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Abstract

The evolution of an Inertial Fusion Energy (IFE) chamber involves a repetition
of short, intense depositions of energy (from target ignition) into a reaction cham-
ber, followed by the turbulent relaxation of that energy through shock waves and
thermal conduction to the vessel walls. We present an algorithm for 2D simulations
of the fluid inside an IFE chamber between fueling repetitions. Our finite-volume
discretization for the Navier-Stokes equations incorporates a Cartesian grid treat-
ment for irregularly-shaped domain boundaries. The discrete conservative update
is based on a time-explicit Godunov method for advection, and a two-stage Runge-
Kutta update for diffusion accommodating state-dependent transport properties.
Conservation is enforced on cut cells along the embedded boundary interface us-
ing a local redistribution scheme so that the explicit time step for the combined
approach is governed by the mesh spacing in the uniform grid. The test problems
demonstrate second-order convergence of the algorithm on smooth solution profiles,
and the robust treatment of discontinuous initial data in an IFE-relevant vessel
geometry.
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1 Introduction

In inertial confinement fusion scenarios, a small target containing frozen
deuterium and tritium (DT) is compressed and heated to fusion temperatures
by powerful laser or particle beams. With the careful design of the target and
beam pulses, a fusion burn can be initiated in the target, which subsequently
releases large quantities of energy into its surrounding environment. The en-
ergy must then be removed from the chamber housing the target and beam
lines, and the environment inside the chamber returned to a quiescent state
so that a new fusion target may be positioned for the next cycle. In an inertial
fusion energy (IFE) system, it is envisioned that this process will be repeated
at a frequency of approximately 5-10 Hz. In order to analyze and design such
systems, it is therefore necessary understand the time-dependent response of
the chamber environment between target ignitions over these time scales.

There are two phases that characterize the IFE chamber evolution and rel-
evant energy transfer. The IFE target is ignited essentially instantaneously
(over less than a nanosecond) and its energy is released in the chamber in
the form of X-rays (mainly bremsstrahlung radiation), neutrons (fusion prod-
ucts), and ions (both fusion products and target debris). The first phase of
chamber evolution, lasting up to a few microseconds, includes the transport of
this energy through the chamber fill gas toward the vessel walls. The fill gas
absorbs a portion of the radiated energy, helping to reduce the peak energy
flux transmitted to the vessel wall. During this process, peak temperatures in
the chamber may reach 1 keV or more, but then quickly decay to a few eV
predominantly through radiative transport processes. A significant fraction of
the energy is dissipated as well through slower hydrodynamic processes, such
as shock waves, which propagate throughout the chamber. This first phase
after ignition is known as the “fast phase”, and is immediately followed by a
much longer period of time, the “slow phase” over which convection and shock
hydrodynamics distribute energy throughout the chamber and to the vessel
wall. The slow phase extends for 100-200 ms or longer until the next target is
inserted and ignited to initiate the process over again, and is the focus of the
present study.

Because of the vastly disparate time scales and dominant physical phenom-
ena, studies of the heat transport problem for IFE target chambers may be
similarly separated into the two phases discussed above. The environment in
the slow-evolution phase has a sufficiently low temperature to allow reasonable
modelling with the compressible Navier-Stokes equations. Due to the longer
time scales involved however, multidimensional geometry effects become im-
portant in this phase as the fluid interacts with the vessel wall containing
various beam access ports.

An extensive overview of approaches to modeling the IFE chamber physics is
given in Ref. [1]. Several computer codes have been used to model the chamber
environment behavior. BUCKY is a one-dimensional radiation-hydrodynamics



code [2] that has been used to model blast-wave propagations through IFE
chambers, laser-ablation-driven shocks in gases, and X-ray-driven shocks in
solids. BUCKY results are used in this study as a model for the fast-phase
physics, and to provide initial conditions for a longer-time simulation of slow
phase chamber relaxation.

TSUNAMI (Transient Shockwave Upwind Numerical Analysis Method for
Inertial Confinement Fusion) [3] is a two-dimensional gas dynamics code and
has been used to model the slow phase of IFE chamber evolution using the
Euler equations for polytropic gas dynamics. Because the code treats the fluid
as an inviscid, nonconducting ideal gas with constant specific heat and no
radiation transport, it is most useful for studying the early stages of the slow
phase prior to the onset significant transport effects. Recently, researchers at
Osaka University’s Institute of Laser Engineering have used a DSMC (Direct
Simulation of Monte Carlo) code to model the KOYO IFE power plant cham-
ber [4]. This DSMC code was developed by NASA and integrates Boltzmann’s
equations directly, providing a mechanism to assess the effects transport in the
system evolution. Ref. [4] includes a comparison of long-time DSMC simula-
tions of the KOYO IFE chamber with those performed with TSUNAMI. The
comparisons demonstrated that many key features of the full evolution of the
slow-phase solution are not properly captured when conduction and viscous
transport are neglected.

