
UC Irvine
ICS Technical Reports

Title
Comparison of SpecSyn and Workbench modeling

Permalink
https://escholarship.org/uc/item/07p6s8jr

Author
Huang, Chu-Yi

Publication Date
1994-11-23

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/07p6s8jr
https://escholarship.org
http://www.cdlib.org/

Comparison of SpecSyn and Workbench
Modeling

Chu-Yi Huang

Technical Report^ 94-59
November 23, 1994

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717-3425
Phone: (714)824-8059
FAX: (714)824-4056

Email: chu-yih@ics.uci.edu

Abstract

SpecSyn is a system, modeling and synthesis tool designed in University of
California, Irvine. Workbench is a commercial system modeling tool of Sci
entific Engineering Soft.ware. SpecSyn is based on Program-State-Machine
(PSM) model while Workbench is based on Queuing Network model. In this
report, we compare these two models by the feature of modeling a system
and the application of these two tools. Two examples, answering machine
controller and flash file system, are given to demonstrate the difference of
modeling systems using SpecSyn and Workbench. The comparison shows
that SpecSyn has more good features and is more suitable in the whole de
sign process than Workbench. Improvements for the weakness of SpecSyn.
such as pipeline behavior and queuing mechanism, are proposed to make
SpecSyn applicable to wider variety of applications.

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

fff
t3

airIT:ml(W\

bolo^loiu9dViirn

(.0.8.UUaiirn

Contents

1 Model of SpecSyn and Workbench 1
1.1 Model 1

1.2 Input 8
1.3 Output 8
1.4 User Interface 8

2 Goal of SpecSyn and Workbench 9

3 Examples 12
3.1 Answering Machine 12
3.2 Flash File System 21

4 Comparison 29

5 Enhancement of SpecSyn 36
5.1 Pipeline 36
5.2 Message Passing Communication and Queue 37
5.3 Input Dependent Statistic Performance Analysis 37
5.4 Array of Behavior Module 41

6 Conclusion

1 Model of SpecSyn and Workbench

SpecSyn is a system modeling and synthesis tool based on Program-State-
Machine (PSM) model [1] while Workbench is a system modeling tool based
on queuing network model [4] [5]. Workbench is a product of Scientific
Engineering Software. In this report, we are going to compare PSM and
queuing network model by using these two tools as examples.

In SpecSyn, user models system behavior in SpecChart language, a front
end for VHDL. After the behavior was correctly described, user can select

different implementation configurations and get a refined behavior descrip
tion and some design quality estimations. In Workbench, user models a
system implementation in queuing network and C programming language.
The output of Workbench is input dependent statistic performance informa
tion to help user locate system's bottleneck. Following are brief introduction
to the model, input, output, and user interface of these two tools.

1.1 Model

SpecChart

SpecSyn

User Interface

Estimator

Partitioner

PSM Model
Specification

Executable
Specification

Interface
Synthesis

VHDL
Translator

VHDL

Generator

Arbiter

Synthesis

Fig. 1.1: SpecSyn Design Environment.

Test Vector

i
VHDL

Simulator

Function
Verification

VHDL Synthesis
System

Fig. 1.1 is the SpecSyn design environment[2]. SpecChart is a PSM

based modeling language. PSM model basically consists of a hierarchy of

program-states, in which each program-state represents a distinct mode of

computation. Each program-state is either a composite program-state or a

leaf program-state. A composite program state can be further decomposed

into either concurrent or sequential program-substates. If they are con

current, all program-substates will be active if the program-state is active,

whereas if they are sequential, only one program-substate will be active at

a time when the program-state is active. There are two types of transition

arcs connecting program states: transition-on-completion (TOC) arc and

transition-immediately (TI) arc. TOC arcs traverse only when the source

program-state complete its computation and the associated arc condition

is true, but TI arcs traverse immediately when the arc condition becomes

true. In SpecChart, the computation of leaf program-state was expressed

in VHDL code.

Fig. 1.2 is a SpecChart specification example. XI, X2, Y and Z are

leaf program-state. XI and X2 are sequential program-substates of X. X.

Y and Z are concurrent program-substates of B. Fig. 1.3 is the ecpiiv-

alent graphic representation of Fig. 1.2. Concurrent program-states are

separated by a dotted line. A bold inverted triangle indicates the first se

quential program-substate. A bold square represents a completion point.

Arcs originating from a bold square are TOC arcs, for example the e2 and

e3 arc. On the other hand, arcs originating from the perimeter of the source

program-state are TI arcs, for example the el arc.

PSM is an event-driven computation. Events are first generated by

changing input values. These events stimulate active program-states to

respond. In processing these events, the set of active program-states may

change and new events are generated which may stimulate the new set of

active program-states. This stimuli-response process keeps going until no

active program-state (computation complete) exists.

Besides modeling behavior, SpecSyn help user decide implementation

configuration by refining system behavior and estimating design quality.

entity E is
port (P: in integer, Q: out integer);

end E

architecture A of E is
begin

behavior B type concurrent subbehaviors is
type int_array is array (natural rangeo) of i
signal M: int_array(15 downto 0);

begin
X; (TOC, true, complete);
Y: (TOC, e3, complete);
Z:;
behavior X type sequential subbehaviors is
begin

XI: (Tl, el, X2);
X2: (TOO, e2, complete);
behavior XI type code is
behavior X2 type code is

end

behavior Y type code is
variable max;integer;

begin
max:=0;
for J in 0 to 15 loop

if (M(J)^max) then
max:=M(J);

end if;
end loop;

end Y;
behavior Z type code is

end B;
end A;

Fig. 1.2: A sample SpecChart specification.

