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Professor Mayank R Mehta, Co-Chair

Professor Mark S Cohen, Co-Chair

How the brain represents space is a long-standing question, whose answer is most

likely to be found within the hippocampal formation. There, spatially selective

neurons called place cells provide strong evidence that they are able to form re-

lations between elements of the environment and map the position of the animal

with respect to them. These cells are modulated by multiple inputs, and their

activity patterns both at the neuronal and population change appropriate to the

available sensory and motor information. However, the degree of their contribu-

tions and the mechanism behind their integration are unclear.

The goal of this thesis is to determine the contribution of these different afferent

signals by manipulating the spatial information provided by them in order to

shed light on the mechanisms of multisensory integration in the hippocampus.

This is difficult, if not impossible, to realize in real world (RW) experiments but

virtual reality (VR) has become a popular tool that can be used to achieve this

dissociation. In this thesis VR environments are used to manipulate the spatially

relevant information provided by visual and locomotion cues and hence determine

their contributions to the hippocampal spatial map.
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The results described show that distal visual cues alone are insufficient to

generate spatially selective activity, but are sufficient to generate activity that is

selective to the head-direction of the animal. Additionally, traditionally described

spatially selective activity in the form of place fields is not necessary in order to

perform a spatial navigation task.
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List of Figures

1.1 Neurons showing egocentric coding. The left panels show the

firing rate map of neurons from the rodent posterior parietal cortex

(PPC) when the animal is allowed to freely explore an open arena.

Colors indicate the firing rate of the neuron as indicated by the

color bar. Note that PPC neurons do not exhibit any selectivity

to position but fire action potentials depending on the movement

of the rat, i.e, when the rat is only turning right, left, or running

straight. Modified from Whitlock et.al, 2006. . . . . . . . . . . . 2

1.2 Neurons showing allocentric coding. (a) These neurons are

selective to the allocentric direction of the head of the subject.

Note the firing rate of the neuron depicted in the figure increases

when the animal is facing 120◦–210◦. Modified from Taube, 2007.

(b) Neurons in dorsal CA1 of the hippocampus are selective to

position. The figure dipicts a 300× 300cm room with patterns on

the walls. The rat is allowed to forage for rewards on a platform.

Note how the neuron fires spikes only on the north side of the table

and is silent everywhere else. The region where the place cell fires

is designated its place field. . . . . . . . . . . . . . . . . . . . . . 3

1.3 Representation of a neuronal map of a room. Each place

cell fires action potentials when the subject is in a specific region

of space known as the place field of the neuron. Note how the

population of five neurons depicted together map the entire room. 4
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1.4 The hippocampal formation. (a) A drawing of the hippocam-

pal formation with all of its parts by Santiago Ramon y Cajal. Re-

produced from Wikipedia. (b) A representation of the connections

and direction of information flow between the different subdivi-

sions of the hippocampal formation. Reproduced from Deshmukh

and Knierim, 2011. . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Hippocampal phase precession. (a) The figure depicts phase

precession of a recorded neuron with respect to the LFP theta os-

cillation recorded from the same electrode. The LFP theta trace

filtered in theta band (4 − 12Hz) is shown by the light blue trace

and spikes from the place cell by the vertical dark blue lines. Note

how the spikes occur at earlier phases on subsequent theta cycles.

(b) This figure shows another common depiction of phase preces-

sion. The color of the heat map indicates the firing rate of spikes as

indicated by the color bar. Note how, as time passes, the phase at

which the neurons fires the maximum spikes reduces. Figure mod-

ified from Ravassard et al, 2013. (c) shows the population vector

overlap of a population of neurons under two different conditions.

The data were collected from animals running back and forth along

a linear track. This depiction shows the similarity in the activity

of the population in one direction versus the other. In the figure

on the left, the data were collected in a real world setup and activ-

ity patterns show highest correlation (indicated by the population

overlap value) at the same positions along the track. However, in

contrast, the data on the right, collected in a virtual environment

where the sensory cues available are dramatically, shows a selectiv-

ity to distance as indicated by the high correlation values at similar

distances along the track. Modified from Ravassard et al, 2013. . 9
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2.1 Description of the Virtual Reality (VR) system. (a) shows

a schematic of the virtual reality setup, (b) is a top-view schematic

of the virtual environment, which was identical to the RW room.

(c) is a rat's-eye view schematic of the pillar in the goal-directed

tasks. (d) shows the percentage of time spent in all parts of the

maze, averaged across all rats showing that rats learned to avoid

the edges in VR. Lighter colors indicate higher values raging from

0–0.16%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Similar rat behavior in RW and VR. (a) Mean running speed

at the time of occurrence of spikes (excluding speeds < 5cm/s)

was slightly reduced (3%, p = 0.0005) in VR (22.40 ± 0.13cm/s,

red) compared to RW (23.27 ± 0.16cm/s, blue). Colored, dashed

vertical lines indicate the mean values of the corresponding distri-

butions, here and subsequently. (b), (c) Percentage of time spent

in all parts of the maze, averaged across all rats showing that rats

spent comparable time away from edges in RW and VR. Num-

bers indicate range; lighter shades indicate higher values. These

color conventions (RW, blue shades; VR, red shades; lighter shades,

higher values) apply to all subsequent figures. . . . . . . . . . . . 31

2.3 Different neural ratemaps in RW and VR. a), b) Rat tra-

jectory and spike positions for different neurons and corresponding

firing ratemaps in RW and VR. . . . . . . . . . . . . . . . . . . . 32
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2.4 Reduced activity and spatial selectivity in VR (a) Mean

firing rates were 25% (p = 7.6× 1020) lower in VR (0.70± 0.02Hz)

than in RW (0.93± 0.02Hz). (b) Peak firing rates of neurons were

68% (p = 1.1x10161) smaller in VR (3.19 ± 0.07Hz, n=719 cells

from 4 rats) compared to RW (9.90 ± 0.18Hz, n=1066 cells from

4 rats). (c) Spatial information content in VR (0.33 ± 0.01bits)

was 75% (p = 1.1 × 10183) lower than in RW (1.35 ± 0.02bits)

(d) Ratemap coherence computed using 10× 10cm bins, was 40%

(p = 2.3 × 10−157) reduced in VR (0.45 ± 0.01) compared to RW

(0.75± 0.01). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Reduced activity and spatial selectivity in VR (a) Ratemaps

of a neuron during the first and second halves of a session in RW

and VR. (b) Stability of ratemaps in VR (0.26± 0.01) was signif-

icantly reduced (difference = 0.37, p = 1.2 × 10124) compared to

RW (0.63 ± 0.01). (c) , Ratemap sparsity, a measure of spatial

selectivity, was also greatly (42%, p = 2.3× 10−162) reduced in VR

(0.42± 0.01) compared to RW (0.72± 0.01). . . . . . . . . . . . . 34

2.6 Information content and stability were higher in RW than

in VR at mean rate values. (a) At all mean rates, spatial

information content was negatively correlated with the mean firing

rate of a cell in both worlds (RW r = −0.36, p = 1.6 × 1027 ; VR

r = −0.48, p = 3.2 × 10−33 ). (b) Spatial stability was lower in

VR compared to RW. Stability was not correlated with mean firing

rate in RW (r = 0.02, p = 0.54) and weakly positively correlated in

VR (r = 0.28, p = 1.1× 10−11). . . . . . . . . . . . . . . . . . . . 35
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2.7 Loss of spatial selectivity in dynamic ratemaps in VR.

(a) Spatial ratemaps of two pairs of neurons in RW (left) and

their dynamic ratemap (right) showing spatially localized activ-

ity. (b)Same as (a) but for two pairs of neurons in VR showing no

spatial selectivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Reduction in neuronal coactivation in VR. (a) Dynamic

ratemap information content in RW (0.63±0.01 bits, n = 10831 pairs)

was 65% greater (p < 10−100) than in VR (0.22 ± 0.00 bits, n =

8202 pairs). (b) Dynamic ratemap sparsity in RW (0.56 ± 0.002)

was also greater (36%, p < 10−100) than in VR (0.36 ± 0.002).

The relative spiking of coactive neurons was spatially informative

in RW but not in VR. (c) In order to investigate coactivity of

cell pairs (including sequential activity on intermediate time- and

length scales) we computed cross-covariances between the firing

rates of pairs of active cells in a session as a function of time elapsed

or distance traveled (see Methods). The fraction of coactive cells in

RW (15.5(16.8)% in distance(time) domain) was far greater than

that in VR (8.3(8.9)% in distance(time) domain). . . . . . . . . . 37

2.9 Comparison of activities of cells active in both RW and VR

on the same day. (a) For cells recorded in both worlds on the

same day mean firing rate was correlated regardless of minimum

firing rate (grey, r = 0.32, p = 1.7× 10−7, n = 258). This was also

true for the subset of cells active at high rates in both worlds (pur-

ple, r = 0.21, p = 0.03, n = 109), used for all subsequent same-cell

analyses. (b) The peak firing rate of the same cell was reduced in

VR compared to RW and the two were not significantly correlated

(r = 0.12, p = 0.23), despite their correlated mean rates, due to

lack of spatial selectivity in VR. . . . . . . . . . . . . . . . . . . 38
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2.10 Comparison of activities of cells active in both RW and VR

on the same day. (a) Spatial ratemap sparsity of the same cell

was also reduced in VR but correlated with RW (r = 0.36, p =

0.0001), which could be partially explained by correlated mean

firing rates. (b) Despite positive correlations in mean rate and

sparsity, the distribution of correlation of ratemaps of the same

cells between RW and VR was not significantly different from zero

(p = 0.39) and not different from the ratemap correlations obtained

by shuffling the cell identities (p = 0.97). . . . . . . . . . . . . . . 39

2.11 Quantification of behavior and neural responses during

goal-directed VR tasks. (a) Schematic showing a pillar sus-

pended in VR. (b) Sample trajectories between two reward loca-

tions and the corresponding shortest path between them in the

random-pillar task (left) and systematic-pillar tasks (center, right).

(c) Behavior was significantly more goal-directed during the pillar

tasks (median excess path length: random pillar 56.3±10.8cm, p =

6.1×10−4; systematic pillar 77.3±12.2cm, p = 1.4×10−5) than dur-

ing random foraging (median excess path length: 178.2 ± 13.9cm,

see Methods. VR random-pillar and VR systematic-pillar were

equally goal-oriented(p = 0.44). (d) Spatial information content

in VR Random-Pillar (0.39 ± 0.02bits, n = 195cells from 3 rats)

was only slightly (16%, p = 1.6 × 104) larger than in VR random

(0.33±0.01bits), and still substantially smaller (71%, p = 1.1×1055)

than in RW (1.35± 0.02bits). . . . . . . . . . . . . . . . . . . . . 40
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2.12 Dependence of spatial selectivity on task type and loco-

motion cues. (a), (b) Top) Trajectory of the rat (light green

trace) and position of the rat at the time of occurrence of spikes

(darker dots) for example neurons during the systematic path tasks.

Bottom) Ratemaps corresponding to the above neurons. . . . . . 42

2.13 Dependence of spatial selectivity on task type and loco-

motion cues. (a) Spatial information content in VR with sys-

tematic pillars (1.11± 0.03bits, n = 324 cells from 3 rats) was sig-

nificantly larger than in VR random (70%, p = 1.0×10101) and only

slightly smaller than in RW (17%, p = 5.3× 108). (b)Spatial spar-

sity in VR systematic-pillar (0.63 ± 0.01) was significantly greater

(34%, p = 4.7 × 1063) than in VR random (0.42 ± 0.01), and close

(12%less, p = 4.6× 1020) to that in RW (0.72± 0.01) (c) Ratemap

stability in the VR systematic-pillar task (0.34±0.03, n = 282 cells

with at least 100 spikes in each session half) is greater than VR

random foraging (p = 2.4 ± 10−3) and smaller than RW random

foraging (p = 1.8× 10−18). . . . . . . . . . . . . . . . . . . . . . . 43

2.14 Selectivity to distance traveled in the VR goal-directed

tasks at the neuronal level. (a), (c) Firing rate of cells as

a function of normalized distance traveled across trials. (b), (d)

Trajectory of the rat (light brown,green) and spike positions (dark

brown,green) during the VR random- and systematic- pillar tasks

for the same cells shown in Figure 2.14a). The black dots indicate

the reward locations and the arrows correspond to running direction. 45
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2.15 Firing properties of neurons with distance selectivity. (a)

Information content in linearized paths in VR random-pillar task

(0.24 ± 0.01bits, n = 127 cells from 3 rats) was significantly lower

(49%, p = 1.2±1017) than in VR systematic-pillar (0.47±0.02bits, n =

310 cells from 3 rats). (b) Sparsity of the linearized firing ratemaps

in VR random-pillar (0.23±0.01) was significantly reduced (36%, p =

5.9×1016) compared to VR systematic-pillar (0.36±0.01). (c) Peak

firing rates were 36% (p = 3.1× 1015) smaller in VR random-pillar

(2.89± 0.14Hz) compared to VR systematic-pillar (4.55± 0.15Hz). 46

2.16 Selectivity to distance traveled in the VR goal-directed

tasks at the neuronal level. PVO in VR random-pillar (top

left) and VR systematic-pillar (top right). The range of overlap is

indicated by the numbers at the top left corners. The bottom row

depicts the significance levels for the corresponding PVO presented

in the top row. The significant diagonal indicates selectivity to

distance on an ensemble level. . . . . . . . . . . . . . . . . . . . . 48

2.17 Selectivity to distance traveled in the VR goal-directed

tasks at the neuronal level. (a) Top) For different arm pairs

with minimal activity on at least one arm (meanrate > 0.5Hz, n =

625 from 3 rats), the arm selectivity index (0.37± 0.01) quantifies

the likelihood of firing on one arm (index > 0.5) versus on multiple

arms (index ≤ 0.5). Bottom) Disto-coding index (see Methods)

for the population of multi-arm selective arm pairs (n = 431) in

the three-pillar task was also significantly positive (0.23± 0.02, p =

1.5× 10−31), further supportive of a disto-code. (b) PVO for arm

pairs with arm selectivity index below 0.5 (top, n=431 from 3 rats)

and the significance levels (bottom). . . . . . . . . . . . . . . . . . 49
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2.18 Hippocampal motifs and motif-fields. (a), (b) Spike positions

of an example motif from a cell overlaid on a segment of the rats

trajectory (left) and firing ratemap (right) in RW and VR. (c),

(d) Left) Motif firing rate as a function of time and individual

spike times (vertical lines) for the same motifs as in 2.18a and

2.18b respectively. Right: Motif-field firing rate as a function of

time. Spikes from individual motifs are depicted in the raster plot,

aligned around motifs centers of mass to form the motif-field. In

other words, each row represents an individual pass through the

motif-field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.19 Similar hippocampal motifs in RW and VR (a) Mean motif

durations of cells with at least five motifs (RW: 1064/1066 cells;

VR: 911/914 cells = 719 cells (4 rats, VR random) + 195 cells (3

rats, VR random-pillar)) were comparable in RW (1.82 ± 0.02s)

and VR (1.63 ± 0.02s) but slightly smaller in VR (7%, p = 2.2 ×

1012). The shortest allowed motif duration (dotted line) was much

smaller than the ensemble average. (b) The coefficients of variation

(CV) of motif durations within each cell were comparable in RW

(0.69±0.00) and VR (0.63±0.01), but slightly lower in VR (8%, p =

5.7×1020). Both were much greater than the CV of the distributions

in the left panel (solid vertical lines). (c) Majority of spikes were

contained within motifs (RW 75.90±0.47%; VR 64.99±0.63%) but

there was a small reduction in VR (14%, p = 1.2× 1051). (d), (e)

Motif mean rates and peak rates in VR (mean 5.92±0.06Hz; peak

23.39± 0.24Hz) were slightly smaller (mean 10%, p = 7.7× 10−10;

peak 21%, p = 6.1× 10−21) than in RW (mean 6.52± 0.06Hz; peak

28.32± 0.69Hz). . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
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2.20 Relationship between mean firing rate, percentage of spikes

within motifs and information content of a neuron. (a)

Mean rate and percentage of spikes within motifs were significantly

correlated (RW r = 0.54, p = 4.1 × 10−65; VR r = 0.41, p =

1.2 × 10−28). (b) The percentage of spikes in motifs was sig-

nificantly correlated with spatial information content. (RW r =

0.28, p = 4.2 × 10−17; VR r = 0.26, p = 6.5 × 10−12) (b) Z-scored

percentage of spikes in motifs was significantly above zero in VR

(35.15±1.06, p = 3.9×10−83) and RW (23.52±0.64, p = 1.0×10−26)

(b) Z-scored mean motif duration was similar in both worlds (RW

8.02 ± 0.25; VR 7.33 ± 0.27, p = 0.03) and above zero (RW p =

2.1× 10−96; VR p = 1.4× 10−83). . . . . . . . . . . . . . . . . . . 52

2.21 Similar hippocampal motif-fields in RW and VR (a) Peak

firing rates of motif-fields in VR (8.85± 0.10Hz) were only slightly

smaller (13%, p = 2.1 × 1017) than in RW (10.22 ± 0.11Hz). (b)

Motif-field mean firing rates in VR (4.12 ± 0.05Hz) were only

slightly smaller (5%, p = 9.2× 10−3) than in RW (4.34± 0.05Hz).

(c) Motif-field durations in VR (1.33 ± 0.01s) were similar but

slightly reduced (10%, p = 1.1 × 10−12) compared to RW (1.48 ±

0.01s). (d) For cells active in both worlds on the same day, motif-

field duration was correlated between RW and VR (r = 0.31, p =

1.2×10−3). (e) Motif-field peak firing rate had a similar correlation

(r = 0.54, p = 1.2times10−9). . . . . . . . . . . . . . . . . . . . . . 53
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2.22 Intact phase precession in VR within motif fields. (a) Left)

Sample LFP theta traces filtered in theta band (4− 12Hz) in RW

(top) and VR (bottom) recorded from the same electrode on the

same day. Spikes from the same cell (vertical lines) in RW and

VR occur at earlier phases on subsequent theta cycles. Right)

Motif-fields in RW and VR show clear phase precession. Lighter

shades indicate higher values. (b) Left) 80.03% and 40.52% of

the cells showed significant phase precession in RW and VR re-

spectively. For these, the quality of phase precession in VR cells

(0.19 ± 0.00, n = 365 cells, 4 rats) was slightly reduced (13%, p =

1.9 × 1011) compared to RW (0.22 ± 0.00, n = 852 cells, 4 rats).

Right) Difference in LFP theta period and spiking theta period,

computed from the autocorrelation of LFP and of spikes shows

comparable but reduced (11%, p = 4.6 × 109) and more variable

temporal coding in VR (11.38 ± 0.46ms,mean ± STD) compared

to RW (12.85± 0.23ms,mean± STD). . . . . . . . . . . . . . . 55
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2.23 Increased Theta Power but Reduced Theta Frequency in

VR. (a) Left) , Normalized power between 5 − 15Hz, averaged

over all the LFP (n = 57) in RW and VR shows a clear difference

in theta power and frequency between the two environments. Cen-

ter) Peak theta power is significantly increased (p = 0.002, paired

Wilcoxon signed rank test) in VR (56.95± 3.75) compared to RW

(46.61±2.51). Right) Theta frequency in VR (7.21±0.07Hz) is sig-

nificantly lower (p = 5.1× 10−11) than in RW (8.32± 0.06Hz). (b)

Left) The preferred theta phase of spikes was shifted closer to theta

peak (6%, p = 0.001) in VR (103.70±2.29◦) and was also more vari-

able (SD = 61.40◦) compared to RW (110.58±1.72◦, SD = 56.15◦).

