty interior.

(b) This item is to prove that for all j ∈ N such that Ij
ψ̃

= {t : (t, j) ∈ dom ψ̃}

has nonempty interior, (φ̃(t, j), υ̃(t, j)) ∈ C for all t ∈ int Ij
ψ̃

.

Considering (A.46), the interval Ij
ψ̃

having nonempty interior implies that

Ij+J1ψ − {T1} has nonempty interior. Because ψ is a solution pair to H and

Ij+J1ψ −{T1} has nonempty interior, the state-input pair ψ(t+T1, j+J1) ∈ C

for all t ∈ int Ij+J1ψ −{T1}. Due to ψ(t+T1, j+J1) = ψ̃(t, j), then ψ̃(t, j) ∈ C

for all t ∈ int Ij
ψ̃

.

(c) This item is to prove that for all j ∈ N such that Ij
ψ̃

= {t : (t, j) ∈ dom ψ̃}

has nonempty interior, the function t 7→ υ̃(t, j) is Lebesgue measurable and

locally bounded.

– This item is to show that if Ij
ψ̃

has nonempty interior, the function

t 7→ υ̃(t, j) is Lebesgue measurable.

Note that if Ij
ψ̃

has nonempty interior, then Ij+J1ψ has nonempty interior.

Then t 7→ υ(t, j + J1) is Lebesgue measurable, which implies that for all

a ∈ R and i ∈ {1, 2, ...,m},

Si := {t ∈ Ij+J1ψ : υi(t, j + J1) > a}

173

is Lebesgue measurable, where υi denotes the ith component of u. Hence,

Si ∩ [T1, T2]− {T1} = {t ∈ Ij
ψ̃

: υ̃i(t, j) > a} =: S̃i

is Lebesgue measurable, where υ̃i denotes the ith component of υ̃. There-

fore, for all the j ∈ N such that Ij
ψ̃

has nonempty interior, a ∈ R and

i ∈ {1, 2, ...,m}, S̃i is Lebesgue measurable, and hence, t 7→ ũ(t, j) is

Lebesgue measurable.

– This item is to show that for all j ∈ N such that Ij
ψ̃

has nonempty

interior, the function t 7→ υ̃(t, j) is locally bounded. In other words, we

want to show that for all j ∈ N such that Ij
ψ̃

has nonempty interior,

i ∈ {1, 2, ...,m} and any t0 ∈ Ij
ψ̃

, there exists a neighborhood Ã of t0 such

that for some number M̃ > 0, one has

|υ̃i(t, j)| ≤ M̃ (A.47)

for all t ∈ Ã, where υ̃i denotes the ith component of υ̃.

Note that t 7→ υ(t, j) is locally bounded. Hence, for all j ∈ N such that

Ijψ has nonempty interior, i ∈ {1, 2, ...,m} and any t0 ∈ Ijψ, there exists

a neighborhood A of t0 such that for some number M > 0, one has

|υi(t, j)| ≤M (A.48)

for all t ∈ A, where υi denotes the ith component of υ.

Note that dom ψ̃ = dom ψ ∩ [T1, T2] × {J1, J1 + 1, ..., J2} − (T1, J1).

Therefore, for all the j ∈ N such that Ij
ψ̃

has nonempty interior, Ij
ψ̃

=

174

Ij+J1ψ ∩ [T1, T2]− {T1}. Since Ij
ψ̃

has nonempty interior, then Ij+J1ψ has

nonempty interior.

Therefore, for i ∈ {1, 2, ...,m} and any t0 ∈ Ij+J1ψ ∩ [T1, T2]− {T1} = Ij
ψ̃

,

there exists a neighborhood Ã = A∩ [T1, T2]−T1 of t0 such that for some

number M̃ = M > 0, one has

|υ̃i(t, j)| = |υi(t+ T1, j + J1)| ≤M (A.49)

for all t ∈ Ã.

Hence, the function t 7→ υ̃(t, j) is locally bounded for all j ∈ N such that

Ij
ψ̃

has nonempty interior.

Therefore, the function t 7→ υ̃(t, j) is Lebesgue measurable and locally

bounded for all j ∈ N such that Ij
ψ̃

has nonempty interior.

(d) This item is to prove that for all j ∈ N such that Ij
ψ̃

has nonempty interior,

for almost all t ∈ Ij
ψ̃

˙̃
φ(t, j) = f(φ̃(t, j), υ̃(t, j)). (A.50)

Since ψ is a solution pair of H, Definition 2.5 implies that for all j ∈ N such

that Ijψ has nonempty interior, for almost all t ∈ Ijψ,

φ̇(t, j) = f(φ(t, j), υ(t, j)). (A.51)

Thus, for all j ∈ N such that Ij+J1ψ − {T1} has nonempty interior, for almost

all t ∈ Ij+J1ψ − {T1},

φ̇(t+ T1, j + J1) = f(φ(t+ T1, j + J1), υ(t+ T1, j + J1)) (A.52)

175

holds.

According to Definition B.11,

φ̃(t, j) = φ(t+ T1, j + J1)

and

υ̃(t, j) = υ(t+ T1, j + J1)

hold. Therefore,

˙̃
φ(t, j) = φ̇(t+ T1, j + J1)

= f(φ(t+ T1, j + J1), υ(t+ T1, j + J1))

= f(φ̃(t, j), υ̃(t, j))

(A.53)

holds for almost all t ∈ Ij
ψ̃

= Ij+J1ψ − {T1} where Ij
ψ̃

has nonempty interior.

• The last item is to prove that for all (t, j) ∈ dom ψ̃ such that (t, j + 1) ∈ dom ψ̃,

(φ̃(t, j), υ̃(t, j)) ∈ D

φ̃(t, j + 1) = g(φ̃(t, j), υ̃(t, j)).

(A.54)

According to Definition B.11,

(t, j) ∈ dom ψ̃ (t, j + 1) ∈ dom ψ̃

implies that

(t+ T1, j + J1) ∈ dom ψ (t+ T1, j + J1 + 1) ∈ dom ψ.

176

Therefore, according to Definition 2.5,

(φ(t+ T1, j + J1), υ(t+ T1, j + J1)) ∈ D

φ(t+ T1, j + J1 + 1) = g(φ(t+ T1, j + J1), υ(t+ T1, j + J1)).

(A.55)

Due to Definition B.11,

φ̃(t, j) = φ(t+ T1, j + J1)

and

υ̃(t, j) = υ(t+ T1, j + J1)

hold. Therefore,

(φ̃(t, j), υ̃(t, j)) = (φ(t+ T1, j + J1), υ(t+ T1, j + J1)) ∈ D

φ̃(t, j + 1) = φ(t+ T1, j + J1 + 1)

= g(φ(t+ T1, j + J1), υ(t+ T1, j + J1))

= g(φ̃(t, j), υ̃(t, j))

(A.56)

hold.

Since all the conditions in Definition 2.5 are satisfied, ψ̃ = (ψ̃, υ̃) is a solution pair to

H.

177

Appendix B

Proof for Results in Chapter 4

B.1 A Computational Framework to Simulate Continuous

Dynamics

B.1.1 Numerical integration scheme model

A general numerical integration scheme can be modeled as

Fs(xk, xk+1, υ̃, f, t) = 0 (B.1)

where s denotes the step size, xk denotes the state at the kth step, xk+1 denotes the

approximation of the state at the next step, υ̃ denotes the applied input signal, f denotes

the flow map, and t denotes the time at current step, namely, t = ks. Two examples

on how (B.1) models explicit and implicit numerical integration scheme are given as

follows.

Example B.1 (Forward Euler method). Given the differential equation ẋ = f(x, υ̃)

178

with initial state x0 and input signal υ̃ ∈ UC , the integration scheme using the forward

Euler method is

xk+1 = xk + sf(x, υ̃(t)). (B.2)

Following (B.1), (B.2) can be modeled as

Fs(xk, xk+1, υ̃, f, t) := xk + sf(xk, υ̃(t))− xk+1 (B.3)

and xk+1 can be obtained by solving (B.1).

Example B.2 (Backward Euler method). Given the differential equation ẋ = f(x, υ̃)

with initial state x0 and input signal υ̃ ∈ UC , the integration scheme using backward

Euler method is

xk+1 = xk + sf(xk+1, υ̃(t+ s)). (B.4)

Following (B.1), (B.4) can be modeled as

Fs(xk, xk+1, υ̃, f, t) := xk + sf(xk+1, υ̃(t+ s))− xk+1

and xk+1 can be obtained by solving (B.1).

B.1.2 Zero-crossing detection model to approximate t̂

When the priority option rule = 1, following Step 2 above, t̂ in (4.5) is the

first time when (φ̂, υ̃) leaves C. When the priority option rule = 2, t̂ is the first time

when (φ̂, υ̃) leaves C\D.

Given a set S ⊂ Rn ×Rm, a zero-crossing function h : Rn ×Rm → R to detect

whether the pair (φ, υ) is in set S is given by

179

1. h(x, u) > 0 for all (x, u) ∈ intS,

2. h(x, u) < 0 for all (x, u) ∈ int((Rn × Rm)\S),

3. h(x, u) = 0 for all (x, u) ∈ ∂S,

4. h is continuous over Rn × Rm.

