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Abstract

A multiscale biophysical platform for charting design-specific interactions of

nanoparticles with model cellular membranes

by

David J. Smith

In this thesis, we outline the development of a multiscale physics-based platform for ex-

ploring and ultimately predicting the design-specific interaction of ∼1-10 nm particles with

model cellular membranes. Nanoparticles (NP) are ever-present in foods and beverages,

cosmetics, packaging, cooking products, fertilizers, pesticides, and novel pharmaceuticals,

and pose significant challenges related to their increased consumer, occupational, and

environmental exposure and their unique bioactivity relative to small molecules and large

colloids. Thanks to rapidly advancing fabrication and characterization techniques, NPs

are highly tunable in physicochemical properties such as size, surface chemistry, shape,

elasticity, roughness, and crystallinity. Currently, however, the influence of these NP

design parameters is highly underdeveloped, and difficult to reproducibly demonstrate

in in vivo, in vitro, and even model experiments. Specifically, NP interactions with and

passive transport across cellular membranes play a significant role in pharmacological and

consumer product performance (biodistribution) as well as adverse outcome pathways

in toxicology. We thus focus on the fundamental problem of design-specific interactions

between NPs and cellular membranes, modeled to a first approximation as lipid bilayers.

To provide accurate, efficient, and robust predictions for a range of NP designs, we

construct a first-of-its kind, multiscale physics-based platform linking detailed molecular

dynamics (MD) simulations, continuum mechanical theory, and multi-compartment

modeling. Using this platform, we examine the two most influential design parameters–size
xi



and surface chemistry–and through two main case studies: (1) the membrane permeability

of sub-nanometer particles and (2) the thermodynamic stability of larger-scale, ∼1-10

nm particle-membrane interactions. Within (1), we first simulate the NP-membrane

interactions and transport in full detail to test the validity of Overton’s Rule, a longstanding

structure-property relationship, and the inhomogeneous solubility-diffusion (ISD) model,

a microscopic mechanistic continuum model for transport. We show that Overton’s Rule is

overly simplified for describing transport across a fluctuating lipid bilayer membrane, yet

that ISD model holds for small enough particles. Within this range of particles where the

solubility-diffusion mechanism holds, we directly link the impact of particle chemistry in

the MD simulations to transient (time-dependent) transport outcomes in the macroscopic

multi-compartmental models. This allows us to both compare with and evaluate models

used in experimental permeability assays and close the orders of magnitude gap between

simulation-predicted and experimentally-calculated permeabilities. We also leverage our

platform to construct improved structure-property relationships for the steady-state

membrane permeability and structure-kinetic relationships, accounting for a wider range

of particle chemistries and highlighting the imperative of time in dictating the design

rules for membrane permeation.

Within case study (2), we probe larger NP-membrane interactions that implicate

macroscopic membrane deformations and restructuring. Using the molecular simulations,

we map out in particle size and chemistry space the putative NP-membrane interaction

configurations, some of which resemble and agree with small-scale solubility-diffusion

theory or large-scale membrane elastic theory (e.g. for lipid bilayer or monolayer wrapping

of the NP) in stability limits and free energies and some of which require closer examination

in the simulation to explain the thermodynamics. We also discover an entirely novel

mechanism of interaction for ∼4 nm, rough crystalline hydrophobic particles that we call

“asymmetric leaflet hopping,” wherein the particle preferentially inserts in one bilayer
xii



leaflet, forming a pre-pore in the membrane and inducing large-scale membrane curvature,

and flips to the other leaflet over extended time scales. We conclude with preliminary

phenomenologies to outline the phase behavior of ∼1-10 nm particles of varying chemistry,

as well as other areas where our platform shows great promise. By accounting for a vast

range of NP designs, natural lipid diversity (lipidomics), and variable compartmental

size, boundary layer, and transient conditions, this platform has the potential to more

intuitively and effectively inform systems-level physiologically-based pharmacokinetic

models for NP biodistribution predictions, as well as structure-activity relationships for

direct predictions of product efficacy and toxicity. The end result of this multiscale

platform is that we can directly link a NP’s microscopic physicochemical properties to its

macroscopic outcomes in a dynamic biodistribution setting.
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Chapter 1

Introduction

A critical problem in many areas of current biological and biomedical interest is the

interactions of nanoparticles (NPs) with cellular membranes, as an enormous number

of NPs of different varieties are becoming pervasive in therapeutics, foods & beverages,

consumer products, and agriculture. A great deal of research has attempted to understand

these interactions and to develop theoretical frameworks for charting the rapidly expanding

suite of NP types. Among the parameters of interest, experiments suggest that the most

important are the size of the NP, its shape, mechanical rigidity, and surface chemistry

(e.g. hydrophobic, hydrophillic, Janus structure, etc.). Existing theories are successful

in treating very small (< 1 nm) particles, which essentially partition in or outside the

membrane with relatively little perturbation to it, while “large” NPs (roughly > 10 nm)

can be treated by macroscopic, continuum membrane models.1 However, a major gap

exists be-tween these two limiting cases, where there are neither effective theoretical

models nor basic, quantitative pictures of the mechanistic regimes of interaction. At the

same time, this size range might be blamed for the most toxic of consequences.2 Thus

the development of a theoretical framework for exploring the nature of NP-membrane

interactions in this critical nanoscale size regime is a crucial first step toward methods for
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rapid, preliminary evaluation of factors like toxicity in existing but especially emerging

NP technologies. Indeed, NPs have higher permeabilities and chemical & catalytic activity

relative to colloidal chemicals,3–7 and yet there is a major deficiency in current NP

regulations.5,8, 9

The overall goal of this thesis, which we view as an initial step toward the full

complex problem, is to use multiscale physics-based modeling techniques to develop

an integrated molecular-continuum-systems understanding of ∼1-10 nm NP-membrane

interactions. This includes molecular simulations to delineate the distinct mechanistic

regimes pertinent to nanoscale particles in their interactions with a model membrane,

continuum theories (or modifications thereof) to model and explain this behavior, and

systems-level modeling to determine the dynamic and macroscopic consequences of the

continuum-level parameterization. We believe this thesis to be an essential step towards the

broader problem of NP interactions with and also transport through cellular membranes.

It provides a framework that can be subjected to well-controlled experimental studies in

subsequent work, but conversely, will also produce a self-consistent, independent picture

useful for clarifying conflicts in the current experimental literature.

1.1 Significance

Nanoparticles (NPs) are ubiquitous in the food, agriculture, and consumer product

industries, and are increasingly attractive as new drug carriers, preservatives, and an-

timicrobials.5,9–25 However, their small size leads to high permeability and chemical

& catalytic activity,3–7,26 both of which generate major concerns about toxicity.5,8, 9, 27

Because advances in nanoscale fabrication22,28–36 and manipulation2,35,37–42 now offer the

ability to custom-design NPs with an enormous array of options, a predictive methodology

based on physical theory and modeling is now essential for charting potential toxicity

2
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factors throughout the vast particle design space.

1.1.1 NP toxicity, membrane interactions, and NP design ef-

fects

On the cellular level, NPs can induce oxidative stress, interfere with signaling & gene

expression, produce cytokines, damage membranes and organelles, and initiate apoptosis

& ultimately cell death.26,43,44 The consumer products industry does not appreciate how

many of its active ingredients work at the intended destination,45 while NPs are becoming

increasingly diverse with advanced synthesis techniques and many design parameters that

have a demonstrated impact on toxicity and performance.46–49 Moreover, pharmacological

and toxicological studies have produced conflicting results,26 including the effects of NP

size50,51 and shape.52,53 An integrated picture of such NP design parameters is lacking.

Here we focus on predicting NP interactions with and damage to idealized lipid

membranes, as simple models of real cellular membranes that provide first-line barriers to

NP contaminants. NPs can damage membranes through physical disturbance, membrane

activity, and electron-ion membrane transport activity, among other chemical & physical

mechanisms. NPs can thus lead to direct and indirect (e.g. through oxidation) membrane

destabilization, including hole formation that can lead to leakage.27,54,55 NPs on the 1

to 10 nm scale–including quantum dots (QDs) and Au, TiO2, FeO2, and polystyrene

NPs, amongst others2–have particularly serious toxicity concerns. For example, clusters

of such particles can accumulate in plasma membranes before entering cells.56–58 However,

thermodynamic and kinetic processes of 1-10 nm NPs with cellular membranes, including

both passive diffusion and active endocytosis, are complex and diverse.

Recent efforts have sought a more fundamental understanding through idealized experi-

mental models (including lipid bilayers, liposomes, or giant unilamellar vesicles41,43,44,59–63)

3
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and theoretical & simulation studies. Importantly, statistical mechanical advances now

allow accurate free energy calculations from experiments and simulations in both equilib-

rium and nonequilibrium settings.64–66 Simulation approaches are particularly attractive

because techniques to fabricate and characterize precise NP sizes and chemistries (let

alone shapes and elasticities) are expensive and time-consuming to execute in a “high-

throughput” fashion. Simulations also offer the ability to measure informative behaviors

like small wavelength membrane fluctuation modes and kinetic particle “pull through”

events that are difficult to probe in experiment.66–68 So far, computational studies have

generated qualitative mechanisms of NP-membrane interactions69,70 for various parti-

cle sizes,71 chemistries,72–75 shapes,76,77 elasticities,78 and functionalization (e.g., ligand

chemistries,79–81 lengths,82 rigidities,82 reversibility,83 and charge84–87). While most of

these studies did not make a detailed examination of particle effects on and potential

destabilization of the membrane, a few have uncovered important clues. For example, 3

nm hydrophobic and 6 nm charged NPs induce local disorder in DPPC bilayers through

inclusion (insertion) and adsorption, respectively, and furthermore negatively charged NPs

globally reduce the gel-liquid phase transition temperature.85 A Monte Carlo study showed

how hydrophobic and amphiphilic particles could inflict reversible membrane damage

that increases solvent permeability.73 Another study showed that NPs enhance water

permeation, ion transport, and lipid flip-flop, all of which can have toxic consequences

by disrupting concentration gradients and through rearrangement of the inner and outer

leaflet structure.68

1.1.2 The need to fill theoretical gaps

The theory of membrane-particle interactions is well-developed at the extremes of

particle size, but remains murky in the “crossover” regime between them. For small

4
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molecularly-sized moieties, the classic ideas of Overton and Uhlig still capture the main

features of cross-membrane transport,88–92 even though many theoretical refinements

have since been developed.93–97 Overton’s rule states that the solute permeability is

related to its membrane-solvent partition coefficient; by extension, the translocation

kinetics are dominated by the thermodynamic barrier (or well) in the solute’s free energy

profile across the membrane. The thermodynamics are largely governed by solvation

changes in moving from the aqueous to inner membrane environment,92,97–99 but somewhat

larger molecules can incur additional penalties from excluded volume effects, particularly

in the interfacial region, that can be included in the theory.100,101 Many simulation

studies have tested these ideas through detailed calculations of free energy profiles and

permeabilities.88,89,94–97,97,98,100,102–115

At the other extreme (> 10 nm), continuum theory captures colloid-membrane inter-

actions. Here simple membrane diffusion is unlikely, but spontaneous budding (wrapping

followed by pinching of the membrane) is possible for particles with specific affinity for

membrane head groups116 while inclusion (membrane insertion) may occur for hydrophobic

particles.117–120 Wrapping is described by bending and stretching energetics in Canham-

Helfrich elastic membrane theory:121–124 unfavorable membrane deformations balance

favorable particle adhesion, and thermodynamics scale with the bending modulus kc and

interfacial tension.125–128 Coarse-grained, mesoscopic, and continuum simulations have

tested the limits of the interactions and theory.116,125–127,129–136 A variety of metastable

and stable states have been observed in simulation that both agree and disagree with

theory depending on the assumptions of a finite-sized membrane and the shape of the

NP-membrane complex.116

The physics becomes complicated for 1-10nm particles. The free energy barrier/well

is difficult to predict for a NP size comparable to the membrane thickness (∼5 nm),

and many venerable statistical mechanical approaches (like scaled particle theory) break
5
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down at these large sizes. Moreover, the scaling of interaction free energies becomes

highly chemistry-dependent. Hydrophilic solutes like sucrose (300 Da) are essentially

impermeable, but chemical modifications can lead to membrane penetration and efficient

transport.80,137–141 Generally, hydrophilic particles do not partition and thus permeation

becomes unfavorable; however, transport may still occur through dynamic opening and

closing of pore fluctuations.94,97,142–147 Such hydrophilic holes can arise from mechanical

tension and electrical fields, and their population is governed by energetic cost (related

to membrane edge energy and interfacial tension).143–147 For hydrophobic particles,

partitioning can occur in a pre-pore (hydrophobic hole) or inclusion (insertion), and is

influenced in poorly-understood ways by hydrophobic interactions and small-wavelength

membrane fluctuations.120,148,149 Hydrophobic particles also lead to membrane expansion

or compression.117–119,150 Recent pure membrane theory has been able to include key

fluctuations in lipid tilt, twist, and splay, and in a manner consistent with the standing

mesoscopic descriptions that dominate at large length scales (e.g. bending and splay). A

complete understanding of such effects, however, is lacking.151–159 A core problem is that

simulations at all-atom resolution are very difficult due to system size, yet macroscopic

theory breaks down.151 The picture becomes even more difficult for Janus, striped, patchy,

and randomly distributed morphologies, for which passive diffusion has been found to be

possible. We hypothesize that nanoscale membrane deformation processes manifest largely

in lipid splay for a hydrophilic NP (forming a hydrophilic hole/pore) and in lipid tilt for

a hydrophobic NP (forming a hydrophobic hole/pre-pore). This suggests appropriate

simple theoretical models that can be vetted by simulations and ultimately extended to

more complicated nanoscale chemistry, shape, and elasticity designs that are of increasing

interest.80,137–141
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1.2 Focus and outline

In this thesis, we focus on the impact of NP physicochemical properties for the

interactions with and transport of ∼1-10 nm NPs across lipid bilayer membranes. We

focus on passive interactions and transport, independent of ATP and active transport and

without additional cellular machinery. We seek fundamental insights on the interaction

modes and mechanisms, and ultimately novel, physically-motivated structure-property,

structure-kinetic, and structure-activity relationships. This work will be organized as

follows:

• Chapter 2: Theoretical background

• Chapter 3: Nanoparticle transport across model cellular membranes:

when do solubility-diffusion theories break down? This study concerns the

exploration and validation (or invalidation) of small-scale theories for the membrane

permeability of sub-nanometer then nanoscale particles, using continuum theory

and detailed molecular simulations.

• Chapter 4: A multiscale framework for the membrane permeability of

sub-nanometer particles. This study concerns the linkage of microscopic contin-

uum theories to macroscopic systems-level outcomes in multi-compartment models,

for sub-nanometer particles on the hydrophilic-hydrophobic spectrum.

• Chapter 5: A quantitative structure-property and structure-kinetic re-

lationship for the membrane transport of sub-nanometer hydrophilic,

hydrophobic, and interfacially active particles. This study concerns the link-

age of the molecular simulation results from Chapter 3 to microscopic theories

and macroscopic systems-level outcomes, using the framework of Chapter 4, for

sub-nanometer particles of varying lipid head group and tail group attraction.
7
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• Chapter 6: A unified molecular/continuum thermodynamic model for

size and chemistry effects on ∼1-10 nm particle-membrane interactions.

This study concerns the initial exploration of and development of descriptive phe-

nomenlogies for larger, ∼1-10 nm NP-membrane interactions, using the range of

chemistries in Chapters 3 and 5.

• Chapter 7: Conclusions and future work
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Chapter 2

Theoretical background

2.1 Modeling approaches to pharmacology and toxi-

cology

In the grand scheme of pharmacometric approaches, or modeling approaches in phar-

macology, both statistics-based and kinetic approaches provide essential insights into the

efficacy and toxicity of a foreign agent when introduced into the human body. Statistics-

based approaches like quantitative structure-activity relationships (QSARs) implement

data mining and regression strategies, amongst others, to directly connect the physic-

ochemical properties of the administered compound to its biological, pharmacological,

and toxicological impact. Kinetic approaches have the power to enhance statistical ones

by describing the dynamic or time-dependent disposition of the compound of interest.

More specifically, approaches like pharmacokinetics (PK) seek to describe time-dependent

species concentrations in well-mixed “compartments” that physically represent groups of

organs systems, organs, tissues, cells, and even organelles–in other words, PK describes

“what the body does to the drug.” Together with pharmacodynamics (PD), which de-
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scribes the response or effect of the species as a function of its concentration–“what the

drug does to the body”–pharmacokinetics/pharmacodynamics (PKPD) then describes

the time-dependent effect of the compound. While the dose-response connection in

particular is a difficult one, potentially implicating various biological signalling processes

and hierarchical biological events, PKPD remains a parsimonious and fairly reliable tool

in the pharmaceutical industry, even in the clinic, for monitoring the kinetics of a given

species throughout the body and its potential connection to efficacy and toxicity across a

wide range of therapies, dosing regimens, and patient populations.

2.1.1 Macroscopic/Compartmental/ODE-based modeling

In compartmental modeling, transport processes are represented as exchanges between

well-mixed volumes or compartments. It is worth noting that this macroscopic approach is

completely analogous to a microscopic master equation approach, with the former typically

formulated in terms of species concentration while the latter is typically formulated in

terms of probabilities.

Pharmacokinetics

The two-compartment pharmacokinetic (PK) model is a standard pharmaceutical

industry model whereby the body is broken down into gastrointestinal, central, and

peripheral compartments (Figure 2.1). The gastrointestinal tract is relevant if the drug is

administered orally (per os/p.o.), and transfer to the rest of the system is often modeled

as irreversible. The central compartment represents the bloodstream and all well-perfused

tissues (i.e. tissues that are quickly serviced by the bloodstream). In this sense, it

is a rough indicator of blood plasma drug concentration. For intravenous drug (iv)

administration, the drug dosage enters the central compartment directly. The central
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compartment exchanges reversibly with the peripheral compartment, which accounts for

all other, poorly-perfused tissues. Excretion, often through the kidneys, is accounted for

as an irreversible process from the central compartment.

Physiologically-based pharmacokinetics

Relative to simpler PK models, physiologically-based pharmacokinetic (PBPK) models

(Figure 2.2) seek to better represent human physiology and the broader stratification of

perfusion time scales through explicit representation of specific organs and organ systems.

This often results in an order of magnitude increase in well-mixed compartments. Here,

we show a 12-compartment model accounting for the diverse constitution of and kinetics

to and from the venous and arterial blood, lungs, brain, heart, liver, gut, kidney, adipose

or fatty tissue, bone, muscle, and all remaining organs.

A critical aspect to both PK and PBPK models is the parameterization of transfer

processes between compartments. Often, these transfer process regard transport across

cellular membranes. Thus, it is crucial to understand what mediates this transport, and

how to design for more efficient transport as desired. Often, PBPK models make limiting

assumptions about what physical process mediates the transport between compartments.

More times than not, a perfusion-limited assumption is made, as the transfer of a

compound through the bloodstream is in fact expected to be slower than the transfer

across membranes and endothelial cells to the interstitial space and tissues. In these

perfusion-limited models, the compound is assumed to be quasi-equilibrated between the

bloodstream and tissue. However, this limiting case may not always be true, particularly

for larger nanoparticles. For a given NP design, it is important to determine the mechanism

of transfer, how this varies with NP design and cell membrane and tissue composition,

and what this then means for systems-level PK and PBPK models.
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Figure 2.1: Pharmacokinetic two-compartment modeling. In the classical PK two-com-
partment model, an orally administered compound is introduced into the gastrointesti-
nal tract, followed by irreversible transfer to the central compartment representing
well-perfused tissue. From the central compartment, the compound transfers reversibly
with poorly-perfused tissue–the peripheral compartment–and irreversibly exits the
body through the relevant excretion processes.
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Figure 2.2: Physiologically-based pharmacokinetic modeling. PBPK models extend the
PK approach for a better physical representation of the structure and dynamics within
the body. The organ representations shown here are a fairly standard representation,
grouping cells and tissues with a similar constitution and perfusion time scale into
well-mixed compartments.

26



Theoretical background Chapter 2

Membrane permeability assays

A common determinant of membrane permeability and screening tool in the phar-

maceutical industry is the parallel artificial membrane permeability assay (PAMPA).

Figure 2.3 shows a simplified schematic of a typical PAMPA setup. PAMPA loads a

compound in the donor chamber (left) and measures the loading into a receiver com-

partment (right) on the other side of a lipid membrane assembled on a microfilter plate.

Consistent stirring maintains mixing in each compartment and reduces the size and impact

of unstirred water layers (gray), diffusive boundary layers that can assemble on each

side of the membrane and contribute to significant steady-state and dynamic effects on

calculated permeabilites. Crucially, PAMPA is simpler than Caco-2 and MDCK assays

that use cellular monolayers instead of just lipids, probing only passive diffusion down a

concentration gradient and more amenable to high-throughput operation.

Results from PAMPA and other permeability assays can then be used to inform

membrane and cellular transport process in a biological setting. Figure 2.4 shows one

biodistribution example–transfer from the bloodstream to peripheral tissue. In a capillary

architecture like this one here, red blood cells result in significant convection, but unstirred

water layers (diffusive boundary layers) will likely still persist and contribute to the

resistance for transfer to the peripheral tissue. In this sense, PAMPA may in fact be

a relevant model for passive membrane transport down a concentration gradient. For

reliable comparison, however, there are many crucial considerations, not least of which

are the exact mixing conditions; membrane composition, structure, and dynamics; and

system geometry.
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Figure 2.3: Schematic of the parallel artificial membrane permeability assay. PAMPA
measures a compound’s membrane permeability through bulk loading into a donor
compartment, monitoring the delivery rate to the receiver compartment on the other
side of the membrane. When properly operated, PAMPA is a powerful screening tool
for drug candidates and other permeant products.

28



Theoretical background Chapter 2

Membrane
UWL

UWL

Figure 2.4: Membrane permeation in a systemic biological setting. One example of
biodistribution involves transfer of a compound from the bloodstream to a peripheral
tissue domain. For this example and others, a predictive capability for the compound’s
membrane permeability becomes a powerful tool for product screening.

2.2 Spatial variations and microscopic/PDE-based

transport modeling

Unlike ODE-based compartmental modeling strategies, PDE-based transport phenom-

ena modeling strategies can provide potentially crucial insights into the spatial variation

in state variables like species concentration.

2.2.1 General engineering approach

An important conservation equation in mass transfer is the species balance:

∂Ci
∂t

= −∇ · J + ri(Ci) (2.1)
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where Ci ≡ Ci(r, t) is the concentration of species i, t is time, J is the species flux, and

ri is the volumetric reaction rate. Generally speaking, the flux J can contain inertial,

diffusive and external force components. In the case of diffusion and external forcing (i.e.

overdamped dynamics and diffusive barrier crossing), i.e.

J = −Di∇Ci +DifiCi (2.2)

–where Di ≡ Di(r) is the diffusivity of species i and fi ≡ fi(r) ≡ −∇Gi is the mean force

or negative gradient of the free energy–and in the absence of convection and reaction,

Equation 2.1 reduces to the Smoluchowski Equation:

∂Ci
∂t

= −∇ ·
(
Di∇Ci +DifiCi

)
= ∇ ·

(
Di∇Ci +Di∇GiCi

)
(2.3)

In the specific case of diffusion over a free energy landscape in a static slab geometry,

system properties are constant in the x and y directions in the plane of the slab, and

only vary in the z direction perpendicular to the slab. In this case, the Smoluchowksi

Equation reduces to the Nernst-Planck Equation:

∂Ci(z, t)
∂t

= ∂

∂z

(
Di,z(z)∂Ci

∂z
+Di,z

dGi

dz
Ci

)
(2.4)

The Nernst-Planck Equation is a typical microscopic equation for describing solute

transport across membranes. At steady-state, for constant concentration boundary

conditions, the Nernst-Planck Equation can be used to solve for the inhomogeneous

solubility-diffusion (ISD) equation:

1/P =
∫ d/2

−d/2

eβG(z)

Dz(z)dz (2.5)
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where d is the membrane or domain thickness. The ISD equation thus predicts the

steady-state membrane permeability, given knowledge of the free energy profile G(z) and

diffusivity profile Dz(z) ≡ D(z) across the membrane. From Equation 2.4, a prediction

for the mean first passage time rate constant (inverse to the mean first passage time, or

MFPT) can be obtained:

1/kMFPT =
∫ d/2

−d/2
dz
eβG(z)

Dz(z)

∫ z

−d/2
dz′e−βG(z′). (2.6)

However, Equations 2.4, 2.5, and 2.6 all implicitly assume a translational z coordinate for

the mechanistic description, which may not be appropriate for larger particles that them-

selves may involve show structural and orientational rearrangements and may implicate

macroscopic membrane deformations. In the work that follows, we test the validity of the

ISD equation for a range of systems.

2.3 Continuum theory of membranes: a brief discus-

sion

Lipid bilayer membranes have diverse applications in soft matter physics, pharmacology,

and consumer products, and are first approximants to biological membranes. Lipid

bilayers are structures consisting of two molecularly-thick layers, or leaflets, on the

scale of nanometers in aqueous solvent. In these structures, molecules are oriented with

their polar head groups pointing outward towards the solvent and their nonpolar tail

groups pointing inward towards the other leaflet. The dominant driving forces in their

formation and stability include (1) hydrophobic and dispersion interactions, wherein the

lipid tail groups maximize their contacts with each other and minimize their contacts

with water, decreasing area per lipid and (2) head group electrostatic/excluded-volume

31



Theoretical background Chapter 2

repulsion and tail group conformational entropy, which work to increase the area per

lipid.1 Generally, cylinder-shaped lipids form quasi-two-dimensional lamellae (macroscopic

in two dimensions and nanoscopic in the third), while conical and inverse conical lipid

amphiphiles more favorably form micelles and inverted micelles, respectively2 (although

this simple view of lipids has recently been of debate3). Lamellar lipid bilayers often exist

as multilayered vesicles (also known as liposomes–basically bilayer spheres) in solution,

but can also exist in model experiments as planar bilayers across an aperture (black lipid

membranes, or BLMs), laying on a solid support (supported lipid bilayers/SLBs), or

directly anchored by a solid substrate (tethered bilayer lipid membranes/t-BLMs). For

experimental analysis of lipid membranes, bilayers are normally assembled in multilayered

stacks, while in simulations, lipid membranes are often studied as planar bilayers with

periodic boundary conditions.

There is an extensive continuum theoretical framework for lipid bilayer membranes.

Lamellar lipid membranes are interfaces embedded in three dimensions, but are more

complicated than typical liquid-liquid interfaces due to their finite thickness and preferred

area per molecule depending on the lipids’ molecular neighbors and composition.4,5 They

also differ from solid-solid interfaces, due to their negligible surface tension. Because

of these complexities, simple interfacial theories of surface tension in terms of, e.g., an

oil-water interface or even an interface with capillary fluctuations are often insufficient for

membranes. Alternatively, fluid (liquid crystalline) lipid membranes are normally modeled

as liquid-like laterally (without an in-plane shear modulus), and solid-like transversely

(out-of-plane).

Another major continuum assumption is that the lipids are strongly surface active,

and therefore are not soluble in bulk (aqueous) solvent.5 In aqueous solution, the lipids

thus form a macroscopic interface where the head groups maintain contact with the water

and the tail groups are buried, in contact with each other. In a rectangular thermal
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system of constant size (i.e. the canonical ensemble), the system may reach a point where

the lipid-water interface is “saturated,” i.e. the lipids are packed on average at their

optimal area per molecule. Since the addition of more lipids would further decrease the

average area per molecule to an extent that may be globally unfavorable (higher total

free energy), the membrane may instead “buckle,” curving the lipid-water interface to

accommodate additional lipids at the same average area per molecule. In a system of

constant tension (e.g. the isobaric-isothermal ensemble, where the box dimensions can

change), the addition of more lipids will instead expand the area of a bilayer that on

average is flat.

For continuum lipid bilayer physics, it is almost always safe to assume volume in-

compressibility, as negligible fluctuations in volume cost far more than typical thermal

fluctuations. Area incompressibility is a less common assumption and invalid in many

cases; however, area fluctuations are often assumed to exchange with thickness (peristaltic)

fluctuations through a simple equation of state whereby area and thickness are inversely

correlated.5 For this reason, a Gibbs monolayer (two-dimensional surface) description is a

common and often reasonable theoretical approach. Perhaps the most studied fluctuations

in lipid membranes, and what separates them from most conventional solid-liquid and

liquid-liquid interfaces, are in mesoscopic shape, termed undulations.6,7 This is typically

approached from the perspective of membrane curvature elasticity, where large wavelength

bending modes are highly accessible via thermal fluctuations. These out-of-plane modes

lead to a distinction between the projected (in-plane) area and membrane contour area;

therefore, care should be taken in deconvoluting deformations in membrane curvature

(bending) from those in contour area (expansion/compression). Still, other fluctua-

tions are accessible at smaller length scales, and typically involve local lipid orientation

(“tilt” relative to mesoscopic shape) and operations thereof, as in other liquid crystalline

systems.8–11
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2.4 Diffusion on a free energy landscape for a gener-

alized reaction coordinate

In the event that the mechanistic assumptions of the ISD model are not valid, which is

particularly possible for fluctuating lipid bilayer membranes, the solute transport process

must be generalized in description to a reaction coordinate q from the original translational

coordinate z. In this case, we return to the Smoluchowski Equation, which is typically

presented in terms of the Kramers crossover function ξ ≡ p(q, t)/exp(−G(q)), where

p ≡ p(q, t) is the probability distribution function in the mechanistic coordinate q and

time t and G(q) is the free energy profile across that same coordinate. The Smoluchowski

Equation is then written as:

∂ξi(q, t)
∂t

= eβG(q) d

dq

(
e−βG(q)Di,q(q)

dξi
dq

)
(2.7)

where Dq ≡ Dq(q) is the diffusivity profile across q in the q direction. The corresponding

equations for the steady-state permeability and mean first passage time rate constant are

therefore:


1/P =

∫ qF
q0

eβG(q)

Dq(q) dq

1/kMFPT =
∫ qF
q0
dq e

βG(q)

Dq(q)
∫ q
−∞ dq

′e−βG(q′).

(2.8)

where q0 is the initial position in terms of the reaction coordinate q, qF is the final

position, and, here, the inner integral extends in lower bounds to a limitless domain of

the reactant basin, due to the placement of a reflecting boundary condition at q → −∞.

The appropriate q for a given NP-membrane combination and the particular interaction

event of interest, however, is not obvious. Mechanistic hypothesis testing to determine the

optimal q, along with testing of the ISD model, and correct representation of fluctuating
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lipid bilayer membranes, require the use of detailed molecular simulations.

2.5 Solute membrane transport: classical microscopic

picture

2.5.1 Molecular simulation of lipid membranes

Despite the extensive physical framework for lipid bilayer membranes from both

continuum theory and experiments, detailed molecular simulations can be a tremendous

asset to a further understanding. Molecular simulations were first applied to lipid

membrane systems in the early 1990s, and have since become increasingly amenable to

larger spatiotemporal scales and higher resolutions.12 In general, molecular simulations

work well for lipid membrane studies in the following instances:

• When nanometer resolution is required, and chemical detail is important (e.g. for

heterogeneous membranes, and in the case of additional non-lipid components)

• For finite-sized systems where macroscopic continuum principles may not apply

• When the interior of the membrane is being probed, and the two-dimensional/thin

film assumption is not a given

• When the expected mesostructure of a lipid solution is not a planar bilayer but

otherwise unclear

• To test continuum mechanical assumptions (e.g. volume/area compressibility,

tension, bending renormalization, structure of pores, etc.)

• To parameterize continuum theory and simulations (i.e. with spatiotemporal and

macroscopic properties)
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Many of these conditions are met in a study of nanoparticle-membrane interactions. In

particular for nanoparticle-membrane interactions, molecular simulations can help to

determine the design-specific mechanisms of interaction, given the particular system of

interest (nanoparticle design and membrane composition).

We extensively outline simulation best practices for lipid membranes, and particularly

molecular models for lipid membranes, in Appendix A. In this thesis, we use the implicit

solvent (solvent-free) coarse-grained Dry Martini model of Arnarez et al. Coarse-graining

represents chemical groups rather than individual atoms, giving orders of magnitude

increases in speed relative to atomistic simulations,13 and the implicit solvent model here

removes ∼90 percent of the degrees of freedom in the system, resulting in approximately

an order of magnitude speed-up in simulation. The basic prescription of the Martini model

is to combine heavy (non-hydrogen) atoms into pseudoatoms based on an approximately

4:1 atom mapping. Together with the removal of aqueous solvent, this results in a

precipitous drop in computational cost and the ability to simulate molecularly-specific

lipid membranes at large length and time scales. We model a fluid, one-component

membrane of DPPC phospholipid, due to its extensive development in CG simulations

and moderate prevalence in real biological membranes.14–17 Figure 2.5 shows the Dry

Martini model for a zwitterionic DPPC lipid bilayer. Positively-charged choline groups

are drawn in blue, negatively-charged phosphates are drawn in gold, glycerol backbone

groups are drawn in pink, and acyl chain tail groups are drawn in cyan.

2.5.2 Our combined molecular model

We combine the Dry Martini model with our custom-made nanoparticle model (Fig-

ure 2.6). Our model accounts for several crucial nanopaticle design parameters, in an

independent and controllable manner. We are able to vary particle size, chemistry, shape,

36



Theoretical background Chapter 2

Figure 2.5: Model of the lipid bilayer membrane. Shown here is the 12-site model for
DPPC in the Dry Martini force field, assembled into a planar lipid bilayer. This small
bilayer is comprised of 128 lipids, and spans approximately 6.4, 6.4, and 4.5 nm in the
x, y, and z directions respectively.

and elasticity through changes to particle structure, Lennard-Jones interactions, and

inter-bead force constants. We build nanoparticles as aggregates of generic Dry Martini

bead types that cover a range of hydrophobic and hydrophilic chemical groups principally

through variations in the nanoparticle-lipid head group and nanopaticle-lipid tail group

interactions. We also introduce new bead types to model passive wrapping and pinch

off events driven by highly specific “ligand-receptor” interactions (strong head group

interactions). Dry Martini was parameterized to experimental membrane properties

and partitioning free energies, and therefore performs very well in capturing nanoscale

interactions and membrane mechanics, which dominate the properties of interest here.

All-in-all, our combined platform and models capture the essential ingredients of funda-

mental NP-membrane interactions, from simple membrane partitioning (validated with

atomistic findings)18–20 to inclusion and wrapping (validated with continuum theory).21–32
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Figure 2.6: Tunability of NP design in our molecular model. A promising capability
in molecular modeling is the ability to make precise and orthogonal variations in
system design parameters and study the effect of those variations. Our combined
nanoparticle-membrane model allows for variations in nanoparticle size, shape, elasticity,
surface roughness and topology, and lipid head and tail group interactions, along with
variations in the composition of the membrane itself.
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2.5.3 Free energy calculations and advanced sampling

To validate the ISD model and, if it fails, to fit an improved mechanistic microscopic

continuum model, the determination of free energy and diffusivity profiles is essential. The

calculation of converged free energies and diffusivities often requires extensive sampling

in molecular simulations. Particularly for nanoparticle-membrane interactions, the larger

constituents and therefore slower dynamics of this system, along with the fluctuating

nature of soft matter systems like lipid membranes, this sampling presents challenges. Most

nanoparticle-membrane events of interest are currently still considered to be rare events

in that they occur on time scales that are prohibitively long given current computing

resources. However, one source of simulation speed-up is the coarse-grained model.

Another source of speed-up lies in advanced sampling strategies that bias the system and,

in data processing, rigorously correct and unweight for the imposed bias. One particular

technique that we use here is umbrella sampling.33 Umbrella sampling is fast-converging

and bypasses dynamic complications like solute-interface coupling that can produce odd

results due to slow-relaxing degrees of freedom.34–37 Along with free energy calculations,

umbrella sampling facilitates the determination of diffusivity profiles with the very same

simulation data set. Thus, both unbiased MD and umbrella sampling MD can be used to

study a wide range of nanoparticle-membrane interactions and validate the ISD model.

For more rigorous mechanistic hypothesis testing where the ISD is questioned or shown

to be inadequate, other rare events methods are necessary.

2.6 Our unique multiscale approach

Here, we focus on the interesting regime of ∼1-10 nm nanoparticle-membrane in-

teractions. To capture basic chemistry-mediated aspects of interactions, we modulate

nanoparticle-lipid head and -lipid tail group interactions. The preliminary state diagrams
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from the MD simulations are presented in Figure 2.7. In this thesis, we break this state

diagram down by devising reduced, highly-predictive models for the following problems:

• Outlining the range and limits of standing solubility-diffusion theories (mechanistic

models like the ISD model) for the lipid bilayer transport of small-scale, sub-

nanometer particles

• Coupling microscopic solubility-diffusion theories with macroscopic systems-level

models for dynamical insights into the membrane transport of small-scale solutes in

an experimental or physiological setting

• Coupling MD simulations, microscopic solubility-diffusion theories, and macroscopic

systems-level models for dynamical insights and subsequently improved, physically

inspired quantitative structure-property and structure-kinetic relationships for the

membrane transport of small solutes

• Reducing MD simulations into continuum phenomenologies, if not rigorous contin-

uum kinetic mechanistic models, for nanoscale and larger NP-membrane interactions

We couple these MD simulations with continuum mechanics and multi-compartment

modeling, which allows us to confirm molecular-scale mechanisms, incorporate macro-

scopic experimental elements like unstirred water layers, and access experimentally-

relevant time scales (Figure 2.8). In the experimental sense, our multiscale platform

augments and improves upon existing and developing approaches in industry, leveraging

molecular-scale resolution and high-performance computing to determine where reductions

and simplifications can be made. Compared with the current simulation landscape in

nanoparticle-membrane interactions, our approach is unique through the combination of

(1) a robust platform supporting a wide range of generic particle designs; (2) the study of

behaviors on multiple particle scales that integrates molecular and mesoscopic pictures of
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Figure 2.7: NP-membrane state diagram for particles of varying size and surface
chemistry. Shown here are the results from the preliminary MD simulations of ∼1-10
nm nanoparticles of varying size (diameter Dp), particle-lipid head group affinity (εPH),
and particle-lipid tail group affinity (εPT ) with a single-component, fluid-phase DPPC
lipid bilayer. The exploration of this space reveals a variety of interaction modes and
mechanisms that we outline in more detail across this thesis.
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particle-membrane interactions (rather than focusing on predominantly small or large-scale

behavior, as previously shown29,38); and (3) the close coupling with continuum theory

and systems-level modeling, therefore carrying the microscopic results through to their

macroscopic consequences in an experimental setting.

Figure 2.8: Our combined multiscale framework for NP interactions with and transport
across lipid membranes. To directly connect simulations on the nanoscale with exper-
iments (cm in length scales, hr in time) for the nanoparticle-membrane interaction
problem, we link our detailed MD simulations to continuum mechanical theory through
mechanistic models, then link to macroscopic systems by using our continuum theories
to parameterize systems-level models that incorporate crucial components like unstirred
water layers and more closely model experiments like typical membrane permeability
assays. Our platform is first-of-its-kind, and has the potential to tackle a wide range
of problems in nanoparticle-membrane interactions.
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Chapter 3

Nanoparticle transport across model

cellular membranes: when do

solubility-diffusion models break

down?

3.1 Abstract

The interactions of nanoparticles (NPs) with cellular membranes and subsequent

transport processes have major implications for the biology, toxicology, and pharmacology

of nanoscale materials. Moreover, understanding and predicting the behaviors of diverse

nanoparticle designs in a physiological setting is of increasing technological and regulatory

importance. Still, the current complexity of experiments and lack of a consensus in

modeling and simulation preclude a clear picture of relevant NP-membrane interaction

modes and mechanisms, particularly for particles on the ∼1-10 nm scale. Here, we

leverage detailed coarse-grained molecular dynamics simulations with advanced sampling
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strategies to uncover the thermodynamic driving forces and possible kinetic pathways of

approximately 0.5-2.0 nm hydrophilic, hydrophobic, and “interfacially active” particles

with model lipid bilayer membranes. Using the simulations, we test the applicability

of well-established theoretical models for the permeability of small molecule transport–

Overton’s Rule and the inhomogeneous solubility-diffusion model–and conclude that the

former is overly-simplified for fluctuating lipid bilayers, while the latter breaks down at

the larger particle sizes due to the influence of other physics like membrane undulations.

We place this work in the context of recent simulation studies, and conclude with critical

physical and methodological insights to guide future thermodynamic and kinetic studies

of NP-membrane interactions.

Overton’s Rule

Inhomogeneous Solubility-
Diffusion (ISD) Model

𝑃 = # 𝑒%&(())
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Figure 3.1: Evaluating solubility-diffusion theories for nanoparticle transport across
model cell membranes with detailed molecular dynamics simulation.

3.2 Introduction

Despite the pervasiveness of nanoparticles (NPs) in industrial applications, an under-

standing of their pharmacological and toxicological properties is lacking. The past few
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decades have witnessed an explosion in techniques for NP fabrication.1–5 and character-

ization.5–9 The technological promise of NPs is highlighted by their presence in foods

and beverages, fertilizers and pesticides, cooking products, packaging, textiles, consumer

products, and, perhaps most importantly, pharmaceuticals.4,10–16 At the same time, NPs

can pose many possible sources of toxicity15–18 due to their steric effects compared to

small molecules and their higher chemical & catalytic activity and permeability relative

to traditional colloids.16,19–23 Some of the most serious toxicity concerns are attributed

to NPs on the 1 to 10 nm scale,8 including quantum dots and Au, TiO2, FeO2, and

polystyrene NPs, amongst others. There is a serious deficiency in current NP regula-

tions,15–17 and there have been several calls over the past decade for federal regulatory

agencies like the FDA to develop new, NP-specific protocols that take the complexities of

NP dosage into account.18

It is unclear if biodistribution principles that work well for small solutes also apply

to NPs. A major problem of both pharmacological and toxicological interest is the

physical interaction of NPs with cellular membranes, including NP transport across

them. From a pharmacological perspective, membrane transport is a critical bottleneck in

drug delivery, and from a toxicological perspective, membrane disruption is one physical

process implicated in greater adverse outcome pathways.18,24 Passive transport is highly

desirable from a therapeutic perspective, as it avoids endosomal pathways and the drug

can more directly reach its target. Overton’s Rule (the Meyer-Overton Rule, or the

solubility-diffusion model) is a venerable and long-standing (> 100-year-old) small solute

model that provides an incredibly simple structure-property relation for the passive

membrane permeability P , relating the solute diffusive flux across the membrane J to its
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concentration difference from one side of the membrane to the other ∆C:

P = J/∆C = KDc

dc
. (3.1)

Here, K is the partition coefficient, Dc is the diffusivity across the membrane core, and

dc is the membrane core thickness. Overton’s Rule assumes that the membrane is a static,

homogeneous slab, with properties (e.g. K) approximated for a bulk nonpolar solvent

(e.g. octanol) interfacing with water. The solute is assumed to cross the membrane by a

simple diffusive mechanism.25 Crucially, Overton’s Rule describes qualitative trends in

the membrane transport of a wide range of small molecules–the higher the membrane

partitioning, the faster the membrane transport. It has also been largely upheld in

experiment for small molecules.25–27 While some nanoscale (∼1-10 nm) chemically-

structured (e.g. striped and patchy hydrophilic-hydrophobic) particles have been found

in recent experiments to passively and efficiently transport across membranes,28 there is

evidence to suggest that Overton’s Rule and the mechanism it implies will break down

once particles reach this size range. The primary issue is that NP transport relies on a

picture involving, as often described, “(direct) penetration,” “passive diffusion,” “simple

diffusion,” or “passive permeation”,13,29 where it is unclear what exact mechanism such

terms are describing and particularly if these NP transport processes leave the equilibrium

membrane structure unaltered. Especially with the possibility of disruptive membrane

pore formation,28 it seems likely for nanoscale NPs that, in addition to the partition

coefficient, properties like NP size, surface chemistry, shape, and softness10,18,30 and their

impact on the local details of the membrane must be taken into account.