Right) The degree of phase locking (depth of modulation) was sim-

ilar in VR (0.15 ± 0.09) and RW (0.16 ± 0.09), though slightly

reduced (8%, p = 8.5× 105) in VR. . . . . . . . . . . . . . . . . . 56

3.1 Top-view schematics of experimental rooms. The circular

structure at the center represents a 200cm diameter plat-

form elevated 50cm above the ground in all panels. The

size of the room in the rich conditions was 300cm× 300cm,

and in all other cases 900cm× 900cm . . . . . . . . . . . . . . 67
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3.2 Comparison of GLM and binning methods using surrogate

data. (a) Top-view schematic of the experiment room. (b)Surrogate

data generated for each place cell with spatial modulation similar

to experimental data but no angular modulation (see Methods)

showed mean vector length obtained using the GLM method was

close to zero (0.030.00, n=1066) and significantly (p=2.910-278)

smaller (six-fold) than that computed using binning method (0.18

0.00). All values reported as mean ± s.e.m. (c), (d) Example

cells simulated with different widths and directions of input angu-

lar tuning. Top) Spatial firing rate of a simulated place field over-

laid with colored dots representing the positions at which spikes

occurred (color represents head-direction indicated by color-wheel

inset). Bottom) Polar plots depicting the angular input function

(light blue), binning method (black) and GLM (dark blue) based

head-directional firing rates. Note similarity between input tuning

(light blue) and GLM based rate estimate (dark blue) in all cases,

unaffected by the behavioral bias, which affects the binning method. 76
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3.3 Presence of head-directional modulation in hippocampal

pyramidal neurons in RWrich. (a) Left) All unclustered (grey

dots) and clustered spike amplitudes from an isolated neuron (blue

dots) on two different channels of a tetrode in RWrich. Center)

Spatial and angular rate maps of a cell. Numbers in color indicate

range, here and throughout. Number at the bottom right of the

polar plot is the sparsity of the angular rate map. Right) Rats

color-coded trajectory and his position at the time of spikes (black

circles) for movement in the direction of maximal (left) and minimal

(right) firing respectively. (b),(c) Same as (a) for two other cells

in RWrich. All rate maps were computed using the GLM method

here and throughout unless otherwise noted. All cells in this figure

showed significant angular modulation as verified through boot-

strapping methods (see Methods). . . . . . . . . . . . . . . . . . . 78

3.4 Different place fields of the same neurons in RW had uncor-

related directional properties. (a) Left) An example cell with

two identified place fields. Right) The angular rate map for each

field showing one field with significant angular modulation (top)

and the other field with no angular modulation (bottom). (b) Dif-

ferent place fields of the same neuron (n=138) exhibited different

directional properties. For 30, [22, 38]% of cells, at least one field

exhibited significant angular modulation, but only for 4, [1, 8]% of

neurons, both fields were significantly directionally modulated. (c)

The preferred firing direction of different place fields of a neuron

were not significantly correlated (r = 0.03, p = 0.7). . . . . . . . . 79
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3.5 Presence of head-directional modulation in hippocampal

pyramidal neurons in V Rrich. (a)–(c) Three well-isolated neu-

rons showing significant head-directional modulation in V Rrich (same

conventions as in Figure 3.3). All cells in these three panels showed

significant angular modulation as verified through bootstrapping

methods (see Methods). . . . . . . . . . . . . . . . . . . . . . . . 80

3.6 Sample cells in RWrich and V Rrich with significant head-

directional modulation. (a)–(b) Spatial rate maps (grey scale,

numbers indicate range) and spike positions (dots color-coded ac-

cording to the head-directions) and head-directional firing rate (num-

bers in color indicate range, number at bottom right is angular spar-

sity of the angular rate map) of nine example cells in RWrich (a)

and V Rrich(b). All cells in these panels showed significant angular

modulation as shown by the bootstrapping method (see Methods). 81
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3.7 Directional modulation was independent of angular speed

and range of vestibular inputs. (a) For 32 (37) sessions in

RW (VR), the range of head-directions with respect to the exper-

imental room in RW (359.99 ± 0.00 deg) was significantly higher

than that in VR (91.67 ± 0.93 deg, p = 2.2 × 1021). (b) Angu-

lar speed in VR (18.63 ± 1.37deg/s, n = 37sessions) was signif-

icantly reduced (60%, p = 3.6 × 1011) compared to RW sessions

(46.40±2.12deg/s, n = 32sessions). (c) For each neuron, the aver-

age angular speed at the time of occurrence of spikes was computed.

This value was then used to classify a neuron into either high or

low angular speed category, compared to the mean angular speed

in RW (49.60deg/s) and VR (19.91deg/s). Nearly equal propor-

tions of directionally modulated cells in RW 51.88%(47.12%) and

in VR 49.32%(50.68%) belonged to the high (low) speed categories

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.8 (a)The population of neurons in V Rrich (red, n=719; 37 sessions)

and RWrich (blue, n=1066; 32 sessions) had comparable propor-

tions of cells with statistically significant angular sparsity; 27, [25,

30]% (23, [19, 26]%) of cells in RWrich (V Rrich) showed significant

head-directional modulation (see Methods). See also Figure S5.

(b) Head-directionally modulated neurons in V Rrich were signifi-

cantly more multimodal (1.650.06peaks, p = 1.410−2) than RWrich

cells (1.450.04peaks). (Inset) This was reflected at the ensem-

ble level where a smaller proportion of neurons in V Rrich (15, [13,

18]%) had significant head-directional modulation using mean vec-

tor length compared to angular sparsity (23, [19, 26]%). In RWrich

29, [26, 31]% of neurons showed significant directional modulation

using mean vector length. . . . . . . . . . . . . . . . . . . . . . . 83
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3.9 Comparison of mean activity of neurons with or without

significant directional modulation in RWrich and V Rrich con-

ditions. (a) Mean firing rate of head-directionally modulated

neurons in RWrich (0.85 ± 0.04 Hz, n=293; dark blue) was sim-

ilar to that of those with no significant modulation (0.85 ± 0.02

Hz, n=773 p=0.6; light blue). In contrast, in V Rrich, signifi-

cantly head-directionally modulated neurons had higher mean rates

(0.72± 0.04 Hz, n=162; dark red) compared to those with no mod-

ulation (0.63± 0.02 Hz, n=557, p = 5.1× 103; light red). (b) The

sparsity of angular ratemaps were significantly negatively correlated

with the (logarithm of) number of spikes in both RWrich (r=-0.59,

p = 1.4 × 10100) and V Rrich (r = -0.58, p=3.91065). However,

accounting for the number of spikes, angular sparsity was not sig-

nificantly different between the two conditions (p=0.09, Two-way

ANOVA, see Methods). . . . . . . . . . . . . . . . . . . . . . . . 85
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3.10 Comparison of spatial selectivity RWrich and V Rrich condi-

tions. (a) In contrast to angular sparsity, far fewer neurons (12,

[10, 15]%) in V Rrich had significant spatial sparsity compared to

RWrich (76, [74, 79]%, Wilcoxon rank-sum test, numbers in brack-

ets correspond to 95% confidence intervals here and throughout un-

less otherwise stated). (b) In RWrich, the percentage of spatially

modulated neurons per recording session (32 sessions) was identical

between neurons with or without significant head-directional mod-

ulation (86.53± 4.66% and 85.73± 3.86% respectively, p=0.3). In

V Rrich (37 sessions), this percentage was slightly but not signifi-

cantly higher for neurons with significant head-directional modu-

lation (20.93 ± 4.80%) compared to those without (9.97 ± 2.30%,

p=0.2). Hence, presence or absence of angular selectivity did not

influence the degree of spatial selectivity. Numbers are reported

as mean ± s.e.m. and error bars indicate s.e.m. (c) Spatial spar-

sity was also negatively correlated with the number of spikes in

both worlds (RWrich : r = −0.34, p = 9.2 × 1030;V Rrich : r =

−0.53, p = 1.3 × 1059), but was significantly different between the

two conditions (p = 1.7 × 106, Two-way ANOVA, see Methods).

Since all measures of selectivity depend on the number of spikes,

to assess significance of tunings, bootstrapping was done for each

cell separately. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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3.11 Causal influence of visual cues on the degree of directional

modulation of neurons. (a) Top-down schematic of V Rblank.

(b) Left) Spikes from an isolated neuron (colored dots) in V Rblank

(same convention as in 3.3). Center, right) Spatial and angular

firing rate of this neuron (c)–(h) Same as (a) and (b) but for

V Rsymmetric, V Rwide
polarized and V Rnarrow

polarized. Note that the neu-

rons in (b) and (d) do not show significant angular sparsity, but

those in (f) and (h) show strong head-directional modulation. . . 87
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3.12 Properties of neural activity across experiments. (a) The

percentages of cells with significant head-directional modulation

was 27, [25, 30]% in RWrich (293 out of 1066 cells; 32 sessions);

23, [19, 26]% in V Rrich (162 of 719 cells; 37 sessions); 6, [3, 9]% in

V Rrich (13 of 230 cells; 8 sessions); 7, [4, 9]% in V Rsymmetric (28

of 426 cells; 10 sessions); 31, [26, 38]% in V Rwide
polarized (121 of 391

cells; 14 sessions) and 15, [12, 19]% in V Rnarrow
polarized (64 of 424 cells; 20

sessions). The black horizontal line indicates the chance level of 5%.

(b) Full width at half max (FWHM) of the angular rate maps for

head-directionally modulated neurons in different conditions was as

follows: RWrich (101.90±3.35◦), V Rrich (85.41±4.23◦), V Rwide
polarized

(77.35± 3.62◦) and V Rnarrow
polarized (65.29± 4.97◦). The tuning curves

in RWrich were significantly wider than all other VR conditions

(p = 5.1 × 104 versus V Rrich, p = 3.3 × 105 versus V Rwide
polarized

and p = 5.3 × 108 versus V Rnarrow
polarized ). Within VR conditions,

V Rnarrow
polarized had significantly narrower tuning curves with respect to

V Rrich (p = 3.7×103) and V Rwide
polarized (p = 6.5×103). (c) Angular

rate maps in all VR conditions were significantly more multimodal

(1.65±0.07 peaks, p = 1.4×102 in V Rrich; 1.61±0.07, p = 3.3×102

in V Rwide
polarized; 1.78±0.09, p = 4.8×104 in V Rnarrow

polarized ) than RWrich

(1.45 ± 0.04 peaks). Values are reported as mean ± s.e.m, the p-

values are obtained by Wilcoxon rank-sum test and percentages and

numbers in brackets correspond to maximum likelihood estimates

and 95% confidence intervals unless noted otherwise. . . . . . . . 89
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3.13 Example cells from the corresponding VR task. (a)–(b)

Top-view schematics of the four VR enviroments. (e)–(h) The left

image in each sub-panel shows the position and head-direction of

the animal at the time of occurance of spikes. The color of each

spike indicates the head-direction according to the colorwheel. The

right image depicts the angular firing ratemap of that cell. . . . . 90

3.14 Stability of angular rate maps for head-directionally mod-

ulated neurons. (a)–(d) Four directionally tuned cells with sta-

ble angular firing in the first half (solid colored lines) and second

half (dashed colored lines) of the recording session. The peak rates

are normalized for ease of comparison. (e) Stability of the head-

directional modulation (pairwise correlation between the angular

rate maps in the two halves) in RWrich (0.52 ± 0.02, n=293) was

significantly greater than V Rrich (0.39±0.02, n=162, p = 9.2×107,

Wilcoxon rank-sum test here and throughout figure legend) but

significantly smaller than V Rwide
polarized (0.76 ± 0.02, n=121, p =

8.5 × 1019) and V Rnarrow
polarized (0.72 ± 0.04, n=64, p = 2.3 × 109).

Stability was not significantly different between V Rwide
polarized and

V Rnarrow
polarized (p = 0.35). (f) As an alternate stability measure, we

computed the absolute value of the circular distance between the

preferred directions (defined as the direction of peak firing) in the

two session halves. This also resulted in V Rwide
polarized (36.23± 4.06◦)

and V Rnarrow
polarized (31.83 ± 5.82◦) showing identical levels of drift

of preferred directions (p = 0.15), both smaller than in RWrich

(49.85 ± 2.83◦,p = 7.2 × 105 and p = 7.4 × 106 respectively) and

V Rrich (67.65± 4.34◦, p = 6.3× 108 and p = 9.9× 108 respectively). 92
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3.15 Visual cues bias the neural ensemble. (a) Distribution of pre-

ferred direction of neurons in RWrich did not show bias (p = 0.1,

circular Rayleigh test; pV =0.7, circular V test) and the mean vector

length of the ensemble (MV Len = 0.09) was smaller than 95% of

the shuffles (see Methods) (347.80±4.52◦, n = 293, circularmean±

circulars.e.m.). Number on the top right indicates maximum value

of the distribution. The thick blue line originating at the center of

the polar plot represents both the direction (347.80◦)and the mag-

nitude (0.09) of the mean vector length of the preferred directions

of the population (scaled by a factor of 5 for clarity). (b) Same

as in (a) but for V Rrich. The distribution of preferred directions

of neurons in V Rrich did not show any significant bias (p=0.4, cir-

cular Rayleigh test; pV = 1, circular V test) and MV Len = 0.1

was not significantly different from chance (260.91 ± 6.07◦, n =

162, circularmean±circulars.e.m.). Additionally, this distribution

was not significantly different from that in RWrich (p=1, circular

Kuiper test). (c) The ensemble of head-directionally modulated

neurons in V Rwide
polarized preferentially fired towards the visual cue

(pV = 0.04, circular V test) and MV Len = 0.17 was greater than

chance (124.99 ± 8.18◦, n = 121, circularmean ± circulars.e.m.).

Note the direction (124.99 and the longer magnitude (0.17) of the

thick green line compared to (a), (b). (b) Same as in (d) Neurons

in V Rnarrow
polarized (92.68±8.51◦, n = 64, circularmean±circulars.e.m.)

were biased towards the narrow cue (pV = 0.04, circular V test;

p = 3.6 × 103 Rayleigh test), further indicated by the magnitude

(0.29, significantly greater than chance) of the MV Len (thick pur-

ple line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
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4.1 Rats can navigate to the hidden reward zone in VR (a)

A top-down view schematic of the virtual room. The walls were

450cm wide and the platform was 300cm in diameter. The hidden

reward zone was 40–50cm in diameter. (b), (c) The central panel

shows the behavior of the rat on the task with the colored lines

(color coded by start location) indicating the path taken by the

rat from each start location to the reward zone and the solid black

lines showing the average path taken by the rat. The surrounding

panels show the behavior of the rat for each start location. Note

how the rat takes the shortest path to the reward zone for all start

locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Neurons do not show spatial selectivity during spatial nav-

igation in VR (a)–(d) Left panels) Spike positions (color coded

by start location) and path taken by the rat from start location

to the reward zone for four example neurons. Right panels) Firing

rate maps for the corresponding neuron. Higher temperature col-

ors indicate higher firing rate. Minimum and maximum firing rate

are indicated by the numbers. (e) Histogram of information con-

tent (0.29[0.26, 0.32]bits/spike; median value (indicated by dotted

line) and confidence interval) of the neurons shows neurons exhib-

ited very poor spaital selectivity comparable to that seen in vir-

tual reality during two-dimensional random foraging shown in (f)

(f) Spatial information content in VR (0.33 ± 0.01bits) was 75%

(p = 1.1× 10183) lower than in RW (1.35± 0.02bits). . . . . . . . 107
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CHAPTER 1

A brief introduction: constructing spaces

1.1 Introduction

Imagine: you are entering the parking lot of a mall and heading towards your

car. You remember where you parked it and you have a vague, but sufficient, idea

which direction you need to go to get there. How do you know where you are with

respect to the structure? Parking lots can be notoriously confusing, some with

no markings to indicate different locations. Imagine this is one of the those. You

can find your car, however, despite this visually poor environment, and despite

the almost symmetrical and repeating patterns that make its structure.

How does your brain know where you are with respect to the larger space you

are in? How does it construct the space within which the two locations are? How

does it, then, construct a pathway from point A to point B?

You could invoke any number of brain areas as candidates for solving this

problem of representing space. What makes it interesting is the frame of reference

with respect to which your brain needs to represent the space around you in

order to find the solution. There are very few brain regions that can do this

appropriately, which narrows down our question considerably. One of them is

the hippocampal formation, a medial temporal brain area, that has exhibited the

ability to represent space in what is known as an allocentric frame of reference.
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1.2 Reference Frames

Movement through and interaction with space can be mapped onto two frames of

reference: the egocentric frame and the allocentric frame [1].

In the egocenteric reference frame the body is the reference point. For

example, cells in the posterior parietal cortex of the rat fire only when the animal

is turning right, but not left or vice versa [2]. Here, it does not matter whether

the animal is in the northeast corner of the environment and heading south or

facing south and turning west somewhere else entirely (Figure 1.1).

Figure 1.1: Neurons showing egocentric coding. The left panels show the firing rate

map of neurons from the rodent posterior parietal cortex (PPC) when the animal is

allowed to freely explore an open arena. Colors indicate the firing rate of the neuron as

indicated by the color bar. Note that PPC neurons do not exhibit any selectivity to

position but fire action potentials depending on the movement of the rat, i.e, when the

rat is only turning right, left, or running straight. Modified from Whitlock et.al, 2006.

In the allocentric frame of reference space is mapped with respect to

the environment surrounding the body. For example, some cells in the thalamus

encode which direction the animal is facing [3] with respect to the environment.

That is, one cell might increase its rate of firing when the animal is facing north

but no other direction, but irrespective of its position in the space. Another

neuron might increase its firing rate only when the animal is facing south.
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In the hippocampus, which is the focus of this thesis, there exist excitatory

neurons that encode the animal’s location in space with respect to the environment

around it. These neurons were discovered in 1971 [4] and are called place cells

and their receptive fields are known as place fields. The activity pattern of these

neurons constitutes an allocentric representation because their frame of reference

is outside the body.

a b

Figure 1.2: Neurons showing allocentric coding. (a) These neurons are selective to

the allocentric direction of the head of the subject. Note the firing rate of the neuron

depicted in the figure increases when the animal is facing 120◦–210◦. Modified from

Taube, 2007. (b) Neurons in dorsal CA1 of the hippocampus are selective to position.

The figure dipicts a 300× 300cm room with patterns on the walls. The rat is allowed to

forage for rewards on a platform. Note how the neuron fires spikes only on the north side

of the table and is silent everywhere else. The region where the place cell fires is

designated its place field.

If, for example, you were in a room with a window on the west wall, a desk by

the east wall and a couch in the middle (Figure 1.3) neuron A may fire action

potentials when you are in the area near the window, neuron B when you are by

the desk, neuron C near the couch, neuron D by the north wall and neuron

E by the south wall.

This representation is such that together, the five neurons encode all areas of

3



Figure 1.3: Representation of a neuronal map of a room. Each place cell fires action

potentials when the subject is in a specific region of space known as the place field of the

neuron. Note how the population of five neurons depicted together map the entire room.

the room. This allows one to determine with some degree of accuracy where in

the room you might be at any given time depending on which neuron is firing

action potentials.

1.3 The hippocampal formation

The hippocampus, where place cells are found, is part of a larger structure known

as the hippocampal formation (the hippocampus is therefore also referred to

as the hippocampus proper to distinguish it from the hippocampal formation).

The hippocampal formation (Figure 1.4a)is a temporal brain area that consists of

• the dentate gyrus

• the hippocampus proper which is further subdivided into three areas
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b

Figure 1.4: The hippocampal formation. (a) A drawing of the hippocampal formation

with all of its parts by Santiago Ramon y Cajal. Reproduced from Wikipedia. (b) A

representation of the connections and direction of information flow between the different

subdivisions of the hippocampal formation. Reproduced from Deshmukh and Knierim,

2011.
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known as the areas cornu ammonis or CA1, 2 and 3. These regions consist

of excitatory neurons known as pyramidal neurons due to their triangular

shape which, in CA1 and CA3, behave as place cells.

• the entorhinal cortex which is further divided into two functionally dis-

tinct regions: the lateral entorhinal cortex (LEC) and medial entorhinal

cortex (MEC). The LEC has neurons that have been shown to be selective

to objects, and odors [5] and it has been proposed that the LEC receives

information from the what stream of visual processing. The MEC, on the

other hand, has spatially selective neurons [6] which, unlike place cells in the

hippocampus, have a firing fields that are arranged in a triangular lattice.

• the subiculum, presubiculum and parasubiculum

The flow of information through this brain structure is largely unidirectional

(Figure 1.4b). In brief, the hippocampus proper lies at the heart of the brain

region with all information from the neocortex necessarily having to pass through

the entorhinal cortex to reach the hippocampus. Information from the what and

where pathways arrive at the lateral and medial entorhinal cortices from the

perirhinal and postrhinal cortices respectively. The medial entorhinal cortex also

receives information about self-motion from the retrosplenial cortex and about

head-direction from the thalamus through the pre- and post-subicular cortices.

The entorhinal cortex then sends projections to the dentate gyrus from layer II

through the perforant pathway and from layer III to CA1 through the perforant

and alvear pathways. The dentate gyrus projects to the pyramidal neurons in

CA3 through mossy fibers. CA3 had recurrent connections within it where it

projects back to its own neurons, and in addition, projects to CA1 through its

shaffer collaterals. CA1 then projects back to the deeper layer V of the entorhinal

cortex directly and through the subiculum to complete the loop.
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1.4 Multisensory integration in the hippocampal forma-

tion

Studying the mechanisms of multisensory integration that results in a coherent

allocentric representation of space is not trivial since the hippocampus is part of

a complex loop receiving signals from both the what and where streams of visual

processing, and areas encoding self-motion information [7] (Figure 1.4b). Most

likely due to this, place cells are able to respond dynamically to the environment,

as evidenced by studies showing that their activity is modulated by sensory and

motor inputs, as well as behavioral variables [8–12]. However, distal visual cues,

which are visual cues that are in the distance, such as the skyline of a city, or the

mountains, or the walls of a room, have traditionally been considered the primary

inputs that generate the spatial map since rotating these cues cause place cells to

change the location of their firing fields [9]. Additionally, while place fields can

form in the dark, they remap with the availability of distal visual cues on turning

on the lights [13]. Apart from visual and olfactory cues, CA1 neurons have also

been shown to be able to encode distance [14] and time [15, 16]. Not only this,

hippocampal place cells are also capable of changing their activity patterns to

account for changes in the environment, a phenomenon known as remapping. If

only certain cues or configuration of cues change but others remain the same, then

as expected, some neurons maintain their firing patterns while others remap to

account for the changes in the environment [12].

Additionally, hippocampal place cells exhibit another kind of coding which is

known as phase precession. Hippocampal LFP exhibits a charactristic oscillation

between 4Hz and 12Hz known as theta. The firing pattern of place cells within

their place fields is strongly modulated by this oscillation such that the phase of

the oscillation at which the neuron spikes shifts backwards as the animal moves

through the place field.
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Most importantly, while all of the above mentioned observations are at the

neuronal level, i.e activity patterns that can be observed in a single neuron, hip-

pocampal neurons have also been shown to exhibit coding at the population level.

For example, the disto-code [14] has been observed both in single neurons and in

the ensemble of recorded neurons when the animal is running on a linear track.

Additionally, as described in Chapter 2 we have shown this to be true in two-

dimensional environments as well.