When rule = 1, this function can be used with S = C\D to determine t̂ as the first time

when (φ̂, υ̃) leaves C\D by checking zero crossings of hf (φ̂, υ̃). When rule = 2, this

function can be used with S = C to determine t̂ as the first time when (φ̂, υ̃) leaves C

by checking zero crossings of h(φ̂, υ̃). Next, we illustrate this approach by constructing

a zero-crossing function for the bouncing ball system in Example 3.2.

Example B.3 (Example 3.2, revisited). In the bouncing ball system in Example 3.2,

the flow set is C = {(x, u) ∈ R2×R : x1 ≥ 0} and the jump set is D = {(x, u) ∈ R2×R :

x1 = 0, x2 ≤ 0, u ≥ 0}. Then,

h(x, u) := x1 ∀(x, u) ∈ Rn × Rm.

is a zero-crossing function for the detection of solutions leaving C. The same function

can be used to detect solutions leaving C\D since D ⊂ ∂C which implies that int(C\D) =

intC and int((Rn × Rm)\(C\D)) = int((Rn × Rm)\C).

The zero-crossing detection algorithm that approximates t̂ can be modeled as

t̂ = tzcd(φ̂, υ̃, rule, C,D) (B.5)

where the function tzcd employs a zero-crossing detection function for C\D or C, de-

pending on the value of rule. We set t̂ as −1 when no zero-crossing is detected.

180

B.1.3 A computational framework to simulate continuous dynamics

A computational approach to simulate the continuous dynamics of H is given

in Algorithm 9.

Algorithm 9 A computational framework to simulate the continuous dynamics

continuous simulator
1: function continuous simulator(C, f,D, rule, s, x0, υ̃)

2: Set φ0 ← x0, t̂← 0.

3: while t ≤ t(υ̃)&t̂ = −1 do

4: Compute φ̂ by solving Fs(φ0, φ̂, υ̃, f, t) = 0.

5: t̂← tzcd(φ̂, υ̃, rule, C,D).

6: if t̂ = −1 then

7: φ← φ|φ̂, υ ← υ|υ̂.

8: φ0 ← φ̂(T̂ , 0) where (T̂ , 0) = max dom φ̂.

9: else

10: φ← φ|φ̂([0, t̂], 0), υ ← υ|υ̂([0, t̂], 0).

11: φ0 ← φ̂(t̂, 0).

12: end if

13: end while

14: return (φ, υ).

15: end function

181

B.2 Proof of Proposition 4.14

B.2.1 Theoretical Tools to Prove Proposition 4.14

We show that ψ = (φ, υ) in Proposition 4.14 satisfies the conditions in Definition

2.5 for (Cδ, fδ, Dδ, gδ) where (Cδ, fδ, Dδ, gδ) is the δ-inflation of hybrid dynamical system

of (C, f,D, g) for each δ > 0, as defined in Definition 4.12.

Lemma B.4. Given a hybrid dynamical system H = (C, f,D, g) and its δ-inflation

Hδ = (Cδ, fδ, Dδ, gδ) for each δ > 0, if ψ = (φ, υ) is a solution pair to H, then ψ is also

a solution pair to Hδ.

Proof. We show that ψ satisfies all the conditions in Definition 2.5 for (Cδ, fδ, Dδ, gδ),

namely,

1. φ is a hybrid arc and υ is a hybrid input;

2. (φ(0, 0), υ(0, 0)) ∈ Cδ ∪Dδ;

3. For each j ∈ N such that Ijφ has nonempty interior int(Ijφ), (φ, υ) satisfies

(φ(t, j), υ(t, j)) ∈ Cδ

for all t ∈ int Ijφ, and

d

dt
φ(t, j) = fδ(φ(t, j), υ(t, j))

for almost all t ∈ Ijφ.

182

4. For all (t, j) ∈ dom (φ, υ) such that (t, j + 1) ∈ dom (φ, υ),

(φ(t, j), υ(t, j)) ∈ Dδ

φ(t, j + 1) = gδ(φ(t, j), υ(t, j)).

(B.6)

Next, we show that each item above is satisfied.

1. Given that ψ = (φ, υ) is a solution pair to H, therefore, φ is a hybrid arc and υ is

a hybrid input.

2. Since ψ = (φ, υ) is a solution pair to H, then (φ(0, 0), υ(0, 0)) ∈ C ∪D. Note that

C ⊂ Cδ, D ⊂ Dδ. Therefore,

(φ(0, 0), υ(0, 0)) ∈ C ∪D ⊂ Cδ ∪Dδ.

3. For all j ∈ N such that Ij = {t : (t, j) ∈ dom (φ, υ)} has nonempty interior,

(a) (φ(t, j), υ(t, j)) ∈ C ⊂ Cδ for all t ∈ int Ij .

(b) for almost all t ∈ Ij ,

φ̇(t, j) = f(φ(t, j), υ(t, j)) = fδ(φ(t, j), υ(t, j)).

4. For all (t, j) ∈ dom (φ, υ) such that (t, j + 1) ∈ dom (φ, υ),

(φ(t, j), υ(t, j)) ∈ D ⊂ Dδ

φ(t, j + 1) = g(φ(t, j), υ(t, j)) = gδ(φ(t, j), υ(t, j)).

Since ψ satisfies all the items in Definition 2.5 for data (Cδ, fδ, Dδ, gδ), it is established

that ψ is a solution pair to (Cδ, fδ, Dδ, gδ).

183

B.2.2 Proof of Proposition 4.14

We show that the motion plan ψ = (φ, υ) to P satisfies each condition in

Problem 3.1 for the data Pδ = (X0, Xf , Xu, (Cδ, fδ, Dδ, gδ)), namely,

1. φ(0, 0) ∈ X0;

2. (φ, υ) is a solution pair to Hδ;

3. (T, J) is such that φ(T, J) ∈ Xf , namely, the solution belongs to the final state

set at hybrid time (T, J);

4. (φ(t, j), υ(t, j)) /∈ Xu for each (t, j) ∈ dom (φ, υ) such that t+ j ≤ T + J .

Given that the initial state set X0, the final state set Xf , and the unsafe set Xu are

the same in both P and Pδ and that ψ is a motion plan to P, items 1, 3, and 4 are

satisfied for free. Note that, by construction, every solution pair to H is a solution pair

to Hδ. In fact, by Lemma B.4, (φ, υ) is a solution pair to Hδ, namely, item 2 is satisfied.

Therefore, all the items are satisfied and (φ, υ) is a motion plan to Pδ.

B.3 Proof of Lemma 4.15

To prove Lemma 4.15, we first establish the following result.

Lemma B.5. Given a hybrid dynamical system defined as H = (C, f,D, g) and its

δf -inflation, denoted Hδf = (Cδf , fδf , Dδf , gδf) and defined in (4.12), if a state input

pair (y, v) ∈ Rn × Rm is such that (y, v) ∈ X, where X can be either C or D, then for

each δ′ ∈ [0, δf], we have (y + δ′B, v + δ′B) ⊂ Xδf .

184

Proof. Note that, from (4.12), Cδf and Dδf are captured by the following set by choosing

X = C or X = D, respectively:

Xδf := {(x, u) ∈ Rn × Rm : ∃(y, v) ∈ X : x ∈ y + δfB, u ∈ v + δfB}. (B.7)

Then, to prove (y + δ′B, v + δ′B) ⊂ Xδf where (y, v) ∈ X, we show that for each

(y′, v′) ∈ (y + δ′B, v + δ′B), we have (y′, v′) ∈ Xδf .

Given that (y′, v′) ∈ (y + δ′B, v + δ′B) where (y, v) ∈ X, by (B.7), it follows

that

(y′, v′) ∈ Xδ′ .

Since δ′ ∈ [0, δf], it follows that y + δ′B ⊂ y + δfB and v + δ′B ⊂ v + δfB. Then, by

(B.7), we have that

Xδ′ ⊂ Xδf .

Therefore, for each (y′, v′) ∈ (y+ δ′B, v+ δ′B) and each δ′ ∈ [0, δf] where (y, v) ∈ X, we

have

(y′, v′) ∈ Xδ′ ⊂ Xδf .

Hence, we have

(y + δ′B, v + δ′B) ⊂ Xδf .

To establish Lemma 4.15, we proceed as follows. Proposition 4.14 establishes

that ψ, which is a motion to problem P, is also a motion plan to problem Pδf . We need

to show that ψ has clearance min{δs, δf}.

185

Since ψ = (φ, υ) is a solution pair to H = (C, f,D, g), then for all j ∈ N such

that Ij = {t : (t, j) ∈ dom (φ, υ)} has nonempty interior, we have

(φ(t, j), υ(t, j)) ∈ C

for all t ∈ int Ij . Therefore, by Lemma B.5, for each δ′ ∈ [0, δf] and each j ∈ N such

that Ij has nonempty interior, it follows that

(φ(t, j) + δ′B, υ(t, j) + δ′B) ⊂ Cδf .

Hence, item 1 in Definition 4.9 is satisfied.

Similarly, since ψ is a solution pair to H = (C, f,D, g), for each (t, j) ∈ dom ψ

such that (t, j + 1) ∈ dom ψ, we have

(φ(t, j), υ(t, j)) ∈ D.

Therefore, by Lemma B.5, for each δ′ ∈ [0, δf] and each (t, j) ∈ dom ψ such that

(t, j + 1) ∈ dom ψ, it follows that

(φ(t, j) + δfB, υ(t, j) + δfB) ⊂ Dδf .

Hence, item 2 in Definition 4.9 is also satisfied.