The simulation approach described in this paper represents the assembly
of several well-documented algorithmic components to enable the study of
a more broad range of timescales in the slow phase of IFE chamber evolu-
tion, while also affording a reasonably general capability for multidimensional
geometries. The core numerical scheme here is based on the Cartesian-grid
Godunov integration method for the compressible Euler equations detailed in
Ref. [5] (hereafter referred to as the “base scheme”). In the Cartesian grid
approach, irregular (cut) cells are formed at the intersection of the uniform
mesh and the problem domain boundary, and state variables are defined at
the geometric centers of the rectangular mesh. In cells away from the embed-
ded boundary, the difference algorithm in the base scheme reduces to a time-
explicit second-order algorithm for advection. Fluxes into the cut cells are
treated in a post-processing step that ensures temporal stability, consistency
and accuracy. Stability of the overall integration scheme is governed by a time
step condition that is based on the cell size in the uniform mesh. Background
literature justifying this approach for compressible gas dynamics, and details
of implementation of the base scheme are discussed at length in the reference.
We have improved the accuracy of the base scheme in the cut cells through
the use of a flux interpolation procedure outlined in Ref. [6], and added the
ability to treat diffusion terms (viscosity and conduction) using ideas which
first appeared in Ref. [7] related to Cartesian grid methods for Poisson’s equa-
tion. Variable transport properties in the evolution of the parabolic diffusion
terms are incorporated with an iterative, time-explicit Runge-Kutta method.



Like the base method, implementation of our combined solution approach is
well-suited for incorporation into a block-structured adaptive-grid algorithm,
and is extensible to three dimensions. Detailed convergence analyses and a
sample application relevant to IFE chamber scenarios are used to validate the
assembled algorithm in a simplified two-dimensional, non-adaptive setting.

2 Model and Numerical Algorithm

The compressible Navier-Stokes equations may be written for an ideal poly-
tropic gas with viscosity, i, and conductivity, k:

pt+V-pﬁ:O
(p), +V - (put)) + Vp=V - T

(pE), + V- ((pE—i—p)ﬁ) _ V. (r- @+ kVT)
T:M(vmv%—%(v-a) 1) (1)

Here, p is the mass density, @ = uz+vy is the velocity, E = C, T +u-1/2 is the
total energy, C, is the specific heat of the gas at constant volume, p = pRT
is the pressure, and 7 is the stress tensor.

A Cartesian grid finite volume discretization for hyperbolic flow was de-
scribed in detail in Ref. [5]. We give an overview of this algorithm, discussing
first the the algorithm on a uniform grid, and then outlining the modifications
necessary to accommodate the cut cells at the embedded boundary. This sum-
mary provides context for the subsequent description of our extensions that
improve the scheme’s accuracy at the embedded boundary, and expand its
applicability to diffusive systems.

2.1 Base Uniform Grid Discretization

The equations (1) may be written in conservation form
Ui+ FU),+GU),=0 (2)

where U = {p, pu, pv, pE'} is the state vector, and F' and G are the fluxes in
the £ and g directions, respectively. Each component direction of the fluxes
may be written as a sum of advection and diffusion components. For example,
F = FA+ FP where FA = {pu, pu® + p, puv, puE + up}. If p = k = 0, the
system is hyperbolic and we recover the model discretized in Ref. [5].
Following Ref. [5], the hyperbolic component of equation (1) is integrated
in time with a second-order time-explicit Godunov method from ¢ = t" to
t"t = ¢" + At on a uniform grid, spaced (Az, Ay) in the (#,¢) directions,
respectively. The advection fluxes are centered in time at t"*1/2, and in space at
the geometric center of the faces bounding each cell. The fluxes are evaluated



using data extrapolated in space and time from the centers to the faces of each
cell. Prior to extrapolation, the state vector, U, is transformed into primitive
variables, Q) = {p, u,v,p} using a polytropic (constant ratio of specific heats,
v = 1.4) equation of state. The extrapolations from cell centers to face centers
are evaluated in terms of derivatives only in space at time ¢" by substituting
the model equations (1) to replace the time derivative. Double-valued face
states are generated by extrapolating data from cell centers on both sides of
the interface, and are resolved with the approximate Riemann solver discussed
in Ref. [8]. The resulting primitive edge state is used to construct second-order
conservative advection fluxes, which are scaled by the respective face area and
time increment, At, and then differenced across each cell to form a volume-
weighted advective forcing, S, for the state update for each cell:

Uty = U — %SA (3)

§4 = (FLA, — FPA) + (G A - G A,)

The subscripts r,¢,t,b refer to the right, left, top and bottem face of the
cell, respectively, Ay is the area of the #™ face, and V is the volume of the
cell (= Az x Ay). This algorithm is time-explicit, and stable only for At <
min (Ax /A, Ay/A,), where Ay = max (|]\4 ;|) and Ayg ; are the eigenvalues of
the flux Jacobian for the advective transport in the #-direction.

2.2 Clut Cell Modifications in the Base Scheme

In order to extend the second-order Godunov algorithm to the Cartesian grid
case, geometrical information about the cut cells must be included in the area
and volume terms in equation (3). This includes partial cell volumes and edge
areas, specified as fractions of the respective quantities from the underlying
uniform grid. We must also accomodate fluxes through the interface in cut
cells separating the fluid and body regions.

The volume fraction, A, at each mesh location is the ratio of cell volume
inside the flow domain to total cell volume (e.g., A = 1 for cells entirely
inside the domain, A = 0 for cells in the uniform mesh but completely outside
the fluid domain). The area fraction a indicates the portion of a cell face
inside the flow domain. The quantities A and a may be extracted for realistic
flow geometries by tools, such as Cart3D [9], that can process the output
of computer-aided drawing packages. However, the geometries used in the
examples here are simple enough that the requisite data may be generated
with a few lines of computer code.