Here, we use coarse-grained molecular dynamics (MD) simulations with advanced

sampling to critically evaluate the applicability of existing small-scale membrane interac-

tion models like Overton’s Rule for particles in the 1-10 nm range with a range of particle
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surface chemistries. The size and surface chemistry (e.g. hydrophilic, hydrophobic) of

NPs have been shown in experiment as the most consequential,18 and so we specifically

simulate rigid spherical particles with varied size and chemistry, assessing their interaction

with single-component phospholipid bilayer membranes. We evaluate existing models like

Overton’s Rule by directly comparing permeability predictions with simulation-computed

driving forces and experimental permeabilities. Our hypothesis is that, at some NP length

scale that could be chemistry-dependent, nondisruptive simple diffusion (i.e. transport

that does not alter membrane structure) will no longer be possible and the small-scale

permeability models will fail. We therefore seek to identify precise mechanisms by which

these NPs passively transport, and whether or not competing interaction modes and

mechanisms (e.g. solubilization, adsorption, insertion, hydrophilic/hydrophobic pore

formation, wrapping, budding, micellization) are relevant for a given NP design. To do so,

we conduct detailed molecular thermodynamic analysis through order parameters calcu-

lated from the simulations. Our goals are to: (1) determine exactly where nondisruptive

simple diffusion and the permeability models break down in size-chemistry space, (2)

obtain physical intuition behind the relevant interaction modes and mechanisms, and (3)

establish careful methodological techniques for future simulation studies of NP-membrane

interactions. In the process, we establish physically-motivated models for NP-membrane

interactions from the molecular scale up.

Detailed molecular simulations have been an invaluable tool for NP-membrane inter-

actions in overcoming spatiotemporal experimental limitations and by providing complete

microstate information at rates increasingly competitive with less-detailed statistical

modeling techniques.31,32 Molecular simulations have deconvoluted the precise effects

of NP size,33 chemistry,34–37 shape,38,39 elasticity,40 and functionalization (e.g., ligand

chemistries,41–43 lengths,44 rigidities,44 reversibility,45 and charge46–49), generating qualita-

tive mechanisms and in some cases quantitative measures (e.g. free energies, permeabilities,
50



Nanoparticle transport across model cellular membranes: when do solubility-diffusion models
break down? Chapter 3

rate constants) of NP-membrane interactions.29,50 In particular, simulations have sought to

inform recent experimental findings on the effect of NP chemical nanostructuring.41–43,51,52

Still, it has been difficult to glean general mechanistic principles in terms of NP design,

especially at modest particle sizes and even for particles of homogeneous chemistry,

and therefore determine appropriate theoretical models for thermodynamic and kinetic

predictions.

Simulations allow for direct calculation of quantities relevant to a more general version

of Overton’s Rule, the so-called inhomogeneous solubility-diffusion (ISD) model. The ISD

model has for several decades captured the full thermodynamic and kinetic picture in small

solute membrane transport.53 Unlike Overton’s Rule, the model describes motion along

and the ensemble of states across the entire permeation reaction coordinate. Assuming

overdamped dynamics (a reasonable assumption for most physiological problems54),

motion along solely a translational coordinate (z), and steady-state conditions, the ISD

permeability follows:55

1/P ≡ R ≡
∫ d/2

−d/2

eβG(z)

D(z) dz (3.2)

where R is the total resistance, G is the free energy profile for moving the particle

across the membrane (potential of mean force, or PMF), β ≡ 1/kBT , and D is the

one-dimensional particle diffusivity profile. Thus, for a permeability prediction, the ISD

model requires the free energy (solubility) and diffusivity profiles to be determined, both

accessible from simulation. The ISD model recovers Overton’s Rule if the free energy

and diffusivity profiles are flat across the membrane. Other, multi-layered models recover

Overton’s Rule in this instance as well.56 While Overton’s Rule and the ISD model

are often associated with simple diffusion alone,25 we further stipulate that they imply

no macroscopic membrane deformations during NP transport, including cavities and
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out-of-plane deformations. Otherwise, the transport process would implicate other slow

membrane and internal solute (e.g. orientational, conformational) degrees of freedom.

Indeed, the ISD model does assume a separation of timescales, in that the translational

motion is the slowest degree of freedom and other degrees of freedom relax quickly, acting

as a thermal bath.

The above models work well for small molecules, but the actual mechanism for NP

interactions and transport will largely depend on the particle size. Figure 3.2 outlines

this problem of relative length scales. While chemically nanostructured particles are

physiologically promising, it is unclear what the relevant interaction mechanisms are even

for homogeneous NP chemistries. Part of the challenge has been the diversity of models

and methods investigated in the literature. The appropriate physical approach will depend

largely on the relative sizes of the NP, which we specify by diameter Dp, and membrane

thickness d. Continuum theories are well-established at the small (Dp << d) and large

(Dp >> d) solute length scales; permeability models (i.e. the theories described above)

work for small particles, while membrane continuum elastic theories work well in the large

particle limit.57–60 Yet these small and large-scale limits are dominated by very different

mechanisms, and there is a major theoretical gap for particles in between. We expect

Overton’s Rule, the ISD model, and the nondisruptive simple diffusive mechanism to work

for small solutes, but to break down for a wide range of NPs in the 1-10 nm range (Dp ∼ d)

due to internal membrane distortions. Furthermore, we do not expect membrane wrapping,

associated with continuum elastic theories, to be relevant for these small particles due to

the high curvature deformations that it would entail. One mechanistic question concerns

the relevance of solute (NP) conformation and orientation. Another question is whether

or not the NP mechanisms involve significant membrane deformations to accommodate

the particle. While pore formation is unstable at zero tension and zero applied electric

field, and transient pore formation will be rare,61–64 mechanisms could involve unstable,
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metastable, or even stable states with particle induced pores and pre-pores, as well as

particle fusion with out-of-plane membrane deformations, for ease of interaction and

transport.43,52,65,66
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Figure 3.2: Spectrum of theoretical models for NP-membrane interactions. For
small-scale particles (“small molecules,” Dp << d), solubility-diffusion models are
well-established for predicting permeability (here, ∆G0 is the overall free energy change
related to the partition coefficient). For large-scale particles (“large colloids,” Dp >> d),
membrane elastic continuum theories describe the interaction thermodynamics and
kinetics. When the particle diameter is comparable to the membrane thickness (i.e. for
approximately 1-10 nm nanoparticles), there is a complete lack of theory for membrane
interactions and transport, and it is unclear exactly where small-scale permeability
theories break down.

Even for small solutes, alternative reaction coordinates may be essential to modeling

permeability. Recent simulations have suggested that solute orientation may matter

in particular for amphiphiles, and for larger and more flexible solutes;67,68 Parisio et

al. developed permeability expressions in response, and the ISD model is recovered in

the case of fast solute reorientation.68 Other studies have investigated the influence of

solute protonation state,69 membrane deformation,70 and solute-membrane/solute-solvent

coordination.71 These additional degrees of freedom can potentially identify hidden

barriers in the free energy landscape, induce memory effects when their relaxation time

scales rival that of membrane permeation, and significantly impact transport rate constant

estimates.67,71 In the first small-solute study that has considered long-range correlations
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in time and space, Comer and Chipot found that, for a solute as simple as methanol, even

the classical diffusion assumption is violated by subdiffusive motion in the membrane

interior associated with solute combination with membrane voids. Anomalous diffusion

could therefore be relevant for NPs, and it has in fact been found in early studies that,

while neutral NPs may diffuse in the plane of the membrane upon insertion, charged NPs

undergo superdiffusive motion on the membrane surface.72 In some cases, anomalous

diffusion is the result of projecting a multi-dimensional diffusion process onto a single

coordinate, and selection of the appropriate alternative projection will remove the apparent

anomalies.71,73

There is still much to be explored, and standardization and consolidation of theory

and simulations across these many variables would facilitate a more unified and predictive

picture. In this work, we thus develop a general simulation model of NP-membrane

interactions that allows a systematic exploration of particle size and other effects to

precisely pinpoint the breakdown of existing theories.

3.3 Methods

3.3.1 Membrane molecular model

This study aims to evaluate the breakdown of Overton’s Rule and the ISD model and

the potential competition of nondisruptive simple diffusion with mechanisms involving

multiscale membrane deformations. Coarse-grained MD is a technique that can provide a

reasonable balance of chemical specificity with efficiency, capturing a range of phenomena

in the 1-10 nm particle range. Here, we use the Dry Martini force field, an implicit solvent

coarse-grained model developed by Arnarez et al.74 that for membrane systems achieves an

order of magnitude increase in efficiency relative to explicit solvent coarse-grained MD by
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completely removing the solvent degrees of freedom. Dry Martini is a combined bottom-up

and top-down model that uses atomistic simulation parameters to fit bonded interactions

and experimental partition free energies to fit nonbonded interactions. Relative to explicit

solvent Martini, entropic contributions to hydrophobic interactions are effectively masked

by shuttling such driving forces into energetics, resulting in an attenuation of nonpolar-

nonpolar affinities relevant to lipid-lipid interactions. Dry Martini thus retains essential

physical properties like bilayer self-assembly, phase behavior, mechanics, and thermal

fluctuations, and has been validated for a host of membrane properties.74 We specifically

model DPPC membranes due to their prevalence in egg lecithin membranes used in vesicle

experiments,75,76 as a major component of pulmonary surfactant,77 and due to their status

as a benchmarking system for membrane simulations.78–82 All MD simulations are run

with either a 128-lipid, approximately 6.4x6.4 nm “confined” or 2048-lipid, approximately

26x26 nm “modest-sized” planar bilayer (Figure 3.3). The “confined” membrane is used

for the 0.47 nm NP studies while the “modest” membrane is used for the 1.88 nm NP

ones. While the primary factor in whether or not small-scale theories should apply is

the NP length scale and remaining NP design, system (membrane) size effects will also

play a role; this is demonstrated for the spectrum of 0.47 nm NPs by the use of both

membranes (not shown in this thesis). Additional details about the membrane model,

including extensive structural, thermodynamic, and dynamic validation of Dry Martini

for DPPC, can be found in Appendix B.

3.3.2 Particle molecular model

Beyond the membrane model, we create a NP force field that uses Dry Martini bead

types (representing different chemical groups) with additional groups for enhanced breadth

of chemistry. NPs of different sizes are then built as multi-bead particles from these
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(a) (b)

Figure 3.3: Membranes used in this study. Final simulation snapshot in xz-plane
of planar lipid bilayer membranes after assembly and equilibration: (a) “confined,”
128-lipid (∼ 6.4x6.4 nm) membrane and (b) a “modest,” 2048-lipid (∼ 26x26 nm) mem-
brane. The “modest” membrane shows significant large-scale out-of-plane deformations
(undulations) at equilibrium.

fundamental groups, allowing controllability of size and shape via particle diameter and

structure (in all cases here, maintaining a roughly spherical shape), surface chemistry

via chemical group type, and softness via intra-particle bond stiffness (in all cases in

the present study, set high for practical rigidity). In the simulation community, there

are two main approaches to generic NP models: (1) single sites with varying excluded

volume60,83,84 and (2) building particles from particles.33–38,42,44–47,49,49,51,52,85–88,88–91 We

implement the latter method, due to its ease of incorporation into standard simulation

packages (i.e. without toying with effective, longer-ranged interactions) and its practicality

in incorporating intrinsic NP roughness. Figure 3.4 shows the two particle sizes used in

this study. The procedure of building NPs out of 0.47 nm sites is for maximal consistency

with the Dry Martini model. Above the infinitely smooth single-site 0.47 nm NPs, our

procedure of building NPs from a simple cubic lattice generates designs of roughly constant

surface roughness (Rrms of approximately 0.14 nm, based on the formula of Girasole et

al.92 and surface sites defined as those within approximately two molecular diameters of

the circumscribed sphere).

Specifically, we develop a spectrum of chemical groups that mainly vary in their

Lennard-Jones interaction between the NP and both the phospholipid heads and tails,
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(a) (b)

Figure 3.4: Particle constructs used in this study. Here, we study NP-membrane
interactions at two particle sizes: (a) a “molecular-scale,” single bead (0.47 nm in
diameter) one and (b) a “nanoscale,” 32-bead (1.88 in diameter) one cut from a simple
cubic lattice. “Nanoscale” NPs are kept rigid through the use of intraparticle bonds
of stiffness 1250 kJ/mol-nm2 and equilibrium bond length 0.47 nm (the molecular
diameter) for nearest neighbors; diagonal bonds are included for even further stiffness.
Intraparticle nonbonded interactions are turned off.

defined as the choline (NC3)+ functional group (Dry Martini Q0+ group) and acyl chains

(Dry Martini C1 group), respectively. Table 3.1 and Figure 3.5, panel (a), summarize the

NP chemical groups and their interaction parameters implemented in this study. The

three general classes of NP surface chemistries are thus “hydrophobic” (strong attraction

to lipid tail groups and weak attraction otherwise), “hydrophilic” (weak attraction to both

lipid head and tail groups), and “interfacially active” (an extension of the Dry Martini

hydrophilic species, but with enhanced attraction specifically to lipid head groups that

effectively mimics opposite-charge electrostatics or even ligand-receptor interactions).

This simplistic picture of NP surface chemistry is not meant to explicitly connect to

specific molecular species, yet spans the relevant range of groups so as to capture basic

chemistry-mediated aspects of NP-membrane interactions. All molecular diameters in

this case are set at 0.47 nm, and remaining epsilons and sigmas for the NP and membrane

models can be found by referencing the Dry Martini force field.74
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3.3.3 Simulation setup and details

In all MD simulations here and in this thesis, we use the fast and open-source

GROMACS 4.6.5 package.93 Membranes are initially templated into a starting planar

lipid bilayer via the insane.py algorithm.94 The bilayer is assembled in a periodic box

in the xy-plane, and the transverse (z) direction is set to be approximately equal to the

other dimensions. This is followed by 500 steps of steepest descent energy minimization

to remove bad contacts, and a 30 ns NPT (constant number of particles, pressure, and

temperature) simulation using the Berendsen thermostat at the target temperature and

Berendsen isotropic barostat at 0.0 bar. This procedure ensures an equilibrated bilayer

at the start of the membrane and NP-membrane production runs during which data is

gathered. NPs in this study are combined with an equilibrated membrane at a fixed

starting z-separation (5 nm for 0.47 nm NPs and typically 10 nm for 1.88 nm NPs)

and first simulated using unbiased MD in the NPzγT (constant number of particles,

transverse pressure, tension, and temperature) ensemble (the “multiphase” ensemble) for

100 ns to observe, if possible, any spontaneous or mildly activated interaction modes and

mechanisms.

Simulations are performed with a time step of 0.04 ps, saving every 2500 steps (100

ps). Nonbonded interactions (Lennard-Jones and Coulombic) are shifted and truncated

from 0.9 to 1.2 nm and 0.0 to 1.2 nm, respectively. For Coulombic interactions, a relative

permittivity of 15 is used. Temperatures are maintained at 341 K, well above the gel-

to-liquid phase transition temperature, to ensure a fluid phase bilayer. Temperature

control is managed by a Langevin thermostat with a time constant of 25.0 ps, which

sets the drag coefficient. In the limit that the friction forces change much more than

the systematic PMF forces do, Langevin dynamics reduces to overdamped/Brownian

dynamics.95 With the intuition that liposomes and real cell membranes in water are
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characterized by low to negligible tension,96 here we use semiisotropic pressure coupling

where in-plane and out-of-plane pressures are set to be equal, thus enforcing a tensionless

condition via γ = Lz
2

(
Pz − (Px+Py)

2

)
,97 where Lz is the transverse box length, Pz is the

transverse pressure (zz normal component of the pressure tensor), and Px and Py are

the lateral pressures (controlled jointly by the barostat). In accordance with the Dry

Martini prescription, the lateral and transverse pressures (Pxy ≡ (Px+Py)
2 and Pz) are

independently set to 0 bar. We use a Parrinello-Rahman barostat with a lateral and

transverse compressibilities of 3x10−4 and 0 bar−1 and a time constant of 8.0 ps for both

xy and z. To prevent drift, the center of mass motion of the entire system is removed

after every frame.

We also use umbrella sampling to facilitate the exploration of states along the particle

permeation reaction coordinate and to determine free energy and diffusivity profiles to

high accuracy.

3.3.4 Advanced sampling and free energies

To systematically sample the full NP-membrane reaction coordinate, we use umbrella

sampling.98 Briefly, this approach biases the system through use of a harmonic restraint

on the collective variable defined as the particle-bilayer center-of-mass separation ∆z+ ≡

z̄NP − z̄mem (the “global displacement”), where z̄NP is the center of mass z-coordinate

of the NP, while z̄mem is that of the entire membrane (calculated using all lipid sites).

This metric is more precise than the generic z used in the ISD model, and accounts for

the NP position relative to the membrane. For a given NP-membrane system, a set of

simulations (“umbrellas”) are performed for different set point values of ∆z+. In all cases,

a constant-velocity pulling scheme (i.e. steered MD) is used to set up initial configurations

for umbrella sampling, pulling in the z-direction at a rate of 0.01 nm/ps and with a spring
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constant of 1000 kJ/mol-nm2. Configurations are saved every 10 ps (0.1 nm), and a subset

of these configurations are then equilibrated and sampled for equilibrium free energies.

The umbrellas are then combined and “reweighted” to produce unbiased properties

and free energies with the Multistate Bennett Acceptance Ratio algorithm, specifically

using the pymbar package.99 PMFs are determined by default along ∆z+, the coordinate

used for umbrella sampling, but also for physically-motivated coordinates related to the

local membrane environment and particle-membrane coordination.

We note that several other advanced sampling strategies have been leveraged for

studies of NP-membrane interactions, including constrained MD, metadynamics, bias-

exchange metadynamics, the oscillating forward-reverse method, the adaptive biasing

force algorithm, and multiple-walker adaptive biasing force.100 We use umbrella sampling

for its accuracy, robustness, and convenience in terms of both its establishment as a

conventional tool in modern simulation packages and its theoretical correspondence to

the Generalized Langevin Equation in a harmonic potential, which is used to determine

position-dependent diffusivities.100

3.3.5 Diffusivity profile calculations

We determine diffusivity profiles from the very same set of umbrella sampling sim-

ulations as those used for the free energies, specifically via the Hummer positional

autocorrelation extension of the Woolf-Roux estimator:101

D(∆z+) =

〈
δz2

+

〉2

∫∞
0

〈
δz+(t)δz+(0)

〉
dt

(3.3)

where δz+ ≡ ∆z+ −
〈

∆z+

〉
is the global displacement fluctuation about the umbrella

mean value and t is the lag time. This expression works well for a stiff spring for the
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umbrella biasing, such that the remaining forces act as a thermal bath for the solute

translational motion.100 The bulk of the calculation involves production of the positional

correlation function in the equation denominator which, depending on the umbrella

positions in the global displacement coordinate, can decay over several different orders of

magnitude in time. Following the convention of Lee et al.,100 integrals of the positional

correlation function were cut off when the function drops to 5% its original value at t=0.

The full diffusivity profile is interpolated using the individual umbrella results at intervals

equal to the those of the PMF.

3.3.6 Resistivity, total resistance, and permeability calculations

Resistivity profiles are determined by linearly interpolating diffusivity profiles at the

positions corresponding to the closer-spaced PMF outputs from the Multistate Bennett

Acceptance Ratio algorithm, then combining the diffusivity profile and PMF information

via:

R(z+) = eG(z+)

D(z+) (3.4)

where R is the local resistance (resistance per unit length). When integrated over the

entire membrane domain, R equals the overall resistance R as defined in Equation 3.2.

3.3.7 Partition coefficient and permeability calculations

The membrane partition coefficient is an important experimental quantity closely tied

to the PMF. In simulation, a size-independent metric characterizing favorable or unfavor-

able membrane interaction is determined by the equilibrium equation for concentrations
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within and outside of the membrane:

Kc,c ≡ CI
i

CII
i

(3.5)

where Kc,c is the size-independent partition coefficient, Ci is the solute (NP) concentration,

I refers to the membrane phase, and II refers to the solvent (water) phase. If the PMF

is flat outside the membrane, the partition coefficient can be defined as:102

Kc,c ≡ K ≡ 1
LI

∫
exp(−βG(∆z+))d∆z+ (3.6)

where LI is the transverse length scale of the membrane. Thus, logK > 0 indicates a

membrane-favorable NP, while logK < 0 indicates a membrane-unfavorable one.

3.4 Results and Discussion

3.4.1 The ISD model correctly predicts < 0.5 nm NP perme-

ability

For molecular-scale, 0.47 nm NPs with a conventional 128-lipid (approximately 6.4

by 6.4 nm) simulation-scale membrane model, it is expected that nondisruptive simple

diffusion is the main interaction mechanism and the solubility-diffusion models should

apply. As the full spectrum of membrane partitioning states is inaccessible via unbiased

MD simulations for most chemistries at this NP size, we use umbrella sampling to

bias the system along various positions of the particle-bilayer center-of-mass separation

∆z+ ≡ zNP − zmem (the “global displacement”), where zNP is the center of mass z-

coordinate of the NP, while zmem is that of the entire membrane (calculated using all

lipid sites). This metric is more precise than the generic z used in the ISD model, and
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accounts for the NP position relative to the membrane. Figure 3.5 presents PMFs for

different particle chemistries, while Table 3.1 summarizes their most important features;

in all cases, they look similar to small molecule transport studies, as expected due to the

small particle size.
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Figure 3.5: Transmembrane PMFs for spectrum of NP chemistries at 0.47 nm size. (a)
Particle chemistries in our molecular model (b) PMFs were determined by umbrella
sampling along the global displacement coordinate in the half space of the membrane–
solvent system, assuming PMF symmetry. Free energies for these molecular-scale
solute permeation processes vary on the order of thermal fluctuations or more, with
the PMF shape ultimately determined by the particle chemistry.
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Table 3.1: Summary of 0.47 nm NP PMFs computed in

this work in comparison to prior efforts. Small-scale NP

results from this study (gray) are compared with amino

acid side chain analogs in a POPC bilayer/water system

and others (all converted to kBT at 341 K, the tempera-

ture of this study). All standard Dry Martini bead types

serve as single-particle proxies for the common organic

solvents reported in parentheses, and Lennard-Jones in-

termolecular potential well depths with lipid head and

tail groups are reported for the species in the customized

NP force field. PMFs in the upper portion of the table are

ordered roughly by free energy change to the membrane

interface, while those in the lower portion are ordered by

their free energy change to the membrane center. *DOPC

bilayer103 aResidue charged at this location bResidue neu-

tral at this location #DPPC bilayer104

Chemistry (proxy for) Chemistry type εPH

(kBT )

εPT

(kBT )

∆G to

inter-

face

(kBT )

∆G to

center

(kBT )

LYS* charged (+) – – -8.3a 8.9b

P8 interfacially active 3.53 0.176 -5.3 8.4

THR* polar – – -1.9 6.2

P7 interfacially active 1.41 0.176 -1 8
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SER* polar – – -0.3 7

P6 interfacially active 0.353 0.176 0.6 7.8

P5 (acetamide) polar 0.176 0.176 0.8 8.7

P3 (acetic acid) polar 0.176 0.353 0.6 7.7

P2 (ethanol) polar 0.176 0.529 0.6 6.5

P1 (propanol) polar 0.176 0.811 0.5 4.1

Methanol# polar – – – 8.1

Benzene# aromatic – – – -1.7

Ethane# nonpolar – – – -2

C5 (methylethylsulfide) nonpolar 0.176 1.41 0.1 -2.4

ALA* nonpolar – – -3 -3.7

C3 (chloropropane) nonpolar 0.176 1.59 0.1 -3.8

C1 (butane) nonpolar 0.705 1.59 -0.1 -4.2

PHE* aromatic – – -6.6 -5.7

VAL* nonpolar – – -5.4 -6.1

Hydrophobic (C1 through C5) NPs show a relatively monotonic drop in free energy

upon entry into the membrane tail group region (core), with a well depth ranging from

about 2.5 to 4 kBT , indicating spontaneous partitioning into the membrane. The C3 and

C5 PMFs are qualitatively similar to some small hydrophobes and aliphatic amino acid

side chain analogs such as 1,3,5-trichlorobenzene and alanine.105 One minor nuance is

a preliminary shallow well for the C1 NP system at the membrane head group region

(interface), due to the attenuated head group attraction for the C1 chemistry in the
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Dry Martini model. The PMF barrier, here resulting mainly from the diminished C1

NP-lipid interactions between the head and tail group regions, is also common for small

hydrophobes, aliphatics, and aromatics like ethane, hexane and benzene.104,106,107 In this

sense, the C1 chemistry behaves like an aromatic or van der Waals-dominated molecule.

Hydrophilic (P1 through P5) NPs show a monotonic rise in free energy, with a barrier

at ∆z+ = 0 ranging from about 4 to 8 kBT . These PMFs are typical of small hydrophilic

molecules. In addition to a central barrier of more or less equal height to the hydrophilic

P5 case, the interfacially active (P6 through P8) NPs also show a free energy minimum

at the membrane interface (∆z+ ∼ 2.25 nm), with a depth ranging from about 0 to 5.5

kBT , indicating spontaneous adsorption onto the membrane. The qualitative shape of the

interfacially active PMFs is prevalent amongst amphiphilic small molecule drugs.105 One

difference between our interfacially active NPs and amphiphiles, however, involves the

positions of the PMF features–most amphiphiles situate themselves inside the head group

interface to favorably interact with both the head and tail groups, while the P6 through

P8 chemistries here have a specific affinity to the choline headgroup, and therefore act

effectively as an ion (e.g. amino acid side chain analog like lysine). In Table 3.1, we show

that this latter comparison is also quantitatively reasonable, along with other amino acid

side chain analogies to the NP chemistries studied here.

Figure 3.6 shows, for all 0.47 nm NP systems, the diffusivity profiles as well as the

combined thermodynamic and dynamical information via the local resistance profile.

Diffusivity profiles (panel (a)) typically show a one to two order of magnitude decrease

in diffusivity upon membrane penetration, from ∼ 10−4 cm2/s to around 10−6 to 10−5

cm2/s. We find that NP chemistry does not play a statistically significant role in

dynamics at this NP (and membrane) length scale. Local resistance profiles (panel (b))

show that the hydrophobic NPs are able to maintain a very low local resistance across the

entire global displacement coordinate despite perturbed diffusivities inside the membrane,
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primarily due to their thermodynamic propensity for membrane insertion (Figure 3.5,

panel (b)). Hydrophilic NPs experience a dramatic (approximately five order of magnitude)

increase in resistance upon insertion, both dynamically- and thermodynamically-mediated

(i.e. by both D(∆z+) and G(∆z+)), and interfacially active NPs additionally show a

thermodynamically-mediated drop in local resistance at the membrane interface.
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Figure 3.6: Transmembrane diffusivity and local resistance profiles for spectrum of NP
chemistries at 0.47 nm size. (a) Diffusivity profiles were calculated via Equation 3.3 and
(b) local resistance profiles via Equation 3.4 along the global displacement coordinate
in the half space of the membrane-solvent system. Diffusivities drop one to two orders
of magnitude upon membrane penetration, and profiles are relatively insensitive to
NP chemistry. While small nonpolar NPs maintain a fairly low resistance across the
entire membrane, polar NPs experience a several orders of magnitude increase upon
membrane penetration, and interfacially active NPs additionally experience lower
resistance at the interface.

Free energy and resistivity information is further reflected in the partition coefficient

K (Figure 3.7) and permeability P (Figure 3.8). Practically for the partition coefficient,

the right-hand-side expression in Equation 3.6 depends largely on the integral cutoff.

The integral cutoff, and therefore also LI , is here chosen to be that which corresponds
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to a convergence of K after capturing the interfacially adsorbed states relevant to the

P8 through P6 NPs. Based on this criterion and the notable leveling of all cumulative

integrals chemistry-wide, LI was uniformly set to 3.5 nm (Figure 3.7). Values are positive

for the hydrophobic and interfacially active particles, indicating favorable membrane

interactions, and negative for hydrophilic particles, indicating unfavorable membrane

interactions.
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Figure 3.7: Partition coefficient cumulative integral profiles across global displacement
coordinate for 0.47 nm NPs. Profiles are cut off at 3.5 nm, where all appear to level
off. The cutoff is essentially set at the membrane interface, leaving the region below
the cutoff to define the “homogeneous membrane slab” assumed in the Meyer-Overton
Rule.

Figure 3.8 plots P against K for the 0.47 nm NPs studied here as well as for solutes of

similar size in experiment. The Overton’s Rule prediction, shown as the orange line, uses

the average membrane diffusivity of the 0.47 nm NPs in the implicit solvent coarse-grained

model; as such, it provides a comparison principally for the simulation predictions based

on the ISD model. In general, Figure 3.8 shows that, the more membrane favorable

(the higher the K), the faster the membrane transport (the higher the P ), but also that
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the relationship is more complicated than Overton’s Rule. Quantitatively, Overton’s

Rule predicts permeability for the hydrophobic NPs within an order of magnitude, but it

significantly errs for the hydrophilic and interfacially active NPs. The higher sensitivity

of P to K for the hydrophilic NPs is consistent with other findings and attributable to the

rising free energy barrier to permeation.68 However, while P may be single-valued along

K for a range of hydrophobes and hydrophiles, for the NP set here, it is multi-valued

due to the inherent degeneracy of “membrane-favorable” NPs–the truly hydrophobic

(C5 through C1) particles with a high affinity to the membrane core region and the

interfacially active (P8 through P6) ones with a high affinity to the interface. Despite the

net favorable membrane interaction of interfacially active NPs, their major contribution

to the resistance comes from the membrane core region, driving their permeabilities to

be lower than the hydrophobes and between three and five orders of magnitude lower

than the Overton prediction. Overton’s Rule (and even generalizations based on the ISD

model108) cannot capture these types of degeneracies in permeability with the partition

coefficient.

The failure of the experimental data sets in Figure 3.8 to map to linear trends of

their own, which would be expected for similarly-sized solutes, shows that Overton’s Rule

is overly simplified for these studies as well. Interestingly, experimental acetamide and

acetic acid permeabilities lie within about one order of magnitude of their Dry Martini

proxies P5 and P3, respectively. In general, however, the experimental permeabilities in

Figure 3.8 should not be quantitatively compared with the Overton or ISD permeabilities

from this study. One reason is that the implicit solvent coarse-grained model dynamics

are inherently faster relative to atomistic simulations, and thus are not necessarily an

accurate representation of experimental dynamics. There is also potential for errors in the

experimental measurements: the lag time in solute transport from the donor to receiver

compartment often leads to experimental underestimates relative to the steady-state
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Figure 3.8: Experimental and simulation analysis of the ISD model and Overton’s
Rule for approximately 0.47 nm NPs. Small-scale NP permeability results from this
study (blue squares), implementing the ISD model, are compared with compilations
of lecithin vesicle experiments (Mitragotri et al.,109 green circles, and Nitsche and
Kasting,75 red triangles). Overton’s prediction (orange line), using the average particle
diffusivity inside the membrane across all chemistries and a membrane thickness of
4.35 nm, is shown to be overly simplified by overpredicting all ISD permeabilities and
by not distinguishing interfacially active NPs from hydrophobic ones.
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permeability value. This effect has been underscored in recent studies,110,111 and can be

particularly pathological for solutes with favorable membrane interactions, for which the

membrane acts not as a barrier but as a sink. As a result, simulation values can generally

lie orders of magnitude higher than those from experiment. Lastly, compounds of similar

K should still be compared with caution, as this metric can attain similar values for

solutes that interact favorably with the membrane in distinctly different regions (in the

head or tail group region or between the two, as in the case of P8, C1, and benzoic acid,

respectively).

We further confirm ISD model validity by probing its assumptions. To confirm classical

diffusion, we follow the prescription of previous approaches,106 calculating the free energy

change traversed over a correlation distance of the NP. We find that, while the NPs and

regions with the highest free energy slopes may traverse up to ∼1.5 kBT in the most

extreme cases (i.e. P8 around ∆z+ =1.25 nm), for most others, the result is well below

thermal fluctuations, in general validating classical diffusion and the ISD free energy and

diffusivity mappings onto ∆z+. In terms of the stiff spring assumption (permitting use of

Eqn. 3.3), our results show that an order of magnitude increase in spring stiffness generally

has less than an order of magnitude effect on diffusivities (Figure 3.9). Diffusivities have

only a linear effect on the ISD model while free energy effects are exponential. The use

of umbrella restraints in the first place leads to only about a factor of three reduction

of the NP diffusivity at far separation (∆z+ ∼5 nm) relative to the bulk NP diffusivity

(∼ 2.9x10−4 cm2/s, calculated from the particle mean-squared displacement in bulk

solution). While the Langevin thermostat here could destroy long-range spatiotemporal

correlations necessary for observation of anomalous diffusion,73 improved hydrodynamics

thermostats could be coupled with Dry Martini in a more rigorous future study.112

In terms of mechanism, we show for the 0.47 nm NP systems no statistically significantly

variations in membrane shape upon NP-membrane interaction–the membrane, on average,
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Figure 3.9: Stiff spring check for 0.47 nm NP dynamics. For the 0.47 nm P8, P5,
and C1 systems, the biasing potential stiffness was increased at sample points by one
order of magnitude. The observed effect was less than an order of magnitude effect
on the resulting diffusivities, resulting in minimal consequences for ISD permeability
predictions.

is always flat. While the implicit solvent coarse-grained model limits the observation

of behaviors like explicit hydration and dehydration and the facilitation of membrane

transport by water wires,25 there should otherwise be no hindrance to the observation of

alternative mechanisms, including those involving membrane deformations or defects.

To summarize, in the study of 0.47 nm NPs, we find for a comprehensive range of

single-site spherical particle surface chemistries that (1) nondisruptive simple diffusion

is an appropriate model for the membrane transport mechanism, (2) the ISD model is

both practical and valid as a transport model for detailed molecular simulations, and

(3) Overton’s Rule is overly-simplified. These findings are robust across the range of NP

chemistries studied. Nondisruptive simple diffusion appears to be reasonable because the

membrane is undisturbed in terms of global and local shape and internal coordinates

are absent for single-bead NPs. Confirmation of the ISD model is provided through
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semi-quantitative experimental comparison as well as evaluation of the classical diffusion

assumption. A major reason the classical diffusion assumption holds is precisely because

NP permeation, for all chemistries, is effectively nondisruptive to the membrane and

devoid of internal degrees of freedom. Because Overton’s Rule neglects in particular the

influence of the membrane interfacial region and its relevance to solutes like amphiphiles,

it does not quantitatively capture the permeability dependence on chemistry, even at this

small NP size.

3.4.2 The ISD model breaks down for NPs > 0.5 nm due to

membrane deformations

To study the sensitivity of nondisruptive simple diffusion and the ISD model to larger

NP sizes, we consider NPs with diameters four times larger (1.88 nm) for three surface

chemistries: P8, P5, and C1. At this scale, P8 NPs are analogous in chemistry to charged

monolayer-protected gold and P5 to silica or some equivalent. C1 NPs, at this size,

are fullerene-like, due to their membrane partitioning through strong van der Waals

interaction. To accommodate these larger NPs, we use a 2048-lipid, approximately 26

by 26 nm bilayer. We note that this system scale-up leads to about a three order of

magnitude increase in computing time, and proper sampling for these systems will lead to

a further time increase. This reality prevents the immediate operation of simulations in

high-throughput (as before, for a variety of NP designs). We find in preliminary unbiased

MD simulations that the C1 NP rapidly and symmetrically inserts into the membrane

core, while the P8 NP rapidly adsorbs with significant local deformation of the membrane

interface and the P5 does not appear to interact on any reasonable unbiased MD time

scale.

In the calculation of global displacement PMFs relevant to the ISD model via umbrella
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sampling, significant complications emerge. Figure 3.10 shows final snapshots from

representative umbrellas that indicate systematic membrane out-of-plane deformations

(undulations) along ∆z+. Undulations fall in two major categories: (1) protrusion for C1

and P8 NPs, where at intermediate particle-bilayer separations, the membrane deflects

towards the particle due to the gain in NP-membrane interaction that outweighs bending,

and (2) retraction for P5 and P8 NPs, where at low displacements, the membrane deflects

away from the particle because the cost of bending is still more favorable than particle

penetration. Both types of undulations have been observed in previous NP-membrane

simulation studies,70,113,114,114–117 and are part of the greater phenomenon of solute-

interfacial coupling (defying the adiabatic assumption that permeation follows solely a

displacement coordinate and the remaining coordinates act as a thermal bath).

Across the global displacement sampling coordinate, we track membrane deflection

through the metric z+(rc) ≡ zPO4(r2D < rc)−zPO4(r2D →∞), which effectively calculates

the local membrane height in the vicinity of the inserted or projected NP relative to the far-

field value (at r2D ∼ L/2, where L is the box length). Here, we calculate z+(rc) in real space

and polar coordinates due to the small to intermediate membrane sizes implemented in this

study, but note that other studies have used a Fourier mode of z+
70,113 and also calculated

the membrane mean curvature explicitly.115 Figure 3.11, panel (a), shows the results of

this analysis. At intermediate NP-membrane separations, protrusion for the hydrophobic

and interfacially active NPs is manifested in a positive deflection for z+(rc), and at close

separations, retraction for the hydrophilic and interfacially active NPs is manifested in

a negative deflection. Systematic correlations between the membrane undulations and

global displacement show that the nondisuptive simple diffusion mechanism and ISD

model break down.

Effectively, these undulations lead to significant deviations between the global displace-

ment ∆z+ and a more locally-defined variant between the NP and a proximal membrane
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Figure 3.10: Final snapshots from representative umbrella sampling simulations of 1.88
nm NPs. Shown are the final configurations after 200 ns for the 1.88 nm (from left
to right) C1, P5, and P8 particles and (from top to bottom) decreasing values of the
NP-membrane global displacement set point (particles marked with black circles and
arrows for clarity). For the C1 and P8 particles, the membrane protrudes towards the
NP at intermediate separations, and for the P5 and P8 particles at close separation,
the membrane retracts.
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patch in the xy-plane: the local displacement ∆z+(rc) ≡ zNP − zPO4(r2D < rc), where

zPO4 is the average height of the lipid phosphate groups, r2D is the radial in-plane distance

from the inserted or projected NP center, and rc is some radial cutoff (set to 1.5 nm

for resolution of the local membrane environment but also for sufficient lipid statistics).

Figure 3.11, panel (b) shows the comparison for these two metrics, which are equivalent

for a static, planar interface but can vary significantly for a fluctuating, deformable one.

Off-diagonal contributions reflect protrusion and retraction when below and above the

diagonal, respectively.

The global displacement PMFs are consequently a result of integrating the correspond-

ing local displacement PMFs over the distribution of ∆z+(rc) values that satisfy a given

∆z+ constraint. This leads to physical tunneling through barriers and the smearing of

the PMF from ∆z+(rc) to ∆z+ (Fig 3.11, panel (c)). Here, we find a barrierless PMF for

the C1 case in both ∆z+ and ∆z+(rc); a surprisingly low barrier for the P5 case across

∆z+ with a steeper apparent PMF in ∆z+(rc); and the complete absence of intermediate

and central barriers in the P8 case in ∆z+ that otherwise exist in ∆z+(rc). Some of

these results have been found in several previous studies; for example, with hydrophilic

solutes, undulations can lead to lower, narrower barriers, and with hydrophobic solutes,

they can lead to shallower minima.105,118 Because sampling was collected in the global

displacement coordinate, local displacement sampling is poor in regions where protrusion

and retraction are relevant.

Figure 3.11, panel (d) shows the correlation between undulations and global displace-

ment for the 1.88 nm C1 NP system via the 2D (∆z+, z+(rc)) PMF post-processed from

the original umbrella sampling simulations in ∆z+. The blue curve tracks the minimum

free energy pathway. The protrusion event appears as an abrupt transition, with z+(rc)

proceeding from rest (∼0) to fully protruded (∼2.3 nm) over the course of less than

a 0.5 nm change in ∆z+. This result compares well with the deflection observed in a
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similar study with a fullerene-sized (∼1.1 nm) C1 particle in explicit solvent, wherein the

membrane deflects maximally at slightly less (∼1.4 nm) than observed here, and at lower

displacement (3 nm vs. ∼4.5 nm here).70 The main difference is that the larger NP here

comes in contact with the membrane at a larger separation and contains a larger number

of interaction sites with the membrane that can afford greater deflection. Retraction

events for P5 and P8 are, by nature, more gradual, as the membrane can continuously

deform while the particle is constrained at closer and closer separations (not shown).

The results here show qualitative agreement with self-consistent field theory studies

that do not a priori assume the appropriate reaction coordinate. In the field theory

studies, significant out-of-plane deformations including NP-induced membrane pre-pore,

pore, and stalk formation are observed. Because these studies use the string method, the

results are in fact more general, and rigorously determine minimum free energy pathways

between the non-interacting and symmetrically inserted states (and therefore, presumably,

the mechanism for transport).65,66 These studies also show free energy discontinuities in

translational (zNP ) PMFs.

Yet solute-interfacial coupling can also lead to dynamical effects that may falsely

suggest that the ISD model applies. Dynamical effects are relevant if the undulation

timescale is comparable to or slower than motion along ∆z+.113 By overlaying undulation-

displacement PMFs with a sample 100 ns unbiased MD trajectory of the corresponding

NP-membrane system in red (Fig. 3.11, panel (d)), we see that the membrane insertion

of the C1 NP deviates from the expected minimum free energy pathway in blue. The

membrane protrudes to only about 1/3 of its maximum value from the umbrella sampling

simulations. While the free energy landscape of this dynamical pathway is not entirely

sampled, the pathway presumably crosses a higher free energy barrier than the minimum

free energy one.113 Dynamic effects were also observed for P8 NP adsorption (not shown).

