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Abstract

The representation of ignorance is a long standing chal-
lenge for researchers in probability and decision the-
ory. During the past decade, Artificial Intelligence re-
searchers have developed a class of reasoning systems,
called Truth Maintenance Systems, which are able to
reason on the basis of incomplete information. In this
paper we will describe a new method for dealing with
partially specified probabilistic models, by extending
a logic-based truth maintenance method from Boolean
truth-values to probability intervals. Then we will illus-
trate how this method can be used to represent Bayesian
Belief Networks — one of the best known formalisms to
reason under uncertainty — thus producing a new class
of Bayesian Belief Networks, called Ignorant Belief Net-
works, able to reason on the basis of partially specified
prior and conditional probabilities. Finally, we will dis-
cuss how this new method relates to some theoretical
intuitions and empirical findings in decision theory and
cognitive science.

Introduction

It is well known that classical Bayesian probability the-
ory provides a normative theory of rational belief, but it
fails to provide an adequate descriptive account of how
human agents actually behave. This tension between its
normative and its descriptive characters arises, at least
in part, from the inability to distinguish between uncer-
tainty and ignorance, since it requires to express in a
single number both the belief about an event and the
reliability of such a belief. Moreover, representing un-
certainty in a probabilistic framework requires a large
amount of information: the amount of probability esti-
mates needed to define a complete joint probability dis-
tribution grows exponentially with the number of ele-
ments involved in the distribution, and this information
is not always available.

During the past decade, Artificial Intelligence re-
searchers have developed a class of reasoning systems,
called Truth Maintenance Systems (TMss) (Forbus and
de Kleer, 1992), which are able to deal with partially
specified knowledge and to perform inferences in the
growth of information.

This paper describes a new method for dealing with
partial information in probabilistic reasoning, by extend-
ing to intervals a logic-based truth maintenance method
called Boolean Constraint Propagation (McAllester,
1990). This method will allow us to explicitly distin-
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guish between uncertainty and ignorance. After the de-
scription of some of the theoretical and empirical mo-
tivations behind the effort of representing ignorance in
probabilistic reasoning, we will outline this method and
then we will show how it can be used to represent a
class of probabilistic reasoning systems called Bayesian
Belief Networks (BBNs) (Pearl, 1988), thus producing a
new class of BBNs called Ignorant Belief Networks (IBNs),
able to reason on the basis of partially specified prior and
conditional probabilities. Finally, we will discuss how
this new method relates to some theoretical intuitions
and empirical findings in decision theory and cognitive
science.

Background

A fundamental axiom of the classical Bayesian theory
assumes that the beliefs of a rational agent can be ex-
pressed by a single probability distribution. The best
known support for this “single distribution” assumption
is the Dutch Book Theorem, which states that if some-
body violates this assumption, he “could have a book
against him by a cunning bettor, and would then stand
to lose in any event” (Ramsey, 1931). This theorem
provides the classical Bayesian theory with a normative
character, by proving that a rational agent should behave
according to its axioms, including the “single distribu-
tion” assumption.

Theoretical Arguments

Several theoretical arguments have been addressed
against the assumption that a rational agent’s beliefs
can be expressed by a single probability distribution. A
strong argument is that, under this assumption, classical
Bayesian theory is unable to represent the reliability, or
ambiguity, of the available information, but nonetheless
this reliability affects the choices of a rational agent.
The most famous example of this effect is a well-known
paradox due to Daniel Ellsberg (1961). Imagine an urn
containing 30 red balls and 60 balls that can be either
black or yellow, in unknown proportion. A ball is drawn
at random from the urn. Ellsberg describes two choice
situations, each containing two alternatives, summarized
in Table 1. In the first situation, the agent is asked to
choose between two alternatives: in the first alternative
(I), he will receive 100 if the drawn ball is red and noth-
ing if it is black or yellow; in the second case (II), he
will receive 100 if the drawn ball is red and nothing oth-



Red | Black Yellow

30 60
| 100 0 0
11 0 100 0
111 100 0 100
1V 0 100 100

Table 1: Matrix for Ellsberg’s Paradox

erwise. The second choice situation presents again two
alternatives: in the first alternative (III), the agent will
receive 100 if the drawn ball is red or yellow, and nothing
if it is black, while in the second one (IV), he will receive
100 if the ball is black or yellow, and nothing otherwise.