Hence, selectivity to space is a simplistic description of the activity of hip-

pocampal neurons. The activity of these neurons has been shown to not only be

able to encode for the position of the animal in a given environment but also the

configuration of sensory cues, time and distance. In addition, phase precession,

also called a temporal code as opposed to rate code (spatial selectivity, for exam-

ple) allows one to pinpoint exactly where within the place field the animal might

be depending on what phase of theta the neurons is firing action potentials. Phase

precession is also considered to be important for synaptic plasticity given that it

occurs within the appropriate time-scale of 10s of milliseconds.

Given the complex nature of both the anatomical and functional structure

of the hippocampal formation and the behavioral correlates of the activity of

hippocampal neurons, it is especially difficult to tease apart not only the different

levels and kinds of neural codes, but also what environmental cues are the most

relevant. Various experimental and computational tools have been developed over

the years in order to control for these innumerable variables. This thesis depends

heavily on one particular experimental tool: the virtual reality.

1.5 Hippocampal activity in virtual reality

Virtual reality is an especially useful tool when studying brain areas that have

such multisensory responses. Depending on the design of the system virtual re-
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c

Figure 1.5: Hippocampal phase precession. (a) The figure depicts phase precession of

a recorded neuron with respect to the LFP theta oscillation recorded from the same

electrode. The LFP theta trace filtered in theta band (4− 12Hz) is shown by the light

blue trace and spikes from the place cell by the vertical dark blue lines. Note how the

spikes occur at earlier phases on subsequent theta cycles. (b) This figure shows another

common depiction of phase precession. The color of the heat map indicates the firing rate

of spikes as indicated by the color bar. Note how, as time passes, the phase at which the

neurons fires the maximum spikes reduces. Figure modified from Ravassard et al, 2013.

(c) shows the population vector overlap of a population of neurons under two different

conditions. The data were collected from animals running back and forth along a linear

track. This depiction shows the similarity in the activity of the population in one direction

versus the other. In the figure on the left, the data were collected in a real world setup

and activity patterns show highest correlation (indicated by the population overlap value)

at the same positions along the track. However, in contrast, the data on the right,

collected in a virtual environment where the sensory cues available are dramatically, shows

a selectivity to distance as indicated by the high correlation values at similar distances

along the track. Modified from Ravassard et al, 2013.
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ality allows one to precisely control the amount of information provided by a

particular sensory input. In order to fully understand the implications of using a

virtual reality system it is important to think about the sensory inputs that are

providing the relevant information to the brain area of interest. In the context of

the hippocampus, we will be focusing on spatial information.

1.5.1 Multisensory cues

Multisensory information is broadly classfied into three categories: proximal cues,

distal cues and internal or self-motion cues. Proximal cues are defined as those

sensory cues that are close to the animal and which the animal can interact with.

These can belong to

• the olfactory modality, such as smells on the ground or on an object,

• the tactile modality, such as different textures,

• or the auditory modality, such as a source of sound that can be clearly

pinpointed, for example a chirping cricket.

Distal cues are those that are far away and can be

• visual, such as the skyline of a city, or auditory such as a distant sound

coming from a particular direction,

• or olfactory, such as the smells from the kitchen in a different room of the

house.

Self-motion cues are those that are generated by the body of the animal.

These cues are subdivided into proprioceptive cues, motor efference copy, vestibu-

lar cues, and optic flow.
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1.5.2 Real world versus virtual reality

The term real world refers to any experimental setup that is physically con-

structed and is in contrast to a virtual reality environment which is generally a

projection on a screen in front of the animal. In the real world, or RW as it

will be referred to throughout this thesis, the brain receives information from all

of the sensory modalities. However, these can be manipulated to some extent by

either constructing the experiment such that specific cues are modified to either

provide no useful information or conflicting information, or by making lesions in

the sensory organ itself or some brain region downstream of the sensory organ.

For example, if one would like to test the importance of proximal olfactory cues

to hippocampal spatial selectivity, one could, as has already been done [13], wipe

the floor of the open arena to remove odors. Or, one could create conflict be-

tween proximal and distal cues [12] to test the significance of one or the other to

hippocampal place cells. Self-motion cues can be tested by forcing the behavior

of the animal to be one way or the other [11] such as comparing neural activity

when the animal is performing a random foraging task to when he is doing a goal

directed task and walking repeatedly along the same path between two or more

fixed locations. As another example, vestibular cues can be manipulated by either

spinning the animal to disorient him and render vestibular information useless for

a short period of time, or by lesioning the vestibular apparatus itself.

However, virtual reality or VR, provides additional flexibility in that it

allows us to manipulate cues very precisely, such as control with minute precision

when, where and how much of an odor is released, or a reward is dispensed. It also

allows us to create environments that would not be possible to do in the real world.

For example, one could switch distal visual cues instantaneously so as to create

the illusion of being teleported to a different room entirely, or make it so that the

subject has to run twice as fast to cover the same distance in virtual space. These

manipulations allow us to test sensory inputs and behavioral variables in ways
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that are not possible to achieve in the real world.

The VR setup used in this thesis, described in detail in Section 2.3.2, is con-

structed specifically for rats and to achieve the following:

• to render proximal cues completely unreliable in that neither proximal olfac-

tory, tactile or visual cues (such as textures, odors or patterns on the virtual

floor) provide any spatially informative information. This means that the

rat cannot utilize any of these cues to determine where in the virtual envi-

ronment he is.

• to make vestibular cues unreliable. The VR is constructed such that while

the rat is free to move his head as he wishes, he is body-fixed using a

harness that wraps around his torso which is in turn fixed to the frame of

the setup causing him to be unable to turn his body. The implication of this

restriction is that while his vestibular apparatus generates normal amounts

of rotational acceleration signal when he moves his head, it will not be able to

generate an appropriate rotational acceleration signal when he turns around

in the virtual space since he is not physically turning himself. Additionally,

he moves forward in the virtual space by running on a spherical treadmill.

This means, while he runs forward, his vestibular apparatus generates no

linear acceleration signal.

• to allow for precise control of visual cues. The system is such that we can

precisely control the information visual cues provide, allowing us to test the

influence of these cues in different configurations on hippocampal activity.

• to allow for testing of behavioral vairables. By manipulating rewards and

training the animal to behave a certain way, such as running in straight lines

or performing a random foraging task, we can test the influence of behavior

on the activity of hippocampal neurons.
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• to allow for manipulation of optic flow information by changing the pattern

of the visual cue, or the gain of the sensors that detect motion of the spherical

treadmill.

There are other VR setups that are constructed differently. For example, some

VR setups consist of a head-fixed mouse on a treadmill viewing the virtual scene

on two large monitors placed in front of it [17]. These setups are especially useful

when one wants to record from neurons by either patch clamping them or use

optogenetics. Other setups allow the animal to turn himself around [18].

1.5.3 Conclusion

The goal of this thesis is to determine the contribution of multisensory inputs to

the generation of the hippocampal spatial map, and to also determine how these

multisensory inputs are integrated. The virtual reality proves a very useful tool

to achieve this goal as it allows for the unraveling of these numerous inputs.

The following chapters describe the following main results:

• multiple spatially informative inputs are necessary in order to generate spa-

tially selective activity in the hippocampus, and visual cues alone are insuf-

ficient.

• the hippocampus is capable of encoding the direction the animal is facing

without vestibular cues.

• spatial selectivity in the hippocampus is not necessary at the behavioral

level to solve a spatial navigation task.
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CHAPTER 2

Hippocampal activity in two-dimensional virtual

reality

2.1 Abstract

During real world (RW) exploration rodent hippocampal activity shows robust

spatial selectivity, hypothesized to be largely governed by distal visual cues. How-

ever, primate and human hippocampal studies, done with only visual cues, find

only weak spatial selectivity. This discrepancy could arise because multiple sen-

sory and motor cues influence rodent hippocampal spatial selectivity in RW. To

resolve these issues and determine the contribution of solely distal visual cues, we

measured hippocampal activity for the first time from body-fixed rodents explor-

ing a two-dimensional virtual reality (VR) and compared it to a visually similar

RW. Spatial selectivity was dramatically reduced in VR. Instead, small but sig-

nificant selectivity to distance traveled was found. Despite the impaired spatial

selectivity, most spikes in VR occurred within ∼ 2s long, phase-precessing hip-

pocampal motifs, with similar structure in RW and VR. Selectivity to space

and to distance traveled were greatly enhanced in VR tasks with stereotypical

trajectories. Thus, distal visual cues alone are insufficient to generate robust hip-

pocampal spatial selectivity, and temporal selectivity can exist without spatial

selectivity. These results have important implications for VR experiments and

elucidate the mechanisms of hippocampal spatio-temporal selectivity.
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2.2 Introduction

Dorsal hippocampal neurons fire at elevated rates in restricted regions of space

[4,19] when subjects randomly forage in a two-dimensional space, termed a spatial

rate code. Distal visual cues are thought to reliably determine this spatial selec-

tivity because changing or rotating them causes corresponding large changes in

place cells' spatial tuning [9, 19]. However, place cells' activity is also influenced

by other sensory and motor cues including: specific and nonspecific proximal cues,

such as olfactory and somatosensory cues [20], [21], [8, 10,12,13,22]; and locomo-

tion cues such as optic flow and proprioception, which together with vestibular

cues are thought to provide self-motion information for path integration [11,23,24].

Consistently, lesions of vestibular nuclei disrupt angular tuning of head-direction

cells [25] and spatial tuning of hippocampal place cells [26], although lesions of

the head-direction cell network, which is thought to provide vestibular input to

hippocampus, do not significantly alter hippocampal spatial selectivity [27]. Addi-

tionally, the output of vestibular nuclei suppresses self-motion signals and depends

on multisensory stimuli [28]. Indeed, in all the above experiments it is difficult

to dissociate the contribution of distal visual cues from other cues. Thus, the

contribution of distal visual cues alone—which are the only spatially informative

stimuli in typical human and primate studies of hippocampal activity [29–31]—to

the spatial selectivity of place cells in normal rats remains to be fully explained.

Neural activity is also modulated jointly by theta rhythm and the rat's position

within the place field, called theta-phase precession or a temporal code [14,32–34],

which is thought to be closely linked to hippocampal spatial selectivity [34]. Nev-

ertheless, phase precession is also seen when rats run in a running-wheel without

any systematic change in visual cues [16]. Hence, to understand the mechanisms

of the hippocampal spatial rate and temporal codes, it is important to determine

if the two can be dissociated during spatial exploration. Finally, dorsal hippocam-

15



pal neurons are typically active for sustained periods lasting more than one sec-

ond [4, 19], even under a variety of conditions [15, 16, 35, 36], and this sustained

nature of activity has received little attention.

These questions are particularly important to address since neural mechanisms

of navigation in humans and non-human primates are mostly studied in stationary

subjects, often in VR [29–31], with only distal visual cues and no vestibular or

proximal cues. Here, hippocampal neurons show only weak spatial selectivity

[29, 30, 37] at apparent odds with high spatial selectivity seen in studies in freely

behaving rodents. Further, an increasing number of functional imaging studies in

rodents are done in head-fixed animals in VR [38].

VR allows one to eliminate spatially informative multisensory, non-specific

cues and minimize vestibular cues, leaving only distal visual cues to provide reli-

able spatial information [14,17,39,40]. All previous neurophysiological studies in

rodents in VR have been done in one-dimensional mazes, and have found largely

intact spatial selectivity. In these environments visual cues are repeatedly paired

with the same set of locomotion cues, such as speed of optic flow and propri-

oception, which have been hypothesized to play a major role in driving neural

responses [11, 14, 23, 24, 41], as evidenced by disto-coding in one-dimensional VR

paths [14]. This consistency is removed in random foraging in two-dimensional VR

environments where the same physical location in space can be approached from

multiple different directions at different speeds. We thus investigated the contri-

bution of only distal visual cues in determining selectivity in such an experimental

set-up.

2.3 Methods

Methods Summary

Four adult male Long-Evans rats were trained to on a variety of tasks in RW
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and VR. All rats foraged for randomly scattered rewards in two-dimensional RW

and VR environments. Additionally, three of these rats were trained to follow

a goal-directed strategy by running towards randomly located reward-indicating

pillars in VR. Further, the same three rats were trained to run towards consis-

tently positioned reward locations in VR. There were either two or three fixed

reward locations. The environments had identical dimensions (200cm diameter

circular platform at the center of a 300 × 300cm room) and distal visual cues.

Electrophysiological data from dorsal CA1 were obtained using hyperdrives with

approximately 22 independently adjustable tetrodes [14]. Spike extraction and

sorting were done offline using custom software. Spatial selectivity and phase pre-

cession were quantified using measures previously described [14] and are described

in detail in 2.3.8 and 2.3.13. Motifs were detected using custom analyses described

in the main text. Only data measured during locomotion (speed > 5cm/s) were

used for all analyses to ensure consistent hippocampal state [42].

2.3.1 Subjects

Data were collected from four adult male Long-Evans rats (approximately 3.5

months old at the start of training), individually housed on a 12 hour light/dark

cycle and food restricted (minimum 15g of food per day) to maintain body weight.

They were allowed an unrestricted number of sugar water rewards in VR but the

total amount of water available for them to drink was restricted to approximately

40ml per day to maintain motivation, but no less than 30ml per day. All experi-

ments and data collection were performed during the light cycle. All experimental

procedures were approved by the UCLA Chancellor's Animal Research Committee

and were conducted in accordance with USA federal guidelines.
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2.3.2 Virtual Reality environment

The virtual reality setup (Figure 2.1a) consists of a 360◦ cylindrical screen on

which the virtual scene is projected. A spherical treadmill constructed from a

styrofoam ball forms the middle section of the base of the screen. The projection

on the screen is the reflection of a pre-distorted image, generated using a micro-

projector, from a spherical mirror. The reflected image is projected on all surfaces

within the screen including the base. The rat is positioned on the ball, directly

underneath the projector and secured by a harness attached to the frame of the

setup by means of a hinge-mechanism that allows the animal to rear or lay down

on the ball freely, but restricts full body rotations. The harness is structured to

wrap around the torso of the rat to allow movements of the head while restricting

the body.

The styrofoam ball is positioned over a hover-craft that generates a thin layer

of air allowing for free, and low-friction rotation of the ball in all directions. The

ball is stabilized by means of three ball-bearings and its movements in all three

axes sensed using optical sensors akin to those used in optical computer mice. As

the animal moves the ball by running or walking, the movements sensed by the

sensors are used to update the visual scene appropriately at 60 fps to generate

the illusion of movement through the virtual space. The animal is motivated

to navigate through the virtual environment by dispensing sugar water rewards

through a tube fixed to the base of the screen directly in front of the rat. A

computer-controlled valve is used to dispense rewards in a controlled manner when

the animal enters pre-determined regions within the virtual space designated as

reward zones. Any reward that is not consumed is then collected in a waste

beaker to allow for accurate measurement of the amount of reward consumed by

the animal, which can be used as a measure of the animal's performance on the

task.
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2.3.3 Behavioral Tasks

Both RW and VR setups were inside an acoustically and EMF-shielded experiment

room measuring 400× 400× 250cm.

2.3.3.1 Random foraging in RW and VR

The RW environment, positioned in the southwest corner of the experiment

room consisted of a 300 × 300 × 250cm room that had distinct visual cues on

each wall. The walls were constructed from curtains suspended from the ceiling

and a 200cm diameter, 50cm high platform was placed at the center the room

(Figure 2.1b). Rats were trained to forage for pellets of frootloop cereal randomly

scattered on the platform by the experimenter. Each session lasted about 30

minutes and the experimenter remained in one fixed location for the duration of

the session. At any given time, there were between one and three reward pellets

on the table.

The VR room had identical size and distal visual cues (Figure 2.1b), and rats

were trained to foraged for randomly located rewards on a platform of the same

size as in the RW room. Rewards in VR were in the form of sugar water dispensed

through a reward tubes placed directly in front of the rats. The reward locations

were hidden unmarked and 40–60cm in diameter, depending on the ability of the

rat to find the reward zone. In any given session, the reward zones were all of the

same size. Entry into the reward locations triggered the appearance of a white

dot of the same size as the reward zone on the platform in addition to a reward

tone and sugar water delivery. At each reward location, the rat could receive

a maximum of five sugar water rewards dispensed by means of opening a valve

connected to the reward reservoir. Rewards were dispensed as long as the rat

was within the reward zone and would cease the moment he exited. However, he

would receive at least one reward at each reward zone. Motion parallax between
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the virtual elevated table and the virtual floor underneath indicated the virtual

edge of the platform. Movement beyond the platform edge resulted in no change

in visual scene. Rats quickly learned to avoid or turn away from the virtual edges

(Figure 2.1d). It took about three weeks of handling and pre-training and two

weeks of VR training for rats to learn to do the random foraging task efficiently.

Rats were trained on the RW task after implantation. Three rats were run in

both RW and VR every day. To verify that exposure to both worlds on the same

day was not playing a role in neural responses a fourth rat never ran in both RW

and VR on the same day. Further, the order of running on VR and RW on the

same days was randomized. No qualitative differences were found between these

conditions and hence all data were combined.

2.3.3.2 Goal directed tasks in VR

We trained three rats to run in three different goal-directed tasks: random-pillar,

two-pillar and three-pillar. In all of these tasks the reward zone in VR space

was indicated by a pillar with black and white stripes suspended 50cm above the

table and a white dot directly underneath it on the table (Figure 2.1c). All other

variables, including the VR room, were identical to the one used for the random

foraging tasks. When rats reached the reward zone, five rewards were dispensed,

the pillar disappeared and another pillar appeared elsewhere in the maze. Rats

readily learned this task and reliably ran towards the pillars [43].

In the random-pillar task a pillar appeared at a pseudorandom positions in

the two VR worlds. No qualitative differences were found between neural activity

patterns in the random-pillar task and the random foraging task and hence these

data were combined for subsequent analyses.
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Figure 2.1: Description of the Virtual Reality (VR) system. (a) shows a schematic of

the virtual reality setup, (b) is a top-view schematic of the virtual environment, which was

identical to the RW room. (c) is a rat's-eye view schematic of the pillar in the

goal-directed tasks. (d) shows the percentage of time spent in all parts of the maze,

averaged across all rats showing that rats learned to avoid the edges in VR. Lighter colors

indicate higher values raging from 0–0.16%.
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In the two-pillar task a pillar appeared alternately at one of two fixed places

positions in the middle of the VR table, and 160cm apart.

In the three-pillar task the reward the indicating pillar appeared sequentially

at the vertices of an equilateral triangle with 138cm long sides centered on the

VR platform.

2.3.4 Surgery

Rats that reached performance criterion were implanted with custom-made hyper-

drives that contained 22 to 24 tetrodes whose dorsal-ventral position in the brain

could be independently adjusted. For the implantation, the rat was anesthetized

using isoflurane and positioned in a stereotax using ear bars. An incision was

made that exposed the skull from the frontal plate to the occipital plate in the

anterior-posterior direction and up to the bony ridge mediolaterally. The skull

was thoroughly cleaned and nine screw holes drilled along the periphery of the

exposed skull. One craniotomy was made over CA1 in each hemisphere at co-

ordinates 4.0 AP, 2.4 ML with respect to bregma. Craniotomies of shape and

size closely matching those of the cannulae were made using a drill mounted on a

CNC machine that provided 10 micron precision in all three planes. After careful

removal of the dura, screws were inserted and the hyperdrive was positioned over

the craniotomies and the cannulae lowered into the craniotomies using the CNC

machine until they were about 100 to 200 microns below the surface of the skull.

The suspended hyperdrive was then held in place by embedding the cannulae and

the bottom of the hyperdrive in dental cement. Rats, on average, took about ten

days to fully recover from the surgery, during which time they were not run on any

tasks, but tetrodes were gradually lowered into the brain in steps of 70− 310µm

per day.
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2.3.5 Electrophysiology

Recordings were made using tetrodes which consisted of four wires twisted around

eachother. Each wire was 13 microns in diameter and had 6.5 microns of polyimide

insulation. Heat was used to cause the polymer to reflow and fuse the four wires

together after twisting. These tetrodes were then loaded into the hyperdrive prior

to surgery and the tips of carefully cut and plated with a 3:1 mixture of gold

solution and carbon nanotubes. Twenty-four such tetrodes resulted in ninety-six

recording channels.

Each tetrode could be moved by a screw that was accessible to the experi-

menter by means of a turning tool. Each turn of the screw moved the tetrode

by approximately 310µm and tetrodes could be moved by a minimum distance of

20µm (1/16th of one full turn). Tetrodes were adjusted everyday by a distance

between 1 and 1/4 turns for the first seven to ten days. At the end of this period,

most tetrodes were deep in the neocortex and adjusting steps were made signifi-

cantly smaller (1/4 to 1/16 turns each day) till they reached CA1. Tetrodes were

advanced to CA1 in groups of four or five. CA1 was identified by the presence of

sharpwave-ripple complexes and strong theta oscillation.

Once the animal had recovered sufficiently to be able to perform the behav-

ioral task and at least one tetrode was in CA1 and pyramidal neurons could be

identified, recording would commence. Task sessions were flanked by one hour

baseline sessions during which the animal was allowed to sleep in a box placed

within the experiment room. Red, green and blue LEDs on the head cap allowed

for monitoring the position of the rat in both baseline and task sessions. For the

rats that were run on both RW and VR tasks on the same day, the two tasks were

run in one block with the baselines before and after the task block.

Recordings were made at a sampling rate of 40kHz and bandpass filtered be-

tween 0.9Hz and 9kHz using a Neuralynx Digital Lynx SX system. The recording
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system was interfaced with the tetrodes through an electrode interface board with

three headstages, each with 24 acquisition channels. The user interface allowed

the experimenter to observe the continuous traces and spike clusters online during

adjusting and recording.