These results can deceptively lead to the perception that the pathway maps to ∆z+ alone
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Figure 3.11: Correlations between undulations and displacement for 1.88 nm NPs. For
1.88 nm interfacially active, hydrophilic, and hydrophobic NPs, (a) deviations between
global displacement ∆z+ and local displacement ∆z+(rc) demonstrate protrusion and
retraction events that lead to (b) smearing of ∆z+(rc) PMFs to generate those in ∆z+.
(c) The 2D free energy projection into global displacement (x-axis) and membrane
deflection (y-axis) for the 1.88 nm hydrophobic NP shows that processes like membrane
insertion may still dynamically deviate (red) from the minimum free energy pathway
(blue).
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and the ISD model applies; in reality, however, this is a cancellation of nonadiabatic and

dynamic errors.

In a last attempt to study the ISD model, we artificially restrain the membrane

to eliminate membrane undulations and improve sampling along ∆z+. We follow the

prescription of Kopelevich, imposing out-of-plane (z-directional) harmonic restraints on

the individual lipids at their phosphate groups to ensure one macroscopic configuration for

every ∆z+.70 Figure 3.12 shows the ∆z+ PMFs resulting from this restrained membrane

umbrella sampling scheme, compared with the original unrestrained membrane results.

Restraints on the membrane result in an apparently more stable symmetric insertion

for the C1 NP (∼-75 kBT compared to -45 kBT ), consistent with a reduction in PMF

smearing across a spectrum of membrane configurations, and also possibly a suppressed

entropic penalty for NP insertion. Restraints also result in a much higher barrier for the

P5 NP (∼80 kBT compared to 30 kBT ) due to NP penetration rather than membrane

retraction as before. The PMF for the P8 NP shows both a well and a barrier, with the

former much shallower than the unrestrained membrane case (> -20 kBT compared to

∼-60 kBT ) and the latter much higher than the restrained membrane P5 case (∼130 kBT ).

This PMF suggests (1) that the membrane restraints frustrate P8 NP adsorption and do

not capture the corresponding stable state and (2) that the membrane even defies the

lipid restraints upon NP penetration. Indeed, we find in the latter case that the lipids are

attempting to make contact with the NP via their head groups (not shown). This result

further suggests that particle-mediated pore transport may be the most viable mechanistic

pathway for 1.88 nm interfacially active and even hydrophilic NP transport (in agreement

with the field theory studies65,66), but that the mechanism requires substantial activation,

as previously suspected.

The use of membrane restraints has several limitations that prevent direct validation

of the ISD model. With membrane restraints, the resulting ∆z+ sampling coordinate
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Figure 3.12: “Transmembrane” PMFs from restrained membrane umbrella sampling
simulations of 1.88 nm NPs. Displayed are PMFs with and without position restraints
on the membrane lipids. The use of membrane restraints reveals otherwise hidden
barriers and the unfavorability of nondisruptive simple diffusion for the P8 and P5
particles, while also more clearly capturing the symmetrically inserted stable state for
the C1 NP.
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is artificial, and not guaranteed to be a mechanistically-relevant reaction coordinate.

This is particularly obvious in the event that protrusion is physically relevant and if the

NP is prone to induce deformations in the membrane leaflets upon insertion or in the

bilayer as a whole upon adsorption.105 Even with membrane restraints, one notable slow

degree of freedom that remains is NP orientation. We find that, despite the particles’

90-degree rotational symmetry, they do not properly exchange between equivalent states,

especially inside the membrane; this prevents convergence of the global displacement

PMF. Furthermore, the use of position restraints has energetic and entropic consequences

for the natural, unbiased physics, including the suppression of membrane fluctuations

and therefore smaller entropic driving forces across the interaction states. Indeed, we find

that the position restraints are doing significant work to hold the lipids in place. Lastly,

the restraining procedure does not even guarantee capturing the unbiased stable states

of interaction. In fact, some lipid out-of-plane deformation might be most favorable for

C1 symmetric insertion in the unrestrained and unbiased system, and as seen with P8,

restraints can prevent full adsorption.

These results are intrinsically coupled with membrane size. Here, we study two

sizes of membranes–one “modest-sized”, and one “confined.” It is well known that the

membrane scale-up process inherently reduces the membrane bending modulus (via

membrane “softening”)119 and permits larger membrane deformations. In fact, we also

observe retraction and protrusion phenomena for the 0.47 nm NP systems upon membrane

scale-up. There are two major reasons why simulating larger membranes is generally

better. First, recent simulations have reported that the membrane must be large enough

to accommodate the necessary distortions for solute penetration. A 6x6 nm membrane,

while practically expedient in simulation, may suppress these distortions.67 Second,

the target experimental system is typically a macroscopic lipid bilayer. In biological

membranes, cytoskeleton pinning points dictate an experimentally relevant length scale
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of 100 to 500 nm,120,121 beyond which the membrane is effectively periodic. While the

larger membrane sizes in this study (∼26 nm) are more reasonable than most, results

can be further extrapolated to experiments via adjustments in the bending modulus and

range of permissible undulations. To the authors’ knowledge, this is the first instance of

providing a system size recommendation for simulations of NP-membrane interactions.

In the study of 1.88 nm NPs with modest-sized membranes, we find that both

nondisruptive simple diffusion as a mechanistic picture and the ISD model for kinetic

permeabilities break down. The key evidence for the breakdown is provided by the

solute-interfacial coupling, wherein z+(rc) systematically varies with ∆z+. Significant

deformations are required by the membrane, both in direct insertion in the hydrophobic

NP case and insertion into a bilayer pore, which is a likely approximant to the transport

mechanism for the hydrophilic and interfacially active NP cases. At intermediate segments

along the permeation pathway, the membrane may also protrude to meet the NP. The

global displacement coordinate is generally not a good one for mechanistic interpretation.

We have shown that this coordinate is size-dependent and degenerate, and self-consistent

field theory studies have shown that translational (specifically, zNP ) PMFs can vary

discontinuously across the permeation pathway.65 For this scale of NPs, permeability

predictions made with the ISD model will likely lead to overpredictions due to tunneling

and therefore lower apparent free energy barriers relative to the minimum free energy

pathways.70 On a practical note, comparably slow or slower degrees of freedom like

membrane deformation modes and NP orientation can lead to unreasonably slow free

energy convergence, and possibly even dynamical deviations from the undetermined

kinetic pathways that can additionally increase apparent free energy barriers and can

therefore appear to close the gap in permeability predictions.113 However, it is generally

not the case that the restraining method of Kopelevich will apply.

Based on these results, we recommend that studies evaluating the ISD model and ∆z+
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projection techniques a priori for NPs 2 nm and above be revisited. Recent studies have

implemented the ISD model for NPs much larger than C60 fullerenes (up to 6 nm) that

significantly disrupt membranes and even induce undulations upon insertion. Resulting

permeability estimates, ranging from 10−15 to 1 cm/s and that are not currently amenable

to experimental comparison, are thus questionable.114,117 Another study even uses free

energy barriers and transition state theory estimates for absolute kinetic rate constants.122

Transition state theory is often insufficient for NP-membrane interactions because it

assumes classical and adiabatic dynamics as well as no recrossing of the transition state

when recrossing may be relevant and velocities may even be undefined.95 For proper

kinetic (mechanistic and rate) insights from simulations, more rigorous techniques and

alternative reaction coordinates are required.

3.4.3 Better coordinates may exist for > 0.5 nm NP-membrane

interactions

If nondisruptive simple diffusion is not the mechanism and ISD model is not applicable,

then what is? In the pursuit of physically-motivated reaction coordinates to add intuition

to the more aphysical “string” coordinates in other work, we simply examine a few

alternatives to displacement and membrane shape through post-processing the same

simulation data from the unrestrained membrane umbrella sampling simulations. We

can define coordination metrics N1 and N2 for the membrane with the upper and lower

hemisphere of the NP (above the below the NP centroid), respectively. We can then

define a total coordination number N+ ≡ N1 +N2 and coordination number asymmetry

N− ≡ N1 − N2. We define coordination metrics Nhead
+ and Nhead

− specifically for NP

interactions with the lipid head groups and N tail
+ and N tail

− for the tail groups. The use of

coordination metrics is inspired by the work of Ghaemi et al.71 and Van Lehn et al.43
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The latter showed through usage of a lipid tail-water coordination number metric that

the membrane insertion of Dp ∼ d NPs is an activated event involving spontaneous lipid

out-of-plane fluctuations into the solvent and interacting with the NP. NP-tail group

interactions are thus hypothesized to be crucial to the description of hydrophobic NP

insertion, while head group interactions could describe interfacially active NP adsorption.

Figure 3.13 shows via a 2D PMF and dynamical trajectory for the 1.88 nm C1 NP

system that N tail
+ and N tail

− together connect reactant and product basins with a potentially

relevant pathway for NP-membrane insertion. For a NP starting above the membrane, the

interaction proceeds as follows: (1) initial interaction, resulting in N+ > 0 and N− < 0

due to preferential coordination of the particle lower hemisphere and (2) progression

to the symmetrically inserted stable state, resulting in a further increase in N+ and an

increase in N− towards 0. For completion of membrane transport, the system completes

a diamond shape in (N+, N−) space through (3) a decrease in N+ and a further increase

in N− and, finally, (4) a further decrease in N+ and a decrease in N−. The PMF also

elucidates a thermodynamic and potentially kinetically-relevant barrier. P8 NP results

for Nhead
+ and Nhead

− are shown in panel (b).

Table 3.2 summarizes the 1.88 nm NP with unrestrained membrane PMF results,

in terms of their global wells and barriers for the order parameters investigated in this

study. It is important to note that all PMFs result from post-processing the simulation

data sampled in ∆z+; more precise and potentially more accurate results can be obtained

for the other order parameters by biasing them directly. Nonetheless, this efficient and

straightforward post-processing routine further confirms NP-membrane stable states–

through generally small free energy differences between PMF wells across coordinates–and

reveals hidden free energy barriers that may be relevant to interaction mechanisms. The

1.88 nm C1 NP ∆z+ well depth found in this study agrees well with those of fullerene and

Au NPs in others.33,114,117 The apparent P5 barrier for the unrestrained membrane system
84



Nanoparticle transport across model cellular membranes: when do solubility-diffusion models
break down? Chapter 3

(a) (b)

Figure 3.13: PMF and dynamical trajectory for 1.88 nm C1 NP membrane insertion/P8
NP membrane adsorption in the space of total coordination number and coordination
number asymmetry. (a) Show here is the free energy projection onto N tail

+ (x-axis)
and N tail

− (y-axis). Superimposed (in red) is the dynamical trajectory from the 100 ns
unbiased MD simulation, demonstrating a physically intuitive process of NP membrane
insertion. (b) Corresponding results for P8 in terms of Nhead

+ (x-axis) and Nhead
−

(y-axis).

is notably small due to tunneling, but the result from restrained membrane simulations

agrees well with a study of hydroxylated fullerenes.34 To the authors’ knowledge, the

P8 results do not quantitatively correspond to any recent study, but are qualitatively

analogous to those of charged NPs.114,117 Results, however, can be highly dependent on

the type and spatial range of interactions.
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Table 3.2: Thermodynamic comparisons for 1.88 nm NPs

in this study from analysis in different candidate reac-

tion coordinates. Major features of the one- and two-

dimensional PMFs–the global well ∆G(qmin) and global

barrier ∆G(q‡)–are displayed for the 1.88 nm C1, P5, and

P8 NPs and multiple trial coordinates (in kBT ). The

comparison adds confidence to the capturing of relevant

interaction states, but also further suggests that, in some

cases, smearing over wells and barriers is taking place.

NP ∆z+ ∆z+(rc) (∆z+, z+(rc)) N tail
+ (N tail

+ , N tail
− ) Nhead

+ (Nhead
+ , Nhead

− )

C1 -46.0/

–

-49.3/ – ∼-48/ ∼6 -49.3/

8.4

∼-48/ ∼8 – –

P5 –/

31.4

–/ ?? –/ ∼32 – – – –

P8 -57.8/

0.9

-67.7/

7.1

∼-60/ ∼10 – – -64.7/

3.5

∼-70/ ∼10

Here, we find that alternative coordinates aid in the physical interpretation of 1.88

nm NP-membrane interactions for multiple NP chemistries. Regardless of the quali-

tative mechanism, in which membrane out-of-plane deformations are essential, these

metrics uncover hidden barriers and suggest possible interaction pathways while still

capturing free energy differences to the final stable states. As shown by the work of

Ghaemi et al., Van Lehn et al., Ting and coworkers, and this study, metrics involving

particle-lipid coordination and collective membrane degrees of freedom could be quite
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promising.43,65,66,71 Previous studies have shown that direct biasing in alternative coor-

dinates can both eliminate memory (non-classical) effects and lead to faster free energy

convergence.71 We have shown that the global displacement translational coordinate is

often a poor choice for NPs larger than typical small molecules, and can even be a poor

choice of sampling for small molecules as well, including ions with a strong electrostatic

component to the membrane interaction and aspherical, flexible solutes that can reorient

and deform.25,105,118 There are several rigorous works for solute-membrane interactions

that analyze the utility of a local displacement coordinate for sampling, and it has been

shown to be both reliable for avoiding major system size effects & tunneling and accessible

through conventional MD packages.118 However, in our results, we show that even the

local displacement PMFs sometimes do not uncover barriers (e.g. C1 in Table 3.2), and

are not quite system size invariant. The consideration of NP orientation seems to be an

outstanding issue in the literature, and we defer the relevant analysis to a future study.

We recommend coordination-based metrics for their physical relevance, size independence,

and low uncertainty.

3.5 Conclusions

Despite the pervasiveness of NPs and explosion of NP fabrication and characterization

techniques in recent years, a fundamental understanding of NP interactions with biological

membranes and models thereof is lacking. In analogy to the current regulatory landscape,

NP-membrane simulations have often assumed that NPs behave the same way as small

molecules–namely, in their interaction modes and mechanisms.85,106,114,117,123,124 In

this study, we leverage MD simulations with advanced sampling to study NP-membrane

interactions, specifically in the breakdown of the nondisruptive simple diffusion mechanism,

the ISD model, and Overton’s Rule for the membrane transport of rigid spherical NPs
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of varying size and surface chemistry. As expected, a breakdown of these traditional

small-scale theories occurs at larger NP length scales. In general, the well-known Overton’s

Rule is overly simplified for NP transport across a fluctuating lipid bilayer membrane,

and therefore systematically overpredicts membrane permeabilities. From the NP size and

surface chemistry ranges and resolutions studied here, we conclude that the nondisruptive

simple diffusion mechanism and ISD model break down between around 0.5 and 2 nm

diameter solutes, across several common chemistries (interfacially active, hydrophilic, and

hydrophobic). For 0.5 nm NPs and below, NPs interact with and cross membranes with

minimal disruption, and ISD permeability predictions are in semi-quantitative agreement

with experiments. Around 2 nm particles, significant complications emerge owing to

the coupling of the NP with the large-scale membrane undulations as well as poor NP

rotatability; the ISD model is no longer a mechanistically accurate description, regardless

of NP chemistry. Implementation of the ISD model for NPs larger than 0.5 nm will likely

result in overpredictions of the permeability due to tunneling that smears the translational

free energy profiles and reduces the apparent free energy barrier relative to the minimum

free energy pathway. These order parameters fluctuate on timescales comparable to

or slower than the NP translational motion, preventing free energy convergence along

the global displacement coordinate and suggesting the incorporation of additional order

parameters into the determination of mechanistic pathways and kinetic rates. Alternative

coordinates like coordination-based metrics provide a gateway to understanding interaction

and transport mechanisms through capturing major interaction states and elucidating

otherwise hidden barriers in the critical 1-10 nm subspace of NP design.

While these complications have been recognized in several recent studies,67,70,71,105,113,118

we demonstrate here exactly how and where these complications lead to a breakdown of

small-scale theories and provide guidelines for future studies. It has been difficult in pre-

vious simulation studies to glean general, design-dependent principles for NP-membrane
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interactions. In the present systematic study, we provide insights into relevant pathways

and fates for a broad subset of NP-membrane interactions. We see that, at homogeneous

chemistry even for modest NP sizes, membrane interaction modes and minimum free

energy pathways start to significantly diverge, with some requiring significant activation.

We show that undulations are a more general phenomenon affecting nearly all types of

NPs. While we do not implement more rigorous kinetic techniques here, we use extensive

free energy calculations and molecular thermodynamic analysis to construct one- and

two-dimensional PMFs that provide relative populations of states, correlations between

coordinates, and physical intuition of NP-membrane interaction. We suggest strategies

moving forward based on viable reaction coordinates and realistic membrane models for

future studies.

To build upon the simulation work here and by others, we advise that major attention

be paid to the relevant thermodynamic states and kinetic pathways in NP-membrane

interactions. There are a host of more complicated NP designs at this length scale that are

experimentally promising. Presently, however, the proper determinations via simulations

should involve convergence on the equilibrium distribution of states, which is a nontrivial

task for the 1-10 nm range of particles due to unclear interaction modes and mechanisms.

Existing small- and large-scale theories can be a helpful guide, providing free energy

estimates and bounds for thermodynamic stability (e.g. binodals), and where these theories

break down will require the largest attention. Once the major states are benchmarked with

theory (in terms of the relevant order and design parameters), more rigorous techniques

(e.g. committor analysis, transition path sampling, likelihood maximization, etc.95,125)

can leverage information of possible transition states and pathways to determine minimum

free energy pathways, rate estimates, and the relevance of dynamic effects.

Here, our focus was on the underlying physics of NP interactions with and transport

across membranes, including the associated molecular driving forces. As such, a major
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capability of this detailed, physics-based simulation strategy is that it can capture factors

beyond simple empirical structure-property relations and the metrics that they fit. It

has been difficult to discern the precise effects of solute size and chemistry on the

thermodynamics and dynamics of membrane permeation.53 The mechanistic insight of

this MD approach should be useful to the development of design principles for > 0.5 nm

NPs. Due to the experimental difficulty of these determinations, simulations are a highly

promising alternative, and will be increasingly so with advances in high performance

computing.
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Chapter 4

A multiscale framework for the

membrane permeability of

sub-nanometer particles

4.1 Abstract

The lipid membrane permeability of a compound is an all-important quantity to its

physics of biodistribution and to pharmacological, toxicological, and product design prin-

ciples. Still, the consequences of the permeability for dynamic mass transfer outcomes in a

complex in vivo, in vitro, or even model membrane experiment are difficult to discern. An

integrated multiscale picture, driving large-scale systems biology models with parameters

calculated from a microscopic mechanistic model, can provide relevant experimental in-

sight. Using compartmental kinetic models of membrane transport with semiquantitative

correspondence to the full transport problem (given by the Nernst-Planck Equation), we

are able to span multiple decades of time to arrive at a better understanding of both

steady-state and transient effects. We demonstrate how several standard experimental
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methods for calculating the permeability assume a pseudo-steady-state approximation

that in reality is only applicable in the limit of hydrophilic chemistry, larger donor and

receiver compartment volumes, infinitesimally-small unstirred water layers, and an in-

termediate range of experimental time scales. Outside of these conditions, we provide a

predictive chemistry-, volume-, layer-, and time-specific correction factor for exchanging

between transient experimental permeability measurements and steady-state simulation

predictions. We also directly explain the correspondence between two kinetic metrics–the

membrane permeability and mean first passage time rate constant–and show how these

metrics are consistent in the steady-state results that they suggest. This framework

provides a link between simulation and experimental permeability measurements and

preliminary design rules for membrane transport optimization in both a steady-state and

transient setting.

Figure 4.1: A multiscale framework linking steady-state microscopic theories for
nanoparticle membrane transport to transient macroscopic models.
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4.2 Introduction

The lipid membrane permeability of a compound is an all-important quantity to

its physics of biodistribution and to pharmacological, toxicological, and product design

principles.1,2 Passive permeation down a concentration gradient (more generally, a

chemical potential gradient) is the predominant mechanism for the membrane transport

and biodistribution of foreign substances,3 and the primary pathway of absorption for

between 80 and 95 percent of commercial drugs.4,5 As a result, membrane permeability

has a high correlation to blood-brain barrier and gastrointestinal permeability.Permeability

screening has contributed to as much as a 30 percent reduction in pharmacokinetics-related

drug attrition.6 The permeability is defined as:

P ≡ Jss/∆C (4.1)

where P is in units of length per time (often, cm/s), Jss is the steady-state diffusive flux

and ∆C is the concentration driving force (difference from one side of the membrane

to the other). Due to the importance of the membrane permeability, in vitro assays

like the parallel artificial membrane permeability assay (PAMPA), the human epithelial

colorectal adenocarcinoma (CaCo-2) assay, and the Madin-Darby Canine Kidney (MDCK)

assay have become fairly standard in the pharmaceutical industry and in pharmacological

research.7 In PAMPA, an artificial membrane is assembled on a microfilter, while in CaCo-

2 and MDCK, an entire cellular monolayer is assembled. Caco-2 is the most widespread

in industry, while PAMPA is gaining traction due to its simplicity and amenability to

high-throughput operation.8–10

Both simulation and experiment can be an asset to membrane permeability studies, but

quantitative agreement between the two has been a major challenge that has threatened

their cross-validation, and consequently permeant classification11 and drug and product
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development. In many cases, simulation-predicted permeabilities are several orders of

magnitude higher than those measured in experiment,10,11 for reasons both related and

unrealted to compound chemistry and other design parameters. Over time, these large

discrepancies have been attributed to several simulation and experimental reasons. One

major reason is the structure of the permeation layer in experiment; in the case of

CaCo-2 and MDCK assays, this consists of entire cells (therefore implicating a variety of

membrane and cellular transport pathways) , while in PAMPA it can consist of unclear,10

sometimes 3D reticulated12 membrane structures even when the lipid composition is the

same as in the simulations. Compared to single lipid bilayer transport processes probed

in typical simulations, these assays often introduce additional resistances in series (e.g.

multilamellar membranes) and in parallel (e.g. paracellular transport pathways across

tight junctions) as well as active transport processes that consume ATP. For assays like

PAMPA, the additional resistances in series lead to systematic reductions in the measured

permeabilities. In experiments, the material and porosity of the microfilter on which

the membrane sits and the apolar solvent used to dissolve the lipid mixture can also

play a role.7 On the simulation side, the poor convergence of free energy profiles for

permeation across the membrane,13,14 potentially linked to a broader problem with the

classical diffusion model14–17 and the general mechanistic picture of permeation,9,13,16–20

can lead to order of magnitude deviations (often overestimates) from true values.13

Critical to experimental permeability measurements, and therefore simulation-experiment

comparison, is the continuum or compartmental model that facilitates the permeabil-

ity definition and measurement.20,21 PAMPA and Caco-2 studies typically assume a

reversible or irreversible two-compartmental description in which the bulk permeant

transfers from the donor to receiver compartment across the membrane. In the reversible

description, there is permeant backflow from the receiver to donor compartment, leading

to an equilibrium balancing of concentrations; in the irreversible description, there is
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not. The permeability can consequently be calculated using the initial growth rate of the

receiver compartment concentration CR, scaled by the receiver compartment volume VR,

membrane area A, and initial donor compartment concentration C0:9,10

P PAMPA,1 ≡ dCR
dt′

∣∣∣∣∣
t=0

VR
AC0

(4.2)

where t is time. The two-compartment model inherently assumes that the membrane

itself is at steady-state (a “pseudo-steady-state approximation,” or PSSA)–as soon as

the diffusant enters the membrane, it exits out the other side.9,22 The validity of this

assumption is highly compound-dependent, as it has been noted that, for hydrophilic com-

pounds, the membrane typically acts solely as a barrier, while for hydrophobic compounds,

the membrane acts as a trap.9 Thus, for a dynamical permeation process involving

hydrophobic particles, one would expect a transient stage in which particles accumulate

in the membrane. This dynamic loading is believed to contribute to massive underpredic-

tions in permeability for hydrophobic compounds (several orders of magnitude between

the permeability definitions of Equations 4.1 and 4.2), and to opposite permeability

trends with hydrophobicity/hydrophilicity scales relative to the steady-state predictions

(which have a qualitative scaling similar to Overton’s Rule,23 i.e. permeability increasing

with hydrophobicity). Inversely, for hydrophilic compounds, minimal accumulation in

the membrane means that transient permeability estimates tend to be closer to their

steady-state values.9 To the authors’ knowledge, implications of the PSSA have not been

thoroughly discussed, let alone analyzed, for size variations of the donor and receiver

compartments, for various observation time scales, and for compounds that interact with

the membrane in alternative ways.12

Additionally, one factor discussed for some time in experiment but less frequently in

simulation-experiment comparisons is unstirred water layers (UWLs), diffusive boundary
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layers adjacent to the membrane in both the donor and receiver reservoirs.7 UWLs can

increase the permeation resistance typically by three or more orders of magnitude,7 and

will constitute a significant layer of resistance for hydrophobic compounds in particular

or highly permeable compounds in general, especially in a dynamic scenario (e.g. when

Equation 4.2 is used9). UWLs are present in both experimental and in vivo scenarios. In

vivo, UWLs are believed to be roughly 30 to 100 µm consistent with efficient mixing at

the surface of the GI tract,7,24 or at most 1000 µm consistent with the convective mixing

of circulating erythrocytes at the blood-brain barrier.25 UWLs can plague experimental

measurements and lead to widely varying estimates of the permeability.7,26 For PAMPA

experiments, the absence of stirring will lead to UWLs up to 1500 to 4000 µm (0.15

to 0.4 cm), such that reported permeabilities are never greater than (15 − 30) × 10−6

cm/s.7 Hydrodynamic models have correlated the experimental thickness of UWLs to the

speed of stirring in the relevant compartment, e.g. LUWL ∼ ν−c where LUWL is the UWL

thickness, ν is the stirring speed, and c is a fitting exponent.7 Through highly efficient

individual-well magnetic stirring at speeds > 110 rpm, Avdeef et al demonstrated for

the first time the capability to lower UWLs to the near-in vivo range and in some cases

down to 13 µm, measuring permeabilities as high as 3500× 10−6 (3.5× 10−3) cm/s.7 Still,

unchecked stirring can lead to problems of its own, including instabilities in phospholipid

vesicles that constitute the membrane used for permeability measurement.27 The fact that

multiple recent studies have closed the simulation-experiment permeability gap to as little

as one order of magnitude13,14 is very promising; however, near-quantitative agreement

between the two does not guarantee the correct physical representation, and therefore

transferability and robustness in extrapolating to different compounds and conditions.

In fact, close quantitative agreement with experiment could be due to a cancellation

of errors; experiments show large variability even amongst themselves,10 and the fact

that the simulation factors discussed above can both increase and decrease permeability
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predictions over several orders of magnitude requires close examination.

Here, we leverage multiscale modeling to extensively examine transient effects, which

are chemistry-, volume-, layer-, and time-dependent and can lead to several orders

of magnitude difference between apparent and steady-state permeabilities. Multiscale

physics-based modeling can provide significant insight to the membrane transport problem

in a way that phenomenological or descriptor-based models cannot.1 Multiscale modeling

can by definition span multiple time scales, crucially to experimental ones, while also

incorporating system complexity.1,9 Due to their pervasiveness in several facets of

membrane transport, we believe that transient effects are a crucial factor to be considered

in aggregate with other insightful and influential analyses on the permeability problem.

Indeed, the importance of transient effects in real biodistribution has initiated the

consideration of quantitative “structure-kinetic” relationships (QSKRs) that take the

residence time of the compound into account.3,28 Several methods have been proposed

to account for the discrepancy between transient and steady-state kinetics, including a

“retention factor” by which to scale the transient estimate due to dynamic membrane

loading and a “lag time” prescription after which the permeability can be more accurately

measured. We argue that these suggestions necessitate a closer look at the dynamical

transport process. Two major questions emerge from the transient problem: (1) how can

one predict the systematic experimental errors, due to transient effects and otherwise,

in the calculation of steady-state permeabilities and (2) which kinetic measurement, the

steady-state or transient one, is more relevant to membrane transport and biodistribution

applications? The answer to both questions involves a delicate analysis of chemistries,

volumes, UWLs, and time scales.

We outline our general approach in Figure 4.2. We specifically model the slab geometry

of PAMPA, where UWLs can be considerable, and examine simple toy compounds on

the hydrophilic-hydrophobic spectrum. Through a continuum mechanistic model (Nernst-
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Planck equation) for the detailed membrane transport, we link the physiochemical

properties of the compounds and the membrane system to steady-state permeability

predictions via Equation 4.1. This link can be thought of as a quantitative structure-

property relationship (QSPR). We then reduce the continuum model to a spatially discrete

one that can scale from the times common in simulation to those essential to experiments.

Therefore, we can give practical transient permeability estimates per Equation 4.2.

These estimates, with the incorporation of the UWLs, allow for transient correction to

steady-state predictions (a QSKR) and a 1:1 comparison with experiment (assuming

other simulation and experimental factors are accounted for). Thus, we systematically

demonstrate how compound, size, hydrodynamic, and dynamic effects combine. The

intuition is that this combined information can ultimately be used to make reliable

predictions of biological activity (via a quantitative structure-activity relationship or

QSAR). Here, we build on the work of Ghaemi et al.9 and Dickson et al.3 However,

unlike previous studies that have examined transient effects, we seek a broader range of

compound chemistries and compartmental volumes,3 a larger range of time scales,9 and

the systematic incorporation of UWLs. Furthermore, we modify our macroscopic models

to account for the proper scaling in this geometry, and uniquely show semiquantitative

correspondence of the discrete kinetic problem with the detailed transport one.

Implementation of the above framework first requires a microscopic continuum mech-

anistic model for membrane permeation, i.e. identification of a mechanistic reaction

coordinate q (or set of coordinates (q1, q2, ..., qn)) and characterization of the free energy

and dynamic landscapes G(q) and D(q) across that (those) coordinate(s). We have

recently shown that the inhomogeneous solubility-diffusion (ISD) model is a reasonable

approximant for sub-nanometer particles.18 The ISD model formulates the steady-state

membrane permeability as a function of the transverse z coordinate perpendicular to the
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Figure 4.2: A multiscale QSPR/QSKR/QSAR framework for particle transport across
lipid membranes

plane of the membrane:

P ISD ≡ P ISD(G(z), D(z)) =
[ ∫ d/2

−d/2

eβG(z)

D(z) dz
]−1

. (4.3)

To study a family of compounds with varying hydrophilicity/hydrophobicity, we develop

a toy model for the potential of mean force (PMF, or G(z)). The model is based on a

Gaussian function G(z) = −αe
−z2
2∗σ2 where α gives the particle’s negative free energy in the

membrane center. In other words, α is a measure of hydrophobicity–α < 0 for hydrophiles,

α = 0 for intermediate hydrophilicity/hydrophobicity, and α > 0 for hydrophobes. σ

is the standard deviation of the Gaussian function and a characteristic length scale of

the PMF. This toy model qualitatively captures a range of compounds with molecular

weights below 100, including acetamide, methanol, acetic acid, and methylamine (all

α < 0) as well as methylacetate, benzene, and ethane (all α > 0).29 Here, we also assume

negligible variations in solute dynamics within the membrane D(z)–specifically, we set

109



A multiscale framework for the membrane permeability of sub-nanometer particles Chapter 4

the diffusivity profile to be constant D. Detailed molecular simulations have shown that

this is a reasonable approximation for small solutes (diameter <∼ 1 nm; molecular weight

< 100), as the transverse diffusivities will typically only vary at most by an order of

magnitude, generally dropping as the solute enters the membrane.18,29,30

In addition to the gap in permeabilities between simulation and experiment, the

discussion of the optimal (fastest) permeant is currently a confusing one in the literature.

The key problem lies in the precise definition of the kinetic metric for optimization, for

which there are two major candidates. The first is P . Maximizing the ISD permeability

(Equation 4.3) is a nontrivial process in general; however, assuming a constant diffusivity,

the result is that the permeability is maximized for an infinitely deep PMF (i.e. infinitely

hydrophobic particle). This qualitative result is the same as Overton’s Rule23 and its multi-

layered generalizations,21 and is thus consistent with statements that bilayer translocation

or crossing is faster for hydrophobic molecules than for hydrophilic ones.17,31,32 However,

this steady-state design rule appears to be at odds with the other kinetic metric: the mean

first passage time (MFPT) rate constant kMFPT . kMFPT is the inverse of the MFPT,

and is defined microscopically for solutes obeying the inhomogeneous solubility-diffusion

mechanism as:

kISDMFPT =
[ ∫ d/2

−d/2
dz′

eβG(z′)

D(z′)

∫ z′

−d/2
dz′′e−βG(z′′)

]−1
. (4.4)

This result is derived for diffusive barrier crossing with reflecting source side and absorbing

receiver side boundary conditions, specifically restricted to the domain of the membrane.

kMFPT is a single-particle metric that has been shown to pertain to both steady-state

and transient scenarios.33 Recently, studies have accurately argued that, for a constant

diffusivity, kMFPT is maximized for a flat free energy profile (i.e. intermediate hydrophilic-

ity/hydrophobicity).34,35 While the relationship between the permeability and mean
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first passage time has been established,36 its implications for rational design principles

in passive permeation across membranes is still clouded. It would help to clarify these

concepts as well. In what follows, we also provide a transparent explanation of the two

kinetic metrics P and kMFPT , including their relationship and apparent inconsistencies

between them.

4.3 Theory and Methods

4.3.1 Microscopic theory: continuum mechanistic model and

MFPT relation to steady-state permeability

For a compound or class of compounds satisfying the mechanistic assumptions of

the inhomogeneous solubility-diffusion model, the corresponding Nernst-Planck equation

is37,38

∂C

∂t
= ∂

∂z

(
D(z)∂C

∂z
+ dβG(z)

dz
C
)

(4.5)

where C ≡ C(z, t) is the particle concentration (on a continuous basis in time t and space

z). This equation in terms of concentration is directly analogous to the Smoluchowski and

Fokker-Planck equations in terms of probabilities of a single particle.36,39 At steady-state,

this equation becomes

d

dz

(
D(z)dC

dz
+ dβG(z)

dz
C
)

= 0 (4.6)

For sink conditions (small times when the concentration or mass in the receiver compart-

ment, and therefore back flow from the receiver to donor compartment, are negligible40),

constant concentration boundary conditions C|z=−d/2 = C0 and C|z=d/2 = 0 are often
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assumed,36,41 where C0 is the time-independent donor side concentration and the receiver

side concentration is zero. Effectively, the concentration profiles beyond the membrane are

flat–i.e., the donor and receiver compartments are well-mixed. These boundary conditions

result in a steady-state constant flux condition that does not reach thermodynamic

equilibrium. Solving for the steady-state concentration profile leads to36,41

C(z) ≡ Css(z) =
−C0e

−βG(z)
( ∫ z

d/2

eβG(z′)

D(z′)dz
′
)

∫ d/2
−d/2

eβG(z′′)

D(z′′)dz
′′

(4.7)

where Css is the time-independent steady-state concentration on a continuous basis in

space. This concentration profile provides the route to calculating P ISD (Equation 4.3).

By definition, at steady-state, both the number of particles loaded in the membrane (the

“hold up”)

N =
∫
V
C(V )dV = A

∫
C(z′)dz′ (4.8)

and the membrane efflux times the area JA reach stable values. The ratio of these

quantities gives a characteristic transport time scale, which Hardt33 has shown to be

precisely the mean first passage time:

τ ≡ N/JA ≡ kMFPT . (4.9)

Inserting Equation 4.8 into Equation 4.9 then gives

kMFPT = J∫ d/2
−d/2C(z′)dz′

(4.10)
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Combining Equations 4.4 and 4.10 and inserting Equation 4.3 for the permeability, Votapka

et al.36 derived the “MFPT in ISD relation” describing the steady-state relationship

between these two kinetic metrics for solutes that obey the inhomogeneous solubility-

diffusion mechanism:

P ISD =
kISDMFPT

∫ d/2
−d/2 e

−βG(z′)dz′

2 . (4.11)

Finally, combining Equations 4.1 and 4.11 and leveraging the definition of the size-

independent membrane partition coefficient42 Kc,c ≡ K = 1
d

∫ d/2
−d/2 e

−βG(z′)dz′:

kMFPT = 2J
Kd∆C = 2P

Kd
(4.12)

This is essentially the macroscopic definition of the MFPT rate constant. In comparison

with Equation 4.1, it thus becomes clear that, while the permeability normalizes the diffu-

sive flux by the concentration difference, the MFPT rate constant additionally normalizes

by the membrane thickness and the thermodynamic partitioning into the membrane. In

other words, the permeability includes the effect of bulk thermodynamic partitioning

in the membrane.17 This has been mentioned by others,36,43 but its consequences have

not been transparently discussed. It is important not to overstate the consequences of

Equation 4.11, which will only hold when the ISD model does. For more complicated

transport mechanisms, like those that involve lateral movement within the membrane,

the relationship between P and kMFPT will be more complex.19
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4.3.2 Macroscopic theory: multi-compartment modeling and

PAMPA definitions for permeability

In the transient case, direct numerical evaluation of the full Nernst-Planck equa-

tion (Equation 4.5) for arbitrary/nontrivial free energy and diffusivity profiles out to

experimentally-relevant time scales is exceedingly difficult due to computational efficiency

and stability issues. These issues stem from exponential concentration variations over

sub-nanometer membrane length scales combined with macrsocopically-sized donor and re-

ceiver compartments as well as time-dependent boundary conditions. While the right-hand

side of Equation 4.5 can be recast as a Hermitian operator and seemingly evaluated as a

Sturm-Liouville problem, realistic inhomogeneous, time-dependent boundary conditions

prevent a typical analytical or numerical solution by means of separation of variables and

eigenfunction expansion. Therefore, we seek a simpler, alternative approach that still

avoids severe physical assumptions.

Compartmental models (analogous to chemical master equation models in terms of

probabilities9,17,44,45) are a simpler route to accessing the relevant length and time scales

and obtaining at least semiquantitative predictions. Multi-compartment modeling reduces

the continuum model to discrete states in which the states (compartments) are assumed

to be well-mixed, and works well as a description when the states represent the dominant

features or regions of the continuum mechanistic model. Compartmental modeling has

proven to be extremely powerful in the pharmaceutical industry via the approaches of

pharmacokinetics,46 physiologically-based pharmacokinetics,47,48 and quantitative systems

pharmacology,49–54 and has recently been implemented in several recent modeling studies

of specifically lipid membrane transport.9,17,20,21 Nagle et al.21 developed steady-state

expressions for the membrane permeability from discrete representations of hydrophilic,

hydrophobic, and amphiphilic permeants. Their hydrophilic and hydrophobic solute
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transport models consist of four compartments with three layers between them, while the

amphiphilic model consists of six compartments with five layers. These more detailed,

chemistry-specific permeability expressions agree qualitatively with Overton’s Rule.23

The same authors also examined a continuum model and found qualitative agreement

there as well.21 In a recent study, Su et al.34 examined design rules in terms of kISDMFPT for

a family of hydrophilic/hydrophobic spherical particles, suggesting a five-compartment,

four-layer model with two states in the solvent on each side of the membrane, two states

at the membrane-aqueous interfaces, and one state in the membrane core.

Two-compartment models

In this study, we principally examine three multi-compartment model variants (Fig-

ure 4.3).

The first is a two-compartment model with states representing the donor and receiver

compartments and the intervening layer representing the membrane. We make the tradi-

tional assumption of mass action kinetics, that the rate of transfer between compartments

is proportional to the concentration in the compartment of origin. Additionally, in a slab

geometry like PAMPA, we expect the transfer rate to be proportional to the membrane

area, and not the original compartment volume. Indeed, a critical parameter in phar-

macokinetic studies is the permeability-surface area product “PS,” incorporating the

transport across capillary membranes on a surface area basis.40,55–58 Thus, the rate of

reversible mass transfer between these compartments is assumed to be proportional to

the permeability and membrane area. These considerations produce the following system
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Figure 4.3: Multi-compartment models used in this study. Here, we study three
multi-compartment model variants: (a) the standard PAMPA two-compartment model,
(b) a three-compartment model with an explicit membrane compartment, and (c) a
five-compartment model additionally with interfacial compartments that account for the
lag across UWLs from the donor to membrane and membrane to receiver compartments.
Transfer between adjacent compartments is reversible, and proportional to the relevant
permeability and membrane cross-sectional area.
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of equations for the species balance:


dCD
dt

= −PA
VD

(CD − CR)

dCR
dt

= PA
VR

(CD − CR)
(4.13)

where CD and CR are the donor and receiver compartment solute concentrations and VD

and VR are the donor and receiver compartment volumes. The analytical receiver com-

partment result for CD|t=0 = C0 and CR|t=0 = 0 is CR = C0VD
VD+VR

[
1− exp

(
− PA(VD+VR)t

VDVR

)]
,

which can be used to obtain Equation 4.2 as an exact expression for and common definition

of the PAMPA permeability.9,10 Equation 4.2 is an initial [growth] rate definition, exact

for the two-compartment model at t = 0 and roughly applicable at small times. The

equation is also valid in the irreversible case.

Other permeability definitions have attempted to extend past sink conditions to

larger times and finite-sized compartments, still in the context of the two-compartment

description.7,12,40 One particular definition accounts for finite-sized compartments at

any time point (not just the initial) by normalizing the receiver concentration rate of

change, not by the initial donor concentration, but by the instantaneous difference in

concentrations between the emptying donor and filling receiver:

P PAMPA,2(t) ≡ dCR
dt′

∣∣∣∣∣
t

VR
A(CD(t)− CR(t)) . (4.14)

This definition explicitly stems from Equations 4.13, and can be confirmed with the

solutions to CD(t) and CR(t) outlined above. Thus, Equation 4.14 extends the available

time for a permeability measurement by accounting for dynamic donor compartment

unloading and receiver compartment filling.

A two-compartment model works well for permeation-limited kinetics, wherein particle

biodistribution in a more complicated in vivo system is limited by permeation across
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hydrophobic regions like cellular/lipid membranes and not by convection through the

bloodstream (perfusion) or diffusion in the hydrophilic intracellular and extracellular

environments. In a permeability assay, a two-compartment model assumes that membrane

transport is the rate-limiting step. More specifically, a two-compartment model works well

for a microscopic free energy profile with a singular free energy barrier (i.e. hydrophilic

particles). However, two compartments is not enough when the particles interact favorably

with the membrane (with one or more free energy wells along it, e.g. hydrophobic particles).

In this case, the particles dynamically load in the membrane, and there is a distinction

between the steady-state permeability Jss/∆C and normalized flux J/∆C in general. In

other words, the two-compartment model and PSSA used in most permeability assays is

only appropriate for hydrophilic particles.

Three-compartment models

One way to account for hydrophobes is through a three-compartment model with

an explicit membrane compartment (second model in Figure 4.3). The reduction of

the continuum of interaction states along the membrane normal to three discrete states

separated by two layers (primarily made up of higher density lipid59) results in two main

kinetic parameters of interest, namely (1) a rate constant for transport from the aqueous

exterior to membrane interior and (2) a rate constant for escape from the membrane to

the water compartments. The rate of reversible mass transfer between compartments is

again assumed to be proportional to permeabilities and membrane areas, resulting in the
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following system of equations:



dCD
dt

= − A
VD

(P1CD − P2CM)

dCM
dt

= − A
VM

(2P2CM − P1(CD + CR))

dCR
dt

= − A
VR

(P1CR − P2CM).

