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Original article
Histone lactylation in macrophages is predictive
for gene expression changes during ischemia
induced-muscle regeneration
Thibaut Desgeorges1,3, Eva Galle2,3, Jing Zhang1, Ferdinand von Meyenn2,**, Katrien De Bock1,*
ABSTRACT

Objectives: We have previously shown that lactate is an essential metabolite for macrophage polarisation during ischemia-induced muscle
regeneration. Recent in vitro work has implicated histone lactylation, a direct derivative of lactate, in macrophage polarisation. Here, we explore
the in vivo relevance of histone lactylation for macrophage polarisation after muscle injury.
Methods: To evaluate macrophage dynamics during muscle regeneration, we subjected mice to ischemia-induced muscle damage by ligating
the femoral artery. Muscle samples were harvested at 1, 2, 4, and 7 days post injury (dpi). CD45þCD11bþF4/80þCD64þ macrophages were
isolated and processed for RNA sequencing, Western Blotting, and CUT&Tag-sequencing to investigate gene expression, histone lactylation levels,
and histone lactylation genomic localisation and enrichment, respectively.
Results: We show that, over time, macrophages in the injured muscle undergo extensive gene expression changes, which are similar in nature
and in timing to those seen after other types of muscle-injuries. We find that the macrophage histone lactylome is modified between 2 and 4 dpi,
which is a crucial window for macrophage polarisation. Absolute histone lactylation levels increase, and, although subtly, the genomic enrichment
of H3K18la changes. Overall, we find that histone lactylation is important at both promoter and enhancer elements. Lastly, H3K18la genomic
profile changes from 2 to 4 dpi were predictive for gene expression changes later in time, rather than being a reflection of prior gene expression
changes.
Conclusions: Our results suggest that histone lactylation dynamics are functionally important for the function of macrophages during muscle
regeneration.

� 2024 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

Skeletal muscle regeneration is dependent on the interplay of various
cell types, including resident muscle stem cells, the vasculature and
several immune cell types like macrophages [1e4]. Upon muscle
damage such as during ischemia, muscle disease, or toxin induced
injury, muscle stem cells exit their quiescent state, get activated and
give rise to a population of proliferating myogenic progenitor cells that
will ultimately differentiate and fuse with each other or with remaining
myofibers to repair the damaged muscle [2,5]. Immune cells play a
critical role in this process both as damage sensors as well as effector
cells and a dysregulated immune response impairs skeletal muscle
regeneration [6]. In particular, monocyte-derived lymphocyte antigen 6
expressing (Ly6Chi) macrophages in the injured muscle initially exhibit
an inflammatory phenotype through the expression of specific pro-
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inflammatory genes, such as Tlr4, Ifn1b and interleukins Il15 and
Il6, as well as through the expression and secretion of cytokines such
as TNF-a and IL-1b [1,7e9]. Inflammatory macrophages also promote
muscle stem cell proliferation, induce the apoptosis of activated
fibroadipogenic progenitors [10], and contribute to removing necrotic
debris through efferocytosis [11]. Soon thereafter, they lose Ly6C
expression and functionally repolarize towards a restorative phenotype
that continues to remove necrotic debris. At the same time, Ly6Clo