Therefore, δf satisfies all the conditions in Definition 4.9 and, hence, is the

dynamics clearance. Then, by Definition 4.11, the clearance of ψ is min{δs, δf}.

B.4 Proof of Lemma 4.31

The proof closely parallels that of Lemma 4 as presented in [27]. Suppose

there exists a vertex, denoted z, in the search graph T = (V,E) such that xz ∈ S and

186

xz /∈ xc+δB, as otherwise it is immediate that xvcur ∈ xc+δB because all the vertices in

T belong to xc+δB. We show that, under the conditions in Lemma 4.31, if the sampling

point xrand returned by the function call random state is such that xrand ∈ xc + δ/5B,

it follows that xvcur ∈ xc + δB.

Given that xrand ∈ xc + δ/5B, it follows that

|xrand − xc| ≤
δ

5
. (B.8)

Since xv ∈ xc + 2δ/5B, then we have

|xv − xc| ≤
2δ

5
.

Therefore, by the triangle inequality, it follows that

|xrand − xv| ≤ |xrand − xc|+ |xc − xv| ≤
3δ

5
.

Since xz /∈ xc + δB, then |xz − xc| > δ. Using (B.8), by the triangle inequality,

it follows that

δ < |xz − xc| ≤ |xz − xrand|+ |xrand − xc| ≤ |xz − xrand|+
δ

5
,

namely, |xz − xrand| > 4δ/5.

Since |xv − xrand| ≤ 3δ/5 and |xz − xrand| > 4δ/5, we have that xrand is closer

to v than to z. This implies that z, which can be any vertex that is not in xc + δB, will

not be reported as vcur by the function call nearest neighbor.

If v is reported as vcur, then, since xv ∈ xc+2δ/5, we have that xv ∈ xc+2δ/5 ⊂

xc + δB. If v is not reported as vcur, then there must exists another vertex y ∈ V such

187

that y is either closer to or equidistant from xrand as compared to v, i.e.,

|xy − xrand| ≤ |xv − xrand| ≤
3δ

5
.

Then, |xy − xc| ≤ |xy − xrand| + |xrand − xc| ≤ 4δ/5, which implies that xy ∈ xc + δB.

This implies that if the sampling point xrand is such that xrand ∈ xc + δ/5B, no matter

v or y is reported as xvcur , we have xvcur ∈ xc + δB.

Note that xrand ∈ xc + δ/5B implies xrand is sampled from the ball centered

at xc with radius δ/5. Therefore, by Definition 4.18 and (4.21), the probability of

xrand ∈ xc + δ/5B is ζn(δ/5)n/µ(S), where ζn denotes the Lebesgue measure of the unit

ball in Rn.

B.5 Proof of Lemma 4.33

B.5.1 Supporting Lemmas to Prove Lemma 4.33

Lemma B.6 (Lemma 2 in [27]). Given a hybrid dynamical system H that satisfies

Assumption 4.24, let ψ = (φ, υ) and ψ′ = (φ′, υ′) be two purely continuous solution

pairs to H with (T, 0) = max dom ψ, (T ′, 0) = max dom ψ′ and T ′ ≤ T . The input

functions υ and υ′ are assumed to be constant, denoted υ : [0, T]× {0} → uC ∈ UC and

υ′ : [0, T ′]×{0} → u′C ∈ UC , respectively. Suppose initial state φ(0, 0) ∈ φ′(0, 0)+δB for

some δ > 0. Then |φ(T ′) − φ′(T ′)| ≤ eK
f
xT
′
δ + Kf

uT ′eK
f
xT
′
∆u, where ∆u = |uC − u′C |,

Kf
x and Kf

u are from Assumption 4.24.

Lemma B.7. Given a hybrid dynamical system H that satisfies Assumption 4.24, let

ψ = (φ, υ) and ψ′ = (φ′, υ′) be two purely continuous solution pairs to H with (T, 0) =

188

max dom ψ, (T ′, 0) = max dom ψ′ and T ′ ≤ T . The input functions υ and υ′ are

assumed to be constant, denoted υ : [0, T] × {0} → uC ∈ UC and υ′ : [0, T ′] × {0} →

u′C ∈ UC , respectively. Suppose initial state φ(0, 0) ∈ φ′(0, 0) + κ1δB for some δ > 0

and κ1 ∈ (0, 1/2). Then, for each κ2 ∈ (2κ1, 1) and each ε ∈ (0, κ2δ2), φ and φ′ are

(T , κ2δ)-close where T = max{T, T ′} if the following hold:

1. T and T ′ are such that

T ′ ∈ Tk = {tl ∈ [max{T − κ2δ, 0}, T] :

∀t′ ∈ [tl, T], φ(t′, 0) + (
κ2δ

2
− ε)B ⊂ φ(T, 0) +

κ2δ

2
B},

(B.9)

2. uC and u′C are such that

|uC − u′C | <
κ2δ
2 − ε− exp(Kf

xT)κ1δ

Kf
uT exp(Kf

xT)
. (B.10)

Proof. We show that ψ and ψ′ satisfy each item in Definition 2.6.

1. This item shows that ψ and ψ′ satisfy the first condition in Definition 2.6, namely,

for all (t, j) ∈ dom φ with t + j ≤ T , there exists s such that (s, j) ∈ dom φ′,

|t− s| < κ2δ, and |φ(t, j)− φ′(s, j)| < κ2δ.

Because of Assumption 4.24, according to Lemma B.6, it follows

|φ(t, 0)− φ′(t, 0)| ≤ exp(Kf
x t)κ1δ +Kf

u t exp(Kf
x t)|uC − u′C |. (B.11)

Note that T ′ ∈ Tk ⊂ [max{T − κ2δ, 0}, T]. Therefore, we have T ′ ≤ T . Because

T ′ ≤ T , for all (t, 0) ∈ dom φ′ with t+ 0 ≤ T ′ + 0 ≤ T + 0 = T = T , there exists

189

s = t such that (s, 0) ∈ dom φ, |t − s| = 0 < κ2δ. Then, by applying (B.10) to

(B.11), we have

|φ(t, 0)− φ′(s, 0)| = |φ(t, 0)− φ′(t, 0)|

≤ exp(Kf
x t)κ1δ +Kf

u t exp(Kf
x t)∆u

≤ exp(Kf
xT)κ1δ +Kf

uT exp(Kf
xT)∆u

≤ κ2δ

2
− ε < κ2δ.

Hence, item 1 in Definition 2.6 is established.

2. This item shows that ψ and ψ′ satisfy the second condition in Definition 2.6,

namely, for all (t, j) ∈ dom φ′ with t + j ≤ T = T , there exists s such that

(s, j) ∈ dom φ, |t− s| < κ2δ, and |φ′(t, j)− φ(s, j)| < κ2δ.

We consider the following two cases.

(a) For all (t, 0) ∈ dom φ with 0 ≤ t + 0 ≤ T ′ + 0 = T ′, there exists s = t such

that (s, 0) ∈ dom φ′, |t− s| = 0 < κ2δ and

|φ(t, 0)− φ′(s, 0)| ≤ κ2δ

2
− ε < κ2δ − ε < κ2δ

because of (B.11).

(b) This item considers the case of (t, 0) ∈ dom φ with T ′ ≤ t+ 0 ≤ T + 0 = T .

For all (t, 0) ∈ dom φ with T ′ ≤ t + 0 ≤ T + 0 = T , let s = T ′. Because of

(B.9), then s = T ′ ∈ [max{T −κ2δ, 0}, T]. Since s ∈ [max{T −κ2δ, 0}, T] and

t ∈ [T ′, T], therefore, we have

|t− s| ≤ κ2δ.

190

Also, because of the definition of Tk in (B.9), for all (t, 0) ∈ dom φ with

T ′ ≤ t ≤ T , we have

φ(t, 0) ∈ φ(t, 0) + (
κ2δ

2
− ε)B ⊂ φ(T, 0) +

κ2δ

2
B.

Because of (B.11) and (B.9), we also have

φ′(s, 0) ∈ φ(s, 0) + (
κ2δ

2
− ε)B

⊂ φ(T, 0) +
κ2δ

2
B.

Therefore, φ(t, 0) and φ′(s, 0) are two points in a ball centered at φ(T, 0) with

radius κ2δ
2 . Note that the maximum distance between two points within a

ball is its diameter. Hence, we have

|φ(t, 0)− φ′(s, 0)| < κ2δ.

Therefore, when both (B.9) and (B.10) hold, φ and φ′ are (T , κ2δ)-close.