2.3.6 Spike detection and sorting

Spikes extraction and detection was done offline. To detect spikes, the continu-

ous traces were bandpass filtered between 600Hz and 6kHz and a nonlinear en-

ergy operator threshold applied. 1ms spikes were extracted, upsampled fourfold,

aligned with respect to their peaks and downsampled to 32 data points. These

were sorted into individual units using custom software—a modified version of the

MClust software package (MClust-3.5, A.D. Redish).

Classification of single unit cell type was performed using the same methods

as previously described [14]. For each clustered unit, the energy normalized wave-

forms were computed and the peak to trough fall times determined. Units were

classified as interneurons if their fall times were less than 0.4ms and had firing

rates of at least 5Hz during periods of running. Units with fall times more than

0.4ms and firing rates less than 5Hz during periods of run were classified as pyra-

midal units. Principal component analysis of the average waveforms was used to

verify classification.

In addition to classification, neurons were identified across two sessions as the

same cell by comparing cluster boundaries in multiple projections and waveform

shapes from both sessions. If the identity of a cluster from the two sessions

was even slightly different due to electrode drift, and could not be conclusively

classified as the same unit, they were discarded from same cell analysis.
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2.3.7 Statistics

Offline analyses were performed using custom MATLAB codes. Tests of signifi-

cance between linear variables (circular variables) were done using the two-sided

nonparametric Wilcoxon rank-sum test (Kuiper test). Tests of significance for the

mean values of distributions being different from zero were performed using the

two-sided nonparametric Wilcoxon signed-rank test. To compute circular statis-

tics, CircStat toolbox was used [44]. Tests of significance of correlation between

two variables were done using a t-test for correlation coefficients. All ensemble

averages are in the form mean ± s.e.m unless otherwise stated. All correlation

values are reported as the linear correlation coefficient r. Two different sessions

had a small number of single units, which could potentially inflate our estimate

of the number of independent samples, thus altering the significance level of the

statistical tests. Hence, as a conservative estimate, we did all tests of signifi-

cance using only half as many cells in VR and RW. All significant results were

still highly significant. No statistical methods were used to predetermine sample

sizes, but our sample sizes are similar to those generally employed in the field.

Data collection and analysis were not performed blind to the conditions of the

experiments.

2.3.8 Quantification of ratemaps

Theta rhythm is interrupted [42] and behavior is uncontrolled when rats pause

to consume rewards or to groom. Hence these periods were excluded and only

data recorded during periods of active locomotion (runningspeed > 5cm/s) were

used. The duration of recording sessions were matched between RW and VR to

remove possible sources of variability. A cell was considered active if its mean fir-

ing rate exceeded 0.2Hz and fired at least 100 spikes during locomotion and was

thus included in the analysis. Spatial firing rates were computed using occupancy
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and spike histograms with 5× 5cm bins smoothed with a 7.5cm two-dimensional

Gaussian smoothing kernel. Bins with very low occupancy relative to the exper-

imental session were excluded to avoid artificially high firing rates. The spatial

information content, sparsity and coherence of the ratemaps were computed using

methods described previously [14]. To determine the stability of ratemaps, firing

rates were computed in the first and second halves of the session separately. The

bin-by-bin correlation between the ratemaps in the two halves provided a mea-

sure of ratemap stability. To obtain the similarity of ratemaps of the same cell in

RW and VR we computed the correlation of firing rates and computed statistical

significance by comparing it against correlations when cell identities were shuffled.

2.3.9 Computation of coactivation of cell pairs

To determine the degree of coactivity of pairs of cells active in a session, we first

constructed the firing rate of neurons as a function of both time elapsed and

distance traveled (200ms(5cm) time(distance) bins, smoothed with 400ms(10cm)

Gaussian smoothing kernel). We then computed the cross-covariance of firing

rates for pairs of active cells within a session. To obtain an estimate of chance

level, we generated control data by time-reversing the spike train of one of the

cells in the cell pair and time shifting both of them by random amounts between

10–100s. This procedure was repeated 10 times. We detected the peak value in

the cross-covariance of the original cell pairs and the control data in both distance

and time domains.

The dynamic ratemap for a pair of coactive cells was constructed as follows:

for each spike from the first cell, the rat trajectory and spikes from the second

cell within the next 200cm traveled were aggregated relative to the spike positions

from the first cell. We used 15× 15cm spatial bins and computed the occupancy

time and number of spikes in each bin. Dividing the number of spikes by the

occupancy time in each spatial bin provided the dynamic ratemap. Information

26



content and sparsity of these ratemaps were quantified as described previously.

peakdistanceactual ≥ mean(peaksdistancecontrol ) + 2× standarddeviation(peaksdistancecontrol ) (2.1)

peaktimeactual ≥ mean(peakstimecontrol) + 2× standarddeviation(peakstimecontrol) (2.2)

We then calculated the fraction of cell pairs whose firing rate cross-covariance had

a significant peak.

2.3.10 Goal-Directed Tasks

2.3.10.1 Quantification of degree of goal-directedness

In all three tasks, the degree of goal-directed behavior was quantified by calcu-

lating the median excess path length. We defined the difference between the

shortest distance between two consecutive reward locations and the actual path

length traveled by the rat as the excess path length. We then calculated the me-

dian value of this excess path length over an entire session to obtain the excess

path length for the session.

2.3.10.2 Characterizing Selectivity to Distances Traveled in VR Goal-

Directed Tasks

To investigate the degree of selectivity to distance traveled in the goal-directed

tasks (VR systematic-pillar and VR random-pillar), we linearized the paths by

measuring the distance traveled between two consecutive reward and normalizing

them to unity. To control for the variability in the path lengths, we only con-

sidered trials for which the distance traveled was around the median path length

(median ± 0.4×median). This threshold value of 0.4 ensured that the number

of trials and path-length variability were similar in random-pillar and systematic-

pillar tasks. The following analysis was also repeated when considering all trials
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regardless of the path lengths and the results were qualitatively similar. For each

cell, we constructed a linearized ratemap as a function of the normalized distance

traveled. For cells with mean firing rate above 0.5Hz, we then computed the

information content, sparsity and peak value of the ratemaps to quantify this

selectivity. To examine the nature of this selectivity on an ensemble level, for

each cell we partitioned the selected trials into two random groups. We computed

the firing rate for each partition separately. The population vector overlap for

the two partitions was calculated and the significance values were obtained using

previously described methods [14].

2.3.10.3 Computation of Disto-code in VR Three-Pillar Task

Here, a one-dimensional linearized ratemap was constructed (distances were nor-

malized to unity) for each arm separately. A given arm pair was used for analysis

if the mean firing rate was higher than 0.5Hz on at least one arm. We then

computed the arm selectivity index for each two-arm combination as:

Dij = |Σ
L
l (λil − λ

j
l )

ΣL
l (λil + λjl )

| (2.3)

Where λil and λjl are the rates in the lth bin along arms i and j. For the

arm pairs with D < 0.5 (pairs with firing along both arms) we computed the

population vector overlap, its significance level and disto-coding index similar to

the methods described previously [14].

2.3.11 Detection of Motifs

To detect motifs a method similar to the one used for detecting place fields on

a one-dimensional track was used. We constructed a spike train, a vector of

data whose length spanned the period of experimental session, by binning the

spikes for which the running speed was greater than 5cm/s. This spike train was
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smoothed using a 200ms Gaussian smoothing kernel and transformed to firing

rate by dividing by the bin duration. Peaks where firing rate exceeded 5Hz were

detected and marked as candidate motifs. The boundaries of a motif were defined

as the points where the firing rate first dropped below 10% of the peak rate

(within the motif) for at least 250ms (two theta cycles). If the time-lag between

the first and last spike in the putative motif, called the duration of the motif,

exceeded 300ms, this sequence was considered a valid motif and was included in

the analysis.

For each cell we computed the mean firing rate within individual motifs and

calculated the mean of those values to obtain a single number for individual cells.

2.3.12 Construction of Motif-fields

The center of a motif was defined as the center of mass of the firing rate as a

function of time within the motif. This value was subtracted from the spike times

within the motif to center them around zero. This procedure was repeated for

all motifs and the centered motifs were aligned to obtain a motif-field for a given

neuron. The firing rate as a function of time within the motif-field was calculated

as the number of spikes within each temporal bin divided by the total amount of

time in that bin, smoothed by a 200ms Gaussian smoothing kernel. Motif-field

duration was defined as twice the weighted standard deviation of the motif firing

rate, i.e. the width of the distribution.

2.3.13 Theta Period and Phase Precession

Similar to the methods described previously [14], each LFP was filtered between

4 and 12Hz using a 4th order Butterworth filter. Theta period was computed

by detecting the peak between 50 and 200ms in the filtered LFP autocorrelation

for epochs when the running speed was above 5cm/s. Spiking theta period was
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calculated by computing the spike train autocorrelation, smoothing by a 15ms

wide Gaussian kernel, and detecting the peak. Quality of phase precession within

a motif-field was defined as the circular linear correlation coefficient (CLCC) [14]

between spike phases and latency of spike timing with respect to the motif center.

To further examine the dynamics of LFP theta, we investigated the LFPs

recorded from the same electrode on the same day in both worlds without any

electrode movement between the two sessions. Analysis was further restricted only

to data when rats ran at speeds greater than 5cm/s to eliminate contamination

by variable periods of stopping when theta is reduced. In order to compare data

from different sessions, the power spectrum from each electrode was normalized

by the mean power on that electrode in RW and VR over the frequency range

1− 100Hz.

2.3.14 Control Analysis for Motifs

To estimate which motif properties can arise purely by chance, surrogate motifs

for each neuron were generated as follows. The mean firing rate during locomotion

and the depth of theta modulation were computed for each neuron. Surrogate ac-

tivity was generated using a Poisson distributed and theta modulated spike train

with the same mean firing rate and depth of theta modulation as the experimen-

tally measured neuron. Motifs, motif-fields, and their properties were computed

using procedures described above. This procedure was repeated 50 times for each

neuron to generate a null distribution. Mean value and standard deviation of this

null distribution were used to compute the z-scored values for each cell.

2.3.15 Control Analysis for Spatial Selectivity

To determine the statistical significance of spatial selectivity we generated control

data by shifting the experimentally observed spike train with respect to behavioral
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data by random amounts between 10100s. All of the measures used to quantify

the spatial selectivity were expressed in the units of z-score or standard deviations

around the control data.

2.4 Results

2.4.1 Nature of spatial selectivity of hippocampal responses

a
b c

Figure 2.2: Similar rat behavior in RW and VR. (a) Mean running speed at the time

of occurrence of spikes (excluding speeds < 5cm/s) was slightly reduced (3%, p = 0.0005)

in VR (22.40± 0.13cm/s, red) compared to RW (23.27± 0.16cm/s, blue). Colored,

dashed vertical lines indicate the mean values of the corresponding distributions, here and

subsequently. (b), (c) Percentage of time spent in all parts of the maze, averaged across

all rats showing that rats spent comparable time away from edges in RW and VR.

Numbers indicate range; lighter shades indicate higher values. These color conventions

(RW, blue shades; VR, red shades; lighter shades, higher values) apply to all subsequent

figures.

We measured hippocampal activity during a random foraging task in RW and

VR [18, 43] with similar distal visual cues (Figure 2.1b). In VR rats were body-
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fixed with a harness on a floating ball, allowing head movements but precluding full

body-turns, thus minimizing vestibular cues (Figure 2.1a)(see Methods) [14, 43].

Rats quickly learned to avoid the virtual edges based entirely on visual cues [43]

and spent a similar amount of time away from the edges and in the center of the

platform (Figure 2.2b,2.2c) compared to RW.

a

b

Figure 2.3: Different neural ratemaps in RW and VR. a), b) Rat trajectory and spike

positions for different neurons and corresponding firing ratemaps in RW and VR.

From the dorsal CA1 of four rats we measured the activity of 1066 and 1238

principal neurons in RW and VR respectively, under a variety of conditions (see
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Methods). Neurons fired vigorously in restricted regions of space in RW as ex-

pected (Figure 2.3a, Supplementary Video 1). In contrast, they showed little

spatial selectivity in VR during random foraging (Figure 2.3b, Supplemnetary

Video 2).

a b

c

d

Figure 2.4: Reduced activity and spatial selectivity in VR (a) Mean firing rates were

25% (p = 7.6× 1020) lower in VR (0.70± 0.02Hz) than in RW (0.93± 0.02Hz). (b)

Peak firing rates of neurons were 68% (p = 1.1x10161) smaller in VR (3.19± 0.07Hz,

n=719 cells from 4 rats) compared to RW (9.90± 0.18Hz, n=1066 cells from 4 rats).

(c) Spatial information content in VR (0.33± 0.01bits) was 75% (p = 1.1× 10183) lower

than in RW (1.35± 0.02bits) (d) Ratemap coherence computed using 10× 10cm bins,

was 40% (p = 2.3× 10−157) reduced in VR (0.45± 0.01) compared to RW (0.75± 0.01).
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Across the ensemble, neurons had moderately reduced (25%) mean firing rates

but greatly reduced (68%) peak firing rates in VR (Figure 2.4a, 2.4b). Neurons in

VR also had greatly reduced spatial information content (75%) (Figure 2.4c), sta-

bility (59%) (Figure 2.5a, 2.5b), coherence (40%) (Figure 2.4d) and sparsity (42%)

(Figure 2.5c) compared to spatially localized, stable, and sparse RW ratemaps.

a

b

c

Figure 2.5: Reduced activity and spatial selectivity in VR (a) Ratemaps of a neuron

during the first and second halves of a session in RW and VR. (b) Stability of ratemaps in

VR (0.26± 0.01) was significantly reduced (difference = 0.37, p = 1.2× 10124)

compared to RW (0.63± 0.01). (c) , Ratemap sparsity, a measure of spatial selectivity,

was also greatly (42%, p = 2.3× 10−162) reduced in VR (0.42± 0.01) compared to RW

(0.72± 0.01).
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a b

Figure 2.6: Information content and stability were higher in RW than in VR at

mean rate values. (a) At all mean rates, spatial information content was negatively

correlated with the mean firing rate of a cell in both worlds (RW

r = −0.36, p = 1.6× 1027 ; VR r = −0.48, p = 3.2× 10−33 ). (b) Spatial stability was

lower in VR compared to RW. Stability was not correlated with mean firing rate in RW

(r = 0.02, p = 0.54) and weakly positively correlated in VR (r = 0.28, p = 1.1× 10−11).

Though mean firing rate was inversely correlated with information content

(Figure 2.6a), this large reduction in spatial selectivity cannot be accounted for

by the differences in mean firing rates in VR and RW since neurons with similar

firing rates had significantly lower spatial selectivity (Figure 2.6a) and stability in

VR (Figure 2.6b).

Analysis of relative spatial dynamics [45] between simultaneously measured

cells showed that neurons did not maintain consistent spatial relationships with

each other in VR in contrast to RW (Figure 2.8). This was further confirmed

by the analysis of cross-covariance of firing rates in time and in distance (see

Methods) showing little evidence of coactivation or reliable pairing of groups of

neurons in VR, in contrast to RW (Figure 2.8).
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a

b

Figure 2.7: Loss of spatial selectivity in dynamic ratemaps in VR. (a) Spatial

ratemaps of two pairs of neurons in RW (left) and their dynamic ratemap (right) showing

spatially localized activity. (b)Same as (a) but for two pairs of neurons in VR showing no

spatial selectivity.
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a b

c

Figure 2.8: Reduction in neuronal coactivation in VR. (a) Dynamic ratemap

information content in RW (0.63± 0.01 bits, n = 10831 pairs) was 65% greater

(p < 10−100) than in VR (0.22± 0.00 bits, n = 8202 pairs). (b) Dynamic ratemap

sparsity in RW (0.56± 0.002) was also greater (36%, p < 10−100) than in VR

(0.36± 0.002). The relative spiking of coactive neurons was spatially informative in RW

but not in VR. (c) In order to investigate coactivity of cell pairs (including sequential

activity on intermediate time- and length scales) we computed cross-covariances between

the firing rates of pairs of active cells in a session as a function of time elapsed or distance

traveled (see Methods). The fraction of coactive cells in RW (15.5(16.8)% in

distance(time) domain) was far greater than that in VR (8.3(8.9)% in distance(time)

domain).

37



These results demonstrate that, in VR, neurons did not have place fields that

were drifting together, nor were they activated in a sequential fashion, in some

unknown reference frame.

We also characterized activity of 258 neurons recorded in both worlds on the

same day (See Methods). Of these, only 109 (42%) had a mean firing rate above

a minimal activity threshold of 0.2Hz in both worlds.

a b

Figure 2.9: Comparison of activities of cells active in both RW and VR on the

same day. (a) For cells recorded in both worlds on the same day mean firing rate was

correlated regardless of minimum firing rate (grey, r = 0.32, p = 1.7× 10−7, n = 258).

This was also true for the subset of cells active at high rates in both worlds (purple,

r = 0.21, p = 0.03, n = 109), used for all subsequent same-cell analyses. (b) The peak

firing rate of the same cell was reduced in VR compared to RW and the two were not

significantly correlated (r = 0.12, p = 0.23), despite their correlated mean rates, due to

lack of spatial selectivity in VR.
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a b

Figure 2.10: Comparison of activities of cells active in both RW and VR on the

same day. (a) Spatial ratemap sparsity of the same cell was also reduced in VR but

correlated with RW (r = 0.36, p = 0.0001), which could be partially explained by

correlated mean firing rates. (b) Despite positive correlations in mean rate and sparsity,

the distribution of correlation of ratemaps of the same cells between RW and VR was

not significantly different from zero (p = 0.39) and not different from the ratemap

correlations obtained by shuffling the cell identities (p = 0.97).

For these neurons, the mean firing rates, but not peak firing rates, were signif-

icantly correlated between RW and VR (Figure 2.9a, 2.9b), although they showed

spatial selectivity in RW but not in VR and had uncorrelated ratemaps (Figure

2.10a, 2.10b).
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2.4.2 Contribution of task type and locomotion cues

a

b

c d

Figure 2.11: Quantification of behavior and neural responses during goal-directed

VR tasks. (a) Schematic showing a pillar suspended in VR. (b) Sample trajectories

between two reward locations and the corresponding shortest path between them in the

random-pillar task (left) and systematic-pillar tasks (center, right). (c) Behavior was

significantly more goal-directed during the pillar tasks (median excess path length:

random pillar 56.3± 10.8cm, p = 6.1× 10−4; systematic pillar

77.3± 12.2cm, p = 1.4× 10−5) than during random foraging (median excess path

length: 178.2± 13.9cm, see Methods. VR random-pillar and VR systematic-pillar were

equally goal-oriented(p = 0.44). (d) Spatial information content in VR Random-Pillar

(0.39± 0.02bits, n = 195cells from 3 rats) was only slightly (16%, p = 1.6× 104) larger

than in VR random (0.33± 0.01bits), and still substantially smaller

(71%, p = 1.1× 1055) than in RW (1.35± 0.02bits).
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In RW, rats might use a goal-directed strategy to navigate to a food pellet, whereas

in VR, there were no reward-predicting cues; such a difference in task type could

influence hippocampal activity [11]. To control for this, we did a separate ex-

periment where we measured the activity of 195 neurons from three rats while

they ran towards a reward-indicating suspended pillar appearing at random lo-

cations in VR (Figure 2.11a, see Methods) [43]. The excess path length of the

rats'trajectory between rewards was significantly shorter during this random-pillar

task (69%) than the random foraging task, indicative of a goal-directed strategy

(Figure 2.11b, 2.11c). There was no substantial difference in spatial selectivity

between the two task types in VR (Figure 2.11d, Supplementary Video 2), which

argues that the loss of spatial selectivity was not due to differences in task type.

Hence, for subsequent comparisons between RW and VR, data from random for-

aging and random-pillar tasks were combined.

The loss of spatial selectivity in two-dimensional VR is in stark contrast to

not only two-dimensional RW, but also to previous studies in one-dimensional

VR [14, 17, 39, 40] where clear spatial selectivity was found. To test whether spa-

tial selectivity could exist in the same two-dimensional VR environment without

the vestibular cues present in RW, we did another experiment in which the task

type was similar to the random-pillar task, but the reward-indicating pillars ap-

peared systematically at fixed locations (see Methods). In the first variant, pillars

appeared at two fixed but alternating positions in VR (Figure 2.12a). Because

rats ran in more stereotyped trajectories, locomotion cues—such as step counting

from the previous reward and speed of optic flow—were made spatially informa-

tive because the same cues occurred repeatedly at the same positions across the

task. Consequently, unique locomotion cues were repeatedly paired with distinct

distal visual cues at each position. Spatially selective neural responses appeared in

this systematic-pillar task with significantly enhanced spatial information content

and ratemap sparsity compared to VR random foraging (Figure 2.13a, 2.13b).
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a

b

Figure 2.12: Dependence of spatial selectivity on task type and locomotion cues.

(a), (b) Top) Trajectory of the rat (light green trace) and position of the rat at the time

of occurrence of spikes (darker dots) for example neurons during the systematic path

tasks. Bottom) Ratemaps corresponding to the above neurons.

While some neurons had a focused place field in only one movement direction,

or arm, similar to place cells in RW, others spiked on both arms (Figure 2.12a),

which we investigate in detail below.