A straighforward application of equation (3) to the case of partial cell leads
to an update for U which involves a division by A, and is numerically unstable
for fixed At and A — 0. A method to circumvent this stability issue, as
suggested in Ref. [5], involves the calculation of an alternative update, the so-
called “reference” state, by using equation (3) without accounting specifically



for the reduction in face areas and cell volume. The reference state will be
stable and mathematically consistent with equations (1), but not discretely
conservative. The computed difference between the reference state and the
update via equation (3) with proper area and volume reductions provides the
degree to which the former update violates conservation in each field quantity.
A stable, consistent and conservative update is formed by redistributing this
error over nearby cells in the fluid (see Ref. [10]).

Computation of the reference state requires that face-centered fluxes be
available on all four regular faces of any cell with A > 0. However, some of
these faces may be entirely outside the fluid (i.e., @ = 0). In these cases cell-
centered data may not be readily available for constructing the extrapolation
that generates the double-valued face flux data. Since there is no valid state
data at positions beyond edges outside the domain, a heuristic is used to
create so-called “extended-states” from a simple low-order extrapolation of
flow field from just inside the domain. The simple prescription detailed in
Ref. [5] is sufficient for generating these values for the algorithm performance
tests discussed in the next section.

The final modification in the base scheme is to accommodate the pressure
on the fluid exerted by the embedded boundary interface. For the hyperbolic
component of the model, this is the only non-trivial component of the conser-
vation flux that is communicated through the embedded boundary. The wall
pressure is obtained by constructing a special Riemann problem at the inter-
face that represents a reflecting boundary condition for hyperbolic waves. The
update, equation (3), is augemented to include this flux modification (suitably
scaled by the area of the embedded boundary interface of that cell).

2.3 Extensions to the Base Scheme

The base scheme for integration of the compressible Navier-Stokes equations
in the Cartesian grid setting is extended in three ways in order to improve the
algorithm’s accuracy in the cut cells, and to incorporate diffusion terms aris-
ing when p # 0 or &k # 0. We outline a procedure for computing diffusion
fluxes that is based on a centered difference approximation to the relevant
differential operators. Once computed, the diffusion fluxes are treated very
similar to the hyperbolic fluxes above, in terms of “reference state” computa-
tion and the local redistribution procedure for conservation. We then discuss
a simple improvement that increases the accuracy of the conservation fluxes
used to compute the conservative update. The correction is applied to both
the parabolic and hyperbolic fluxes. Finally, a procedure is outlined for the
construction of diffusion fluxes at the embedded boundary due to viscous shear
and heat conduction.



2.3.1 Runge-Kutta Scheme for Diffusion

In order to incorporate diffusion fluxes into the discretization of equation
(1), we construct an algorithm based on centered differences that reverts to a
second order, symmetric stable and consistent approximation in the interior of
the domain away from the cut cells along the embedded boundary. It will also
remain stable for A — 0, and will consistently treat the case where the trans-
port coefficients depend on the state (i.e., nonlinear diffusion). The procedure
involves computing a flux divergence analagous to that for the advection fluxes
already discussed. In particular, we define a diffusion flux divergence based on
data at t™:

S = % [(FPmA, = FPmA) + (G A — Gy Ay) + FEF Aps| (4)
where App is the surface area of embedded boundary interface, and Figy'
represents the diffusion flux through that interface. The boundary flux term
will be discussed in the next section. Dropping the time index, n, for simplicity
and using F'” as an example, we parameterize the diffusive flux as an arbitrary
sum of terms involving VU, the gradient of U perpendicular to a face, and
VIU, the gradient of U tangential to the face, FP = D (onlU—FﬁV”U).
What remains then is to define the V1 and V!l operators, and a procedure for
computing D.

The perpendicular gradient approximation at the r, ¢ faces of cell (i, j) are
evaluated using centered differences:

ViU j = (Uis1; — Uij) /A ViUij = Ui — Uisyy) /A

Analagous expressions apply for Vi and Vi in the g-direction.
The tangential griadient approximation at the r, ¢ faces of cell (i,7) are
evaluated using a centered average of centered differences:

ViUij = 0.5 (Usyr501 = U1 + Uiy — Uiy ) /A
VEUM =05Uijs1 —Uijo1r+Uimrjp1 — Uisjo1) [Ax

Analagous expressions apply for Vﬂ and VL'.

The temperature-dependent transport coefficients, u and k, are evaluated
with state data at the cell centers, and interpolated to cell edges using a
harmonic averaging procedure. In particular, for the z—direction faces of the
cell (1, 7),

1
D, (Ui;) = 1/D(Ui ;) +1/D(Uiya,5)
D¢ (Ui) 1

" 1/D(Ui_1;) + 1/D(U;;)

Analagous expressions apply for D, (U; ;) and Dy, (U, ;).



We note that the existence “extended states”, computed for the purposes of
constructing the nonconservative “reference state” update discussed in Section
2.2 above guarantees that we will have sufficient data defined “inside” the
embedded body for computing the above differences and averages.

A two-stage second-order Runge-Kutta method for integrating the diffusion
terms with a constant advection forcing, S# (taken directly from base scheme,
as discussed above), may now be defined over a time interval, At:

U =U" - At (SPm+ 84)
Urtt=un - % (SPm+ 8P7) — SAAt (5)

The iteration defines a predictor-corrector procedure for a trapezoidal time-
integration of diffusion terms, and a midpoint integration for hyperbolic terms.
The combined integration is second-order accurate in time and space, as
demonstrated in the next section. This time-explicit integration algorithm
for advection and hyperbolic terms is stable only for numerical time step sizes
satisfying the CFL and diffusional stability criteria:

A Az?
At < min | fi— v , f2 f p (6)
(1914 )" 2max (£, )

where ¢ = \/vp/p is the local sound speed, and the min and max operations
are performed over the entire computational domain. We take the “safety”
factors, f1 = fo = 0.9 for the examples presented below, and operate the
algorithm in a regime where the advection-based stability condition is most
restrictive, unless otherwise noted.

