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CHOW GROUPS, CHOW COHOMOLOGY, AND LINEAR
VARIETIES

BURT TOTARO

UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555

Abstract

We compute the Chow groups and Fulton–MacPherson’s operational Chow cohomology ring for
a class of singular rational varieties including toric varieties. The computation is closely related
to the weight filtration on the ordinary cohomology of these varieties. We use the computation to
answer one of the open problems about operational Chow cohomology: it does not have a natural
map to ordinary cohomology.
2010 Mathematics Subject Classification: 14C15 (primary); 14F42, 14M20 (secondary)

In 1995, Fulton, MacPherson, Sottile, and Sturmfels [13] succeeded in
computing the Chow group CH∗X of algebraic cycles and the “operational”
Chow cohomology ring A∗X [12] for a class of singular algebraic varieties. The
varieties they consider are those which admit a solvable group action with finitely
many orbits; this includes toric varieties and Schubert varieties. In this paper we
generalize their theorem that AiX � Hom(CHiX,Z) to the broader class of linear
schemes X, as defined below. We compute explicitly the Chow groups and the
weight-graded pieces of the rational homology of those linear schemes which
are finite disjoint unions of pieces isomorphic to (Gm)a × Ab for some a, b. We
show that the Chow groups ⊗Q of any linear scheme map isomorphically to the
lowest subspace in the weight filtration of rational homology. Finally, we find
some special properties of toric varieties (splitting of the weight filtration on
their rational homology and existence of a map AiX ⊗Q→ H2i(X,Q) with good
properties) which do not extend to arbitrary linear schemes, as is shown by an
interesting example (a surface with a cusp singularity). We formulate some open
problems about Chow cohomology in section 8.

c© The Author(s) 2014. The online version of this article is published within an Open Access environment subject to the conditions of the
Creative Commons Attribution licence <http://creativecommons.org/licenses/by/3.0/>.
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We define the class of linear schemes to consist of the schemes over a fixed
field k which can be obtained by an inductive procedure starting with affine
space of any dimension, in such a way that the complement of a linear scheme
imbedded in affine space is also a linear scheme, and a scheme which can be
stratified as a finite disjoint union of linear schemes is a linear schemes. (This
class of schemes is a slight variant of a class of schemes studied by Jannsen [16];
see section 2.)

Every scheme which admits an action of a split solvable group with finitely
many orbits is a linear scheme, since each orbit is isomorphic to (Gm)a × Ab for
some a, b. Some examples of linear schemes which do not have a solvable
group action with finitely many orbits are the intersection of two Schubert
varieties (studied by Deodhar and others in connection with the Kazhdan–
Lusztig polynomials), the discriminant hypersurface {∆ = 0} ⊂ Cn, and at least
some quotients of affine space by finite groups (these have interesting torsion in
their Chow groups).

Here are the main theorems.

Theorem 1. We give explicit generators and relations for the Chow groups of any
scheme over a field k which can be stratified into finitely many pieces isomorphic
to (Gm)a × Ab.

In particular, Theorem 1 applies to varieties on which a split solvable group
acts with finitely many orbits. (See the end of section 2.)

Theorem 2. For any linear variety X which is proper over k, Fulton–MacPherson’s
operational Chow ring A∗X [12] has

AiX � Hom(CHiX,Z).

For a linear scheme X over the complex numbers, we can relate the Chow
groups to the weight filtration on the ordinary homology of X (Borel–Moore
homology if X is noncompact). (See [6] and [15] for the weight filtration on
Borel–Moore homology. They actually discuss the mixed Hodge structure on
cohomology with compact support, which is equivalent since HBM

i (X,Q) is dual
to Hi

c(X,Q) for any complex scheme X. For any complex scheme, the weight
filtration of HBM

k (X,Q) is an increasing filtration with associated graded groups
in degrees −k to 0.)

Theorem 3. For any linear scheme X over the complex numbers, the natural map

CHiX ⊗Q→ W−2iHBM
2i (X,Q),

from the Chow groups into the smallest subspace of Borel–Moore homology with
respect to the weight filtration is an isomorphism.
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The surjectivity of this map was proved by Jannsen [16].

Theorem 4. For any scheme over the complex numbers which is stratified as a
finite disjoint union of varieties isomorphic to products (Gm)a × Ab, we give an
explicit chain complex whose homology computes the weight-graded pieces of
the Borel–Moore homology HBM

∗ (X,Q).

Theorem 5. For each toric variety X, there is a natural grading of each group
HBM

i (X,Q) and Hi(X,Q) which splits the weight filtration and is compatible with
products and mixed Hodge structures.

Theorem 6. If X is a compact toric variety over the complex numbers, then there
is a natural isomorphism

AiX ⊗Q
�

−−−−−→ H2i(X,Q) ∩ F iH2i(X,C).

Theorem 7. There is no functorial homomorphism A1X ⊗ Q → H2(X,Q) for
general complex varieties X, or even for normal projective linear varieties,
which agrees with the usual homomorphism for smooth X and which is well-
behaved in families (see section 7 for details).

As background for theorems 6 and 7: it was an open problem for a long time
to decide whether there was a natural map AiX → H2i(X,Z) for all complex
varieties X. This is true for smooth varieties, since AiX coincides with the Chow
group of codimension-i cycles on X in that case. In 1995, Bloch, Gillet, and
Soulé [5] showed that there is a natural map from AiX ⊗ Q to gr2i

W H2i(X,Q),
which is a quotient of H2i(X,Q) for X compact. In fact it maps into Hodge
filtration F i of this quotient. For compact toric varieties, theorem 6 lifts this map
into H2i(X,Q) ∩ F iH2i(X,C); but section 7 gives an example of a linear variety
Y (a surface with a single cusp singularity) for which the map does not so lift.
By analyzing a family of varieties containing Y , we can see that there is no map
AiX ⊗Q→ H2i(X,Q) with good properties in general.

An earlier version of this paper was written around 1996. A number of
papers over the past 15 years have referred to it, and so it seems reasonable
to make it permanently available. Following a referee’s suggestion, I added
some comments on the relation between higher Chow groups and Voevodsky’s
motivic homology groups. I also added some papers to the bibliography which
refer to the preprint version of this paper, and which develop the ideas further
[7, 10, 14, 17, 23].
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1. Examples of toric varieties

In this section, we recall some examples of singular compact toric varieties from
Fulton [11], showing the basic phenomena which inspired some of the general
theorems in the rest of the paper: the Chow groups can have torsion and the
homology can be bigger than the Chow groups even rationally. These things do
not happen for smooth compact toric varieties.