restorative macrophages actively support muscle regeneration through
the secretion of growth factors such as IGF1, GDF3, GDF15, and TGFb
that promote the differentiation and fusion of committed muscle pro-
genitor cells [1,7e9,12,13]. They do so through steering the differ-
entiation of fibroadipogenic progenitors towards fibroblasts that
deposit an extracellular matrix [6,14], and by stimulating the growth of
new blood vessels through secreting the angiogenic factor VEGF
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[3,15,16]. This sequence of events is tightly controlled, strictly timed
and imperative for proper tissue recovery [17], but the mechanisms
that control macrophage function and functional repolarization are
incompletely understood and likely dependent on cell intrinsic
changes, cellecell interactions, as well as the tissue microenviron-
ment in which they reside.
Besides different functional properties, inflammatory and restorative
macrophages have different metabolic properties and those are critical
for their effector functions [18]. Inflammatory macrophages are highly
glycolytic but, during their repolarization towards a restorative
phenotype, switch to a more oxidative phenotype [19]. This switch is
dependent on the cellular energy sensor AMPK, and deleting AMPK
prevents their repolarization [20]. High glycolysis is associated with the
expression and secretion of inflammatory cytokines [19,21]. Effer-
ocytosis initiation also activates glycolysis. At the same time, condi-
tioned medium of efferocytic macrophages, high in lactate, contributes
to an anti-inflammatory environment by promoting the activation of
anti-inflammatory genes in naive macrophages [22]. In ischemia-
induced damaged muscle, lactate derived from angiogenic endothe-
lial cells promotes the metabolic and functional switch from an in-
flammatory towards a restorative phenotype [15], in a mechanism that
is dependent on the uptake of lactate by macrophages. Little is
however known about the intracellular pathways that are involved in
coordinating the phenotype switch induced by lactate. One recent
mechanism that has been proposed to exercise this signalling role of
lactate is the modulation of the epigenome. Histone lactylation is a
post-translational modification (PTM) of histone proteins, the core el-
ements of nucleosomes. It involves the addition of lactate molecules to
lysine residues in the histone tails which has been shown to modulate
gene expression and the immune response in various contexts [23].
Lactate-derived lactylation of histones has been shown in vitro to
induce M2-like genes in M1 Bone Marrow Derived Macrophages
(BMDM) [23]. In the context of cancer, lactylation levels in tumour-
associated macrophages correlated with the expression of Arg1, a
gene essential for restorative macrophage function, but not Vegfa [23].
Mechanistically, lactate (either exogenous or glycolysis derived)
increased Histone 3 lysine 18 lactylation (H3K18la) levels at the Arg1
promoter as well as its gene expression, thereby increasing the
expression of a set of restorative genes in inflammatory macrophages.
Whether histone lactylation is dynamically regulated during macro-
phage fate transitions and functionally affects gene expression is not
known. In this study, we decided to explore potential in vivo contri-
butions of histone lactylation to macrophage gene regulation in
ischemia-induced muscle damage.

2. MATERIALS AND METHODS

2.1. Animals
C57BL6J wild type males (Charles River) from 8 to 12 weeks old were
used in this study. Animals were housed in a normal light cycle with ad
libitum access to food and water. Hindlimb ischemia experiments were
performed as described [15]. Briefly, mice were anesthetized with
isoflurane. The hindlimb was shaved, and the skin was incised. The
proximal end of the femoral artery and the distal portion of the
saphenous artery were ligated. The artery and all side-branches were
dissected to be freed and the femoral artery and attached side-
branches were excised. Procedures were approved by the ethics
committee (number ZH050-2021). To label circulating b(lood)-CD45þ

cells, mice were anaesthetised with a combination of ketamine and
xylazine and i.v. Injected with 3 mg of PE anti-mouse CD45 antibody
(Biolegend [30-F11], 103106) diluted in PBS (as described in Mysore
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et al. [24] with minor modifications). Five minutes later, mice were
sacrificed and muscle was processed for further analysis (see below).
Immediately after sacrifice, blood samples were collected via intra-
cardiac puncture. Blood was directly diluted in PBS containing heparin
and was used as positive control for CD45 staining.

2.2. Western blot
Histone extracts were prepared with the acid histone extraction pro-
tocol published by Abcam. Histone protein extracts were resolved
using a gradient SDS-PAGE before being immunoblotted onto a PVDF
membrane. The membrane was blocked for 1 h in blocking solution
(TBS/0.1% Tween/5% milk) and then incubated overnight at 4 �C with
primary antibodies diluted in blocking solution. After washes with TBS/
0.1% Tween, membranes were incubated with secondary antibodies
conjugated with fluorescent or HRP tag diluted in blocking buffer for
1 h at room temperature. Band signals were visualised using Bio-Rad
ChemiDoc Imaging System. The following primary antibodies were
used: H3 (Abcam, ab1791), pan-KLA (PTM Bio, PTM-1401), and
H3K18la (PTM Bio, PTM-1406 or PTM-1406RM). The secondary an-
tibodies used were an HRP-conjugated monoclonal rabbit anti-rabbit
IgG (Cell Signaling Technology, 7074s).