Lemma B.8. Given a hybrid dynamical system H that satisfies Assumption 4.24, let

ψ = (φ, υ) and ψ′ = (φ′, υ′) be two purely continuous solution pairs to H with (T, 0) =

max dom ψ, (T ′, 0) = max dom ψ′ and T ′ ≤ T . The input functions υ and υ′ are

assumed to be constant, denoted υ : [0, T]×{0} → uC ∈ UC and υ′ : [0, T ′]×{0} → u′C ∈

UC , respectively. Suppose initial state φ(0, 0) ∈ φ′(0, 0) + κ1δB for some δ > 0 and κ1 ∈

(0, 1/2). Then, for each κ2 ∈ (2κ1, 1) and each ε ∈ (0, κ2δ2), φ′(T ′, 0) ∈ φ(T, 0) + κ2δB if

the following hold:

191

1. T and T ′ are such that

T ′ ∈ Tk = {tl ∈ [max{T − κ2δ, 0}, T] :

∀t′ ∈ [tl, T], φ(t′, 0) + (
κ2δ

2
− ε)B ⊂ φ(T, 0) +

κ2δ

2
B},

(B.12)

2. uC and u′C are such that

|uC − u′C | <
κ2δ
2 − ε− exp(Kf

xT)κ1δ

Kf
uT exp(Kf

xT)
. (B.13)

Proof. Because of Assumption 4.24, according to Lemma B.6, we have

|φ(t, 0)− φ′(t, 0)| ≤ exp(Kf
x t)κ1δ+

Kf
u t exp(Kf

x t)|uC − u′C |.
(B.14)

Note that T ′ ∈ Tk ⊂ [max{T − κ2δ, 0}, T], therefore, we have T ′ ≤ T . Then,

by applying T ′ ≤ T and (B.13) to (B.14), we have

|φ(T ′, 0)− φ′(T ′, 0)|

≤ exp(Kf
xT
′)κ1δ +Kf

uT
′ exp(Kf

xT
′)|uC − u′C |

≤ exp(Kf
xT)κ1δ +Kf

uT exp(Kf
xT)|uC − u′C |

< (
κ2δ

2
− ε).

Therefore, we have φ′(T ′, 0) ∈ φ(T ′, 0) + (κ2δ2 − ε)B.

Since (B.12) holds, then we have

φ(T ′, 0) + (
κ2δ

2
− ε)B ⊂ φ(T, 0) +

κ2δ

2
B

⊂ φ(T, 0) + κ2δB.

Therefore, we have φ′(T ′, 0) ∈ φ(T ′, 0) + (κ2δ2 − ε)B ⊂ φ(T, 0) + κ2δB.

192

B.5.2 Proof of Lemma 4.33

This proof proceeds as follows. From item 1 in Definition 4.20, we denote the

constant input signal that is randomly selected from UC as υ̃′ : [0, t′m] → u′C ∈ UC ,

where t′m denotes the time duration of υ̃′. Since in the statement of Lemma 4.33, the

input function υ is also constant, denote υ : [0, τ]×{0} → uC ∈ UC . Under Assumption

4.24, Lemma B.7 and Lemma B.8 guarantee that both E1 and E2 occur if t′m and u′C

satisfy the following conditions:

1. t′m is such that

t′m ∈ Tk := {tl ∈ [max{τ − κ2δ, 0}, τ] :

φ(t′, 0) + r′B ⊂ φ(τ, 0) +
κ2δ

2
B ∀t′ ∈ [tl, τ]}

(B.15)

where r′ = κ2δ
2 − ε and the elements in (B.15) come from (B.9) and (B.12).

2. u′C is such that

0 ≤ ∆u ≤
κ2δ
2 − ε− exp(Kf

x τ)κ1δ

Kf
uτ exp(Kf

x τ)
(B.16)

where ∆u := |uC − u′C | and the elements in (B.16) come from (B.10) and (B.13).

Then, by the uniform execution of HyRRT as defined in Definition 4.18, we proceed to

characterize the probability of selecting υ̃′, namely, selecting t′m and u′C satisfying (B.15)

and (B.16), respectively, and provide a lower bound as in (4.22).

We first show that set Tk has positive Lebesgue measure, which will be used to

characterize pt in (4.22). Since φ is purely continuous, for arbitrary small ε > 0, there

exists a lower bound t′l ∈ (0, τ) such that

|φ(t′, 0)− φ(τ, 0)| < ε (B.17)

193

for each t′ ∈ [t′l, τ]. For each t′ ∈ [t′l, τ] and each point xp ∈ φ(t′, 0) + r′B, by the triangle

inequality, it follows that:

|xp − φ(τ, 0)| = |xp − φ(t′, 0) + φ(t′, 0)− φ(τ, 0)|

≤ |xp − φ(t′, 0)|+ |φ(t′, 0)− φ(τ, 0)|.

From |xp − φ(t′, 0)| ≤ r′ = κ2δ
2 − ε and (B.17), it follows that

|xp − φ(τ, 0)| ≤ |xp − φ(t′, 0)|+ |φ(t′, 0)− φ(τ, 0)|

≤ r′ + ε =
κ2δ

2
.

(B.18)

From (B.18), for each point xp ∈ φ(t′, 0) + r′B, it follows xp ∈ φ(τ, 0) + κ2δ
2 B. Therefore,

we have

φ(t′, 0) + r′B ⊂ φ(τ, 0) +
κ2δ

2
B

for each t′ ∈ [t′l, τ]. This leads to the existence of t′l < τ such that

t′l ∈ T k :=

{
tl ∈ [0, τ] : ∀t′ ∈ [tl, τ], φ(t′, 0) + r′B ⊂ φ(τ, 0) +

κ2δ

2
B
}
,

implying that µ(T k) ≥ τ − t′l > 0, where µ(T k) denotes the Lebesgue measure of T k.

Since the interval [max{τ−κ2δ, 0}, τ] has positive Lebesgue measure and the intervals T k

and [max{τ−κ2δ, 0}, τ] are both upper bounded by τ , then Tk = T k∩[max{τ−κ2δ, 0}, τ]

has positive Lebesgue measure. By (4.21), the probability of selecting the t′m such that

(B.15) is satisfied, denoted pt, is computed as follows:

pt =
µ(Tk)

Tm
∈ (0, 1]

where Tm is from Definition 4.20.

194

Next, we discuss the conditions on u′C such that both E1 and E2 occur. In

addition to (B.16), to ensure that no intersection between ψnew and the unsafe set Xu

prevents the return of ψnew in the function call new state, the following condition is

also required:

∆u ≤ δ. (B.19)

Therefore, to ensure that both E1 and E2 occur, u′C need to satisfy both (B.16) and

(B.19), namely,

∆u ≤ min

{
κ2δ
2 − ε− exp(Kf

x τ)κ1δ

Kf
uτ exp(Kf

x τ)
, δ

}
. (B.20)

Note that the choice of u′C that satisfies (B.20) is a ball in Rm centered at

uC with radius max

{
min

{
κ2δ
2
−ε−exp(Kf

x τ)κ1δ

Kf
uτ exp(Kf

x τ)
, δ

}
, 0

}
, where the operator max{·, 0}

prevents the negative values for the radius. Therefore, according to (4.21), the probability

of selecting u′C satisfying (B.16), denoted pu, is

pu =

ζn

(
max

{
min

{
κ2δ
2
−ε−exp(Kf

x τ)κ1δ

Kf
uτ exp(Kf

x τ)
, δ

}
, 0

})m
µ(UC)

.

Hence, we have

Prob[E1&E2] ≥ ptpu

= pt

ζn

(
max

{
min

{
κ2δ
2
−ε−exp(Kf

x τ)κ1δ

Kf
uτ exp(Kf

x τ)
, δ

}
, 0

})m
µ(UC)

.

195

B.6 Proof of Lemma 4.35

Under Assumption 4.27, we have

|φ(0, 1)− φnew(0, 1)| ≤ Kg
x|φ(0, 0)− φnew(0, 0)|+Kg

u∆u

where ∆u = |υ(0, 0)− υnew(0, 0)|. From φnew(0, 0) ∈ φ(0, 0) + κ1δB, we have

|φ(0, 1)− φnew(0, 1)| ≤ Kg
xκ1δ +Kg

u∆u (B.21)

with Kg
x,K

g
u > 0. We denote the input value that is randomly selected from UD in the

function call new state as uD ∈ Rm. Given that uD is input to the discrete dynamics

simulator (4.8) to simulate (φnew, υnew), it follows that υnew(0, 0) = uD and, hence,

∆u = |υ(0, 0)− uD|.

Then, we show that if

∆u ≤ (κ2 −Kg
xκ1)δ

Kg
u

, (B.22)

then, the probabilistic event E occurs. From (B.22), it follows from (B.21) that

|φ(0, 1)− φnew(0, 1)| ≤ Kg
xκ1δ +Kg

u∆u ≤ κ2δ,

namely, φnew(0, 1) ∈ φ(0, 1) + κ2δB, implying that E occurs.

To ensure that no intersection between ψnew and the unsafe set Xu prevents the

return of ψnew in the function call new state, the following condition on the sampling

result of uD is also required:

0 ≤ ∆u = |υ(0, 0)− uD| ≤ δ. (B.23)

196

Therefore, to satisfy both (B.22) and (B.23) such that E occurs, we have

0 ≤ ∆u ≤ min

{
(κ2 −Kg

xκ1)δ

Kg
u

, δ

}
. (B.24)

By (4.21), the probability to randomly select an input value from UD that satisfies (B.24)

is

pu =
ζn

(
max

{
min

{
(κ2−Kg

xκ1)δ
Kg
u

, δ
}
, 0
})m

µ(UD)
(B.25)

where ζn is the Lebesgue measure of the unit ball in Rm and µ(UD) denotes the Lebesgue

measure of UD. Therefore, we have

Prob[E] ≥ pu =
ζn

(
max

{
min

{
(κ2−Kg

xκ1)δ
Kg
u

, δ
}
, 0
})m

µ(UD)
. (B.26)

B.7 Closeness Guarantee between the Concatenation Re-

sults of Hybrid Arcs

B.7.1 Supporting Lemma

Lemma B.9. Given two compact hybrid arcs φ and φ′ that are (τ, ε)-close, then we

have |T − T ′| < ε and J = J ′, where (T, J) = max dom φ, (T ′, J ′) = max dom φ′, and

τ = max{T + J, T ′ + J ′}.