To rule out the possibility that spatial selectivity arose simply due to alter-

nating contexts in two movement directions, or that the rat did not traverse a

large portion of the maze, we did another variant of the systematic-pillar task

in which the reward-indicating pillars appeared sequentially at the vertices of an

equilateral triangle (see Methods). Here the rats walked repeatedly along the

same paths while covering a greater fraction of the two-dimensional maze and,

because adjacent arms were rotated 120◦ with respect to each other rather than

180◦, the visual scene was more similar along different arms than in the two-pillar
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a b

c

Figure 2.13: Dependence of spatial selectivity on task type and locomotion cues.

(a) Spatial information content in VR with systematic pillars (1.11± 0.03bits, n = 324

cells from 3 rats) was significantly larger than in VR random (70%, p = 1.0× 10101) and

only slightly smaller than in RW (17%, p = 5.3× 108). (b)Spatial sparsity in VR

systematic-pillar (0.63± 0.01) was significantly greater (34%, p = 4.7× 1063) than in VR

random (0.42± 0.01), and close (12%less, p = 4.6× 1020) to that in RW (0.72± 0.01)

(c) Ratemap stability in the VR systematic-pillar task (0.34± 0.03, n = 282 cells with at

least 100 spikes in each session half) is greater than VR random foraging

(p = 2.4± 10−3) and smaller than RW random foraging (p = 1.8× 10−18).
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task (Figure 2.12b). Spatially selective, stable responses also appeared in this

task, significantly greater than in the two-dimensional random foraging tasks in

VR, but comparable to that in two-dimensional random foraging in RW (Figure

2.12b, 2.13a, 2.13b). Here too, some neurons spiked on only one arm of the trian-

gle (Supplementary Video 3), similar to RW place cells, while others spiked along

multiple arms (Supplementary Video 4).

In both of the systematic-pillar experiments, vestibular cues remained minimal

and spatially uninformative during turns, yet spatial selectivity was comparable to

that in RW random foraging. Further, in systematic-pillar tasks and the random-

pillar task, the path between two successive reward locations was not always

direct, but often deviated from the optimal, straight-line path (Figure 2.11b). This

departure, or excess-path length, was comparable in both systematic- and random-

pillar tasks (Figure 2.11c), indicating similar levels of goal-directed behavior and

demonstrating that differences in the departure from the shortest paths do not

underlie the observed differences in spatial selectivity. Thus, the task type cannot

explain the observed differences in spatial selectivity under different conditions in

RW and VR.

The presence of firing on multiple arms in the systematic-pillar tasks (Figure

2.12a, 2.12b) suggests that neurons might be coding for the distance traveled

along the paths. If so, this raises the possibility that neurons in the random-pillar

task might also exhibit similar coding despite their lack of two-dimensional spatial

selectivity. The fact that the beginning and end of a trial were clearly delineated

by the visible pillars in all goal-directed tasks allowed us to test these possibilities

by quantifying neurons's activity as a function of normalized distance traveled

along each path, subsequently referred to as distance (see Methods).
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c d

Figure 2.14: Selectivity to distance traveled in the VR goal-directed tasks at the

neuronal level. (a), (c) Firing rate of cells as a function of normalized distance traveled

across trials. (b), (d) Trajectory of the rat (light brown,green) and spike positions (dark

brown,green) during the VR random- and systematic- pillar tasks for the same cells

shown in Figure 2.14a). The black dots indicate the reward locations and the arrows

correspond to running direction.

In the random-pillar task many, but not all, neurons exhibited random firing

both on linearized paths and in the two-dimensional space (Figure 2.14a, 2.14b).

In contrast, a majority of neurons in the systematic-pillar tasks often fired at the

same distance (Figure 2.14c, 2.14d). Linearized ratemaps in the random-pillar

tasks had lower information content(49%, Figure 2.15a), sparsity(36%, Figure
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c

Figure 2.15: Firing properties of neurons with distance selectivity. (a) Information

content in linearized paths in VR random-pillar task (0.24± 0.01bits, n = 127 cells from

3 rats) was significantly lower (49%, p = 1.2± 1017) than in VR systematic-pillar

(0.47± 0.02bits, n = 310 cells from 3 rats). (b) Sparsity of the linearized firing

ratemaps in VR random-pillar (0.23± 0.01) was significantly reduced

(36%, p = 5.9× 1016) compared to VR systematic-pillar (0.36± 0.01). (c) Peak firing

rates were 36% (p = 3.1× 1015) smaller in VR random-pillar (2.89± 0.14Hz) compared

to VR systematic-pillar (4.55± 0.15Hz).
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2.15b), and peak rate (36%, Figure 2.15c) compared to the systematic-pillar task,

though a small number of neurons in the random-pillar task had measures com-

parable to those in the systematic-pillar task. We further characterized this selec-

tivity on a population level by computing the population vector overlap (PVO)

between the firing rates of two groups of randomly selected paths for each cell (see

Methods). While the significant overlap in the random-pillar task was limited to

regions near the beginning and end of trials, it was present at all distances in the

systematic-pillar tasks (Figure 2.16).

Additionally, we tested if the neurons spiked at the same distance on two dif-

ferent arms of the triangle, located in different parts of the maze. We quantified

the number of cells that fired on multiple arms by calculating the arm selectiv-

ity index (Figure 2.17a, see Methods). For cells that were active on multiple

arms (index < 0.5), which constituted a majority, PVO analysis between the

two arms' ratemaps revealed significant overlap at all distances indicative of a

robust disto-code, notably on non-overlapping paths (Figure 2.17a, 2.17b). These

results, together with the differences in two-dimensional spatial selectivity pre-

sented above, suggest that repeated traversals along the same path, such as in

the systematic-pillar task, are crucial for generating robust spatial selectivity and

selectivity to distance, a generalization of the disto-code.
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Figure 2.16: Selectivity to distance traveled in the VR goal-directed tasks at the

neuronal level. PVO in VR random-pillar (top left) and VR systematic-pillar (top

right). The range of overlap is indicated by the numbers at the top left corners. The

bottom row depicts the significance levels for the corresponding PVO presented in the

top row. The significant diagonal indicates selectivity to distance on an ensemble level.
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Figure 2.17: Selectivity to distance traveled in the VR goal-directed tasks at the

neuronal level. (a) Top) For different arm pairs with minimal activity on at least one

arm (meanrate > 0.5Hz, n = 625 from 3 rats), the arm selectivity index (0.37± 0.01)

quantifies the likelihood of firing on one arm (index > 0.5) versus on multiple arms

(index ≤ 0.5). Bottom) Disto-coding index (see Methods) for the population of

multi-arm selective arm pairs (n = 431) in the three-pillar task was also significantly

positive (0.23± 0.02, p = 1.5× 10−31), further supportive of a disto-code. (b) PVO for

arm pairs with arm selectivity index below 0.5 (top, n=431 from 3 rats) and the

significance levels (bottom).

2.4.3 Hippocampal motifs and phase precession

In RW, neurons generated long spike-sequences lasting about two seconds as rats

traversed through well-defined place fields (Figure 2.18a,2.3a).
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Figure 2.18: Hippocampal motifs and motif-fields. (a), (b) Spike positions of an

example motif from a cell overlaid on a segment of the rats trajectory (left) and firing

ratemap (right) in RW and VR. (c), (d) Left) Motif firing rate as a function of time and

individual spike times (vertical lines) for the same motifs as in 2.18a and 2.18b

respectively. Right: Motif-field firing rate as a function of time. Spikes from individual

motifs are depicted in the raster plot, aligned around motifs centers of mass to form the

motif-field. In other words, each row represents an individual pass through the

motif-field.

Surprisingly, despite having no clearly defined place fields, neurons in VR

also fired similarly long spike-sequences, appearing as streaks of spikes (Figure

2.18b,2.3b). We term these long spike- sequences hippocampal motifs identified

as time periods in which a neuron achieved a peak firing rate of at least 5Hz and

maintained a firing rate above 10% of that peak for at least 300ms. All individual

motifs from a cell were aligned around their center of mass and aggregated together

to obtain the cell's motif-field (Figure 2.18c, see Methods).

Motif properties, including mean motif duration, fraction of spikes contained
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Figure 2.19: Similar hippocampal motifs in RW and VR (a) Mean motif durations of

cells with at least five motifs (RW: 1064/1066 cells; VR: 911/914 cells = 719 cells (4

rats, VR random) + 195 cells (3 rats, VR random-pillar)) were comparable in RW

(1.82± 0.02s) and VR (1.63± 0.02s) but slightly smaller in VR (7%, p = 2.2× 1012).

The shortest allowed motif duration (dotted line) was much smaller than the ensemble

average. (b) The coefficients of variation (CV) of motif durations within each cell were

comparable in RW (0.69± 0.00) and VR (0.63± 0.01), but slightly lower in VR

(8%, p = 5.7× 1020). Both were much greater than the CV of the distributions in the

left panel (solid vertical lines). (c) Majority of spikes were contained within motifs (RW

75.90± 0.47%; VR 64.99± 0.63%) but there was a small reduction in VR

(14%, p = 1.2× 1051). (d), (e) Motif mean rates and peak rates in VR (mean

5.92± 0.06Hz; peak 23.39± 0.24Hz) were slightly smaller (mean 10%, p = 7.7× 10−10;

peak 21%, p = 6.1× 10−21) than in RW (mean 6.52± 0.06Hz; peak 28.32± 0.69Hz).

in motifs, mean firing rate, and peak firing rate, were comparable in the two worlds

(Figure 2.19a, 2.19c, 2.19d, 2.19e), and far greater than expected by chance, par-

ticularly when accounting for the lower mean rates in VR (Figure 2.20a, 2.20c,
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Figure 2.20: Relationship between mean firing rate, percentage of spikes within

motifs and information content of a neuron. (a) Mean rate and percentage of spikes

within motifs were significantly correlated (RW r = 0.54, p = 4.1× 10−65; VR

r = 0.41, p = 1.2× 10−28). (b) The percentage of spikes in motifs was significantly

correlated with spatial information content. (RW r = 0.28, p = 4.2× 10−17; VR

r = 0.26, p = 6.5× 10−12) (b) Z-scored percentage of spikes in motifs was significantly

above zero in VR (35.15± 1.06, p = 3.9× 10−83) and RW

(23.52± 0.64, p = 1.0× 10−26) (b) Z-scored mean motif duration was similar in both

worlds (RW 8.02± 0.25; VR 7.33± 0.27, p = 0.03) and above zero (RW

p = 2.1× 10−96; VR p = 1.4× 10−83).

2.20d). In fact larger Z-scored values in VR indicate greater propensity for motif

generation compared to RW. While for any given cell the motif durations were

quite variable in either world, (Figure 2.19b), mean motif durations across all cells

displayed small variability (Figure 2.19a). While the variability in motif durations
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Figure 2.21: Similar hippocampal motif-fields in RW and VR (a) Peak firing rates of

motif-fields in VR (8.85± 0.10Hz) were only slightly smaller (13%, p = 2.1× 1017) than

in RW (10.22± 0.11Hz). (b) Motif-field mean firing rates in VR (4.12± 0.05Hz) were

only slightly smaller (5%, p = 9.2× 10−3) than in RW (4.34± 0.05Hz). (c) Motif-field

durations in VR (1.33± 0.01s) were similar but slightly reduced (10%, p = 1.1× 10−12)

compared to RW (1.48± 0.01s). (d) For cells active in both worlds on the same day,

motif-field duration was correlated between RW and VR (r = 0.31, p = 1.2× 10−3). (e)

Motif-field peak firing rate had a similar correlation (r = 0.54, p = 1.2times10−9).

in RW could be due to a varying amount of time spent within the place field in each

traversal, the motif durations were equally variable in VR (Figure 2.19b) with little

spatial selectivity, suggestive of an intrinsic, network-wide mechanism for motif

generation. Neurons with a larger fraction of spikes within motifs had greater

information content (Figure 2.20b) and mean firing rates (Figure 2.20a), in con-

trast to the inverse correlation between information content and mean firing rate

seen across all cells when all spikes were included (Figure 2.6a). Spiking within
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motifs, as opposed to isolated spiking, may therefore serve to group otherwise

random and non-informative spikes into more informative clusters. Additionally,

the correlation between the percentage of spikes within motifs and mean firing

rates (Figure 2.20a) could explain the reduced motif duration and percentage of

spikes contained in motifs in VR compared to RW (2.19a–2.19c).

Analysis of motif-fields (Figure 2.18c, 2.18d) showed similar results, with motif-

fields having similar durations, mean rates and peak rates in RW and VR (Figure

2.21a, 2.21b, 2.21c), in contrast to the smaller peak rates in spatial ratemaps

in VR (Figure 2.4b). Neurons active in RW and VR on the same day also had

motif-fields with similar durations and peak firing rates (Figure 2.21d, 2.21e).

In spite of the impaired rate code, do the motifs show a temporal code [14,17,

32–34,39]? Due to the absence of clear place fields in VR we quantified the quality

of phase precession within motif-fields by computing the circular linear correlation

(see Methods) between the time spent within the motif-field and the theta phase of

spikes. In RW 80% of neurons showed significant phase precession within motif-

fields (Figure 2.22a, 2.22b). This number was reduced to 40% in VR, but was

still far greater than expected by chance (Figure 2.22a, 2.22b, see Methods). For

cells with significant precession, the quality of precession was comparable in both

worlds, although slightly reduced in VR (Figure 2.22b). For all cells, we also

computed the difference between the period of theta modulation of spikes and the

LFP theta period [6,32,34]. A majority of cells in RW (83%) and VR (78%) had

longer LFP theta period than spike theta period, indicative of intact temporal

coding in VR (Figure 2.22b). This is especially notable because LFP theta had

greater peak theta power and reduced theta frequency in VR (Figure 2.23a). The

preferred theta phase of neurons was also significantly different and more variable

in VR compared to RW (Figure 2.23b), yet neurons showed similar degrees of

theta phase locking in both worlds (Figure 2.23b).
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Figure 2.22: Intact phase precession in VR within motif fields. (a) Left) Sample

LFP theta traces filtered in theta band (4− 12Hz) in RW (top) and VR (bottom)

recorded from the same electrode on the same day. Spikes from the same cell (vertical

lines) in RW and VR occur at earlier phases on subsequent theta cycles. Right)

Motif-fields in RW and VR show clear phase precession. Lighter shades indicate higher

values. (b) Left) 80.03% and 40.52% of the cells showed significant phase precession in

RW and VR respectively. For these, the quality of phase precession in VR cells

(0.19± 0.00, n = 365 cells, 4 rats) was slightly reduced (13%, p = 1.9× 1011) compared

to RW (0.22± 0.00, n = 852 cells, 4 rats). Right) Difference in LFP theta period and

spiking theta period, computed from the autocorrelation of LFP and of spikes shows

comparable but reduced (11%, p = 4.6× 109) and more variable temporal coding in VR

(11.38± 0.46ms,mean± STD) compared to RW (12.85± 0.23ms,mean± STD).
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Figure 2.23: Increased Theta Power but Reduced Theta Frequency in VR. (a)

Left) , Normalized power between 5− 15Hz, averaged over all the LFP (n = 57) in RW

and VR shows a clear difference in theta power and frequency between the two

environments. Center) Peak theta power is significantly increased (p = 0.002, paired

Wilcoxon signed rank test) in VR (56.95± 3.75) compared to RW (46.61± 2.51).

Right) Theta frequency in VR (7.21± 0.07Hz) is significantly lower (p = 5.1× 10−11)

than in RW (8.32± 0.06Hz). (b) Left) The preferred theta phase of spikes was shifted

closer to theta peak (6%, p = 0.001) in VR (103.70± 2.29◦) and was also more variable

(SD = 61.40◦) compared to RW (110.58± 1.72◦, SD = 56.15◦). Right) The degree of

phase locking (depth of modulation) was similar in VR (0.15± 0.09) and RW

(0.16± 0.09), though slightly reduced (8%, p = 8.5× 105) in VR.
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2.5 Discussion

These results provide the first measurements of rodent hippocampal CA1 neuronal

activity during random foraging in a two-dimensional body-fixed VR environment

where only distal visual cues provide reliable spatial information. We found five

key results: a profound loss of spatial selectivity during random foraging in VR;

intact spatial selectivity when both location-specific locomotion cues and distal vi-

sual cues were repeatedly experienced together during the systematic-pillar tasks;

weak but significant selectivity to distance traveled in the random-pillar task and

strong distance selectivity in the systematic-pillar tasks; comparable motif dy-

namics in RW and VR; and intact temporal code within motif-fields in VR.

We speculate that the motif generation mechanisms are intrinsic to the entorhinal-

hippocampal network because, unlike most afferent sensory cortices showing punc-

tate neural responses, hippocampal neurons showed approximately 2s long sus-

tained responses in both RW and VR, despite the absence of spatial selectivity

in the latter. These sustained responses could enable the entorhinal-hippocampal

system to predict the rat's future location based on recent experience [46] by

exploiting the continuity of space and locomotion, thus reducing computational

load.

The motif generation mechanism is likely network-wide rather than cell-specific

since: the variability in motif durations on a population level is small compared to

the individual neuronal level; motif-field properties are correlated between RW and

VR; and theta-scale dynamics are intact in VR motif-fields. While previous studies

have shown intact phase precession without a change in position-defining cues in a

working memory task [16], our results demonstrate instead that phase precession

can exist without a rate code when spatially informative cues are changing with

minimal memory demand. Increased preferred theta phase variability could arise

via a rate-phase transformation [33] and reduced excitatory drive in VR due to

57



a lack of repeatedly paired sensory and motor cues as described below. The

underlying network mechanism could thus generate motif-like activity under a

variety of conditions including hippocampal place cells in normal subjects [14,17,

39] and in transgenic mice with taupathy [47], entorhinal cortical grid cells [6],

episode or time cells during wheel or treadmill running [15, 16], neural activity

during REM sleep [48], and neural activity during free recall in humans [49].

Motifs could originate from several parts of the entorhinal-hippocampal net-

work. The recurrent CA3 network could generate motif-like activity, which might

cause the observed approximately 2s delayed responses of the hippocampal en-

semble activity pattern to sudden changes in visual cues [36]. Alternatively, the

motifs could arise in the medial entorhinal cortex where neurons show motif-like

activity lasting several seconds and robustly driving CA1, even in anesthetized

or sleeping animals [35]. Accordingly, sustained spiking in consecutive theta cy-

cles was reduced, indicative of diminished motifs, in a GluA1 transgenic mouse

with diminished distal dendritic inputs which typically originate in the entorhi-

nal cortex [50]. Motif-field durations could also be modulated by the temporal

integration properties of the h-current [51] to generate a dorso-ventral gradient of

field sizes.

Though intact motifs and phase precession are present in VR with distal visual

cues alone, we found a large reduction in spatial selectivity during two-dimensional

random foraging and random-pillar tasks in a body-fixed VR. This demonstrates

that distal visual cues alone are not sufficient to generate spatially localized place

fields [9, 19]. In contrast, spatial selectivity was present in the systematic-pillar

tasks but not in the random-pillar task. While diminished vestibular cues during

random foraging in VR might account for reduced spatial selectivity compared

to during random foraging in RW, it is inconsistent with the presence of spatial

selectivity in the systematic-pillar tasks where the nature of paths and resulting

vestibular cues are similar to the random-pillar task. Further, vestibular lesions
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caused significant behavioral deficits, reduction in theta power and unaltered peak

firing rates [26,52] all of which are in contrast to our data. These results suggest

that the repeated pairing of cues, or lack thereof, as the key reason for the dif-

ference in two-dimensional spatial selectivity. The difference in spatial selectivity

between the random-pillar and systematic-pillar tasks is also consistent with previ-

ous studies demonstrating that the precise nature of paths (random or systematic)

can strongly impact the hippocampal spatial representation [11,53].

While two-dimensional spatial selectivity was equally poor in the VR random

foraging and random-pillar tasks, the beginning and end of trials were well defined

for the rats in the latter, thus allowing the analysis of selectivity to distance trav-

eled. Neurons in the random-pillar task showed a small but significant degree of

selectivity to the beginning and end of trials. In the systematic-pillar task, when

locomotion and visual cues were repeatedly paired, this selectivity was strength-

ened and extended to the middle of the paths. Restricting the analysis to cells

that fired on at least two non-overlapping arms on the three-pillar task revealed

that these cells exhibited a disto-code [14], which is a specific case of the more

general distance selectivity observed in the goal-directed tasks.

We conjecture that repeated pairing of different streams of input could generate

robust associations between them via rapid Hebbian synaptic plasticity resulting

in stable spatial representations [54] and increased firing rates [33, 54, 55]. Under

this model, during RW random foraging, distal visual cues are repeatedly paired

with the same constellation of proximal cues at each location resulting in a place

code. In contrast, in two-dimensional random foraging in VR with or without pil-

lars, the distal visual cues are not repeatedly paired with any other cue, leading to

a lack of spatial selectivity. In the systematic-pillar tasks or one-dimensional VR

tracks, distal visual cues are repeatedly paired with locomotion cues to generate

spatial selectivity. Neurons with stronger inputs from distal visual cues would ex-

hibit a place code, while those with stronger inputs from locomotion cues would
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exhibit a disto-code [14]. Further, the overall reduction in the number of sensory

and motor cues that are systematically paired could contribute to the large reduc-

tion in neural activity in VR [14]. Alternatively, instead of pairing across multiple

modalities, pairing in linear paths could potentially occur between adjacent ele-

ments within a repeated sequence of cues from a single modality. Consistently,

systematic acceleration and deceleration at the beginning and end of the linearized

paths in the random-pillar task could give rise to selectivity in those regions.

