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Abstract 

To inform Explainable AI (XAI) design for updating users’ 
beliefs about AI based on their mental models, we examined 
the similarities and differences between humans and AI in 
object detection in driving scenarios. In humans, individuals 
differed in adopting focused or explorative attention strategies, 
with better performance associated with the focused strategy. 
AI (Yolo-v5s) had higher similarity in attended features to the 
focused than the explorative strategy in humans, and achieved 
human-expert-level performance in vehicle detection even in 
difficult cases such as occlusion and degradation. In contrast, 
it performed much poorer than humans in detecting humans 
with low attended feature similarity due to humans’ attention 
bias for stimuli with evolutionary significance. Also, higher 
similarity to humans’ attended features was associated with 
better AI performance, suggesting that human attention may be 
used for guiding AI design. These findings have significant 
implications for both AI and XAI designs. 

Keywords: eye movements; object detection; EMHMM; 
artificial intelligence; explainable AI 

Introduction 
Deep learning methods and availability of large datasets have 
revolutionized Artificial Intelligence (AI) research and at the 
same time demand more research on human-AI interaction 
(Lindebaum et al., 2020). Although many Explainable AI 
(XAI) methods have been proposed to help humans visualize 
AI’s operations and decision-making processes, the 
understanding of how humans perceive and understand AI 
through these visualizations remains very limited (Hsiao, 
Ngai, et al., 2021; Mueller et al., 2019; Páez, 2019). In 
particular, in understanding others’ behavior, humans often 
attribute mental states to others and to selves, an important 
ability in social interaction referred to as theory of mind 
(Frith & Frith, 2005). Thus, highlighting similarities and 
differences between AI and human decision-making 
processes may be essential for explanations that can truly 
enhance human understanding of AI. With the rapid 
advances, several current AI systems have been claimed to 
match or even outperform humans. For instance, PReLU-nets 
became the first model to surpass human-level performance 

(5.1% top-5 error) on the ImageNet dataset with a 4.94% top-
5 error (He et al., 2015). In medicine, fine-grained methods 
could match expert physicians in performance in detecting 
skin cancer and diabetic retinopathy (Esteva et al., 2017; 
Gulshan et al., 2019). Nevertheless, it remains unclear 
whether these AI models employ similar strategies to humans 
in order to achieve or surpass human-level performance. 

Early attempts to compare human and deep neural 
networks (DNNs) in image classification have been made. 
For example, Lake et al. (2015) found that human category 
typicality could be predicted by a DNN trained for 
classification on raw naturalistic images. Kheradpisheh et al. 
(2016) found that DNNs could use representations consistent 
with humans. These findings suggest that AI models may 
share similar strategies and internal representations with 
humans. However, some differences have been noted. For 
example, Geirhos et al. (2017) argued that in visual object 
recognition, the human visual system is more robust to 
various image conditions, including contrast reduction, 
noises, or distortions. Indeed, a fundamental difference 
between AI and humans is in their attention mechanisms: 
humans process bits of information at a time through a 
sequence of eye fixations, whereas AI processes all 
information simultaneously (Qi et al., 2023a). Nonetheless, 
humans are able to recognize the global scene gist across the 
entire image at a glance, and this information is sufficient to 
guide visual search and plan subsequent attention shifts 
(Navon, 1977; Oliva & Torralba, 2006; Wolfe et al., 2022). 
Top-down factors, including experience, task demands, and 
age, influence how people plan eye fixations to acquire 
information from an image (Betz et al., 2010; Hsiao & Chan, 
2023; Hsiao, An, et al., 2021). In contrast, AI systems 
typically focus on bottom-up information and lack top-down 
attention to guide object detection and recognition (Oliva et 
al., 2003). 