2.3. Macrophage isolation and immune cell staining
To isolate macrophages, calf muscle from the ischemic limb was
collected and digested in 2 mg/mL Collagenase IV (Thermo Fisher
Scientific, 17104019)/Dispase II (SigmaeAldrich, D4693-1G) for
45 min to 1 h at 37 �C. After filtration and washing steps, red blood
cells were removed with ACK Lysis buffer (Gibco, A1049201). For
either histone isolation or CUT&Tag, t(issue)-CD45þCD11bþF4/
80þCD64þ living macrophages (DAPI selection to remove debris, BD
biosciences, 564907) were stained and sorted (Sony Cell sorter
SH800S). The used antibodies were the following: PE anti-mouse
CD45 (Biolegend [30-F11], 103106), PerCP/Cy5.5 anti-mouse/
human CD11b (Biolegend [M1/70], 101228), Alexa Fluor� 488 anti-
F4/80 mouse Monoclonal Antibody (Biolegend [clone: 30-F11],
103122), APC anti-CD64 mouse Monoclonal Antibody (Biolegend
[clone: X54-5/7.1], 139306). For immune cell analysis, calf muscle
from ischemic limb was collected and digested as described above and
was stained for cytometry. Blood samples were also collected at the
time of sacrifice and stained with the same protocol after one step of
red blood cell lysis step (ACK buffer, Gibco, A1049201). The used
antibodies were the following: viability dye efluor780 (Thermofisher,
65-0865-14), AF488 anti-mouse CD45 antibody (Biolegend, [clone:
S18009D], 160306), PerCP/Cy5.5 anti-mouse/human CD11b (Bio-
legend [M1/70], 101228), APC anti-CD64 Mouse Monoclonal Antibody
(Biolegend [clone: X54-5/7.1], 139306), BV711 anti-F4/80 mouse
Monoclonal Antibody (Biolegend, [clone: BM8], 123147), BV650 anti-
CD11c mouse Monoclonal Antibody (Biolegend, [clone: N418],
117339, BV421 anti-SiglecF mouse Monoclonal Antibody (Biolegend,
[clone: S17007L], 155509), AF700 anti-mouse Ly6G antibody (Bio-
legend, [clone: 1A8], 127622), PE-cy7 anti-mouse Ly6C antibody
(Biolegend, [clone: HK1.4], 128018). FACS analyses were done with
the BD Fortesa device and analyzed with FlowJo software.

2.4. Muscle lactate measurement
Muscle tissue lactate concentration was determined using the Lactate-
Glo Assay (Promega, J5021) according to the manufacturer’s protocol.

2.5. RNA library preparation and sequencing
Total RNA for each sample was extracted using RNeasy micro kit
(QIAGEN, 74106). Quantification of total RNA was performed using the
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Tecan microplate reader (DKSH). Quality control of RNA was performed
with the Tapestation system (Agilent). 50e100 ng of RNA was used as
an input for the Smart-seq2/3 protocol [25e27] including cDNA syn-
thesis (quantified with the Qubit system for further steps), pre-
amplification, tagmentation, and enrichment step. In short, RNA li-
braries were prepared by performing reverse transcription and tem-
plate switching using Maxima H Minus reverse transcriptase
(ThermoFisher, #EP0753), a template switch oligo and an oligodT
primer to generate full length cDNA. cDNA was amplified using the
Kapa Hotstart 2x ReadyMix (Roche Diagnostics, #7958935001). 1e
3 ng cDNA were then tagmentated using 1.3 mg Tn5 and amplified
using Kapa HiFi plus dNTPs (Roche Diagnostics, #07958846001) and
the following PCR settings: 72 �C 5 min, 98 �C 30 s, 10 cycles of 98 �C
for 10 s, 63 �C for 30 s, 72 �C for 1 min, hold at 4 �C. Libraries were
quantified using the KAPA library quantification kit (Roche Diagnostis,
#079602), and sequenced at PE150 on a NovaSeq 6000 at Novogene.