2.3.2  Fluzx Interpolation

In order to improve the accuracy of the treatment of the cut cells in the
present context, we apply the advection flux interpolation procedure discussed
in Ref. [6]. The procedure properly centers the evaluation of the conservative
fluxes at the centroid of the partial cell faces, which are partially obscured
by the embedded boundary. That is, since the cell-centered data is extrapo-
lated along coordinate axes, the fluxes are second order accurate only at the
centers of the underlying uniform grid. Flux values accurate to second order
at the centroid of the partial faces may be constructed simply by linearly in-
terpolating between full-face-centered fluxes at adjacent faces, as discussed in
Refs. [7,6]. The procedure is simple to implement as a post-processing step
after computing fluxes from the Riemann solution and the diffusion fluxes
in equation (4), dramatically improves the accuracy of the solution along the
embedded boundary, and has no advese affects on the time step-size limitation.



2.4 Fluzes at the Embedded Boundary

To complete the specification of our algorithm for diffusive transport in
the presence of an embedded boundary, we need to define a procedure for
computing the parallel and normal components of shear stress, and energy
conduction at the wall. The expressions for the stress are particularly simple
because the no-slip condition requires that both components of velocity, and
therefore all gradients of velocity along the boundary are zero identically. The
nontrivial component of the velocity derivatives relevant to boundary fluxes

lead to the parallel, Tfﬁ, and normal, Tffj components of shear stress:
7EB _ 4 (M)EB
lig = 3Hi3 \an ),
BB (7)
FEB _ 0 (%uL
1,35 MZ’-] on ij

Here, u| and u; are the components of the velocity locally parallel and per-
pendicular to the embedded interface, and d¢/0n is the normal derivative of ¢
evaluated at the centroid of the embedded interface. The viscosity is evaluated
with the state in the partial cell containing the interface. The heat conduction,
quB, into the embedded boundary is:

ar\""
it =i (o) ®)

1,J

The normal derivatives in equations (7) and (8) are estimated using a three-
point interpolation formula, which is second order accurate and stable for fixed
Az, Ay and A — 0. A vector which is normal to the boundary is located with
its origin at the centroid of the embedded boundary interface. This vector ex-
tends into the fluid at least three layers of cells, as shown in Figure 1. The state
values at the origin of the normal are prescribed from the physical boundary
conditions. The remaining values are computed using parabolic interpolations
of the nearby state data, according to the prescription in Ref. [7]. These three
points are sufficient to define a well-behaved parabola, from which a slope is
evaluated at the embedded interface.

3 Algorithm performance and convergence

We illustrate the performance of our algorithm with two test cases. The first
case focuses on the convergence of the algorithm with an isothermal condition
implemented at the embedded boundary. The analysis is based on the prop-
agation of a smooth temperature distribution in a channel not aligned with
the underlying uniform grid. The second case demonstrates the performance of
the algorithm in modeling conditions more specifically relevant to the intended
application—simulations of the evolution of an IFE chamber environment.



3.1 Propagation of a Smooth Isobaric Disturbance in a Straight Channel

The numerical quality of our embedded boundary algorithm may be evalu-
ated by monitoring the evolution of gas with a nontrivial temperature distri-
bution as it passes through a bounded channel with no-slip, isothermal walls.
The calculation is performed over the square region shown in Figure 2, 1.6 m
on a side. Within this area, a straight-wall channel 1 m wide is oriented 30°
counter-clockwise from the horizontal axis. This choice of embedded boundary
shape has the advantage of providing a range of partial volumes between 0
and 1 within the domain, while being analytically smooth so as not to pollute
the convergence analysis.

Xenon is used as the transport medium, and is treated as an ideal gas with
viscosity and conductivity specified by the Sutherland Law [11]:

T\Y"T.,+T
T =, 0,1 S,M 9
n( ) n <T0777> T + T3777 ( )

where viscosity, p, or conductivity, k should be substituted for the general
property 7. The conductivity-related constants in this model 7T ; = 320.93 K,
Tor =800 K and k, = 0.0132 W/(mK) were determined by fitting the exper-
imental data reported in Ref. [12] on the range 800-2000 K. The equivalent
constants for viscosity, T, = 320.26 K, T, = 800 K and y, = 4.88-107° Ns/
m? were based on the experimental data found in Ref. [13]. The initial flow
velocity is fixed at 120 m/s, and is aligned with the walls of the channel. To
avoid discontinuity between the wall and the fluid, the wall is set to move at
the same speed as the initial flow. The initial pressure is set constant at 100 Pa
throughout the domain, and the initial temperature distribution is prescribed
as

Too + 50 (1.0 + cos(2m/x? + y2)) . for 224+ y% < (L/2)?

Ty, elsewhere

T(x,y,0) =

In order to approximate the span of conductivity and viscosity in the IFE
chamber environment, the temperature of the surrounding gas and channel
walls was given the value T, = 10° K. As the system evolves, the peak in the
temperature profile advects downstream, and heat is conducted through the
embedded boundary. The system was integrated in time long enough to effect
sufficient changes to the solution to allow a reasonable convergence analysis.