Although AI and humans may differ in the way they extract 
visual information, it remains possible that similar features, 
which are diagnostic to the task, are used by human experts 
and best-performing AI models, resulting in similar levels of 
performance. Here we aimed to examine this possibility by 
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comparing AI and human performance and attended features 
in object detection in driving scenarios due to its importance 
in self-driving applications where safety is a critical concern. 
In particular, we examined whether AI and humans differed 
in difficult object detection conditions including occlusion 
and degradation (i.e., blurry/low spatial frequency dominant 
cases). In these difficult cases, humans typically rely on 
context and prior experience to identify critical features for 
successful detection (Shulman & Wilson, 1987). It remains 
unclear whether AI systems can learn to perform the task in 
a similar way. Previous research has suggested that AI 
systems may not perform as well as humans in these difficult 
conditions (Zhang et al., 2018; see Gilroy et al., 2021 for a 
review). However, with recent advances in both the model 
design and training methods, it is possible that state-of-the-
art AI systems have learned to identify critical features 
similar to humans even for difficult cases. 

In addition, humans and AI may differ in detecting object 
categories with evolutionary significance to humans. More 
specifically, humans are shown to have category-specific 
biases in object detection, where detection of animals is more 
spontaneous and reliable than that of artificial objects. These 
biases can be attributed to ancestral influence (New et al., 
2007; Öhman, 2007). In particular, humans show high 
sensitivity in detecting human bodies and faces (Downing et 
al., 2001; Hodzic et al., 2009). fMRI studies have revealed 
cortical regions that correspond uniquely to human faces and 
bodies, suggesting that visual perception of these categories 
is distinct from others (e.g., Aleong & Paus, 2010; Downing 
et al., 2001; Kanwisher et al., 1997). This category-specific 
bias cannot be explained by visual characteristics or objects’ 
attractiveness alone, suggesting that human object detection 
systems prioritize stimuli with evolutionary significance. 
Thus, human observers may outperform AI models 
particularly in detecting humans as compared with artificial 
object categories such as vehicles in driving scenarios.    

Accordingly, here we examined humans’ and AI systems’ 
performance and attended features in detecting vehicles and 
humans in driving scenarios, and how they were affected by 
occlusion and degradation conditions. Humans’ attended 
features were measured using eye tracking, and AI’s attended 
features were generated using a saliency-based XAI. Since 
humans may differ significantly from one another in eye 
movement patterns during object detection (Boot et al., 2009; 
Hsiao, Chan, et al. 2021), we used a data-driven machine-
learning model-based approach, Eye Movement analysis 
with Hidden Markov Models (EMHMM; Chuk et al., 2014) 
with co-clustering (Hsiao, Lan, et al., 2021), to discover 
representative participant groups where group members 
adopted similar eye movement patterns to one another across 
stimuli. We then examined whether a particular eye 
movement pattern group was associated with better object 
detection performance (i.e., experts), and compared it with a 
widely used object detection AI model, Yolo-v5s,  which has 
great real-time performance and thus has been commonly 
used for driving scenarios (Redmon et al., 2016). We 
hypothesized that humans may outperform Yolo-v5s in 

detecting humans but not in detecting vehicles, and they may 
have higher similarity in detecting vehicles than detecting 
humans. Both humans and Yolo-v5s may be similarly 
affected by occlusion and degradation. Assuming that human 
experts attended to the most critical features for 
vehicle/human detection, higher similarity between Yolo-
v5s’ and humans’ attended features may be associated with 
better Yolo-v5s’ performance. 

Study 1: Humans vs. AI in Detecting Vehicles  

Methods 
Participants We recruited 60 participants with normal or 
corrected-to-normal vision, aged 18 to 40 (M = 23.9; SD = 
4.33; 48 females). To facilitate identification of experts, all 
participants had a driver’s license. 

 
Materials and Apparatus The Berkeley DeepDrive 
100KImage (BDD100K) Dataset was used (Yu et al., 2020).  
It comprises 10 target categories. We chose the car, truck, and 
bus categories as the vehicle target in this task. Previous 
research has suggested a location memory limit of 3 to 5 
items in young adults (Cowan, 2010). Accordingly, we 
selected all images with 1 to 4 vehicle targets to form our 
stimulus set (1366 images). Occlusion and degradation 
conditions in each image were rated according to the majority 
choice of three human raters (with good inter-rater reliability, 
Occlusion: α = .881; Degradation: α = .877; Cronbach, 1951). 
Images with any target occluded by any other object or the 
image boundary were rated as ‘occluded.’ Images containing 
any target whose feature identification was influenced by 
night vision, motion blur, uneven illumination, shadow, or 
light reflection were rated as ‘degraded.’ We assessed Yolo-
v5s’ performance on this stimulus set. We then randomly 
selected 160 images as the stimuli for the human study to 
compare AI and human performance and attention maps.  