2.6. CUT&Tag library preparation
CUT&Tag was performed as described earlier starting from nuclei
[28,29]. First, nuclei were isolated from the sorted macrophages. In
short, the macrophages were centrifuged for 5 min at 4 �C, 500 rpm,
supernatant was removed, and the cells were lysed on ice in 1 mL of
nucleus extraction buffer (1 � prelysis buffer from the EpiGentek
EpiQuick Total Histone Extraction Kit, OP-0006-100). To stop the lysis
reaction, 1 mL of PBSþ1%BSA was added, and nuclei were collected
through centrifugation for 5 min at 4 �C, 500 rpm. The supernatant
was removed, the nuclei were resuspended in PBSþ1% BSA, and a
sample was visually inspected for viability, purity, and abundance of
nuclei under the microscope. Next, CUT&Tag libraries were created
according to the published CUT&Tag protocol for nuclei [29]. All buffers
were supplemented with 5 mM sodium-butyrate (Sigma, 303410) and
1X complete protease inhibitor (Merck, 1187358000). Protein lo-bind
tubes (Eppendorf, EP0030108116) were used to reduce sample loss.
Antibodies against H3K18la (PTM-Bio, PTM-1406), H3K4me3 (Abcam,
ab8580), H3K27me3 (Cell Signaling Technology, C36B11) and
H3K27ac (Abcam, ab4729) were used in this study. Libraries were
indexed using Nextera Indexes, and 150-bp paired-end sequencing
was performed on Illumina Novaseq instruments.

2.7. Data processing
All genomic data were processed using pipelines built in Nextflow
v21.04.3, adapted from the Babraham Institute GitHub repository ([19])
for reproducible data analysis.

2.7.1. RNA-seq
Quality control of the raw sequencing reads was performed using
FastQC v0.11.9. Raw reads were trimmed off low-quality bases and
adapter sequences using TrimGalore v0.6.6 (https://github.com/
FelixKrueger/TrimGalore). Filtered reads were aligned against the
reference mouse genome assembly CHRm39 using HISAT2 v2.2.1.
Raw gene counts were quantified using the featureCounts program of
subread v2.0.1.

2.7.2. CUT&Tag
Quality control of the raw sequencing reads was performed using
FastQC v0.11.9. Raw reads were trimmed off low-quality bases and
adapter sequences using TrimGalore v0.6.6 (https://github.com/
FelixKrueger/TrimGalore). Filtered reads were aligned against the
reference mouse genome assembly mm10 in case of mouse samples
and human genome assembly GRCh38 in case of human samples
using Bowtie2 v2.4.4 with options: -end-to-end –very-sensitive –no-
MOLECULAR METABOLISM 83 (2024) 101923 � 2024 The Author(s). Published by Elsevier GmbH. This is
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mixed –no-discordant –phred33 -I 10 -X 700. Aligned bam files were
sorted based on chromosomal coordinates using the sort function of
samtools v1.13. Sorted bam files were summarised into bedgraph files
using the genomecov function of bedtools v2.30 [30]. Peaks were
called from CUT&Tag libraries on individual bedgraph files using
SEACRv1.3 in stringent mode with a standard peak calling threshold of
0.01. SEACR is specifically developed for CUT&RUN and is likewise the
recommended pipeline for chromatin profiling data with very low
background like CUT&Tag. Peaks overlapping with mouse and human
blacklist regions were filtered out. Visual QC of bam files and called
peaks were performed using IGV.