A toric variety is described by a fan, which is an arrangement of rational
polyhedral cones in N ⊗ R for a lattice N � Zn such that a face of a cone in the
fan is a cone in the fan, and the intersection of two cones is a face of each. Let X
be the compact toric surface corresponding to the fan in Z2 with edges through
the points (2,−1), (−1, 2), and (−1,−1). Then

CH1X = Z ⊕ Z/3,

as a result of the three points (2,−1), (−1, 2) and (−1,−1) all being equal in
N ⊗ Z/3 [11, p. 65]. Similar examples give toric surfaces with Z/n-torsion in
CH1X for any n. For compact toric surfaces, CH∗X maps isomorphically to
H∗(X,Z).

Next consider the fan with edges through the vertices (±1,±1,±1) of a cube,
in the sublattice of Z3 generated by these vertices [11, p. 105]. Then the
corresponding compact toric threefold has CH0X = H0(X,Z) = Z, CH3X =

H0(X,Z) = Z, and

CH1X = H2X = Z, H3X = Z2, CH2X = H4X = Z5.

Other examples (for a trivial one, take the product of this variety with itself) show
that even the even-dimensional homology can be bigger than the Chow groups.

2. Proof of Theorem 1

Proof. We use Bloch’s higher Chow groups [3]. Levine showed that these
groups satisfy a localization exact sequence for all separated schemes of finite
type over a field, generalizing Bloch’s proof in the quasi-projective case [4], [21,
Theorem 0.7].

Let us note the comparison between higher Chow groups and Voevodsky’s
(Borel-Moore) motivic homology groups, although it will not be needed in this
paper. Voevodsky’s motivic homology groups were initially defined when the
base field k admits resolution of singularities [22, Definition 16.20]. More
recently, Kelly generalized Voevodsky’s definition to any field, at the cost
of considering only motivic homology with a coefficient ring in which the
exponential characteristic of the field is invertible [18, Proposition 5.5.5]. These
motivic homology groups groups agree with Bloch’s higher Chow groups for
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separated schemes of finite type over a field, under the same restriction on
coefficients, by the arguments of [21, Theorem 0.7], [22, Proposition 19.18],
and [27, Corollary 2].

Note that Bloch’s higher Chow groups CHi(X, j) have the functorial prop-
erties of a (Borel-Moore) homology theory, despite being written with a super-
script. For example, for a singular scheme X, the groups CH∗(X, 0) are the usual
Chow groups of X (indexed so that CHi(X) = CHdim X−i(X, 0)). As a result, the
notation CHi(X, j) is only reasonable when X is equidimensional. In general, for
an equidimensional scheme X over k, we define motivic homology as

HM
a (X,Z(b)) := CHdim X−b(X, a − 2b).

If X is not equidimensional, then HM
a (X,Z(b)) makes sense from Bloch’s defini-

tion, whereas CHi(X, j) does not. On the other hand, it always makes sense to
write

CH∗(X, j) := ⊕bHM
2b+ j(X,Z(b)).

All the tori we mention will be assumed to be split, that is, isomorphic to
(Gm)a over some base scheme. Also, it is important to understand the meaning
of the word “stratified” in the statement of the theorem: this means that the
scheme X we are given is a finite disjoint union of locally closed subvarieties,
here assumed to be isomorphic to (Gm)a × Ab for various a, b, such that the
closure of an i-dimensional piece S , minus S , is contained in the union of the
pieces of dimension less than i.

For any scheme X over k, the motivic homology of Gm ×k X is given by

HM
a (Gm × X,Z(b)) = HM

a−2(X,Z(b − 1)) ⊕ HM
a−1(X,Z(b)).

This follows from homotopy invariance of the motivic homology groups together
with the localization sequence

· · · → HM
2i+1(U,Z(i))→ HM

2i (S ,Z(i))→ HM
2i (X,Z(i))→ HM

2i (U,Z(i))→ 0

for S a closed subscheme of X with complement U. The last three groups in this
exact sequence are just the usual Chow groups of S , X, and U.

In the notation CH∗(X, j) discussed above, we have

CH∗(Gm ×Z X, ∗) = CH∗(X, ∗) ⊗Z Λ∗M,

where M � Z is in degree (1, 1). Using this formula repeatedly, we can compute
the motivic homology of a general split torus T :

CH∗(T ×Z X, ∗) = CH∗(X, ∗) ⊗Z Λ∗M,

where the finitely generated free abelian group M = Hom(T,Gm) is in degree
(1, 1).
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In the standard notation for motivic homology, this formula looks a little
more complicated: if T is a d-dimensional torus over a field k, then

HM
a (T,Z(b)) = ⊕ jΛ

jM ⊗Z HM
a−2d+ j(k,Z(b − d + j)).

Moreover, the same formula holds if T is a d-dimensional variety which is a
product T0 × Ad−r, where T0 is a torus of dimension r, and we define M =

Hom(T0,Gm). This follows from the homotopy invariance of motivic homology.
Now we can begin our analysis of the usual Chow groups of a k-scheme

cut into pieces T = (Gm)a × Ab. Write M(T ) for the finitely generated free
abelian group Hom((Gm)a,Gm). Since we have a stratification of the scheme X,
the union Xi of the pieces of dimension ≤ i is closed (for all i), and the difference
Xi − Xi−1 is isomorphic to the disjoint union of the i-dimensional pieces Ti.
From the localization sequence for motivic homology, we get a spectral sequence
converging to the motivic homology of X of weight i,

E1
pq = HM

p+q(Tp,Z(i))⇒ HM
p+q(X,Z(i)).

This spectral sequence has homological numbering, meaning that the differential
di has bidegree (−i, i − 1).

⊕HM
2i (Td−2,Z(i)) ⊕HM

2i+1(Td−1,Z(i))oo ⊕HM
2i+2(Td,Z(i))oo

⊕HM
2i (Td−1,Z(i)) ⊕HM

2i+1(Td,Z(i))oo

ll

⊕HM
2i (Td,Z(i))

The bottom diagonal (NW to SE) corresponds to the usual Chow groups
CHiX = HM

2i (X,Z(i)), the diagonal above that to HM
2i+1(X,Z(i)), and so on. The

direct sums shown run over the sets of pieces Tr of a given dimension r.
We now write this spectral sequence in more detail, using the computation

of the motivic homology of the pieces Ti � (Gm)a × Ai−a. The computation is
expressed in terms of the motivic homology of the base field k, and so I will first
summarize some of the simpler results about these groups. First,

HM
a (k,Z(b)) = 0 if a < 2b or if a < b

by the definition of higher Chow groups. Next,

HM
2b(k,Z(b)) =

Z if b = 0
0 otherwise

HM
2b+1(k,Z(b)) =

k∗ if b = −1
0 otherwise.
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These facts are all we need in order to compute the classical Chow groups
CHi(X) = HM

2i (X,Z(i)) for the scheme X which can be cut into pieces (Gm)a×Ab.
Namely, they imply that HM

a (Tr,Z(i)) is nonzero only if a ≥ r + i and a ≥ 2i;
that is, the E1 term of the spectral sequence is concentrated in rows ≥ i, and on
or above the diagonal corresponding to HM

2i (X,Z(i)) = CHiX. Moreover the only
nonzero group on this diagonal is ⊕Ti H

M
2i (Ti,Z(i)) = ⊕Ti Z. It follows that the

spectral sequence degenerates at E2 on this diagonal, and so

CHiX = ⊕Ti H
M
2i (Ti,Z(i))/ ⊕Ti+1 HM

2i+1(Ti+1,Z(i))
= ⊕Ti Z/ ⊕Ti+1 (M(Ti+1) ⊕ k∗).