Ellsberg claims that the intuitive response to these de-
cision situations is that I is preferred over Il and 1V is
preferred over III. This response violates the Sure-thing
Principle, which requires the ordering of I to II to be
preserved in [II and IV, since the two pairs differ only in
their third column, constant for each pair. Ellsberg sug-
gests that this pattern of behavior is due to the quality
of available information: the agent is sure about the pro-
portion of the red balls in the urns, but the proportion
of black balls is underconstrained (it could be anything
between zero and two-thirds), thus preventing the agent
to rule out a number of possible distributions.

Several authors (Good, 1962; Kyburg, 1968; Demp-
ster, 1967; Schick, 1979) have suggested that this ambi-
guity or ignorance about the reliability of probabilistic
information can be represented in terms of probability
intervals. Levi (1974) interprets these intervals as sets
of probability distributions. The intuition behind this
theory is that even if an agent cannot choose a single
probability distribution, his knowledge can constrain the
set of possible distributions. Kyburg (1983) outlines a
complete decision theory in which the standard probabil-
ity function associated to a proposition is constrained be-
tween the functions defining the lower and upper bounds
of a probability interval.

Empirical Findings

Since the seminal work by Becker and Brownson
(1964), several empirical studies suggest that the “single-
distribution” assumption has no descriptive value. In
their work, Becker and Brownson provided the subjects
with limited information about the distributions of white
and black balls in an urn, giving them just ranges of
possible distributions, and they found a kind of mone-
tary “payoff of ignorance”: the amount of money that
the subjects was willing to pay to avoid ambiguity was
consistently related to the amount of ambiguity of the
available information.

Einhorn and Hogarth (1985) proposed an influential
descriptive model of reasoning under ignorance in which
an initial estimate provides the anchor and adjustments
are made to cope with the missing information, and they
describe several experiments supporting the basic claim
of Ellsberg’s Paradox. Recent results were found consis-
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tent with the predictions derived from their conceptual-
ization of ambiguity (Hinsz and Tindale, 1992).

Results obtained by Curly and Yates (1989) and by
Stasson, Hawkes, Smith and Lakey (1993) show that
ignorance plays an important and autonomous role in
decision processes under uncertainty, and they provide
further evidence for the intuition behind Ellsberg’s Para-
dox.

Belief Maintenance

TMSs are reasoning systems that incrementally record
Justifications for beliefs and propagate binary truth-
values along chains of justifications. TMSs that are able
to reason on the basis of probabilistic rather than bi-
nary truth-values are called Belief Maintenance Systems
(BMss). This section summarizes the description of a
BMS based on probabilistic logic able to reason on the
basis of incomplete probabilistic information. From a
logical point of view, it can be regarded as an exten-
sional system based on a set-theoretic interpretation of
probability.

Logic-based Belief Maintenance
A logic-based BMs (LBMs) (Ramoni and Riva, 1993) is a

BMS in which Boolean connectives of standard logic act
as constraints on the probabilistic truth-values of propo-
sitions. The LBMS can be regarded as a generalization to
interval truth-values of the Boolean Constraint Propaga-
tion method (McAllester, 1990). The LBMS manipulates
two basic kinds of structures: propositions, ay,...,an,
representing atomic propositions of a propositional lan-
guage, and clauses, of the form (a1 VazV...), represent-
ing finite disjunctions of (negated or unnegated) atomic
propositions.