(4.15)

Here, CM is the solute membrane concentration, VM is the membrane compartment

volume, and P1A and P2A are the permeability-surface area products from the donor or

receiver to membrane compartment (corresponding to membrane entry) and the membrane

to donor or receiver compartment (corresponding to membrane escape), respectively. The

development of a realistic three-compartment model is nontrivial due to the reduction

of physical space to discrete states; the parameters VM , P1, and P2 and physical cutoffs

between compartments are often difficult to determine. The piecewise permeabilities

P1 and P2 for membrane entry and escape, respectively, are determined by a modified

version of the ISD model wherein the integral limits correspond to the layers between the

compartments and the free energies are normalized with respect to their values at the

start of each step:


P1 ≡

[
e−βG(−d/2) ∫ 0

−d/2
eβG(z)

D(z) dz
]−1

(entry)

P2 ≡
[
e−βG(0) ∫ d/2

−0
eβG(z)

D(z) dz
]−1

(escape).
(4.16)

We expect that the kinetics depend on relative free energy features and not global

ones. While seemingly unorthodox, this correction to the normalization allows for

the incorporation of relative free energies, rather than global ones that would be the

consequence of a single free energy normalization. In other words, this parameterization

accounts for both the ease of entering free energy wells and the difficulty of exiting them,

as well as the difficulty of climbing free energy barriers and the ease of leaving them. We
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have shown that, at steady-state, the MFPT rate constant and permeability are related,

and specifically that the permeability accounts for the holdup when the rate constant

does not (Equation 4.11). As we already assume mass action kinetics in our model (i.e.,
dCi
dt
∝ Ci), the inclusion of the holdup ≈ CM(t→∞)VM would not only “double-count”

for both the concentration in the origin compartment and steady-state loading in the

relevant membrane monolayer, but its implicit steady-state assumption would also defeat

the purpose of a transient analysis. Thus, we formulate piecewise permeabilities that

are normalized with respect to the holdup by dividing the piecewise ISD permeabilities

effectively by the thermodynamic partitioning in each compartment (i.e. e−βG(−d/2) and

e−βG(0)) As one will see in the Results section, this parameterization is essential to account

for single-particle kinetics that are also proportional to membrane area. At steady-state,

this framework becomes consistent with other chemical kinetics approaches in that the

ratio of piecewise rate constants (or in our case, the piecewise permeabilities) determines

the thermodynamic partitioning.17,21

It is crucial to justify this model formulation in relation to traditional and recent

multi-compartment modeling efforts. Perhaps the most relevant, Dickson et al.3 recently

adapted a compartmental modeling framework for a family of drug molecules for which

the assumed mechanism was a three-step process consisting of (1) solubilization in one

leaflet of the membrane, (2) flip flop to the other leaflet, and (3) exit from the membrane

to the other side. Their framework instead fits MFPT rate constants from detailed

molecular simulations that they determine through a Markov state modeling approach,60

but in our case can be determined with our microscopic mechanistic model. For our
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three-compartment model, this becomes:


ksim1 =

[ ∫ 0
−d/2 dz

eβG(z)

D(z)
∫ z
−d/2 dz

′e−βG(z′)
]−1

(entry)

ksim2 =
[ ∫ d/2

0 dz e
βG(z)

D(z)
∫ z

0 dz
′e−βG(z′)

]−1
(escape)

(4.17)

where ksim1 is the MFPT rate constant for membrane entry and ksim2 is the rate constant

for membrane escape. Piecewise permeabilities are then obtained by normalizing those

rate constants with respect to the surface area of the relevant barrier and the volume of

the relevant reactant basin, both from the molecular simulation:



PD = ksim1
V simD

Asim

P r
M = P f

M ≡ PM = ksim2
V simM

Asim

PR = ksim1
V simR

Asim

(4.18)

where PD is the permeability from the donor to membrane compartment, PM is the

permeability from the membrane to donor or receiver compartment (P r
M specifically

referring to membrane to donor and P f
M referring to membrane to receiver), PR is the

permeability from the receiver to membrane, Asim is the membrane area in their molecular

simulations, and V sim
D , V sim

M , and V sim
R are the simulation donor, membrane, and receiver

compartment volumes. Rate constants for the experimental model are then assembled

with the permeabilities and the relevant areas and volumes of the experimental system:



kf1 = PD
A
VD

kr2 = kf2 ≡ k2 = PM
A
VM

kr1 = PR
A
VR
.

(4.19)

where kf1 is the forward rate constant from the donor to membrane compartment, k2
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equals the forward (kf2 ) and backward (kr2) rate constant from the membrane to donor

or receiver, and kr1 is the reverse rate constant from the receiver to membrane. The rate

constants are consequently implemented in a multi-compartment model of the form:



dCD
dt

= − 1
VD

(kf1CDVD − k2CMVM)

dCM
dt

= − 1
VM

(
2k2CMVM − (kf1CDVD + kr1CRVR)

)
dCR
dt

= − 1
VR

(kr1CRVR − k2CMVM).

(4.20)

As the compartmental volumes in the above formulation then cancel in the species balance

(by, for example, kf1CDVD = PDACD), the framework of Dickson et al. and others40 also

effectively accounts for this area but not compartmental volume dependence. However, like

the two-compartment model, the normalization technique of Dickson et al., using volumes

and areas from the simulation and experimental systems, assumes permeation-limited

kinetics. In fact, the origin of this normalization technique in Equations 4.18 and 4.19

can be traced back to a limiting case of the MFPT rate constant for a large, singular

barrier (e.g. a hydrophilic particle):22,44

kISDMFPT ≈
[ ∫
∪
dz′e−βG(z′)

∫
∩
dz
eβG(z)

D(z)

]−1
(singular barrier) (4.21)

where ∪ refers to the reactant basin and ∩ refers to the barrier (for a hydrophile, the

membrane). Because the integrals are separable, the second integral is the ISD equation

(i.e. P ISD−1) and the first, for a flat origin compartment PMF, gives a length scale

corresponding to the origin compartment volume divided by the area of the barrier (e.g.

( A
VD

)−1). The assumptions in this parameterization procedure are not expected to hold for

hydrophobes, wherein the diffusion through the flat portions of the PMF preceding the

well will be rate-limiting. The length scale of the transport should not be incorporated as

a scale factor to the rate constant, but technically as an additional resistance in series
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with the intrinsic membrane resistance.

Five-compartment models

In reality, UWLs extend the flat portions of the PMFs outside of the membrane to

macroscopic length scales, resulting in significant resistance for hydrophobes and possibly

additional dynamical effects that are not captured in a two- or three-compartment model.

From a practical standpoint, UWLs can lead to lags in particle entrance to the membrane

and in membrane exit to the receiver. Furthermore, it is generally a poor assumption

that the donor and receiver compartments on each side of the membrane are themselves

well-mixed; as a result of the UWLs, significant concentration gradients can form on each

side of the membrane. Thus, we also examine a five-compartment model that includes

membrane-water interfacial compartments on each side of the membrane (third model in

Figure 4.3):



dCD
dt

= −P0A
VD

(CD − CI1)

dCI1
dt

= − A
VI1

((P0 + P1)CI1 − (P0CD + P2CM))

dCM
dt

= − A
VM

(2P2CM − P1(CI1 + CI2))

dCI2
dt

= − A
VI2

((P0 + P1)CI2 − (P0CR + P2CM))

dCR
dt

= −P0A
VR

(CR − CI2).

(4.22)

Here, CI1 and CI2 are the solute concentrations on the donor-side and receiver-side

membrane-water interface, VI1 and VI2 are the corresponding interfacial volumes, and

P0A is the permeability-surface area product from the donor to proximal interfacial

compartment or vice versa or receiver to distal interfacial compartment or vice versa

(symmetric because of the flat free energy profiles). As for P1 and P2, P0 is determined

by a modified ISD equation, resulting in the simple expression P0 = D/LUWL, where we
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are assuming that the UWLs are of equal length. Interfacial compartments allow for the

separation of UWL from membrane layers and deconvolute the effects of each.

Apparent kinetics from compartmental models

The PAMPA permeability definitions above provide an excellent means for normalizing

the apparent permeabilities for each compound/compartmental modeling combination

and therefore testing the validity of the two-compartment model and PSSA. For the

three- and five-compartment models, we define a time-dependent normalized apparent

permeability in analogy to the two-compartment model (Equation 4.2):

P̂ app(t) ≡ P app(t)
P ss,isd

= dCR
dt

∣∣∣∣∣
t

VR
AC0P ss,isd

(4.23)

where P app is the apparent membrane permeability and P̂ app is the normalized analog

(= 1 at steady-state and ≈ 1 at pseudo-steady state). P̂ app is thus a gauge of steady-

state and provides a means of normalizing simulation result relative to a more realistic

experiment and vice versa. Similarly, we define a normalized apparent permeability on

the basis of PAMPA permeability definition 2 (Equation 4.14):

P̂ app,2(t) ≡ P app2(t)
P ss,isd

= dCR
dt

∣∣∣∣∣
t

VR
A(CD − CR)P ss,isd

(4.24)

In analogy to the normalized apparent permeability, we also define a normalized apparent

rate constant:

k̂app(t) ≡ kapp(t)
kMFPT

= dCR
dt

∣∣∣∣∣
t

VR
VDC0kMFPT

(4.25)

where kapp is the apparent rate constant and k̂app is the normalized version. The kapp

definition will also level off at steady-state.. However, as we will show, the value at
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which it levels off will depend strongly on the volume of origin compartment. In a way,

this additional apparent metric serves as validation for our compartmental modeling

framework in terms of piecewise permeabilities, which are instead origin compartment

size-independent.

A completely general and physically-reasonable model is by no means obvious here.

We believe that the framework we have developed above strikes a balance amongst

the complexities in developing a physically-relevant compartmental model for this prob-

lem. Furthermore, we find our framework promising due to its qualitative insights and

semiquantitative correspondence to the full transport problem (Equation 4.5).

4.4 Results and Discussion

4.4.1 Steady-state results

Figure 4.4 below shows free energy profiles and steady-state results for three hy-

pothetical compounds in the family of toy Gaussian PMFs: “hydrophilic” (α = −1),

“intermediate” (α = 0), and “hydrophobic” (α = 1). Hydrophilic and hydrophobic com-

pounds are characterized by a singular free energy barrier and well, respectively, while

intermediate compound profiles are flat (panel a). Together with the [flat] diffusivity

profiles, the free energy profiles determine the steady-state transmembrane nondimen-

sionalized concentration profiles Φ ≡ C/C0 (panel b), for which the α parameter leads to

exponential features in the profiles compared to the linear concentration profile for the

intermediate compound. (We assume D = 10−5 cm2/s and d = 5 nm, and the influence

of the flat diffusivity profiles on the concentration profiles in Equation 4.7 falls out.) The

resulting ISD permeability P ISD(α) (panel c) thus scales supra-linearly with α, varying

over several orders of magnitude from very hydrophilic compounds to intermediate ones.
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From intermediate to hydrophobic, the rise is less steep, a result of the lesser influence

of exponentiated negative free energies than exponentiated positive ones that has been

observed in previous studies.9,17 The steady-state permeabilities for the family of toy

Gaussian PMFs thus agrees qualitatively with Overton’s Rule (the higher the α, the

better). As described earlier, the incorporation of bulk thermodynamic partitioning into

the permeability metric mediates this Overton Rule agreement. Alternatively, the mean

first passage time rate constant kISDMFPT (panel d) is symmetric and peaked about α = 0,

a result that comes from the additional thermodynamic normalization relative to P ISD.

On a single-particle level, the intermediate compound (flat free energy profile) crosses

the membrane fastest due to the absence of both barriers and “traps” (wells). More

hydrophobic compounds enter the membrane quickly, but exit slowly; hydrophiles exit

quickly, but enter slowly. This design chart on a kISDMFPT basis (again, panel (d)) quali-

tatively explains the results of Su et al.,34 amongst others.35 Which steady-state design

rule matters depends on the phenomenon of interest–single particle or bulk transport.

In terms of the steady-state membrane transport problem, the interest from a phar-

macological and engineering perspective is often in bulk transport. The steady-state

flux Jss, and thus the macroscopic dynamics and thermodynamics of particle transport,

depends on both the choice of compound (e.g. α) and the dosage (e.g. CD); in other

words, Jss(α,CD) ≈ P (α)CD. Figure 4.5 illustrates this design chart for the family of

Gaussian PMFs. There are several practical reasons why α and CD cannot simply be

increased without bound. One is toxicity–from a biological standpoint, cell death will

spike above a threshold particle concentration. For a toxicity limit, we use 4 × 10−3

mg/mL, drawn from a recent experimental study of fullerenes.61 An additional, explicitly

physical constraint is membrane free volume–as the membrane only has so much free space,

above a threshold particle concentration, the membrane will saturate. Lipid membranes

are highly anisotropic in the transverse (z) direction, leading to a highly variable free
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(a) (b)

(c) (d)

Figure 4.4: Free energies and steady-state design rules for toy Gaussian PMFs. (a)
free energy profiles, or PMFs; (b) normalized steady-state concentration profiles; (c)
permeability and (d) mean first passage time rate constant variations with hydropho-
bicity. In panels (c) and (d), hydrophilic, intermediate, and hydrophobic chemistry
case studies are marked in blue, orange, and green, respectively.
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volume f(z) ≡ Vacc(z)
Vtot

(where Vacc is the accessible volume and Vtot is the total volume)

that is dependent on the position along the membrane and probe volume.62 We therefore

quantify a membrane “filling limit” on both a pointwise and integral basis. We model

a typical lipid membrane free volume profile with an additional toy Gaussian model

f(z) = 0.01e
−z2
2σ2 , where the membrane has a maximal free volume of 1% in the center

of the membrane that quickly decays on each side. This model is inspired by the result

of Marrink and Berendsen for probe volumes of diameter 0.4 and 0.6 nm.62 We define

a pointwise metric ψ(z;α,CD) that quantifies the free volume filled at every position

along the membrane and an integral metric Ψ(α,CD) that quantifies the free volume

filled in the entire membrane. Figure 4.5 shows how these practical constraints manifest

themselves on the design chart. The pointwise metric is stricter in that, for increasing

α and CD, the steady-state system reaches a state where the free volume at one point

along the membrane is completely depleted before reaching a state where the entire

membrane is filled. In the pointwise full state, the particular state along the membrane

that is full should start to rearrange lipids in the transverse direction, leading to severe

membrane structural deformations. The integral metric constraint shows that, at higher

hydrophobicity and/or concentration, the entire membrane is filled and will start to more

seriously deform. These toxicity and free volume constraints are just a few practical

constraints on particle transport, and provide a starting point for safer design rules.

Still at steady-state, particle transport can be complicated by diffusion through UWLs.

The influence of UWLs at steady-state is straightforward, and a consequence of resistances

in series via the equation P ISD,eff =
[
LUWL,1
DUWL

+
∫ d/2
−d/2

eβG(z′)

D(z′) dz
′+ LUWL,2

DUWL

]−1
, where P ISD,eff

is the effective steady-state permeability, LUWL,1 and LUWL,2 are the UWL thicknesses

on the donor and receiver side of the membrane respectively, and DUWL is the diffusivity

across the UWLs (here, equal to that across the membrane for simplicity). The second

term on the right hand side is the inverse intrinsic membrane permeability from the ISD
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Figure 4.5: Steady-state membrane transport design chart for family of toy Gaussian
PMFs. We illustrate the hypothetical yet practical scenario in which the permeant
design optimization on the basis of hydrophobicity α and donor compartment concen-
tration CD should consider physical and biological constraints such as free volume and
cytotoxicity, respectively. Free volume constraints are reported as the values in (α,CD)
space in which either a single point in the membrane or the membrane as a whole
saturates with particles, while the toxicity limit is reported as a threshold aqueous
concentration above which fullerenes have been found to be cytotoxic.

model. Figure 4.6 shows that, as a consequence of this equation, normalized steady-state

permeabilities will decrease several orders of magnitude, but as the resistances across

the UWLs are chemistry-independent, compound permeabilities will never cross. From

the intrinsic value P ISD to the effective value P ISD,eff at a standard UWL thickness of

10 µm, permeabilities drop from approximately three orders of magnitude, depending

on the compound/chemistry. The effect on the mean first passage time rate constant is

analogous, and UWLs do not disrupt kISD,effMFPT ranking either.

As we will also show, this idealized steady-state membrane transport problem is several

stages removed from a realistic physical model for PAMPA, let alone biology. One major

reason is the influence of dynamical effects and their influence on different interaction

states in the membrane and with UWLs.
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Figure 4.6: Steady-state membrane transport variations with resistance of UWLs.
Unstirred waters layers limit the permeability achievable at steady-state through
the addition of mass transfer resistances in series. By comparing the hydrophilic,
intermediate, and hydrophobic chemistry case studies (α = −1, α = 0, and α = 1,
respectively), one can see the blurring of chemical differences in permeability and
significant perturbations thereof (10 µm = 104 nm shown as a vertical dashed red
line).

4.4.2 Transient results

To account for dynamic loading in the membrane that is especially important for

hydrophobic compounds at small times, as well as finite-size effects that arise at long

times, we fit the three-compartment model outlined in Section 4.3.2 with our toy Gaussian

model compounds. Results from this model with experimentally-relevant donor and

receiver compartment volumes (VD : VM : VR = 108 : 1 : 108, corresponding to donor

and receiver volumes of ∼1 cm) are shown in Figure 4.7 for several decades in real

time. Concentrations appear in panels (a) through (c). Over a very short period of time

(∼100 ns), the membrane dynamically loads with solute (as shown by the normalized

membrane concentration ΦM), loading at the highest initial rate for the hydrophobic

compound (again, α = 1), but leveling off the fastest for the hydrophilic compound

(α = −1). The leveling of membrane concentrations corresponds to a pseudo-steady-state,

i.e. the rate of particles entering the membrane compartment nearly equals the rate
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leaving, despite the fact that the donor compartment is still dynamically unloading and

the receiver compartment loading. The variations in the donor and receiver compartment

concentrations ΦD and ΦR is difficult to see due to their large volumes and therefore

stable concentrations, but they eventually equalize over much larger times (∼1 s), both

at approximately one half the original concentration supply in the donor compartment.

Subtle chemistry-specific effects can be seen with the hydrophobic particles unloading

the fastest from the donor compartment. The receiver side concentration is interesting,

with multiple intersection points between chemistries at small and large times: for very

small times (∼ 1 ns), the hydrophiles actually penetrate the membrane the fastest, while

for a large intermediate range of times (∼ 100 ns− 1 s), the hydrophobes surpass them,

with the hydrophiles eventually winning out at very large times due to their smaller

thermodynamic loading in the membrane. These results are by no means trivial, and are

also sensitive to the precise range of chemistries and compartment size.

The effect of the system dynamics on the apparent kinetics is therefore striking

(Figure 4.7, panels (d) through (f)). At small times during the membrane loading, the

normalized apparent rate constant and normalized apparent permeabilities are well below

their predicted steady-state values from Figure 4.4–in other words, k̂app, P̂ app, and P̂ app,2

are all << 1. The apparent rate constants never reach even close to their steady-state

predictions, due to the influence of the large donor (origin) compartment volume. It is

important to reiterate that we parameterize our compartmental models with piecewise

permeabilities. The size effects on the rate constants that are explicitly built into the

models of Dickson et al and others3,40 can be considered a byproduct of our permeability-

based models. In terms of permeabilities, all compounds have a large intermediate time

window (over several orders of magnitude from ∼100 ns to 1 s) where the apparent

permeability reaches very close to the steady-state values predicted in Figure 4.4. In

this time window, steady-state is a reasonable approximation and it should appear in
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Three-compartment PAMPA model for family of toy Gaussian PMFs.
Reported for the three chemistry case studies for the three-compartment model are
normalized concentration profiles for the (a) donor, (b) membrane, and (c) receiver
compartments, as well normalized apparent kinetic metrics in terms of the (d) apparent
rate constant and apparent permeability (PAMPA definitions (e) 1 and (f) 2). The
results, reported over several decades in time, show a short-time loading regime in the
membrane compartment, intermediate period of pseudo-steady-state, and long-time
equilibration regime, all of which are chemistry-dependent.
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PAMPA measurements in which ISD simulation design rules apply. However, this pseudo-

steady-state window is chemistry-dependent; the smallest available window occurs for the

hydrophobic particle that gets dynamically trapped in the membrane (influencing small

times) and also favorably and more quickly achieves equilibrium loading in the membrane

(influencing large times). PAMPA permeability definition 2 extends the available time for

a steady-state measurement by accounting for dynamic donor compartment unloading

and receiver compartment filling.

At steady-state, UWLs cannot change permeability rankings and qualitative design

rules, but in a transient setting, their effect is more complicated. Figure 4.8 shows

results for the five-compartment model accounting for the donor, membrane, receiver, and

interfaces that are separated from their adjacent donor and receiver compartments by the

UWLs (VD : VI1 : VM : VI2 : VR = 108 : 1 : 1 : 1 : 108). Transfer rates across the UWLs

reflect their macroscopic thickness, which we have set here to approximately the minimal

values obtainable with stirring from Avdeef et al. (∼10 µm).7 Normalized concentration

results are essentially indistinguishable except in the membrane compartment, wherein the

hydrophobe loads more quickly and higher overall, lagging in time to pseudo-steady state

behind the intermediate and hydrophilic compounds as for the three-compartment model.

For the normalized apparent permeability, this results in a thinner plateau in time for the

hydrophobe before which the interfacial and membrane compartments are loading and

after which equilibrium is basically achieved. However, for all compounds, the apparent

permeabilities never reach their steady-state ISD predictions, and are in fact three to four

orders of magnitude below it. This can at least partly be explained by the additional

resistances in series provided by the UWLs (Figure 4.6). Again, permeability definition 2

expands the long-time limit of the pseudo-steady plateau. For the normalized apparent

rate constant, a similar plateau to the first apparent permeability is observed, with values

even smaller relative to the intrinsic membrane kMFPT than in the three-compartment
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model due to the additional UWLs.

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 4.8: Five-compartment PAMPA model for family of toy Gaussian PMFs with
UWLs. Reported for the three chemistry case studies for the five-compartment model
are normalized concentration profiles for the (a) donor, (b) proximal interfacial, (c)
membrane, (d) distal interfacial, and (e) receiver compartments, as well as normalized
apparent kinetic metrics in terms of the (f) apparent rate constant and apparent
permeability (PAMPA definitions (g) 1 and (h) 2). Results reported over several
decades in time show short-time loading in the intermediate membrane and interfacial
compartments, an intermediate pseudo-steady-state, and long-time equilibration, with
chemical differences more subtle due to the smearing effect of the UWLs.

Another critical note is the exact range of times. While the three-compartment model

(idealized condition of perfect convection in the donor and receiver chambers and no

UWLs) shows pseudo-steady behavior spanning ∼100 ns to seconds, the five-compartment

(incorporating reasonably-sized UWLs) shows pseudo-steady behavior spanning ∼100 µs

to approximately hours. The exact sizes of the UWLs, along with the compound (e.g.
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chemistry α), have a profound effect on the temporal range of pseudo-steady behavior. To

obtain a more quantitative view of the characteristic time scales in this problem, we report

the results of an eigenvalue analysis of the system of ODEs for the five-compartment model

and three particle chemistry systems. In Figure 4.9, panel (a), we report the second and

third slowest time scales in each system resulting form the eigenvalue analysis (specifically,

the inverses of the eigenvalues22) and beyond the slowest time scale corresponding to

the equilibrium solutions. This reveals that, while for the modest chemistries here the

precise chemical effect on the time scales is small, the thickness of the UWLs plays a

major role. Specifically, this illustrates the shifting of the PSSA regime from ∼100 ns to

seconds in the absence of UWLs (three-compartment model) to ∼100 µs to ∼hours with

10 µm UWLs (five-compartment model). This should necessitate great caution in the

conduct and normalization of PAMPA experiments. Below the PSSA regime, dynamic

loading in the membrane and at the interfaces will result in severe underpredictions of the

steady-state permeabilities; above this regime, the first apparent permeability prediction

will severely underpredict P ss,isd, but in so far as the experimental system can detect

minute differences in donor and receiver compartment concentrations, the second apparent

permeability prediction will still represent steady-state.

The five-compartment model can then be used to generate transient design rules (i.e.

a QSKR) for the membrane transport of hydrophilic/hydrophobic compounds. Expanding

the above analysis to a wider range of the α parameter to include larger free energy

features relevant to MW < 100 compounds like acetamide, ethane, and beyond, picking

normalized apparent permeability results (here, just definition 1) out at various time scales

(10−1, 10, 103, and 104 s, corresponding to the markers along the 10 µm line in Figure 4.9,

panel (a)), and rescaling these values with the corresponding steady-state permeabilities,

we generate an apparent permeability design chart that is a transient version of Figure 4.4.

Panel (b) of Figure 4.9 shows the result of this analysis. At small times (10−1 s, pink
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(a) (b)

Figure 4.9: Transient design rules from five-compartment PAMPA model for family of
toy Gaussian PMFs with UWLs. Reported here are (a) the second and third slowest
time scales from eigenvalue analysis of system of ODEs, as a function of chemistry
and UWL thickness and (b) a quantitative structure-kinetic relationship obtained by
rescaling the normalized apparent permeability measurements from PAMPA definition
1 with the corresponding steady-state permeabilities as a function of hydrophobicity
for various times (pink upward-pointing arrows: 10−1 s; light red downward-pointing
arrows: 10 s; dark red leftward-pointing arrows: 103 s; brown rightward-pointing
arrows: 104 s; chemistry case studies marked by vertical dashed lines in same colors as
before). Overton’s Rule is not qualitatively recovered at 10−1 s, as pseudo-steady-state
is not yet achieved for all chemistries, but is recovered at 10 s; at 103 s, equilibration
starts to impact hydrophobes, resulting in an intermediate apparent permeability
optimum, while at 104 s, equilibration significantly impacts hydrophobes, as they
actually appear slower than hydrophiles.
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curve with upward pointing arrows), the interfaces and membrane are loading; pre-steady

apparent permeabilities are consequently several orders of magnitude below the steady-

state predictions that incorporate the series resistance of UWLs and qualitatively follow

Overton’s Rule. The 10−1 s results, however, do not agree with Overton’s Rule, as the

loading process is particularly detrimental to the most hydrophobic particles (α >> 0)

As a result, there is an apparent permeability optimum, which appears to agree with the

dynamic results of Nakamura and Osakai12–some intermediate hydrophobicity appears to

provide the fastest permeant. This also explicitly demonstrates the need of an incubation

time or “lag time” before steady-state permeability measurements; however, the precise

time for a given chemistry (and experimental setup, i.e. VD, VR, LUWL1, and LUWL2) is

nontrivial. Then, for 10 s (light red curve with downward pointing arrows) and 1000 s

(dark red curve with leftward pointing arrows, i.e. ∼ 17 min), apparent permeabilities

reach very close to their steady-state values, corresponding to the ∼ 10−2 to 10−3 cm/s

range (with D and d defined as before) that is comparable to experiments with the same

size UWLs.7 Qualitative agreement with Overton’s Rule, however, is very fleeting. By

104 s (brown curve with rightward pointing arrows, ∼ 2.8 hr), equilibrium effects impact

measurements using permeability definition 1, particularly hydrophobic compounds. As

a result, apparent permeabilities calculated at very long times with definition 1 may

appear to trend very differently from Overton’s Rule–hydrophobic compounds are actually

slowest, with some intermediate optimum here as well. Permeability definition 2 (not

shown) is more stable at longer times in that it preserves steady-state scalings by adjusting

the concentration driving force across the membrane. Thus, so long as a sufficient lag

time is prescribed in experiments to allow for dynamic loading, permeability definition 2

is the preferred theoretical model for experimental permeability estimates.
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4.5 Conclusions

The transient multiscale modeling analysis here provides a major link between

simulation-predicted and experimentally-measured permeabilities, by providing real-

istic chemistry-, size-, layer-, and time-specific corrections, in some cases over orders

of magnitude, to simulation values. We thus demonstrate that simulation-experiment

correspondence is highly sensitive to compound chemistry, donor and receiver volumes,

UWLs, and the time scale of measurement, and that proper treatment of these factors are

essential to closing the gap between simulation and experiment. There are major temporal

impacts on PAMPA measurements, especially at small and large times, systematically

reducing apparent permeability values and even altering qualitative design rules that

are essential to optimizing product performance and reducing drug attrition. At small

times, we clearly show on the particle hydrophilicity/hydrophobicity scale that apparent

permeability for an intermediately hydrophobic particle system is optimal, due to the

dynamic membrane loading for all chemistries and moderate membrane entry and escape

properties of the intermediate hydrophobicity. At large times, it may appear, depending on

the apparent permeability definition, that again some intermediate chemistry is optimal;

however, this is an artifact of one apparent permeability model definition for experimental

assays, and another experimental model definition properly accounts for the donor and

receiver compartment equilibration and diminishing mass transfer driving force. Thus,

above small times, pseudo-steady-state estimates can be obtained in experiment using the

latter apparent permeability definition. The exact ranges of pre-steady and post-steady

behavior for the former permeability definition in real time depends sensitively on the size

of the UWLs, with key transitions occurring anywhere from milliseconds to hours. Given

that PAMPA and Caco-2 incubation times can vary between 15 min for highly permeable

molecules and 15 hours for poorly permeable molecules,10 the findings here seem highly
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relevant to experiment and highlight the importance of compartment stirring to minimize

the effect of UWLs and reduce them to biologically-relevant length scales. If anything,

the results obtained here emphasize the crucial importance in experimental studies of

removing the biasing in assaysand, particularly, to measure at different time points.63 The

results here also clearly show, consistent with previous findings and prescriptions, that

stirring can reduce UWLs and thus significantly shift the range of permissible measurement

times down to values that make permeability assays more amenable to high-throughput

operation.

Given that we have extensively addressed our first aim in predicting the systematic

experimental errors in steady-state permeabilities, primarily through the incorporation of

UWLs and transient effects, per our second aim, what are the consequences for permeant

design rules and which kinetic measurement–steady-state vs. transient–is more relevant to

membrane transport and biodistribution? To a large extent, this question comes down to

the intended application. From a bulk transport perspective and for a macroscopic system,

the steady-state permeability, achieved for a wide spectrum of time scales (Figure 4.7,

panels (e) and (f); Figure 4.8, panels (g) and (h)), appears relevant in the sense that, the

more hydrophobic the compound, the more efficient the transient delivery (Figure 4.7,

panel (c); Figure 4.8, panel(e)). This is perhaps unsurprising, given the dominance of the

permeability over the rate constant in systems-level models and prescriptions like Overton’s

Rule.However, from a single particle perspective, for a short time of observation, or for

a microscopic donor or receiver compartment, the transient permeability, qualitatively

consistent with the single-particle MFPT rate constant, may be more relevant in the sense

that an intermediate chemistry that efficiently enters and exits the membrane leads to

the most efficient transient delivery. Here, we provide some limiting cases–very dilute in

particle, short time of observation, small donor or receiver–where optimization on the

basis of the steady-state permeability may not be relevant for the dynamical experimental
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system. Our general framework allows for the evaluation of the relevant transient design

rules beyond the limiting cases, where the exact interplay of particle chemistry, donor

and receiver volume, UWL thickness, and time of observation may be very nontrivial.

We stress again that the best and most physically-reasonable model of the experimental

system is not obvious here. The best model depends largely on the exact corresponding

experimental system. Nonetheless, we have a large degree of confidence in our PAMPA

model due to the extensive cross-testing of compartmental approaches and baselining to

the full transport problem. Perhaps in the future, an adaptive spatiotemporal solution to

the Fokker-Planck (Nernst-Planck) Equation (Equation 4.5), leveraging recent advance-

ments in the spectral parameter power series method64 and distributed approximating

functionals,65,66 may be feasible for this more complicated problem. These techniques

are not immediately amenable to this problem due to its complicated drift and diffusion

expressions and inhomogeneous boundary conditions. That said, Ghysels et al20 alterna-

tively takes a Fokker-Planck/Smoluchowski approach for single particle probabilities in

transverse+radial membrane transport using a delta function initial condition and homo-

geneous boundary conditions, which may be promising. Stable methods for numerically

and adaptively integrating the Nernst-Planck equation, to span experimentally-relevant

time scales and large UWLs while also retaining the high spatial resolution necessary

to resolve subtle chemical differences (i.e. differences in G(z) and D(z)) would also be

highly desirable.

The proper capturing of system size effects on the membrane transport problem is

in general a theoretically and physically nontrivial concept. In the case of permeability

assays, a gradient diffusion approach like the one outlined here (i.e. grounded in a diffusion

or Nernst-Planck equation, flux ∼ (∇D(z)−F (z))C(z, t)) seems to make sense. However,

in the case of infinite dilution and no stirring (perhaps in biology), a self-diffusion approach

may in fact be the most reasonable. Rate constants in this case could be assembled
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from the kMFPT approach, in a similar way to the Kramers escape problem where the

reflecting boundary condition is extended to the start of the donor compartment. Average

MFPTs could then be approximated by a weighted average over various starting positions

in the donor and receiver compartments (nonequilibrium initial distribution, not an

equilibrium one).67 In this approach, the rate constants would be highly sensitive to

the volume of the origin compartment–in fact, rate constants would be doubly corrected

with respect to volume due both the Kramers and Shoup/Szabo corrections. This would

therefore have a significant effect on apparent permeabilities and rate constants. It is not

clear, however, why this method would be objectively the best. Alternatively, it may be

instructive to also examine hydrophilic versus hydrophobic particle transport from the

perspective of a diffusion control (or lack thereof). Indeed, one can imagine constructing

a reaction-diffusion metric like the Dahmkohler number II weighing the time scale of

diffusion through the bulk fluid (donor or receiver compartments) against the time scale of

“reaction” (membrane transport). In this case, the framework of ten Wolde and Bolhuis,68

in the form of a Collins-Kimballs rate constant,69 may make sense. In this case, however,

the diffusive rate constant will not account for compartmental size effects, as the only

length scale it will depend on is the range of interaction (i.e. characteristic length scale

of the PMF). All in all, the important note is that none of this deliberation matters for

hydrophilic compounds for which size effects are minimal.

Here, we do not comprehensively consider all factors in simulation-experiment discrep-

ancy. While we do not consider the effect of membrane composition, this initial work

and the toy models herein are fairly generalizable to various bilayer types. We also do

not consider the problems of experimental membrane structures, microfilter material and

porosity, and lipid solvent, as these matters are difficult to address from simulation side

and lamellar bilayers are biologically important in their own right. On the simulation side,

the toy free energy models we use here are by definition converged, and we have restricted
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ourselves to a region of particle/membrane space where we have confirmed that the ISD

model (classical diffusion over a mechanistic z coordinate) applies. The hope is that the

insights obtained here can be combined with other simulation and experimental studies for

a more holistic framework for cross-validation and permeability predictions. Furthermore,

multiscale physics-based modeling is more than capable of taking these additional factors

and complexities into account.1 This includes even membrane phase–free volume theories70

may be helpful here.

It is tempting to try to apply the principles obtained here and elsewhere36 to design

rules for nanoparticles. Recent advances in the experimental chemical nanopatterning71

and recent simulation studies35,72,73 of ∼1-10 nm particles–e.g. (1) varying hydrophobic

content of Janus nanoparticles, (2) varying number of hydrophobic/hydrophilic stripes

at fixed hydrophobicity, and (3) varying assortment (homogeneous vs. heterogeneous

arrangement) at fixed hydrophobicity–have implicated the discussion of both P ISD and

kISDMFPT , claiming for example that a flatter PMF is better for transport. However, as we

have shown that ISD is not an appropriate physical framework for the lipid membrane

interactions and transport >∼1 nm particles,18 we advocate the development of proper

molecular mechanistic models first. The work of Sun et al,13 Chipot and Comer,15 Parisio

et al,17 Jambeck and Lyubartsev,74 and Van Lehn et al75 provide an excellent reference

for this. Sun et al13 in particular provide a generalization of the ISD model to alternative

mechanistic coordinates. Lastly, Parisio et al.17 provides a prescription for incorporating

more complicated mechanisms into discrete compartmental/chemical master equation

models.

This multiscale framework has much potential. An immediate application is connecting

more detailed molecular mechanistic models to this continuum transport and discrete

kinetic framework for more relevant membrane transport analysis of realistic compounds–

for example, compounds that interact with membranes at their interface. Here, we
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also focused mainly on chemistry effects for simple sub-nanometer particles through a

structure-property-like parameter α. However, we address more detailed chemical effects

linked to our molecular mechanistic analysis in Chapter 3 by designing and applying a

novel structure-property correlation in Chapter 5.

A final interesting point concerns concentration effects and cooperativity. In all of

this work, we have assumed infinite dilution and noninteracting particles (or pseudo-first

order kinetics,40 as the sites in each compartment are “in excess”). These are not an

unreasonable starting point.33,40,67 However, the consideration of concentration effects

on free energies, diffusivities, and overall mechanisms is an interesting one. Gupta

and Rai76 studied the effect of fullerene concentration specifically on G(z), observing a

deepening then shallowing of the free energy profile (thermodynamically- and potentially

kinetically-relevant cooperativity then anti-cooperativity) with increasing concentration.

This study and other compounds and conditions could potentially produce plots like

Figure 4.5 with nontrivial variations. This information could then be leveraged for their

(anti-)cooperativities for better design of pharmaceuticals and consumer products.
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Chapter 5

A quantitative structure-property

and structure-kinetic relationship for

the membrane transport of

sub-nanometer hydrophilic,

hydrophobic, and interfacially active

particles

5.1 Abstract

An understanding of the biodistribution and consequently the biological activity of

a compound is essential to harnessing the efficacy and reducing the toxicity of active

ingredients in pharmaceuticals and consumer products. A common route to linking a

compound’s physicochemical properties to its activity is through quantitative structure-
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activity relationships (QSARs), which when linked with quantitative structure-property

relationships (QSPRs) like those for the lipid membrane permeability and quantitative

structure-kinetic relationships (QSKRs) that additionally account for a property’s time

dependence provide a potent statistical approach to prediction making. Still, when

purely statistical, these models often suffer from transferability issues, suggesting that

they are bypassing and lack a fundamental mechanistic understanding of the physics of

biodistribution. The interactions with and transport across cellular membranes is an

essential physical step and important predictor of biodistribution outcomes and could

be key to in vitro-in vivo extrapolation. In this study, we design a novel, physically-

grounded QSPR and QSKR for the passive lipid membrane transport of sub-nanometer

particles of a wide range of chemistries. We build off of two recent studies where

(1) we simulated the membrane transport process in full molecular detail to construct

adequate continuum mechanistic models and parameterize those models and (2) we

built an integrated multiscale platform that links high-resolution microscopic features

of membrane transport to the macroscopic dynamical outcomes. We thus directly link

molecular dynamics simulation, continuum mechanical theory, and multi-compartment

systems modeling. Returning to the results from a previous molecular dynamics study

of ∼0.5 nm particles (Chapter 3), we provide a QSPR for the permeability in terms

of two intuitive molecular interaction parameters: particle-lipid head group and tail

group interaction energy well depths (εPH and εPT ). For the data set, which includes

hydrophilic/hydrophobic compounds and an essential proportion of compounds that

adsorb to the membrane interface, our QSPR provides a fit (R2 ≈ 0.91) far superior to

Overton’s Rule and many standing QSPRs. As in Chapter 4, we show that the design rules

suggested by the results are highly dependent on compound chemistry, system dimensions,

the influence of diffusive boundary layers, and time, the latter of which motivates the

construction of membrane interaction QSKRs. This work is directly relevant to model
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experiments like permeability assays, and can more broadly provide essential insights

into the assumptions and construction of standard systems-level models in industry like

physiologically-based pharmacokinetic models. Our combined platform has the long-

term potential to extend to more advanced pharmaceutical concepts (like allometry and

lipidomics) as well as more complicated membrane interaction and transport phenomena.

Figure 5.1: Linking detailed molecular dynamics simulation, steady-state continuum
theory, and transient multi-compartment modeling for the development of new quanti-
tative structure-property and structure-kinetic relationships in nanoparticle membrane
transport.

5.2 Introduction

Phase II clinical trials are a crucial time in the drug development process to gauge a

compound’s efficacy and toxicity. This stage is currently a major bottleneck and source of

failure, suffering from an ∼80% failure rate and eating up billions of dollars in development

costs. At the preclinical stage, it is becoming increasingly important to understand and

predict the biodistribution properties of a multitude of compounds to reduce the pool of
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compound candidates, maximize efficacy, and minimize toxicity.

Modeling and simulations strategies can be a major asset to the preclinical development

process, and can potentially add mechanistic understanding of compound biodistribution.

Two relevant types of modeling strategies are systems biological and pharmacological

modeling. Within systems biological approaches, statistical approaches have shown predic-

tive power for small solutes, amino acid side chain analogs, and drugs through the utility

of quantitative structure-activity relationship (QSAR) models. In fact, the membrane

permeability is a major determinant of biodistribution that highly correlates with gastroin-

testinal absorption and blood-brain barrier permeability. Models have been specifically

designed for experimental membrane permeabilities (quantitative structure-permeability

relationship, or QSPR, models), using molecular weights, polar surface areas, partition

coefficients, and hydrogen bond counts, and further applying permeability predictions to

oral availability, intestinal absorption, skin permeation, and brain permeability.However,

QSAR approaches have several shortcomings, including accuracy, a strong dependency

on their training sets (i.e. they are not transferable), and providing no information on

the underlying atomistic mechanisms. In general, the development of QSARs based on

statistics alone is difficult due to the inherent complex, multifactorial, and multiscale

nature of biology and human physiology. Specifically in terms of a compound’s interac-

tions with and transport across biological membranes, a given particle and membrane

combination may be characterized by an ensemble of microstates and nontrivial kinetic

mechanisms that interconnect them. This, along with the sheer number of compound

design variable combinations, makes solute-membrane interactions difficult to simplify

using dimensionality reduction techniques.

Alternatively, pharmacological models and more generally multiscale physics-based

modeling techniques provide a dynamical picture, potentially multiscale, of the compound’s

disposition in the body. Even for membrane interactions and transport, it seems that the
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detailed molecular physics are crucial to explanatory and predictive principles. Molecular

dynamics (MD) simulation has also been used in conjunction with QSAR models to

improve the latter, providing descriptors like drug-solvent interactions, molecular weight,

reference solvent metrics, and free energy barriers to be used for higher-accuracy models.

A prime example is the membrane-interaction method developed by Hopfinger and

coworkers.QSAR models are mutually beneficial to physics-based simulations, as they are

less expensive, so the MD and QSAR methods are complementary. In this sense, we seek

to augment statistical models with multiscale physics-based modeling. Yet besides the

progress of Menichetti et al., most physics-based QSAR strategies do not seek general

principles about the impact of compound design parameters on the membrane interactions

and transport. A general and systematic study in this regard seems highly desirable.