2.8. Data analysis

2.8.1. RNA-seq downstream processing
EdgeR was used for downstream processing of raw gene count
matrices. Log-normalised CPM values were calculated after applying
TMM normalisation. PCA was performed using the prcomp() function of
the R stats package. Differentially expressed genes were defined using
FDR <0.05 and abs(log2FC) > 1 as thresholds. Gene clusters were
determined empirically through iteration. GO analysis was performed
using the R clusterProfiler package v4.4.4.

2.8.2. CUT&Tag downstream processing
Peak sets from both biological replicates were used for downstream
analysis. Peaks for each biological replicate were combined to create a
master (union) peak list (https://yezhengstat.github.io/CUTTag_tutorial/
). This master peak list was used as a reference to generate the frag-
ment count matrix of all samples using the R package chromVAR v1.16.
Differential peak analysis was performed as described before [28] using
edgeR. Peaks were annotated with the R package ChIPseeker v1.30.3
or overlapped with cCRE regions (see below). Promoter regions were
defined as 2000 bp up- and downstream of TSS. Peaks overlapping
with promoters were extracted using the annotatePeak function from
the R package clusterProfiler v4.0.5 ChIPseeker v1.30.3, selecting only
the peaks with promoter annotation for further analysis. The promoter
regions were defined using the getPromoters function from the R
package ChIPseeker v1.30.3, using the TxDb.Mmusculu-
s.UCSC.mm39.refGene database as input, setting the TssRegion to c(e
2000, 2000). For peaks overlapping with PLS/pELS/dELS, they were
found using the bedtools function ‘intersect’. The input bed files were
the peak bed files together with the cell-agnostic cCRE list bed file
available for download for mm10 (https://screen.encodeproject.org/)
and converted to GRCm39 using the liftOver function from the UCSC
Genome Browser. For dELS-overlapping peaks, their closest, non-
overlapping gene was found using the bedtools function ‘closest’. For
peaks that overlapped with multiple different cCRE (for instance, 94% of
peaks overlapping with pELS also overlapped with the nearest PLS), we
created a prioritisation scheme as is done similarly in ChIPseeker.
Specifically, the priorities were defined as follows: 1. PLS, 2. dELS, 3.
pELS, 4. Other cCREs. For the cistrome transcription-factor binding
analysis, the promoter regions of the genes covered by different hPTM
combinations were used as input to the online Cistrome database
analysis tool using the settings “All peaks in each sample” and
“Transcription factor, chromatin regulator”.

2.8.3. Functional enrichment analysis
Gene ontology enrichment analysis was performed using the function
enrichGO from the R package clusterProfiler v.4.0.5, using the
Benjamini-Hochberg p-value adjustment method, searching for all
ontology categories, using the 3.13.0 versions of org.Mm.eg.db.
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 3
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Comparative GO analysis was performed using the compareCluster
function from the R package clusterProfiler v.4.0.5 using the same
settings.

2.8.4. Data visualization
Principal component plots were generated using the autoplot function
in the R package ggfortify v.3.48.3 using the output of the prcomp
function from the R stats v4.3.2 package. All heat maps were
generated using the R package pheatmap v1.0.12. Correlation scatter
plots were made using the ggscatter function from R package ggpubr
v0.4. CUT&Tag peak distribution across different genomic features and
peak profiles around TSS were visualized using the functions plo-
tAnnoBar, and plotDistToTSS from R package ChIPseeker v1.30.3. GO
analysis results were visualized using the dotplot function of the R
package enrichplot v.1.12.2. The boxplot function from the R package
Graphics v4.3.2 was used to plot boxplots.

2.8.5. Statistics
All statistical and other data analyses mentioned above were per-
formed using the statistical programming language R v4.1.0 or above.
Group values were compared using two-sided ManneWhitney U tests.
Statistical significance was called from (adjusted) p < 0.05 or as
specified otherwise in the text.