To clarify this we draw a picture of the spectral sequence below, using a few
additional facts about the motivic homology of k: HM

a (k,Z(0)) is Z if a = 0 and
zero otherwise; HM

a (k,Z(−1)) is k∗ if a = −1 and zero otherwise [3, Theorem
6.1]; HM

−2(k,Z(−2)) = K2k, H−3(k,Z(−3)) is the Milnor K-group KM
3 k, and

HM
−1(k,Z(−2)) is Kind

3 k := K3(k)/KM
3 (k). The bottom diagonal gives the Chow

group CHiX:

0 0 0 ⊕Ti+2 Kind
3 k

⊕Ti Z ⊕Ti+1 (M(Ti+1) ⊕ k∗)oo ⊕Ti+2 (Λ2M(Ti+2) ⊕ (M(Ti+2) ⊗Z k∗) ⊕ K2k)oo

0 0

Clearly we can say more about this spectral sequence than just its degenera-
tion on the diagonal corresponding to the Chow groups; but we put this aside for
now.

Let us just mention that the d1 differential ⊕Ti+1 (M(Ti+1)⊕ k∗)→ ⊕Ti Z is 0 on
each copy of k∗, so that we can describe CHiX just as ⊕Ti Z/ ⊕Ti+1 M(Ti+1). This
is a special case of the following lemma. Theorem 1 is proved. �

Lemma 1. Let S be a closed subscheme of a scheme X over k, U = X − S ,
Y another k-scheme. Then the composition of the following product map and
boundary map is 0:

CH∗U ⊗Z CH∗(Y, 1)→ CH∗(U × Y, 1)→ CH∗(S × Y).

Proof. We have a surjection CH∗X → CH∗U, which implies that CH∗X ⊗Z
CH∗(Y, 1)→ CH∗U⊗ZCH∗(Y, 1) is surjective. So it suffices to show that the map
from CH∗X⊗ZCH∗(Y, 1) to CH∗(S ×Y) is 0. But this map is just the composition
of the product CH∗X ⊗Z CH∗(Y, 1)→ CH∗(X × Y, 1) with the composition

CH∗(X × Y, 1)→ CH∗(U × Y, 1)→ CH∗(S × Y),

and this last composition is 0 (it is part of the localization sequence). �
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Addendum. Rosenlicht showed that a homogeneous space for a split solv-
able group over a field k is isomorphic as a variety to (Gm)a × Ab for some a,
b [24, p. 119]. (A solvable group is said to be split over k if it is a successive
extension of the additive and multiplicative groups over k, Ga and Gm. Every
smooth connected solvable group over an algebraically closed field is split.)

It follows that the varieties considered by Fulton, MacPherson, Sottile, and
Sturmfels [13], that is, varieties over an algebraically closed field which admit
a solvable group action with finitely many orbits, are included among those
considered in Theorem 1. In particular, such varieties are linear schemes in the
sense defined below.

3. Proof of Theorem 2 and the Chow Künneth property for linear schemes

We begin by defining the class of varieties considered in the theorem. The
class of linear schemes over a field k is the class of schemes obtained by an
inductive procedure starting with affine space of any dimension over k, in such a
way that the complement of a linear scheme imbedded in affine space (in any
way) is a linear scheme, and a scheme stratified (cf. section 2) into a finite
disjoint union of linear schemes is a linear schemes. The property of being a
linear scheme only depends on the underlying reduced scheme. This definition
is inspired by Jannsen’s definition of a slightly broader class of schemes, which
he called linear varieties [16]. (In Jannsen’s similar inductive procedure, the
complement of a linear variety imbedded in any linear variety, not just in affine
space, is called a linear variety. In this paper I will always use the phrase “linear
scheme” in the narrower sense defined above.)

Fortunately, all the examples of Jannsen’s class of varieties which he men-
tions do belong to this paper’s class of linear schemes, so it seems silly to worry
about the difference too much. The examples include complements in Pn (or An)
of a union of linear subspaces, successive blow-ups of Pn in linear subspaces,
and schemes stratified by such varieties, such as Schubert varieties and toric
varieties. Our interest is in singular schemes, but of course such smooth varieties
as Grassmannians and flag varieties are included.

We will deduce Theorem 2, that AiX � Hom(CHiX,Z) for proper linear
varieties X over k, from the following two propositions.

Proposition 1. If X is a linear scheme and Y is any scheme of finite type over k,
then

CH∗X ⊗Z CH∗Y
�
→ CH∗(X × Y).
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Proposition 2. If X is a proper k-variety such that

CH∗X ⊗Z CH∗Y
�
→ CH∗(X × Y)

for all schemes Y of finite type over k, then the cap product maps AiX →

Hom(CHiX,Z) are isomorphisms.

We only outline the proof of Proposition 2, which is one of the main results of
Fulton, MacPherson, Sottile, and Sturmfels [13]. By definition, an element c ∈
AiX is a collection of homomorphisms CHmY → CHm−iY , written z 7→ f ∗c ∩ z,
for all maps f : Y → X and all integers m, which satisfy three compatibility
conditions: with proper pushforward, flat pullback, and intersection with a
divisor, whenever one has maps Y ′ → Y → X with Y ′ → Y proper, or flat,
or the inclusion of a Cartier divisor. The main step in the proof of Proposition
2 is, given an abelian group homomorphism φ : CHiX → Z, to construct an
element Cφ ∈ AiX, assuming that X satisfies the Chow Künneth property. Thus,
for every map f : Y → X and every m, we have to construct a homomorphism
from CHmY to CHm−iY . This homomorphism is defined to be the composite

CHmY → CHm(X × Y) = ⊕ j(CH jX ⊗CHm− jY)
→ CHiX ⊗CHm−iY → Z ⊗CHm−iY = CHm−iY.

The maps here are clear except for the first one, which is induced by the inclusion
of Y into X × Y via the graph of f : Y → X. One checks that these maps (for
different schemes Y) satisfy the compatibility conditions to give an element of
AiY , and that every element of AiX is so obtained. (We need properness of X for
this last step, in order to have a degree map CH0X → Z.)