Proof. We prove

|T − T ′| < ε

by contradiction. Suppose

T − T ′ ≥ ε. (B.27)

197

Since φ and φ′ are (τ, ε)-close, from Definition 2.6, for (T, J) ∈ dom φ satisfying T +J ≤

τ = max{T + J, T ′ + J ′}, there exists s such that (s, J) ∈ dom φ′ and

|T − s| < ε. (B.28)

By (s, J) ∈ dom φ′ and (B.27), it follows that s ≤ T ′ < T . Then, by (B.27), we have

|T − s| ≥ T − T ′ ≥ ε,

which contradicts (B.28). Therefore, (B.27) cannot hold. A similar contradiction can

be derived if we suppose T ′ − T ≥ ε. Therefore, we have |T − T ′| < ε.

Similarly, we prove J = J ′ by contradiction. Suppose

J > J ′. (B.29)

Then, from Definition 2.6, for (T, J) ∈ dom φ satisfying T+J ≤ τ = max{T+J, T ′+J ′},

there exists s such that (s, J) ∈ dom φ′. However, since (T ′, J ′) = max dom φ′ and

(B.29), such s does not exist. Therefore, (B.29) cannot hold. A similary contradiction

can also be derived if we suppose J < J ′. Therefore, we have J = J ′.

B.7.2 Closeness Guarantee

Next, we demonstrate that the operation of concatenation preserves the close-

ness between the hybrid arcs.

Proposition B.10. Given compact hybrid arcs φ1, φ2, φ′1, and φ′2 such that φ1 and

φ′1 are (τ1, ε1)-close and φ2 and φ′2 are (τ2, ε2)-close, where (T1, J1) = max dom φ1,

198

(T ′1, J
′
1) = max dom φ′1 and τ1 = max{T1 + J1, T

′
1 + J ′1}, then φ1|φ2 and φ′1|φ′2 are

(τ1 + τ2, ε1 + ε2)-close.

Proof. We show that φ = φ1|φ2 and φ′ = φ′1|φ′2 satisfy the following, as introduced in

Definition 2.6:

C1. for all (t, j) ∈ dom φ with t+ j ≤ τ1 + τ2, there exists s such that (s, j) ∈ dom φ′,

|t− s| < ε1 + ε2, and |φ(t, j)− φ′(s, j)| < ε1 + ε2;

C2. for all (t, j) ∈ dom φ′ with t+ j ≤ τ1 + τ2, there exists s such that (s, j) ∈ dom φ,

|t− s| < ε1 + ε2, and |φ′(t, j)− φ(s, j)| < ε1 + ε2.

First, we show that C1 holds. From Definition 3.5, it follows that dom φ = dom φ1 ∪

(dom φ2 + {(T1, J1)}), where (T1, J1) = max dom φ1. Then, for all (t, j) ∈ dom φ =

dom φ1 ∪ (dom φ2 + {(T1, J1)}) with t+ j ≤ τ1 + τ2, we show that C1 is satisfied when

1) (t, j) ∈ dom φ1 and when 2) (t, j) ∈ dom φ2 + {(T1, J1)}, respectively.

1. For all (t, j) ∈ dom φ such that (t, j) ∈ dom φ1, namely, t + j ≤ T1 + J1, given

that τ1 = max{T1 + J1, T
′
1 + J ′1}, it follows that

t+ j ≤ τ1 = max{T1 + J1, T
′
1 + J ′1}.

Since φ1 and φ′1 are (τ1, ε1)-close, there exists s′ such that (s′, j) ∈ dom φ′1, |t −

s′| < ε1, and |φ1(t, j) − φ′1(s′, j)| < ε1. Therefore, there exists s = s′ such

that (s, j) ∈ dom φ′1 ⊂ dom φ′, |t − s| < ε1 < ε1 + ε2, and |φ(t, j) − φ′(s, j)| =

|φ1(t, j)− φ′1(s, j)| < ε1 < ε1 + ε2. Hence, C1 is established.

199

2. For all (t, j) ∈ dom φ such that (t, j) ∈ (dom φ2 + {(T1, J1)}), namely, t + j ≥

T1 + J1, since φ2 and φ′2 are (τ2, ε2)-close, there exists s′ such that

(s′, j − J1) ∈ dom φ′2 (B.30)

|t− T1 − s′| < ε2, (B.31)

|φ2(t− T1, j − J1)− φ′2(s′, j − J1)| < ε2. (B.32)

Since φ1 and φ′1 are (τ1, ε1)-close where τ1 = max{T1 + J1, T
′
1 + J ′1}, by Lemma

B.9, we have

|T1 − T ′1| ≤ ε1 (B.33)

and

J1 = J ′1. (B.34)

By (B.30) and (B.34), it follows that s′ is such that

(s′ + T ′1, j) ∈ dom φ′2 + {(T ′1, J1)} = dom φ′2 + {(T ′1, J ′1)} ⊂ dom φ′.

Furthermore, because of (B.31) and (B.33), by the triangle inequality, it follows

that

|t− (s′ + T ′1)| ≤ |t− T1 − s′|+ |T1 − T ′1| < ε2 + ε1.

By (B.32), it follows that

|φ(t, j)− φ′(s′ + T ′1, j)| = |φ2(t− T1, j − J1)− φ′2(s′, j − J1)|

< ε2 < ε1 + ε2.

Therefore, we can find s = s′ + T ′1 such that (s, j) ∈ dom φ′, |t− s′| < ε1 + ε2, and

|φ(t, j)− φ′(s′, j)| < ε1 + ε2.

200

The proof for C2 follows a similar logic to the aforementioned arguments, achieved by

swapping φ and φ′. Therefore, φ1|φ2 and φ′1|φ′2 are (τ1 + τ2, ε1 + ε2)-close.

B.8 Definition of Truncation and Translation Operation

Definition B.11 (Truncation and translation operation). Given a function φ : dom φ→

Rn, where dom φ is hybrid time domain, and pairs of hybrid time (T1, J1) ∈ dom φ and

(T2, J2) ∈ dom φ such that T1 ≤ T2 and J1 ≤ J2, the function φ̃ : dom φ̃ → Rn is the

truncation of φ between (T1, J1) and (T2, J2) and translation by (T1, J1) if

1. dom φ̃ = dom φ∩ ([T1, T2]×{J1, J1 + 1, ..., J2})−{(T1, J1)}, where the minus sign

denotes Minkowski difference;

2. φ̃(t, j) = φ(t+ T1, j + J1) for all (t, j) ∈ dom φ̃.

201

Appendix C

Proof for Results in Chapter 5

C.1 Proof of Lemma 5.3

Given that ψbw is purely continuous, ψbw′ is purely continuous and, by (5.5), P1

is established immediately. By the Lipschitz continuity of the flow map f in Assumption

4.24, since φr is generated by (5.4), [27, Lemma 2] (also presented in the appendix as

Lemma B.6) establishes that |φr(T, 0)− φ(T, 0)| ≤ exp (Kf
xT)δ.

C.2 Proof of Lemma 5.4

Given that ψbw is purely discrete, ψbw′ is purely discrete and P1 is immediately

established by (5.5). Furthermore, since φr is generated by (5.4), in accordance with

202

Assumption 4.27, we derive the following inequality:

|φr(0, J)− φ(0, J)| ≤ exp(lnKg
x)|φr(0, J − 1)− φ(0, J − 1)|

≤ exp(2 lnKg
x)|φr(0, J − 2)− φ(0, J − 2)|

≤ ...

≤ exp(J lnKg
x)|φr(0, 0)− φ(0, 0)| = exp(J lnKg

x)δ,

thus establishing P2.

203

Appendix D

Proof for Results in Chapter 6

D.1 Supporting Result for Theorem 6.9

The forth coming Lemma D.1 shows that the pruning process guarantees the

existence of a vertex close to the optimal motion planning with a decreasing cost if a

vertex that is close enough to the optimal motion plan has been generated.

Lemma D.1 (Lemma 27 in [35]). Suppose Assumption 6.7 and Assumption 6.8 hold.

Let δc = δ−δBN−2δs. If vertex v ∈ Vactive is generated at iteration k so that xv ∈ Bδc(x∗)

where x∗ is a state on the motion plan with positive clearance δ, then for every iteration

k′ > k, then there exists a vertex v′ ∈ Vactive so that xv′ ∈ x∗+ (δ− δBN)B and cv′ ≤ cv.

Remark D.2. When a trajectory is generated that ends in Bδc(x∗), Lemma D.1 guar-

antees that there will always be an active vertex associated with a state in Bδ(x∗).

The forthcoming Lemma D.3 characterize the probability that a vertex that is

close to the optimal motion plan is selected by the best near selection function call.

204

Lemma D.3. (Lemma 28 in [35]) Suppose Assumption 6.7, Assumption 4.20, Assump-

tion 4.18 hold, if there exists v ∈ Vactive such that xv ∈ x∗ + δcB at iteration k, then the

probability that best near selection for propagation a vertex v′ such that xv′ ∈ x∗+δB

can be lower bounded by a positive constant γselect for every k′ > k.

