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Abstract
Background: Composition Profiler is a web-based tool for semi-automatic discovery of
enrichment or depletion of amino acids, either individually or grouped by their physico-chemical
or structural properties.

Results: The program takes two samples of amino acids as input: a query sample and a reference
sample. The latter provides a suitable background amino acid distribution, and should be chosen
according to the nature of the query sample, for example, a standard protein database (e.g.
SwissProt, PDB), a representative sample of proteins from the organism under study, or a group
of proteins with a contrasting functional annotation. The results of the analysis of amino acid
composition differences are summarized in textual and graphical form.

Conclusion: As an exploratory data mining tool, our software can be used to guide feature
selection for protein function or structure predictors. For classes of proteins with significant
differences in frequencies of amino acids having particular physico-chemical (e.g. hydrophobicity or
charge) or structural (e.g. α helix propensity) properties, Composition Profiler can be used as a
rough, light-weight visual classifier.

Background
Often the first step in characterizing a group of related
non-homologous proteins (that is, for which there is no
meaningful multiple sequence alignment) is to identify
statistically significant patterns of amino acid enrichment
or depletion. Here we introduce Composition Profiler, a
web-based software that automates this task and graphi-
cally summarizes the results. Composition Profiler is also
available as a stand-alone command line application that
can be used for task automation or analysis of large sam-

ples. The following sections will introduce the methodol-
ogy and discuss several examples of composition profiles
in greater depth.

Methods
Fractional differences
Let P denote the protein sample under study, Q the back-
ground sample, and let pk and qk denote the probabilities
of observing amino acid k in the two samples. Let us
assume that the amino acid compositions of the two sam-
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ples P and Q are independent and identically distributed,
each generated by a separate stochastic process according
to probability distributions p = (pAla, pArg, ...) and q = (qAla,
qArg, ...). The probability distributions p and q are esti-
mated by computing the means and confidence intervals
of the relative frequencies of residues observed over a set
of pseudo-replicate datasets obtained by bootstrap sam-
pling of whole proteins from the original samples P and
Q. We define the fractional difference h between distribu-
tions p and q as

Figures 1 and 2 show several examples of compositional
difference plots produced by Composition Profiler. The
values for hk are displayed as bar heights, and the error
bars ek represent fractional differences of the standard
deviations of observed relative frequencies of the boot-
strap samples. More precisely

where σ p,k and σ q,k are standard deviations of frequencies
of amino acid k in bootstrap samples based on P and Q,
respectively.

Statistical significance associated with a specific value of hk
is estimated using the two-sample t-test between two
sequences of binary indicator variables, one sequence for
each of the samples P and Q. A particular hk is statistically
significant when the lowest value at which the null
hypothesis that the same underlying Gaussian distribu-
tion generated both P and Q can be rejected, is smaller
than a user-specified statistical significance (α) value. To
avoid spurious significance which may appear by chance
alone due to the number of statistical tests performed, the
conservative Bonferroni correction can be optionally used
to adjust the test-wise significance cut-off by dividing the
α-value by the number of individual significance tests per-
formed.

Relative entropy
Fractional differences provide a detailed, per amino acid,
characterization of the dissimilarity between two samples.
However, there are situations when it is useful to summa-
rize the degree of dissimilarity into a single value, for
example, when a large number of samples need to be
compared against each other to determine pairwise simi-
larities. Relative entropy (also known as Kullback-Leibler
divergence, information divergence, or information gain)
is an information theoretical measure that quantifies the
distance between two probability distributions. Using the

frequencies of residues in samples P and Q as the maxi-
mum likelihood estimate for the underlying probability
distributions p and q, the relative entropy of the sample P
with respect to the sample Q is defined as

Relative entropy is always non-negative, and its value
reaches zero only when two amino acid distributions are
identical. It is not symmetric, that is, H (p || q) is not nec-
essarily equal to H (q || p).

Statistical significance of the observed relative entropy
value between P and Q was evaluated using relative
entropy as the test statistic. Under the null hypothesis that
amino acid compositions of the two samples came from
the same underlying distribution, the p-value is estimated
as

where  and  are amino acid compositions of pseudo-

replicate datasets obtained by bootstrap sampling of
whole proteins from the original samples P and Q, I(t) is
the indicator variable which takes the value 1 if the condi-
tion t is true, and 0 otherwise, and n is the total number
of bootstrap iterations.

Background distributions
Composition Profiler provides composition statistics for
four standard amino acid datasets, computed as means
and standard deviations over 100,000 bootstrap itera-
tions, to be used as background distributions (see Table
1). These datasets are: (1) SwissProt 51 [1], most similar
to the distribution of amino acids in nature out of the
four; (2) PDB Select 25, a subset of structures from the
Protein Data Bank [2] with less than 25% sequence iden-
tity, biased towards the composition of proteins amena-
ble to crystallization studies; (3) surface residues
determined by the Molecular Surface Package [3] over a
sample of PDB structures of monomeric proteins, suitable
for analyzing phenomena on protein surfaces, such as
binding; and (4) DisProt 3.4, is a set of consensus
sequences of experimentally determined disordered
regions [4].