Although we characterized distance selectivity as a function of position along

the path, neural firing might also be influenced by other factors. Selectivity near

the end of the path could be driven by reward-expectancy or the pillar; selectivity

near the beginning of the path might be modulated by the recent delivery of

reward [56]. These salient episodes associated with entering or leaving a reward

zone are present and repeated in all goal-directed tasks, which could result in

selectivity to the beginning and ends of paths even in the random-pillar task. We

speculate that these episodes might become linked together via Hebbian synaptic

plasticity in the systematic-pillar task by the same mechanism discussed above,

thus extending selectivity to the entire length of the path. Further studies are

needed to fully determine the role of episodic memory in these tasks.

Our results may raise the concern that spatial selectivity is impaired during

VR random foraging because the rats are not paying attention to the visual cues

present in the VR. We find this unlikely for a number of reasons. First, rats in

VR avoid the edges of the virtual table, which is only defined visually. Second,

many neurons in the systematic-pillar tasks fire in only a small portion of one

segment of the path, which is only differentiated from the other segments by the

direction-specific constellation of distal visual cues. Further, in the same virtual

maze apparatus with qualitatively similar visual cues the rats were able to navigate

to a hidden reward zone from multiple starting locations, analogous to the water

maze navigation task [43], showing that rats could see the stimuli and navigate
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based on them. Further studies are needed to determine if the nature of spatial

selectivity is altered in this task.

The repeated pairing model is compatible with many findings including: place

cell remapping after a change in the relationship between locomotion cues and

distal visual cues [11]; altered spatial selectivity after changes in distal [8, 9] or

proximal cues [8,10,12,13,21,22]; and instability of place fields after maze cleaning

between sessions [13]. In each of these cases place cells remap, but spatial selec-

tivity remains intact, presumably because new associations are formed as cues are

repeatedly paired in new configurations. It will be important in future studies

to determine if different pairings are equally viable or if there is a hierarchy such

that certain inputs are more or less effective at contributing to spatial selectivity.

In summary, internally generated and temporally coded motifs represent activ-

ity patterns on behavioral timescales, and are localized by the repeated experience

of multiple location-specific sensory and motor cues. Some selectivity to distance

traveled exists near the beginnings and ends of paths even in the absence of spa-

tial selectivity, but repeated pairing strengthens this selectivity and extends it

to the entire length of the path. The impaired spatial selectivity in rats in two-

dimensional VR is similar to the weak spatial selectivity seen in human studies,

where such pairings are absent as well. Recent studies show that a sufficiently

large pool of hippocampal neurons can provide accurate spatial information de-

spite impaired spatial selectivity in one-dimensional environments [50]; such a

distributed coding mechanism might also allow rodents and humans to solve spa-

tial tasks in two-dimensional VR. Our results suggest that in human and primate

studies in VR repeated pairing of a rich variety of stimuli, especially between mo-

tor and visual cues, could enhance neural activity and spatial selectivity. These

results bridge the gap between rodent and human studies by showing that distal

visual cues alone are insufficient to generate robust spatial selectivity but even

with an impaired rate code, temporally coded motifs are intact, likely generated
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by intrinsic, network mechanisms.
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CHAPTER 3

Visual cues determine hippocampal directional

selectivity

3.1 Abstract

Hippocampal neurons show selectivity with respect to visual cues in primates,

including humans, but this has never been found in rodents. To address this

long-standing discrepancy, we measured hippocampal activity from rodents during

two-dimensional random foraging in real world (RW). We found 25% of neurons

exhibited significant directional modulation with respect to visual cues, contrary

to long-held beliefs. To dissociate the contributions of visual and vestibular cues

to directionality, we made similar measurements in virtual reality (VR) where

only visual cues are informative. Here, we found significant directional modula-

tion despite the severe loss of vestibular information, thus challenging prevailing

theories of directionality. Changes in the amount of angular information in visual

cues induced corresponding changes in head-directional modulation at the neu-

ronal and population levels. Thus robust visual cues are sufficient for—and play

a causal role in—generating directionally selective hippocampal responses. These

results dissociate hippocampal directional and spatial selectivity and bridge the

gap between primate and rodent studies.
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3.2 Introduction

The hippocampus has been implicated in navigation, for which both spatial and

directional information are necessary. Hippocampal spatial selectivity has been

well established and the underlying mechanisms extensively studied [4, 19, 57].

However, rodent hippocampal neurons are commonly believed to have no direc-

tional selectivity in two-dimensional mazes [57, 58]. This has led to a perplexing

hypothesis that directional information is not available in the hippocampus but

is instead provided by other parts of the brain, such as the head-direction nuclei.

Further, the sensory mechanisms underlying directionality are debated, though

vestibular and visual cues are thought to be crucial [11,14,59]. In addition, inter-

nal mechanisms also contribute to hippocampal activity [15,16,60,61].

Visual cues strongly influence the spatial firing properties of hippocampal neu-

rons [9,12]. For example, changes [12] and rotations [9] of visual cues cause remap-

ping or rotation respectively of some place fields. Further, unlike two-dimensional

mazes, on one-dimensional mazes hippocampal neurons exhibit strong directional

selectivity [10,11,14,62]. The reasons for this disparity are unknown. Comparable

levels of directionality exist on linear tracks in RW and in VR [14]—where the

range of rotational vestibular inputs is minimal and visual cues are the only direc-

tionally informative cues—suggesting that visual cues also support directionality

in one dimension. In addition, selectivity to the visual cue towards which the ani-

mal's head is facing, referred to as spatial-view, has been reported in humans [29],

primates [37, 63] and bats [64]. However, response to specific features of visual

cues has not been observed in rodents, and spatial selectivity persists in darkness,

leading to the notion that in these animals visual cues merely provide a context

for hippocampal activity.

In parallel, vestibular inputs are crucial to the head-direction system, which

is thought to provide directional information to the hippocampus. Consistently,
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vestibular lesions disrupt hippocampal spatial selectivity [26], although lesions in

the head-direction system do not [27]. Some studies have attributed directionality

in two dimensions to vestibular-derived self-motion information [59], [11], [65], but

no study has directly measured hippocampal head-directional modulation when

vestibular-based signals are impaired.

Thus, the mechanisms governing hippocampal directional activity in rodents

are unclear. We hypothesize that visual cues directly influence the activity of

rodent hippocampal neurons to generate angular tuning whereas vestibular cues

are not required for directionality. This hypothesis is consistent with primate

studies and thus bridges a long standing gap between the rodent [57], [58] and

primate literature [63], [37].

3.3 Methods

Methods Summary Materials and methods were similar to those formerly de-

scribed (Section 2.3).

3.3.1 Subjects

Data were obtained from five adult male Long-Evans rats (350–400 g at the time

of surgery) that were singly housed on a 12-hour light/dark cycle. The animals

were water restricted (minimum of 30 mL/day) in order to increase motivation

to perform the task, but allowed an unrestricted amount of sugar water reward

during the task. Further, they were food restricted (minimum of 15 g/day) to

maintain a stable body-weight. All experimental procedures were approved by

the UCLA Chancellor's Animal Research Committee and in accordance with NIH

approved protocols.
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3.3.2 Surgery, electrophysiology and spike sorting

All the methods were analogous to procedures described previously (Section 2.3)

[14, 60]. Rats with satisfactory behavioral performance were anesthetized using

isoflurane and implanted with custom-made hyperdrives with approximately 22

independently adjustable tetrodes. Both left and right dorsal CA1 were tar-

geted. After recovery from surgery, tetrodes were gradually lowered to area CA1,

which was identified by the presence of sharpwave ripple complexes. Signals were

recorded using a Neuralynx data acquisition system at a sampling rate of 40kHz.

Spike extraction, spike sorting and single unit classification were done offline using

custom software and according to methods described previously [14].

3.3.3 Random foraging tasks in visually rich RW and VR

These tasks were the same as previously described (Section 2.3.3.1) [60]. Briefly,

in both RW and VR, a 100 cm radius elevated (50 cm above the floor) platform

was located at the center of a 300cm × 300cm room whose walls had distinct

visual cues as depicted in Figure 3.1a (referred to as RWrich and V Rrich). As

commonly done, in RW, rats foraged for food rewards scattered randomly on the

platform. In a visually similar VR environment, rats foraged for randomly located

but hidden reward zones. Upon entry into reward zones, a white dot (20–30 cm

radius) appeared and sugar water was dispensed through reward tubes. Data were

collected from four rats in both RWrich and V Rrich.

3.3.4 Random foraging in VR tasks with visual cue manipulations

Three rats ran in four visually different VR environments, all of which had the

same platform as described above. The reward zone was marked by a small

(12.5cm radius) white disc only visible from a very short distance. Upon delivery

of a reward, the reward zone moved to a new pseudorandom location on the
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a RWrich,V Rrich b V Rblank

c V Rsymmetric d V Rwide
polarized e V Rnarrow

polarized

Figure 3.1: Top-view schematics of experimental rooms. The circular structure at

the center represents a 200cm diameter platform elevated 50cm above the ground

in all panels. The size of the room in the rich conditions was 300cm× 300cm, and

in all other cases 900cm× 900cm

platform. Visible reward zones were used to ensure uniform coverage on the

platform and to avoid any behavioral biases that might be caused by the changes

in visual cues.

V Rblank In the first experiment, all distal visual cues, including the walls and

the floor were eliminated (V Rblank). The pattern on the platform was the only

source of optic flow but provided no spatial or angular information (Figure 3.1b).

V Rsymmetric In the second experiment, four identical and angularly symmetric

distal visual cues, positioned along the four virtual walls of the square room, 450cm

away from the center of the platform were added to the V Rblank environment to

generate V Rsymmetric. Despite high spatial contrast (to maximize optic flow) the

distal visual cues did not provide any angular information due to the angular

symmetry and high spatial frequency of the pattern (Figure 3.1c). Further, the

four walls were made infinitely tall to eliminate information about the corners.
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The large distance of the cues from the center of the table ensured that the cues

did not provide any spatial information. Additionally, in order to ensure that the

details of the visual cues were visible to the rats, each element of the pattern was

made such that at the farthest distance from the wall the size of the element was

no smaller than 4◦ of visual field.

V Rwide
polarized In the third experiment, only one of the high contrast visual cues

used for V Rsymmetric was placed 450cm from the center, creating a single wide

polarizing cue which subtended a visual angle of 90◦ at the center (V Rwide
polarized)

(Figure 3.1d). This task had three variations where the visual cue appeared either

in the front, right or left of the subject at the beginning of the session. There was

no quantitative difference between the data obtained in these variations (data not

shown), and hence these data were combined .

V Rnarrow
polarized In the fourth experiment, this visual cue was made narrower (11◦

visual angle) (V Rnarrow
polarized) while maintaining the visual spatial frequency of its

pattern, and placed at the same distance from the center as in V Rwide
polarized (Figure

3.1e).

3.3.5 Statistics

All analyses were done offline using custom codes in MATLAB. Two-sided non-

parametric Wilcoxon rank-sum test and Kuiper test were utilized to assess the

significance between linear variables and circular variables respectively. For tests

of distributions being different from zero, Wilcoxon signed-rank test was used.

CircStat toolbox [44] was utilized to compute circular statistics. All values are

expressed as mean ± s.e.m unless stated otherwise. To assess the significance of

correlations between variables (reported as the linear correlation coefficient, r) a

t-test was utilized.
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3.3.6 Quantification of spatial and head-directional modulations using

Generalized Linear Model

To quantify the influence of spatial and head-directional covariates on the firing of

hippocampal neurons, and to minimize the influence of behavioral bias on spatial

and angular selectivity estimates, we used a GLM framework [15, 66–68]. The

time-varying spiking activity was modelled as an inhomogeneous Poisson process

as a function of space and head-direction:

λ(t) =
λS+HD(t)

τ
(3.1)

λS+HD(t) = λspace(t)λheaddirection(t)λconstant (3.2)

λspace = eHSβS (3.3)

λheaddirection = eHHDβHD (3.4)

λconstant = eβ0 (3.5)

Where τ is the time bin size, λ is the intensity function, and S and HD

denote space and head-direction respectively. HS and HHD refer to the design

matrix associated with spatial and head-directional covariates and βS and βHD

are the parameters associated with these matrices. Here β0 is a constant and

the exponentiation is done element-wise. We expressed basis functions for HS in

terms of the set of orthogonal two-dimensional Zernike polynomials and HHD in

terms of sines and cosines. Equation 3.3 and 3.4 can be expressed as follows:

λspace(t) = exp(ΣL
l=0Σ

l
m=−lβl,mZ

m
l (ρ(t)ψ(t))) (3.6)
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λheaddirection(t) = exp(ΣJ
j=1βjsin(jφ(t)) + β

′

jcos(jφ(t))) (3.7)

In Equation 3.6, Zm
l denotes the mth component of the lth-order Zernike poly-

nomial and ρ(t) and ψ(t) denote radial and angular components of position in

polar coordinates. In Equation 3.7, φ(t) is the head-direction of the animal. The

parameters of the model (βs) were estimated using the GLM function in MAT-

LAB to maximize the likelihood of the model. Further, we used Bayes Information

Criterion (BIC) for model selection. The number of the basis functions used for

Equations 3.6 and 3.7 was chosen to minimize the following measure:

BIC = −2Ln(L̂) + kLn(n) (3.8)

Where L̂ is the maximized value of the likelihood function of the model, k is the

total number of parameters to be estimated across both space and head-direction,

and n is the number of data points i.e. the length of the intensity function. For

a majority of cases BIC chose the fifth order in the angle domain while this order

was more variable in space domain. Hence, the number of angular basis functions

was fixed at five. The number of spatial basis functions were allowed to vary and

ranged from 5 to 32.

We then used the estimated parameters (βs) to reconstruct the modulation

of the firing rate of neurons by spatial and head-directional covariates. For the

reconstruction process and rendering purposes, we used 5× 5cm spatial bins and

a total of 80 angular bins (although the resulting rates are independent of these

parameters). The reconstructed rates can be expressed as follows:

λspace(xi, yj) = exp(ΣL
l=0Σ

l
m=−lβl,mZ

m
l (xi, yj)) (3.9)

λheaddirection(φk) = exp(ΣJ
j=1βjsin(jφk) + β

′

jcos(jφk)) (3.10)
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where xi,yj,refer to the spatial bins and φk refer to head-direction bins, and

βs are the estimated parameters from fitting. Thus, the spatial and angular

modulation rates used in all the figures are defined as:

FS = α× λS(x, y)

λS
,where α =

λconstantλSλHD
τ

(3.11)

Here λS and λHD are the mean values of the spatial and head-directional re-

constructed conditional intensity functions. To avoid artifacts, data from periods

of immobility (running speed < 5cms−1) were discarded. During rate map recon-

struction, bins with low occupancy time were excluded.

3.3.7 Measures of selectivity

To quantify the degree of spatial and head-directional modulations we computed

spatial and angular sparsity together with the mean vector length of the angular

rate map. Sparsity of a rate map given N bins and rn as the rate in the nth bin

is defined as:

S = 1− 1

N

(ΣN
n rn)2

ΣN
n r

2
n

(3.12)

For firing rates as a function of head-direction, the mean vector length was

computed as:

MV L = abs(
ΣN
n rne

−iθn

ΣN
n rn

) (3.13)

where θn and rn are the angle and rate in the nth circular bin respectively.

Both of these measures are invariant to any constant scaling factor in the rates

and hence remain unaffected by the normalization used when reconstructing rates

using GLM framework.
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3.3.8 Generation of surrogate data to validate the GLM method

Non-parametric generation of simulated place fields

To estimate the amount of angular modulation behavioral biases introduce into

purely spatially modulated neurons, we generated surrogate data based on the fir-

ing rate maps of recorded neurons. Given a behavioral profile B(t) = (BX(t), BY (t))

and spatial firing rate map F (X, Y ), spike times were generated according to an

inhomogeneous Poisson process with F (B(t)) as the rate parameter. Data gener-

ated in this manner were used in Figure 3.2b.

Parametric generation of simulated place fields

To verify the GLM framework accurately estimated the independent contribution

of spatial and angular factors in determining spiking, we generated surrogate data

with predetermined and variable degrees of spatial and angular modulation. For

a surrogate place field centered at (x, y), with spatial variance σXY , preferred

angular orientation φ and angular variance σφ, the relative probability of firing

for any (X, Y, φ) combination was defined as:

p(X, Y, φ) = PXY (X, Y )× Pφ(φ) (3.14)

PXY (X, Y ) = pXY (X, Y )−min(pXY (X, Y )) (3.15)

pXY (X, Y ) = e
−
DXY

σXY , DXY =
√

(X − x)2 + (Y − y)2 (3.16)

Pφ(φ) = pφ(φ)−min(pφ(φ)) (3.17)
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pφ(φ) = e
−
Dφ

σφ , Dφ = angle(ei(φ−φ))2 (3.18)

Where i is the imaginary number
√
−1.

Given a behavioral profile B(t) = (BX(t), BY (t), Bφ(t)) and desired mean fir-

ing rate µ, the absolute probability of firing is obtained by scaling the relative

probability of firing (Equation 3.12) by a constant factor k:

P (X, Y, φ) = k × p(X, Y, φ) (3.19)

k =
µ

E
, E =

∫ T

t=t0

p(B(t))dt (3.20)

Where t0 indicates the start time of the session, and T indicates the end time

of the session. Spike times are then generated according to an inhomogeneous

Poisson process with P (B(t)) as the rate parameter. Surrogate data generated in

this manner were used in Figures 3.2c and 3.2d.

3.3.9 Analysis of statistical significance of spatial and head-directional

modulations

To assess the statistical significance of neural modulation by position and head-

direction, we used a bootstrapping procedure, which does not assume a Gaussian

distribution of the control data. Briefly, for each cell, spike trains were circularly

shifted with respect to behavioral data by random amounts (10–100s) to obtain

control data. This was repeated 60 times, and the spatial and head-directional

modulations of the control data were quantified using spatial and directional spar-

sity of the resulting rate maps respectively. Sparsity was considered statistically

significant at the 0.05 level if the sparsity constructed from the un-shifted spike

train was greater than at least 95% (57 of 60) of the control data (one-tailed test).
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This method ensured that the degree of angular and spatial modulation was un-

influenced by nonspecific parameters such as the duration of the recording session

and the firing rate of a neuron.

To obtain estimates and 95% confidence intervals of the percentage of signif-

icantly modulated neurons, and to further characterize the levels of directional

modulation across different conditions, we computed the likelihood of the data

given a binomial model using the MATLAB function binofit().

3.3.10 Quantification of multimodality of angular rate maps

To detect the number of peaks in angular rate maps, a method similar to detection

of place fields [14] was used. First, all of the peaks with a minimum value of 50%

of the global maximum were detected. For each peak, the boundaries were defined

as the points at which rate drops below 50% of that peak for at least two angular

bins.

3.3.11 Analysis of variance (ANOVA) for angular and spatial sparsity

Both angular and spatial sparsity were negatively correlated with the logarithm

of the number of spikes a neuron fired in a session, and the mean firing rate

(and hence the number of spikes) is different in RW and VR [60]. Therefore,

to compare the angular and spatial sparsity of neurons in the RWrich and V Rrich

conditions, we implemented a Two-way ANOVA in MATLAB with recording con-

dition (RWrich or V Rrich) as a categorical predictor, and log10(number of spikes)

as a continuous predictor, of the sparsity. The p-values reported in Figures 3.9b

and 3.10c are for the main effect of recording condition on sparsity.
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3.3.12 Quantification of significance levels of preferred firing direction

of neural ensemble

For the head-directionally modulated neurons, preferred direction was defined as

the direction of maximum firing obtained from the angular rate maps. To estimate

the significance levels of the population bias we used Rayleigh test for uniformity

and circular V test to assess polarization towards a certain angle. To test the

significance of the mean vector length of the ensemble, random angles between

0◦ and 360◦ were added to the preferred direction of the cells and the length of

the mean vector was computed. This process was repeated 500 times and data

exceeding the 95% of the control (shuffle) data was considered significant.

3.4 Results

3.4.1 Head-directional modulation is present in two-dimensional RW

To test these hypotheses we did a series of experiments and analyses. We first

quantified hippocampal spatial and head-directional modulation from 1066 (in 32

recording sessions) active (defined as cells with minimum mean firing rate of 0.2

Hz and with at least a 100 spikes) dorsal CA1 pyramidal neurons (which were part

of a previous study of hippocampal spatial selectivity (see 2) [60]). Rats randomly

foraged for rewards on a two-dimensional platform in a RW environment which

had rich distal visual cues and will henceforth be referred to as RWrich (Figure

3.2a).
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a

b

c

d

Figure 3.2: Comparison of GLM and binning methods using surrogate data. (a)

Top-view schematic of the experiment room. (b)Surrogate data generated for each place

cell with spatial modulation similar to experimental data but no angular modulation (see

Methods) showed mean vector length obtained using the GLM method was close to zero

(0.030.00, n=1066) and significantly (p=2.910-278) smaller (six-fold) than that computed

using binning method (0.18 0.00). All values reported as mean± s.e.m. (c), (d)

Example cells simulated with different widths and directions of input angular tuning. Top)

Spatial firing rate of a simulated place field overlaid with colored dots representing the

positions at which spikes occurred (color represents head-direction indicated by

color-wheel inset). Bottom) Polar plots depicting the angular input function (light blue),

binning method (black) and GLM (dark blue) based head-directional firing rates. Note

similarity between input tuning (light blue) and GLM based rate estimate (dark blue) in

all cases, unaffected by the behavioral bias, which affects the binning method.