D.2 Proof for Theorem 6.9

First, because the cost function c is Lipchitz continuous, non-decreasing, and

non-degenerate (Items 1, 2, 3.c, and 3.d in Assumption 6.5), and Lemma 4.15 guarantees

that the motion plan has positive clearance, a sequence of balls {Bi}Ni=0 centered at the

motion plan is constructed such that the costs of the truncation between the centers of

the consecutive balls are constant. Then, Lemma D.3 shows that the probability that

best near selection selects a vertex in Bi is positive and Lemma 4.33 and Lemma

4.35 show that the probability that new state generates a new vertex in Bi+1 is positive.

Therefore, by using induction, we can show that the probability that HySST generates

a solution that is close to the optimal motion plan converges to one as the number of

iterations goes to infinity. Lemma D.1 guarantees that the pruning process will only

improve the quality of the generated motion plan. Items 1) - 2) in Assumption 6.5

guarantee that the closeness between the generated motion plan and the optimal motion

plan leads to a bounded differences between their costs.

Since ψ∗ is assumed to have positive safety clearance δs > 0 and HySST is used

to solve P∗δf , then according to Lemma 4.15, ψ∗ is a motion plan to P∗δf with a positive

205

clearance at least δ = min{δs, δf}.

Then consider a sequence of hybrid time instance Shti := {(Ti, Ji) ∈ dom ψ∗}Ni=0

such that 0 = T0 + J0 < T1 + J1 < ... < TN + JN = T + J where (T, J) = max dom ψ∗,

and, for i = 0, 1, ..., N − 1 and some constant ∆cf ∈ R≥0, either of the following holds:

1. Ji = Ji+1 and c(φ̃∗(Ti,Ji)→(Ti+1,Ji+1)) = ∆cf ;

2. Ji+1 = Ji + 1 and Ti+1 = Ti.

Namely, using such a sequence of hybrid time instance, ψ∗ can be truncated into either,

say, Nf number of purely continuous segments whose cost equals ∆cf , or, say, Ng number

of purely discrete segments with a single jump such that

Nf +Ng = N. (D.1)

Denote the minimal cost of the purely discrete segments as ∆cj .

Constructing the sequence following the second item above is trivial because

it can be implemented by selecting all the hybrid time instances before and after all

the jumps in ψ∗. Note that the cost function is continuous, non-decreasing and non-

degeneracy along the state trajectory during flows because 3.a - 3.c in Assumption 6.5

are assumed. Suppose that [Ti, Ti+ ∆T]×{Ji} ⊂ dom ψ∗ for some ∆T > 0. Then there

exists ∆cf > 0 such that 0 = c(φ̃(Ti,Ji)→(Ti+0,Ji)) < ∆cf ≤ c(φ̃(Ti,Ji)→(Ti+∆T,Ji)). In the

meantime, given this ∆cf , there exists ∆t ∈ (0,∆T] such that c(φ̃(Ti,Ji)→(Ti+∆t,Ji)) =

∆cf . Therefore, the sequence of the hybrid time instances following the first item above

exists for a sufficiently small ∆cf .

From Shti, we can build a sequence of balls Sb := {ci + riB}Ni=0 in Rn such that

206

1. ci := φ∗(Ti, Ji) for all i = 0, 1, ..., N ;

2. ri := δ.

Then, denote δc = δ − δBN − 2δc. Let A
(k)
i denote event that at the k-th

iteration of HySST, a solution pair ψnew = (φnew, unew) is generated such that

1. φnew(0, 0) ∈ φ∗(Ti, Ji) + δB;

2. φnew(Tnew, Jnew) ∈ φ∗(Ti+1, Ji+1) + δcB where (Tnew, Jnew) = max dom φnew;

3. φnew is (τ , δ)-close to φ̃∗(Ti,Ji)→(Ti+1,Ji+1), where (Tnew, Jnew) = max dom φnew,

τ = max{Tnew + Jnew, Ti+1 − Ti + Ji+1 − Ji}.

Then, let E
(k)
i denote the event that from iteration j from 1 to k, at least one such ψnew

is generated, namely, at least one j such that A
(j)
i occurs.

Based on the definitions of the events E
(k)
i and A

(k)
i , the probability that event

E
(k)
i fails, denoted ¬E(k)

i , depends on a sequence of Ai events failing:

Pr(¬E(k)
i) = Pr(¬A(1)

i)× Pr(¬A(2)
i |¬A

(1)
i) · · ·Pr(¬A(k)

i |
k−1⋂
j=1

¬A(j)
i). (D.2)

The probability that ¬Aki occurs given
⋂k−1
j=1 ¬A

(j)
i is equivalent with

1. the probability that HySST fails to generate a vertex in the search tree such that

its associated state is in φ∗(Ti, Ji) + δcB, plus

2. the probability that HySST generates a vertex in the search tree such that its

associated state is in φ∗(Ti, Ji) + δcB but fails to generate a new solution pairs

ψnew = (φnew, unew) such that φnew(Tnew, Jnew) ∈ φ∗(Ti+1, Ji+1) + δcB where

207

(Tnew, Jnew) = max dom φnew, which can be characterized by the γselect in Lemma

D.3, and γfg := min{γf , γg} where γf comes from Lemma 4.33 and γg comes from

Lemma 4.35.

Therefore,

Pr(¬A(k)
i |

k−1⋂
j=1

¬A(j)
i) = Pr(¬Eki−1) + Pr(Eki−1)× Pr(φnew(Tnew, Jnew) /∈ φ∗(Ti, Ji) + δcB)

≤ Pr(¬Eki−1) + Pr(Eki−1)× (1− γselectγfg)

= 1− Pr(Eki−1)γselectγfg).

(D.3)

Using (D.2) and (D.3), we have

Pr(E
(k)
i) ≥ 1−

k∏
j=1

(1− Pr(Eji−1)γselectγfg)). (D.4)

Then we can use the following induction to prove that if limk→∞ Pr(E
(k)
i) = 1,

then limk→∞ Pr(E
(k)
i+1) = 1. If this holds, then eventually, HySST will eventually

generate a solution that is close to the optimal motion plan.

For the base case, limk→∞ Pr(E
k
0) = 1 is true, because when the random state

is executed for infinite number of times, eventually a sample will fall into φ∗(0, 0) + δcB.

Then we have

Pr(Ek1) ≥ 1− (1− γselectγfg)k. (D.5)

which leads to limk→∞ Pr(E
k
1) = 1.

For the induction step, assuming that limk→∞ Pr(E
k
i) = 1, we need to show

that limk→∞ Pr(E
k
i+1) = 1. Define y

(k)
i =

∏k
j=1(1−Pr(Eji−1)γselectγfg). The logarithm

208

of y
(k)
i behaves like the follows:

log y
(k)
i = log

k∏
j=1

(1− Pr(Eji−1)γselectγfg) =
k∑
j=1

log(1− Pr(Eji−1)γselectγfg). (D.6)

The above leads to the following:

log y
(k)
i <

k∑
j=1

−Pr(Eji−1)γselectγfg = −γselectγfg
k∑
j=1

Pr(Eji−1). (D.7)

Note that according to the induction assumption, limk→∞ Pr(E
k
i) = 1, then

limk→∞
∑k

j=1 Pr(E
j
i) =∞. Therefore,

lim
k→∞

log y
(k)
i+1 = −γselectγfg lim

k→∞

k∑
j=1

Pr(Eji) = −∞

which implies that

lim
k→∞

y
(k)
i+1 = 0.

With (D.4) and limk→∞ y
(k)
i+1 = 0, it can be shown that

lim
k→∞

Pr(Eki+1) = 1− lim
k→∞

y
(k)
i+1 = 1− 0 = 1.

Therefore, the probability that HySST finds a motion plan that is close to ψ∗

is converging to 1 as the number of iteration goes to infinite.

Note that when the event Aki occurs, φnew is (τ , δ)-close to φ̃∗(Ti,Ji)→(Ti+1,Ji+1),

and φnew and φ̃∗(Ti,Ji)→(Ti+1,Ji+1) are either both purely continuous or purely discrete.

If φnew and φ̃∗(Ti,Ji)→(Ti+1,Ji+1) are both purely continuous, since item 1 in Assumption

209

6.5 is assumed, then

|c(φnew)− c(φ̃∗(Ti,Ji)→(Ti+1,Ji+1))|

≤ Kc sup
∀(t,0)∈dom φnew∩dom φ̃∗(Ti,Ji)→(Ti+1,Ji+1)

{|φnew(t, 0)− φ̃∗(Ti,Ji)→(Ti+1,Ji+1)(t, 0)|}

= Kcδ.

(D.8)

If φnew and φ̃∗(Ti,Ji)→(Ti+1,Ji+1) are both purely discrete, since item 2 in Assumption 6.5

is assumed, then

|c(φnew)− c(φ̃∗(Ti,Ji)→(Ti+1,Ji+1))| ≤ Kd sup
∀j∈{0,1}

{|φnew(0, j)− φ̃∗(Ti,Ji)→(Ti+1,Ji+1)(0, j)|}

= Kdδ.

(D.9)

Denote the new vertex generated at this iteration as vinew which is possible to

be pruned in the forthcoming iteration. Note that φnew(Tnew, Jnew) ∈ φ∗(Ti, Ji) + δcB.

Therefore, Lemma D.1 guarantees that the vertex returned by the best near selection

function, denoted vi
′
new is such that

cvi′new
≤ cvinew

which implies that the pruning process will not affect (D.8) and (D.9).