We now turn to the proof of Proposition 1.
The higher Chow groups CHi(X, ∗) are defined as the homology of a complex

zi(X, ∗) of free abelian groups [3]. It will be convenient to consider, for varieties
X and Y , the homology of the complex zi(X, ∗) ⊗Z z j(Y, ∗); call it CHi, j(X,Y, ∗).
By the Künneth formula for chain complexes, we have

CHi, j(X,Y, 0) = CHiX ⊗Z CH jY,

whereas for CHi, j(X,Y, 1) there is only an exact sequence

0→ (CHiX ⊗Z CH j(Y, 1)) ⊕ (CHi(X, 1) ⊗Z CH jY)→ CHi, j(X,Y, 1)

→ TorZ
1 (CHiX,CH jY)→ 0.

The point is that the product on the higher Chow groups is given by a map from
a subcomplex of zi(X, ∗) ⊗Z z j(Y, ∗) with the same homology to the complex
zi+ j(X × Y, ∗); so the product gives a map

CHi, j(X,Y, ∗)→ CHi+ j(X × Y, ∗).
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Consider the following two properties of schemes.

Weak property. A scheme X of finite type over k has the weak property (or:
“satisfies the Chow Künneth property”) if the natural map

CH∗X ⊗Z CH∗Y → CH∗(X × Y)

is an isomorphism for all schemes Y of finite type over k. (Be warned that we
are writing CH∗X for the direct sum ⊕ jCH jX.)

Strong property. A scheme U of finite type over k has the strong property if it
satisfies the weak property and the map

⊕CH∗,∗(U,Y, 1)→ CH∗(U × Y, 1)

is surjective for all schemes Y of finite type over k.
We will prove by induction on dimension that the complement of any linear

scheme imbedded in affine space satisfies the strong property and, simultane-
ously, that any quasi-projective linear scheme satisfies the weak property. The
latter statement is the theorem we are trying to prove.

Lemma 2. Affine space An satisfies the strong property.

Proof. Use homotopy invariance of the higher Chow groups. �

Lemma 3. Let S be a closed subscheme of a separated scheme X of finite type
over k, and let U = X−S . If X satisfies the strong property and S the weak, then
U satisfies the strong property.

Proof. We have the localization sequence

CH∗(X, 1)→ CH∗(U, 1)→ CH∗(S , 0)→ CH∗(X, 0)→ CH∗(U, 0)→ 0

which comes from an exact triangle of complexes of free abelian groups, z∗(S , ∗)→
z∗(X, ∗) → z∗(U, ∗). (As noted in section 2, the total group CH∗(X, j) makes
sense even if X is not equidimensional.) Therefore we can tensor this exact tri-
angle over Z with any complex of abelian groups, in particular with z∗(Y, ∗) for
a scheme Y over k, and we get another exact triangle. Taking homology gives a
long exact sequence, with product maps as shown:

CH∗S ⊗Z CH∗Y //

��

CH∗X ⊗Z CH∗Y //

��

CH∗U ⊗Z CH∗Y //

��

0

CH∗(S × Y) // CH∗(X × Y) // CH∗(U × Y) // 0.
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The first and second vertical arrows are isomorphisms, and so the third is also an
isomorphism. Continuing these sequences to the left, we have

CH∗,∗(X,Y, 1) //

��

CH∗,∗(U,Y, 1) //

��

CH∗S ⊗Z CH∗Y //

��

CH∗X ⊗Z CH∗Y

��

CH∗(X × Y, 1) // CH∗(U × Y, 1) // CH∗(S × Y) // CH∗(X × Y).

The first vertical arrow is surjective and the third and fourth vertical arrows are
isomorphisms. Diagram chasing shows that the second map is surjective. �

Lemma 4. Let S be a closed subscheme of a separated scheme X of finite type
over k, U = X − S . If U satisfies the strong property and S the weak, then X
satisfies the weak property.

Proof. As in the previous lemma, we have a map of long exact sequences:

CH∗,∗(U,Y, 1) //

��

CH∗S ⊗Z CH∗Y //

��

CH∗X ⊗Z CH∗Y //

��

CH∗U ⊗Z CH∗Y //

��

0

CH∗(U × Y, 1) // CH∗(S × Y) // CH∗(X × Y) // CH∗(U × Y) // 0.

This time the first vertical map is surjective, and the second and the fourth are
isomorphisms. Diagram chasing shows that the third map is an isomorphism. �

That completes the proof of Proposition 1. Together with Proposition 2, that
implies Theorem 2.

4. Chow groups and ordinary homology (proof of Theorem 3)

For a scheme X over a field k, we can try to construct homomorphisms from
the motivic homology groups HM

a (X,Z(b)) to any reasonable homology theory
for algebraic varieties. This is possible at least after tensoring motivic homology
groups with Q, because they agree ⊗Q with the Adams-graded pieces of the K-
theory G∗X of coherent sheaves on X, from which Gillet has defined maps into
all reasonable homology theories. In particular, for X defined over a subfield
k ⊂ C, there is a natural map

HM
a (X,Q(b))→ W−2bHBM

a (X,Q) ∩ F−bHBM
a (X,C).

(See Jannsen [16, 8.4.3 and 8.8, pp. 127–128].) Moreover, the resulting map
HM

a (X,Q(b))→ HBM
a (X,Q) is compatible with the usual long exact sequences.

We will only use that there is a map from HM
a (X,Q(b)) to W−2bHBM

a (X,Q),
and therefore to W−2b/W−2b−1 = grW

−2b, which is compatible with long exact
sequences. For example, when a = 2b this says that the usual Chow groups of
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X, tensored with Q, map into the smallest weight subspace of the Borel–Moore
homology of X.

Consider the following two properties of schemes of finite type over a
subfield k ⊂ C.

Weak property. A scheme X over k satisfies the weak property if the natural
map

HM
2i (X,Q(i)) = CHiX ⊗Q→ W−2iHBM

2i (X,Q)

is an isomorphism for all i.

Strong property. A scheme X over k satisfies the strong property if it satisfies
the weak property and, in addition, the map

HM
2i+1(X,Q(i))→ grW

−2iH
BM
2i+1(X,Q)

is surjective.
We will prove by induction on dimension that the complement of any linear

scheme over k imbedded in affine space satisfies the strong property and, simulta-
neously, that any linear scheme satisfies the weak property. The latter statement
is the theorem we are trying to prove. This is exactly parallel to the proof of the
Chow Künneth property for linear schemes in section 3.

Lemma 5. Affine space An over k satisfies the strong property.

Proof. CHnAn ⊗ Q = Q maps isomorphically to W−2nHBM
2n (An,Q), and all the

rest of the Borel–Moore homology of An is 0. �

Lemma 6. Let S be a closed subscheme of a separated scheme X of finite type
over k, and let U = X−S . If X satisfies the strong property and S the weak, then
U satisfies the strong property.