In the human study, the stimuli were displayed one at a 
time at the center of a 15.6-inch monitor (1920 x 1080 pixels), 
spanning 34.2 ° x 20.8° of visual angle at a viewing distance 
of 55 cm. Participants' eye movements were recorded using 
EyeLink 1000 Plus. A nine-point calibration procedure was 
performed before the experiment and occurred whenever 
drift check error exceeded 1° of visual angle. 

 
Design EMHMM with co-clustering was used to discover 
representative eye movement pattern groups in the 
participants and quantify eye movement pattern similarities 
among the participants (See Eye Movement Analysis for 
details). We examined whether participants belonging to 
different representative pattern groups differed significantly 
in performance using an independent sample t-test and 
considered the better-performing group as the human experts 
to be compared with Yolo-v5s. We conducted by-items 
ANOVA to examine the effect of occlusion and degradation 
(as between-item variables)  on Yolo-v5s’ performance over 
the 1366 images. Then, we conducted ANOVA with humans 
vs. AI as an additional (within-item) independent variable to 
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compare the performance of Yolo-v5s with human experts on 
the 160 randomly selected images. Correlation analyses were 
used to measure the similarity between the attention 
strategies of the human experts and Yolo-v5s and to examine 
the relationship between their similarity and  Yolo-v5s’ 
performance. 

 
Procedure Each trial started with a fixation cross at the 
screen center. The experimenter initiated the stimulus 
presentation when a stable fixation was observed at the 
fixation cross. Participants were asked to detect all vehicle 
targets in the image and press a key as soon as they thought 
they had detected all. Their eye movements during the visual 
search before the key press were used for data analysis. To 
assess detection performance, immediately after the key 
press, participants were asked to use a mouse click to place a 
marker at each detected target location on a blank screen. 
Then, they were asked to click again on the same objects they 
had clicked previously on the original image to confirm their 
selection (Figure 1). Here we reported the results based on 
the clicks on the blank screen (similar results were obtained 
using the clicks on the original image). Performance was 
assessed by hit rate: the number of correctly detected targets 
divided by the total number of targets (same for Yolo-v5s). 
Haladjian and Pylyshyn (2011) reported an average location 
error of 2.2° of visual angle in a spatial memory task with 
clicking responses. Accordingly, we used 64-pixel (2.2°) 
location error tolerance when calculating the hit rate.  

 

 
 

Figure 1: Procedure of the object detection task 
 
Eye Movement Analysis EMHMM with co-clustering was 
used. More specifically, each participant’s eye movement 
data for each stimulus was summarized using a hidden 
Markov model (HMM) with personalized regions of interest 
(ROIs) and a transition matrix indicating the transition 
probabilities among the ROIs. The optimal number of ROIs 
for each HMM was determined from a range of 1 to 5 using 
a variational Bayesian approach. Each HMM was trained 300 
times to select the model with the greatest log-likelihood. 
Participants were co-clustered into two pattern groups (A and 
B) where group members used similar eye movement 
patterns to one another across stimuli. A representative HMM 
with the number of ROIs set to the median number of the 
individual HMMs was generated for each group and each 
stimulus. We repeated the co-clustering procedure 300 times 
to select the model with the greatest log-likelihood. 

Following previous studies (e.g., Hsiao, Lan, et al., 2021), 

we quantified each participant’s attention strategy along the 
dimension contrasting the two group patterns using the AB 
scale: (A – B)/(A + B), where A and B are the log-likelihoods 
of a participant’s data generated by Pattern Group A and B 
respectively. Larger/positive AB scales indicate higher 
similarity to Group A in contrast to Group B. 