Define Kmax := max{Kc,Kd}. Define ∆cmin := min{∆cf ,∆cg}. Because of

(D.8), (D.9) and (D.1), then difference between the cost of ψ∗ = (φ∗, u∗) and the cost

of ψ = (φ, u) constructed by concatenating N number of ψnew can be characterized as

210

follows

c(φ) ≤ c(φ∗) +NfKcδ +NgKdδ ≤ c(φ∗) +NKmaxδ

≤ c(φ∗) +
c(φ∗)

∆cmin
Kmaxδ = (1 +

Kmax × δ
∆cmin

)c(φ∗).

(D.10)

211

Bibliography

[1] Zlatan Ajanović, Enrico Regolin, Barys Shyrokau, Hana Ćatić, Martin Horn, and

Antonella Ferrara. Search-based task and motion planning for hybrid systems: Agile

autonomous vehicles. Engineering Applications of Artificial Intelligence, 121:105893,

2023.

[2] Berk Altin and Ricardo G. Sanfelice. On Model Predictive Control for Hybrid

Dynamical Systems. Technical report, University of California, Santa Cruz, Depart-

ment of Electrical and Computer Engineering, 2018. Password: HyMPC-03-18.

[3] Adam Ames, Nan Wang, and Ricardo G Sanfelice. A set-based motion planning

algorithm for aerial vehicles in the presence of obstacles exhibiting hybrid dynamics.

In 2022 IEEE Conference on Control Technology and Applications (CCTA), pages

583–588. IEEE, 2022.

[4] Patrick Billingsley. Probability and measure. John Wiley & Sons, 2017.

[5] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge

University Press, 2004.

212

[6] Michael S Branicky, Michael M Curtiss, Joshua Levine, and Stuart Morgan.

Sampling-based planning and control. In Proceedings of the 12th Yale Workshop

on Adaptive and Learning Systems, New Haven, CT. Citeseer, 2003.

[7] Michael S Branicky, Michael M Curtiss, Joshua A Levine, and Stuart B Morgan.

Rrts for nonlinear, discrete, and hybrid planning and control. In 42nd IEEE

International Conference on Decision and Control (IEEE Cat. No. 03CH37475),

volume 1, pages 657–663. IEEE, 2003.

[8] Richard L Burden. Numerical analysis. Brooks/Cole Cengage Learning, 2011.

[9] Jun Chai and Ricardo G Sanfelice. Forward invariance of sets for hybrid dynamical

systems (part i). IEEE Transactions on Automatic Control, 64(6):2426–2441, 2018.

[10] Peng Cheng. Sampling-based motion planning with differential constraints. Tech-

nical report, 2005.

[11] Paolo De Petris, Stephen J Carlson, Christos Papachristos, and Kostas Alexis.

Collision-tolerant aerial robots: A survey. arXiv:2212.03196, 2022.

[12] Alexandre Donzé. Breach, a toolbox for verification and parameter synthesis of

hybrid systems. In Computer Aided Verification: 22nd International Conference,

2010.

[13] Eugene Fink and Manuela Veloso. Prodigy planning algorithm. Technical report,

Carnegie-Mellon University Pittsburgh PA Dept of Computer Science, 1994.

213

[14] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver,

Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Integrated task and motion

planning. Annual Review of Control, Robotics, and Autonomous Systems, 4:265–

293, 2021.

[15] Thomas Gillespie. Fundamentals of vehicle dynamics. SAE International, 2021.

[16] Jake Gipple. The volume of n-balls. Rose-Hulman Undergraduate Mathematics

Journal, 15(1):14, 2014.

[17] Rafal Goebel, Ricardo G Sanfelice, and Andrew R Teel. Hybrid dynamical systems.

IEEE Control Systems Magazine, 29(2):28–93, 2009.

[18] Ken Goldberg. Completeness in robot motion planning. In Workshop on the

Algorithmic Foundations of Robotics, pages 419–429. Citeseer, 1994.

[19] Jessy W Grizzle, Gabriel Abba, and Franck Plestan. Asymptotically stable walking

for biped robots: Analysis via systems with impulse effects. IEEE Transactions on

Automatic Control, 46(1):51–64, 2001.

[20] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2):100–107, 1968.

[21] Sylvia L Herbert, Mo Chen, SooJean Han, Somil Bansal, Jaime F Fisac, and

Claire J Tomlin. Fastrack: A modular framework for fast and guaranteed safe

214

motion planning. In 2017 IEEE 56th Annual Conference on Decision and Control

(CDC), pages 1517–1522. IEEE, 2017.

[22] Mengxue Hou, Yingke Li, Fumin Zhang, Shreyas Sundaram, and Shaoshuai Mou.

An interleaved algorithm for integration of robotic task and motion planning. In

2023 American Control Conference (ACC), pages 539–544. IEEE, 2023.

[23] Qiang Huang, Kazuhito Yokoi, Shuuji Kajita, Kenji Kaneko, Hirohiko Arai, Noriho

Koyachi, and Kazuo Tanie. Planning walking patterns for a biped robot. IEEE

Transactions on Robotics and Automation, 17(3):280–289, 2001.

[24] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion

planning. The International Journal of Robotics Research, 30(7):846–894, 2011.

[25] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli, and Seth

Teller. Anytime motion planning using the RRT. In 2011 IEEE International

Conference on Robotics and Automation, pages 1478–1483. IEEE, 2011.

[26] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots.

In Autonomous Robot Vehicles, pages 396–404. Springer, 1986.

[27] Michal Kleinbort, Kiril Solovey, Zakary Littlefield, Kostas E Bekris, and Dan

Halperin. Probabilistic completeness of RRT for geometric and kinodynamic plan-

ning with forward propagation. IEEE Robotics and Automation Letters, 4(2):x–xvi,

2018.

[28] James J Kuffner, Satoshi Kagami, Koichi Nishiwaki, Masayuki Inaba, and Hirochika

215

Inoue. Dynamically-stable motion planning for humanoid robots. Autonomous

Robots, 12(1):105–118, 2002.

[29] James J Kuffner and Steven M LaValle. RRT-connect: An efficient approach to

single-query path planning. In Proceedings 2000 ICRA. Millennium Conference.

IEEE International Conference on Robotics and Automation. Symposia Proceedings

(Cat. No. 00CH37065), volume 2, pages 995–1001. IEEE, 2000.

[30] James J Kuffner, Koichi Nishiwaki, Satoshi Kagami, Masayuki Inaba, and Hirochika

Inoue. Footstep planning among obstacles for biped robots. In Proceedings 2001

IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding

the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180),

volume 1, pages 500–505. IEEE, 2001.

[31] Tobias Kunz and Mike Stilman. Kinodynamic RRTs with fixed time step and

best-input extension are not probabilistically complete. In Algorithmic Foundations

of Robotics XI, pages 233–244. Springer, 2015.

[32] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning.

1998.

[33] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[34] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic planning.

The International Journal of Robotics Research, 20(5):378–400, 2001.

216

[35] Yanbo Li, Zakary Littlefield, and Kostas E Bekris. Asymptotically optimal sampling-

based kinodynamic planning. The International Journal of Robotics Research,

35(5):528–564, 2016.

[36] Maxim Likhachev, David I Ferguson, Geoffrey J Gordon, Anthony Stentz, and

Sebastian Thrun. Anytime dynamic A*: An anytime, replanning algorithm,. In

ICAPS, volume 5, pages 262–271, 2005.

[37] Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar. Search-based mo-

tion planning for quadrotors using linear quadratic minimum time control. In 2017

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 2872–2879. IEEE, 2017.

[38] Jauwairia Nasir, Fahad Islam, Usman Malik, Yasar Ayaz, Osman Hasan, Mushtaq

Khan, and Mannan Saeed Muhammad. RRT*-SMART: A rapid convergence imple-

mentation of RRT. International Journal of Advanced Robotic Systems, 10(7):299,

2013.

[39] Oren Nechushtan, Barak Raveh, and Dan Halperin. Sampling-diagram automata: A

tool for analyzing path quality in tree planners. In the 9th International Workshop

on the Algorithmic Foundations of Robotics, pages 285–301. Springer, 2010.

[40] Truong Nghiem, Sriram Sankaranarayanan, Georgios Fainekos, Franjo Ivancić, Aarti

Gupta, and George J Pappas. Monte-carlo techniques for falsification of temporal

217

properties of non-linear hybrid systems. In Proceedings of the 13th ACM Interna-

tional Conference on Hybrid Systems: Computation and Control, 2010.

[41] Pedro M Pinheiro, Armando A Neto, Ricardo B Grando, César B da Silva, Vi-

vian M Aoki, Dayana S Cardoso, Alexandre C Horn, and Paulo LJ Drews Jr.

Trajectory planning for hybrid unmanned aerial underwater vehicles with smooth

media transition. Journal of Intelligent & Robotic Systems, 104(3):46, 2022.

[42] Ahmed Hussain Qureshi, Yinglong Miao, Anthony Simeonov, and Michael C Yip.

Motion planning networks: Bridging the gap between learning-based and classical

motion planners. IEEE Transactions on Robotics, 37(1):48–66, 2020.

[43] Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business

Media, 2011.

[44] John H Reif. Complexity of the mover’s problem and generalizations. In 20th Annual

Symposium on Foundations of Computer Science (sfcs 1979), pages 421–427. IEEE

Computer Society, 1979.

[45] Tomasz Rybus. Point-to-point motion planning of a free-floating space manipulator

using the rapidly-exploring random trees (RRT) method. Robotica, 38(6):957–982,

2020.