Proof. We have a map of localization sequences:

HM
2i (S ,Q(i)) //

��

HM
2i (X,Q(i)) //

��

HM
2i (U,Q(i)) //

��

0

W−2iHBM
2i (S ,Q) // W−2iHBM

2i (X,Q) // W−2iHBM
2i (U,Q) // 0.

The first and second vertical arrows are isomorphisms, and so the third is also an
isomorphism. Looking further to the left in these sequences, we have

HM
2i+1(X,Q(i)) //

��

HM
2i+1(U,Q(i)) //

��

HM
2i (S ,Q(i)) //

��

HM
2i (X,Q(i))

��

grW
−2iH

BM
2i+1(X,Q) // grW

−2iH
BM
2i+1(U,Q) // W−2iHBM

2i (S ,Q) // W−2iHBM
2i (X,Q)

The first vertical arrow is surjective and the third and fourth vertical arrows are
isomorphisms. Diagram chasing shows that the second map is surjective. �
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Lemma 7. Let S be a closed subscheme of a separated scheme X of finite type
over k, and let U = X−S . If U satisfies the strong property and S the weak, then
X satisfies the weak property.

Proof. As in the previous lemma, we have a map of long exact sequences:

HM
2i+1(U,Q(i)) //

��

HM
2i (S ,Q(i)) //

��

HM
2i (X,Q(i)) //

��

HM
2i (U,Q(i)) //

��

0

grW
−2iH

BM
2i+1(U,Q) // W−2iHBM

2i (S ,Q) // W−2iHBM
2i (X,Q) // W−2iHBM

2i (U,Q) // 0

in which the first vertical map is surjective, and the second and the fourth are
isomorphisms. Diagram chasing shows that the third map is an isomorphism. �

The lemmas imply that any linear scheme over k satisfies the weak property.
That is, for any linear scheme, the Chow groups inject into ordinary homology
after tensoring with Q, and the image is exactly the smallest subspace in the
weight filtration. Theorem 3 is proved. �

5. Rational homology of schemes which are disjoint unions of varieties
(Gm)a × Ab

Proof. (Theorem 4) We will compute the Borel–Moore homology of X using
the spectral sequence associated to the filtration of X by closed subspaces
X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 ⊃ ∅, where Xi is the union of all the pieces of
dimension ≤ i. In fact, this is precisely analogous to the spectral sequence used
in section 2 to compute the motivic homology of X.

The spectral sequence has the form

E1
pq = HBM

p+q(Xp, Xp−1; Z)⇒ HBM
p+q(X,Z).

It has homological numbering, meaning that the differential di has bidegree
(−i, i − 1). The E1 term is very simple:

E1
pq = HBM

p+q(Xp − Xp−1,Z)

= HBM
p+q(
∐

Tp,Z),

where Tp runs over the set of p-dimensional pieces of X,

= ⊕TpΛ
p−qM(Tp).

Here M(T ) = H1(T,Z).
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Example: dim X = 3.

⊕T0 Z ⊕T1 M(T1)oo ⊕T2Λ
2M(T2)oo ⊕T3Λ

3M(T3)oo

⊕T1 Z ⊕T2 M(T2)oo

kk

⊕T3Λ
2M(T3)oo

kk

⊕T2 Z ⊕T3 M(T3)oo

ll

⊕T3 Z

Here the top row has weight 0, the next has weight −2, the next has weight
−4, and the bottom row has weight −6, as we will now explain for X of any
dimension.

The weight filtration on HBM
∗ (X,Q) is known explicitly for X = (Gm)a × Ab;

namely, Hk(Ti,Q) is pure of weight 2k, so that Poincaré duality (with the usual
shift of weights, HBM

k (Ti,Q) � H2i−k(Ti,Q(i)) makes HBM
k (Ti,Q) pure of weight

2(2i − k) − 2i = 2(i − k). (The weight filtration is an increasing filtration W∗
on HBM

k (X,Q) for any complex scheme X. The associated graded groups are
always concentrated in degrees −k to 0 [6].) Since all the differentials in the
spectral sequence ⊗Q must be strictly compatible with weights, the differentials
other than d1 are 0 after tensoring with Q. This degeneration gives an explicit
calculation of grW

∗ HBM
∗ (X,Q) as the homology of the chain complexes pictured

above. Theorem 4 is proved. �

In particular, W−2iHBM
2i (X,Q) = ⊕Ti Q/ ⊕Ti+1 (M(Ti+1) ⊗ Q) is precisely what

we computed CHiX to be, tensored with Q, as Theorem 3 predicts.

6. Splitting the homology of toric varieties, and its application to Chow
cohomology (Theorems 5 and 6)

One of the main open problems about the operational Chow cohomology
ring A∗X has been whether there is a natural homomorphism A∗X → H∗(X,Z)
for all complex varieties X. This is true for smooth varieties, where A∗X is the
usual Chow ring of algebraic cycles, but in general the definition of A∗X is much
more abstract. In this section we use Lieberman’s trick (originally applied to
abelian varieties, as in [9, p. 219]) to define a natural map A∗X ⊗Q→ H∗(X,Q)
for compact toric varieties X. Section 7 shows that this would not be possible
(with a reasonable assumption on the map) for general schemes X, even linear
schemes. See section 8 for further comments.



Chow groups, Chow cohomology, and linear varieties 15

Theorem 5. For each toric variety X, there is a natural grading of each group
HBM

i (X,Q) and Hi(X,Q) which splits the weight filtration and is compatible with
products and mixed Hodge structures.

In fact, the argument gives a more precise statement with Q replaced by
Z[1/k] for a certain number k = k(i), but I will ignore this refinement.

Proof. The idea is very simple. A toric variety X is described by a fan, that is, an
arrangement of cones in a lattice Zk satisfying certain properties [11]. For each
positive integer n there is an endomorphism of X corresponding to multiplying
the lattice by n. This gives an action of the multiplicative monoid of positive
integers, N>0, on any toric variety X. Considering the resulting action of N>0 on
Hi(X,Q), we get a natural grading of HiX,Q),

Hi(X,Q) = ⊕Hi
2 j(X,Q),

where Hi
2 j is the subspace of Hi on which N>0 acts by n 7→ n j. Similarly

for Borel–Moore homology. The Chow group CHiX ⊗ Q is simply the weight
−2i graded piece of HBM

2i (X,Q), which gives the splitting mentioned above. In
general this grading is an explicit splitting of Deligne’s weight filtration for toric
varieties. From the definition, it is obvious that this extra grading on H∗(X,Q) is
compatible with products.