E portP, Q; in integer;

D t^ int_array isarray (natural rangeo) of integer;
signal A: int_arTay (15 downto 0);

variable MAXiinteger;

MAX := 0;
for J in o to 15 loop

if (A(J)>MAX) then
MAX := A(J);

end if;
end loop

Fig. 1.3: Graphic Representation of SpecChart.

After user allocates hardware resources and specifies performance/cost con

straints, SpecSyn partitions and binds behavior to meet the constraints as

much as possible. When given an allocation, partition and binding, Spec

Syn refines behavior to maintain correct functionality. Variables partitioned

among memories require memory address translation. Behaviors separated

among components must be modified to maintain correct communication.

Channels mapped to buses require interface synthesis to determine commu

nication protocols, and arbiter synthesis to resolve any simultaneous bus

requests. SpecSyn generates VHDL specification for these added function.

The partition/binding and refine process are guided by estimation of design

quality metrics, such as area, performance, and pin number. The estima

tion are based on library information. The performance estimation are

input independent, no input data profile are needed.

Queuing network represents a system as a network of queues and servers.

Arriving requests are stored in queue while waiting for processing by servers.

Edges, connecting queues and servers in network, can associate a condition

to divert input requests. Queuing network was originally and typically used

for performance analysis. In this case, useronlyspecified the arrivingrate of

input request and process time of each server. The modeling tool calculated
the system throughput by using queuing theory or simulation.

Fig. 1.4(a) is a queuing network characterizing a computer system [3].
There are one to fifty interactive users on terminals which generate requests
every 30 seconds in average. Requests are processed by CPU and disks

iteratively. When services complete, results go back to terminals. CPU

service takes 3 seconds and the three disk services take 1, 2, and 4 seconds

respectively. With such specification of input request and server's service
time, a queuing network can generate performance analysis such as CPU
utilization in Fig. 1.4(b) and system response time in Fig. 1.4(c).

Terminals

(a)Queumg Network Modleing of Computer System

1 25 50

Interactive Users

1 25 50

Interactive Users

(b) CPU Utilization(b) CPU Utilization System Response Time

Fig. 1.4: Queuing Network Model.

In order to enhance queuing network for modeling functionality. Work
bench associates each server with a function, such as delay and lock resource,
and provides different kinds of queue such as first-in-first-out and last-in-

first-out. Workbench implements a stream-flow computation. Generation

nodes which are the start points of computation generate input requests.

When a input request flows into a server, the function associated with this

server is executed. After processing, the request flows along network edges

to next server. The request keep flowing in the network until it flow into a

Termination node which terminates input requests. All servers process

ing input requests are active at that instance. The computation completes

when no more input requests are generated.

Workbench

Queuing Network Specification

Test VectorT Behavior "T input Profile

Queuing Network Simulator/Animator,
Performance Analizer

Function
Verification

User Interface

Report
Generator

Performance
Analysis

Fig. 1.5: Workbench Design Environment.

Fig. 1.5 is the design environment of Workbench. Besides the behavior

modeling, user has to provide two types of input: test vectors and input

profile. Test vectors are for function verification and input profile is for

performance analysis. Both test vector and input profile are specified in

Generation node and was integrated in behavior modeling. So user has to

maintain two slightly different version, as the example in Fig. 3.10.

In Workbench, queue and server are combined and represented as node.

Some node types represent a queue attached in front of a server while the

others are servers only. Workbench dose not provide independent queue

that is a queue which dose not associate with any server. Beside the built-

in functionality, user can associate each node with a C program to extend

that node's function. Fig. 1.6 shows Workbench's major node tj^pes.

=>Generate and terminate inputrequest.!Z) IZ
Generation Termination

III Thesenodes specify theprocess time.

Delay Delay with queue

^ ^ => Interrupt nodes generate interrupts. Nodes that will be interrupted were
I ' Ll specified in Interrupt node. Input requests in the interrupted node go to
Interrupt Resume Resume node immediately.

=> A Boolean equation was associated with this node. Input requests are
queued if the Boolean equation is not true.

=>Both Fork andSplit node duplicate input requests.
^ N Duplicated requests ofFork node will terminate at

Split

13 D m 31 O ^
Procedure Procedure Procedure Lock resource Unlock Module Main
Reference Begin

Module

Fig. 1.6: Workbench's Node Types.

1.2 Input

SpecChart language is an augmented VHDL program as shown in Fig. 1.2.

Besides standard VHDL statement, user can use several augmented state

ments to define and describe program states and their relationships. The

input of SpecSyn, besides the system behavior, is system level hardware

components and performance/cost constraints for the proposed system im

plementation. User selects hardware components such as memory. CPU

and ASIC of different area, pin number, monetary cost, performance etc.

from library. The input of Workbench are nodes connected by edges that

are all represented in graphics as shown in Fig. 1.5. Attributes of nodes

and condition of edges are expressed in text.