Depending on the nature of the query sample, other suit-
able background distributions might be representative
samples of proteins from the organisms under study, or
samples of proteins with contrasting functional annota-
tion.
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Composition Profiles of homo- (A) and heterodimerisation (B) interfaces and hub proteins from C. elegans PPI networkFigure 1
Composition Profiles of homo- (A) and heterodimerisation (B) interfaces and hub proteins from C. elegans PPI 
network. Analysis of residues in homo- and heterodimer interfaces against surface residues of monomeric proteins shows 
slight depletion in hydrophilics (cyan) and enrichement in hydrophobics (black) as a general trend, although homodimer inter-
faces show closer resemblance to the protein surfaces. Composition profile of hub proteins shows a general enrichment in dis-
order (red) and depletion in order promoting residues (blue).
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Composition profiles of PDB Select 25 (A), surface residues of monomers (B) and DisProt (C) against SwissProtFigure 2
Composition profiles of PDB Select 25 (A), surface residues of monomers (B) and DisProt (C) against Swiss-
Prot. Plotting the three graphs using the same y-axis scale, same ordering of amino acids and the same color-coding scheme 
(flexibility) allows for a direct visual comparison between enrichment and depletion patterns in the three datasets.
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Physico-chemical and structural properties
In addition to the ability to determine enrichment or
depletion patterns of individual amino acids, Composi-
tion Profiler can also detect enrichment or depletion of
groups of amino acids classified by aromaticity, charge,
polarity (Zimmerman index [5]), hydrophobicity (indices
of Eisenberg [6], Kyte and Doolittle [7], and Fauchere and
Pliska [8]), flexibility (Vihinen scale [9]), surface exposure
(Janin scale [10]), solvation potential [11], interface pro-
pensity [12], normalized frequency of occurrence in α hel-
ices, β structures, and coils [13], linker [14] and disorder
[15] propensities, size [16] and bulkiness [5].

Results
The graphical output of Composition Profiler is a bar
chart composed of twenty data points, one for each amino
acid (see Figure 1), where bar heights indicate enrichment
or depletion and error bars correspond to one standard
deviation, as described in equations 1 and 2. The output
is designed to assist the discovery of statistically signifi-
cant composition anomalies by color-coding and sorting
residues according to their physico-chemical or structural
properties. For example, if the property being tested is
flexibility, the tool will group rigid amino acids on the left
hand side of the plot and flexible amino acids on the right
hand side of the plot.

When run in discovery mode, Composition Profiler will
test all groupings of amino acids according to the listed
properties for statistically significant differences between
the two samples. The discovery mode uses a two-sample t-

test between two sequences of binary indicator variables
(e.g. for flexibility, indicator variable would be 1 if the res-
idue is flexible, and 0 if it is rigid).

In the following sections we examine composition pro-
files of several groups of proteins and discuss general
trends observed.

Heterodimer interfaces
Protein-protein interaction sites have been intensively
studied in an attempt to understand the molecular deter-
minants of protein recognition and to identify specific
characteristics of the interactions, such as residue propen-
sities, residue pairing preferences, hydrophobicity, size,
shape, solvent accessibility, and hydrogen bond protec-
tion. Homocomplexes, for example, are often permanent
and optimized, whereas many heterocomplexes are non-
obligatory, associating and disassociating according to the
environmental or external factors and involve proteins
that must also exist independently [11]. Figures 1A and 1B
give composition profiles of interface residues of
homodimers and heterodimers in comparison to the
amino acid composition of surfaces of monomeric pro-
teins. Both kinds of interfaces are generally enriched in
hydrophobic residues (right hand side of the graph),
which in part explains their propensity towards complex-
ation. Interfaces of heterodimers are enriched in polar his-
tidine and tyrosine, which is consistent with the finding
that transient protein-protein complex interfaces are more
polar than those of stable oligomeric proteins [11,12,17].
Heterocomplex interfaces are enriched in all three major

Table 1: Residue compositions of four protein datasets. The values are means and standard deviations of relative frequencies obtained 
in 100,000 bootstrap sampling iterations

Residue\% SwissProt PDB S25 Surface Residues DisProt

Ala (A) 7.89 ± 0.05 7.70 ± 0.08 6.03 ± 0.13 8.10 ± 0.35
Arg (R) 5.40 ± 0.04 4.93 ± 0.06 6.56 ± 0.13 4.82 ± 0.23
Asn (N) 4.13 ± 0.04 4.58 ± 0.06 6.23 ± 0.15 3.82 ± 0.27
Asp (D) 5.35 ± 0.03 5.83 ± 0.05 8.18 ± 0.10 5.80 ± 0.30
Cys (C) 1.50 ± 0.02 1.74 ± 0.05 0.78 ± 0.04 0.80 ± 0.08
Gln (Q) 3.95 ± 0.03 3.95 ± 0.05 5.21 ± 0.09 5.27 ± 0.37
Glu (E) 6.67 ± 0.04 6.65 ± 0.07 8.70 ± 0.17 9.89 ± 0.61
Gly (G) 6.96 ± 0.04 7.16 ± 0.07 7.06 ± 0.11 7.41 ± 0.40
His (H) 2.29 ± 0.02 2.41 ± 0.04 2.60 ± 0.06 1.93 ± 0.11
Ile (I) 5.90 ± 0.04 5.61 ± 0.06 2.77 ± 0.07 3.24 ± 0.13