In characteristic p > 0, the endomorphism of a toric variety corresponding
to p ∈ N>0 is the Frobenius endomorphism. So the N>0-action on toric varieties
means that they belong to the small class of varieties for which the Frobenius
endomorphism lifts from characteristic p to characteristic 0, for all primes p.

To justify my statements about the action of N>0 on HBM
i (X,Q) (not every

representation of the monoid N>0 is so simple), we look at the spectral sequence
converging to HBM

∗ (X,Q) which was described in section 5. This is the spectral
sequence associated to the filtration of X by closed subspaces X = Y0 ⊃ Y1 ⊃

· · · ⊃ Yn ⊃ ∅, where Yi is the union of the torus orbits of dimension ≤ n − i.
The monoid N>0 preserves this filtration of Y , so it acts on the spectral sequence,
and its action on the E1 term (which is just the direct sum of the Borel–Moore
homology of all the torus orbits) is very simple: n ∈ N>0 acts by ni on row
dim (X) − i.

This lets us reprove the degeneration (always ⊗Q) of this spectral sequence
in the case of toric varieties: the differential di moves i − 1 rows up, so by
N>0-equivariance of the differentials they are all 0 except for d1. Moreover, the
filtration on HBM

i (X,Q) coming from the spectral sequence has a unique N>0-
equivariant splitting, since the different groups contributing to HBM

i (X,Q) are all
of different weights with respect to N>0, and any extension of representations of
N>0 over Q of different weights has a unique splitting. This is an elementary
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argument which we omit, the same as that used to define the Adams grading on
K-theory tensored with Q; see [1, p. 140], for example.

Finally, from the geometric origin of this splitting of HBM
i (X,Q), we see that

it gives a splitting of the mixed Hodge structure HBM
i (X,Q) as a direct sum of

pure Hodge structures of different weights. The weight −2 j part of HBM
i (X,Q)

is a direct sum of several copies of the Tate Hodge structure Q( j). Theorem 5 is
proved. �

Proof. (Theorem 6) Let X be a compact toric variety over C. Since CHiX⊗Q
�
→

W−2iHBM
2i (X,Q) (Theorem 3) and AiX � Hom(CHiX,Z) (Theorem 2), we have

a natural isomorphism AiX ⊗ Q = grW
2i H2i(X,Q). Since Theorem 5 gives an

explicit splitting of the weight filtration on H2i(X,Q), it gives a homomorphism
AiX ⊗ Q ↪→ H2i(X,Q). In fact, we can describe the image just in terms of
the mixed Hodge structure on H∗(X,Q). Theorem 5 says that the mixed Hodge
structure on Hk(X,Q) is a direct sum of pieces isomorphic to sums of Q( j)’s for
various j. Whenever one has a mixed Hodge structure of this form, its splitting
into pure-weight pieces is unique and is given by

grW
2 jH

k(X,Q) = W2 jHk(X,Q) ∩ F jHk(X,C) ⊂ Hk(X,Q).

It follows that this must be the splitting given by Theorem 5. In particular, the
image of the homomorphism AiX ⊗Q ↪→ H2i(X,Q) defined above is exactly

W2iH2i(X,Q) ∩ F iH2i(X,C),

which is just H2i(X,Q) ∩ F iH2i(X,C) for X compact. �

7. An example

We define a normal projective surface Y with one of the simplest non-rational
singularities, obtained by blowing down a nodal rational curve. Y is in fact
a linear variety. But the mixed Hodge structure on H2(Y,Q) is a nontrivial
extension of a sum of Q(−1)’s by Q(0), and the Bloch–Gillet–Soulé map

A1Y ⊗Q→ grW
2 H2(Y,Q) ∩ F1grW

2 H2(Y,C)

does not lift to H2(Y,Q) ∩ F1H2(Y,C). By considering a family of varieties
containing Y , we show that there is no map A1X → H2(X,Q) with good
properties for general varieties X.

We now describe the example: it is probably the simplest surface with the
singularity given by blowing down a nodal rational curve to a point. We consider
a nodal cubic curve C in P2 and we blow up ≥ 10 points in P2 to make the proper
transform C′ of C have negative self-intersection number, so that we can hope to
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blow C′ down to a point. In order to make sure that the blown-down surface is
projective, we have to choose carefully which points on C to blow up.

Namely, let D be a curve of any degree d ≥ 4 in P2 which intersects C
transversely, at smooth points of C. Let X be the surface obtained by blowing P2

up at the 3d points of C ∩D. Let C′ and D′ be the proper transforms of C and D.
Their self-intersection numbers are given by

(C′)2 = 9 − 3d < 0,

(D′)2 = d2 − 3d > 0.

Moreover C′ and D′ are disjoint in X. So we can blow down the nodal rational
curve C′ to get a singular projective surface Y (D′ gives a line bundle whose
multiples have enough sections on Y to show that Y is projective).

Explicitly, if d = 4, then Y imbeds as the singular quartic surface

w(y2z − x2z − x3) + f (x, y, z) = 0,

in P3, where y2z − x2z − x3 = 0 is the equation of the nodal cubic C and f is the
equation of D ⊂ P2. In this case, where d = 4, Y arises naturally in the study
of degenerations of K3 surfaces. For any d, Y is obtained by blowing down an
anticanonical curve in the rational surface X, and Y is Gorenstein with KY = 0,
but for d ≥ 5 the singular point of Y is not a hypersurface singularity. We will
not need these observations, however.

The cohomology of Y is computed by the following exact sequence.

0→ H1(C′,Z) → H2(Y,Z) → H2(X,Z) → H2(C′,Z)
= Z = Z3d+1 = Z

Consider the line bundle L on the smooth surface X given by the difference of two
of the 3d exceptional divisors. Then [L] ∈ H2(X,Z) restricts to 0 in H2(C′,Z),
but L itself is nontrivial on C′: it corresponds to the difference of two smooth
points on C′, which gives a nontrivial element of

Pic 0(C′) = C∗ .

In fact, by choosing the curve D generically, we can arrange that L will restrict
to an element of C∗ which is not a root of unity. Then L restricts to a nonzero
element of Pic C ⊗Q, and so [L] ∈ Pic X ⊗Q = H2(X,Q) is not in the image of
Pic Y ⊗Q, though it is in the image of H2(Y,Q).

Thus Y does not have as many line bundles as one might think. To show that
this corresponds to the non-splitting of the mixed Hodge structure on H2(Y,Q),
we will prove that Y satisfies the singular Hodge conjecture for line bundles:
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Proposition 3.

im(Pic Y → H2(Y,Z)) = {x ∈ H2(Y,Z) : xC ∈ F1H2(Y,C)}.