1.3 Output

There are two outputs of SpecSyn: a refined VHDL program and design

quality estimation. The refined VHDL program composed of the VHDL

translation of SpecChart modeling, the component interface specification,

and partition/binding information. The design cjuality metrics iirclude per

formance, area, monetary cost, bus width and pin number.

The output of Workbench is the statistic performance data. Statistic

performance data means the maximal value, minimal value, sample count,

standard variance etc. of some performance metrics such as execution time

and queue waiting time. They were calculated by simulation and cate

gorized by different input types. Workbench can produce maximal value,

average value, minimal value, and standard variance of queue length, queue

waiting time, execution time for different execution path, inter arrival time

and resource/node utilization. Fig. 1.7 is an example of Workbench output.

1.4 User Interface

SpecChart supports two user interfaces. User can key in the whole de

scription in a text editor or use a simple graphic user interface to capture

Utilization:

Resource CPU:: min:0.01 ave:0.08

variance:0.1

category: read

min:0.02 ave:0.14

variance:0.12

category: write

min:0.01 ave:0.1

variance:0.11

categoiy: all

max:0.13

count: 150

max:0.23

count: 124

max:0.23

count: 274

Fig. 1.7: Example of Workbench output.

and traverse the hierarchy relation and use the integrated text editor to
key in transition statements and VHDL codes. SpecSyn provides graphic
user interface for entering constraints, selecting hardware components and
invoking partition, binding and estimating functions.

Workbench provides a graphic user interface for selecting and placing
node and connecting nodes with lines. Asimple text editor was integrated
for keying node attributes, line conditions, and C codes. Workbench also

provides a graphic interface animating input requests flowing in network for
verification use.

2 Goal of SpecSyn and Workbench

An ideal system-level design process consists offour steps:

1. model the pure behavior and verify its coi'rectness,

2. select an implementation,

3. evaluate design quality of the selected implementation and check it
against user constraints,

4. find the bottleneck if constraints are violated; Then refine the imple
mentation by repeating step 2, 3, 4 and sometimes step 1.

This process can restrict the side effect of modification in each step to

minimal. Modification in latter steps did not cause modification in prior

steps.

Sometimes user combined step 1 and 2, particular in modeling an existed

system. Thej^ take the implementation characteristic such as hardware al

location, behavior partition, binding, and scheduling as part of system be

havior. If this design dose not meet user requirement, the refinement may

change the hardware configuration or behavior partition. This kind of re

finement should modify the whole modeling, not only the implementation

characteristic. This waste much time and also increase the complexity of

modeling.

SpecSyn support this ideal design process. SpecChart provides the func

tionality needed for step 1 and SpecSyn is for step 2, 3 and 4. B}' using Spec-

Chart, user can easily describe their concept which can be a pure behavior

or a behavior bound to some hardware implementation. Besides providing

hardware allocation user interface for specifying implementation configu

ration, SpecSyn generates glue functions for the allocated components to

keep the correct function. This releases user from some implementation

detail. SpecSyn also estimates several design quality metrics for constraint

checking and design refinement. So SpecSyn is ideal for most applications.

Because SpecSyn do not provide input-dependent performance analysis,

they can not provide enough useful performance metrics for those systems

whose performances are affected significantly by input values. Without

those input dependent statistic performance information as provided b}'

queuing network, user can not locate system's bottleneck easily. As in flash

file system example, read, write (set 0 to 1), and erase (set 1 to 0) take about

100 nanoseconds, 10 to 20 microseconds and 2 to 3 seconds respectively.

Improving erase command did not significantly improve the whole sj'stem

because less than 10% of total execution time was spent in erase commands

due to its rare occurrence. Write commands cost more than 40% of total

execution time. In this case, input dependent statistic performance analysis

categorized by input types is more helpful for locating system bottlenecks

and tuning the system for certain input profile.

Workbench dose not support this design process. It combined step 1 and
2 into one task. Hardware resources were declared in the same modeling of
behavior. Behavior partition and binding was done by user and specihed
by using resource lock/unlock nodes. So user models not only the system
behavior but also implementation characteristics. If the refinement changes
the implementation, user has to rewrite the modeling as the example in Fig.

A=B+C D=E+F

(a) originalbehavior in data-flow-diagram

A=B-kC

D=E+F

(b) modeling in Workbench for two adders

•III A

lock adder A=B-(-C

lock adder
D=E-(-F

D=E+F unlock adder

A=B-(-C unlock adder

(c) Two possible modelings in Workbench for one adder

Fig. 2.1: Modeling modification due to hardware allocation in Workbench.

Performance is the only one design metric that Workbench supports. So

user can not check the violation about area, pin count etc.. Workbench

analizes the system performance based on the delay of each subbehavior

that was provided by user. Because Workbench dose not estimate the per

formance, Workbench is not ideal for modeling a new system. User can

not measure performance of each subbehavior for a new sj^stem. Based

on user's roughly estimated performance information. Workbench can not

provide any precise design metric. The modeling is only for documenta

tion. No further operation can be done. For modeling existed system, the

complex performance analysis based on queuing model can provide more

useful information for systems whose performance are affected significantly

by input profile.