The simulation was performed using six consecutive uniform mesh resolu-
tions (the cell size was halfed consecutively). The coarsest simulation was
performed with Az = 50 mm, corresponding to a 32x32 uniform grid. We
define the discretization error, £; ; for any state variable U, ; as

Ei; = Uj— Uﬁad (11)

10

(10

)



where Ufj“t represents the “exact” solution, which we take here from 2D
quadratic interpolations of the solution on our finest grid (1024x1024). The
convergence rate of the algorithm was estimated using the norms L., L1, Lo
as defined in Table I. As the performance of the algorithm near the embedded
boundary will be different from that of the uniform grid far away from the
boundary, a special norm, Ly pp, was also included (see Table I). For each
norm, the rate of convergence, p, for a grid spacing Ax = Ay = h is calculated
from:

1 Ei;ll,,
p(h) = logs | T—r (12)
2 HE’nJ ‘h/2

In this measure, if the boundary cells show a first-order local convergence
rate in grid spacing, while the interior cells converge at second order, we expect
that errors in the L; norm would show a second-order overall convergence rate,
while the L, norm would exhibit a rate between first and second order, and
the L, norm would be first order. However, if the boundary cells converge
to second order, the L; and L, norm measures should indicate a convergence
rate 2 < p < 3. Rates based on the L, norm indicates the convergence
performance of the domain’s worst regions, and would show a value of 1 in
the former example, but a value of 2 in the latter.

Convergence rates for the various norms are presented in Table II. Clearly,
the convergence rates for the L; and L, measures are consistent with the in-
terpretation that the boundary cells, like the interior cells, are converging at
near the designed second-order rate. The values for the L., norm confirm that
all regions in the calculation are indeed converging near second-order. The
values for Ly pp confirm these observations specifically for the cut cells, show-
ing that with increasing resolution, the accuracy of the cut cells approaches
second-order for nearly all the state components.

In this test problem, the energy equation exhibits the slowest convergence
rates, particularly in measures concentrated at the embedded boundary. In
fact, the second-order rate expected of the algorithm is not fully achieved for
the energy equation even though the momentum and continuity equations are
well-behaved at this resolution. Evidently, the asymptotic convergence rate
is realized for the momentum equation on coarser grids than for the energy
equation. The same test case is analyzed but with the conductivity uniformly
decreased by a factor of four from the values given through equation (9).
Convergence rates and error norms for this set of calculations are given in
Table II1. With this reduced conductivity, the energy equation (and all others)
clearly exhibit second-order convergence.

Such a confirmation could alternatively have have been achieved by further
refining the solution. However, for these parameters, the grid spacing would
have been such that the diffusion-based criteria in equation (6) would have
been more restrictive than the advective CFL condition. We note that this oth-
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erwise well-behaved system is likely to be an ideal candidate for a time-implicit
variation of our algorithm. A time-implicit scheme would require solution of a
linear equation set for the diffusive update corresponding to equation (5), but
could be constructed as a sequential update to the velocity and energy fields
separately, as discussed in Ref. [14], for example. However, the present algo-
rithm will be perfectly adequate for a broad range of IFE-relevant applications
where such fine grids along the embedded boundary would not be routinely
required to achieve acceptable levels of absolute error. An example of such a
problem is the subject of the next section.

Finally, the second-order convergence of our algorithm for this problem may
come somewhat as a surprise, given the lack of error cancellations at the cut
cells that is required for second-order accuracy of the centered differences in
the interior of the domain. Johansen [15] presents a modified equation analysis
for this diffusion operator showing that the discrete errors associated with
Dirichlet boundary conditions at cut cells exhibit a dipole-like influence on the
solution away from the boundary that decrease with Az3. This is consistent
with our convergence analyses above, showing that in the asymptotic regime
the solution errors become dominated by our second-order time-discretization
and treatment of the advection terms.

3.2 A Neutral Gas Response to High Energy Target Blast for an Inertial
Fusion Energy Chamber

We have demonstrated second order convergence both inside the domain
and at the boundary for our algorithm on a smooth problem. In order to
demonstrate the behavior of the algorithm for treating discontinuous profiles,
we select a simplified 2D model of an IFE chamber (as described in Sec. 1).
The chamber body is approximated by a cylinder of radius 6.5 m. Laser beam
ports are represented as four beam lines, each 20 m long and 1 m wide (see
Figure 3). The chamber gas is Xenon, with temperature-dependent viscosity
and conductivity given by equation (9). Prior to injecting the target into the
chamber, the quiescent gas is at T' = 298 K and p = 6.67 Pa (50 mTorr).
A “direct-drive” target yielding 160 MJ [16] is ignited at the center of the
chamber, and heats the Xenon gas through direct X-rays and energetic ion
absorption. The “fast” phase of chamber evolution is modeled prior to shock
colleisions with the vessel boundary using the 1D radiation-hydrodynamics
code BUCKY [2]. The BUCKY solution profiles at 500 us for density, velocity
and pressure are interpolated onto a uniform grid to form cylindrically sym-
metric 2D initial profiles. The 1D profiles of temperature and pressure shown
in Figure 4 indicate that 500 us after the initial X-ray heating (and prior to
shock/wall impact), the hottest regions in the chamber have cooled to under
2 eV. We evolve the system for 0.1 s, corresponding to the time interval before
the next fusion target insertion.