Leu (L) 9.65 ± 0.04 8.68 ± 0.08 5.11 ± 0.08 6.22 ± 0.25
Lys (K) 5.92 ± 0.05 6.37 ± 0.08 9.75 ± 0.16 7.85 ± 0.45
Met (M) 2.38 ± 0.02 2.22 ± 0.04 1.13 ± 0.04 1.87 ± 0.10
Phe (F) 3.96 ± 0.03 3.98 ± 0.04 2.38 ± 0.05 2.44 ± 0.13
Pro (P) 4.83 ± 0.03 4.57 ± 0.05 5.63 ± 0.10 8.11 ± 0.63
Ser (S) 6.83 ± 0.04 6.19 ± 0.06 6.87 ± 0.13 8.65 ± 0.43
Thr (T) 5.41 ± 0.02 5.63 ± 0.05 6.08 ± 0.11 5.56 ± 0.24
Trp (W) 1.13 ± 0.01 1.44 ± 0.03 1.33 ± 0.05 0.67 ± 0.06
Tyr (Y) 3.03 ± 0.02 3.50 ± 0.04 3.58 ± 0.08 2.13 ± 0.15
Val (V) 6.73 ± 0.03 6.72 ± 0.06 4.01 ± 0.06 5.41 ± 0.44
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aromatics (trypthopan, tyrosine, and phenylalanine), as
these three residues are bulky, planar and rigid which
enhances the prospects for binding.

Hub proteins of C. elegans PPI network
A potential association between protein connectivity and
protein intrinsic disorder was studied for proteins with
various numbers of interacting partners from four eukary-
otic organisms (C. elegans, S. cerevisiae, D. melanogaster,
and H. sapiens) [18]. A more detailed analysis revealed
that hub proteins, defined as proteins interacting with at
least 10 partners, are significantly more disordered than
end proteins, defined as those that interact with just one
partner. To test the compositional bias of hubs and ends,
the fractional difference between hubs and ends composi-
tions and PDBS25 compositions was calculated. This
analysis revealed that that hubs are enriched in many of
the disorder-promoting amino acids, whereas composi-
tions of ends were shown to be relatively close to that of
ordered proteins. This study demonstrated that intrinsic
disorder is a distinctive and common characteristic of
eukaryotic hub proteins, and that disorder may serve as a
determinant of protein interactivity. This particular exam-
ple (Figure 1C) shows the composition profile of hub pro-
teins from C. elegans. The red-colored bars on the right
hand side of the graph represent disorder-promoting resi-
dues.

Discussion
The need for analyzing sequences against an appropriate
background can best be illustrated by running Composi-
tion Profiler on any of the four standard distributions
against the remaining three and observing the differences
in composition. Surface residues from monomeric pro-
teins (Figure 2B) and regions of protein disorder (Figure
2C) generally show depletion in low flexibility (according
to the Vihinen scale [9]) and enrichment in high flexibility
residues. Unlike the disordered region dataset, surface res-
idues are enriched in tryptophan, tyrosine (both order-
promoting) and histidine (disorder-neutral). One of pos-
sible explanations for this is the preference for their pres-
ence in the active sites, where those bulky and planar
residues may provide geometric restrictions and help in
establishing appropriate contacts with substrates or lig-
ands. In comparison with Swiss-Prot, proteins from PDB
Select 25 (Figure 2A) are enriched in the major order-pro-
moting residues (tryptophan, cysteine, and tyrosine) and
depleted in disorder-promoting residues (arginine, serine,
and proline). It is of interest to observe the enrichment of
disorder-promoting residues such as asparagine, aspartic
acid, and lysine in PDB Select 25 proteins.

Conclusion
The notion of fractional difference as a measurement of
the relative variation between the two samples was first

employed by Romero et al. [19]. It has since been used in
studies of cell-signalling and cancer-associated proteins
[20], serine/arginine-rich splicing factors [21] and hub
proteins of PPI networks [18], among others.

As an exploratory data mining tool, our software can be
used to guide feature selection for protein function or
structure predictors – good features are ones that discrim-
inate well between the two samples. For classes of proteins
which show enrichment in amino acids having particular
physico-chemical properties, Composition Profiler can be
thought of as a rough, light-weight visual classifier. For
example, composition profiles with fractional differences
which show enrichment in disorder-promoting residues
constitute strong indications of intrinsic disorder [15].

Availability and requirements
Project name: Composition Profiler

Project home page: http://www.cprofiler.org

Operating system(s): Linux, Mac OS X

Programming language: Ruby, C, C++
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4.2, Apache web server

License: MIT Open Source License

Any restrictions to use by non-academics: none
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