Probabilistic logic (Nilsson, 1986) provides a semantic
framework for extending the standard (Boolean) con-
cept of satisfaction to a probabilistic one, that can be
regarded as a generalization of the set-theoretic interpre-
tation of the probability of a proposition. The probabil-
ity P(a;) of a proposition a; is bounded by the following
inequality:

P(a;) + P(aj Da;)=1< P(a;) S P(a; Da;) (1)

Inequality (1) may be regarded as the probabilistic inter-
pretation of modus ponens. Since (a; D a;) = (—a; Va;),
(2) is a special case of a more general inequality that ap-
plies to any set of propositions in disjunctive form (i.e.
a clause). Let C =\/!_, a; be a clause. The probability
of a; is bounded by the following inequality:

P(C)-)_ Pa; < P(ai) < P(C) )
J#

The right hand side of (2) is straightforward: no proposi-
tion may have a probability greater than the probability
of any disjunction it is a part of. In set-theoretic terms,
this means that a set cannot be larger than its union
with other sets. The left hand side states that, when the
sum of the maximum probability of all the propositions
in C but one does not reach the probability of the clause,



the minimum probability of the remaining proposition is
forced to cover the difference.

Unfortunately, the constraints directly derived from
inequality (2) turn out to be too weak: the bounds they
produce are too wide, thus including inconsistent values.
The weakness of the constraints derived from (2) arises
from too strong an enforcement of their locality based on
the assumption that, in the set-theoretic interpretation
of a clause, the intersection of all propositions is always
empty. It is apparent that this assumption is too strong.

Generalizing definition (2) to interval truth-values, we
derived a set of constraints on the minimum and max-
imum probability of propositions (Ramoni and Riva,
1993). If we define P.(()a;) and P*(()a;) as denoting the
minimum and the maximum probability of the proposi-
tion a;, then for each clause C' in which it appears:

L Pu(a) 2 Po(C) + Fc ~ Fji P*(as) (g
2. Pu(a;)>1- E;f(l — P.(=a; V ¢;)J

Inequality (3.1) simply enforces the left hand side of (2)
by dropping the assumption that all the propositions
have to be pairwise disjoint and that their intersection
in a set-theoretic interpretation (we call it overlapping
factor of the clause C' and denote it with F¢) has to be
empty.

Inequality (3.2) is directly derived from the well known
Additivity axiom and states that if a; is an atomic propo-
sition, and {¢y,...,@Pan} is the set of all the conjunc-
tions that contain all possible combinations of the same
n atomic propositions negated and unnegated, then:

P(a;) = Z P(a; A ¢;) (4)

=1

The constraint (3.2) subsumes the right hand side of
(2), which states that the maximum probability of each
proposition in a clause C' cannot be higher than the max-
imum probability of C. Henceforth, constraint (3.2) can
be regarded as an enforcement of the inequality (2).

Propagating the constraints (3) over a network of
clauses is quite easy. In the LBMS, each proposition is la-
beled with a set of possible values, and the constraints (in
our case, the application of the above defined constraints
to the clauses) are used to restrict this set. The LBMSs
can exhibit this behavior because if a clause is satisfied
for a given truth-value of a proposition P(a;) = [a., "),
it will be satisfied for any subset of [a.,a*]. This prop-
erty, which is implicit in the form of the inequalities in
constraints (3), implies a monotonic narrowing of the
intervals, thus ensuring the incrementality of the LBMs.

The most important feature of the LBMS is the ability
to reason from any subset of the set of clauses repre-
senting a joint probability distribution, by bounding the
probability of the propositions within probability inter-
vals, and incrementally narrowing these intervals as more
information becomes available. The assignment of prob-
ability bounds to propositions and clauses expresses the
degree of ignorance about them.
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Representing Conditionals

A common criticism addressed to extensional systems
based on probabilistic logic is their difficulty in repre-
senting assignments of conditional rather than absolute
probabilities. Pearl (1988) points out that a more in-
tuitive representation of the modus ponens in a proba-
bilistic framework is given by the specification of P(a;)
and P(a;|aj) rather than by implication P(a; D a;),
because P(a; D a;) does not properly capture the mean-
ing of the linguistic statement “if a; then a;”. For in-
stance, if we want to express that some rare event a; has
a likely consequence a; and we state P(a;) = [.01 .01]
and P(aj D a;) = [.9 .9], we find that the two sentences
are inconsistent. If we represent modus ponens using
the conditional probability P(a;|a;) rather than impli-
cation P(a; D a;), the probability of a; is bound by the
following inequality:

P(a;) - P(aila;) < P(a;) <1 (5)

In the previous example, if we write P(a;) = [.01 .01]
and P(a;|a;) = [.9 .9], inequality (5) produces the bound
P(a;) = [.09 1], which is more intuitive. Modus ponens
is, in nature, a metalinguistic rule of inference. Hence-
forth, following the approach of Kyburg (1983), we will
represent conditionals as metalinguistic derivation rules,
rather than as connectives in the object language.