The boundary conditions at the vessel surface are no-slip wall, with the con-
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stant temperature T,,,; = 973 K. The state gradients required for estimating
the shear stress and heat flux at the wall is resolved by the parabolic inter-
polant described in Ref. [7] if the boundary layer of velocity and temperature
field spans across at least several of the uniform grid cells. Such is the test
problem described in Section 3.1. In the present case, however, a rather thin
boundary layer in 7" and u suggests that the method from Ref. [7] cannot
be used. Within the scope of this study, we adopt a coarse grid approach,
which sets the embedded boundary a distance ¢ inside of the chamber wall.
An unresolved heat and momentum transfer region is located between the em-
bedded boundary and the physical wall, outside the computational domain.
The normal state gradient at the embedded boundary is approximated as:

g—g = % (Ues — Uwant) (13)
EB
The state variables v,, v, and T should be substituted for U and ¢ is an arbi-
trary length scale taken here to be 1 cm. The state values denoted as Ugpg are
estimated by quadratic interpolations of the solution to the centroids of the
fluid-body cell interfaces, while U,q; are the values of velocities and tempera-
tures prescribed at the wall. Alternatively, in practical applications, adequate
resolution local to the boundary layer may be achieved using adaptive mesh
refinement.

The evolution of pressure and temperature is shown in Figure 5. At early
times, the profiles are 4-fold symmetric, so 1/8 of the domain is sufficient to
show the entire solution. The initial position of the shock wave is 40 cm away
from the wall, as shown in Figure 5a. The elevated temperature ahead of the
shock results from the X-ray and ion energy deposition during the first 500 pus,
as computed from BUCKY. Figure 5b shows the chamber state 5 ms after the
solution was advanced by our integration algorithm. The shock is about to
hit the wall for the second time, after initially reflecting from the embedded
boundary, converging to the center of the chamber and expanding outward
again. The discontinuous profiles remain smooth and sharp. A secondary shock
structure is apparent in the figure, and results from the reflection of the initial
shock against the entrance to the beam channels. The core of the chamber is
heated from the initial temperature of 5.37 x 10* K to above 105 K by the
compression of the converging shock wave. At 13 ms, the temperature of the
core is relatively hot compared to the near-wall region, as shown in Figure 5c.
The temperature variation between the cold wall and the hot center causes
large variations in viscosity, y (ranging from 5.67x 107° t0 9.12 x 10~ kg/m-s)
and conductivity, k (ranging from 0.015 to 0.25 W/m-K) across the chamber.
The geometry of the beam channels initiates large-scale vortical structures
and a highly two-dimensional flow field in the late time solution, as seen in
Figure 6.

Strict convergence of the algorithm is difficult to characterize on this problem
because of the presence of discontinuities throughout the solution. However,
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we expect an integral quantity such as the total heat transferred to the wall
to be a fairly smooth function of time and a useful indication of algorithm
performance and convergence. The shear stress components (1), 7,) at the
wall can characterize the convergence of momenta and the heat flux ¢ into the
wall can be selected to characterize the convergence of the energy equation.
The chosen quantities are integrated along the wall and in time, at every time
step during the evolution. The results are shown in Figure 7 for three successive
mesh resolutions and demonstrate a measurable energy and momentum loss
of the chamber system to the environment. For reference, the total energy of
the gas was initially 26.9-10* J, which implies an energy loss of roughly 30 %,
for the duration of 0.1 s. The convergence rates of the boundary integrals from
Figure 7 at a time £ may be approximated as

Sl200><1200 t) — S300><300 t
(8 I [ 152200 = S0 )
|Si200><1200(t) _ SEOOX6OO(t)‘

(14)

where * denotes q, 7 or 7, and S9" #*¢(¢) is the value of the boundary
integral at ¢, for the given grid size. The average convergence rates based
on the expression (14) and the plots in Figure 7 were estimated for the time
interval of 0.1 s. Their values are p; = 1.639, p;, = 1.321 and p, = 2.334. This
indicates that the scheme is converging to better than first-order for an initially
discontinuous practically relevant scenario. In fact, Figure 7 indicates that the
largest discrepancies arise while highly two-dimensional flow is interacting
strongly with the vessel wall. Over most of the evolution, the profiles are
smoothly varying and converge at second-order, consistent with the results of
the first example.

4 Discussion and Conclusions

In this paper, we have presented an algorithm to solve the time-dependent
compressible Navier Stokes equations in complex 2D geometries. The algo-
rithm has been applied to study the behavior of a simple model for target
chamber dynamics for inertial fusion energy (IFE) in the “slow phase” where
hydrodynamic energy transport processes are important. The problem involves
the evolution of discontinuous profiles (shocks), temperature-dependent diffu-
sion transport, and isothermal, no-slip irregular boundaries. The computa-
tional method has been constructed using a Godunov method for advection,
a Runge-Kutta method for diffusion, and an embedded boundary approach to
incorporate a flexible geometry capability.

A convergence analysis was performed using a pair of test problems. The
first, designed to evaluate the formal convergence properties of the algorithm,
was based on smooth initial and boundary data. The results demonstrated uni-
form second-order convergence. In order to test the robustness of the algorithm
in a context closer to the intended application, we simulated a two-dimensional
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model of an IFE chamber. The initial conditions for the test were generated
with the BUCKY code, and included a strong radially-outward propagating
shock wave. We simulated 100 ms of the ensuing interaction of this shock
wave with the boundary and fluid environment. The resulting profiles exhib-
ited complex multi-dimensional flow patterns and secondary shock structures
due to interactions with the optical beam channels. A strict convergence anal-
ysis of this system was impossible due to the presence of discontinuities in
the initial data and boundary shape. Instead, we monitored the behavior of
the wall loads, such as the integral of shear stress components and heat flux
along the boundary and in time. We found that these quantities behaved rea-
sonably with increased grid resolution. This indicates that the algorithm is
robust enough to be suitable for long time-scale simulations of IFE chambers.