 
Human & AI Attention Maps To compare human and AI 
attention strategies, we generated human attention maps by 
applying a Gaussian smoothing kernel with a 30-pixel SD 
(equivalent to 1° of visual angle) to each fixation location 
over all (expert) participants. AI’s attention (i.e., saliency) 
maps were generated by FullGrad-CAM++ algorithm, an 
XAI method designed for object detection model (Liu et al., 
submitted). Assume Nobj is the total number of detected 
objects, and  with m = 1, 2 …, Nobj is the output classification 
probability of m-th detected object, the FullGrad-CAM++ 
can be defined as:  

*

1 1

obj chN N m
k

F k
m k

yS ReLU ReLU A
A

µ
= =

   ∂
=      ∂   
∑ ∑ 

,    (1) 

where 𝜇𝜇 is the max-min normalization function that 
normalizes the data map to scale between 0 to 1, Ak is the 
activation map in the k-th layer, Nch is the number of channels 
in Ak, ⨀ is the Hadamard product, and ReLu is the rectified 
linear unit function. This work computed the FullGrad-
CAM++-based saliency maps using the last convolutional 
layer of the backbone in Yolo-v5s. By removing the global 
average pooling operation on gradient term, this method can 
better capture spatial information in object detection than the 
vanilla Grad-CAM and Grad-CAM++ methods, making its 
generated saliency maps more faithful. (Liu et al., 2023a, 
2023b; Zhao & Chan, 2022). We used Pearson correlation 
coefficient (PCC) to assess the similarity between human and 
AI attention maps (Le Meur & Baccino, 2013). 
 

 
 

Figure 2: The focused and explorative eye movement 
pattern group for vehicle detection. Ellipses show ROIs as 
2-D Gaussian emissions. Priors show probabilities of the 
first fixation landing on each ROI and transition matrices 

show transition probabilities among the ROIs. 

Results 
Human Attention Strategy and Its Association with 
Performance EMHMM with co-clustering resulted in the 
focused and explorative pattern groups/attention strategies 
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(Figure 2). Participants using the focused strategy preferred 
to scan along the horizon, where vehicle targets usually 
occur. In contrast, those using the explorative strategy had 
larger/rounder ROIs, scanning across a broader area beyond 
the horizon. Accordingly, we referred to the AB scale as the 
FE (Focused-Explorative) scale. Pattern group by stimulus 
mixed ANOVA analysis on KL divergence estimation 
revealed that the two groups differed significantly, F =5.642, 
p < .001, η2

p = .089, and this effect interacted with stimulus, 
F(1, 159) = 2.16, p < .001, η2

p = .036, indicating that this 
group difference was larger for some stimuli than others. 

Participants adopting the focused strategy outperformed 
those using the explorative strategy  (Focused: M = .756, SD 
= .07; Explorative: M = .713, SD = .04), t(58) = 2.61, p = 
.012, d = .842. Consistent with this finding, participants’ 
attention strategies as assessed by the FE scale showed a 
positive correlation with performance, r(58) = .303, p = .019.  
 
Effect of Occlusion and Degradation in Humans vs. AI In 
AI’s (Yolo-v5s) performance over the stimulus set (1366 
images), the mean hit rate was .759 (SD = .295). There were 
main effects of occlusion, F(1, 1362) = 4.63, p = .032, η2

p = 
.003, and degradation, F(1, 1362) = 99.28, p < .001, η2

p = 
.068, with better performance in the non-occluded and the 
non-degraded conditions respectively. The interaction 
between occlusion and degradation was significant, F(1, 
1362) = 17.48, p < .001, η2

p = .013:  The occlusion effect was 
significant in the non-degraded condition, t = 3.56, p = .002, 
d = .474, but not in the degraded condition, t = 2.21, p = .120, 
d = .152.  