A common technique for quantifying head-directional modulation is to divide

the number of spikes in each direction bin by the total time spent in that bin
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(Figure 3.2) [3]. However, when neurons have spatially tuned responses, as is the

case for hippocampal neurons in RW, this method provides incorrect estimates of

angular tuning [58]. For example, for a neuron with a place field at the edge of the

maze, this method would yield an erroneous estimate of head-directional tuning

due to non-uniform sampling of head angles within the place field (Figure 3.2c)

[58]. Various methods have been developed to overcome this confound [11,65,69].

Here, we adopted the well-established generalized linear model (GLM) approach

(see Methods) [15, 66–68] which has several advantages. First, it provides an

unbiased estimate of the simultaneous and independent contribution of spatial

and head-directional modulation. Second, unlike other methods, head-directional

modulation obtained with the GLM method is uninfluenced by behavioral biases

within the place field as verified using surrogate data with predetermined levels of

spatial and angular modulation (see Methods, Figure 3.2b). Finally, this method

provides an estimate of the fine structure of the respective tuning curves.

This method revealed a surprising finding: many neurons exhibited clear mod-

ulation by the rat's head-direction (independent of the rat's body angle) in RWrich

(Figure 3.3, 3.6a, see Methods). Some neurons fired maximally for only one

head-direction and minimally elsewhere (Figure 3.3a, 3.3b), while others showed

a multimodal response (Figure 3.3c). The degree of head direction selectivity

was assessed by computing the angular sparsity of head directional firing rate

maps (see Methods). The statistical significance of head-directional modulation

was assessed by bootstrapping methods; cells with angular sparsity greater than

95% confidence interval of the control data (for the same cell) were considered

significantly modulated (see Methods).

This method showed that 27% of neurons in RWrich exhibited significant head-

directional modulation, which is comparable to that in many parts of the head-

direction system, although the width of the angular tuning curves (full width at

half maximum 101.90 ± 3.35 deg) was wider [3, 70]. Different place fields of the
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b

c

Figure 3.3: Presence of head-directional modulation in hippocampal pyramidal

neurons in RWrich. (a) Left) All unclustered (grey dots) and clustered spike amplitudes

from an isolated neuron (blue dots) on two different channels of a tetrode in RWrich.

Center) Spatial and angular rate maps of a cell. Numbers in color indicate range, here and

throughout. Number at the bottom right of the polar plot is the sparsity of the angular

rate map. Right) Rats color-coded trajectory and his position at the time of spikes (black

circles) for movement in the direction of maximal (left) and minimal (right) firing

respectively. (b),(c) Same as (a) for two other cells in RWrich. All rate maps were

computed using the GLM method here and throughout unless otherwise noted. All cells in

this figure showed significant angular modulation as verified through bootstrapping

methods (see Methods).

same neuron—with multiple fields—exhibited different levels of directional tun-

ings (Figure 3.4) suggesting that directionality was a property of a place field, not
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of a neuron. This is also reminiscent of the results observed in double rotation

a b c

Figure 3.4: Different place fields of the same neurons in RW had uncorrelated

directional properties. (a) Left) An example cell with two identified place fields. Right)

The angular rate map for each field showing one field with significant angular modulation

(top) and the other field with no angular modulation (bottom). (b) Different place fields

of the same neuron (n=138) exhibited different directional properties. For 30, [22, 38]%

of cells, at least one field exhibited significant angular modulation, but only for 4, [1, 8]%

of neurons, both fields were significantly directionally modulated. (c) The preferred firing

direction of different place fields of a neuron were not significantly correlated (r = 0.03, p

= 0.7).

experiments where different fields of the same neuron respond differently to the ro-

tation of certain cues [22]. These results show that rodent hippocampal neurons in

RW indeed show significant head-directional modulation during two-dimensional

random foraging, contrary to previous reports.

3.4.2 Robust vestibular cues are not required for hippocampal direc-

tionality

The above results raise an important question: which sensory inputs could gen-

erate the head-directional modulation in our data? Two likely candidates are

the visual and vestibular modalities. To dissociate the two, we measured the ac-
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b

c

Figure 3.5: Presence of head-directional modulation in hippocampal pyramidal

neurons in V Rrich. (a)–(c) Three well-isolated neurons showing significant

head-directional modulation in V Rrich (same conventions as in Figure 3.3). All cells in

these three panels showed significant angular modulation as verified through

bootstrapping methods (see Methods).

tivity of 719 (37 recording sessions) active dorsal hippocampal CA1 pyramidal

neurons [60] during the same random foraging task in a two-dimensional VR envi-

ronment (V Rrich). Here, the distal visual cues were identical to those in RWrich,

but the range of vestibular cues was minimized due to body fixation [43]. Despite

impaired spatial selectivity [60], many neurons showed clear modulation by the

direction of the rat's head with respect to the distal visual cues, which will be

henceforth referred to as head-direction (Figure 3.5, 3.6b).

The observation that head-directional modulation was present in VR—where
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a

b

Figure 3.6: Sample cells in RWrich and V Rrich with significant head-directional

modulation. (a)–(b) Spatial rate maps (grey scale, numbers indicate range) and spike

positions (dots color-coded according to the head-directions) and head-directional firing

rate (numbers in color indicate range, number at bottom right is angular sparsity of the

angular rate map) of nine example cells in RWrich (a) and V Rrich(b). All cells in these

panels showed significant angular modulation as shown by the bootstrapping method (see

Methods).

the range of vestibular cues is minimized (Figure 3.7)—suggests that vestibular

cues are not required for hippocampal head-directional modulation. In fact, the

angular speed—a good measure of the strength of vestibular inputs—at the time

of occurrence of spikes had no effect on the fraction of significantly modulated

neurons in not only VR but also RW (Figure 3.7).
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a b c

Figure 3.7: Directional modulation was independent of angular speed and range of

vestibular inputs. (a) For 32 (37) sessions in RW (VR), the range of head-directions

with respect to the experimental room in RW (359.99± 0.00 deg) was significantly higher

than that in VR (91.67± 0.93 deg, p = 2.2× 1021). (b) Angular speed in VR

(18.63± 1.37deg/s, n = 37sessions) was significantly reduced (60%, p = 3.6× 1011)

compared to RW sessions (46.40± 2.12deg/s, n = 32sessions). (c) For each neuron, the

average angular speed at the time of occurrence of spikes was computed. This value was

then used to classify a neuron into either high or low angular speed category, compared to

the mean angular speed in RW (49.60deg/s) and VR (19.91deg/s). Nearly equal

proportions of directionally modulated cells in RW 51.88%(47.12%) and in VR

49.32%(50.68%) belonged to the high (low) speed categories respectively.

Indeed, a similar fraction of neurons showed significant head-directional mod-

ulation in V Rrich (23%) and RWrich (27%, Figure 3.8a).

These results are different from findings in the head-direction nuclei that re-

quire robust vestibular cues to generate directional selectivity [3]. Additionally,

neurons in V Rrich also had multimodal responses like in RWrich, unlike neurons

in the head-direction network which have unimodal responses [71].
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a b

Figure 3.8: (a)The population of neurons in V Rrich (red, n=719; 37 sessions) and

RWrich (blue, n=1066; 32 sessions) had comparable proportions of cells with statistically

significant angular sparsity; 27, [25, 30]% (23, [19, 26]%) of cells in RWrich (V Rrich)

showed significant head-directional modulation (see Methods). See also Figure S5. (b)

Head-directionally modulated neurons in V Rrich were significantly more multimodal

(1.650.06peaks, p = 1.410− 2) than RWrich cells (1.450.04peaks). (Inset) This was

reflected at the ensemble level where a smaller proportion of neurons in V Rrich (15, [13,

18]%) had significant head-directional modulation using mean vector length compared to

angular sparsity (23, [19, 26]%). In RWrich 29, [26, 31]% of neurons showed significant

directional modulation using mean vector length.

The multimodality was greater in V Rrich than RWrich(Figure 3.8b) which

could account for the slightly lower proportion of cells with a significantly large

mean vector length in the former (Figure 3.8b inset, Table 3.1). This observation

motivates the use of sparsity as a measure for angular selectivity.
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HD modulated cells % Unimodal Zs, ZMV L Multimodal Zs, ZMV L

RW 40, 44 18, 13

VR 36, 32 20, 7

Table 3.1: Unreliability of mean vector length in determining directional

modulation of multimodal angular rate maps

Additionally, the width of the angular tuning curves in V Rrich (85.41±4.23 deg)

was significantly (16%, p = 5.13 × 104) sharper than in RWrich. Further, direc-

tionally tuned neurons had greater mean firing rates than the untuned neurons in

V Rrich (Figure 3.9a) but not in RWrich (103.10± 3.50 deg).

Notably, angular sparsity strongly depends on the logarithm of number of

spikes generated by a neuron (Figure 3.9b). When accounting for the differences

in number of spikes across conditions, there was no significant difference in the

angular sparsity of the ensemble of neurons between VR and RW (p=0.09, Two-

way ANOVA, see Methods).

We then quantified the spatial modulation of neural responses in both RWrich

and V Rrich using the rate maps obtained from the GLM method. We found a

large proportion of cells with significant spatial selectivity in RWrich but not

in V Rrich (Figure 3.10a), consistent with previous results obtained using the

binning method [60]. Although comparable proportions of cells had significant

head-directional modulation, this was not the case for spatial modulation, which

suggests a decoupling of the mechanisms of spatial and directional tuning. Con-

sistently, the presence or absence of head-directional modulation had no effect on

the percentage of spatially modulated neurons in both RWrich and V Rrich (Fig-

ure 3.10a). Further, spatial sparsity too depended strongly on the logarithm of

number of spikes generated by a neuron (Figure 3.10c). When this was taken

into account there was a significant difference between the spatial sparsity of rate
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a b

Figure 3.9: Comparison of mean activity of neurons with or without significant

directional modulation in RWrich and V Rrich conditions. (a) Mean firing rate of

head-directionally modulated neurons in RWrich (0.85± 0.04 Hz, n=293; dark blue) was

similar to that of those with no significant modulation (0.85± 0.02 Hz, n=773 p=0.6;

light blue). In contrast, in V Rrich, significantly head-directionally modulated neurons had

higher mean rates (0.72± 0.04 Hz, n=162; dark red) compared to those with no

modulation (0.63± 0.02 Hz, n=557, p = 5.1× 103; light red). (b) The sparsity of angular

ratemaps were significantly negatively correlated with the (logarithm of) number of spikes

in both RWrich (r=-0.59, p = 1.4× 10100) and V Rrich (r = -0.58, p=3.91065). However,

accounting for the number of spikes, angular sparsity was not significantly different

between the two conditions (p=0.09, Two-way ANOVA, see Methods).

maps between VR and RW (p = 1.7× 10−6, Two-way ANOVA, see Methods)

3.4.3 Visual cues exert a causal influence on hippocampal directional

responses

What other mechanism could generate angular modulation? Either it is internally

generated [15, 16, 61] or driven by specific visual cues [37, 63]. To disambiguate

these possibilities, we generated a virtual world where distal visual cues were

entirely eliminated (V Rblank) (Figure 3.11a, see Methods). The circular platform

in the virtual environment, which was the only visual cue present, provided optic

flow information but had no spatial or angular information. The rats' behavior in
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a b c

Figure 3.10: Comparison of spatial selectivity RWrich and V Rrich conditions. (a) In

contrast to angular sparsity, far fewer neurons (12, [10, 15]%) in V Rrich had significant

spatial sparsity compared to RWrich (76, [74, 79]%, Wilcoxon rank-sum test, numbers in

brackets correspond to 95% confidence intervals here and throughout unless otherwise

stated). (b) In RWrich, the percentage of spatially modulated neurons per recording

session (32 sessions) was identical between neurons with or without significant

head-directional modulation (86.53± 4.66% and 85.73± 3.86% respectively, p=0.3). In

V Rrich (37 sessions), this percentage was slightly but not significantly higher for neurons

with significant head-directional modulation (20.93± 4.80%) compared to those without

(9.97± 2.30%, p=0.2). Hence, presence or absence of angular selectivity did not

influence the degree of spatial selectivity. Numbers are reported as mean± s.e.m. and

error bars indicate s.e.m. (c) Spatial sparsity was also negatively correlated with the

number of spikes in both worlds

(RWrich : r = −0.34, p = 9.2× 1030;V Rrich : r = −0.53, p = 1.3× 1059), but was

significantly different between the two conditions (p = 1.7× 106, Two-way ANOVA, see

Methods). Since all measures of selectivity depend on the number of spikes, to assess

significance of tunings, bootstrapping was done for each cell separately.

V Rblank was comparable to that in V Rrich with visually distinct walls (comparable

running speeds and distribution of occupancy across the platform).
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c d
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g h

Figure 3.11: Causal influence of visual cues on the degree of directional

modulation of neurons. (a) Top-down schematic of V Rblank. (b) Left) Spikes from

an isolated neuron (colored dots) in V Rblank (same convention as in 3.3). Center, right)

Spatial and angular firing rate of this neuron (c)–(h) Same as (a) and (b) but for

V Rsymmetric, V Rwide
polarized and V Rnarrow

polarized. Note that the neurons in (b) and (d)

do not show significant angular sparsity, but those in (f) and (h) show strong

head-directional modulation.
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Very few hippocampal neurons (6%) showed significant head-directional mod-

ulation in this case (Figure 3.11b, 3.12a, 3.13e), close to the chance level of 5%.

The absence of head-directional modulation in V Rblank may result from a lack

of anchoring visual cues [72] or optic flow created by the distal visual cues which

could potentially be integrated to generate directional tuning. To address this,

we performed another experiment where all the virtual walls had the same visual

texture with high contrast and spatial frequency (V Rsymmetric), thus providing

strong optic flow information but no angular information (Figure 3.11c, see Meth-

ods). The virtual platform was placed in a larger room where each wall was 450cm

away from the platform center, which ensured that the distance from the walls

provided minimal spatial and angular information. Here too, only a small per-

centage of neurons (7%) exhibited significant head-directional modulation, similar

to V Rblank and close to chance level (Figure 3.11d, 3.12a, 3.13f).

While internal mechanisms and optic flow may still modulate the degree of an-

gular tuning, these experiments show that directional modulation is not generated

by these mechanisms alone. This leaves open the possibility that head-directional

modulation is generated by the angular information contained in the distal visual

cues. To confirm this hypothesis we performed another experiment where the

virtual world was strongly visually polarized. In this condition, there was just one

high contrast wall, 450cm from the center of the platform, subtending a 90◦ angle

(V Rwide
polarized)(Figure 3.11e, see Methods). This polarizing cue had no other spatial

information and was identical to the walls used in the symmetric world. Here, 31%

of hippocampal neurons showed significant head-directional modulation (Figure

3.11f, 3.12a, 3.13g), which is a greater fraction than in all other conditions but

comparable to that in RWrich and V Rrich. Remarkably, the directional tuning

curves of many neurons were much narrower (77.35 ± 3.62◦) than the sole, 90◦

wide polarizing cue.

Is there a lower bound on the width of the angular tuning curves? To address
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Figure 3.12: Properties of neural activity across experiments. (a) The percentages

of cells with significant head-directional modulation was 27, [25, 30]% in RWrich (293

out of 1066 cells; 32 sessions); 23, [19, 26]% in V Rrich (162 of 719 cells; 37 sessions); 6,

[3, 9]% in V Rrich (13 of 230 cells; 8 sessions); 7, [4, 9]% in V Rsymmetric (28 of 426

cells; 10 sessions); 31, [26, 38]% in V Rwide
polarized (121 of 391 cells; 14 sessions) and 15,

[12, 19]% in V Rnarrow
polarized (64 of 424 cells; 20 sessions). The black horizontal line

indicates the chance level of 5%. (b) Full width at half max (FWHM) of the angular

rate maps for head-directionally modulated neurons in different conditions was as

follows: RWrich (101.90± 3.35◦), V Rrich (85.41± 4.23◦), V Rwide
polarized (77.35± 3.62◦)

and V Rnarrow
polarized (65.29± 4.97◦). The tuning curves in RWrich were significantly wider

than all other VR conditions (p = 5.1× 104 versus V Rrich, p = 3.3× 105 versus

V Rwide
polarized and p = 5.3× 108 versus V Rnarrow

polarized ). Within VR conditions, V Rnarrow
polarized

had significantly narrower tuning curves with respect to V Rrich (p = 3.7× 103) and

V Rwide
polarized (p = 6.5× 103). (c) Angular rate maps in all VR conditions were

significantly more multimodal (1.65± 0.07 peaks, p = 1.4× 102 in V Rrich; 1.61± 0.07,

p = 3.3× 102 in V Rwide
polarized; 1.78± 0.09, p = 4.8× 104 in V Rnarrow

polarized ) than RWrich

(1.45± 0.04 peaks). Values are reported as mean± s.e.m, the p-values are obtained by

Wilcoxon rank-sum test and percentages and numbers in brackets correspond to

maximum likelihood estimates and 95% confidence intervals unless noted otherwise.
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this we conducted another experiment where the sole polarizing cue was very nar-

row (11◦), thus providing high angular information in the direction of the cue while

leaving the majority of the maze blank (V Rnarrow
polarized) (Figure 3.11g, see Methods).

A large proportion (15%) of neurons had significant head-directional tuning in

this condition as well (Figure 3.11h, 3.12a, 3.13h). For neurons with significant

a b c d
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Figure 3.13: Example cells from the corresponding VR task. (a)–(b) Top-view

schematics of the four VR enviroments. (e)–(h) The left image in each sub-panel shows

the position and head-direction of the animal at the time of occurance of spikes. The

color of each spike indicates the head-direction according to the colorwheel. The right

image depicts the angular firing ratemap of that cell.

head-directional tuning, the width of the tuning curves (65.29 ± 4.97◦) was sig-

nificantly (p = 6.5× 10−3, Wilcoxon rank-sum test) narrower than in V Rwide
polarized
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(Figure 3.12b), however much wider than the 11◦ polarizing cue, indicating a lower

bound on the width of hippocampal angular tuning curves. Further, the fraction

of neurons showing significant head-directional modulation (15%) was consider-

ably lower than in V Rwide
polarized (Figure 3.12a), perhaps because the narrow visual

cue is visible to the rat for a smaller fraction of time than the wider polarizing

cue, hence modulating a smaller percentage of neurons. Notably, in all RW and

VR experiments, several angular rate maps showed multimodal responses, despite

considerable differences in the nature of visual cues (Figure 3.12c) suggesting un-

derlying internal mechanisms.

We then asked if the head-directional modulation of hippocampal neurons

is stable and whether the stability depends on the experimental condition (Fig-

ure 3.14). Tuning curves of neurons with significant head-directional modulation

were significantly stable across the experimental session in all four conditions

(RWrichp = 8.71046, V Rrichp = 1.11023, V Rwide
polarizedp = 1.11021andV Rnarrow

polarizedp =

1.31011, Wilcoxon signed-rank test) (Figure 3.14a–3.14d). The tuning curves were

more stable (p = 9.2× 107) in RWrich than in V Rrich (Figure 3.14e, 3.14f). This

could be due to the presence of other directionally informative multisensory cues

in RW, such as distal odors and sounds, and their consistent pairing with visual

cues resulting in higher stability. On the other hand, the tuning curves were more

stable in the polarized VR experiments than in either of the rich conditions (Fig-

ure 3.14e, 3.14f) indicating there may be competing influences of multiple cues

within each modality in the rich conditions.
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Figure 3.14: Stability of angular rate maps for head-directionally modulated

neurons. (a)–(d) Four directionally tuned cells with stable angular firing in the first half

(solid colored lines) and second half (dashed colored lines) of the recording session. The

peak rates are normalized for ease of comparison. (e) Stability of the head-directional

modulation (pairwise correlation between the angular rate maps in the two halves) in

RWrich (0.52± 0.02, n=293) was significantly greater than V Rrich (0.39± 0.02,

n=162, p = 9.2× 107, Wilcoxon rank-sum test here and throughout figure legend) but

significantly smaller than V Rwide
polarized (0.76± 0.02, n=121, p = 8.5× 1019) and

V Rnarrow
polarized (0.72± 0.04, n=64, p = 2.3× 109). Stability was not significantly different

between V Rwide
polarized and V Rnarrow

polarized (p = 0.35). (f) As an alternate stability measure,

we computed the absolute value of the circular distance between the preferred directions

(defined as the direction of peak firing) in the two session halves. This also resulted in

V Rwide
polarized (36.23± 4.06◦) and V Rnarrow

polarized (31.83± 5.82◦) showing identical levels of

drift of preferred directions (p = 0.15), both smaller than in RWrich

(49.85± 2.83◦,p = 7.2× 105 and p = 7.4× 106 respectively) and V Rrich (67.65± 4.34◦,

p = 6.3× 108 and p = 9.9× 108 respectively).
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3.4.4 Visual cues bias hippocampal ensemble response

These results demonstrate that specific aspects of visual cues modulate the angular

tuning of individual neurons; could they also influence the ensemble response?

To address this we investigated the activity of the head-directionally modulated

neurons on a population level under the four different conditions. For each neuron,

the direction of maximum firing was computed from its angular rate map and

was designated as its preferred direction (see Methods). We then computed the

distribution of these preferred directions and the degree of angular bias of the

population for each condition. There was no significant angular bias, as indicated

by circular Rayleigh test, in both RWrich (p=0.1) and V Rrich (p=0.4), and the two

distributions were not significantly different from each other (p=1, circular Kuiper

test) (Figure 3.15a, 3.15b, ). The lack of population bias in the rich conditions is

likely due to the presence of multiple visual cues on all walls, each contributing

to tuning towards different directions.

Indeed, in V Rwide
polarized with only one visual cue, the population was significantly

biased (p=0.04, circular V test) towards the prominent visual cue (Figure 3.15c).