In Chapter 3 and one of our previous studies,1 we determined that the inhomoge-

neous solubility-diffusion (ISD) model and its assumption of a sole translational reaction

coordinate z was sufficient in explaining the transport mechanism and continuum of inter-

action states of sub-nanometer (∼ 0.5 nm) particles of varying chemistry (hydrophobic,

hydrophilic, and interfacially active) with model cellular membranes, approximated as a

single-component lipid bilayer. The ISD model states that P is a function of the solute

diffusivity profile across the membrane D(z) and the corresponding free energy profile, or

potential of mean force (PMF), G(z):

P ISD ≡ P ISD(G(z), D(z)) =
[ ∫ d/2

−d/2

eβG(z)

D(z) dz
]−1

(5.1)

where d is the membrane thickness. All compounds were characterized by a drop in

diffusivity while crossing the membrane, while free energy profiles varied with chemistry–

hydrophiles with a singular barrier, hydrophobes with a singular well, and interfacially

active particles with both a central barrier and additional wells at the membrane interface.
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We determined that the ISD model was reasonable on the basis that there is a surprisingly

low-dimensional space of relevant order parameters (devoid of internal particle degrees of

freedom due to the simplicity and length scale of our model), and that the membrane was

not systematically deforming along the translational degree of freedom in a statistically

significant manner (e.g. in its membrane height and lipid orientation fields). Furthermore,

we confirmed the reasonability of the mechanistic assumptions in the dynamical sense, as

the transverse particle diffusivity profiles were relatively well converged, and relatively

insensitive to the external biasing (i.e. the stiffness of the force constants holding the

umbrella configurations in place during advanced sampling). Because the translational

reaction coordinate, for this size of particles, was the slowest, and classical diffusion

appeared reasonable, the ISD model was confirmed as a physical model for particle

membrane transport in this range of particle designs (<∼ 1 nm and particle-lipid head

and tail group interaction well depths ranging from εPH = 0 to 3.4 kBT and εPT = 0 to

1.2 kBT , respectively).

In Chapter 4, we also determined the imperative of integrating the previously mentioned

microscale analysis with macroscopic systems-level models for contextualization of the

experimental and biological membrane transport problems. One major contributor to

this discrepancy lies in the difference in model assumptions between simulation and

experiment. While simulations results are often obtained using a steady-state assumption,

experimental results can be susceptible to significant transient effects that can even

lead to the observation of trends opposite from simulation. We previously integrated

the ISD model with multi-compartment models for a range of sub-nanometer solutes

on the hydrophilic/hydrophobic scale, incorporating the influence of compartmental

size, unstirred water layers, and time that can collectively lead to orders of magnitude

discrepancies between simulation-predicted permeabilities and apparent permeabilities

from experiment. Crucially, we showed the potential difference in permeant design rules
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based on the steady-state or transient context.

Here, we revisit the studies in Chapters 3 and 4 to provide major explanations

and corrections to simulation-calculated steady-state permeabilities for comparison with

transient permeability assay experiments. Despite the confirmation of molecular-scale

mechanism in Chapter 3, simulation and experimental permeabilities in some cases varied

by several orders of magnitude. Furthermore, we found that the QSPR mediating the

comparison was inherently flawed, projecting simulation and experimental permeabilities

onto an overly simplified physicochemical property of the solute-membrane system (i.e.

octanol-water partition coefficient). Closing the gap between these measurements is

essential to a proper understanding of the particle design dependence of membrane

transport and to overcoming the high attrition rate of drug and consumer product

formulations.

In this chapter, we thus outline two major steps to improved connectivity between sim-

ulation and experiment: (1) a novel and high-performing two-parameter QSPR to predict

permeabilities of a large portion of permeant compound space from molecular interaction

parameters and (2) a thorough and generalizable compartmental analysis of common

macroscopic assumptions and conditions. Figure 5.2 outlines our general approach, an

augmented workflow of our work in Chapter 4 that includes the MD simulations of

Chapter 3. First, a QSPR is obtained by linking the physicochemical properties of the NP-

membrane system to a particle-based model, reducing the molecular simulation systems

to a continuum mechanistic model (e.g. the ISD model), and formulating an expression

for the membrane permeability from the continuum model which is then calculated with

the molecular simulation results. A quantitative structure-kinetic relationship (QSKR) is

then obtained by converting the continuum mechanistic model to a discrete kinetic or

multi-compartment model that accounts for unstirred water layers, which when fit with

common experimental permeability definitions provides a transient permeability estimate
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that is a dynamically corrected version of the steady-state permeability and is more

comparable to permeability assay experiments. Both the QSPR and QSKR-predicted

permeabilities can then be used to guide assumptions for PBPK-type models in a complex

physiological setting, or even provide direct, time-dependent parameterization of mem-

brane transport processes. All of this information can ultimately be used to better predict

biological, pharmacological, and toxicological properties, ultimately providing a novel

QSAR approach. By consolidating previously fragmented techniques and principles on

different spatiotemporal scales, we arrive at a rigorous, consistent, and relevant platform

for dictating practical design rules for a wide range of chemical compounds.

QSPRs are both a major asset and an implicit bias in the permeability comparisons

between simulation and experiment. These correlations provide a low-dimensional mapping

onto which simulation and experimental results can be projected and compared. However,

QSPRs can be misleading and detrimental if the assumed projection parameters do not

represent the dominant physical driving forces in the real phenomenon of interest. In our

previous permeability comparison, one problem was the inherent QSPR assumption that

membrane permeability should monotonically vary with membrane partition coefficient

in the first place. In fact, Overton’s Rule

POverton ≡ Ko/wDc

dc
(5.2)

where POverton is the Overton-predicted permeability, Ko/w is the octanol-water partition

coefficient, Dc is the solute diffusivity, and dc is the thickness of the hydrophobic membrane

core region, was shown in our previous work to be overly simplified in that it reduces a

fluctuating and anisotropic lipid bilayer membrane to a static homogeneous slab, when in

reality small-scale particles can interact with the membrane in different ways (e.g. with the

lipid tail groups, head groups, or in between). We showed this by consistently calculating
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Figure 5.2: A multiscale QSPR/QSKR/QSAR framework for particle transport across
lipid membranes, augmented with molecular simulations. In this study, we augment
the work of Chapter 4 with a detailed particle-based model, i.e. molecular dynamics
simulation. This paradigm allows for the validation of the molecular-scale mechanism
of membrane transport, the continuum model for which is then used for steady-state
permeability predictions (i.e. a QSPR) and also fed into a discrete kinetic or multi–
compartment model for transient permeability predictions (a QSKR). These kinetic
predictions can then be compared with one another, fed into physiologically-based
pharmacokinetic models, and used to construct more effective models for bioactivity
(QSARs).
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a size-independent partition coefficient Kc,c ≡ K = 1
d

∫ d/2
−d/2 e

−βG(z′)dz′, which has been

shown to strongly correlate with Ko/w, as well as an average transmembrane diffusivity D̄

for Dc and different estimates for dc including the entire thickness d, all calculated from

the simulation results. As a QSPR, Overton’s Rule does not account for compounds that

adsorb to or, more generally, that interact with the membrane interfacial/head-group

region. This includes a large set of the small compound space, including amphiphiles,

charged molecules, and, particularly, small molecule drugs. We have shown in our previous

work that the ISD model permeabilities evaluated with simulation results do not map well

to the single dimension of logK, principally due to these adsorbing particles with logK

values similar to hydrophobes that insert in the membrane core but with permeabilities

several orders of magnitude below those hydrophobes.

The main goal in developing effective QSPRs is to relate a compound via its es-

sential quantifiable descriptors to predict all structural, thermodynamic, and kinetic

properties of interest, in an accurate, efficient, and transferable manner. For parti-

cle membrane transport, quantitative structure-permeability relationships (themselves

sometimes known as QSPRs) should naturally incorporate primary descriptors per-

taining to the particle and membrane and secondary descriptors that relate to the

solute-membrane interactions, amongst others. This results in, for example, P =

P (size, surfacechemistry, shape, elasticity, etc.). For solutes that satisfy the physical

criteria of the ISD model (i.e. nondisruptive simple diffusion across the membrane),

the problem comes down to mapping the descriptors to D(z) and G(z). Marrink and

Berendsen lead the early charge in principles for solute-membrane QSPRs, showing that

solubility and permeability are well correlated with hydrophobicity/solubility in the high

density lipid tail group region and that small solute (MW < 50) permeability is more

strongly dependent on solute size than that of larger solutes (50 < MW < 300).

Figure 5.3 outlines some common QSPR approaches to linking a solute’s physicochem-
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ical properties to its steady-state permeability. Our intended approach is in blue.
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Figure 5.3: Comparison of approaches to QSPRs. Here, we present our approach and
those of others to quantitative structure-permeability relationships for the membrane
transport of small molecule compounds. While others often construct statistical models
with various combinations of structural, thermodynamic, and dynamic properties of the
particle and membrane, here we directly calculate free energy and diffusivity profiles
over the mechanistically-proven coordinate for a physically-relevant prediction of the
permeability, which can then be related back to the physicochemical properties of the
system.

Here, we draw inspiration from the work of Neale and Pomès, which sought to classify

a large set of molecular-scale compounds in their thermodynamics with lipid membranes.

The authors developed a semiquantitative classification of ISD PMF (G(z)) types based on

their major features, including the number and location of free energy features and relative

heights of those features. Figure 5.4 surveys some of the PMF types in this classification

system. As indicated above, we seek to represent a larger amount of compound space than

the typical hydrophobic/hydrophilic scale by accounting for compounds that favorably

interact with lipid head groups. In terms of the Neale-Pomès library of compounds, this

significantly expands our exploration of PMF space, from ∼25 to 85 percent of typical
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small compounds.
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G(z)
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z
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Figure 5.4: Semiquantitative PMF classifications from the work of Neale and Pomès.
Type 1 PMFs are characterized by a singular free energy feature–a central barrier–while
Type 2 PMFs inversely feature a singular central free energy well. Type 2b PMFs are
characterized by a central well and two intermediate barriers, while Type 3 PMFs have
two intermediate wells separated by a central barrier lower in free energy than the
initial and final states and Type 3* PMFs have two intermediate wells separated by a
barrier higher than the initial and final states.

The above matters necessitate a follow up study to Chapter 3 that includes (1) an

updated, better fitting QSPR for our data set and (2) an analysis of transient effects that

can potentially impact the principles obtained via steady-state assumptions.

5.3 Methods

5.3.1 Molecular simulations

As in Chapter 3, the study here concerns the modeling of the lipid bilayer membrane

transport for sub-nanometer particles of a spectrum of chemistries. In Chapter 3, we used

MD simulation to explore these sub-nanometer particles, specifically (1) confirming the

inhomogeneous solubility-diffusion model as a mechanistic description of sub-nanometer

particle membrane transport and (2) parameterizing the ISD model with simulation-

calculated free energies and diffusivities. Figure 3.5, panel (a) illustrates the particle part of

this model. Different chemistries were modeled through modulation of the Lennard-Jones
162



A quantitative structure-property and structure-kinetic relationship for the membrane transport
of sub-nanometer hydrophilic, hydrophobic, and interfacially active particles Chapter 5

well depths ε for the particle-lipid head group and particle-lipid tail group interactions.

Specifically, hydrophilic, hydrophobic, and “interfacially active” particles were designed

with weak head and tail group interactions, weak head and strong tail group interactions,

and strong head and weak tail group interactions, respectively. For further details, see

Chapter 3 and the corresponding publication.1

5.3.2 Quantitative structure-property relationship (QSPR)

We fit the PMFs calculated from the MD simulations to a phenomenological “triple-

Gaussian” PMF model (Figure 5.5) that generally includes five fitting parameters:

G = G(z; εPH , εPT ) = −α1e
− z2

2σ12 − α2

[
e
− (z−z2)2

2σ22 + e
− (z+z2)2

2σ22
]

(5.3)

where α1 and α2 are the heights of the central and interfacial PMF features, σ1 and

σ2 are roughly the widths of those features, and z2 is the offset of the two interfacial

Gaussian functions (equal and opposite) from the central Gaussian. In this model, α1 and

α2 effectively represent transfer free energies from the external aqueous environment to

the membrane center and membrane interface, respectively. This provides a more explicit

picture of the classification scheme of Neale and Pomès in that effectively 85 percent of

their PMF types can be explicitly mapped to (α1, α2) space (assuming that σ1, σ2, and

z2 are roughly constant across compounds). Indeed, we find upon model optimization

that the additional three parameters can be discarded without significant impact on

permeability predictions, due to the lower relative variance of these fitting parameters

across compounds relative to α1 and α2.

Furthermore, we have found that the transfer free energy features map well to a
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Figure 5.5: “Triple Gaussian” model for the transmembrane PMFs of small hydrophilic,
hydrophobic, and “interfacially active” particles. The intuition behind this phe-
nomenological PMF model is, unlike Overton’s Rule and transport across a layer of
hydrocarbons, to account both lipid head and tail groups in the anisotropic lipid
bilayer structure. This PMF model accounts for a wider range of transmembrane
PMFs, specifically covering Types 1, 2, 2b, and 3* in the Neale-Pomès library (inset).
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bilinear regression model of the molecular interaction parameters:


α1 = c11εPH + c21εPT + c31

α2 = c12εPH + c22εPT + c32

(5.4)

where c11, c21, c31, c12, c22, and c32 are regression fitting parameters. The consequences

of these linear free energy relationships (LFERs) are twofold: (1) a bidirectional ther-

modynamic paradigm for predicting transfer free energies from molecular interaction

parameters and vice versa, and (2) a direct and simple QSPR relating the permeability

to the molecular interactions:

P (εPH , εPT ) =
[ ∫ d/2

−d/2

eβG(z;εPH ,εPT )

D̄(z)
dz
]−1

(5.5)

where D̄(z) is the average diffusivity profile across all compounds. We found in Chapter 3

that the ∼0.5 nm particle diffusivity profiles were roughly chemistry-independent (within

statistical error), and given that the diffusivity profile contributes only linearly to the

permeability while the free energy profile contributes exponentially, the assumption of a

chemistry-independent diffusivity profile appears reasonable. As the diffusivity profiles

vary almost two orders of magnitude across the reaction coordinate, we found that

incorporating the z-dependence of the diffusivity still led to a much better fit than both

a chemistry-independent and constant diffusivity (as in Overton’s Rule). An analogous

QSPR for the mean first passage time (MFPT) rate constant kMFPT (εPH , εPT ) can be

constructed using Equation 4.4 and the free energy and diffusivity profile models (see

Chapter 4 for more details).
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5.3.3 Multi-compartment modeling

As in Chapter 4, we also directly link the microscopic analysis to a macroscopic

compartment model of membrane transport. The uniqueness here, however, lies in the

use of a real family of free energy and diffusivity profiles, as opposed to a toy model.

As G(z) and D(z) are fit using the molecular simulations, we directly connect MD to

continuum theory and compartmental models. Here, we augment the five-compartment

model of Chapter 4 to seven compartments (six layers), accounting not only for the donor

(D), receiver (R), membrane core (C), and membrane-water interfaces (I1 and I2), but

also for the membrane head group regions (H1 and H2) in which the hydrophobic and

“interfacially active” particles non-negligibly reside (Figure 5.6). Transfer between all

compartments is reversible and assumed to follow the law of mass action, and the rate

is additionally proportional to piecewise permeabilities Pi and the cross-sectional area

A of the slab geometry. Transfer across the UWLs occurs between the donor and first

interfacial compartments or between the second interfacial and receiver compartments,

with a permeability P0 ≡ D0/LUWL determined by diffusion over a flat free energy and

diffusivity landscape (and thus inversely proportional to the UWL thickness). Other

transfer processes are parameterized by modified versions of the ISD model:



P1 ≡
[
e−βG(−dC/2−dH

∫−(dC+dH)/2
−dC/2−dH

eβG(z)

D(z) dz
]−1

(headgroup entry)

P2 ≡
[
e−βG(−(dC+dH)/2) ∫ 0

−(dC+dH)/2
eβG(z)

D(z) dz
]−1

(midplane entry)

P3 ≡
[
e−βG(0) ∫ (dC+dH)/2

0
eβG(z)

D(z) dz
]−1

(midplane escape)

P4 ≡
[
e−βG((dC+dH)/2) ∫ dC/2+dH

(dC+dH)/2
eβG(z)

D(z) dz
]−1

(headgroup escape).

(5.6)

The piecewise permeabilities P1, P2, P3, and P4 correspond to headgroup region entry from

the donor-or receiver-side membrane-water interface, membrane core region entry from the

donor- or receiver-side headgroup region, membrane core region escape to the donor- or
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receiver-side headgroup region, and headgroup region escape to the donor- or receiver-side

membrane-water interface, respectively. ∆xD, dI , dH , dC , and ∆xR are the thicknesses

of the donor compartment, proximal and distal interfacial compartments, proximal and

distal headgroup regions, membrane core, and receiver compartment, respectively. As

in the previous chapter, here integral limits correspond to physical boundaries of layers

between the compartments and the free energies at the start of each step are normalized

with respect to the origin compartment. Again, this correction to the normalization allows

for incorporation of relative free energy features, incorporating the difficulty (or ease)

of escape from compartments for which a given particle experiences ease (or difficulty)

of entry, and produces roughy a single-particle metric by correcting for the holdup or

steady-state loading in the unmodified ISD model expression. The full system of ODEs

for this compartmental modeling scheme is thus:



dCD
dt

= − P0
∆xD

(
CD − CI1

)
dCI1
dt

= − 1
dI

((
P0 + P1

)
CI1 −

(
P0CD + P4CH1

))
dCH1
dt

= − 1
dH

((
P4 + P2

)
CH1 −

(
P1CI1 + P3CC

))
dCC
dt

= − 1
dC

(
2P3CC − P2

(
CH1 + CH2

))
dCH2
dt

= − 1
dH

((
P4 + P2

)
CH2 −

(
P1CI2 + P3CC

))
dCI2
dt

= − 1
dI

((
P0 + P1

)
CI2 −

(
P0CR + P4CH2

))
dCR
dt

= − P0
∆xR

(
CR − CI2

)

(5.7)

After solving the system of ODEs, the donor and receiver concentration profiles

are used to measure the flux through the membrane. As in the previous chapter, we

use generalizations of two standard experimental models for the (apparent) membrane
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Figure 5.6: Seven-compartment PAMPA model for interfacially active, hydrohpilic,
and hydrophobic compounds. The seven-compartment model here provides explicit
representation of the donor and receiver bins, membrane core region, proximal and
distal membrane headgroup regions, and membrane-water interfaces. Transfer between
compartments is reversible, and proportional to the relevant permeability and mem-
brane cross-sectional area, with the UWL thicknesses incorporated directly into P0.
Relative compartmental sizes are incorporated via quantitatively-relevant compartment
thicknesses.

permeability:


P̂ app(t) ≡ Papp(t)

P ss,isd
= dCR

dt

∣∣∣
t

VR
AC0P ss,isd

P̂ app,2(t) ≡ Papp2(t)
P ss,isd

= dCR
dt

∣∣∣
t

VR
A(CD−CR)P ss,isd

(5.8)

5.4 Results and Discussion

5.4.1 QSPR results

Figure 5.7 shows the linear free energy relationships (LFERs), between the particle-

lipid head and -lipid tail group interaction energies and the transfer free energies to the

membrane core and interface, resulting from the PMF model and bilinear regression of

α1(εPH , εPT ) and α2(εPH , εPT ). The LFERs clearly show that, for the central free energy

feature (transfer free energy from the bulk water to the membrane core midplane), the tail

group attraction plays an essential role–the higher the εPT , the higher the α1 and deeper

the central free energy minimum. For the intermediate feature (transfer free energy from
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the bulk water to the membrane headgroup region), the higher the head group attraction

εPH , the higher the α2 and deeper the intermedate free energy minimum. We found that

the bilinear regression model was essential to fitting the LFERs, as α1 is still slightly

sensitive to εPH and α2 is still slightly sensitive to εPT .

Figure 5.7: Linear free energy relationships between transmembrane transfer free
energies and pairwise molecular interaction energies in our QSPR. In addition to
our triple-Gaussian PMF model linking transfer free energies α1 and α2 the full
transmembrane free energy profile, we found that (a) α1 and (b) α2 could also be
linked back to particle-lipid head group and -lipid tail group interaction energies εPH
and εPT , thus providing a direct relationship between interaction energies and the
steady-state ISD permeability. Specifically, α − ε relationships mapped well to a
bilinear regression model (i.e., the data was more or less confined to a plane).

As a collective result of the LFER relating εPH and εPT to α1 and α2, the triple Gaussian

PMF model relating α1 and α2 to G(z), and the chemsitry-independent assumptions in

the D̄(z), we obtain a QSPR predicting the membrane permeability as a function of the

interaction energies. Figure 5.8 extends the analysis of Chapter 3, plotting P vs. K

(Fig. 3.8), to this two-dimensional parameter space in εPH and εPT . We plot the QSPR in

this study as well as Overton’s Rule for reference. This reveals a dramatic improvement in

permeability predictions whereby our QSPR closes the gap between predicted and “actual”

(MD) permeabilities, particularly for particles like P7 and P8 with strong head group
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interactions. Overton’s Rule, in this regime, overpredicts steady-state permeabilities by

several orders of magnitude. Despite the small training set in this initial exploratory

QSPR study, we find that our novel QSPR attains competitively high explanatory power

(R2 ∼ 0.91 vs. ∼ 0.85 for a somewhat recent QSPR2).

Figure 5.8: Expanding explanatory and predictive capabilities of Overton’s Rule to
a wider range of compound chemistries with our QSPR. Shown here, in the space
of particle-lipid head group and particle-lipid tail group interactions εPH and εPT ,
respectively, are predictions of the steady-state permeability from our QSPR (blue) as
compared with Overton’s Rule (orange). Our QSPR critically accounts for particles
that possess strong lipid head group affinities but not necessarily strong tail group
affinities.

5.4.2 Steady-state analysis

We leverage our QSPR first for steady-state analysis in the space of particle-lipid

head and tail group interactions (Figure 5.9). Panel (a) recapitulates the family of

PMFs in our training set, now predicted by the QSPR (i.e. not the original MD data),

ranging from Type 1 to Type 2 and Type 3* PMFs. Panel (b) plots the corresponding

steady-state transmembrane normalized concentration profiles predicted by the ISD model

(per Equation 4.7), revealing broad central peaks in concentration for hydrophobes in

the membrane center as well as narrower headgroup region peaks for interfacially active
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particles. Panel (c) is a collapsed version of our QSPR results in Figure 5.8, while panel

(d) is the corresponding projection in (α1, α2) transfer free energy space (for ease of

classification of the PMF types). Both panels show how the steady-state permeability

spans several orders of magnitude. P (εPH , εPT ) shows that, the higher the affinity, the

higher the permeability, with P rising faster with the tail group attraction εPT than for

the head group attraction εPH due in large part to the wider tail group region relative to

the head group regions. Similarly, P (α1, α2) shows that, the deeper the free energy wells

(higher the α), the higher the permeability, with P rising faster with α1 corresponding

to the central free energy feature in the tail group region for similar reasons. Panels (e)

and (f) then show the corresponding design rules for single-particle transport in terms of

kMFPT . An intermedium optimum appears for C type hydrophobic particles with modest

tail group affinity and weak head group affinity (alternatively, modest α1 > 0 and α2 ∼ 0).

This optimum results from the balance of two principal processes: membrane entry, faster

when entering deeper free energy wells, and membrane escape, faster when leaving high

free energy barriers. From the optimal intermediate hydrophobic chemistry, increasing

tail group attraction starts to penalize membrane escape more than it rewards membrane

entry; decreasing tail group attraction rewards membrane escape, but penalizes membrane

entry. As for the permeability, the particle-lipid head group affinity has a weaker effect

than tail group affinity on kMFPT . Permeabilities (representing bulk particle transport,

and scaling with the thermodynamic loading in the membrane) can be linked to their

corresponding MFPT rate constants through the MFPT in ISD relation (Equation 4.11).

As for Chapter 4, the results here show that, by accounting for the thermodynamic loading

in the membrane, the permeability metric swamps out the single-particle kinetic optimum

in the MFPT rate constant.

We extend the analysis of practical engineering design rules from Chapter 4 to this

family of sub-nanometer hydrophilic, hydrophobic, and interfacially active particles as
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Figure 5.9: Free energies and steady-state design rules with our QSPR. Shown here
are the (a) free energy and steady-state predictions from our QSPR, including (b) the
normalized steady-state transmembrane concentration profiles, “permeability maps” in
both (c) ε and (d) α space, and “MFPT rate constant maps” in (e) ε and (f) α space as
well (for all maps, the training set is noted by red asterisks). By expanding our trained
QSPR into broader design space, it becomes clear that P particularly from increased
tail group affinity or a deeper central free energy well, while kMFPT is optimized at
some intermediate hydrophobicity beyond which the membrane serves more as a trap
from a single-particle transport perspective.
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well. The steady-state flux across the membrane Jss(εPH , εPT , CD) ≈ P (εPH , εPT )CD, and

therefore bulk particle transport, can be tuned with the permeant design and donor-side

concentration. As shown in Figure 5.9, design affects both the single-particle kinetics

as well as the thermodynamic loading. Figure 5.10 shows the steady-state flux as a

function of head and tail group affinity and at a fixed donor-side concentration of 10−7

mg/mL. As before, design parameters–here, εPH , εPT , and CD–cannot simply be increased

without bound. As in Chapter 4, we plot the free volume “filling limit” at which an

infinitesimal point in the membrane fills its available space with particles loaded at

steady-state (i.e. on a pointwise basis). Practically speaking, since membrane loading

is highly sensitive to εPT , care should be taken in selecting fast permeants solely on the

basis of hydrophobicity–regardless of extensive donor-size concentration, above a critical

εPT (increasingly sensitive with head group affinity εPH), at least one point within the

membrane maximally loads with particles. At this critical affinity and likely much lower,

the particle loading will significantly impact the membrane structure and stability. In

the pointwise full state, the particular state along the membrane that is full should start

to rearrange lipids in the transverse direction, leading to severe membrane structural

deformations. Unlike Chapter 4, however, we do not show when the total membrane fills

its total available space with particle (i.e. the integral metric), as it falls outside the

range of chemistries studied here and is therefore irrelevant. Alternatively, the membrane

flux can be enhanced by increasing the donor-side concentration, which in addition to

hydrophobicity may impact aggregation in aqueous solution. In addition to free volume

constraints, several biological considerations are also expected to influence permeant

design. In Chapter 4, for example, we discussed cytotoxicity for particles like fullerenes.

Interfacially active particles here are a simplified and semiquantitative representation of

amphiphilic and charged particles, which themselves can have serious toxicity concerns as

well as problems in overcoming biological barriers like the immune system.
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Figure 5.10: Practical steady-state design rules with our QSPR. We illustrate the
hypothetical yet practical scenario in which the permeant design optimization on the
basis of lipid head group affinity εPH and lipid tail group affinity εPT , along with donor
compartment concentration CD (here set to 10−7 mg/mL), should consider physical
and biological constraints. Here, we simply show a free volume constraint line above
which at least one point in the membrane fills withs its available volume with particles,
therefore providing an upper limit for physical and biological effects on the membrane.

A critical step to bridging steady-state simulation results to transient scenarios like

experimental permeability assays is to first capture the influence of unstirred water layers

on steady-state permeability. Figure 5.11 shows the variation in permeability for the

initial training set of compounds across several decades in UWL thickness. For negligible

UWLs, the results without boundary layers are recovered–hydrophobic particles are the

highest in permeability, followed by the interfacially active and hydrophilic particles

(nearly indistinguishable from one another). Values at negligible UWL thickness vary

from ∼ 10−3 to 102 cm/s, or roughly five orders of magnitude. For experimentally-relevant

UWL thicknesses on the order of microns, the permeability rankings are undisturbed,

but the practical differences between them are negligible–permeabilities range from

∼ 10−3 to 10−1 cm/s, which tend to be on the upper limit of permeabilities observable in

permeabilities assays like PAMPA. For still thicker UWLs, the transport problem becomes

UWL diffusion-limited, and the chemistry-specific effects are negligible.
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Figure 5.11: Impact of UWLs on steady-state permeabilities. At steady-state, UWLs
provide additional resistances in series with the intrinsic membrane resistance. From
negligible to experimentally relevant UWLs on the order of microns, effective steady-s-
tate permeabilities drop several orders of magnitude, depending on the particle chem-
istry, but the ranking of permeabilities is unaltered.

After correcting for the “structure-property assumption” (i.e. projecting permeabilities

on head and tail group affinities instead of a single partition coefficient), there remain large

discrepancies between coarse-grained simulation compounds and their direct experimental

analogs. As a point of comparison, the P5 particle type in the Dry Martini model–

here, with a permeability prediction of 4.46x10−3 cm/s–is intended to correspond to

acetamide, which has been measured in PAMPA experiments with egg lecithin membranes

(predominantly composed of phopholipids) at (2.9+/-0.3)x10−4 cm/s. The reported

PAMPA value is corrected for the presence of a 120+/-40 µm UWL at least one the

proximal side of the membrane. Thus, this order of magnitude discrepancy between

simulation and experiment is not attributable to UWL effects at steady-state. For this

reason, we also examine transient effects that have the potential to muddle steady-state

measurements in experiment.
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5.4.3 Transient analysis

The other critical step in bridging to experiment lies in the incorporation of dynamic

effects. To address these up to experimentally relevant timescales, we turn to multi-

compartment modeling. Figure 5.12 shows the result of the seven-compartment model

parameterization via Equations 5.6. Panels (a), (b), (c), and (d) show the results in

chemistry (particle-lipid head and -lipid tail group interaction) space for headgroup entry,

core region entry, core region escape, and headgroup escape, respectively. Head group

entry kinetics (panel (a)) scale strongly and proportionally with increasing head group

interaction εPH , while tail group attraction εPT has a very weak effect. This is because

interfacially active particles (large εPH) are entering a free energy well in the membrane

head group region, while hydrophobic particles are gradually traveling down a free energy

landscape. Inversely, tail group entry kinetics (panel (b)) scale strongly with tail group

affinity and weakly with head group affinity, as hydrophobes (large εPT ) are entering a

well while interfacially active particles, along with hydrophiles, are entering a barrier.

Tail group escape kinetics (panel (c)) are large for interfacially active particles, as they

are again entering a well–this time on the other side of the membrane–and also exiting a

barrier; kinetics are small for hydrophobes, as they are exiting their central free energy well.

For head group escape kinetics (panel (d)), both head and tail group affinities have an

adverse effect, as increasing εPH and εPT generally reduces the central free energy barrier,

eventually to a free energy well, and adds intermediate free energy wells in the head

group regions. This is clearly shown in Figure 5.7. As a result, the membrane generally

acts as a trap, and effect that has been discussed here and in recent literature. However,

here we also show the impact of multiple traps that are separated by an intermediate

barrier. The results are therefore intuitive–for example, for a hydrophobic particle (large

εPT , small εPH), (1) headgroup entry is moderate, (2) core region entry is moderate, (3)
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core region escape is slow, and (4) headgroup entry is moderate. Alternatively, for an

interfacially active particle (small εPT , large εPH), (1) headgroup entry is fast, (2) core

region entry is slow, (3) core region escape is moderate, and (4) headgroup escape is

slow. For hydrophilic particles (small εPT and εPH), entry processes are slow and escape

processes are fast.

For this transient analysis, we take three case studies from the original training set–the

P8 interfacially active particle, P5 hydrophilic particle, and C1 hydrophobic particle. P8

again has two free energy wells separated by a barrier (Type 3* PMF), P5 has a singular

barrier (Type 1 PMF), and C1 has a singular well (Type 2 PMF). For the three case studies

and varying UWL thickness, the resulting parameterization of the seven-compartment

model results in vast differences in characteristic time scales. Figure 5.13 shows the two

slowest time scales beyond the equilibrium solution, obtained from eigenvalue analysis of

the system of ODEs (Eqns 5.7), as a function of unstirred water layer thickness LUWL and

chemistry. As before, time scales are determined from the inverse of the eigenvalues.3 As

we have illuminated in Chapter 4, the penultimate time scale roughly corresponds to the

equilibration of the donor and receiver compartments and therefore the elimination of the

membrane flux, while the third slowest time scale roughly corresponds to the achievement

of pseudo-steady-state. The timescales are largely chemistry-dependent. The penultimate

time scale τ5 is largest for hydrophilic and interfacially active particles (essentially over-

lapping) with minimal affinity for the membrane, and smaller for hydrophobic particles

that are attracted to the membrane core. The situation is different for the third slowest

times scale τ4, which is smaller for the hydrophiles and larger for the hydrophobes and

interfacially active particles due to their attraction to various regions of the membrane.

Together, these two time scales determine the window of pseudo-steady-state behavior

before which the membrane layers are dynamically loading and after which the donor

and receiver compartments are equilibrated. The time scales are also UWL-dependent–as
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(a) (b)

(c) (d)

Figure 5.12: Kinetic parameterization of seven-compartment PAMPA model for in-
terfacially active, hydrophilic, and hydrophobic compounds. Shown here are QSPR
predictions of piecewise permeabilities for membrane (a) head group region entry, (b)
tail group region entry, (c) tail group region escape, and (d) head group region escape,
as calculated by a modified version of the ISD equation (Equations 5.6). Roughly
speaking, head group entry scales with head group affinity, tail group entry scales with
tail group affinity, tail group escape scales inversely with tail group affinity, and head
group escape scales inversely with both head and tail group affinity.
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for the steady-state permeabilities with UWLs (Figure 5.11), here the penultimate time

scales become chemistry-independent at larger and larger UWL thickness.
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Figure 5.13: Characteristic time scales of seven-compartment PAMPA model for our
QSPR with UWLs

Figure 5.14 shows the results of the seven-compartment model for the hydrophilic,

hydrophobic, and interfacially active case studies, choosing (as before) 10 µm UWLs. Two

critical metrics in permeant design are (1) delivery amount (panel (a)) and (2) finite-time

delivery kinetics (panel (b)). These design metrics vary with chemistry. Depending on the

sensitivity of the experiments, and based on the time and concentration scales studied here,

it may appear that the initial growth rate of the hydrophilic particle system is closest to

its corresponding steady-state value, followed by the hydrophobic and interfacially active

particles (panel (b)). This is because the hydrophobic particles are dynamically loading

in the membrane core and, worse off, the interfacially active particles are loading in both

of the membrane headgroup regions. However, this normalized apparent permeability

information does not translate to larger delivery of the hydrophilic particles to the receiver

compartment at small times (panel (a)), as the absolute apparent permeability (obtained
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by rescaling the normalized apparent permeability with the corresponding steady-state

permeability) is still fastest for the hydrophobic particle system–in other words, the initial

growth rate is still faster for hydrophobic than hydrophilic. Ultimately, the delivery of

the hydrophilic particle system catches up, only for the hydrophobic particle system to

pass the hydrophilic system again when it reaches its own pseudo-steady-state. When

the interfacially active particle system reaches pseudo-steady-state, it catches up to

the hydrophilic system. The hydrophobic particle receiver concentration is ultimately

surpassed by the interfacially active and hydrophilic particle systems (slightly and more

notably, respectively) at long time or equilibrium.

(a) (b)

Figure 5.14: Delivery and apparent kinetics from seven-compartment PAMPA model
for our QSPR with UWLs. Shown here are the results of the seven-compartment model,
namely (a) the normalized receiver compartment concentration profiles and (b) the
apparent permeability profiles for the interfacially active, hydrophilic, and hydrophobic
chemistries. This analysis of (a) total delivery and (b) instantaneous apparent kinetics
demonstrates that, while some chemistries may reach the steady-state plateau faster
and for a long period of time, their intermediate delivery to the receiver compartment
may still be lower than others.

The results are also otherwise strongly chemistry-dependent. From the point of view of

just the donor and receiver compartments (not shown and panel (a) above, respectively), as
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is the case in experiment, the hydrophobic particle equilibrates faster than the hydrophilic

and interfacially active particles, whose equilibration are comparable. The benefit of this

multiscale modeling study, however, is that we can also zoom into various stages of the

membrane transport process. As in Chapter 4, the hydrophobic particle system loads

the membrane compartment at a faster initial rate than the hydrophilic system, which

plateaus and therefore reaches steady-state faster than the hydrophobic one (not shown).

In the membrane, the interfacially active particle loads and equilibrates more slowly

than the hydrophilic one (comparably to the hydrophobic system), principally due to its

rapid and larger loading in the proximal headgroup compartment H1. The loading of the

interfacially active and hydrophobic particles in H1 are different in magnitude, but level

off around the same time scales, both higher in loading and slower in leveling off than

the hydrophilic particle system. Interestingly, in the proximal interfacial compartment I1,

the hydrophilic and interfacially active particle systems achieve an intermediate plateau

raised relative to the hydrophobic one. While the transfer from the donor compartment to

I1 itself is chemistry-independent, it is important to note that the next step, head group

entry, is highly favorable for the interfacially active particles and, due to residual errors in

our QSPR, somewhat favorable for the hydrophilic particle system as well. This adjacent

sink is likely driving the higher rise in proximal interfacial compartment concentration,

which for long times levels out across all chemistries. It is precisely this leveling off in I1,

which also occurs in H1 albeit at different chemistries, that corresponds to relaxation in

distal headgroup and interfacial and receiver compartments. As for the proximal side,

the distal side head group concentrations level off at chemistry-dependent values, while

the distal interfacial concentrations–and receiver (panel (a)) concentrations, for that

matter–are essentially chemistry-independent.

As in Chapter 4, the compartmental model results here can be used to generate

transient design rules or a QSKR for the membrane transport that accounts not only for
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hydrophilic/hydrophobic particles but also those that adsorb to the membrane interface.

We do this specifically by plotting the apparent permeabilities across the entire interpolated

space of particle-lipid head group and -tail group affinity, for fixed system dimensions and

different times of measurement (Figure 5.15). At small times (∼ 1 µs, panels (a) and (b)),

this QSKR shows that the apparent kinetics are in fact fastest for particles of intermediate

hydrophobicity (moderate εPT and small εPH). Notably, this is in the same qualitative

region as the optimum in the MFPT rate constant, which described design rules for

single-particle transport (Figure 5.9, panel (e)). This small time design rule is thus a

consequence of the fact that modestly hydrophobic particles can both enter and escape

the membrane efficiently. At moderate times in the PSSA regime (∼ 102 s, on the order

of minutes, panels (c) and (d)), Overton’s Rule is qualitatively recovered–the stronger the

membrane affinity, particularly to the tail group regime, the faster the apparent kinetics.

At this time, the membrane has fully loaded with particles in both its head and tail group

regions, and the holdup or thermodynamic loading in the membrane feeds the outward

flux to the receiver compartment. At large times post-equilibration (∼ 103 s, on the

order of hours, panels (e) and (f)), we show (as in Chapter 4) that the failing to account

for falling concentration driving force in permeability definition 1 leads to a precipitous

decrease in apparent kinetics, and in fact the opposite (“inverse Overton”) design rule

that the lower the membrane affinity, the better. Nonetheless, permeability definition 2

preserves the steady-state trends by accounting for this falling driving force.

5.4.4 QSPR Interpolation/Extrapolation

We further tested our QSPR by exploring different regions of (α1, α2) space, and

therefore a broader interpolated and extrapolated range of PMFs. Barring solute- and

membrane-based differences in the precise location of the PMF features at the headgroup
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Overton’s 
Rule

(a) (b)

(c) (d)

(e) (f)

Figure 5.15: Our quantitative structure-kinetic relationship at various observation
times. Shown here are the apparent permeability predictions in particle-lipid head
group and particle-lipid tail group interaction space, using both PAMPA permeability
definitions 1 and 2, for small times (1 µs; panels (a) and (b), respectively), intermediate
times (100 s; panels (c) and (d)), and large times (1000 s; panels (e) and (f)). The
transient design rule can change dramatically depending on the time of observation,
with intermediately hydrophobic compounds crossing the membrane the fastest at
small times, then with Overton’s Rule qualitatively recovered at larger times, with
definition 1 additionally breaking down as a steady-state estimator at larger times and
suggesting the opposite design rule.
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and core regions, many typical small solutes can be projected onto this space using transfer

free energies from the corresponding translational PMFs. Figure 5.16 shows the result of

this projection, plotting the thermodynamic results of Chapter 3 along with the amino

acid side chain analog results of MacCallum. The projection shows that different classes of

side chain analogs fall in different regions of (α1, α2) space–cationic arginine and lysine fall

in the upper left quadrant due to their relatively barrier to cross the membrane center and

intermediate wells (roughly Type 3* PMFs), while anionic aspartic acid and glutamic acid

also fall in the upper left quadrant, but lower, also because of their potentially favorable

headgroup interactions (Type 3*); polar serine, threonine, and glutamine in the upper left

but closer to the α2 = 0 axis; and nonpolar and/or aromatic alanine, methionine, valine,

leucine, isoleucine, phenylalanine, and tryptophan fall in the upper right quadrant due to

their relatively monotonic well to cross (Type 2).

We tested our LFER specifically for a few side chain analog examples–lysine (cationic),

glutamine (polar), alanine (nonpolar), isoleucine (nonpolar), and phenylalanine (aromatic)–

by (1) collecting their transfer free energies from the MacCallum study, (2) backmapping

those α values to the interaction energies εPH and εPT (using the relationships of Equa-

tions 5.4), and (3) plugging those values into single-site particle free energy calculations

across an implicit solvent coarse-grained DPPC bilayer membrane (as in Chapter 3)

(Figure 5.16). The electrostatic interactions of lysine were accounted for by building them

into the head group interactions as εeffPH ≡ εPH − qP e
4πε0εrσPH . This procedure consequently

provides MD-calculated transfer free energies to then test with the α values of MacCallum,

thereby evaluating the LFER and QSPR. The results of this small test set are promising,

but chemistry-dependent. MD-calculated transfer free energies of alanine (green square)

compare well with the original values (blue upward-pointing arrow) This was expected

due to the fact that the effective alanine chemistry is an interpolation of the chemistries

in the original training set for the LFER/QSPR. Agreement is weaker for isoleucine and
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phenylalanine, whose originally large α1 and α2 values provide a test for extrapolation and

lead to overly dramatic interaction energies that then overpredict the transfer free energies.

Glutamine and lysine are shifted, primarily downward in α2, in their MD-calculated

values. One major reason for these poor predictions results from the inability of our

classical model and QSPR to capture more detailed interactions, most notably repulsive

interactions. In fact, there are several amino acid side chain analogs like serine, asparagine,

glutamic acid, aspartic acid, and arginine that cannot be tested here because the LFER

predicts at least one negative interaction energy value. Furthermore, a mismatch be-

tween the membranes in the MacCallum study and those in this study may have a large

effect on the compensation between α1 and α2. While the thermodynamic part of the

LFER/QSPR may seem amenable to testing with comparably-sized single-site particles,

testing the kinetic (permeability) part of the QSPR is practically more complicated due

to the anisotropy of the side chain analogs and therefore the potential breakdown of

the solubility-diffusion mechanism due at least to orientational effects. As Comer and

Chipot have shown, even for methanol, the translational ISD coordinate can be prone to

anomalous diffusion.