When we compared human experts (those using the 
focused strategy) and Yolo-v5s on their performance in the 
160 randomly selected images (Figure 3), there was no main 
effect of humans vs. AI, F(1, 156) = 0.35, p = .557, η2

p  = 
.002, indicating that human experts (M = .820, SE = .023) and 
AI had comparable performance (M = .809, SE = .029; Figure 
4). The main effect of occlusion was marginally significant, 
F(1, 156) = 3.75, p = .055, η2

p = .023, and the main effect of 
degradation was significant, F(1, 156) = 13.36, p < .001, η2

p 
= .079.  However, they did not interact with humans vs. AI 
(Occlusion: F(1, 156) = 0.02, p = .902, η2

p = .000; 
Degradation: F(1, 156) = 1.45, p = .861, η2

p = .009), 
suggesting that occlusion and degradation influenced humans 
and Yolo-v5s similarly. 

 
 

Figure 3: Difference in vehicle detection performance 
between humans and Yolo-v5s under occlusion and 

degradation conditions (error bars: 95% CI; *p < .05, **p < 
.01, ***p < .001). 

 
Do Yolo-v5s and Humans Attend to Similar Features 
when Detecting Vehicles? When we examined similarities 
between human and AI attention maps, we found that AI 
attention maps had a higher similarity to the focused group 
(M = .659, SD = .205) than the explorative group (M = .644, 
SD = .204) in humans,  t(159) = 2.55, p = .012, d = .202. This 
result showed that AI’s attention strategy was more similar to 
the participant group with better detection performance  (See 
Figure 4A for an example). In addition, higher similarity of 
AI’s attention strategies to human experts’ was associated 
with better AI performance, r(158) = .408, p < .001. This 
correlation remained significant when we used only the trials 
where AI outperformed human experts, r(156) = .394, p < 
.001. This result suggested that features attended by human 
experts could be used as guidance for object detection AI to 
enhance their performance (Figure 4B). 

 

 
 

Figure 4: (A) Example showing high similarity between 
attended features of AI and human experts. (B) Positive 

correlation between Yolo-v5s’ attended feature similarity 
with human experts and Yolo-v5s’ performance (in selected 

trials where it outperformed humans).   

Study 2: Humans vs. AI in Detecting Humans  

Methods 
Participants Following Study 1’s criteria, we recruited 60 
participants aged 18 to 40 (M = 24.4; SD = 4.86; 48 females).  
 
Materials and Apparatus The stimuli selection was similar 
to Study 1: 160 stimuli with human targets were randomly 
selected from all images with 1 to 4 human targets (2461 in 
total), including pedestrians and riders. The inter-rater 
reliability for occlusion (α = .886) and degradation (α = .769) 
ratings were relatively high.  
 
Design and Procedure The design and procedure were 
identical to Study 1, and similar for eye movement analysis 
and the generation of human and AI attention maps. 

Results 
Human Attention Strategy and Its Association with 
Performance Consistent with Study 1, EMHMM with co-
clustering resulted in the focused and explorative pattern 
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groups (Figure 5) that differed significantly: Pattern group by 
stimulus ANOVA on KL divergence estimation showed a 
significant main effect of pattern group: F = 4.41, p < .001, 
η2

p = .07 (It interacted with stimulus, F = 3.62, p < .001, η2
p 

= .05). Participants' eye movement patterns assessed by the 
FE scale revealed a positive correlation with performance, 
r(58) = .318, p = .013, although t-test on pattern group 
difference in performance did not reach statistical 
significance (Focused: M = .688, SD = .08; Explorative: M = 
.647, SD = .09), t(58) = 1.55, p = .127, d = .499.  
 

 
 

Figure 5: The focused and explorative eye movement 
pattern group for human detection. Ellipses show ROIs as 2-

D Gaussian emissions.  
 
Effect of Occlusion and Degradation in Humans vs. AI In 
Yolo-v5s’ performance over the stimulus set (2461 images), 
the mean hit rate was .473 (SD = .435). There were main 
effects of occlusion, F(1, 2457) = 7.41, p = .007, η2

p = .003, 
and degradation, F(1, 2457) = 8.89, p = .003, η2

p = .004: It 
performed in the non-occluded and in the non-degraded 
conditions respectively. The design and procedure were 
identical to Study 1, and similar for eye movement analysis 
and the generation of human and AI attention maps. 

 

 
 

Figure 6: Difference in human detection performance 
between humans and Yolo-v5s under occlusion and 

degradation conditions (error bars: 95% CI; *p < .05, **p < 
.01, ***p < .001). 