3 Examples

Here we present two modeling examples: answering machine [1] and flash

file system. Answering machine was first modeled in SpecChart and then

translated into Workbench. Flash file system was first modeled in Work

bench and then translated into SpecChart. The goal of modeling answering

machine is to create a complete modeling which can be used as a reference

of lower level design or as an input for synthesis tool. The goal of model

ing flash file system is to locate system's bottleneck. Many behaviors were

abstracted because they are performance irrelevant. In this two examples,

we want to show the difference in modeling capability of SpecChart and

Workbench.

3.1 Answering Machine

Fig. 3.1 is the environment for a telephone answering machine controller

available on the market. The Announcement unit records and plays a

short outgoing announcement. The Tape unit records messages on a. tape

and plays them back. Standard Line circuitry answers a call, detects a

ring, detects a hangup, decodes a button tone, and produce a beep. The

tolisaver

Announcement
unit

O (U 0}
Q. Q. Q.
CD TO Cd

Controller

phone line

Line

circuitry

§• o
g, i I
rt o

Fig. 3.1 : The Answering Machine Controller's Environment.

message

on/^
kJ

play I
mil

Display shows the current number of messages and the on/off state of

the machine. Nine touch-sensitive buttons allow the machine's user to edit

the announcement and hear message. The machine also has two switches

for switching machine's on/off state and the number of rings (two or four)

before recording messages respectively. Fig. 3.2 to Fig. 3.8 shows the

modeling of Controller in SpecChart and Workbench.

Controller

SystemOff

power^'O' power=T'

SystemOn

(a) SpecChart Specification

others

interrupt SystemOff
call SystemOff

in SystemOn Power=l

others

in SystemOff

Power=0

call SystemOn
interrupt SystemOn

interrupt RespondToMachineButton

interrupt RespondToLine and all SystemOn's children

(b)Workbench Specification

Fig. 3.2: Highest-level View of the Controller.

SystemOn

ResponnToLine

rising(any_button_pushed)

RespondToMachineButton

(a) SpecChart Specification

call RespondToLine

rising(any-button-pushed)

inmpt RespondToMachlneBuuon "'̂ PO-IToMachlneBullon
interrupt RespondToLine

interruptMonitorand all RespondToLine's children

(b)Workbench Specification

Fig. 3.3: The SystemOn Behavior.

(a) SpecChart Specification

HandlePlay

Handle

—0
Handle

—0
Handle

iL_0.
Handle

-ann=l^^^
Handle!

Handle]

HandleFwd

HandleRew

HandleMemo

HandleStop

HandleHearAnn

HandleRecAnn

Iplay_Tnsgs:

HandlePlayMsgs

(b) Workbench Specification

Fig, 3.4: The RespondToMachineButton Behavior.

RespondToLine

Monitor

I rising(hangup)
falling(machine_on)

Asnwer

(a) SpecChart Specification

call Monitor call Answer

interrupt Monitor

interrupt Answer interrupt RemoteOperation

(b) Workbench Specification

Fig. 3.5: The RespondToLine Behavior.

Monitor

signal rings_to_wail: integer range 1 to 20 :=4;

function DetermineRingsToWait return integer is begin

if ((num_msgs>0) and (tollsaver='r) and (machine_on='r))then

retum(2);

elsif (machine_on=' 1') then

retum(4);

else

retum(15):

end ifl

MaintainRingsToWait

loop

rings_to_wait<=DetermineRingsToWait;

wait on tollsaver, machine_on;

end loop:

(a) SpecChart Specification

MainTainRingsToWait

CountRings

variable i: integer range 0 to 20;

i:=0;

while(i<rings_to_wait) loop

wait on rings_to_wait, ring;

if (rising(ring)) then

i:=i+l;

end if;

end loop; F

CountRing

(b) Workbench Specification

Fig. 3.6: The Monitor Behavior.

Answer

rising(hangup)

EPlayAnnouncement

button="0001" button="0001"

RemoteOperation

(a) SpecChart Specification

interrupt PlayAnnouncement

rising(hangup)
button="0001"

rising(hangup)

call RemoteOperation

button="0001"
PlayAnnouncement RecordMsg HangUp

interrupt PlayAnnouncement interrupt RecordMsg

(b) Workbench Specification

Fig. 3. 7: The Answer Behavior.

RemoteOperation
hangup='r

CheckCode

(a) SpecChart Specification

code ok=0

code_ok=l /'T^

CheckCode RespondToCmd

interrupt CheckCode

(b) Workbench Specification

Fig. 3.8: The RemoteOperation Behavior.

3.2 Flash File System

Flash File System (FFS) is a file system implemented on flash memory, not
on traditional harddisk. Flash memory is a non-volatile memory that it
can keep data even when power was disconnected. There are three basic

operations for flash memory: read, write and erase. Read operation reads
one byte/word. Write operation bitwisely changes value from 0 to 1 of one
byte/word. Erase operation bitwisely changes value from 1 to 0 of a whole
sector which may be 16K, 64K or some other value according to different
products. Read, write, and erase operation take about 100 nanoseconds.

10 microseconds and 2 seconds respectively. Because erase operation has a
very large delay, several features such as concurrent sector erase and erase

suspend for read are provided to improve performance.

(^
Personal Computer

FlashFileSystem

FlashMemoryDriver

FlashMemory

Fig. 3.9: Flash File System Enviornment.