The representation of conditional probabilities in the
LBMS is straightforward using the Chain Rule:

P(a;) - P(aila;) = P(a; A a;) (6)

The resulting conjunction is converted in clausal form
through De Morgan’s laws and it is then communicated
to the LBMS. For instance, the probabilistic model de-
fined by the two conditionals P(az|a;) = [.2 .2] and
P(az|-ay) = [.6 .6] with P(a;) = [.5 .5] may be expressed
by the set of clauses: P(a; V a3) = [.8 .8], P(ay V —a3)
= [7 T, P(may V az) = [.6 .6}, P(-a, vV =ap) = [9 9]

Representing Ignorance

A BBN is a direct acyclic graph in which nodes represent
stochastic variables and links represent causal relation-
ships among those variables. Each link is defined by
the set of all conditional probabilities relating the par-
ent variables (the“cause” variables) to children variables
(the “effect” variables). We can identify two different
kinds of ignorance that can be represented in this frame-
work: complete ignorance about a conditional probabil-
ity and partial ignorance about a conditional or prior
probability in the network.

Ignorant Belief Networks

From the theory of the TMss, the LBMS inherits the con-
cept of consumer. A consumer is a forward-chained pro-
cedure attached to each proposition, that is fired when
the truth-value of the proposition is changed. The BMSs
theory extends the definition of consumers from Boolean
to probabilistic truth-values. Using consumers, it is pos-
sible to develop a new class of BBNs based on the LBMS
and henceforth able to reason with partially specified



Conditional ] P
1 [tuberculosis:yes] | [asia:no] .01 .01
2* | [tuberculosis:yes] | [asia:yes] .05 .05
3 [bronchitis:yes] | [smoker:yes] .6 .6
4* | [bronchitis:yes] | [smoker:no] 3.3
5 (lung-cancer:yes] | [smoker:yes] 3.4
6* | [lung-cancer:yes] | [smoker:no] d4
7 [dyspnoea:yes] | [bronchitis:yes] A [tuber-or-cancer:yes] 9.9
8 [dyspnoea:yes] | [bronchitis:yes] A [tuber-or-cancer:no] 1.7
9 [dyspnoea:yes] | [bronchitis:no] A [tuber-or-cancer:yes] 8.8
10* | [dyspnoea:yes] | [bronchitis:no] A [tuber-or-cancer:nol 1.1
11 | [tuber-or-cancer:yes] | [tuberculosis:yes] A [lung-cancer:yes] (1 1]
12 | [tuber-or-cancer:yes] | [tuberculosis:yes] A [lung-cancer:no] 11
13 | (tuber-or-cancer:yes] | [tuberculosis:no] A [lung-cancer:yes] 1T
14 | [tuber-or-cancer:yes] | [tuberculosis:no]l A [lung-cancer:no] 0 0]
15 | [x-ray:yes] | [tuber-or-cancer:yes] [.98 .98
16" | [x-ray:yes] | [tuber-or-cancer:no] . (.05 .05

Table 2: Conditional probabilities defining the network of the example.

causal links (i.e. lacking some conditional probabilities)
and interval probability values. We call these BBNs Ig-
norant Belief Networks. In this framework, IBNs act
as a high-level knowledge representation language, while
the computation and the propagation of probabilities are
performed by the LBMS.