5.5 Conclusion

Here, we provide direct nexus from the physicochemical properties of a wide range

of molecular-scale compounds to the compounds’ membrane transport performance in

a macroscopic dynamical setting. First, we provided quantitative context for a recent

thermodynamic classification of solute-membrane interactions in terms of transfer free

energies. Through the MD simulations and statistical techniques, we related these free

energies back to the interaction energies between the particle and lipid head and tail

groups, in a simple way through linear free energy relationships. This thermodynamic part
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Figure 5.16: A novel 2D thermodynamic projection of common molecular compounds.
Shown here are the principal free energy features for small-molecule compounds that
map reasonably well to the triple Gaussian model, including the results in our study
(red stars) as well as the amino acid side chain analog data set of MacCallum (blue
arrow) and the results of backmapping then running free energy calculations on a subset
of the MacCallum data to test the predictive capability of our combined LFER+QSAR
(green square). Arrows are provided to show the deviations between the original and
backmapped then calculated values.
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to the model, together with a model for the transmembrane dynamics, provided a QSPR

relating the particle’s interaction energies to its steady-state membrane permeability.

We then broke the microscopic model down into parts and applied the corresponding

theoretical analysis to parameterize a macroscopic compartmental model that additionally

accounts for macroscopic unstirred water layers and donor and receiver compartments.

This multiscale framework, incorporating MD simulations, continuum theory, and compart-

mental modeling, consequently provided a QSKR where the interaction energies between

the particle and lipid head and tail groups were related to time-dependent membrane

transport kinetics.
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Chapter 6

A unified molecular/continuum

thermodynamic model for size and

chemistry effects on ∼1-10 nm

particle-membrane interactions

6.1 Abstract

Here, we leverage the power of molecular simulations to reduce the elusive and

chemistry-specific picture of NP-membrane interactions to a continuum description of

their structure and thermodynamics. We focus specifically on ∼1-10 nm, roughly spherical,

and rigid particles of varying affinities to the lipid head and tail groups of the membrane.

Through analyzing simulation-calculated order parameters, we provide a quantitative

framework for several standing continuum descriptions of NP-membrane interactions as

well as some completely novel descriptions. This analysis provides a predictive framework

for the design-specific effects of a given nanoparticle on its stable and metastable interaction
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states and general thermodynamics of interaction with lipid bilayer membranes.

Figure 6.1: NP-membrane state diagram for particles of varying size and surface
chemistry. Shown here are the results from the preliminary MD simulations of ∼1-10
nm nanoparticles of varying size (diameter Dp), particle-lipid head group affinity (εPH),
and particle-lipid tail group affinity (εPT ) with a single-component, fluid-phase DPPC
lipid bilayer. The exploration of this space reveals a variety of interaction modes and
mechanisms that we outline in more detail, particularly for larger NPs, across this
chapter.

6.2 Introduction

For a given NP-membrane system, a picture of the complete set of interaction states

and the free energy differences and mechanisms of transport between them provides
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a complete picture from which all properties can be extracted, including equilibrium

populations, membrane structure, kinetic rates (of translocation, insertion, wrapping,

etc.), and fundamental predictions of dynamic biodistribution outcomes. Simulation order

parameters provide a clearcut method to quantitatively characterize complex molecular-

scale processes in soft matter systems. The relative population of two interaction modes

(or states) for a given NP-membrane system is proportional to the free energy difference

between them, per the Boltzmann distribution:

Xi = X0exp(−β∆Gi) (6.1)

where X0 and Xi are the populations (probabilities, concentrations, etc.) of the reference

state and state of interest, respectively, β = 1/kBT , and ∆Gi is the free energy difference

relative to the reference state.

Small, molecular-scale systems are significantly impacted by thermal fluctuations, and

thus are often characterized by a wide spectrum of states with nonnegligible entropic

driving forces. The membrane interaction of molecular-scale (<∼ 1 nm), homogeneous,

isotropic, and rigid solutes is well-described by the inhomogeneous solubility-diffusion

(ISD) model, wherein the anisotropy of the membrane-water system is reduced using a

transverse displacement coordinate, perpendicular to the plane of the membrane, and the

relative solubility of the particle is described by a z-dependent partition coefficient:

K(z) = exp(−βG(z)). (6.2)

In this ISD model, the transfer between states is described by the transverse free energy

and diffusivity profiles. Transport in and out of the membrane is fast (∼ns) and facile.

While the precise shape of the free energy profile, and therefore maximally and minimally

populated solute locations across the membrane, may vary from compound to compound,
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the applicability of this model is fairly widespread in chemical space, describing a range

of weak to moderate lipid head and tail group affinities for which the solubility-diffusion

mechanism is appropriate. In other words, while the interaction modes (e.g. symmetric

membrane insertion or insertion in the lipid head group region) may be chemistry-

dependent, the mechanism (motion across the z-coordinate) is chemistry-independent.

At larger, colloidal particle scales, membrane interaction modes and mechanisms

are characterized more by mild fluctuations about well-defined ground states. These

interactions involve slower, more gradual processes involving collective lipid motions

and large-scale membrane deformations. Interaction modes are chemistry-dependent–

i.e., particles with large head group affinities interact in a fundamentally different way,

involving bilayer wrapping with lipid head groups in contact with the particle, from those

with large tail group affinities, involving monolayer wrapping with particle-lipid tail group

contacts. While probing the kinetics of these larger-scale particle-membrane interaction

processes are often prohibitive by molecular-scale physics-based modeling standards, there

are some candidates for kinetically-relevant reaction coordinates. Furthermore, membrane

elastic theory provides a reasonable starting point for describing the mechanics, and

therefore the thermodynamic cost, of bilayer wrapping, and can potentially be extended

to monolayer wrapping and other large-scale interaction processes. The Canham-Helfrich

Hamiltonian (sometimes referred to as the Spontaneous Curvature Model) quantifies

the cost of wrapping in terms of a bending and sometimes tension contribution from a

membrane modeled as a quasi-two-dimensional elastic sheet (on a bilayer or monolayer

basis, respectively). The interaction strength of NP-membrane contacts is well-described

by standing theories for intermolecular forces, like Hamaker theory.

Thus, there are two disparate regimes of NP-membrane interactions that must be

bridged to explain and predict the impact of a range of nanoscale solutes: the molecular

scale, where fluctuations are important and solubility models work well, and the colloidal
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scale, where interaction modes fluctuate about a small set of ground states and are

well described by membrane elasticity. In between, the influence of relative nanoscopic

particle and membrane length scales, anisotropy and chemistry of the lipid membrane,

high-resolution membrane elasticity, “orthogonal” particle design parameters (e.g. shape,

elasticity, molecular roughness), and energy-entropy breakdown of interaction processes

are all unclear. For just particle size and chemistry variations, it is possible that the

transition between the size regimes is chemistry-dependent, and also that there are regions

in size-chemistry space where the theories for both regimes break down and a novel

theoretical description is required.

Here, we take a fundamental physical approach to the development of a new predictive

framework for NP-membrane interactions, as even a basic picture of the interaction modes

and mechanisms is unclear in the critical ∼1-10 nm size regime. We take a reductionist

approach, mapping out a preliminary design subspace in NP size (∼1-10 nm) and surface

chemistry (weak to strong NP-lipid head and tail group interactions) using detailed

molecular dynamics simulation with quantitative structural and order parameter analysis

to determine the bounds of different behaviors (e.g. solubilization, bilayer and monolayer

wrapping, budding, micellization, pre-pore and pore formation) and apply more rigorous

sampling and free energy calculation techniques where necessary to the study of the

physical pathways and driving forces. In particular, we want to pinpoint exactly where ex-

isting continuum thermodynamic theories (e.g. solubility-diffusion, large-scale membrane

elasticity, etc.) are insufficient in explaining the stability and metastability limits of inter-

action. We conclude with a unified molecular if not continuum thermodynamic model that

provides configurational and free energy predictions for the major behaviors and therefore

a preliminary framework for the interplay of size and surface chemistry with NP shape,

softness, roughness, and crystallinity, amongst other design parameters. This is similar to

the approach of Van Lehn et al. This framework can be used to guide experimental studies,
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avoiding an expensive high-throughput experimental screening protocol and narrowing

the vast design space that currently mires pharmacological, toxicological, and consumer

product advancements. Inversely, experiments and higher-resolution simulations can be

used to confirm the most consequential results from simulation.

The goal is thus, for ∼1-10 nm NPs of varying head and tail group interaction, to

quantify and classify stable (and metastable) NP-membrane interaction modes from

detailed molecular simulations in terms of some simplified continuum picture (structural

states of the NP-membrane complex).

6.3 Methods

6.3.1 Molecular simulations and molecular thermodynamics

As with our previous MD simulations, here we leverage the implicit solvent coarse-

grained Dry Martini model along with our own particle model. Here, we first focus

on the effect of size and surface chemistry on the membrane interactions through the

examination of 0.47, 1.88, 4.23, and 9.87 nm particles of varying particle-head group and

-tail group affinity. Particles are built by cutting spheres out of a simple cubic lattice,

conferring them with nanoscale roughness. Macroscopic [spherical] shape, softness (rigid

limit), roughness, and crystallinity are all kept relatively constant at first. The size of

the DPPC bilayer is tuned to accommodate the various sizes of the particles–for 0.47

nm particles, we use a 128-lipid, ∼6.4 by 6.4 nm membrane, while for 1.88 and 4.23 nm

particles we use a 2048-lipid, ∼26 by 26 nm membrane and for the 9.87 nm particles we

use a 32768-lipid, ∼104 by 104 nm membrane.

For each particle-membrane system, we first run a preliminary 100 ns simulation with

the particle and membrane initially in a non-interacting state. Over the course of the
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simulation, we monitor a number of order parameters, including:

• Global and local displacement ∆z and ∆z(rc) respectively between the particle

and the membrane in the transverse direction, as an indicator of the proximity

between the two. The local displacement concerns the membrane position in

the lateral proximity of the particle, while the global displacement concerns the

average position across the entire fluctuating membrane and is therefore sensitive

to large-scale undulations.

• Coordination numbers between particle and lipid head/tail groups based on their

number of contacts. We include both a total (summation) metric N+ and asymmetry

(difference) metric N− that accounts for differences in coordination between the

upper and lower hemispheres of the particle N1 and N2, respectively. We track

contacts of the particle with both the lipid head and tail groups (i.e., Nhead
+ , Nhead

− ,

N tail
+ , and N tail

− ).

6.4 Results and Discussion

6.4.1 Sub-nanometer particle-membrane thermodynamics

We first review the study of ∼0.5 nm NPs, taking a closer look at the interaction

modes and thermodynamics.

Figure 6.2 shows an initial probability distribution summary of the order parameter

analysis across all chemistries at ∼0.5 nm size. Again, for this size of NP, we use a 128-

lipid/∼6.4x6.4 nm DPPC bilayer. Probability distributions are normalized, and reflect

the dynamical interaction from 0 to 100 ns in the simulations (i.e. not discarding for

equilibration). The local displacement coordinate ∆z(rc) (panel (a), using a 1 nm in-plane

radial cutoff for the lipids counted in the displacement) shows that the P8 interfacially
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active particle strongly adsorbs to the membrane head group regions (interface), with the

P7 particle less so, and that the C1, C3, and C5 hydrophobic paricles insert stably into the

membrane core (with the preliminary population qualitatively scaling with the tail group

attraction and the C1 particle lower and broader due to its slightly larger head group

attraction). The remaining particles (P6 through P1) do not significantly interact with the

membrane over the course of the 100 ns simulations. The small-scale physics of the NP-

membrane interaction is evident by the negligible differences between the local and global

displacement metrics ∆z(rc) and ∆z, the latter of which (panel (b); here, determined

by a 2.5 nm in-plane radial cutoff) would show if membrane deformations were relevant.

This information is consistent with the coordination metric results (panels (c) through

(f)). Specifically, the total head group coordination number, presented as a fraction of the

maximally attainable head group coordination number across all chemistries at this size

(Nhead
+ /Nhead,max

+ ) shows strong head group binding for P8 and weak binding for P7 (panel

(c)). Due to the small size of these particles and therefore the small total number of lipid

contacts, especially for hydrophilic and hydrophobic particles, all head group contacts are

essentially symmetric (Nhead
− /Nhead,max

+ ∼ 0, panel (d)). The total tail group coordination

number, itself presented as a fraction of the maximally attainable tail group coordination

number across all chemistries at this size (N tail
+ /N tail,max

+ ), shows membrane insertion for

the C1, C3, and C5 particles (panel (e)) that is symmetric, as N tail
− /N tail,max

+ ∼ 0 (panel

(f)). We thus conclude that the P8 particle is strongly adsorbed to the membrane, almost

wrapped completely by lipid head groups, while the P7 particle is more weakly adsorbed,

the C1, C3, and C5 particles are more or less symmetrically inserted in the membrane.

For the other particles, NP-membrane interaction is unfavorable.
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Figure 6.2: Order parameter analysis of ∼0.5 nm NP-membrane interactions. Shown
here are the local displacement ∆z(rc), global displacement ∆z, head group coordi-
nation number Nhead

+ , head group coordination asymmetry number Nhead
− , tail group

coordination number N tail
+ , and tail group coordination asymmetry number N tail

− for
the ∼0.5 nm NP-membrane interactions, flanked by the final simulation snapshots.
Due to their small, nondisruptive nature, these small particles show minimal differences
between ∆z(rc) and ∆z, and coordination metrics are generally symmetric.
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6.4.2 ∼10 nm particle-membrane thermodynamics

Next, we study large/colloidal-scale ∼10 nm NPs to explore behaviors commonly

predicted with continuum elastic membrane models.

Figure 6.3 shows the probability distribution summary of the order parameter analysis

now for these larger particles across all chemistries. For this size of NP, we use a 32768-

lipid/∼104x104 nm bilayer. ∆z(rc) (again, panel (a)) shows positive offset for P8 particles

and negative offset for most others. The several reasons for these observations. The P8

particle is positively offset because of its full wrapping with the membrane from above

it; the wrapping process brings the membrane around the particle to the extent that

the particle’s center of mass passes below that of the local membrane environment, and

further below that of the full membrane (∆z, panel (b) for P8). The global displacement

coordinate (calculated here with a 50 nm in-plane radial cutoff) also more clearly shows

how the P7 particle is wrapped with the bilayer as well. The P6 particle is more adsorbed

than wrapped, and as such, ∆z(rc) and ∆z for P6 are negative (the particle center of

mass is above that of the membrane). Particles P5 through P1 do not enter the membrane

over the course of the simulation, and barely come in contact with it; also, their diffusion

in the bulk implicit solvent is slow. As such, these particles’ displacements show an offset

from the membrane, but broadly so due to the short time scale of the simulation. Particles

C1, C3, and C5 show slight negative displacements, less so in the global displacement,

indicative not of bilayer wrapping but membrane insertion or wrapping by the lipid

monolayers (with the tail groups in contact with the particle). The differences between

∆z(rc) and ∆z demonstrate the influence of large-scale membrane deformations. The

coordination metrics shine further light on these interaction modes. Nhead
+ /Nhead,max

+

shows (panel (c)) indeed that the P8 and P7 particles are wrapping with the head

groups, and that the P6 particle is docking to the membrane. Nhead
− /Nhead,max

+ provides
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differentiation (panel (d)) between P8 full wrapping and P7 partial wrapping in that

the metric is approximately zero for the former and offset from zero for the latter (< 0,

as the lower particle hemisphere is disproportionally coordinating with the membrane).

P6 adsorption also corresponds to a less negative Nhead
− /Nhead,max

+ . N tail
+ /N tail,max

+ shows

(panel (e)) that the C1, C3, and C5 particles are indeed coordinating with the membrane

tail groups. As a result of its strong and extensive head group binding, P8 displays

non-negligible tail group binding as well. N tail
− /N tail,max

+ furthermore shows (panel (f))

that the coordination of the hydrophobes is potentially asymmetric, with preferential

coordination of the particle lower hemisphere (which in all of the 9.87 nm hydrophobic

particle trajectories here is a result of their membrane entrance from above it). This is

consistent with these particles’ slightly negative displacement, and may suggest that the

particles are still inserting in the membrane and that much longer simulations may be

prudent. We otherwise conclude that the P8 particle wraps fully, P7 wraps partially, P6

adsorbs, P5 through P1 freely diffuse, and C1, C3, and C5 wrap with the lipid monolayers.

To further explore the hydrophobic particle insertion processes, and also to explore

whether or not bilayer and monolayer wrapped interfacially active and hydrophobic

particles, respectively, would even bud or micellize respectively from the rest of the bilayer

membrane, we uniformly extended the time of all ∼10 nm NP-membrane simulations to

1 µs (1000 ns). No major configurational changes were observed, suggesting either that

the configurations have reached their stable states or that they were stuck in metastable

states separated from their stable pinched states by prohibitively large thermodynamic

barriers and/or dynamical limitations.
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Figure 6.3: Order parameter analysis of ∼10 nm NP-membrane interactions. Shown
here are the local displacement ∆z(rc), global displacement ∆z, head group coordi-
nation number Nhead

+ , head group coordination asymmetry number Nhead
− , tail group

coordination number N tail
+ , and tail group coordination asymmetry number N tail

− for
the ∼10 nm NP-membrane interactions, flanked by the final simulation snapshots.
These larger particles invoke significant macroscopic membrane deformations; depend-
ing on their precise chemistry, they either wrap with the bilayer as a whole to interact
with the lipid head groups or part the monolayers to interact with the tail groups.
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6.4.3 ∼2 nm particle-membrane thermodynamics

Next, we study ∼2 and 4 nm NPs, whose interaction modes and mechanisms with lipid

membranes are much less clear. For these two sizes of NPs, we use a 2048-lipid/∼26x26

nm bilayer.

Figure 6.4 shows the probability distribution summary of order parameters across

all chemistries at ∼2 nm size. ∆z(rc) (panel (a)) shows a slightly negative offset for

P8 and P7 particles, which similar to the smaller ∼0.5 nm interfacially active particles

appear to adsorb to the membrane, and is ∼0 for C1, C3, and C5 hydrophobes that

appear to insert into the membrane core. The results for ∆z (panel (b), calculated here

with a 13 nm in-plane radial cutoff) are similar, with the exception of P8 whose global

displacement is ∼0. This is likely due to large-scale membrane deformations that blur

the local offset in a membrane adsorbed state. Particles P5 through P1 do not enter the

membrane over the course of the simulation, and diffuse in the bulk. As for the ∼0.5

nm particles, Nhead
+ /Nhead,max

+ shows (panel (c)) strong head group binding for P8 and

weak binding for P7. Nhead
− /Nhead,max

+ provides differentiation (panel (d)) between P8

strong adsorption and P7 weak adsorption in that the metric is approximately zero for

the former and offset from zero for the latter (< 0, as the lower particle hemisphere is

disproportionally coordinating with the membrane). As was the case with the smaller

particles, N tail
+ /N tail,max

+ shows (panel (e)) that the C1, C3, and C5 particles are indeed

coordinating with the membrane tail groups. As a result of the strong and extensive

head group binding, P8 displays non-negligible tail group binding as well. N tail
− /N tail,max

+

shows (panel (f)) that C1, C3, and C5 particle membrane insertion is roughly symmetric.

We conclude that P8 tightly binds to the membrane, P7 more loosely binds, P6 through

P1 do not interact with the membrane and diffuse in the bulk, and C1, C3, and C5

hydrophobes symmetrically insert in the membrane.
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Figure 6.4: Order parameter analysis of ∼2 nm NP-membrane interactions. Shown
here are the local displacement ∆z(rc), global displacement ∆z, head group coordi-
nation number Nhead

+ , head group coordination asymmetry number Nhead
− , tail group

coordination number N tail
+ , and tail group coordination asymmetry number N tail

− for
the ∼2 nm NP-membrane interactions, flanked by the final simulation snapshots.
Relative to the ∼0.5 nm NP-membrane interactions, these larger NPs induce small
membrane deformations to maximize the relevant lipid head or tail group interactions,
resulting for some cases in small differences between ∆z(rc) and ∆z as well as minor
asymmetries in the coordination metrics.
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6.4.4 ∼4 nm particle-membrane thermodynamics

Figure 6.5 reports the probability distribution summary of order parameters across all

chemistries at ∼4 nm size. Again, ∆z(rc) (panel (a)) shows how full bilayer wrapping

(here, in the P8 case as for the ∼10 nm P8 particle) results in a positive offset, as the

particle center of mass drops below that of the local membrane environment. (Also, as

for the ∼10 nm P8 case, the global displacement offset, panel (b) and calculated here

also with a 13 nm in-plane radial cutoff, is more dramatic than the local displacement

one, as the membrane is globally deforming to accomodate the wrapped complex.) The

∼4 nm P7 particle is more adsorbed than wrapped, and as such, ∆z(rc) and ∆z for

P7 are slightly negative (the particle center of mass is above that of the membrane).

Particles P6 through C5 do not enter the membrane over the course of the simulation,

and diffuse–quite slowly–in bulk. Through ∆z(rc) and ∆z, C1 and C3 appear to insert

roughly symmetrically into the membrane. N tail
+ /N tail,max

+ shows (panel (e)) that the C1

and C3 particles are indeed coordinating with the membrane tail groups. However, their

tail group coordination is uniquely asymmetric; as shown in panel (f), N tail
− /N tail,max

+ for

C1 and C3 is offset and especially so for C1. The degree of asymmetry, ∼5% for the ∼4

nm C3 particle but almost 30% for C1, is much more definitive than for the large-scale

∼10 nm particles of corresponding chemistry. As for the ∼0.5 and ∼2 nm particles,

Nhead
+ /Nhead,max

+ shows (panel (c)) strong head group binding for P8 and weak binding

for P7, and due to its unique configuration, a non-negligible head group coordination

for C1. As for the other NP sizes, Nhead
− /Nhead,max

+ provides differentiation (panel (d))

between P8 full wrapping and P7 adsorption in that the metric is approximately zero for

the former and offset from zero for the latter (< 0, as the lower particle hemisphere is

disproportionally coordinate with the membrane). We conclude that P8 wraps fully with

the membrane, P7 adsorbs, P6 through C5 freely diffuse, and C3 and C1 asymmetrically
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insert into the membrane. In what follows, we explore the ∼4 nm C1 NP-membrane

system in more detail, with much more extensive sampling. Given the differences between

C3 and C1, it seems that this asymmetric insertion may be at least partly a function

of the chemistry–asymmetry is more severe for C1, which has a larger lipid head group

affinity. However, as we will show, this asymmetry is highly sensitive to several other

design parameters.
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Figure 6.5: Order parameter analysis of ∼4 nm NP-membrane interactions. Shown
here are the local displacement ∆z(rc), global displacement ∆z, head group coordi-
nation number Nhead

+ , head group coordination asymmetry number Nhead
− , tail group

coordination number N tail
+ , and tail group coordination asymmetry number N tail

− for
the ∼4 nm NP-membrane interactions, flanked by the final simulation snapshots.
Relative to ∼2 nm NP-membrane interactions, these larger NPs induce still larger
membrane deformations, with coordination asymmetries being sensitively dependent
on the precise NP chemistry.
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We report the completely novel and nontrivial asymmetric insertion and translocation

mechanism of nanoscale (∼4 nm) hydrophobic, rough, crystalline nanoparticles (NPs)

with a symmetric planar lipid bilayer membrane. In this mechanism, the NP rapidly

inserts into the membrane, but with preference towards the proximal leaflet, resulting

in the local formation of a proximal monolayer hydrophobic pre-pore and the global

formation of bilayer curvature. Figure 6.6 shows that this asymmetric mode of insertion is

characterized by a single-leaflet hole formation (panel (b)), whereby the upper membrane

leaflet forms a discontinuous phase including a hole and the NP is exposed to the external

solvent environment. The distal (lower) leaflet (panel (c)) appears to remain continuous,

and wraps around the NP. In this configuration, the membrane actually bends towards

the local particle displacement from the membrane–its bends upwards when the particle

is displaced towards the upper leaflet. This mechanism is similar to wedging induced

by integral membrane proteins, but here with a spherical NP that standing continuum

theories would predict to symmetrically insert and with membrane curvature induced

in the opposite direction due to the differences in area between the upper leaflet that is

more laterally displaced than the lower leaflet.

For a better idea of the stability of this interaction configuration, we extended the

original short 100 ns simulation to a massive 10 µs one. The quantify the asymmetry

across this trajectory, we again use the N tail
− coordination asymmetry metric (Figure 6.7,

panel (a)). Asymmetric modes of insertion (in competition with symmetric insertion)

are characterized by nonzero differences in coordination between the upper and lower

hemispheres of the particle, initially in the negative direction due to the approach of

the particle from the top and therefore the preferential lipid tail group coordination

of the lower hemisphere of the particle. The initial asymmetric insertion in the upper

leaflet is long-lived (O(100 ns-1 µs)). The transition to the equivalent stable equilibrium

conformation in the opposite leaflet takes place through collective lipid motions. A
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(a) (b) (c)

Figure 6.6: Simulation snapshots of the asymmetric membrane insertion of ∼4 nm
hydrophobic NPs. Shown here are simulation snapshots after 100 ns of simulation
time of the (a) side, (b) top, and (c) bottom views of the 4.23 nm C1 NP-membrane
interaction mode. Asymmetry is evident in the slightly negative displacement of the
NP relative to the local bilayer height, as well as a hydrophobic hole in the upper
membrane leaflet while the lower leaflet wraps around the particle.

metastable state of symmetric insertion also exists. The NP attempts to symmetrize

several times, remaining at symmetry for several nanoseconds at a time before returning

back to the original leaflet. Several symmetry formation and breakage events occur with

fleeting residence in the opposite symmetry breaking configuration. Finally, at around

7 µs, the NP “flips” to the other leaflet, remaining there for O(1 µs). The dynamical

simulation is summarized in a putative potential of mean force (PMF) in the 2D space of

total tail group coordination number N tail
+ and the tail group coordination asymmetry,

discarding the initial membrane insertion data (0 to ∼10 ns) and therefore presumably

capturing a equilibrium sampling distribution (panel (b)). This appears to prove the

stability of an asymmetric insertion configuration, as the two equivalent asymmetric states

should be degenerate and equally favorable. Indeed, the PMF is triple-welled, suggesting

two equivalent asymmetric insertion states and a central symmetric insertion (at 0). All

stable and metastable insertion states are separated by subtle free energy differences

within the range of thermal fluctuations.
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(a) (b)

Figure 6.7: Simulation dynamics and thermodynamics of the asymmetric membrane
insertion of ∼4 nm hydrophobic NPs. Shown here for the 4.23 nm C1 NP-membrane
system are the (a) tail group coordination asymmetry metric N tail

− trajectory and
(b) putative free energy landscape in N tail

− and N tail
+ , both across the extended 10

µs simulation. Hopping is evident from asymmetric state to asymmetric state, with
intermediate occupation of the symmetric state, resulting in free energy basins for the
two asymmetric states and a very subtle basin for the symmetric one.

We have thoroughly probed this asymmetric insertion phenomenon to prove its

stability. Additional stability and kinetic trapping tests have included: (1) variation of

initial condition and (2) forced symmetry through external biasing. In terms of (1), a

NP initialized below the membrane (at equal and opposite initial displacement) rapidly

inserts and remains preferentially inserted in the opposite, lower leaflet for hundreds of

nanoseconds. In terms of (2), we forced symmetry through combined use of an umbrella

restraint on the NP-bilayer center of mass separation and individual out-of-plane position

restraints on each lipid; after symmetrizing the insertion and releasing both restraints,

the NP returned to asymmetry within nanoseconds.

This interaction mechanism is highly sensitive to NP design–increased particle size, lipid

head and tail group affinity, average surface roughness, and crystallinity (vs. amorphous

structure) appear to promote asymmetry (Figure 6.8). The size effect is expected to
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be a result of the sensitivity of the system to NP-bilayer mismatch–when the particle

diameter and membrane thickness are of comparable length scales, the membrane may

reorganize to either match the precise particle length scale or reorganize itself completely.

We are in the process of studying many intermediate particle sizes at the same chemistry,

roughness, and crystallinity–0.94, 1.41, 2.35, 3.29, 3.76, and 4.7 nm. It appears that

asymmetry may be more and more common for larger particle sizes, but the precise

interaction mechanism and thermodynamic stable state for a given particle size is at the

present unclear. Chemistry, specifically an attraction to both lipid head and tail groups,

could be essential to asymmetry, as shown by the differences between the ∼4 nm C1 and

C3 particle results. We find that roughness is also a significant factor. Particularly, the

length scale of the asperities relative to the length scale of the coarse-grained lipids appear

to be determinate in the overall mode of NP-membrane interaction. In our model, we can

modulate roughness by the intra-bead spacing in the particles, which varies metrics like the

RMSD roughness. We are in the process of studying smoother particles at the same size

and crystallinity, and for increasing tail group attraction, we have observed a more trivial

transition in interaction states from no interaction to symmetric insertion to symmetric

wrapping with the lipid monolayers. Interestingly, we find in preliminary data that,

while average surface roughness does matter, the exact arrangement (i.e. crystalline or

amorphous arrangement) at constant particle size, chemistry, and average surface surface

roughness may not –amorphous rough NPs seem to prefer the asymmetric insertion state.

As the mechanism is implicated with membrane undulations, the asymmetry is also

sensitive to system size, and amplified for larger and larger membranes.

6.5 Preliminary conclusions and future work

In these preliminary results, we have found the following:
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Sensitivities to:

chemistry

size

average roughness

topology/crystallinity

Figure 6.8: Sensitivity of asymmetric membrane insertion to NP design. From our
initial simulations, there is evidence to show that asymmetric NP insertion is strongly
dependent on NP size, chemistry, roughness, and topology. Asymmetry disappears or
diminishes for reduced head group affinity, reduced roughness, and amorphous NPs,
whereas for size, asymmetry could be a more general feature of large-scale hydrophobic
NP-membrane interactions.

• For ∼0.5 nm NPs, the inhomogeneous solubility-diffusion model suffices to describe

the free energy and dynamical landscapes (as we found in Chapter 3), and therefore

the suite of thermodynamic and dynamic properties, of the interactions with and

transport across simplistic DPPC lipid bilayer membranes. In previous chapters, we

were furthermore able to reduce this information to structure-property and structure-

kinetic relationships for the steady-state and apparent membrane permeability,

respectively.

• For ∼10 nm NPs, existing elastic theories appear to describe some discrete states of

interaction (e.g. bilayer and monolayer wrapping of large interfacially active and

hydrophobic particles, respectively) well, but there is no surefire reaction coordinate

for a given chemistry, let along a diffusion model and any analysis of dynamic effects.

• For ∼2 nm NPs, the inhomogeneous solubility-diffusion model breaks down across

a wide range of particle chemistries. While in Chapter 3, we found that the

local displacement gives a more intuitive thermodynamic picture than the global

displacement, the mechanistic reaction coordinate for particles of ∼2 nm size is
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unclear. There is evidence in this range, and sometimes for smaller particles, for

anomalous diffusion effects and dynamic effects. The potential for dynamic effects

further complicates the search for a mechanistic coordinate, and demotivates it

due to the potential “cancellation of errors” anyway in that particles may still

appear to follow the global displacement coordinate without systematic deviations

in membrane shape and NP orientation, amongst other slow variables.

• For ∼4 nm NPs, there are many complications to the development of thermodynamic

let alone mechanistic models. Simple solubility-diffusion models certainly break down

due to the slower particle orientational dynamics and membrane disruption caused

by any non-negligible NP-membrane chemical affinities, but there is no intuitive

framework for building an elastic model. Traditional elastic models fail to capture the

nanoscale effects of, for example, high-curvature bilayer wrapping around interfacially

active particles and, perhaps most interestingly, the asymmetric, “inverse-membrane-

curvature-inducing” of hydrophobic particles. A modified, separate-leaflet and

monolayer-based asymmetry elastic model may work for describing the stability of

the latter configuration, but the mechanistic and dynamical picture is very unclear.

Furthermore, sensitivities to orthogonal NP design parameters like roughness and

crystallinity as well as membrane size effects (molecular packing, fluctuations, and

entropic effects) further muddle the picture.

Future work to close this exploratory study on ∼1-10 nm NP-membrane interactions,

principally for varying NP size and surface chemistry, should involve a summary of

simulation-validated and continuum theoretically-summarized stable interaction states

and a thermodynamic model explaining the boundaries of stability. The hope is to

arrive at a picture like the one shown below (Figure 6.9). Traditional simulation order

parameters, plus the ones we have developed, provide a clearcut method to quantitatively
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characterize diverse NP-membrane interactions. First and foremost, from the preliminary

order parameter analysis, one can divide the NP size-chemistry space into distinct

qualitative and quantitative regions of continuum pictures of interaction. Rigorously,

this can be achieved through a clustering analysis of the simulation results, but the

hope is that, more simply, the above order parameter analysis can be used to draw

clear and intuitive separation between different characteristic interaction modes whose

molecular thermodynamic driving forces if not continuum thermodynamic driving forces

(e.g. leveraging membrane elasticity theory) can then be defined.

No interaction

Monolayer wrapping/insertion

Adsorption/wrapping

Wrapping/Budding

Symmetric insertion

Adsorption

Two-hole insertion
Asymmetric one-hole insertion

Monolayer wrapping/Micellization

Figure 6.9: Hypothetical thermodynamic summary of particle size and chemistry
effects on NP-membrane interactions

We have been constructing continuum elastic models to provide physical intuition

behind the driving forces and therefore stability of interactions. In our preliminary
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continuum theoretical modeling, it appears that many characteristic NP-membrane

interaction modes can still be described by elasticity theories of the bilayer or individual

monolayer shapes or modified versions thereof. A finishing goal is to determine if this

size-chemistry space can be fully mapped with the current continuum models on-hand, or

whether or not certain remaining regions require a more in-depth continuum theory or

just a fully-molecular one. At this point, the relevance of small-wavelength membrane

elasticity theories to these systems is still unclear. In the closing of gaps in this simulation

analysis, the field-theoretic analysis of molecular simulations that we have built, analyzing

the height, thickness, and local orientational fields of the membrane to drive the use of

existing continuum theories or development of new ones, will be essential. However, it may

be that the most practical means of understanding and summarizing the driving forces, in

certain regions of design space, is to directly calculate them in the molecular simulations.

For this, rigorous sampling (e.g. umbrella sampling) and free energy calculations can be

leveraged where necessary.

The hope is that, long-term, this fundamental study can be used to define boundaries

of behaviors between model NP-membrane systems and, ultimately, a toxicological

understanding of the analogous yet more complex biological systems. For example, if

above a critical affinity the particles are known to wrap with the bilayer, insert between

monolayers, adsorb to the membrane, or asymmetrically insert in it, amongst other

possibilities, and the size-dependence of that critical affinity can be defined, then these

critical affinities can be used to define preliminary toxicity limits and, more directly, can

be defined in more experimentally relevant terms like surface energies and zeta potentials.

The dynamical analysis of Chapters 4 and 5 can also be of tremendous help to designing

transient principles, up to structure-property, structure-kinetic, and structure-activity

relationships, for the membrane activity and broader biodistribution behavior of this

novel range of ∼1-10 nm NPs.
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Conclusions and future prospects

7.1 Summary

This work uses a novel multiscale physics-based modeling platform to characterize

the interactions of NPs with model lipid membranes in a key underexplored particle size

range. Through designing a custom multiscale platform, we have been able to directly

link the physicochemical properties of a NP-membrane system, primarily focusing on

the influence of NP properties of size and surface chemistry, to dynamic biodistribution

outcomes, first in the context of a model membrane transport problem.

Table 7.1 outlines the major concepts addressed in this thesis. First, we designed a

custom coarse-grained molecular model to support the study of a wide range of ∼1-10

nm NP-membrane interactions. The model is sufficiently specific to correspond to the

chemistry and physics of a well-known phospholipid bilayer membrane, sufficiently generic

to span a wide range of effective organic and inorganic NP chemistries, and an optimal

resolution for the accurate and efficient simulation of a range of small- to large-scale

studies of NP-membrane phenomena.
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Table 7.1: Major concepts addressed in this thesis

Concept Addressed Chapter

3

Chapter

4

Chapter

5

Chapter

6

Sub-nanometer particle-membrane interac-

tions

x x x

Nanoscale/large NP-membrane interactions x x

Sub-nanometer particle membrane trans-

port kinetics

x x x

Steady-state analysis x x x

Transient analysis and experimental com-

parison

x x

Quantitative structure-

permeability/structure-kinetic rela-

tionships

x x

Effects of NP size and surface chemistry x x x x

Exploration of alternative mechanisms and

coordinates

x x

Free energy calculations x x

Continuum thermodynamic analysis x

Membrane field theoretic analysis x x

Effects of NP surface roughness and crys-

tallinity

x

Effects of membrane size x x
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After establishing the model, we surveyed the space of NP size and surface chem-

istry. Chapter 3 baselines the molecular model and establishes a continuum theoretical

foundation for sub-nanometer particles in the context of the membrane permeability

metric and over two decades of simulation efforts for small molecules. In this chapter,

we show through rigorous importance sampling and free energy calculations that the

over-century-old structure-property correlation Overton’s Rule, approximating a fluctuat-

ing, anistoropic lipid bilayer as a homogeneous slab, is overly simplified in quantitatively

capturing the lipid membrane permeability of a wide range of sub-nanometer particles

and the chemistry-dependence of the permeability. A major contribution of this chapter

was the mechanistic validation of the more detailed and continuum mechanical model

that is the inhomogeneous solubility-diffusion model. We demonstrated that this model

was mechanistically reasonable, partly because of the simplicity of the NP model and

confinement of the membrane, but also with quantitative structural analysis of the

membrane and dynamical analysis of the particle dynamics. We also show the physical

limits of the inhomogeneous solubility-diffusion model, specifically that it breaks down

due to its assumptions of quasistatic, adiabatic dynamics along solely a translational

coordinate transverse to the plane of the membrane and slow degrees of freedom like NP

orientation and large-scale membrane deformations or undulations. This aggregate work,

through baselining with a family of model particle transport problems, contextualizes

the vast simulation literature on molecular-scale lipid membrane transport, cautions the

community on sampling issues that can be indicative of larger problems with hidden

free energy barriers and the mechanistic model for transport, and establishes a general

paradigm for future evaluation and the mechanistic modeling of nanometer-scale particles,

including a suite of alternative, physically-promising order parameters and rigorous rare

events methods for determining mechanistic reaction coordinates.

Chapters 4 and 5 then build upon Chapter 3 in that they answer some residual
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questions from the initial study. Specifically, Chapter 4 establishes a multiscale paradigm

linking continuum theory and systems-level or multi-compartment modeling for closing

the gap between simulation- and experimentally-calculated permeabilities. The multiscale

platform is anchored by previous findings that experimental permeability assays can suffer

from several complexity and reproducibility issues, the most influential of which include

unstirred water layers, or diffusive boundary layers sandwiching the lipid membrane,

and transient effects due to the initial accumulation of particles in the membrane and

equilibration of the donor and receiver compartments. Both effects can combine for major

deviations between simulation predictions at steady-state and experiment. By providing

highly system-specific correction factors, our platform provides a first-of-its-kind, rigorous,

and general means of closing the gap between simulation and experiment.

While Chapter 4 is carried out in the context of a simple microscopic hydrophilicity-

hydrophobicity chemistry scale, Chapter 5 broadens the range of effective chemistries by

constructing a novel structure-property correlation that directly links the physicochemical

properties of the sub-nanometer particle data set in Chapter 3 (i.e. chemistry) to the

membrane permeability and that is vastly superior to Overton’s Rule. Because it fits the

free energy and diffusivity profiles rigorously calculated in the molecular simulations and

subsequently uses these fits to parameterize the multi-compartment models, the study

in Chapter 5 additionally links the molecular-scale picture to the continuum theory and

systems-level modeling, carrying the simulator from the design of the study for a given

compound of interest to the final simulation permeability-prediction with experimentally-

relevant transient corrections. In other words, Chapter 5 establishes a method to screen

sub-nanometer compounds and produce the relevant values for one-to-one comparison

with experiment. Both Chapters 4 and 5 additionally seek to establish design rules for

sub-nanometer permeants.

Chapter 6 takes the next steps in extending the aforementioned multiscale paradigm
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to ∼1-10 nm NPs, for which even a basic thermodynamic picture of NP-membrane

interactions, let alone a picture of the biodistribution in a dynamical, model membrane

setting, is lacking. By leveraging our detailed simulation foundation, we are able to explore

size and surface chemistry space and try to reduce complex, size-, chemistry-, and other

design-specific behaviors to a continuum mechanical picture that is otherwise hard to

intuit between small-molecule and large colloidal regimes. Figure 7.1 shows the long-term

potential benefit of this platform. The future of this platform is bright, and with the

baselining of the platform on the sub-nanometer scale and scanning of the ∼1-10 nm

regime, we can parsimoniously and deliberately lay out the predictable behaviors of ∼1-10

nm NP-membrane interactions and explore the unpredictable ones in much more depth,

harnessing importance sampling and rare events strategies as well as high-performance

computing. In and of itself, the information from this analysis provides critical insight

into the thermodynamic consequences of NP-membrane interaction–namely, how a given

particle is expected to deform and destabilize the membrane. The molecular mechanistic

understanding can further be used via continuum theory to parameterize systems-level

model that describe the transient dynamics of particles, from a model membrane problem

or permeability assay to a complex biological setting.

7.2 Future prospects

There are many future prospects of this robust multiscale platform, including:

• Testing the transferability of the developed QSPRs and QSKRs:

– Across a wider range of small-scale, ∼spherical, ∼homogeneous chemistries:

as necessary, we can augment PMF models to account for more complicated

transmembrane free energies and particularly repulsive interactions across the
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Simple diffusion (q=z)

Embedding + translocation

Pre-pore translocation

Pore translocation

Micellization

Budding

Asymmetric “leaflet hopping” translocation

Figure 7.1: Mechanistic hypotheses of particle size and chemistry effects on NP-mem-
brane interactions
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membrane transport process.

– Across different lipid membranes: we can explore different membrane composi-

tions and phases, and incorporate lipidomics and proteomics for insights into

relevant compositions.

• Exploring alternative mechanisms: starting from the approaches of Chapter 3 and

exploiting additional importance sampling and rare events methods, this platform

can potentially outline the mechanistic models for particles that, for example, wrap

with the membrane or cross via membrane pore formation.

• Exploring a wider range of NP designs: our platform can easily allow for examination

into the effects of NP shape, softness, roughness, and crystallinity.