To implement a FFS, file system commands such as read and write a

record should be translated into read, write and erase commands for flash

memory. In the translation, the special features mentioned above should

be utilized according to flash memory status for a better performance.
Fig. 3.9 shows the FFS environment. FlashFileSystem and Flash-
MemoryDriver are software running on PC. FlashFileSystem generates

read/write/erase commands for PC application programs. FlashMemory-

Driver takes care of the special featui'es of different flash memory products.

FlashMemory is the modeling of flash memory chip. Fig. 3.10 to Fig. 3.16

shows the Workbench and SpecChart modeling of FlashMemoryDriver

and FlashMemory.

TestVector FlashMemoryDriver

FlashMemory

InputProfile

(a) Workbench Specification for both function verification and performance analysis

TopLevel

TestVector FlashMemoryDriver FlashMemory

(b) SpecChart Specification for function verification only

Fig. 3.10: Top Level Modeling of FlashMemoryDriver and FlashMemory.

input=read

call ReadFunc

input=write

lock CPU
call WriteFunc unlock CPU

input=erase

call EraseFunc

(a) Workbench Specification

FlashMemoryDriver

input=read
ReadFunc

input=write
WriteFunc

input=erase
EraseFunc

(b) SpecChart Specification

Fig. 3.11: FlashMemoryDriver Behavior.

call FlashMeitioryDriver
(a)Workbench Specification for TestVector

specify read comitiandfrequency

specify write commandAd^ncy ^all FlashMemoryDriver

specify erase command frequency

(b)Workbench Specification for InputProfile

TestVector

/* VHDL Program */

read test vector from file;

put test vector into queue;

(c) SpecChart Specification for TestVector

Fig. 3.12: TestVector and InputProfile Behavior.

FlashMemory I

FlashMemory

with

erase_suspen<

cmd

FlashMcmoryChip busy

FlashMemory in idle

FlashMcmoryChip idle

•III A

FlashMcmoryChip

FlashMemory in psuedo^ead
call FlashMemory with erase_resumc cmd

(a) Workbench Specificatiom

/» VHDL Program */

if FlashMemory in scciOT_erascthen

call FlashMemory with erase_suspend cmd;

loop for every address

wait until FlashMemOTyChip=0;
FlashMemoryChip=1;

send write commandto FlashMemory;

increase address;

end looD
if FlashMemory in psuedo^read then

call FlashMemory with erase_resume cmd;

(b) SpecChart Specification

Fig. 3.13: ReadOperation Behavior.

call increase address

FlashMemory

FlashMemoryChip busy

(a) Workbench Specificatiom

WriieFunc

/* VHDL Program */

loop for every address

wail until FlashMemoryChip=0;
FlashMemoryChip=l;

send write command to FlashMemory;

increase address;

end loop

(b) SpecChart Specificatirm

FlashMemoryChip idle

FlashMemoryChip

Fig. 3.14: WriteOperation Behavior.

call increase address

FlashMemory

FlashMemoryChip busy

FlashMemoryChip idle
unlock

FlashMemoryChip

concurrent erase

•©-
set concurrent

erase command

©-
set new

erase command

(a) Workbench Specificatiom

—

EraseFunc

/* VHDL Program */

wait until FlashMemoryChip=0;

if a concurrent erase command

set concurrent erase command;

else

set new erase command;

send erase commandto FlashMemory;

(b) Workbench Specification

Fig. 3.15: EraseOperation Behavior.

lock CPU

call FlashMemory

communication

m idle state

in psuedo_reading

in sector_erase_setup

(a) Workbench Specification

FlashMemory

(b) SpecChait Specification

setcu r_crase intemipt block forever

setctor_erase_selup / sector_erase

in sectcx* erase
block forever

erase.suspend cmd

chip_erase sector erase

Fig. 3.16: FlashMemoiT Behavior

4 Comparison

In this section we compare features of SpecSjm and Workbench model.

Table 1 shows the comparison. If the feature can be described by the basic
elements and operations, we say the model support this feature. If the
feature can not be described by the basic elements and operations but can
be described by a predefined compound object composed of basic elements,

operations and C/VHDL code, the model partially support this feature. If
the feature can only be described by a customized combination of basic-

elements, operations, and C/VHDL program or can not be described bj'
this tool, we say the model dose not support this feature.

Feature

State Transition

Behavior Hierarchy
Concurrency

4 Serialization Yes Partial
5 Pipeline Partial Yes
6 Program Construct Yes Yes
7 Exception Yes Yes

_8 Behavior Completion Yes No
9 Queue Partial YS
10 Non-queued Behavior Yes Partial

11 Performance Analysis Partial Yes
12 Design Quality Estimation Yes No
13 Message Passing Comm. Partial Partial
14 Shared Memor}^ Comm. Yes Yes
15 Array of Behavior Module No 1 Yes
16 Refinement for Implementation Yes No

Table 1: Feature Comparison of SpecSyn and Workbench.

SpecSyn | Workbench
Yes

Yes

Yes

No

No

Yes

Partial

Yes

Yes

Yes

N^
Yes

Partial

Yes

No

Partial

Yes

YYs

N^

(1) State Transition. SpecChart repi'esents states by program-states
and state transitions by TI and/or TOC arcs. Workbench dose not support
state transition. Though Workbench can build a network look like a state

transition diagram, input requests start at the same nodes every time. It

dose not behave like state transition in which transition starts from current

state, not a fixed state. State transition must be translated into data flow

and expressed in C code or queuing network as the example in Fig. -3.16.