In a BBN, each variable is defined by a set of states
representing the assignment of a value to the variable.
Each state is evaluated by a probability value. All the
states of a variable are mutually exclusive and exhaus-
tive: the probability values assigned to all the states in
a variable have to sum to unit. In an IBN, when a vari-
able is defined, each state is communicated to the LBMs
as a proposition and a set of clauses and consumers is
installed to ensure that its states are mutually exclusive
and exhaustive.

Causal relations are defined by conditional probabili-
ties among states. In an 1BN, a conditional P(e|Cz) is
represented as a consumer attached to each proposition
representing a state in the context Cz. When the prob-
ability value of all states in Cz is assigned, the consumer
communicates to the LBMs the two different clauses re-
sulting from the application of the De Morgan’s laws to
(CAe) and (CA—e). P(CAe) and P(C A—e) are calcu-
lated according to a version of the Chain Rule extended
to intervals:

P.(C Ae) = P.(Cz) - P.(¢|Cz)

P*(C Ae) = P*(Cz) - P*(e|Cz)
P.(C A—e)= P.(Cz) (1- P*(e|Cz))
P*(C A—e) = P*(Cz) - (1 - P.(¢|Cz))

It is worth noting that since the probability of both
propositions and clauses in the LBMS is represented by
probability intervals, 1BNs are endowed with the ability
to express both interval conditional probabilities and in-
terval prior probabilities about states. Moreover, since
conditionals are locally defined and propagated, the rea-
soning process can start even without the full definition
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of the joint probability distribution. These features en-
able 1BNs to represent both the complete ignorance of
a conditional probability and the partial ignorance of a
conditional or a prior probability.

An Example

In order to illustrate the functionality of 1BNs, we will use
the well known example depicted in Figures 1-4. The
pop-up windows over the variables show, in graphical
terms, the probability interval (subset of [0 1]) associated
with each of their states. In each bar, the area between 0
and P,(.) is black, the area between P*(.) and 1 is white,
and the area between P,(.) and P*(.) is gray. In a stan-
dard BBN, all conditional and prior probabilities reported
in Table 2 are needed before any reasoning process can
start. Figure 1 shows an IBN in which those conditional
probabilities that are denoted by an asterisk in Table 2
are missing, and the prior probabilities of root nodes are
intervals rather than point-valued: P([asia: yes]) =[.05
.15] and P([smoker : yes]) =[.85 .95].

Figure 2 shows a portion of the LBMS network gener-
ated by the propagation. Rectangles represent proposi-
tions and ovals are clauses. A solid arc linking a propo-
sition to a clause means that the proposition appears
unnegated in the clause, while a dashed arc means that
it appears negated. The side bars display the minimum
and maximum probability. The thicker border of the
proposition [asia:yes] indicates that it is an assump-
tion. The clauses P([asia : yes]V[asia : no]) =[1 1] and
P(—[asia: yes] V ~[asia:no]) = [1 1] and the clauses
P([tuberculosis : yes] V [tuberculosis : no]) = [1 1]
and P(—[tuberculosis :yes] V —[tuberculosis : no))
= [1 1] enforce the mutual exhaustivity and exclusiv-
ity between the propositions representing the states of
the variables Asia and Tuberculosis, respectively.

The clauses P([asia: yes]
—[asia : no]V[tuberculosis : yes]) = [.0595 .1585] and
P([asia: yes] V —[asia: no] V ~[tuberculosis: yes])



Figure 1: The IBN defined by conditionals without the
asterisk in Table 2 and interval prior probabilities.

Figure 2: A section of the LBMS network defined by the
propagation of consumers for the I1BN in Figure 1.

= [.9905 .9915], named Cond1, are generated by the ap-
plication of the Chain Rule with P([asia: yes]) = [.05
.15] and P([tuberculosis : yes]|[asia : no]) = [.01 .01].
Note the absence of any clause representing the applica-
tion of the conditional 2 in Table 2. The underspecified
probability of the proposition [tuberculosis:yes] is
due both to the interval-valued probability of the propo-
sition [asia:yes] and to the absence of the conditional
P([tuberculosis : yes]|[asia : yes]) = [.05 .05)].