The embedded boundary algorithm presented in this paper shares the ge-
ometrical limitations discussed in Ref. [5]. In particular, long, narrow fin-like
(under-resolved) features in the embedded boundary shape are not correctly
represented by the algorithm, which assumes a piecewise linear wall at the
resolution of the uniform grid. The construction of “extended-states” in a
data structure that is assumed logically rectangular requires that several full
uniform “body” cells (with A = 0) separate distinct fluid regions, and the
interpolation procedure for evaluating state gradients at Dirichlet boundaries
requires that several “fluid” cells (with A = 1) separate body regions normal
to the surface. These limitations notwithstanding, this embedded boundary
implementation has exhibited the appropriate level of geometrical flexibility
and accuracy to be used as the basis of a tool for investigating the slow phase
of IFE chamber phyiscs.

From the point of view of investigating IFE chamber scenarios, many ad-
ditional phenomena should be incorporated into the model. For example, the
chamber fill gas likely includes many distinct chemical constituents, gener-
ated by vessel wall ablation for example, particularly during the fast phase
and early parts of the slow phase. The algorithms presented here will extend
rather directly to multi-fluid implementations, such as the one described in
Ref. [8], or to the mass-fraction approach discussed in Ref. [14]. In addition,
our second example was interesting in that the convergence of blast waves
reflected from the chamber wall resulted in localized heating of the central
core region to above 10 eV, suggesting that radiative energy transport may
be an important physical process in the slow phase. As more detailed IFE
chamber scenarios are developed, three-dimensional simulations will become
more important, and will require concommitant extensions that allow local
dynamic adaptive mesh refinement. All these improvements are under current
development.
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Table I
Definition of Error Norms Used For Convergence Analysis

Error Norm L Ly Lo Lo wail
. 1 1 2 1 2
Definition maz |E| v | EdV v | E?dV o5 J E2dl
\% |4 lEB
S EP A jAzAy S (B 2Ai  Aady > (BN Ax
Discrete Form | max |E", u dt R
i.J ST AijAzAy ST A jAzAy > AijAz
7 ij A <1
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Table 11

Error norms L, and their rate of convergence, p, for Test case of Sec. 3.1

density X-momentum y-momentum energy
grid size L, Dx L, Dx L, Dx L, Dx
Lo s poo
32x32 | 3.855 x 1076 - 14045 x 107 - 2312 x107% - | 3.281 x 1072 -
64x64 | 1.493 x 1076  1.369 | 1.554 x 10~* 1.380 | 8.957 x 10~° 1.368 | 1.502 x 1072 1.128
128x128 | 5.182 x 1077  1.526 | 5.435 x 107° 1.515 | 3.060 x 10~° 1.550 | 5.717 x 10~2  1.393
256x256 | 1.908 x 1077  1.442 | 1.986 x 10™° 1.453 | 1.125 x 1075 1.443 | 2.083 x 1073  1.457
512x512 | 5.674 x 1078  1.750 | 5.703 x 1076 1.800 | 3.176 x 107% 1.825 | 8.231 x 10~* 1.340
Ly, p
32x32 | 3.195 x 1077 - 3.311x107° - 1.917x107° - 2.809x1073 -
64x64 | 6.947 x 107®  2.201 | 7.189x1076 2.204 | 4.165x107% 2.203 | 8.476x10~* 1.729
128x128 | 1.379 x 1078 2.333 | 1.430x107% 2.330 | 8.386x10~7 2.312 | 3.100x10~* 1.451
256x256 | 2.609 x 1079 2402 | 2.785x10~7 2.360 | 1.726x10~7 2.281 | 1.186x10~* 1.386
512x512 | 4.774 x 10710 2450 | 5.481x10~® 2.345 | 4.186x107% 2.044 | 3.680x107° 1.688
Ly, p2
32x32 | 6.124x1077 - 6.361x107° - 3.671x107° - 5.094x1073 -
64 x 64 1.589x10~7  1.946 | 1.651x107° 1.946 | 9.530x107% 1.946 | 1.561x10~3 1.706
128x128 | 3.694x107% 2,105 | 3.842x10% 2.104 | 2.220x107® 2.102 | 5.104x10~% 1.613
256x256 | 7.233x107% 2352 | 7.643x1077 2.330 | 4.506x10°7 2.300 | 1.771x10"% 1.527
512x512 | 1.164x1079  2.636 | 1.343x1077 2.509 | 8.526x107% 2.402 | 5.399x107° 1.714
L2 B, p2,EB
32x32 7.656x1077 - 7.930x107° - 4.614x107° - 4.518x1073 -
64x64 | 2.625x1077  1.544 | 2.724x107° 1.542 | 1.588x107° 1.539 | 1.433x1073  1.657
128x128 | 9.447x107%  1.475 | 9.946x1076 1.453 | 5.799x107% 1.453 | 6.782x10™* 1.079
256x256 | 3.322x107%  1.508 | 3.759x1076  1.404 | 2.229x1076% 1.380 | 3.927x10~* 0.788
512x512 | 8.121x107%  2.032 | 1.157x107% 1.700 | 6.487x10=7 1.781 | 1.660x10~* 1.242
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Table I11