(2) Behavior Hierarchy. Workbench dose not support behavior hier

archy. Though Workbench provide Procedure Reference node, it repre

sents a procedure call not a hierarchy relation. The called function is not a

subbehavior of the calling function. In one execution path, process X called

process Y, but process Y can call process X in other execution pathes. This

causes some inconvenience as the interrupt specification in Fig. 3.3.

(3) Concurrency. Both tools support concurrent behavior. Spec-

Chart defines the concurrency when decomposing behavior into concurrent

program-substates. The concurrency is explicitly expressed and is static. In

Workbench, nodes on different pathes which starts from a same fork node,

a same split node, or different generation nodes can be concurrent. Fork

node, split node, and generation can generate multiple requests. When

these requests flow into different nodes, they become concurrent behaviors.

This concurrency is dynamic and implicit. They are decided by the flow of

input requests in run-time. .A.s examples of Fig. 4.1, though the networks

in (a), (b), and (c) look similar, they represent concurrent, pipelined, and

sequential behaviors respectively. Because conditions associated with net

work edges decide requests' flow direction, requests flowing to same path

are pipeline or sequential and requests flowing to different pathes are con

current. In Fig. 4.1(a.), reading odd and even byte are served by different

servers. So requests for reading odd and even byte go to different path and

are concurrent. In Fig. 4.1(b), one path is serving for address larger than

64K and the other is for address less than 64K, so reading word 100 will

be decomposed as reading byte 100 and 101. These two requests will go to
the lower path. After reading address 100, translating byte 100 execute at

the same time with reading byte 101. This is a pipeline behavior. In Fig.

4.1(c), reading address 100 lock resource x while it is in processing. Reading
address 101 was servered after byte 100 was translated and resource x was

released. So reading address 100 and 101 execute sequentially.

re^byte translate data

odd byte

read word 100

even byte

(a) concurrent behavior
read byte translate data

read word 100

(b) pipeline behavior

address>=64K

read word 100

address>^

address<64k

read byte translate data

'0—'0
read byte translate data

lock translate unlock
resource x read byte data resource x

•©

•©

III A

address<64k ^111 A
i

lock read byte translate unlock
resource x data resource x

(c) sequential behavior

Fig. 4.1: Concurrent and Sequential Representation in Workbench.

(4) Serialization. SpecChart specifys the serialization when decompos

ing behavior into sequential program-substates. Workbench only partially

supports sequential behavior. In queuing network, every node which is

serving an input request at the same time execute parallelly. To describe

sequential behavior, user has to create a dummy resource and use resource

lock/unlock to ensure there is only one request flowing in a set of nodes.

Then this set of nodes will execute in sequential order. When there is al

ready one request in this set, latter requests are queued outside this set that

is in the Lock Resource node.

(5) Pipeline. Unlike concurrent and sequential relation, pipeline is

an implementation characteristic, not a behavior characteristic. A same

behavior can have non-pipeline implementation, two pipeline stage imple

mentation, three pipeline stage implementation etc.. In Workbench, nodes

in the same path are pipelined behaviors as shown in Fig. 4.1(b). Pipeline

computation should be represented as concurrent program-states in Spec-

Chart and ensure pipeline relation by using synchronization mechanism as

the pipeline program-substates xl, x2, and x3 in Fig. 4.2.

(6) Program Construct. Both tools support program construct. Spec-

Chart uses VHDL language and Workbench uses C language.

(7) Exception. Both tools support exception. SpecChart uses a TI arc

starting from the interrupted behavior to the following behavior to describe

an interrupt. Workbench uses interrupt node and resume node to describe

interruption. When a request flow through an interrupt node, an interrupt

was generated. Nodes that will be interrupted were specified in the interrupt

node. All recpiests executing and/or waiting in these nodes go to the resume

node immediatel}^ Because the exception was specified in the source side,

the interrupted node sometimes did not know which interrupt occurred

when there were multiple interrupts. In this case, the interrupted node will

have a wrong reaction. Fig. 3.3 shows an example of modeling interrupt.

(8) Behavior Completion. SpecChart has an explicit completion point

for every program-state. Workbench has no behavior completion expres

sion. When there is no input request, the behavior stop. So it is decided by

r. ;-v;

Process X

signal x2_a, x2_b, x3_a, x3_b,

Process xl

begin xl's computation

end xl's computation

/* pipeline synchmization */
guarded by pipeline_clock=l

and pipeline_clock'event

x2_a=...

x2 b=...

end quard;

Process x2

wait until pipeline_clock=l
and pipeline_clock'event

begin x2's computation

end x2's computation

/* pipeline synchmization */
guarded by pipeline_clock=l

and pipeline_clock'event

x3_a=...

x3 b=...

end quard:

Process x3

wait until pipeline_clock=l
and pipeline_clock'event

begin x3's computation

end x3's computation

Fig. 4.2: PiiDcline Representation in SpecChart.

the test vector specified in Generation nodes. ProcedureEnd and Ter

mination nodes are not completion point. When requests flow through
ProcedureEnd node, they go to next procedure. When recpiests flow into
Termination node, requests terminate. But the system is still active if
there are some other requests in the network. Termination node should
only be placed at the end of whole system behavior, it can not be used as a

completion point in one procedure to replace ProcedureEnd node. Other

wise, requests terminate in one procedure and followed procedures will not
be executed. Computation was only partially performed.