The directional bias of the population was strongest in V Rnarrow
polarized such that the

distribution of preferred orientations was significantly different from a uniform

distribution (p = 3.6 × 103 Rayleigh test) and in addition was oriented towards

the narrow visual cue (p = 4.3× 104, circular V test, Figure 3.15d). There was an

apparent reduction in the number of cells with preferred direction directly towards

the narrow polarizing cue, and for some cells the preferred direction was opposite

to the visual cue, which could arise due to release from potent, feed-forward and

lateral inhibition in CA1 [73,74].
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Figure 3.15: Visual cues bias the neural ensemble. (a) Distribution of preferred

direction of neurons in RWrich did not show bias (p = 0.1, circular Rayleigh test;

pV =0.7, circular V test) and the mean vector length of the ensemble (MV Len = 0.09)

was smaller than 95% of the shuffles (see Methods)

(347.80± 4.52◦, n = 293, circularmean± circulars.e.m.). Number on the top right

indicates maximum value of the distribution. The thick blue line originating at the center

of the polar plot represents both the direction (347.80◦)and the magnitude (0.09) of the

mean vector length of the preferred directions of the population (scaled by a factor of 5

for clarity). (b) Same as in (a) but for V Rrich. The distribution of preferred directions

of neurons in V Rrich did not show any significant bias (p=0.4, circular Rayleigh test;

pV = 1, circular V test) and MV Len = 0.1 was not significantly different from chance

(260.91± 6.07◦, n = 162, circularmean± circulars.e.m.). Additionally, this

distribution was not significantly different from that in RWrich (p=1, circular Kuiper

test). (c) The ensemble of head-directionally modulated neurons in V Rwide
polarized

preferentially fired towards the visual cue (pV = 0.04, circular V test) and

MV Len = 0.17 was greater than chance

(124.99± 8.18◦, n = 121, circularmean± circulars.e.m.). Note the direction (124.99

and the longer magnitude (0.17) of the thick green line compared to (a), (b). (b) Same

as in (d) Neurons in V Rnarrow
polarized

(92.68± 8.51◦, n = 64, circularmean± circulars.e.m.) were biased towards the narrow

cue (pV = 0.04, circular V test; p = 3.6× 103 Rayleigh test), further indicated by the

magnitude (0.29, significantly greater than chance) of the MV Len (thick purple line).
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3.5 Discussion

These results demonstrate that during two-dimensional random foraging rodent

hippocampal CA1 neurons show significant modulation as a function of head-

direction with respect to the surrounding distal visual cues in both real and virtual

worlds. This directional modulation does not require robust vestibular cues, while

angularly informative visual cues are sufficient for its generation. Additionally,

the proportion of neurons with significant directional modulation, the direction of

their tuning, and the directional tuning curve width are all strongly influenced by

the degree of angular information in the distal visual cues, both at the neuronal

and ensemble level, thereby demonstrating for the first time the causal influence

of visual cues on rodent hippocampal directional responses.

Our demonstration of significant head-directional modulation of hippocampal

neurons'activity during random foraging in two dimensions in RW is contrary

to the commonly held belief that head-directional modulation is absent in this

condition in rodents [57], [58]. There have been a few conflicting reports about

hippocampal head-directional selectivity in rats [11, 75] and bats [64, 65] in open

fields. Directional selectivity in bats was initially thought to be generated by

visual cues [64] but later ascribed to vestibular cues and spatial selectivity [65].

Additionally, a few studies have reported directionally selective responses in the

primate hippocampus [37,63]. Our results about directionally selective responses

in RW are consistent with these primate studies. There could be several reasons

why we found strong directional selectivity in this condition where previous studies

failed to find such responses. Firstly, we used prominent, rich visual cues that

could elicit visually evoked responses, unlike most studies. Secondly, we used a

large (200cm diameter) open platform placed in a large room (300×300cm) where

we attempted to eliminate nonspecific cues, in contrast to most studies that use a

small enclosure with nearby walls which could provide nonspecific cues that could
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interfere with the visual cues. Further, we employed analysis techniques that

eliminated the possibility that the directionality we observed was influenced by

spatially selective responses or behavioral artifacts. Finally, we estimated angular

tuning by computing angular sparsity, which is more robust to estimating the

selectivity of multimodal responses than the commonly used mean vector length.

Notably, we found comparable levels of directional responses in both visually

rich RW and in VR where the vestibular cues were minimized. This is in contrast

to commonly held belief that directional responses in rodent hippocampus and

related systems require robust vestibular cues [11, 26, 57, 59] but consistent with

visually evoked direction selective responses in primates without vestibular cues

[37,63].

These results demonstrate that visual cues alone are sufficient to generate ro-

dent hippocampal direction selectivity. To determine the causal influence of the

nature of visual cues on this selectivity we did a series of experiments in VR. This

isolation of visual cues is not possible in RW since nonspecific cues [10] including

vestibular cues are invariably present in RW and could confound interpretation.

We found that the amount of angular information in the visual cues directly de-

termined the proportion of hippocampal neurons that had significant directional

selectivity. Removing angular information in the visual cues eliminated direc-

tional selectivity of hippocampal responses. Compared to the visually rich VR,

making the visual cues angularly concentrated resulted in sharpening of the head

directional tuning curves. In addition, narrowing of the same polarizing visual

cue had a predictable effect: fewer neurons were angularly tuned but their direc-

tional tuning curves were even sharper. These results show that visual cues play a

causal role in determining rodent hippocampal directional responses. While these

results are novel for rodents, they are consistent with extensive primate literature

showing visually evoked selective responses in the primate hippocampal forma-

tion [29,37,76,77]. However, we found that the angular tuning curves were wider
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than the visual stimulus. This increased width could arise due to mechanisms

of persistent activity [35, 60, 78] and could improve the angular accuracy of the

ensemble of neurons by improving signal to noise ratio of the ensemble [79].

In addition, we found that visual cues not only influence the angular responses

of individual neurons, but of the hippocampal ensemble response as well. Con-

centration of visual cues in one part of the wall caused the ensemble to become

preferentially biased in that direction, demonstrating that hippocampal responses

were visually evoked. This could explain why there was no ensemble bias in the

rich conditions where different neurons fire preferentially to different visual fea-

tures on the walls.

Hence, we hypothesize that while the hippocampal formation receives direc-

tional signals from the vestibular cue-dependent head-direction system, it must

also be receiving directional information from a pathway that does not require the

vestibular signal, but could instead be driven by visual cues, such as the entorhinal

cortex [5,80,81]. For example, layer 3 of medial entorhinal cortex, which is a pri-

mary source of input to the dorsal CA1, and which drives CA1 neurons [35], could

contain a subset of the head directionally tuned neurons that are visually driven

and maintain significant angular selectivity even in our virtual reality setup, thus

contributing to the directional tuning of CA1 neurons. Our findings narrow the

gap between the presence of directionality on linear tracks [62], but its apparent

absence during random foraging in two dimensions [57, 58], by showing the pres-

ence of significant directional tuning in this condition. Further studies are needed

to determine if rodent hippocampal responses are distributed in the allocentric [4],

egocentric [2, 80, 82], or retinotopic [37] frames of reference. Further, our experi-

ments do not rule out the possibility that other sensory, behavioral and internal

cues could also influence hippocampal directionality.

The intact head-directional modulation observed here is in contrast to the

large reduction in spatial selectivity in VR [60]. Thus the mechanisms of spatial
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and directional selectivity can be dissociated, in that visual cues are sufficient to

generate the latter but not the former. Further, these results are also consistent

with human and non-human primate studies showing the presence of angular

selectivity independent of spatial selectivity [29,30,37,83].

Thus our results bridge the long standing gap between the primate and ro-

dent studies by showing visually evoked, directional responses in the rodents re-

gardless of vestibular cues. These results could potentially resolve the apparent

paradox: If the hippocampus is required for navigation [84], how can rats [43],

humans, or nonhuman primates navigate with only visual cues and without ro-

bust hippocampal spatial selectivity [30, 37, 60]? We hypothesize that angular

selectivity of hippocampal neurons reported here, combined with their selectivity

to distance traveled [14, 60] and experiential plasticity of hippocampal receptive

fields [54, 55,85] could mediate spatial navigation.
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CHAPTER 4

Hippocampus shows no spatial selectivity during

navigation in virtual reality

4.1 Abstract

Principal excitatory neurons in area CA1 of the rodent hippocampus show strong

selectivity to position in the allocentric frame of reference and are aptly called

place cells. Additionally, it has been shown that the hippocampus itself is nec-

essary for solving spatial navigation tasks. Hence, it is commonly believed that

the spatially selective activity of place cells are necessary for spatial navigation.

However, CA1 neurons have no spatial selectivity during random exploration in

two-dimensional virtual reality (VR) where only visual cues are spatially infor-

mative. This raises the important question: is spatial selectivity in the form of

place fields necessary for navigation at the behavioral level? Hence, we collected

electrophysiological data from CA1 of rats trained to solve a spatial navigation

task in the same VR setup. At the behavioral level, rats were able to successfully

learn how to solve the task which is an analog of the Morris watermaze task in

VR. Interestingly, similar to results seen during random foraging, the neurons ex-

hibited no spatial selectivity providing additional evidence that spatial selectivity

in hippocampus is not necessary for spatial navigation.
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4.2 Introduction

Spatial navigation is a necessity for survival and the hippocampus is a brain area

that has been heavily implicated in spatial navigation and memory. Experiments

performed in rats by Richard Morris [86] showed that lesions of the hippocampus

result in severe deficits in the ability of rodents to learn a spatial navigation task.

Prior to this, in 1971, O’Keefe and Dostrovsky [4] had discovered the place cell in

area CA1 of the rodent hippocampus and given birth to the idea of the cognitive

map. It has since been believed that the unique ability of place cells to encode the

position of the animal in space is necessary in order to solve a spatial navigation

task. However, in stark contrast to this idea, experiments performed in virtual

reality (VR)—where only visual cues are spatially informative [60]—showed that

despite rats being able to easily navigate through the virtual space and forage for

randomly distributed rewards, spatial selectivity of neurons in hippocampal CA1

of rats was severely impaired but selectivity to distance traveled was preserved

[14, 60]. These data also showed that about a quarter of CA1 neurons encode

for the direction that the animal is facing in both RW and VR, despite the loss

of position selectivity in VR. This result indicates that selectivity to absolute

position is not necessary for spatial navigation and that other forms of coding

are sufficient. In order to determine if this is indeed the case, we recorded from

area CA1 of rats performing an analog of the spatial navigation task designed by

Morris [87] in the same VR setup.

The watermaze task

The spatial navigation task, known as the watermaze task [87], is an experimental

tool used widely to measure and quantify the behavioral and physiological corre-

lates of spatial learning and memory. The experimental setup consists of a circular

pool of water that has a platform just beneath the surface which is made either
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visible or invisible. The walls of the room have distinct visual cues to distinguish

them from each other. The rat is placed in the water in a random location near

the walls of the pool and the goal of the task is for the rat to locate the platform.

When the platform is hidden by making the water opaque, the animal has to learn

the location of the platform based on the cues on the walls over several trials. The

ability of the animal to solve the task is quantified using measures such as the

amount of time it takes for him to find to the platform, the length of the path

he takes, the number of trials that are required for him to successfully learn the

position of the hidden platform and the quadrant of the circular pool he spends

the most time in when the platform is removed.

Spatial navigation in virtual reality

We trained the rats to perform a virtual analog of the watermaze task, henceforth

referred to as the virtual spatial navigation task. Since spatial selectivity

was severely impaired [60] during random foraging in virtual reality, we used the

same VR setup to determine if spatial selectivity in CA1 is necessary for rats to

solve a spatial navigation task. Previously published behavioral experiments [43]

in this VR showed that rats are capable of learning to perform the virtual spatial

navigation task. Further, other studies done using this VR setup [14, 60] have

shown that rats are able to successfully learn how to perform various other kinds

of spatial tasks in this virtual environment. Hence, if spatial selectivity is indeed

necessary—as commonly held—for spatial navigation, one would expect to see a

resuscitation of place fields during the virtual spatial navigation task.

4.3 Methods

Methods Summary Materials and methods were similar to those formerly de-

scribed (Section 2.3).
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4.3.1 Subjects

Data were obtained from four adult male Long-Evans rats (350–400 g at the time

of surgery) that were singly housed on a 12-hour light/dark cycle. The animals

were water restricted (minimum of 30 mL/day) in order to increase motivation

to perform the task, but allowed an unrestricted amount of sugar water reward

during the task. Further, they were food restricted (minimum of 15 g/day) to

maintain a stable body-weight. All experimental procedures were approved by

the UCLA Chancellor's Animal Research Committee and in accordance with NIH

approved protocols.

4.3.2 Behavioral Tasks

The task is as previously described [43]. The experimental setup consisted of

the VR setup described in Section 2.3.2. The virtual room was 450cm × 450cm

wide with four distinct visual cues on the walls. Rats were trained to run on

a 200cm diameter platform elevated 50cm from the virtual floor. Sugar water

rewards were dispensed in pulses of 5 at a fixed, unmarked reward zone 20–25cm

in radius that will henceforth be referred to as the hidden reward zone. Each

trial began with the rat at one of four or eight (depending on the variation of

the task) random start locations at the edge of the table and facing outwards

towards the wall. The trial ended when the rat had located the reward zone

and rewards were dispensed. An intertrial interval of 2–5s separated the trials

during which the virtual environment went blank. Rats quickly learnt to locate

the hidden reward zone, seemingly using the distalvisual cues since they were the

only spatially informative cues in the virtual space [43].
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4.3.3 Surgery, electrophysiology and spike sorting

All the methods were analogous to procedures described previously (Section 2.3)

[14, 60]. Rats with satisfactory behavioral performance were anesthetized using

isoflurane and implanted with custom-made hyperdrives with approximately 22

independently adjustable tetrodes. Both left and right dorsal CA1 were tar-

geted. After recovery from surgery, tetrodes were gradually lowered to area CA1,

which was identified by the presence of sharpwave ripple complexes. Signals were

recorded using a Neuralynx data acquisition system at a sampling rate of 40kHz.

Spike extraction, spike sorting and single unit classification were done offline using

custom software and according to methods described previously (Section 2.3.6).

4.3.4 Statistics

Only those data during which the speed of the rat was greater than 5cm/s were

considered for analyses and all other data were discarded.

Spatial ratemaps

10cm × 10cm spatial bins were created and only those bins through which the

animal traversed more than 5 times were considered for the generation of two-

dimensional ratemaps. This was then smoothed by convolving with a Gaussian

kernal with a σ of 1 bin.

Confidence intervals

Resampling was done with replacements 10,000 times and the 2.5 and 97.5 quan-

tiles were used for the boundaries of the confidence intervals.
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4.4 Results

4.4.1 Rats are able to perform the virtual spatial navigation task

Rats could navigate to the hidden reward zone in the north-east quadrant of

the 200cm diameter platform (Figure 4.1a). At the beginning of each trial rats

found themselves at a start location facing the wall and were required to orient

themselves in the virtual room and remember the location of the hidden reward

zone in order to navigate to it to obtain rewards in the form of sugar water. The

task had two variants: in the first there were four start locations (Figure 4.1b)

and in the second, there were eight(Figure 4.1c). The start locations were chosen

at random at the start of each trial.

4.4.2 Spatial selectivity is not required for spatial navigation in VR

We recorded from 497 putative pyramidal neurons from hippocampal CA1 of

four adult Long-Evans rats. Interestingly, similar to the results obtained during

random foraging [60] neurons did not show robust spatial selectivity (Figure 4.2a–

4.2d). The distribution of their spatial information content values (Figure 4.2e)

was nearly identical to the distribution of those of neurons recorded from the

random foraging task in VR (Figure 4.2f, see 2.4.1, Figure 2.4c).

4.5 Discussion

We found that although rats were able to easily perform a spatial navigation task

akin to the watermaze task designed by Morris [87] in virtual reality, neurons in

hippocampal CA1 did not show the spatially selective activity thought to be neces-

sary for spatial navigation. This indicates that spatial selectivity in hippocampal

CA1 is not necessary for spatial navigation.
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However, other studies [14,60] (Chapter 2, 3) have shown that the same brain

region exhibits strong selectivity to distance and head-direction at a neuronal and

population level in the same VR setup. Hence we postulate that in the absence

of spatial selectivity, these other forms of encoding space are sufficient to support

spatial navigation at the behavioral level.
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Figure 4.1: Rats can navigate to the hidden reward zone in VR (a) A top-down view

schematic of the virtual room. The walls were 450cm wide and the platform was 300cm

in diameter. The hidden reward zone was 40–50cm in diameter. (b), (c) The central

panel shows the behavior of the rat on the task with the colored lines (color coded by

start location) indicating the path taken by the rat from each start location to the reward

zone and the solid black lines showing the average path taken by the rat. The surrounding

panels show the behavior of the rat for each start location. Note how the rat takes the

shortest path to the reward zone for all start locations.
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Figure 4.2: Neurons do not show spatial selectivity during spatial navigation in VR

(a)–(d) Left panels) Spike positions (color coded by start location) and path taken by the

rat from start location to the reward zone for four example neurons. Right panels) Firing

rate maps for the corresponding neuron. Higher temperature colors indicate higher firing

rate. Minimum and maximum firing rate are indicated by the numbers. (e) Histogram of

information content (0.29[0.26, 0.32]bits/spike; median value (indicated by dotted line)

and confidence interval) of the neurons shows neurons exhibited very poor spaital

selectivity comparable to that seen in virtual reality during two-dimensional random

foraging shown in (f) (f) Spatial information content in VR (0.33± 0.01bits) was 75%

(p = 1.1× 10183) lower than in RW (1.35± 0.02bits).
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CHAPTER 5

Conclusion and future directions

The hippocampus has been implicated in a variety of brain functions, and its

ability to create a spatial map in rodents was precluded by the discovery that it

is an essential part of the circuitry that is responsible for declarative memory

in humans [57]. A large gap currently exists between hippocampal studies in

primates and rodents. In primates, the hippocampus is largely studied in the

context of episodic memory but in rodents it is considered to function mainly to aid

the animal in navigating through space [57]. The results in this thesis narrow this

gap considerably and predict that the hippocampus of rodents is more similar than

previously believed to that of humans and non-human primates. Additionally, the

results shed important light on the mechanisms of multisensory integration and the

contributions of the visual, vestibular and proprioceptive inputs to hippocampal

activity. Most importantly, this thesis adds to the growing list of studies showing

the versatility of this brain region to not only encode the environment the animal

is currently situated in and detect the changes that occur, but also to be able

to adapt its coding strategy depending on the requisites of the task at hand at

the behavioral level. The following paragraphs will summarize each result and

describe briefly the potential future studies.

Firstly, studies in humans and non-human primates have shown that hip-

pocampal neurons have very little spatial selectivity [29, 30, 37]. However, these

studies were done not in freely moving subjects, but in subjects who were made to

navigate in a virtual environment where, as discussed earlier, only visual cues are
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spatially informative. We have shown that the rodent hippocampus also shows

similar behavior when the only reliable cues are distal visual cues and no other

sensory modality provides spatially relevant information. Additionally, our re-

sults predict that the hippocampal neurons in humans and non-human primates

can also exhibit strong spatial selectivity, albeit in the distance domain, if the

experiment is constructed such that internal, self-motion cues provide spatial in-

formation more reliably. Future studies are required in order to determine if other

combinations of sensory inputs are viable which will provide important insight

into the mechanisms of sensory integration in the hippocampal formation.

Second, we have shown that the hippocampus is capable of encoding direction.

This in itself is significant not only because it was largely held to be untrue, with

any such signal being considered nothing but an artefact, but also because it adds

to the growing list of the complex signals the hippocampus can generate. It is

not entirely clear if this signal is view-based as observed in primates, or head-

direction based like in the rodent thalamus. However, our results strongly point

to the possibility that the signal is more similar to the former than the latter

especially since the signal is entirely based on visual signals and not dependent on

vestibular inputs. Additonally, the differences found between RW and VR indicate

that there is competition between elements of the same modality (resulting in

neurons having multimodal firing ratemaps), and also between different modalities

(affecting stability of the firing ratemaps). Further experiments will determine the

contribution of other modalities such as olfactory cues to the directional signal

observed in our data.

Third, it is currently unclear whether the firing patterns observed in the hip-

pocampus, which are highly correlated with the behavior of the animal are nec-

essary or even reflected at the behavioral level. Our result showing that rats can

navigate in a virtual environment without spatial selectivity indicates that spa-

tial selectivity in the form of place fields is not necessary to accomplish the task
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of spatial navigation. The observations made in this thesis, in addition to those

of others showing the flexible, versatile nature of hippocampal activity indicates

that the ability of hippocampal neurons to encode for distance, head-direction

and time, to name a few, is sufficient to solve this complex problem. Further

studies are required to determine which of these signals becomes prominent at the

population level and how this ensemble activity changes as more sensory inputs

are made spatially informative.

While the terms place cell and place field are accurate in describing the

firing activity of neurons in the hippocampus they are highly limiting in that

hippocampal neurons are not restricted to just encoding cartesian space. Many

studies in the recent years have shown that the very same neurons that produce

place fields also have selectivity to other aspects of space. It is important to

keep in mind that space does not only consist of the three dimensions but is a

complex conglomeration of patterns, and can be expressed and described with

more than just the cartesian coordinates. The results in this thesis show that the

hippocampus has the incredible ability to encode the same space in more than

one way at the same time, speaking for the true complexity of the cognitive map

birthed by the discovery of the place cell in 1971.
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