 
Since the FE scale was positively correlated with 

performance, we used participants in the focused group as 
experts in the analysis. When we compared them with Yolo-
v5s on their performance in the 160 randomly selected 
images, there was a main effect of humans vs. AI, F(1, 156) 
= 14.90, p < .001, η2

p  = .087, indicating that humans (M = 

.728, SE = .059 ) outperformed Yolo-v5s (M = .441, SE = 

.090). The main effects of occlusion, F(1, 156) = 1.09, p = 

.297, η2
p = .007, and degradation were not significant, F(1, 

156) = 0.39, p = .534, η2
p  = .002. In addition, occlusion and 

degradation did not interact with humans vs. AI (Occlusion: 
F(1, 156) = 0.37, p = .902, η2

p = .000; Degradation: F(1, 156) 
= 0.07, p = .790, η2

p = .000). Thus, Yolo-v5s performed 
poorly regardless of occlusion and degradation conditions 
(Figure 6). 
 
Do Yolo-v5s and Humans Attend to Similar Features 
when Detecting Humans? The similarities between human 
and AI attention maps were low due to Yolo-v5s’ poorer 
performance than humans (Figure 7A). Also, AI attention 
maps’ similarities to the focused group (M = .312, SD = .304) 
and to the explorative group (M = .308, SD = .311) did not 
differ significantly, t(159) = 0.24, p = .809, d = .019. Since 
no saliency information could be generated for trials without 
any detected target in Yolo-v5s, we selected images (88 
images) where both AI and humans detected at least one 
target (mean hit rate > 0) and found that AI attention maps 
had a higher similarity to the focused group (M = .555, SD = 
.169) than the explorative group in humans (M = .492, SD = 
.245), t(87) = 2.74, p = .007, d = .292. In addition, consistent 
with Study 1, higher similarity of AI’s attention strategies 
with human experts was correlated with better AI 
performance, r(158) = .823, p < .001. This correlation 
remained significant when we only included trials where AI 
outperformed human experts, r(146) = .850, p < .001, 
suggesting that human attention strategies could be used to 
guide AI to enhance their performance (Figure 7B).  

 

 
 

Figure 7:  (A) Example showing low similarity between 
attended features of AI and human experts. (B) Positive 

correlation between Yolo-v5s’ attended feature similarity to 
human experts’ and Yolo-v5s’ performance (in selected 

trials where it outperformed humans).    

Discussion  
Here we examined the similarities and differences between 
humans and AI (Yolo-v5s) in performance and attended 
features in detecting vehicles and humans in driving 
scenarios. Previous research has suggested that humans may 
outperform AI in object detection, particularly in difficult 
conditions such as occlusion and degradation. We speculated 
that with the recent advances in deep learning methods, 
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current AI models may have achieved human-expert-level 
performance with similar attended features to humans’ even 
in difficult cases, with one exception: the detection of object 
categories with evolutionary significance such as animals and 
humans. Also, assuming that human experts have learned to 
attend to the most critical features for detection, AI models 
may have better performance when their attended features 
have higher similarity to humans’.  

To test these hypotheses in driving scenarios, which have 
important implications for self-driving applications, we 
contrasted the detection of vehicles and humans. We first 
used a data-driven method, EMHMM with co-clustering, to 
identify representative attention strategies from humans. We 
discovered the focused and explorative strategies in both 
vehicle and human detection. Participants adopting the 
focused strategy preferred to scan the horizon where relevant 
targets typically occur, whereas those using the explorative 
strategy scanned a broader area. In both detection tasks, the 
focused strategy was associated with better performance, 
suggesting that using prior knowledge about the scene 
context (such as potential locations where targets may 
appear) facilitated detection. Interestingly, Yolo-v5s’ 
attended features had higher similarity to the focused group 
than the explorative group in humans in both detection tasks. 
This result suggested that the current AI may have implicitly 
learned relevant contextual information similar to humans 
regardless of the lack of a top-down attention mechanism 
similar to humans’ to guide the search due to their ability to 
process all information in parallel. Nevertheless, while Yolo-
v5s showed comparable performance and high similarity in 
attended features to human experts in detecting vehicles even 
in difficult conditions, it performed significantly poorer than 
humans with low similarity in attended features in human 
detection. This result was consistent with our hypothesis: 
Humans have a category-specific attention bias for detecting 
animals due to their evolutionary significance (New et al., 
2007). This higher vigilance, developed during evolution, for 
detecting animate objects than inanimate objects has been 
attributed to our ancestors’ survival and adaptation in hunter-
gatherer societies, where animals could be a meal or a 
dangerous threat; and humans could be friends or foes 
(Öhman, 2007). In contrast, vehicles are artificial objects 
created more recently. Although detecting vehicles has life-
or-death consequences in the modern society, they did not 
exist in the ancestral environment (New et al., 2007). This 
difference may explain why humans outperformed Yolo-v5s 
in detecting humans but not in vehicles. 