(9) Queue. Workbench provides many types of queue attaching to
different kinds of server. They can express queue behavior easily. In Spec-
Chart, queue behavior can be written in VHDL code and used as a library
function call. So queue functions can become a standard library, not a
customized function for each different behavior.

(10) Non-queue Behavior. In Workbench, when one server is busy,
the incoming recpiests are always queued. Ifan input value change twice in

that period, there are two input requests in the queue. If the latter value

should overwrite the previous value, it is hard to describe in Workbench.

In SpecChart, latter updated value always overwrite the previous one.

(11) Input Dependent Statistic Performance Analysis. SpecSyn

did not support input dependent performance analysis. User has to insert

VHDL codes for probing the current execution time and performing statist ic

calculation. To generate analysis result in Workbench, user onh' has to turn

on switch of each node, procedure, and resource.

(12) Design Quality Estimation. SpecSyn provides five design met

rics: performance, area, pin number, monetary cost, and bus width. They

are estimated by using library information. The only design metric provided

by Workbench is performance. The metric was calculated by simulation,

not by estimation. User has to provide basic performance information of

each subbehavior. They were specified by Delay nodes.

(13, 14) Communication. Both tools provide shared memory commu

nication by using global variable in C and VHDL language. But message

passing communication was only partially supported. User can write a mes

sage passing library in C or VHDL that is basically a queue.

(15) Array of Behavior Module. In SpecChart, user has to duplicate

the description of program-state by editor. After duplicating program-state

description, arcs among these program-states will also change. A node in

Workbench can represent only one instance of queue/server, one queue with

multiple servers, or multiple queues with multiple servers by specifying a

node's server and/or dimension attribute. If the server attribute of a

node is larger than one, these servers share a same queue. These servers

have the same function. If the dimension of a node is larger than one. this

node represents more than one queue and each queue has server number of

servers. These queues are treated as an array. Each queue can be referenced

by different index. A rule was associated with each incoming edge of this

node for how to select the array element for every arriving request. Fig. 4.3

illustrate this feature.

Delay with queue

Server=Dimension=l

(a) single server queuing network and its Workbench specification

Delay with queue
Server=3, Diinension=l

(b) multiple server queuing network and its Workbench specification

Delay with queue

Server=l, Dimension=3

All queues and nodes have

the same function.

(c) duplicate behavior and its Workbench specification

Fig. 4.3: Multiple queues/servers representation in Workbench

(16) Refinement for Implementation. In Workbench, the concur

rent, sequential, scheduling, and partition relations were specified by the

fork/join/split nodes, lock/unlock nodes, and delay nodes in the modeling.

They are fixed. Workbench can not change it. In SpecChart, user only

specify the behavior requirement for concurrency and serialization. Delay

information is optional. SpecSyn will schedule and partition the behav

ior according to hardware resources. So concurrent behavior can executed

sequentially due to hardware constraint without changing the modeling.

Component interface after partition was automatically generated.

5 Enhancement of SpecSyn

From the comparison, SpecSyn are weak in five features: pipeline, queue,

input dependent statistic performance analysis, message passing commu

nication, and array of behavior module. Message passing communication

is basically a queue implementation. Here we propose the enhancement of

SpecSyn over these features.

5.1 Pipeline

There are two possible ways to describe pipeline in SpecChart. The first

way is to provide pipelined program-state in SpecChart besides concurrent

and sequential program-states. The second way is to specify pipeline stage

number for each program-state in SpecSyn and let SpecSyn refine the be

havior automaticalh^ Because pipeline is an implementation characteristic,

the second way fit design process better than the first one. But automatic

pipeline generation is more difficult and requires further research.

Here we propose the imiilementation of the first approach. Users par

tition behavior into pipeline program-states as in Fig. 5.1(a). Pipeline

program-states are separated by double dot line. When translating pipeline

program-state into current SpecChart specification, SpecChart can find out

variables that were used in latter pipeline stages as variable a, b, c, and

d and generate temporary variables for them. Instead of updating original

variables in computation, translated code update the temporarj' variables.
At the end of computation, guarded statements are appended to update
original variables that will be used at latter pipeline stages. Fig. 5.1(b) is
the translation of Fig. 5.1(a).

5.2 Message Passing Communication and Queue

Message passing communication is done by calling SendMessage and Re-
ceiveMessage. They are equivalent to put queue and get queue. So Spec-
Chart can provide SendMessage and ReceiveMessage function call in its
standard library. The parameter for these two function calls are channel

name and message. Each communication channel has a unique name. User
can use these two function call to pass message.

In SpecChart, there are concurrent and sequential program-states. Be
cause only onesequential program-substates can be active at any time, so no
queue is needed for sequential program-substates except the first one in the

toppest level of a concurrent program-state. As in Fig. 5.2, program-state
A, D, E, F and G may need queues and the others do not. All concur

rent behaviors and the sequential behavior mentioned above may have or
may not have a queue. It depends on system behavior. If a program-state
needs a queue, SpecChart can automatically insert a GetQueue function
call at the beginning of that program-state. The only extra effort for user is
to insert PutQueue function call at the place where data were generated
because transitions in SpecChart are control flow not data, flow. The more

queue mechanisms SpecChart provides such as FIFO queue. FILO queue
and priorit}' queue, the less chance user has to write a queue in VHDL.