This is false for some varieties Y , in fact for the variety Y obtained by exactly
the construction above with a cuspidal cubic instead of a nodal cubic (in that
case H1(C′,Z) = 0, so the mixed Hodge structure on H2(Y,Q) is trivial, but still,
since Pic 0C′ = C , 0, the argument above shows that not all of H2(Y,Q) comes
from line bundles). This counterexample to the singular Hodge conjecture for
line bundles was found by Barbieri-Viale and Srinivas [2].

Proof. (Proposition 3) We have to prove that the singular Hodge conjecture is
true in our case, where C′ is a nodal cubic. By the exponential sequence, we
need to show that F1H2(Y,C) maps to 0 in H2(Y,O).

We begin by computing H2(Y,O) to see that it is not too big. (Namely, it is
C.) Look at the exact sequence on the smooth surface X,

0→ OX(−C′)→ OX → OC′ → 0.

Since Hi(X,O) = 0 for i > 0, we have that

C = H1(S ,O)
�
→ H2(X,O(−S )) = H2(Y,R f∗O(−S )).

Here f : X → Y is the contraction map. The point is that R f∗O(−S ) is directly
related to OY . In fact, f∗O(−S ) is the ideal sheaf Ip ⊂ OY of the singular point
p ∈ Y , and the higher cohomology sheaves Ri f∗O(−S ) are 0 for i > 0. To prove
the latter fact, notice that the canonical bundle KS of the nodal curve is trivial (S
is a degenerate elliptic curve), which means that

(KX + S )|S = 0 ∈ Pic (S ).

But the Kawamata–Viehweg vanishing theorem implies that for a projective
birational morphism f : X → Y with X smooth, if L is a line bundle on X with
deg(L)|C ≥ 0 for all curves C on X with f (C) = point, then Ri f∗(KX + L) = 0 for
i > 0 [8]. It follows that Ri f∗O(−S ) = 0 for i > 0 as claimed: R f∗O(−S ) is just
the ideal sheaf Ip. So

H2(Y,O) = H2(Y, Ip) = H2(Y,R f∗O(−S )),

where we computed the latter group to be H1(S ,O) � C.
Having computed that H2(Y,O) = C, we next need to show that

ker(Hi(Y,C)→ Hi(Y,O)) ⊂ F1Hi(Y,C)

for any i, which we will actually prove for an arbitrary compact variety Y . This
is easy once one understands Deligne’s definition of the Hodge filtration F∗
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on Hi(Y,C). Namely, one chooses a map (Yn) → Y from a simplicial scheme
(Yn) to Y such that the varieties Yn are smooth and compact, and all the face
maps as well as the map Y0 → Y are proper and surjective. This rather weak
assumption turns out to imply that the map H∗(Y,Z) → H∗((Yn),Z) (mapping
to the cohomology of the constant sheaf Z on the simplicial scheme (Yn)) is an
isomorphism. Since the varieties Yn are smooth and compact, we can compute at
least their cohomology with C coefficients using de Rham cohomology, so that

H∗(Y,C) = H∗((Yn),Ω∗).

The Hodge filtration on H∗(Y,C) comes from the obvious filtration of the de
Rham complex with F i corresponding to Ω j for j ≥ i. In the case we want, this
means that

F1H∗(Y,C) = ker(H∗((Yn),Ω∗)→ H∗((Yn),O)).

But the map from H∗(Y,C) to H∗((Yn),O) factors through H∗(Y,O). It follows
that

ker(H2(Y,C)→ H2(Y,O)) ⊂ F1H2(Y,C),

as we want.
But, in the case at hand, ker(H2(Y,C)→ H2(Y,O)) is a subspace of codimen-

sion ≤ 1 in H2(Y,C), while F1H2(Y,C) has codimension 1 by the exact sequence

0→ H1(C′,C)→ H2(Y,C)→ H2(X,C)→ H2(C′,C),

which is strictly compatible with the Hodge filtration. (The nodal cubic C′ has
H1(C′,C) � C all in F0, with F1 = 0, while the blow-up X of P2 has H2(X,C)
all in F1.) It follows that

ker(H2(Y,C)→ H2(Y,O)) = F1H2(Y,C),

which proves the singular Hodge conjecture for line bundles on Y . Proposition 3
is proved. �

Now our earlier analysis of the line bundles on Y gives information about the
mixed Hodge structure on H2Y , thanks to Proposition 3. We showed that

im(Pic Y ⊗Q→ grW
2 H2(Y,Q)) $ grW

2 H2(Y,Q) ∩ F1grW
2 H2(Y,C).

It now follows that the map

H2(Y,Q) ∩ F1H2(Y,C)→ grW
2 H2(Y,Q) ∩ F1grW

2 H2(Y,C)

is not surjective. This means that the mixed Hodge structure on H2(Y,Q) is
a nontrivial extension of Q(−1)3d by Q(0). (The convention is that the mixed
Hodge structure Q( j) has weight −2 j.)
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Related to this, we can draw a conclusion about the Chow cohomology group
A1Y . The theory A1 does not see the line bundles C∗ ⊂ Pic (C′). In fact, Kimura’s
computation of Chow cohomology [19] implies that A∗ of a singular variety
injects into A∗ of a smooth resolution (which is the usual Chow ring of a smooth
variety) with an explicit cokernel. As a result, for the nodal cubic C′ (with
resolution P1), one checks that A1C′ = H2(C′,Z) = Z. Also, A1X = H2(X,Z).
Kimura’s theorem applied to Y then says that

A1Y = ker(A1X → A1C′)

= ker(H2(X,Z)→ H2(C′,Z))

= im(H2(Y,Z)→ H2(X,Z)).

That is,
A1Y ⊗Q = grW

2 H2(Y,Q),

which is all in F1, and the previous paragraph then shows that the map A1Y⊗Q→
grW

2 H2(Y,Q) does not lift to

H2(Y,Q) ∩ F1H2(Y,C).

Theorem 7. There is no functorial homomorphism A1X ⊗ Q → H2(X,Q)
for general complex varieties X (or even for normal complex projective linear
varieties X) which agrees with the obvious map for X smooth and which is
well-behaved in families in the following sense. If {Yb} is a family of varieties
over a base variety B such that the sheaf H2(Yb,Q), b ∈ B, is locally constant,
and if xb ∈ H2(Yb,Q) is a section of this sheaf over an analytic open set
U ⊂ B, then the set of b ∈ U such that xb is in the image of the supposed map
A1Yb ⊗Q→ H2(Yb,Q), is a countable union of analytic constructible subsets of
U.