[46] Ricardo Sanfelice, David Copp, and Pablo Nanez. A toolbox for simulation of hybrid

systems in matlab/simulink: Hybrid equations (HyEQ) toolbox. In Proceedings of

218

the 16th International Conference on Hybrid Systems: Computation and Control,

pages 101–106, 2013.

[47] Ricardo G Sanfelice. Hybrid feedback control. Princeton University Press, 2021.

[48] Brendan E Short and Ricardo G Sanfelice. A hybrid predictive control approach to

trajectory tracking for a fully actuated biped. In 2018 Annual American Control

Conference (ACC), pages 3526–3531. IEEE, 2018.

[49] Mengxuan Song, Nan Wang, Timothy Gordon, and Jun Wang. Flow-field guided

steering control for rigid autonomous ground vehicles in low-speed manoeuvring.

Vehicle System Dynamics, 57(8):1090–1107, 2019.

[50] Mengxuan Song, Nan Wang, Jun Wang, and Timothy Gordon. A fluid dynamics

approach to motion control for rigid autonomous ground vehicles. In Dynamics of

Vehicles on Roads and Tracks Vol 1, pages 347–352. CRC Press, 2017.

[51] Zhitao Song, Linzhu Yue, Guangli Sun, Yihu Ling, Hongshuo Wei, Linhai Gui,

and Yun-Hui Liu. An optimal motion planning framework for quadruped jumping.

In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 11366–11373. IEEE, 2022.

[52] Siyu Teng, Xuemin Hu, Peng Deng, Bai Li, Yuchen Li, Yunfeng Ai, Dongsheng Yang,

Lingxi Li, Zhe Xuanyuan, Fenghua Zhu, et al. Motion planning for autonomous

driving: The state of the art and future perspectives. IEEE Transactions on

Intelligent Vehicles, 2023.

219

[53] Prahlad Vadakkepat, Tong Heng Lee, and Liu Xin. Application of evolutionary

artificial potential field in robot soccer system. In Proceedings Joint 9th IFSA World

Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569), pages

2781–2785. IEEE, 2001.

[54] Nan Wang, Stefano Di Cairano, and Ricardo Sanfelice. A switched reference

governor for high performance trajectory tracking under state and input constraints.

[55] Nan Wang, Stefano Di Cairano, and Ricardo G Sanfelice. A switched reference

governor for high performance trajectory tracking control under state and input

constraints. In 2024 American Control Conference (ACC), pages 4663–4668. IEEE,

2024.

[56] Nan Wang and Ricardo G Sanfelice. A rapidly-exploring random trees motion

planning algorithm for hybrid dynamical systems. In 2022 IEEE 61st Conference

on Decision and Control (CDC), pages 2626–2631. IEEE, 2022.

[57] Nan Wang and Ricardo G Sanfelice. HySST: A stable sparse rapidly-exploring

random trees optimal motion planning algorithm for hybrid dynamical systems.

arXiv preprint arXiv:2305.18649, 2023.

[58] Nan Wang and Ricardo G Sanfelice. HySST: An asymptotically near-optimal

motion planning algorithm for hybrid systems. In 2023 62nd IEEE Conference on

Decision and Control (CDC), pages 2865–2870. IEEE, 2023.

[59] Nan Wang and Ricardo G Sanfelice. HyRRT-Connect: A bidirectional rapidly-

220

exploring random trees motion planning algorithm for hybrid systems. IFAC-

PapersOnLine, 2024.

[60] Nan Wang and Ricardo G Sanfelice. HyRRT-Connect: A bidirectional rapidly-

exploring random trees motion planning algorithm for hybrid systems. arXiv

preprint arXiv:2403.18413, 2024.

[61] Nan Wang and Ricardo G Sanfelice. Motion planning for hybrid dynamical systems:

Framework, algorithm template, and a sampling-based approach. arXiv preprint

arXiv:2406.01802, 2024.

[62] Nan Wang and Ricardo G Sanfelice. Motion planning for hybrid dynamical systems:

Framework, algorithm template, and a sampling-based approach. To appear in the

International Journal of Robotics Research, 2025.

[63] Nan Wang, Mengxuan Song, Jun Wang, and Timothy Gordon. A flow-field guided

method of path planning for unmanned ground vehicles. In 2017 IEEE 56th Annual

Conference on Decision and Control (CDC), pages 2762–2767. IEEE, 2017.

[64] Albert Wu, Sadra Sadraddini, and Russ Tedrake. R3t: Rapidly-exploring random

reachable set tree for optimal kinodynamic planning of nonlinear hybrid systems. In

2020 IEEE International Conference on Robotics and Automation (ICRA), pages

4245–4251. IEEE, 2020.

[65] Beverly Xu, Nan Wang, and Ricardo Sanfelice. cHyRRT and cHySST: Two motion

221

planning tools for hybrid dynamical systems. arXiv preprint arXiv:2411.11812,

2024.

[66] Jiaming Zha. Expanding the Operational Environments of UAVs: Design, Control,

and Motion Planning for a Tensegrity Aerial Vehicle and an Uncrewed Underwater

Aerial Vehicle. University of California, Berkeley, 2023.

[67] Jiaming Zha and Mark W Mueller. Exploiting collisions for sampling-based multi-

copter motion planning. In 2021 IEEE International Conference on Robotics and

Automation (ICRA), pages 7943–7949. IEEE, 2021.

222

	Notations
	List of Figures
	List of Tables
	Dedication
	Acknowledgments
	Abstract
	Introduction
	Motivation
	Basic Operations on the Trajectory for Hybrid Dynamical Systems
	Related Work
	Contributions

	Sampling-based Feasible Motion Planning for Hybrid Dynamical Systems
	Related Work
	Contributions

	A Bidirectional Sampling-based Motion Planning Approach for Hybrid Dynamical Systems
	Related Work
	Contributions

	Sampling-based Optimal Motion Planning for Hybrid Dynamical Systems
	Related Work
	Contributions

	Future Directions and Potential Applications

	Preliminaries
	Hybrid Dynamical System Model

	Framework, Basic Operations, and Algorithm Template
	Feasible Motion Planning Problem for Hybrid Dynamical Systems
	Reversal, Concatenation, and Truncation of Solutions to Hybrid Dynamical Systems
	A Forward/Backward Propagation Algorithm Template
	Backward-in-time Hybrid Dynamical Systems
	Propagation Operation
	Construction of Motion Plans
	Forward/Backward Propagation Algorithm Template and Property Analysis

	Time Complexity Analysis
	Software Tool for Motion Planning for Hybrid Dynamical Systems

	Sampling-based Feasible Motion Planning for Hybrid Dynamical Systems
	Overview
	Hybrid Input Library
	Continuous Dynamics Simulator
	Discrete Dynamics Simulator
	HyRRT Algorithm
	T.init
	random_state
	nearest_neighbor
	new_state
	T.add_vertex and T.add_edge
	Solution Checking during HyRRT Construction

	Probabilistic Completeness Analysis
	Clearance of Motion Plan and Inflation of a Hybrid Dynamical System
	Assumptions
	Probabilistic Completeness Guarantee
	Probabilistic Guarantees on the Function Calls nearest_neighbor and new_state
	Probabilistic Completeness Guarantee of Finding a Motion Plan with Positive Clearance
	Proof of Theorem 4.30

	HyRRT Software Tool for Motion Planning for Hybrid Dynamical Systems and Examples

	A Bidirectional Sampling-based Motion Planning Approach for Hybrid Dynamical Systems
	Overview
	HyRRT-Connect Algorithm
	T.init
	nearest_neighbor
	new_state
	T.add_vertex and T.add_edge

	Motion Plan Identification and Reconstruction
	Same State Associated with Vertices in Tfw and Tbw
	Reconstruction Process
	Connecting Forward and Backward Search Trees via Jump

	Software Tool and Simulation Results
	Discussion on Parallel Implementation
	Discussion on Probabilistic Completeness

	Sampling-based Optimal Motion Planning for Hybrid Dynamical Systems
	Problem Statement
	Overview
	HySST Algorithm
	T.init
	is_vertex_locally_the_best
	prune_dominated_vertices
	random_state
	best_near_selection
	new_state
	Vactive.add_vertex and E.add_edge

	Asymptotic Near-optimality Analysis
	HySST Software Tool for Optimal Motion Planning Problems for Hybrid Dynamical Systems

	Conclusion and Future Work
	Summary
	Future Directions

	Proof for Results in Chapter 3
	Proof of Proposition 3.9
	Proof of Proposition 3.13
	Proof of Proposition 3.19

	Proof for Results in Chapter 4
	A Computational Framework to Simulate Continuous Dynamics
	Numerical integration scheme model
	Zero-crossing detection model to approximate
	A computational framework to simulate continuous dynamics

	Proof of Proposition 4.14
	Theoretical Tools to Prove Proposition 4.14
	Proof of Proposition 4.14

	Proof of Lemma 4.15
	Proof of Lemma 4.31
	Proof of Lemma 4.33
	Supporting Lemmas to Prove Lemma 4.33
	Proof of Lemma 4.33

	Proof of Lemma 4.35
	Closeness Guarantee between the Concatenation Results of Hybrid Arcs
	Supporting Lemma
	Closeness Guarantee

	Definition of Truncation and Translation Operation

	Proof for Results in Chapter 5
	Proof of Lemma 5.3
	Proof of Lemma 5.4

	Proof for Results in Chapter 6
	Supporting Result for Theorem 6.9
	Proof for Theorem 6.9

	Bibliography