With library ofqueue functions, SpecChart can provide message passing
communication and queued subbehavior. User onh^ has to insert SendMes

sage, ReceiveMessage and PutQueue in proper place in the modeling.

5.3 Input Dependent Statistic Performance Analysis

The major statistic data got from queuing model are inter arrival time,
queue length, queue waiting time, utilization and response time. Fig. 5.3

Process X

signal a, b, c, d;

Process xl Process x2 Process x3

begin xl s computation

: /* update a, b, c; */

end xl's computation

begin x2 s computation

; /* reference a, b; */

: /* update d; */

end x2's computation

begin x3 s computation

: /* reference b, c, d; */

end x3's computation

(a) Proposed Pipeline Specification

Process X

signal a, b, c, d, c2, xpipe_clock;

Process xl

var tmp_a, tmp_b, tmp_c;

begin xl's computation

/* update tmp_a,

tmp_b, tmp_c; */

end xl's computation

/* pipeline synchmization */
guarded by xpipe_clock=l

and xpipe_clock'event

a <= tmp_a;

b <= tmp_b;

c2 <= tmp_c;
end guard;

Process x2
var tmp_d;

begin x2's computation

; I* reference a, b; */

: /* update tmp_d; */

end x2's computation

/* pipeline synchmization */

guarded by xpipe_clock=l
and xpipe_clock'event

d <= tmp_d:

c <= c2;

end guard;

Process x3

begin x3's computation

/* reference b, c, d; */

end x3's computation

(b) Translation of Pipeline Specification.

Fig.5.1: SpecChart Enhancement for Pipeline.

Top Level

Fig. 5.2 : Possible Queue Insertion in SpecChart.

shows how to add these functions in SpecChart. To get the inter arri\al
time, we need to know the every starting time of the probed subbehaviors.
So SpecChart can automatically insert now statement in the beginning of
every subbehavior and a statistic function call after the now statement to

compute the max/ave/min value, standard variance and sample count.

Utilization is the ratio of active time over total execution time. For

utilization of a subbehavior, SpecChart can insert now statment at the

beginning and ending ofevery subbehavior to get the active timeperiod and
compute the utilization easil}^ When SpecSyn partions and binds behavior
to hardware resources, it can insert the now statement in the refined V'HDL

program to calculate utilization of hardware component in the same way.
Queue length can be very easily provided by queue function call. By

inserting time stamp and real data into queue at the same time, the waiting
time in queue can be calculated when get data out of queue.

To calculate the execution time from one point to another point, user
can insert now statement in these two points. They can get execution
time in smaller granularity that is in statement level but it is not clear to

user which execution path is probing. If SpecChart shows program-states
in graphic, user can select the probing path more easily. This is clearer

but it is in larger granularity that is program-state level. User can both

select the probing path and insert now statement to get statement level

Process X

begin

start_x=now;

/* original computation */

Difference of any two continuous value of startx

is the inter-arrival time of Process X.

(a) Inserted Statement for Getting Inter-arrival Time.

Process X

begin

startjc=now;

/* original computation */

stop_x=now;-
end;

Sum of (stop_x-start_x) over total execution

is the utilization of Process X.

(b) Inserted Statement for getting Utilization.

Process X

path a: start a=now

path_a

stop_a-start_a is the response time of path_a.

(c) Enhancement for getting response time.

Fig. 5.3: SpecChart Enhancement for Performance Analysis.

Process Y

path a: stop a=now

execution time. Pathes and now statements can associate with each other

by label name. In this way, SpecChart can get the response time in an easy
to capture way.

SpecChart can provide table for specifying how to categorize the statistic
data as Workbench dose. If there are input or internal signal for this use,
user has no heavy burden. If the grouping rule is not easy to describe bv
these signals, user has to create some extra signal for this purpose. It will
complex the behavior modeling.

After adding these functions, user can get the input dependent statistic
performance analysis by running VHDL simulator.

5.4 Array of Behavior Module

To provide this feature, SpecChart must allow user to specify the dimension
of each program-state and associate the transition a rule for chosing the
instance of destination program-state. When translating to VHDL. each
program-state instance should have a unique name.

6 Conclusion

This paper has shown that SpecSyn has many good modeling feature over
Workbench. User can save much time in the design process and get more
information. For modeling tasks need some special feature such as input
dependent performance analysis and queue mechanism, user has to write
VHDL programs for these features in current SpecChart implementation.
With the proposed enhancement, SpecSyn will be suitable for these applica
tions, too. This makes SpecSyn applicable to wider variety of applications.

References

[1] D.D. Gajski, F. Vahid, S. Narayan and J. Gong. Specification
and Design of Embedded Systems, 1994

[2] D.D. Gajski, F. Vahid and S. Narayan, "A System-Design
Methodology: Executable-Specification Refinement", in Proceed-

ings of European Conference on Design Automation (EDAC),

1994

[3] E.D. Lazowska, J. Zahorjan, G.S. Graham and K.C. Sevcik.

Quantitative System Performance, Prentice-Hall, 1984

[4] SES/Workbench User Manual

[5] SES/Workbench Reference Manual