An analytic constructible subset means a finite union of differences between
closed analytic subsets. This property seems to be a reasonable thing to ask
of a map A∗X ⊗ Q → H∗(X,Q). The analogous property is true for the
Chern character K0X ⊗ Q → H∗(X,Q) and for the Bloch–Gillet–Soulé map
AiX ⊗Q→ grW

2 H2i(X,Q).

Proof. (Theorem 7) The variety Y defined above depends on a choice of a curve
of degree d ≥ 4 in P2. Fix d ≥ 4 and let B0 be the space of curves of degree d in
P2 which meet the nodal cubic C ⊂ P2 transversely at smooth points of C. Then
the construction of this section gives a family of varieties {Yb} parametrized by
b ∈ B0. Let B be a connected component of the covering space of B0 with fiber
the symmetric group S 3d, so that B parametrizes curves of degree D as above
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together with an ordering of the 3d intersection points of the curve with the
nodal cubic C. The pulled-back family of varieties {Yb} over B has the advantage
that there is a natural element E1 − E2 ∈ A1Yb for all b ∈ B, corresponding to
the divisor E1 − E2 on the smooth resolution Xb of Yb, as we found earlier in this
section.

Suppose there is a functorial homomorphism A1X ⊗Q→ H2(X,Q) as in the
theorem. Since it agrees with the obvious map for X smooth, the composition

A1X ⊗Q→ H2(X,Q)→ grW
2 H2(X,Q)

must be the Bloch–Gillet–Soulé map (since, say for X compact, grW
2 H2(X,Q) is

the image of H2(X,Q) in the cohomology of a smooth resolution of X).
Since the homomorphism A1Yb⊗Q→ grW

2 H2(Yb,Q) which really exists is an
isomorphism for all b ∈ B, the subspaces Vb := im(A1Yb ⊗Q→ H2(Yb,Q)) have
constant dimension (= 3d, in fact), and Vb is a splitting of the weight filtration
on the vector space H2(Yb,Q). So our assumption on the homomorphism
A1X → H2(X,Q) implies that over each open ball U ⊂ B, there is one flat
section xb ∈ H2(Yb,Q) which is the image of E1 − E2 ∈ A1(Yb)⊗Q for all b ∈ U
outside a countable union of lower-dimensional analytic subspaces. By patching
together these sections over different open balls of B, we find a global flat section
xb ∈ H2(Yb,Q), b ∈ B, which lifts the flat section E1 − E2 of grW

2 (Yb,Q).
The point is that there are special points b ∈ B for which E1 − E2 ∈

grW
2 H2(Yb,Q) lies in the image of Pic Yb ⊗ Q → H2(Yb,Q) → grW

2 H2(Yb,Q):
this happens whenever the difference of the first two points of C ∩ D represents
a root of unity in Pic 0(C) = C∗. (Recall that C is a fixed nodal cubic curve
in P2, and that a point of B determines a degree-d curve D together with an
ordering of the 3d points of C ∩ D.) Pick such a special point b, and observe
that the global flat section xb ∈ H2(Yb,Q) differs at this point from the image
of an element of Pic Yb ⊗ Q, thus from an element of H2(Yb,Q) ∩ F1H2(Yb,C),
by an element of H1(Cb,Q) = Q ⊂ H2(Yb,Q). (See the earlier calculation of
H2(Yb,Q).) Since the sheaf H1(Cb,Q) is isomorphic to the constant sheaf Q
over B, we can modify xb to produce a global flat section yb ∈ H2(Yb,Q) over
b ∈ B which lifts E1 − E2 ∈ grW

2 H2(Yb,Q) and which belongs to F1H2(Yb,C)
at one point of B. But a flat section of a variation of mixed Hodge structures
over an algebraic base B which is in F i at one point belongs to F i at every point,
by Steenbrink and Zucker [25, p. 517]. So the classes yb ∈ H2(Yb,Q) belong to
F1H2(Yb,C) for all b ∈ B. Our previous proposition shows, however, that no lift
of E1 − E2 ∈ grW

2 H2(Yb,Q) can belong to F1H2(Yb,C) when the difference of
the first two points of C ∩ D is not a root of unity in Pic 0(C) � C∗. We have a
contradiction.

Thus there is no map A1X ⊗ Q → H2(X,Q) with the required properties.
Theorem 7 is proved. �
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8. Problems on Chow cohomology

We begin by describing some general questions about operational Chow
cohomology A∗X, mostly for compact complex varieties. Note that Voevodsky’s
motivic cohomology ring Ha

M(X,Z(b)) is probably more useful than A∗X for
singular schemes X [26].

Operational Chow cohomology is defined to be, in a sense, the weakest of all
possible Chow cohomology theories: any reasonable Chow cohomology theory
will act on Chow (homology) groups, and so will map to A∗X. For example,
there is a natural map from the Adams-graded pieces of algebraic K-theory,
gr∗K0X ⊗ Q, to A∗X ⊗ Q. As a result, it is not easy to define maps from A∗X to
any other sort of cohomology theory. In particular, the question of the existence
of a natural homomorphism A∗X → H∗(X,Z) remained open until this paper.

Bloch, Gillet, and Soulé [5] showed that there is at least a natural map from
AiX ⊗ Q to grW

2i H2i(X,Q), which is a quotient of H2i(X,Q) for X compact. If
X is a compact toric variety, we showed in Theorem 6 that this homomorphism
lifts uniquely to a homomorphism AiX ⊗ Q → H2i(X,Q) ∩ F iH2i(X,C) (which
is in fact an isomorphism). And of course there is a homomorphism AiX ⊗Q→
H2i(X,Q) ∩ F iH2i(X,C) for all smooth varieties X, since AiX coincides with the
Chow group CHn−iX of codimension-i algebraic cycles for X smooth. So the
positive results on this question for toric varieties should extend to all varieties
whose singularities are not too bad. Specifically, Fulton asks if there is a natural
homomorphism

AiX ⊗Q→ H2i(X,Q) ∩ F iH2i(X,C)

for all varieties X with rational singularities. This is true for i = 1, since Kollár
and Mori [20] have proved that Pic X⊗Q � A1X⊗Q if X has rational singularities,
and Pic X obviously maps into H2(X,Z) ∩ F1H2(X,C).

The normal surface in section 7, with one of the simplest non-rational
singularities, shows that there is no map A1X ⊗ Q → H2(X,Q) with good
properties for general varieties X.

One can also ask for integral versions of these results. For toric varieties, and
more generally for spherical varieties, the map Pic X → A1X is an isomorphism
(Brion), and so there is a natural homomorphism A1X → H2(X,Z). Both
statements fail if X only has rational singularities, as Alessio Corti found, but
one may expect that there is a finer class of singularities including the toric ones
which would imply these statements. It is tempting to guess more generally that
there is a natural homomorphism AiX → H2i(X,Z) for toric varieties at least.

In the same spirit, one can ask for an integral version of Theorem 3. Namely,
is the homomorphism CHiX → HBM

2i (X,Z) a split injection of abelian groups,
say for toric varieties X? The answer is yes for smooth (but not necessarily
compact) toric varieties, by Franz [10, Corollary 1.3].
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