• NP concentration effects: our platform can also handle multi-particle non-additivites,

including particle aggregation inside or outside the membrane and membrane

interactions with NP aggregates. Using importance sampling and rare events

methods, we can potentially outline mechanistic models for these multi-particle

systems as well.

• Effect of lipid diversity: as mentioned above, we can easily tune the cell membrane

model to reflect lipidomics and proteomics and therefore the composition of a specific

cell type or tissue in the body like the blood-brain barrier.

• Other aspects of existing systems-level and PBPK models: with our multiscale

platform, we can handle much more detail than existing PBPK models and pro-

grams. For increased connectivity and relevance to those models, however, we can

incorporate factors that are already built into them, including:

– Dissolution of formulation in aqueous solution
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– Membrane protein binding

– Cellular effects

∗ Caco-2 cells in the corresponding permeability assay

∗ Gastrointestinal absorption

∗ Blood-brain barrier permeability

Ideally, future explorations with this platform should be guided by the experimental

motivation. With the proper guidance, this platform has the potential to function

accurately, efficiently, and robustly and make large impacts in the problem of interest.
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Appendix A

Best practices for molecular

simulations of lipid bilayer

membranes

The content in this chapter has been reproduced in part with permission from:

D. J. Smith, J. B. Klauda, and A. J. Sodt. “Simulation Best Practices for Lipid Membranes.”

Living Journal of Computational Molecular Science, 2018. doi: 10.33011/livecoms.1.1.5966

A.1 Introduction

Here, we establish a reliable and robust standardization of settings and setup strate-

gies for practical molecular dynamics (MD) simulations of pure and mixed (single- and

multi-component) lipid bilayer membranes. In lipid membranes research, particle-based

molecular simulations are a powerful tool alongside continuum theory, lipidomics, and

model, in vitro, and in vivo experiments that can provide precise and reproducible
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spatiotemporal (atomic- and femtosecond-level) information about membrane structure,

mechanics, thermodynamics, kinetics, and dynamics. Yet the simulation of lipid mem-

branes can be a daunting task, given the uniqueness of lipid membranes relative to

conventional liquid-liquid and solid-liquid interfaces, the immense and complex ther-

modynamic and statistical mechanical theory, the diversity of multiscale lipid models,

limitations of modern computing power, the difficulty and ambiguity of simulation con-

trols, finite size effects, competitive continuum simulation alternatives, and the desired

application (including vesicle experiments and biological membranes). These issues can

complicate an essential understanding of the field of lipid membranes, and create major

bottlenecks to simulation advancement. In this document, we hope to clarify these issues

and arrive at a linear, consistent, thorough, prioritized, and user-friendly framework

for the design of state-of-the-art lipid membrane MD simulations that bridges the gap

between a first-timer and world expert.

In the recommendations that follow, we seek to establish robust guidelines for equi-

librium simulations of lipid bilayer membranes. We focus on dilute lamellar bilayer

membranes in water (i.e. at high hydration), particularly the membrane fluid (liquid-

crystalline, Lα) phase and, where relevant, gel (Lβ or Lβ′) and liquid-ordered (Lo) phases.

While we do not dictate the choice of MD package for simulation, we draw heavily on

tools available in the GROMACS package,1 which has several built-in routines and add-on

patches2–4 and is the default for several multiscale lipid membrane models.5–9 NAMD,10
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CHARMM,11 and AMBER12 are well established for lipid membrane simulations as well.

Where direct reading, writing, and analysis of the MD trajectories is deemed necessary, we

recommend the Python-based packages MDtraj (http://mdtraj.org/) and MDanalysis

(https://www.mdanalysis.org/).

Some good textbooks for statistical mechanical and thermodynamic background on

membranes include:

• Safran, Samuel A. “Statistical Thermodynamics of Surfaces, Interfaces, and Mem-

branes.” 2003: Westview Press.

• Nelson, David R., et al. “Statistical Mechanics of Membranes and Surfaces.” 2004:

World Scientific Publishing Company.

• Boal, David. “Mechanics of the Cell.” 2012: Cambridge University Press, New York.

Good papers and textbooks for computational and simulation guidance on membranes

include:

• Sundararajan, V. “Computational Modeling of Membrane Bilayers, Volume 60

(Current Topics in Membranes).” 2008: Academic Press.

• Tieleman, Marrink, and Berendsen. Biochimica et Biophysica Acta, 1997.

In this document, we also assume basic proficiency with MD simulation. Where

necessary, we refer simulators to other best practices documents for introductory guides:
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• MD basics https://github.com/MobleyLab/basic_simulation_training

• MD setup, biomolecular setup https://github.com/michellab/

BioMolSetupPaper

• Transport properties https://github.com/ejmaginn/TransportCheckList

• Statistical error and uncertainty analysis https://github.com/dmzuckerman/

Sampling-Uncertainty

A.2 Simulation checklist

Here, we provide a checklist for the four major steps in the lipid membrane simulation

process: (1) model selection, (2) pre-simulation considerations (selection of MD settings),

(3) preparation of initial configurations, and (4) post-simulation considerations (property

validation).

A.2.1 Model selection

As with other systems, model selection for lipid membranes is crucial. Lipid membrane

models are relatively diverse–resolution can range from all-atom to united atom to

coarse-grained and from explicit to implicit solvent. Furthermore, the lipid model may

ultimately be implicated in some more complicated application (e.g. small solute transport,

peptide-induced pore formation, embedded proteins). The model selection process for

a given physical problem can at times be daunting, especially for an undergraduate,

experimentalist, or otherwise newcomer. The main goal for a lipid membrane model study

should be to correctly capture the correct structural, mechanical, thermodynamic, and/or

dynamic properties (whatever is relevant) at the relevant length and timescales and the

correct equilibrium conditions (thermodynamic, temperature, pressure, etc.) and/or
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nonequilibrium conditions (thermal/mechanical/chemical/other gradients). However,

accuracy must be balanced with efficiency. Generally speaking, the simulation time tsim is

a function of the (1) model, (2) system size, (3) computing resources, and (4) MD package,

amongst other factors. These contributions are often overlapping, but can be deconvoluted

in some simple scaling laws (cf. below for more details). In general, force field developers

seek to first capture structural and thermodynamic properties, then address dynamical

properties. This balance can be tricky, especially with all-atom force fields, as parameters

that work for thermodynamics may not accurately match dynamical properties. Rigorous

models are validated via their properties through experimental comparison, and with

the proper corrections and normalization (most importantly, due to finite size effects in

periodic simulations).13,14 The discussion of model selection, including a comprehensive

survey of force fields (including their advantages and disadvantages) at various resolutions,

is continued below.

Efficiency is a major concern in virtually any lipid membrane simulation. In the MD

loop, the most expensive step involves the pairwise force evaluations, and therefore the

number of particles in your system N and the system density ρmodel ∝ 1/a3
model, where

amodel is the average spacing between sites in the model. Exact simulation time tsim

scalings depend on the force field, and can range from Nρmodel for short-ranged/mean

field types of force fields to NlogN (e.g. PME) to N2 for long-ranged/rigorous pairwise

interactions. Since the number of particles can be related to the system density ρmodel

and the system length scale L (e.g. for a cubic box):

N =


ρmodelL

3 (explicit solvent)

ρmodelL
2 (implicit solvent).

(A.1)

This scaling incorporates the model resolution ρmodel and system size L/nature of solvent,
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respectively. Thus, for short-ranged interactions:

tsim ∝


ρ2
modelL

3 (explicit solvent)

ρ2
modelL

2 (implicit solvent)
(A.2)

and for long-ranged:

tsim ∝


ρ2
modelL

6 (explicit solvent)

ρ2
modelL

4 (implicit solvent).
(A.3)

There is additionally a system size contribution (added to the geometric one) that accounts

for sufficient sampling. This accounts for the largest wavelength undulations that are

the slowest degree of freedom, and scale as L3.15 This is based on the theory of Zilman

and Granek, modeling the membrane structure factor based on its approximation as a

thin structureless sheet in viscous fluid.16,17 Thus, the overall scaling in system size can

be from L5 up to L9, depending on the range of interactions and presence/absence of

solvent. In other words, at a minimum, an order of magnitude increase in membrane

length scale leads to five order of magnitude increase in computational expense! Coarser

models may contribute to higher accessible time scales in two ways: (a) by increasing the

time scale of the fastest (vibrational) mode (i.e. tsim ∝ ∆tmodel) and (b) by also inherently

smoothening the free energy landscape, and therefore enhancing dynamics across it (e.g.

via a simple scale factor). Computing resources and the specific MD package can be

viewed as (a) affecting the range of possible parallelization schemes (described in speedup

by e.g. Amdahl’s Law,18 but convoluted with the specific MD scheme, e.g. domain

decomposition) and (b) contributing to some intrinsic scale factor related to the hardware

type (e.g. CPUs vs. GPUs) and software type.
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Survey of lipid membrane models

In general, there is a very diverse range of models that can be leveraged for simulations

of lipid bilayer membranes. An extensive summary of prominent lipid membrane force

fields, along with the notable pros and cons of each, is presented in Table A.1.

Atomistic (all-atom, or AA) models are the “gold standard,” as is the case with MD

simulations of most other systems. The quality of AA MD simulations of lipid bilayers has

improved dramatically since their initial development in the early 1990s.19 AA models can

have hundreds of atomic sites per lipid molecule. United atom (UA) force fields remove

hydrogen atoms for an increase in efficiency (factor of ∼2-3),20 and are competitive with

AA force fields in accuracy. AA and UA can therefore easily reach the 100 ns time scale

and 5 to 10 nm length scales,21 but with the appropriate resources and GPU-enabled codes,

microsecond timescales are attainable. Well-validated force fields include CHARMM36

(AA),22 Slipids (AA),6 AMBER Lipid14 (AA),23 and GROMOS 54A7 (UA).5 Alternatively,

coarse-grained (CG) models are well-developed for the efficient, large-scale simulation of

lipid membranes, often where the interest is in mechanical and qualitative behaviors and

less in the quantitative and chemical detail. That said, systematic CG models can still

retain some level of chemical specificity (e.g. the types of lipids that they represent). CG

models can be bottom-up, parameterizing CG parameters with atomistic data; top-down,

parameterizing to capture certain macroscopic quantities or qualitative phenomena; or a

combination of the two. CG models can easily reach 1000 ns (1 µs) time scales and ∼20

nm length scales,21 but can go beyond this toward the 100 µs with the proper resources.

One of the best-known CG models for membranes is the Martini force field,7,8 which via a

4:1 heavy (non-hydrogen) atom mapping reduces to about ten pseudoatom sites per lipid.

Because the aqueous solvent can contribute up to 90 percent of the force evaluations,9

implicit solvent (IS) simulations can be much more efficient and potentially advantageous.
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Examples of IS CG models include the Dry Martini force field,9 the implicit solvent analog

of (“wet”) Martini; the five-site model of Brannigan and Brown;24 and the three-site model

of Cooke, Kremer, and Deserno.25 For proper dynamical correlations and conservation

of momentum, CG models (particularly IS) are sometimes executed with a fluctuating

hydrodynamics26,27 or dissipative particle dynamics (DPD)28 thermostat. These models

extend the range of accessible scales even further to 100 µs and 100 nm21

In Table A.1, we do not include polarizable force fields that can account for problems

with molecules parameterized in water that may also enter the vastly different dielectric

environment of the membrane, thereby more accurately capturing energies and partitioning.

However, the dielectric permittivity in the membrane interior is generally low, and

polarizability effects are thus minimal. Furthermore, dipole relaxations can significantly

slow down simulations, impacting efficiency and making polarizable force fields completely

impractical for large-scale membrane simulation studies. For more information, see force

fields like AMOEBA29 and CHARMM Drude.30

Table A.1: Lipid membrane force fields: a survey

Force field

(FF)

Notable pros Notable cons

Atomistic

(AA)

“Gold standard”: Full chem-

ical detail of lipids and opti-

mized against various experimen-

tal measures

Expensive, and

therefore impractical

for many large-scale

membrane appli-

cations; does not

typically account for

polarizability
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CHARMM3622 Accurately represents many key bi-

layer properties: area per lipid, vol-

ume per lipid, electronic density pro-

file, structure factor; operable in ten-

sionless state; useful for membranes

with cholesterol and studies of flip-flop;

most diverse of AA FF with sphin-

golipids, ceramides, glycolipids, etc.;

accurate with variations in tempera-

ture and phase changes;31,32 compatible

with CHARMM parameters for carbohy-

dates, proteins, and nucleic acids;33,34

used extensively with membrane pro-

teins;33 implemented and available in

a variety of conventional MD pack-

ages (CHARMM, NAMD, GROMACS,

etc.);20 compatible with CHARMM −

GUI

Results currently depen-

dent on cutoffs used for

FF development (1-1.2

nm); inaccurate dipole

potential drop with fixed

charge models; some inac-

curacies with ion FF pa-

rameters
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Slipids6,35,36 Captures experimental area per lipid,

NMR order parameters and structure

factors, and temperature dependen-

cies thereof; able to reproduce struc-

tural properties of single- and double-

component membranes without surface

tension application; generally amenable

to the NPT ensemble; many lipid types,

including sphingomyelin, cholesterol,

and polyunsaturated lipids;37 compat-

ible carbohydrate force field; param-

eterization of small molecules avail-

able;33 compatible with AMBER FF

and its amino acid and drug-related

compounds20

Optimization approach

similar to CHARMM36,

yet not necessarily supe-

rior to it; less diverse op-

tions in lipids compared

to CHARMM36

Lipid1423 Captures experimental area per lipid,

volume per lipid, lipid thickness, NMR

order parameters, scattering data, and

lateral lipid diffusion; allows tension-

less NPT simulations of a number of

lipid types and cholesterol;33 compati-

ble with AMBER protein, nucleic acid,

carbohydrate, and small molecule force

fields20

Limited to a few lipids

and less diverse com-

pared to Slipids and

CHARMM36 (saturated,

monounsaturated, PC

and PE lipids)
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OPLS-AA38 Captures experimental area per lipid

and X-ray form factors; captures deu-

terium order parameters overall; com-

patible with OPLS for organic liquid

molecules, proteins, nucleic acids, car-

bohydrates, and drug molecules20

Limited range of lipids

covered (lowest for AA

lipid FFs); discrepancies

with experimental deu-

terium order parameters

for first carbon along acyl

chains20

United

Atom (UA)

Detailed, and yet 2-3 times

more efficient that AA simula-

tions without explicitly including

non-polar hydrogens

Still expensive and

impractical for large-

scale membrane sim-

ulations; does not ac-

count for polarizabil-

ity

GROMOS

(e.g. 45A3,39

53A,40 54A,5

Berger modifi-

cation41)

Focus on capturing enthalpies and free

energies of solvation; diverse options of

lipids similar to the level of diversity

in CHARMM36; compatible with GRO-

MOS parameter sets for proteins, carbo-

hydrates, and nucleic acids; parameteri-

zation available for small molecules (e.g.

Automated Topology Builder42)20,33

Problems in representing

proper gel phase of bi-

layer at temperatures be-

low melting point20
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Explicit sol-

vent coarse-

grained

(CG)

At least an order of magnitude

more efficient than AA and UA,

and can therefore access larger

length and time scales, specifi-

cally larger-scale membranes and

phenomena like undulations, self-

assembly, phase transformations,

phase coexistence, and interac-

tions with macromolecules and

nanoscale compounds

Less accurate; some-

times semiquanti-

tative or just qual-

itative; sometimes

distorted dynamics

due to smoothened

free energy landscape
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Martini7,8 Combined bottom-up and top-down

model, using atomistically-derived

bonded parameters and nonbonded

parameters that capture enthalpies,

free energies of solvation; repository

for a host of lipid types similar to

CHARMM36 level of diversity; compat-

ible with Martini protein and peptide,

carbohydrate, and nucleic acid models;

lots of tools available on website;20,33

broad range of applications; hydrody-

namics thermostats in development;26

compatible with CHARMM −GUI43

No major repulsive in-

teractions/mostly soft at-

tractive; molecular polar-

ity can be difficult to

capture; aphysical water

model (4:1 molecule map-

ping), the first of which

freezes at standard tem-

peratures (must incorpo-

rate “antifreeze” parti-

cles); later solvent mod-

els capture polarity and

polarizability,44 but with

drop in efficiency; inter-

actions are shifted and

truncated, and therefore

short-ranged20

ELBA45 Good for electrostatics (includes dipoles

into both lipid molecules and water

beads)33

Limited lipid types avail-

able33
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Implicit sol-

vent coarse-

grained (IS

CG)

O(100-103) times more efficient

than AA and UA, and can there-

fore access the largest length and

time scales of all particle-based

simulations; useful for studying

phenomena like undulations, self-

assembly, phase transformations,

phase coexistence, and interac-

tions with macromolecules and

nanoscale compounds

Less accurate; some-

times semiquanti-

tative or just qual-

itative; fluid phase

may be unstable or

require stabilization;

some have problems

with self-assembly;46

further distorted

dynamics due to

smoothened free en-

ergy landscape and

lack of solvent
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Dry Martini9 Up to 103 times faster than atomistic

models;9 combined bottom-up and top-

down model; captures experimental

area per lipid, bilayer thickness, bend-

ing modulus, and liquid order-disorder

coexistence; significant speedup permit-

ting study of multicomponent, large-

scale membranes; host of lipid types;

compatible with other molecular models

and broad range of applications; hydro-

dynamics thermostats in development

with minimal computational overhead

(still 4 times more efficient than explicit

solvent “wet” Martini;9,20,26 compatible

with CHARMM −GUI43

No major repulsive

interactions/mostly soft

attractive; molecular po-

larity can be difficult to

capture; no explicit water

dynamics and physics in

general; difficulty in cap-

turing solvent-mediated

effects; energetically-

dominated/inaccurate

energy-entropy break-

down

PLUM47–49 Contains parameters for lipids and pro-

teins; describes protein folding33
Limited to a few lipids
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Models of

Izvekov and

Voth50,51

Models available at various resolutions;

efficient; multiscale coarse-graining

(MS-CG) method bottom-up, and there-

fore preserves certain microscopic prop-

erties of system; coarse-graining method

incorporates both energetic and en-

tropic driving forces; reproduces fluid

lipid bilayer with accurate structural

and elastic properties50

Limited to a few lipids

Model of

Brannigan

and Brown24

Efficient (one head bead, one interface

bead, three tail beads, and implicit sol-

vent); relative to Cooke model, treats

hydrocarbon groups at membrane inter-

face differently from those at membrane

core; self-assembles; experimentally rea-

sonable fluid and elastic properties; tun-

able properties24,52

Generic/unclear chemi-

cal mapping; semiquan-

titative results; general

overprediction of experi-

mental and explicit sol-

vent simulation bending

moduli53
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Model of

Cooke, Kre-

mer, and

Deserno46

Very efficient (one head bead, two tail

beads, and implicit solvent); compet-

itive with and up to 5 times faster

than DPD simulations of similar res-

olution; displays correct large-scale elas-

tic behavior; tunable physical proper-

ties; stable fluid and gel phases; self-

assembles; can model mixed-lipid sys-

tems;46 compatible with hydrodynamics

thermostats27

Generic/unclear chem-

ical mapping; treats

hydrocarbon groups

at membrane interface

the same as those at

membrane core;52 semi-

quantitative results;

general underprediction

of experimental and ex-

plicit solvent simulation

bending moduli53

For lipid membranes, there is also an extensive subcommunity that uses continuum

mechanical theory and field-theoretic simulations that are sometimes in fact the preferred

approach at larger length scales (100 nm to 100 µm) due to their efficiency.21,54,55

These approaches are predicated on the above continuum theoretical framework, and

can be performed on the basis of energy minimization of a continuum Hamiltonian

and dynamical evolution of a continuum equation of motion for near-flat membranes; a

surface-of-evolution approach for axisymmetric membrane shapes or deformations; direct

numerical minimization for both axisymmetric and non-axisymmetric shapes; Fourier

Space Brownian Dynamics (which has been applied to protein mobility on membranes

and the effect of cytoskeletal pinning on membrane dynamics);52,54,56,57 dynamically

triangulated Monte Carlo for irregular, fluctuating membranes; and Monte Carlo on a

lattice.58,59 It is often crucial to compare with these techniques wherever possible. If
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some of the above conditions motivating the use of molecular simulations are not met, it

is useful to evaluate whether or not a continuum approach would be better.

It should be evident from the thermodynamic and statistical mechanical framework

above that there are some crucial considerations for any lipid membrane model, regardless

of resolution, including: (1) composition, (2) other thermodynamic constraints, (3) model

size, and (4) model geometry.

Composition

It is generally important to consider the chemical mapping of the model to the

real system, especially for multicomponent membranes. The desired heterogeneity and

particular lipids may determine the model one ultimately chooses. In early simulations of

lipid membranes (for both AA/UA and CG resolutions), the canonical lipid of choice was

DPPC (dipalmitoylphosphatidylcholine, with two fully saturated 16-carbon chains) in

water. DPPC is a common choice for vesicle experiments and is a major component of

pulmonary surfactant. PC in general is the most abundant head group in mammalian

and yeast membranes.60,61 DPPC/water is typically the system for which new force fields

are first tested. However, DPPC is sometimes not preferred in experiments, due to its

high melting point (from the gel to liquid-crystalline state). A more relevant lipid is the

14-carbon chain DMPC or one that has a chain with a single double bond (unsaturation)

like POPC.

The recent progression in the field is to go beyond single-component membranes toward

more realistic membrane mixtures.62 For multicomponent membranes, there is a well-

established body of literature. For phase coexistence studies, typical model experiments

consists of a ternary mixture of cholesterol and both saturated and unsaturated lipids,63

but more biologically-relevant studies include greater than three lipid types.62 In fact,

for biologically-relevant simulations, we advise caution in the selection and relative
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composition of lipids in the membrane model. While there are good guidelines for the

contributions of major lipid head and tail groups to biological membranes via major

progress in lipidomics,60,61 composition can potentially vary across different domains and

even between the two leaflets,64 and the best choice for a given model will depend highly on

the analogous experimental system. The development of biologically-relevant membranes

is at the forefront of the field for AA and CG models,62,65 and in probing biological

processes, one must ensure a membrane of the appropriate phase and composition (e.g.

proteins may function best in their native lipid environment, with certain lipid types).

When simulating a lipid membrane, ions may be required to match conditions in

experiment and/or model systems. The ion concentration in a typical human environment

is 0.15 M. If a membrane has negatively-charged lipids, then to maintain electroneutrality

small counter ions are needed such as K+ or Na+.

Other thermodynamic constraints

Given a membrane’s composition, the thermodynamic constraints of temperature and

tension (or area) will largely determine phase behavior. As discussed above, simulations

are sometimes amenable to different constraints from experiments (Section A.2.2), but

the appropriate experimental conditions can be achieved in a corresponding simulation

ensemble. It is worth noting that certain models, both AA and CG alike, sometimes

experience difficulty in capturing phase transition temperatures and even entire phases

(for example, subgel and ripple for Martini).34,66

Model size

Whether or not the membrane physically reflects the experimental setup also depends

largely on the dimensions of the model. It has been shown for membranes that finite

size effects can play a significant role for thermodynamic (especially mechanical) and
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dynamical properties.13,19,67,68 This refers not only to the in-plane dimensions, but also

for the out-of-plane one; despite the quasi-two-dimensional structure of membranes and

two-dimensional approximation at larger length scales, hydrodynamic theoretical models

for periodic systems have shown that the thickness of the water layer(s) matter as well in

convergence to macroscopic system dynamics.13 In determining the model dimensions,

one should search for the emergent length scales in the experimental system that can

serve as the periodicity length scales in the simulation. For biological membranes, there is

experimental evidence to show that an appropriate in-plane length scale is around 150-500

nm. This is set by the cortical cytoskeletal mesh, which pins membrane proteins and

therefore constrains lipid motion (anchored protein picket model).69,70 This is too large

for most molecular simulations, but if a highly resolved picture of biological membranes

is still desired, different subsystems can be simulated. If you’re not going to simulate the

experimentally relevant size (of the overall experimental system or a relevant subsystem),

then you need to be able to normalize your results with respect to the difference in sizes.

Model geometry

In many cases, experimental vesicles are modeled with planar bilayer simulations. This

may raise questions about the meaning of the results, as vesicular membranes are the result

of a balance of positive strain on the outer leaflet and negative strain on the inner leaflet,

while planar membranes have on average zero strain on each leaflet. Furthermore, vesicles

often have a different number of outer and inner leaflet lipids. Rigorously speaking, there

are mathematical transformations to convert data between vesicles and the corresponding

planar bilayer. Luo and Maibaum have derived an approximate relationship between

planar and spherical membranes for a model-free comparison of structure factors (Fourier

transform of the density autocorrelation function) of the same material in different

geometries.71 However, large enough vesicles are also locally flat, so a planar membrane
240



Best practices for molecular simulations of lipid bilayer membranes Appendix A

can be a good approximant. The extensivity of the experimental vesicles can be used as a

guide for the simulation size (or the size to which you normalize your results).

A.2.2 Pre-simulation considerations (selection of MD settings)

Once the model is selected, the pre-simulation considerations mainly concern the

thermodynamic conditions under which the membrane simulation is ultimately going

to be run. Proper control over membrane phase behavior and mechanical tension often

necessitates the use of thermostats and barostats. The relevant thermodynamic ensembles

for the study of lipid membranes are the canonical (NV T ), isobaric/isothermal (NPT ) and

multiphase (NPzγT ) ensembles. Here, Pz is the pressure in the transverse or membrane

out-of-plane direction. In general, now with well-tuned force fields the semi-isotropic

NPzPxyT ensemble (where Pxy = Px = Py is pressure in the lateral or membrane in-

plane directions) is recommended for planar bilayers with the constraint that the planar

dimensions are equal (x = y). Alternatively, the NV T ensemble may be required to avoid

cell dimension fluctuations, or the NPzγT ensemble may be required to probe the effect

of surface tension.

The target temperature should be guided by the experimental correspondence. For

the ideal model, the simulation temperature would be set to match that of experiment.

In reality, however, the imprecise energy-entropy breakdown in the membrane model

may lead to shifted phase transition temperatures, and therefore the need to simulate

at a higher or lower temperature, depending on the desired membrane phase. Force

fields like CHARMM3622 are well-tuned for phase changes within 5oC, which has been

determined through thorough simulations at a single temperature (i.e. no dynamical

ramping of temperature).31 The main transition temperature of interest is the gel-to-liquid

phase transition temperature Tg, above which the membrane exists in a disordered liquid
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crystalline Lα state and below which the membrane exists in a more ordered gel Lβ

state. Some models may accurately capture intermediate tilted gel Lβ′ , ripple Pβ′ , and

interdigitated LβI phases whose relevance depends on the experiments you are trying

to model. Most simulations approximate a cellular membrane as a fluid lipid bilayer to

match biological conditions, and build chemical and mechanical heterogeneity in later.

For the multiphase and the isobaric/isothermal ensembles, pressure control will

additionally be required. For membranes with the isobaric/isothermal ensemble, pressure

control is often conducted in a semi-isotropic scheme (NPzPxyT ) to incorporate the

isotropic conditions in the bilayer plane. Since experimental and biological membranes

often operate at negligible tension (as their conjugate variable, the area per lipid, is

unconstrained and therefore used to minimize the free energy), tensionless membranes

are currently the most common. For membranes, the definition of tension is a precarious

one that might not be trivial to a newcomer. While there is an important distinction

between the frame tension τ (conjugate to the membrane projected area) and the Laplace

tension γ (conjugate to the membrane fluctuating contour area), it has been clearly shown

through thermodynamic arguments that these tensions and areas are directly related, and

therefore not independent.72 The Laplace tension is defined to a first approximation as:73

γ = 0.5Lz
(
Pz − Pxy

)
(A.4)

where Lz is the transverse length scale (in the membrane out-of-plane direction). Both

tensions reduce to zero when the component pressures are set to be equal.

In general, most MD settings come with the model/force field. For other appropri-

ate simulation settings, see Section A.2.2 and https://github.com/MobleyLab/basic_

simulation_training

Technically, NV E (pure MD) is the correct ensemble for all MD simulations, and is
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strictly the only ensemble in which pure dynamics are observed (cf. https://github.

com/MobleyLab/basic_simulation_training). To roughly conserve energy and prevent

drift, the integration settings (time step, etc.) matter. Since periodic center of mass

removal can hide integrator artifacts, removal should ideally only occur at the start of

the simulation.26 However, as mentioned earlier, proper control over membrane phase

and tension often necessitates the use of thermostats and barostats. In some cases, this

(as well as the method for calculation of long-range electrostatics) can lead to significant

drift when the center of mass motion is not removed.26 It has been shown, however, that

weak-coupling thermostats and barostats and periodic center of mass motion removal have

a negligible role on lipid membrane dynamics, and that these thermodynamic controls

rigorously correspond to the associated statistical ensemble.13

Additionally, thermostats can potentially affect hydrodynamic interactions. In general,

MD thermostats that periodically randomize velocities disrupt velocity correlations, and

therefore hydrodynamic flows.26 For membranes, this can significantly affect in-plane

lipid correlations and perturb lipid lateral diffusivities. In particular, the Langevin

thermostat (sometimes recommended for implicit solvent coarse-grained/IS CG models

to nonspecifically account for otherwise absent solvent collisions) does not technically

conserve momentum.74 Other stochastic dynamics thermostats do conserve momentum,

and have been built to accurately capture long-range hydrodynamics for coarse-grained

and implicit solvent models,26,27 while DPD thermostats conserve momentum as well.75

There are some additional subtleties to barostat compressibilities for lipid membrane

simulations. Inverse to some other interfacial simulations (e.g. self-assembled monolayer

on an inorganic surface in water), where the in-plane compressibilities are set to zero

to preserve hydrocarbon area per molecule, tilt, and density, membrane simulations are

usually set to be compressible in the xy plane, and sometimes even incompressible in z

(especially for IS CG models).
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A.2.3 Preparation of initial configurations

Lamellar lipid bilayers exist for a variety of concentrations of water to lipid ratios. All

force fields will produce single bilayers if conditions are at full hydration (∼30 waters per

lipid) or above. For a planar bilayer, the desired number of lipids or membrane size in

the xy-plane can be estimated from one another if the area per lipid is roughly known:

Nl = 2LxLy
al

(planar) (A.5)

where Nl is the total number of lipids, Lx and Ly are the lateral box dimensions in

the x and y directions, and al is the area per lipid. The factor of two comes from the

fact that there are two leaflets. If a mixed lipid component bilayer, then the al is the

composition-weighted average. The amount of solvent can be independently varied by

changing the box z-dimension Lz. The number of solvent molecules can be estimated

from the following:

Nsolv = LxLy(Lz −DB)ρsolv (planar) (A.6)

where Nsolv is the number of solvent molecules, DB is the bilayer thickness, and ρsolv is

the estimated or known bulk number density of the solvent model. Similarly, for a vesicle,

the number of lipids/membrane size and amount of solvent can be estimated via:

Nl = 8πR2

al
(vesicular) (A.7a)

Nsolv = (LxLyLz − 4πR2DB)ρsolv (vesicular) (A.7b)
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where R is the vesicle radius defined from the center to the bilayer midplane. It is

important to note that the leaflet lipid numbers will be equal and the above equations

will be exactly only in the limit of an infinitely large vesicle. For finite-sized vesicles

and especially nanoscale ones, the inner leaflet lipid number will be significantly lower

than that of the outer leaflet, and the above equations will break down. In this scenario,

membrane builder programs like CHARMM −GUI can be of assistance.

For a vesicle, the total membrane area must be smaller than the smallest plane in

periodic box; otherwise, the lipids will form a planar bilayer to minimize the free energy.

(The cost of forming a vesicle from a planar membrane incurs at least a bending and

Gaussian curvature energetic penalty.) Furthermore, simulating a membrane area smaller

than the smallest plane in the periodic box does not ensure the formation of a stable

vesicle; in fact, a pancake structure (bilayer patch with splayed edges) can be more stable

up to a critical size on the order of a 10 nm radius, and therefore 103 to 104 total lipids28!

Membrane construction

Once the number of lipids and solvent molecules and periodic box dimensions are

determined, there are two main methods for putting them all together: (1) “templating”

and (2) self-assembly. These two methods are introduced below, and are further discussed,

along with alternatives, in Section A.2.3

In the templating method, the lipids are pre-arranged in a planar or vesicular bilayer,

close to the final equilibrated structure. Due to potential core overlaps for both planar

and vesicular bilayers and the desired leaflet number asymmetry for vesicles (especially

at smaller radii), existing packages and routines are recommended. CHARMM-GUI

(http://www.charmm-gui.org/) is an excellent resource, and the most common for

setting up membranes in a variety of configurations and for a variety of models/force

fields.76–79 CHARMM-GUI provides input files compliant with the GROMACS, NAMD,
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Amber, OpenMM, and CHARMM MD packages, amongst others, but is limited in force

fields to CHARMM3633 and the Martini force fields.43 Once the membrane is templated,

it can then be solvated. Due to the fluctuating nature and molecular scale roughness

of lipid membranes, a trial-and-error solvation routine (placing test particles in various

locations, checking for steric overlap based on van der Waals radii, and removing particles

if overlap is significant) may be preferred over appending solvent “slabs” to each side of

the membrane due to the potentially long equilibration time of full head group solvation.

The GROMACS g_solvate routine is one such example of a trial-and-error approach,

whereas CHARMM −GUI uses a slab-based approach.

In the self-assembly method, the lipids are dispersed in solvent, and allowed to

dynamically and spontaneously arrange into their final equilibrium structure. The initial

stages are normally fast, and involve the formation of lipid micellar aggregates followed

by the bridging of micelles to form larger, lamellar aggregates. The rate-limiting step is

believed to be the elimination of water pores in the membrane, sealing over 10 to 102 ns

during which lipids may exchange across leaflets.80 The proof-of-concept approach is more

scientifically satisfying, but not necessarily reasonable for higher resolution models and/or

larger length scale simulations due to the long time scale of assembly (discussed more in

A.2.3). Again, care should be taken to generate a vesicle or bilayer, and not a pancake or

other structure. Because the system will always proceed to minimize its total free energy,

the initial box dimensions are crucial to the outcome of the self-assembly approach. For a

planar bilayer, the in-plane box dimensions must be initialized near their intended end state

(which can be predicted with the number of lipids and area per lipid), and for a vesicle,

all box areas must be significantly larger than the corresponding planar bilayer with the

same number of lipids (otherwise, the lipids will form a planar bilayer and not a vesicle).

For one example of the self-assembly technique, you can visit the Martini website (http:

//www.cgmartini.nl/index.php/tutorials-general-introduction/bilayers).
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Preparation procedure

After the building step, the system should be energy minimized to remove potential

bad site contacts (steric overlap) generated during the original placement of molecules.

Minimization routines like steepest descent are perfectly reasonable, and are available in

conventional MD packages.

Then, the system should be gradually annealed from 0 K to the target temperature

in the relevant thermodynamic ensemble (NV T or NPzPxyT , depending on whether or

not a barostat will ultimately be used in the production run). In general, a short 100

ps to 1 ns run should suffice. The user may want to consider using position restraints

during this process to prevent major lipid fluctuations, particularly if the templating

method is used to initially build the bilayer. CHARMM −GUI provides a pre-described

set of equilibration scripts that have been tested on various bilayers to work well and is

recommended based on their initial structure. For soft enough interactions, you may be

able to skip this step.

In the case of self-assembly, a longer dynamical simulation is needed to allow for

bilayer formation. For smaller (≈ 128-lipid) membranes, this can take 10-100 ns, and

can potentially take much longer for larger and vesicular ones. Visualization can be

very helpful to track the assembly process. Care should still be taken after assembly is

qualitatively confirmed to ensure quantitative equilibration.

Before the production run, the equilibrium structure can be further standardized

for ease of analysis and comparison with external studies. Out of convention, for an

open planar membrane, the membrane in-plane directions are often defined to be the

x and y directions, while the out-of-plane direction is defined as z. All subsequent

discussion assumes this directionality, but the choice of direction is otherwise arbitrary.

In GROMACS, this can easily be achieved with the editconf command. For both open
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planar and closed vesicular membranes, centering the membrane in the periodic box will

largely prevent the jumping of bilayer leaflets and pieces across the periodic box, assuming

drift does not occur. This will make subsequent visual observation and post-simulation

analysis easier. Centering can also be achieved with editconf .

Before going into the details of production run, it should be noted that additional

equilibration beyond the initial structure is needed and timescales depend strongly on

the system complexity and size. For single-component lipid membranes in the liquid

crystalline state, equilibration typically only requires 5-10 ns with a well educated initial

setup of surface area per lipid. Membranes that have several lipids or conditions in more

condensed phases can require 100+ ns of equilibration; the exact amount of time, however,

will depend strongly on the composition and whether or not phase segregation is relevant.

A typical first order method to determine equilibration is to track surface area per lipid

as a function of time and verify that this has reached equilibrium via block averages and

autocorrelation analysis.19 However, all other key properties should also be verified–i.e.,

that they have stabilized and that reported averages are over equilibrated systems. This

is especially true for lipid lateral clustering and radial distribution functions that depend

on slowly relaxing diffusional degrees of freedom.

Guidelines for production run sampling

Finally, the initial estimation of the production run time is useful. You will ultimately

want to incorporate an adequate amount of sampling for your phenomenon/phenomena

of interest. In general, this means capturing several autocorrelation times for the relevant

degrees of freedom. Lipid membranes are characterized by a hierarchy of time scales,

including: bond vibrations (fs-ns), trans-gauche isomerization and rotation about chemical

bonds (1-100 ps), rotation (axial diffusion) about the lipid axis and wobbling (1-100ns),

lateral diffusion (1-100 µs), and flip-flop (1 ms-1 s for most lipids;81–83 shorter for
248



Best practices for molecular simulations of lipid bilayer membranes Appendix A

cholesterol) and undulations ( 1 ms-1 s for experimental system sizes81 and down to

100 ns-1 us for typical simulation53). Collective order fluctuations (e.g. undulations,

flip-flop, lateral diffusion) are the longest timescale fluctuations in the system because

they involve the coordination and motion of several lipids.81 Even at equilibrium, area per

lipid can fluctuate in simulations on the time scale of tens of nanoseconds.19,84 However,

if your study concerns more localized or molecular degrees of freedom (e.g. rotation

about chemical bonds, trans-gauche isomerization, lipid axial diffusion, etc.) at constant

membrane macroscopic shape and lipid leaflet number, then smaller sampling times may

be permissible.

In terms of templating methods, CHARMM −GUI is perhaps the most commonly

used package. CHARMM −GUI packs lipids from a library, then relaxes atom clashes

on its own. During the building and equilibration schemes, CHARMM −GUI performs

internal checks for “disaster structures” that can range from ring penetration (molecular

chains going through rings) to flipped chiralities of lipid backbones, and additionally

includes built-in restraints to maintain chirality. CHARMM −GUI has developed an

estimate strategy for vesicles to determine the optimal number of lipids in the inner and

outer leaflets for a given vesicle size; additionally, it can include water pores directly to

facilitate flip-flop and lipid number equilibration, which can be important for vesicular

geometries.43 CHARMM−GUI can also handle membrane-embedded proteins, which are

often initialized with structures from the PDB. In all of this, the user should still perform

spot checks and, if necessary, conduct more extensive structural analysis. One downside to

CHARMM −GUI is that it is slow–for Martini, CHARMM −GUI’s MartiniMaker

can take several minutes to a few hours, depending on the system size and server load.43

This slow performance in part comes from the Monte Carlo procedure in determining the

optimal arrangement of lipid head groups.85 MartiniMaker is not the best choice for

large Martini systems, but programs like insane.py85 (http://www.cgmartini.nl/index.
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php/downloads/tools/239-insane) and LipidWrapper (discussed further below) may

work better. Insane uses a scaling procedure to avoid bad structures, but does not

require several cycles and/or parameter adjustments to yield a stable system, unlike

InflateGro and g_membed.85 Insane is well established in user controls, and largely

prevents user errors in setup; the downside, therefore, is that it sacrifices user creativity

and customizability.

Self-assembly, or even combining pre-existing bilayers to make a larger one, can result

in lipid number asymmetric membranes. Thus, without repeated trials, self-assembly

will not reliably generate balanced bilayers, in contrast to templating. In the absence

of flip-flop, the leaflet composition of a self assembled bilayer is kinetically trapped.

Given repeated trials of self-assembly, and assuming the end distribution samples the

canonical ensemble (i.e., it is not influenced by kinetics) the distribution of compositions

can be calculated (see, e.g., Ref.86). For example, consider a self assembled bilayer with

Nl = 200 total lipids with al = 65 Å2 and KA=300 mN/m. The strain energy is equal to
KA
2 Nlalε

2, where ε = A−A0
A0

, A ≈ alNl/2 is the self-assembled area of the system, and A0

is the minimum free energy leaflet area, given the self-assembled lipid count. The leaflet

imbalance is characterized by ∆ = N1 −N2, where N1 (N2) is the area of the one (the

other) leaflet. Under these definitions the minimum free energy area of the first leaflet

is alN1. By periodic boundary conditions the two leaflets have the same projected area,

A. Each leaflet will then have approximately the same strain magnitude: |ε| = ∆
Nl
. The

Boltzmann distribution is then

p(∆) = e
−βKAal4Nl

∆2
, (A.8)

that is, a normal distribution with variance σ2
∆ = 2Nl

alβKA
. Here the strain energies of the

individual leaflets (each with leaflet KA half that of the bilayer) have been summed. The
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standard deviation for this example is 5 lipids at 298K. For larger systems the tension

per leaflet (KA2 ε) goes to zero even as the expected imbalance increases.

Depending on the application, the two build methods (templating and self-assembly)

can vary significantly in their efficiency and final outcomes. In Table A.2, we outline

some major advantages and disadvantages of both.
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Table A.2: Membrane building methods: a cross-

comparison

Method Advantages Disadvantages

Templating • Directly construct a sane-looking

bilayer

• Efficient

• Developer support often avail-

able33

• Doesn’t cap-

ture preferential

segregation of

multicomponent

bilayers, which can

be slow to emerge

• You need to know

what’s in what

leaflet, etc.; can

lead to user bias if

arrangement is not

known

• Performance can

sometimes still

be slow (code not

optimized)33

• Sometimes limited

application to MD

packages, force

fields, and lipid

types33
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Self-Assembly • “Natural”: lets things assemble

the way they want

• Great if you know the overall

system composition but not dis-

tribution (across leaflets, within

leaflets, etc.)

• Easy (at least with CG models) –

scatter molecules and run simula-

tion

• Less reproducible

– bilayers won’t

necessarily be

symmetric, and

leaflets won’t nec-

essarily have same

composition

• Can be problematic

with small systems

• Relatively slow and

expensive

Other/hybrid construction methods

One fairly simple alternative to building a membrane oneself is downloading a pre-

equilibrated membrane from a lipid library.33 Membranes from a library can either be used

directly or to make larger membrane structures. Examples include lipidbook (lipidbook.

bioch.ox.ac.uk), NMRlipids (www.nmrlipids.fi), and zenodo (www.zenodo.org).