As a matter of fact, Figure 3 shows that when point-
valued prior probabilities for the states of root variables
(P([asia: yes]) =[.1 .1] and P([smoker : yes]) =[.9 .9])
are assumed, the probability of [tuberculosis:yes] re-
mains underspecified. Nonetheless, Figure 3 shows the
monotonic narrowing of all probability intervals in the
network: due to the incremental character of the LBMS,
all intervals in Figure 3 are subset of intervals depicted
in Figure 1. Finally, when the missing conditional prob-
abilities of Table 2 are communicated to the BN, the
intervals degenerate to point-valued probabilities, and
the IBN converges to the values of a standard BBN, as
depicted in Figure 4.

Discussion

We have introduced a new method for dealing with par-
tially specified probabilistic models in intelligent systems
and we have applied it to develop a new class of BBNs
able to reason on the basis of an explicit representation
of ignorance.

We have applied the 1BNs to forecasting blood glu-
cose concentration in insulin-dependent diabetic patients
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Figure 3: The 1BN defined by conditionals without the
asterisk in Table 2 and point-valued prior probabilities.

Figure 4: The 1BN defined by all conditionals in Table
2 and point-valued prior probabilities.

using underspecified probabilistic models directly de-
rived from a database containing the daily follow-up of
70 insulin-dependent diabetic patients, in which a very
small subset of the complete conditional model needed
to define a BBN was available. Instead of the 19200 con-
ditional probability required, only 2262 were available
(that is, less than 12%), and most of them were affected
by ignorance (the mean difference between the maxi-
mum and minimum probability of the conditionals was
.19) (Ramoni et al., 1994). Still, the system was able to
reason and to predict blood glucose values, taking into
account the ignorance about the distributions.

The crucial problem we found in the representation
of ignorance was the discrimination between two states
having intersecting probability intervals. This is a major
question for interval-based approaches to decision the-
ory. Kyburg (1983) introduces a general rule to for de-
cision making under ignorance: “It is rational to reject
any choice for which there exists another choice whose
minimum expected utility exceeds its own maximum ex-
pected utility.” If we assume the utility function as con-
stant, we can choose as “predicted” a state a; if there
is no alternative state a; whose maximum probability
exceeds the minimum probability of a;. Unfortunately,
this is a very rare case, and the rule proposed by Kyburg
is unable to legislate when the intervals are not disjoint.

However, interpreting the width of the interval as a
measure of ignorance, we can rank the states of each
variable according to a score that is proportional to their
mean probability and inversely proportional to the igno-



~Clause P
red V black V yellow 1
red V black V ~yellow [.333
red V —black V yellow (-333
red V —black V ~yellow (1

e e = T e e

—red V black V yellow [.666 .66
—red V —black V yellow (1
—red V black V ~yellow 1
—red V ~black V —~yellow (1

Table 3: Clausal representation of the probability dis-
tributions for Ellsberg’s Paradox.

rance about their probability. On this view, the proba-
bility values are propagated by the LBMs in a categor-
ical way and the ignorance is not explicitly taken into
consideration during the propagation. The discrimina-
tion method can be regarded as a post hoc evaluation of
propositions based on an induced estimation of the igno-
rance in the network and it is closed, in its nature, to the
idea of a ”payoff for ignorance” found in the empirical
work by Becker and Brownson (1964).

We can apply this simple ranking function to Ells-
berg’s Paradox, since the assumed monetary payoffs are
constant. Table 3 shows the clausal representation of
the probability distributions underling the paradox. The
LBMS calculates the following probability intervals for
the propositions red, black, and yellow: P(red) = [.333
.333], P(black) = [0 .666], and P(yellow) = [0 .666].

The mean values of the intervals associated to the
statements representing the alternatives in Ellsberg’s
Paradox are all equal, and just the width of the intervals,
defining the ignorance about their probability, is differ-
ent. It is easy to see that, following our simple ranking
rule, even the smallest penalty given to the statements
affected by ignorance will lead to prefer the alternative
I over the alternative II and the alternative IV over the
alternative III in Table 1, in agreement with the intu-
ition behind Ellsberg’s Paradox and the empirical find-
ings supporting it.
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