Consistent with its poorer performance in detecting 
humans, Yolo-v5s’ attended features also showed low 
similarity to humans’. This finding suggested that despite the 
technological advances, current AI still attends to suboptimal 
features as compared with humans in human detection. 
Humans’ superior ability in detecting animated objects may 
be related to the brain regions specialized for the recognition 
of object categories of evolutionary significance such as faces 
(e.g., Buiatti et al., 2019). In contrast, current AI systems are 
trained from a uniform architecture without specialized 

modules to learn to detect a particular category. To learn from 
humans’ superiority resulting from a long history of 
evolutionary processes, future AI development may consider 
using human data as guidance to search for better solutions. 
Indeed, we found that in Yolo-v5s, higher similarity in 
attended features to humans’ was associated with better 
performance, particularly in human detection, suggesting that 
human attention could be used to guide AI to learn better 
features for the task. These associations remained consistent 
for cases where humans performed worse than AI, suggesting 
that humans might be aware of where to attend to even when 
failed to detect the objects. Recently, human attention has 
been used to enhance AI’ performance and explainability. For 
instance, Selvaraju et al. (2019) used human attention as 
guidance to improve model performance in visual question 
answering and image captioning tasks and outperformed 
other approaches with much less training data. Baek et al. 
(2021) trained a DNN model of human ventral visual stream 
to equip the model with face-selectivity in the absence of 
training. These findings along with our results suggest a 
promising direction in using human attention to enhance both 
AI and XAI designs (Liu et al., 2023a, 2023b). 

Our findings about the differences between humans and AI 
also have important implications for XAI design. According 
to Yang, Folke et al. (2022), humans form beliefs about AI, 
assuming it would make similar decisions to their own, 
similar to how humans interact with each other (i.e., Theory 
of Mind ability). These beliefs can be updated through 
explanations generated by XAI methods, especially when the 
explanations highlight the discrepancy between what humans 
expected the AI to do and what the AI actually does. 
Therefore, the differences in performance and attended 
features across different detection tasks between humans and 
AI observed in this study could inform future XAI research 
to examine how to best use this information to update 
humans’ beliefs about AI to enhance both user trust and 
understanding, and to truly satisfy stakeholders’ desiderata 
(Hsiao, Ngai, et al., 2021; Qi et al., 2023a, 2023b).       

In conclusion, here we showed that in humans, individuals 
differed in adopting more focused or explorative attention 
strategies in both vehicle and human detection in driving 
scenarios, with better performance associated with the 
focused strategies. Interestingly, current AI (Yolo-v5s) 
showed higher similarity in attended features to the focused 
than the explorative strategies, and achieved a similar 
performance level to human experts in vehicle detection even 
in difficult cases. Nevertheless, it performed much poorer 
than humans in detecting humans with low attended feature 
similarity due to humans’ attention bias for detecting stimuli 
with evolutionary significance. Also, higher similarity to 
humans’ attended features was associated with better AI 
performance, suggesting that human attention may be used to 
guide AI design. The observed differences between AI and 
humans could help XAI update users’ beliefs about AI based 
on their mental models. Thus, our findings have significant 
implications for both AI and XAI designs. 
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