NMRlipids is a particularly new and comprehensive initiative launched by S. Ollila

to compare membrane properties across 13 different force fields. The advantages of

using a library are that the structures used are inherently validated by potentially more

experienced researchers, and that the results one obtains can be directly compared with

the previously published data associated with a given structure. The downsides are that

libraries are still somewhat specialized and scattered on the web, and that the translation

of structures files across force fields and packages can be a nontrivial process.33
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The generation of curved membranes may be essential to the study of biological

membranes and processes like membrane-protein interactions, membrane scission, and

viral budding. LipidWrapper87 is a multiscale Python-based utility particularly useful for

generation of experimentally- and theoretically-relevant curved membranes that can gen-

erate membranes of arbitrary geometry and size. LipidWrapper builds larger membranes

from pre-equilibrated small planar membrane triangulations, and appears compatible with

several force fields. It is unclear exactly how efficient this procedure is, but the strategy

of building membranes from membranes seems more efficient than CHARMM −GUI

and insane. Caution should be exercised with LipidWrapper, however, as improvements

in generating the necessary leaflet number asymmetry for highly curved bilayers are

still under development.87 Generally speaking, building larger membranes from smaller

ones (with methods like LipidWrapper or otherwise) puts restrictions on the resulting

membrane composition,85 so this should be kept in mind while developing the smaller

membrane template. Especially for bilayers of low curvature, Section A.2.1 discusses how

one can model a planar membrane and still transform the experimental vesicle data for

one-to-one comparison.

Lastly, backmapping (or reverse transformation) converts coarse-grained membranes

to atomistic ones. Wassenaar and coworkers have developed backward.py,88 a robust

Python-based backmapping procedure based on geometric projection and subsequent force

field based relaxation (energy minimization and position-restrained MD) that requires

only a list of particle correspondences for the two levels of resolution in the conversion.

The method crosses various MD platforms, force fields, and lipid types, and can handle

lipid membrane phases beyond planar bilayers as well as the solvent. For example, the

method can successfully span the three-bead model of Cooke, Kremer, and Deserno to

Martini and Martini to GROMOS, CHARMM, and AMBER. If necessary, backmapping

is also useful for studying detailed molecular interactions in a large-scale membrane, in
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that the membrane can be assembled and equilibrated on the coarse-grained level and,

after backmapping, is presumably still at equilibrium. backward.py and its workflow

initram.sh are available at http://cgmartini.nl.

For conversions between similarly-resolved models or lipid types if the lipid topologies

are sufficiently similar, Lipid Converter89 can be helpful. In some instances, it may

be useful to combine different construction methods, e.g. insane then backward then

Lipid Converter, in that it permits construction of a CG membrane, conversion of that

CG membrane to an atomistic one, then conversion of that atomistic membrane to another

atomistic one.

A.2.4 Post-simulation considerations (property validation)

Fluid lipid membranes are normally modeled as liquid-like laterally (no in-plane

shear modulus) and solid-like transversely. Because of this, important properties include

in-plane structure, elasticity, and dynamics and out-of-plane structure and elasticity.

Experimental reference data can be classified as either direct or indirect. Direct

data includes experimentally measured properties (e.g. x-ray and neutron form factors

from scattering experiments, NMR bond order parameter), while indirect data includes

properties inferred from direct experimental data based on a given theoretical model

(e.g. area per lipid, bilayer thickness, lipid diffusion coefficient). Ideally, force field and

simulation validation should be based on the comparison of simulated data with direct

experimental data, but this is not always possible.84 Therefore, we discuss both types of

data comparisons.

Perhaps the most important verification of any lipid membrane model involves the

continuous structural and mechanical profiles in the out-of-plane (“transverse”, or z)

direction. The lipid bilayer membrane’s internal structure and mechanics are crucial to

its physics. These metrics include (1) the local density profile and (2) the stress profile.
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Transverse local density profile

As for general liquid-liquid interfaces, the density profile ρ(z) is a crucial structural

metric for lipid bilayer membranes. A typical transverse local electron density profile is

shown in Figure A.1. Various regional models have been proposed to characterize the

membrane based on its component and overall densities. For atomistic models, the local

density profile is explained by a four-region model. The region numbering scheme proceeds

from the exterior water layer to the bilayer midplane, including (1) “perturbed water”

(between where lipids protrude into the water layer and where lipid and water densities

are comparable), (2) “interface” ( where the water density disappears and the lipid and

total density reaches a maximum), (3) “soft polymer” (a region of high tail density and

partially ordered chains), and (4) “decane” (a region of low density and high free volume).

The typical density hierarchy, from most to least dense, is therefore as follows: region

2 > region 3 > region 1 > region 4.90,91 The local density can be calculated through

most conventional MD packages, although care should be taken to ensure appropriate

averaging, especially for larger, more appreciably fluctuating membranes. Be careful with

programs that tabulate density averages based on absolute coordinates and not on relative

positions (e.g. aligning profiles each frame by the apparent membrane center). When

using g_density in GROMACS, be sure to use the -center flag. Relative positions can be

valuable when there are even minor fluctuations. Failure to correct for this can result in

smearing of the density profile; one possible outcome is that region 4 (local lipid density

drop in center) is not properly captured when it may exist for a given model. For larger

membranes with significant undulations, the order parameter for the density profile (i.e.

the relative z-coordinate location) must be replaced with a more appropriate one that

reflects the depth into the fluctuating interface. The local density profile can be directly

compared with x-ray and neutron scattering experiments through conversion of atomic
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density profiles to electron and neutron density profiles, respectively, and transformation

of these profiles to Fourier space. Care should be taken here as well to account for

geometric differences between planar and vesicular membranes (see Section A.2.1). For

AA MD data comparisons, there are several thorough studies.92,93 Electron densities

proceed generally in the same trends as above.22 For more information on techniques, the

following reference is instructive.84

Transverse lateral stress profile

The lateral stress profile (in the transverse direction) Pxy(z) − Pz quantifies the

equilibrium balance of stresses (forces acting between regions) pointwise in a lipid bilayer.

This breakdown is only unambiguous for a model whose forces are themselves defined

pointwise (for example, a continuum model). However, these ranged forces can be

projected onto a continuum model, a transformation that requires the specification of a

path (the contour) between points. As shown in “Statistical mechanics of inhomogeneous

fluids”95 by Schofield and Henderson, section IV, observables that can be cast as resulting

from a global deformation of the system can be computed unambiguously from the

profile, including curvature derivatives (see Sodt 2016,96 supplemental). Care must be

taken, however, to interpret local features of the profile qualitatively. For example, it

is appropriate to ask the question “Does the model capture the qualitative structure of

the competing forces in lipid bilayer assembly and stability?” Despite its importance,

however, the stress profile is often more difficult and expensive to calculate. One means

of calculating is through GROMACS-LS, a customized version of the MD package

GROMACS. GROMACS-LS can even calculate stress component profiles, including those

arising from van der Waals and electrostatic interactions. For more information about

package and theory: http://mdstress.org/.97–100 As an important verifying metric

of force field development, the stress profile can be thoroughly compared with existing
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Figure A.1: Transverse local electron density profiles for DMPC/cholesterol bilayer.
Shown here are local density profiles for different molecular/atomic groups along the
lipid normal for a fluid DMPC bilayer with 5% cholesterol (top panel: different bilayer
thickness definitions and bottom panel: four-region model with Regions 1, 2, 3, and 4
labeled as blue, red, yellow, and green, respectively). Data adapted from Boughter et
al.94 258
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atomistic simulation studies. There is no direct means of stress profile comparison with

experiments, though as we will explain, properties calculated from the stress profile can

be compared with experiment (Section A.2.4).

Bilayer thickness

The membrane thickness is a structural metric that is consequently calculated from

the density profile. Three experimentally relevant definitions include (1) the Luzzati

(total lipid) thickness DB, (2) the head-to-head distance DHH , and (3) the hydrocarbon

thickness 2DC . The Luzzati thickness is relevant to neutron scattering, and is calculated

as the distance between the two locations on each side of the bilayer where the water

density drops to one half its bulk value. This thickness metric in reality is based on

the spatial profile of protiated and deuterated water, and is physically indicative of the

degree of water penetration into the bilayer.84 The head-to-head distance is relevant to

x-ray scattering, and calculated as the distance between the two peaks in the electron

density profile. More simply, this can also be approximated as the distance between the

maximal phosphate group densities in each leaflet (relevant to coarser lipid models).84 The

hydrocarbon thickness is also an important measure when comparing with transmembrane

proteins and their length of surface exposure of the hydrophobic residues. All of these

thickness calculations can be indirectly compared with experiment, which for example can

be obtained from neutron scattering (specifically, the difference between repeat spacing

of lipid lamellae in water and the thickness of the water layer) or x-ray scattering (the

same definition as in simulation).84 Typical values for phospholipid bilayers in simulation

and experiment are around 3 to 5 nm.
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Area per lipid and NMR order parameter

Two important structural parameters, complementary to one another, are (1) the area

per lipid al (providing information about in-plane structure or lateral density) and (2)

the deuterium NMR order parameter SCD (for out-of-plane structure). Area per lipid

and the deuterium NMR order parameter are shown schematically in Figure A.2.

!"

#

Figure A.2: Area per lipid and deuterium
NMR order parameter definitions. Shown
here for an all-atom DPPC phospholipid are
the definitions of the area per lipid (blue
plane) and an angle along one of the lipid
acyl chains (red) used for the NMR order
parameter calculation.

The area per lipid, or in-plane area occupied by a given lipid, is a critical target in

force field parameterization of lipid membranes.19,22 In simulation, the area per lipid is

typically calculated via

al = LxLy
n

(A.9)
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where n = Nl/2 is the number of lipids per leaflet.84 This equation assumes a lipid

number symmetric bilayer with negligible undulations, such that the contour (membrane)

and projected (periodic box) areas are roughly equal.19,22 However, for larger membranes,

undulations will lead to significant differences between the contour and projected areas.

Theoretically speaking, undulations will increase the ratio of contour area to the projected

area, and this is specifically because the undulations reduce the projected areas.19 The

area per lipid is rigorously an intensive, or size-independent, quantity, so the appropriate

steps should be taken to normalize for significant size effects when necessary before

experimental comparison. This may warrant simulation of different membrane sizes,

extrapolating results to zero system size to allow for convergence of contour area to

frame area and arriving at a size-independent metric.68 However, the area per lipid may

not vary much across typical sizes of MD simulations, or even in experiments. In any

event, care should be taken to ensure proper statistics. Even at equilibrium, the area

per lipid can fluctuate on a time scale of 10-100 ns,84 especially for complex bilayers

and for those with many components. For multicomponent membranes, the membrane

should be partitioned into individual values for each lipid species. Voronoi-based methods

can be particularly useful for lipid mixtures in that they can partition the total bilayer

area into individual area per lipid values for each species.84 APL@Voro is a prominent

Voronoi-based method for GROMACS trajectories, and supports projected area per lipid

and bilayer thickness calculations for mixed lipid membranes and those including proteins.3

Partial molar areas can be determined, but this requires that a range of concentration

ratios be simulated. The area per lipid can be compared directly with other simulations;

normalized size-independent metrics should be obtained where possible. The value for

double-tailed phospholipids is generally larger than single-chain hydrocarbons in systems

like self-assembled monolayers (60 Å2/molecule versus 30-40 Å2/molecule).

The deuterium P2 NMR order parameter describes the alignment of lipid constituent
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bonds with the global membrane normal (the z-direction for a bilayer assembled in the

xy-plane), and will vary along the length of the lipid tail group chains and between liquid

disordered and ordered or gel membranes. For phospholipids, the NMR order parameter

can also be used validate the structure of the glycerol backbone and headgroup.101 The

metric is defined as:

SCD = 1
2
〈
3 cos2 θ − 1

〉
. (A.10)

where θ is the angle between a given carbon-deuterium bond along the lipid molecule

and the global membrane normal and the brackets specify an ensemble average. A value

of 1 indicates perfect alignment of the chain with the global bilayer normal, while -0.5

indicates anti-alignment. This metric, however, can be ambiguous. For example, a value

of zero can mean either that the lipids are isotropically disordered with respect to the

bilayer normal, or that the lipids are perfectly oriented at a constant angle equal to the

“magic angle” of 54.74◦.84 Computing error bars is tricky, but the order_parameters

tool in LOOS102 offers one approach; LOOS is compatible with files generated from

multiple MD packages, including Amber, CHARMM, GROMACS, and NAMD. Since

the area per lipid and NMR order parameter are tightly coupled, a similar magnitude of

statistics (≈10-100 ns) is required for SCD as well. Calculated metrics can be compared

with other simulations and directly with quadrupolar NMR splitting experiments.103

Figure A.3 shows typical order parameter profiles along the length of the lipid acyl chains

for membranes of different lipid composition, and therefore different phase composition.

Increasing cholesterol composition transitions a DMPC bilayer from a liquid-disordered

bilayer to a liquid-ordered one. For a fluid phase bilayer from the top of the acyl chains

to the bottom, values typically rise from about 0.17-0.20 to 0.20-0.22, then fall down to

0.10. Averages across the entire chains are therefore typically around 0.17.19 Gel and
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liquid-ordered phase bilayer values are systematically larger across the acyl chains due to

enhanced packing and ordering.

Figure A.3: Deuterium NMR order parameters for DMPC/cholesterol bilayers. Shown
here are order parameter profiles along the lipid acyl chains for DMPC bilayers of
increasing cholesterol composition, with values increasing from a Ld (5% cholesterol)
to Lo (40% cholesterol) phase bilayer. Data adapted from Boughter et al.94

While the area per lipid cannot be directly compared with experiments, due to the

complications of lateral and transverse structure fluctuations, it can usually be inferred

from a theoretical model that sometimes involves SCD. One example simply uses the

lipid volume VL and the Luzzati thickness: al = 2VL/DB. This assumes, however, that

the lipid volume can be estimated accurately.84 Another approach uses the deuterium

NMR order parameter: a/chain = 2VCH2/
(
(1 + 2S)bcc

)
, where a/chain is the area per

tail group chain (of which there are two for double-tailed lipids), VCH2 is the volume of

a CH2 group, S is the plateau value of SCD (maximum described above) and bcc is the

projected C-C bond length along bilayer normal.104 Practically, these comparisons are

difficult because SCD contains contributions from conformational disorder, local lipid

tilting, and assorted collective motions.19 While we do not recommend the above area

per lipid models for the validation of lipid force fields, these models can at least be used

for semiquantitative comparisons.
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Lipid lateral diffusivity

The lipid lateral diffusivity Dl is used to characterize lipid mobility, to gain insight

into collective lipid motion timescales, and also potentially to discriminate between liquid

crystalline and gel phase lipids. The relevance of a diffusivity is predicated on the

assumption of classical in-plane diffusion. As such, the diffusivity can be determined

from the slope of the average lipid mean-squared displacement (MSD) plotted against

lag time (equal to 4Dl for 2D diffusion). In the MSD calculation, the user should be

careful of artifacts due to lipid molecules partially or fully jumping across periodic boxes;

periodicity can be accounted for by reimaging where appropriate. For a homogeneous,

single-component membrane, averages are normally taken over all lipids. Results typically

fall around O(10−8 to 10−7 cm2/s). Simulation results can vary significantly with the

force field, system size, truncation scheme for long-range interactions, time step, and

non-bonded interaction pair list update frequency.84 Venable et al. recommends that,

when reporting and comparing with other simulations, the system size in particular should

be noted and accounted for. Given the hydrodynamic theory, the lateral and transverse

dimensions would be even more explicit, and ideally, studies should report extrapolated

infinite size values with a confidence interval.13 The hydrodynamic theoretical framework

has been extensively validated by Vögele and Hummer, who conducted MD simulations

with up to 108 coarse-grained particles in half-micron-sized boxes.105 Results can be

indirectly compared with experiment. Experimental estimates can generally vary over

three orders of magnitude, due to a number of reasons (cf. Section A.2.4 for more

details).84
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Mechanical/elastic properties

Mechanical properties for membranes can be calculated from a number of techniques

that can be broadly classified by (1) equilibrium fluctuations, (2) stress profile, and

(3) biased/active deformations. We discuss the merits of each umbrella of approaches

in general terms in Section A.2.4. In this section, we merely attempt to recommend

the best technique(s) for a given property. These mechanical properties include: (1)

lateral tension, (2) area compressibility modulus, (3) bending modulus, (4) monolayer

spontaneous curvature, (5) Gaussian curvature modulus, and (6) line tension.

(1) Calculation of the lateral tension γ from a membrane simulation is a way to

calculate the variable conjugate to the membrane [contour] area in canonical simulations,

and in tension control, a way to directly confirm the simulation controls for the intended

ensemble. In model development, the tension is a parameter probed to capture the correct

area per lipid (which should ideally occur at zero tension).26 The tension is related

to the zeroth moment of the stress profile, and can be easily approximated with the

Kirkwood-Buff equation Equation A.4 above.

(2) The area compressibility modulus KA determines a membrane’s ability to compress

and expand, and is another important property in force field parameterization.19 The

recommended way to calculateKA is based on area fluctuations in the tensionless ensemble:

Kapp
A = kBTAp

σ2
Ap

(A.11)

where Kapp
A is the apparent area compressibility modulus based on the fluctuations

in projected area Ap = LxLy. This equation is fairly simple, but involves two major

nuances. The first is that the calculation may take 100 ns to converge,19 if not longer.

The second is that this is an apparent value based on size-dependent projected area

fluctuations, and is not the end point for characterizing the intensive, size-independent in-

265



Best practices for molecular simulations of lipid bilayer membranes Appendix A

plane compressibility. The recommended correction to deconvolute expansion-compression

modes from undulatory modes is to simulate multiple membrane sizes and extrapolate

the results to zero system size, where undulations no longer exist.68 At smaller simulated

system sizes, the result of not accounting for undulatory contributions can be negligible

(∼5-10% correction with experiment), but becomes substantial and must be corrected

for larger system sizes (where they can be ∼50% larger than experimental results).19,68

Results typically vary between 100 and 400 mN/m,19 and are often compared with

micropipette aspiration experiments.106 Results can also be compared with predictions

from polymer brush theories, where KA is sometimes related to the oil-water interfacial

tension γo/w–for example, KA = 6γo/w.106

(3) The bending modulus (bending rigidity/constant) κ determines the ability of

the membrane to bend. The undulation spectrum method107,108 is the traditional and

well-established way to calculate κ. On the basis that at large enough scales, a membrane

behaves as a two-dimensional surface, the free energy per lipid can be expanded in terms

of the area per lipid and mean and Gaussian curvatures H and KG respectively.109 In

the absence of external stresses, a membrane minimizes its free energy with respect to

area (i.e. it is tensionless), and shape (i.e. curvature) fluctuations are more accessible

than expansion-compression (area compressibility) fluctuations. Canham and Helfrich

developed a membrane Hamiltonian on this phenomenological basis, that a membrane has

a preferred morphology (dictated by its spontaneous curvature C0) and has deviations

from that preferred curvature,110,111 resulting in:

H =
∫
dS
[
κ

2 (2H − C0)2 + κGKG

]
(A.12)

where H ≡ (cx + cy)/2 (cx and cy are the principal curvatures), κG is the Gaussian

curvature modulus, and KG ≡ cxcy. This integral is performed over the entire surface of
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the membrane. The integral over the Gaussian curvature term depends on the membrane

topology and boundary, and does not contribute to the membrane energetics when

topology and boundary do not change (i.e. when there are no membrane fission/fusion

events, no pores/pre-pores, etc.). In this definition, κ is the bare bending modulus, a

“true bilayer property” and enthalpic/elastic quantity that represents a spring constant for

curvature deformations. For small deformations of a bilayer of zero spontaneous curvature

(C0 = 0), the first term of the integral is often presented in terms of the Monge gauge

(with the surface described with respect to the xy-plane at z = 0):109

H =
∫
dxdy

[
κ

2
(
∇2h(x, y)

)2
]

(A.13)

where h is the membrane height function and x and y, as before, are the in-plane

directions of the membrane. By introducing a Fourier representation for h and applying

the Equipartition Theorem, one can derive the height-height undulation spectrum.54 The

spectrum describes the height-height correlations |hq|2 of the membrane continuum shape,

and for a tensionless membrane, the large wavelength/small wavevector (q) behavior

follows an inverse fourth power relation with a constant of proportionality that contains

the bending modulus:107,108

〈
|hq|2

〉
= kBT

κq4 (A.14)

The undulation spectrum method, however, must be used over “mesoscopic” length scales

(approximately ten times the bilayer thickness, or about 50 nm / 5000 lipids) that are out

of reach for AA and most CG simulations. If simulations are too small, deviations to the

undulation spectrum will result from individual lipid tilting (below ten thicknesses) and

protrusions (below three thicknesses).19 Also, there will simply not be a large enough

range of wave vector magnitudes to fit the spectrum and obtain a bending modulus
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estimate. For this reason, we recommend the lipid director field spectrum approach,19,112

which analyzes thermal fluctuations of lipid orientation via a director vector field n̂q (the

vector from a lipid’s head to its tail). Specifically, the longitudinal component of the

director field n̂||q relates to the macroscopic bending modulus through an inverse second

power relation in the wave vector:

〈∣∣∣n̂||q ∣∣∣〉 = kBT

κq2 (recommended) (A.15)

The lipid director field spectrum method works well for “modestly sized” membranes,

down to approximately three bilayer thicknesses (≈12-15 nm); AA simulations of 648

lipids have been shown to be well converged. This general approach also provides a route

to calculating bilayer tilt and twist moduli. Both the undulation and lipid director field

spectrum approaches will take at least 100 ns to converge.19

Equations A.14 and A.15 above relate membrane fluctuations to the bending

modulus. It is important to note that the κ resulting from these methods is actually an

apparent/effective bending modulus, a free energetic quantity incorporating the effects

of finite size (thermal fluctuations). The effective bending modulus is not a material

property, and can be understood as a renormalization/correction from the bare value as

first introduced by Peliti and Leibler. It is dependent on system size, and decreases at

larger wavelengths λ as κ(λ) = κ0−3kBT/4πln(λa), where κ0 is the bare modulus and a is

some constant.113 The determination of the appropriate size renormalization is somewhat

ambiguous, but the length scale of the relevant experimental system can be used as a guide.

Furthermore, these techniques are only applicable in the small deformation/low curvature

limit (i.e. in the absence of an external bending force). The bare bending modulus is

a size-independent quantity applicable at larger deformations/higher curvatures where

ground state energies are dominant and fluctuation effects are negligible, and therefore
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may be more experimentally relevant. Several, more user-intensive approaches have

recently been introduced to directly measure the bare bending modulus;114–117 for more

information, the interested reader is directed to those studies.

Bending modulus results typically vary between 10 and 40 kBT ,19 and can be compared

with a host of experimental techniques, including flicker spectroscopy and micropipette

aspiration. See Section A.2.4 for more details. For more information on experimental and

simulation approaches to calculating the bending modulus across various force fields, and

particularly the inconsistencies in results, we direct the interested reader to Bochicchio

and Monticelli.53 Results can also be compared with polymer brush theory, which relates

κ to KA and the bilayer hydrophobic thickness hphob via κ = KAh
2
phob/24.106 We do

not recommend using polymer brush theory to obtain and report bending moduli, but

recommend it as a point of comparison with bending moduli calculated from the techniques

recommended above.

(4) While lipid bilayers (planar and vesicular) have a net zero bilayer spontaneous

curvature C0, their monolayers individually may have a propensity to curve. This

propensity is quantified by the monolayer spontaneous curvature c0, and is defined to be

positive for a lipid that forms micelles and negative for one that forms inverted micelles.19

Together with the monolayer bending modulus κm, c0 is related to the first moment of the

stress profile, integrated from the bilayer midplane to the upper edge of the simulation

cell:109

κmc0 =
∫ Lz/2

0
z[Pxy(z)− Pz]dz (A.16)

Thus, if κm is known, then c0 can be quantified. κm is predicted by elastic theory to be

one half the bilayer value (κ). Monolayer spontaneous curvatures are typically calculated

indirectly in experiment from studies in the completely different inverted hexagonal HII
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phase, where lipid monolayers are assembled in long, hexagonally-arranged water-filled

tubes.118 Results are then extrapolated to the lamellar phase. This is hard to study for

lipids like DPPC that are more cylindrical in shape, but easier for those like DOPE that

are more like inverted truncated cones (due to acyl chain unsaturation).19,119

(5) The Gaussian curvature modulus κG describes the propensity of the membrane to

change topology, and is especially important for fission and fusion events.115 In general,

even simulation methods for calculating κG are controversial. The difficulty in calculating

κG lies in controlling topology and boundary behaviors in which Gaussian curvature plays

a role.115 The stress profile approach, specifically involving the second moment, is not

reliable here.115,120 We recommend the patch closure method, which has shown promise

in preliminary work.115 Experimental analysis of the temperature dependence of the cubic

to inverse hexagonal transition for N-monomethylated dioleoylphosphatidylethanolamine?

is one of the few hints, with κG/κ = −0.927. Elasticity theories do offer predictions, for

example, the simple approximation κG ≈ −κ.28,59,115

(6) A line tension (edge energy) Γ is an energy per unit length that can describe lipid

phase segregation and hole formation. Specifically for pores (hydrophilic holes, where

lipids splay to connect the two leaflets), the line tension can be studied through simulation

of a bilayer “strip” or “half-connected bilayer” (with exposed bilayer edges in one in-plane

box dimension). The bilayer is thus periodic in one lateral dimension and exposed in

the other, resulting in lipid splaying and therefore a rim on both sides. In this scenario,

the line tension can be determined from the stress profile, specifically the lateral normal

stresses. If the strip is periodic in y and non-periodic in x, then:

Γ = 1
2 LxLy(Pxx − Pyy) (A.17)

and Pxx = Pzz.121 Typical values are around 35 to 50 pN in simulation121,122 and 5 to 30
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pN in experiment,123–125 the latter of which are typically determined through dynamical

pore closure studies.

Leaflet-dependent properties

Lipid bilayers are made up of two molecularly-thick leaflets in a fluctuating membrane

embedded in three dimensions. Identifying which lipid is in which leaflet at any given

time is useful for identifying the local bilayer midplane, and therefore a host of bilayer

and individual monolayer properties. While thickness, area per lipid, deuterium order

parameter, and lipid lateral diffusivity calculations do not necessarily require leaflet

identification, other metrics do. Leaflet identification and the relevant metrics are

discussed in Section A.2.4.

Property validation summary

It is the responsibility of computationalists in the field of membranes and otherwise

to adequately validate the physical properties resulting from their model. The method of

calculation in experiment does matter to the method of calculation in simulation. For

example, methods based on biased membrane perturbations may deviate significantly

from those based on equilibrium fluctuations (e.g. micropipette aspiration versus flicker

experiments).19 Wherever possible, the theoretical basis for both the experimental

and simulation property calculations should be used as a guide. A final point is that

experimental results are not infallible. When simulation and experiment do not agree or

there is large variation within experimental measurements for the same property and the

computational procedure is sound, simulations can provide refinement to the experimental

results.19
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Nuances to diffusivity calculations

Subdiffusion, a distinct form of anomalous diffusive motion characterized by long-

range correlations in time or space, has been recognized in many biological systems,

including diffusion in the crowded cytoplasm, the internal dynamics of proteins, and the

gating of ion channels.126–129 The physical origin of subdiffusion, and whether it is truly

present, remains controversial for some systems.130 However, there is growing evidence for

transient subdiffusion in the lateral dynamics of lipids in phospholipid bilayers.131 The

subdiffusive regime has been shown to exist between the ballistic and random (linear MSD)

walk regimes, spanning as many as five orders of magnitude in time132 and timescales

reaching many seconds in multicomponent membranes.131 While this potentially has

crucial consequences for dynamical validation of membrane models, its application to a

robust protocol for multiscale lipid models is at this point unestablished.

There is a major box size dependence for dynamic properties in MD simulation. In

general, diffusive dynamics in confined, periodic simulation systems are perturbed relative

to the macroscopic limit, and can be corrected through the application of hydrodynamic

theories. Lateral diffusive dynamics in lipid membranes suffer from significant finite size

effects (a factor of 3 to 4 for AA MD)13,14 relative to bulk dynamics in a homogeneous

fluid (∼10-20%).133 Because of longer-ranged hydrodynamic correlations for membranes,

convergence is expected to be even slower than an inverse box length convergence in

3D.134 Camley et al. has adapted the Periodic Saffman-Dellbrück theory describing

hydrodynamics of a periodically-replicated membrane suspended in an infinite bulk fluid

for cylinders spanning a single leaflet (i.e. lipids). The model additionally accounts

for the influence of interleaflet friction. Crucially, it has been shown that not only

the lateral dimension, but also the transverse dimension (solvent thickness) plays a

large role in the convergence to macroscopic diffusive dynamics.13 This hydrodynamic

272



Best practices for molecular simulations of lipid bilayer membranes Appendix A

framework has been extensively validated by Vögele and Hummer, who conducted MD

simulations with up to 108 coarse-grained particles in half-micron-sized boxes.105 The

theory shows that typical simulation dimensions are much too small for macroscopic

dynamical estimates, but allows for extrapolation and comparison with experiment. The

theory also effectively implies a variational principle for capturing diffusivities with AA

simulations of reasonably-sized systems: if the force field and other settings (integration,

ensemble, long-range electrostatics, etc.) are correct, then the simulated diffusivities

are expected to underestimate experiment.13 However, if the desire is to compare to

some biological system, it may be useful to normalize to a different finite system size.

Experiments have shown that, through an anchored protein picket model, proteins

anchored by the membrane cytoskeleton can slow effective lipid diffusion due to both

steric hindrance and circumferential slowing, a hydrodynamic friction-like effect.70 This

has been found to be consistent with a characteristic domain size of 150-500 nm69,70 (cf.

Section A.2.1).

Experimental diffusivity estimates can vary for a number of reasons. First, diffusivities

can be determined from a variety of methods, including fluorescence techniques (e.g. fluo-

rescence recovery after photobleaching, FRAP, and fluorescence correlation spectroscopy,

FCS), quasi-elastic neutron scattering, EPR, and NMR, amongst others. The length

and time scale of study can vary significantly with different methods; for example, EPR

and NMR (O(1 nm-100 µm),O(1 ns-1 ms))135–138 and quasi-elastic neutron scattering

(O(0.1-10 nm,<1 ns)).84 (Furthermore, neutron spin echo spectroscopy has recently been

shown to probe ∼100 ns and obtain membrane viscosity estimates that can be used to

estimate in-plane diffusivity.139) While different regimes of diffusion may exist across

different lag time scales (most notably, non-classical subdiffusion; see above), fits and

comparisons from very different time scales can also be prone to significant statistical

error. In some of these techniques (e.g. FCS, FRAP), the use of labeled lipids instead of
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the normal lipids biases the calculations for lipid diffusion. In addition to the increased

drag that the label introduces, dynamics can also be impacted by label concentration.

Dynamics can be particularly slow for supported lipid bilayers, the physics of which can

also be very different from those of the simulation due to interleaflet friction and increased

drag from the solid support. Otherwise, results are highly dependent on temperature,

hydration content, pH, ionic strength, and experimental setup.84

Evaluation of major techniques for mechanical property calculation

In general terms, we outline the merits of each umbrella of approaches for calculating

mechanical properties (Table A.3).
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Table A.3: Methods for calculating mechanical properties:

a broad cross-comparison

Class of

Methods

Advantages Disadvantages

Equilibrium

Fluctuations

• Theoretically consistent/rigorous

and elegant (admitted directly

from Landau-Ginzburg and re-

lated approaches, e.g. Canham-

Helfrich)

• No additional user input required

(just run the simulation!)

• Well documented and generally

the preferred choice in the mem-

brane theory and simulation com-

munity

• Can only study

and apply results

to small defor-

mation limit; not

necessarily rel-

evant to strong

deformations114

• Can take a long

time for statistics

to converge /

fluctuations to

develop116

• Low signal-to-noise

ratio

• Grid analysis in

post-processing can

be expensive
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Local Ther-

modynamics /

Stress Profile

• Theoretically motivated

• No additional user input required

(just run the simulation!)

• Consistent with rationale for sim-

ulation pressure coupling scheme

and Laplace tension (and there-

fore frame tension), i.e. equation

for justifying tension settings in

simulation is a specific case (Equa-

tion A.4)

• The only route to calculating cer-

tain properties (tension, mono-

layer spontaneous curvature)

• Profile also be used to understand

local stresses and molecular driv-

ing forces

• Rigorous im-

plementation

(although codes

exist); expensive

voxel analysis in

post-processing

• Certain moments

give you combina-

tions of properties

rather than indi-

vidual ones, and

are therefore depen-

dent on other tech-

niques

• Slow convergence

• Low signal-to-noise

ratio (seeking small

numbers often from

largely-fluctuating

ones)
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Biased/Active

Deformations

• Theoretically motivated

• Applicable to large-scale deforma-

tions (potentially more physically

relevant), with a broader range of

permissible deformations overall;

capable of addressing nonlinear

and higher-order effects on me-

chanical properties at higher de-

formations116

• Often more efficient/do not re-

quire long sampling times, due to

probing of ground state energies

over fluctuations53,116

• Less sensitive to finite-size ef-

fects116

• High signal-to-noise ratio (ground

state energies dominant over ther-

mal fluctuations)53

• Don’t necessarily

allow for pressure

and lipid number

asymmetry relax-

ation along the de-

formation process53

• Limited to pure

membranes due

to the possibility

of composition-

curvature in-

homogeneities

otherwise53

• In extreme circum-

stances, can induce

phase transforma-

tions53

• Requires additional

user input: some

biasing scheme

and/or nontrivial

simulation setup

(e.g. tether) for the

calculation
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For most of our mechanical property method recommendations here, we focus on

the “equilibrium fluctuations” and “stress profile” classes of techniques. However, there

are several alternative methods based on “biased/active deformations” techniques. For

the area compressibility modulus, the bilayer can be actively stretched via different

simulations in the NPzAT (constant area and transverse pressure) ensemble; the surface

tension can be evaluated at each area, and KA is calculated from the derivative Kapp
A =

Ap(∂γ/∂Ap)T .140,141 For the bending modulus, there are several techniques.114,116,117,142

Umbrella sampling has been used to enforce large undulation modes,117 but this study

experienced difficulty separating bending contributions from those of stretching. The

membrane tether stretching approach in general applies to larger curvature deformations,

with radii of curvature down to the membrane thickness, and converges to undulation

spectrum results in the small deformation limit. Most recently, the buckling technique was

introduced to overcome limitations of membrane tether stretching techniques (including

problems with handling explicit solvent), and provides insight into the enthalpy-entropy

breakdown of bending contributions and therefore the local temperature dependence on

κ.114,142

The bending modulus can be experimentally determined from a variety of techniques.

This includes fluctuation analysis (e.g. flicker spectroscopy), micropipette aspiration and

the low-tension stress-strain relationship, tether stretching (with magnetic fields or optical

tweezers,143,144 x-ray scattering, and neutron spin echo measurements. The bending

modulus provides one example where parallel experimental and simulation calculation

methods is useful. Simulation results from the undulation and lipid director spectra

have been found to agree well with flicker experiments, as both are based on equilibrium

fluctuations. These deviate significantly from micropipette aspiration, which is based on

“biasing/active deformations”.19

In the simulation community, as in most of the experimental community, bending
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is treated as an elastic deformation, so the stress-strain relationship is independent

of the rate at which the bending strain is applied. However, there have been various

suggestions, with experiment evidence, that membranes may exhibit viscoelasticity with

short-time transient responses.144,145 Due to the complete lack of simulation infrastructure

for assessing membrane viscoelasticity at this time, we defer any recommendations on

studying it.

Techniques for leaflet identification & leaflet-dependent properties

One method to identify leaflets involves first determining the height function of the

entire bilayer in high-resolution gridspace (cf. recommended procedure in Watson et al.,

Appendix C),146 then going back and sorting into leaflets. However, this can be difficult,

especially for membranes with large deformations and complicated morphologies. One

analysis package that overcomes these complications is the Fast Analysis Toolbox for Sim-

ulations of Lipid Membranes (FATSLiM). FATSLiM2 is a Python-based package designed

to work with GROMACS that, for every simulation frame, can estimate the normal for

every lipid via principal component analysis of each lipid and its neighbors. Therefore, it

can approximate the membrane surface in a morphology-independent manner (e.g. can

be applied to planar and vesicular membranes alike, unlike the packages APL@Voro,3

MEMBPLUGIN,147 and GridMAT-MD4), and can determine membrane leaflets, thickness,

and area per lipid. FATSLiM is both efficient and low-memory-consuming (relative to

APL@Voro), and documentation is available at: http://pythonhosted.org/fatslim.

One class of metrics that require leaflet identification are those associated with lipid

coordination. The lipid coordination number can be used in phase transitions and coexis-

tence to distinguish between fluid and gel phases, which have markedly different values,

and to characterize the segregation of multicomponent bilayers (e.g. does cholesterol

segregate with lipid X vs Y). The coordination number is rigorously determined from
279
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cumulative integration of the in-plane (2D) radial distribution function to some coordina-

tion cutoff distance. Unless interested otherwise, histograms should be binned separately

for each leaflet (otherwise, liquid and solid structural signatures are convoluted and lack

meaning) by the in-plane 2D radial distance (as opposed to standard RDFs in 3D). (There

are several other structural, thermodynamic, and dynamic techniques for detecting and

characterizing phase transitions and coexistence outlined above, including thickness, area

per lipid, the deuterium NMR order parameter, and lipid lateral diffusivity, amongst

others.)

Other properties & relevant resources

In order to simulate biologically-relevant transmembrane voltage gradients, there are

several possible simulation “tricks.” The major problem is the need to use PBCs in

simulations, which prevent the setup of a charge gradient. A well-accepted solution is to

simulate two bilayers in a single simulation cell, separating the salt baths for the charge

gradient. For more details, see the work of Sachs, Crozier, and Woolf.148

At present, free energy calculations and rare events & importance sampling methods

are beyond the current scope of this document. We recognize that free energy calcu-

lations and advanced sampling strategies are extremely promising for studies of pore

formation, membrane fusion and other collective phenomena of lipid membranes. For

more information, see Smirnova et al.21 and its references.7,19
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Appendix B

Validation of Dry Martini Lipid

Membrane Model

The membrane transverse density profile is a critical structural metric that can determine

chemical and mechanical partitioning effects for NP-membrane interactions (Fig. B.1),

calculated from a 15 ns simulation of the confined membrane. Here, the use of an

implicit solvent model precludes the existence of an aqueous solvent phase (referred to

as region 1 in the typical lipid bilayer membrane four-region model1). Region 2 (the

“interface”/“interphase”), normally the densest, is also affected by the lack of solvent.

Otherwise, however, the model captures typical local density variations from all-atom

models in the membrane interior–namely, the larger density in the “soft polymer” region

(3) relative to the “decane” region (4). The local free volume (local density drop) in the

membrane center is a critical qualitative feature in solute-membrane interactions that

can, depending on the solute, lead to a singular stable insertion state in the membrane

center.2 Figure B.1 also shows the local density of the lipid choline head and acyl chain

tail groups, the dominant lipid chemical groups and those whose interaction with the NPs

is tuned.
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Figure B.1: Membrane Transverse Density Profile. The density profile is calculated via
binning in the z-direction, averaging across the xy-plane. Local density calculations
are centered every simulation frame such as to avoid smearing in simulation averages,
particularly across the local density drop in the membrane center; Dry Martini DPPC,
while devoid of solvent, captures the critical local free volume in the membrane center.

We further validate Dry Martini DPPC with structural, dynamical, and mechanical

properties that can be both directly and indirectly compared with analogous atomistic

model systems and experiments (Table B.1)).

Structural and dynamical property calculation techniques are broadly outlined in

Poger et al.3 The equilibrium area per lipid is a critical target in a lipid force field

parameterization.4 Area per lipid for Dry Martini DPPC is slightly larger than for the

CHARMM36 atomistic model for DPPC; it larger than in some experiments, but is also

within range of others. The lipid P2 NMR order parameter is defined in Appendix A Dry

Martini values here are around 0.36, which is just slightly more ordered, and larger than

those for CHARMM36 and experiment. That said, simulations in this study are conducted

at 341 K, which should be well above the gel-to-liquid phase transition temperature.

Lateral lipid diffusivity values for Dry Martini are larger than for CHARMM36, but

on the same order of magnitude; the difference could be attributed to a number of

factors, not limited to but including system size effects, long-range electrostatics, and

thermostatting. Dry Martini DPPC in this study is simulated at larger sizes, which should
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increase diffusivities relative to typical atomistic system sizes towards the macroscopic

limiting values, but dynamics in this study should also be perturbed by truncation of

electrostatics and the stochastic Langevin thermostat. Experimental diffusivities span

multiple orders of magnitude, and are highly dependent on technique; that said, Dry

Martini and experimental values overlap.

The area compressibility modulus and bending modulus were calculated via the

methods outlined in Venable et al.,4 with the bending modulus specifically calculated

using the undulation spectrum. Perhaps remarkably, Dry Martini area compressibility

and bending moduli are within range of atomistic simulations and experiments. There

are basically no notable size variations in properties for the two membranes studied here–

confidence intervals, where present, overlap–and better control of errors and resolution of

finite size effects could potentially be achieved through large increases in sampling.4,5

As a result, we can preliminarily conclude that Dry Martini reasonably captures

membrane structural and mechanical properties and, roughly, dynamics.
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Table B.1: Dry Martini Membrane Property Validation.

Structural, dynamic, and mechanical properties were cal-

culated from short 15 ns simulations of the confined and

modest-sized membranes, and compared with atomistic

DPPC simulations and DPPC experiments. Despite large

uncertainties for certain metrics and variety of techniques

used for property calculations, Dry Martini compares

quite reasonably with atomistic simulations and experi-

ments. *From modest-sized membrane only @303 K; fluid

phase for this force field6 $variety of fluid phase tem-

peratures and experimental methods3 %“Plateau values”4

#variety of experimental techniques at 323 K, with results

spanning several orders of magnitude3

Property (Units) Dry Martini

DPPC, This

Study (Con-

fined / Mod-

est)

CHARMM36

Atomistic

DPPC

Experimental

DPPC

(Method)

Area per lipid, a (nm2) 0.6581 +/-

0.0014 /

0.6545 +/-

0.0003

0.629@ 0.65 +/- 0.04$;

0.630

P2 NMR order parameter, SCD 0.361 / 0.360 ∼0.15-0.26;

0.203-0.217%

∼0.14-0.26

297



Validation of Dry Martini Lipid Membrane Model Appendix B

Lipid lateral diffusivity, Dl

(10−5 cm2/s)

0.0833 +/-

0.0001 /

0.0815 +/-

0.0062

0.01835 0.03 +/-

0.04#

Area compressibility modulus,

KA (mN/m)

206 +/- 55 /

273 +/- 35

236 +/- 31 231

Bending modulus, κ (kBT) 30 +/- 10* 35.4 +/- 0.9 33.6
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