Error norms and their rate of convergence (L, p) for Test case of Sec. 3.1 and
modified gas properties’

density x-momentum y-momentum energy
grid size L, Dx L, Dx L, Dx L, Dx
Loo s poo
32x32 | 3.928x1076 - | 4.092x107% - 2.357x107% - | 2.818x1072 -
64x64 | 1.590x107% 1.305 | 1.653x10~% 1.307 | 9.541x10~° 1.305 | 1.257x10~2 1.165
128%128 | 5.647x1077 1.493 | 5.876x107° 1.492 | 3.392x107° 1.492 | 4.712x1073  1.415
256x256 | 1.776x1077  1.669 | 1.848x107> 1.669 | 1.075x107° 1.658 | 1.582x1073 1.574
512x512 | 4.451x1078  1.997 | 4.615x10°6 2.002 | 2.622x107¢ 2.035 | 3.964x10~* 1.997
Li,p
32x32 | 3.246x1077 - 3.370x107° - 1.947x107° - 2.437x1073 -
64x64 | 7.373x107% 2.138 | 7.649x107% 2.139 | 4.415x1076 2.141 | 5.902x10™% 2.046
128x128 | 1.596x107%  2.208 | 1.652x107% 2.211 | 9.538x10~7 2.211 | 1.496x10~% 1.980
256x256 | 3.226x107°  2.307 | 3.332x1077 2.310 | 1.931x10~7 2.305 | 4.260x107° 1.812
512x512 | 5.437x10710 2569 | 5.600x10~8 2.573 | 3.258x10~% 2.567 | 1.149x107> 1.890
Ls , po
32x32 | 6.239x1077 - 6.482x 1075 - | 3.742x107° - | 4.613x1073 -
64x64 | 1.691x1077 1.884 | 1.757x1075 1.884 | 1.014x107° 1.884 | 1.280x1073 1.849
128x128 | 4.331x107%  1.965 | 4.499x107% 1.965 | 2.595x1076 1.966 | 3.450x10~% 1.891
256x256 | 1.040x1078  2.059 | 1.081x107% 2.057 | 6.232x10~7 2.058 | 9.098x107> 1.923
512x512 | 1.928x1079  2.431 | 2.007x10°7 2.429 | 1.159x10~7 2.426 | 2.093x10° 2.120
L2 EB , p2,EB
32x32 | 7.663x1077 - 7.955x107° - 4.604x107° - 5.250%x 1073 -
64x64 | 2.506x1077 1.613 | 2.602x107° 1.612 | 1.507x107° 1.611 | 1.655x1072 1.665
128x128 | 7.953x107® 1.656 | 8.283x107% 1.651 | 4.795x1076 1.652 | 5.447x10~* 1.604
256x256 | 2.387x107%  1.736 | 2.521x1076 1.716 | 1.466x107% 1.710 | 1.827x10~* 1.576
512x512 | 5.671x107Y  2.074 | 6.293x10~7 2.002 | 3.615x10~7 2.020 | 5.675x107° 1.687

t 11 defined in eq. 9, k reduced by a factor of 4 from eq. 9
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Fig. 1. Parabolic interpolation for estimating a second order temperature gradient
normal to the boundary. Wall temperature T, is prescribed. Temperatures T} and
T, are estimated based on the second order interpolation from the values in the
open circles. The stencil of temperatures T,,, T1 and 75 is used for estimating the
temperature gradient.
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Fig. 2. Geometry and initial conditions for the straight channel flow. The temper-
ature field is represented by isothermal lines while the velocity field is represented
by arrows.
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Fig. 3. Geometry of the four-fold symmetric IFE chamber. One of the four optical
access ports is shown in the figure, as well as the initial position of the shockwave
relative to the chamber wall.
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Fig. 4. Initial temperature and pressure for the IFE chamber model. The density,
velocity and temperature profiles are obtained as a 1D solution from a Lagrangian
code BUCKY. The solution is interpolated onto the grid before being advanced by
the Godunov algorithm.
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(a)t=0s (b) t=0.005 s (c)t=0.013s

T, =973.16 K T, =973.16 K T, =973.16 K
=537-104K T, = 1.37-105K T = 143105 K

T

max
'

=175.38 Pa Pmin = 04.45 Pa Pmin = 326.18 Pa
=1.12-103 Pa Prax = 14:103 Pa Prmax = 1.69-103 Pa

Pmin
pmax
Fig. 5. Pressure (lower triangular portion of the figure) and temperature (upper

portion of the figure) at three different times. A range of temperatures and pressures
from minimum to maximum is provided for each individual case, as shown above.

Fig. 6. Detail of velocity field in the cylindrical portion of the chamber at time
t=0.013 s. The streamlines are accompanied by the color plot of velocity magnitude,
which peaks at 821.28 m/s (red area).
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Fig. 7. Integral quantities used as performance indicators for the algorithm. Part
(a) represents the integral of the parallel component of shear stress, 7 along the
wall and in time. Similarly, part (b) is obtained by using the normal component of
shear stress, 7, as an integrand. Total energy conducted to the wall as a function of
time is shown in part (c) of the figure. Each of the results is provided for the grids
300 x 300 (16 cm cell size), 600 x 600 (8 cm cell) and 1200 x 1200 (4 cm cell).
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