3. RESULTS

3.1. Macrophages recruited to damaged muscles show a shift in
inflammatory status between 2 and 4 days post-injury
To study the different immune cell populations implicated during
muscle repair after ischemia, we adapted a protocol described in
Mysore et al. [24]. Hindlimb ischemia was induced by ligation of the
femoral artery [15], and the mice were subsequently sacrificed one,
two, four, or seven days post injury (dpi). To differentiate between
muscle-infiltrated and circulating immune cells, circulating CD45þ

cells were labelled in vivo through intravenous injection of a FACS-
competent antibody 5 min before sacrifice. We refer to the circu-
lating immune cells marked in this way as b(lood)-CD45þ cells
(Figure 1A,B). After dissection and digestion of the muscles, CD45 was
stained a second time with another fluorophore, marking all immune
cells present in the digested muscle samples, which we refer to as
t(issue)-CD45þ and hence comprises both muscle-infiltrated as well
as circulating immune cells. To verify the specificity of our antibodies
and staining protocol, we also collected blood samples at the time of
sacrifice, stained them with the second CD45 fluorophore antibody and
confirmed that almost all circulating b-CD45þ cells stained positive for
CD45 (Figure 1B). More than 90% of all CD45þ cells in our samples
were muscle-infiltrated (t-CD45þb-CD45-; 92%, 96%, 98% respec-
tively at 1, 2 and 4 dpi). Only at 7 dpi, the proportion of muscle-
infiltrated immune cells decreased to 87% (Fig. 1C).
To further characterise the infiltrated CD45þ immune cell population
(i.e. b-CD45�t-CD45þ), we focused on the different populations of
granulocytes as they are the most abundant cell type during the first
days of the repair process (>80% at 1, 2 and 4 dpi) (Figure 1B).
Eosinophils (CD11bþSiglecFþ) and dendritic cells (CD11bþCD11cþ)
were not very abundant, especially at 1, 2, and 4 dpi (the cumulated
eosinophil and dendritic cell populations comprise less than 7% of t-
CD45þ cells, Figure 1D). Neutrophils (CD11bþLy6Gþ) were only
appreciably present at 1 dpi (20% of t-CD45þ cells) and 2 dpi (15% of
t-CD45þ cells) and almost absent at 4 and 7 dpi. Macrophages
(CD11bþF4/80þCD64þ) increased over time post-injury to reach a
peak at 4 dpi (around 70% of all t-CD45þ cells) before decreasing at 7
4 MOLECULAR METABOLISM 83 (2024) 101923 � 2024 The Author(s). Published by Elsevier G
dpi to 36% (Figure 1D). All macrophages gradually shifted from a
Ly6Chi expressing state at 1 dpi towards a Ly6Clo phenotype with
almost no expression by 7 dpi, with the biggest change in Ly6C
expression starting at 2 dpi and settling at 4 dpi (Figure 1E). This profile
reflects the previously described switch of macrophages from a pro-
inflammatory to a restorative phenotype [7,20].

3.2. The macrophage transcriptome changes dynamically from one
to seven days post ischemia injury
To further characterise macrophage dynamics following hindlimb
ischemia, we analysed the transcriptomic profiles of the muscle tissue
macrophage population (t-CD45þCD11bþF4/80þCD64þ) on 1, 2, 4,
and 7 dpi. First, we performed a transcriptome-wide comparison with
macrophages and monocytes from previous muscle injury studies
[7,8]. The gene expression trends of macrophages recruited to
ischemia injured muscles reflect those that are observed after CTX-
induced muscle injury [7] (Fig. S1A), suggesting conserved macro-
phage transcriptional dynamics after muscle injury, independently of
the cause of injury. Furthermore, a principal component (PC) analysis
of an integrated dataset containing all our samples (1e7 dpi), as well
as monocytes and macrophages from 1 to 4 dpi in a CTX-induced
muscle injury model [8] confirmed this and highlighted the transcrip-
tional differences with monocytes (Fig. S1B). While PC1 largely
captured cell type differences, biological differences of the studies, and
likely also technical differences, PC2 captured time and state of
macrophage polarisation both in our samples as well as the macro-
phage populations of Patsalos et al. [8]. As also observed in that study,
(blood) monocytes clustered away from the macrophages on PC1,
highlighting that tissue macrophages have a distinct transcriptional
signature from blood monocytes.
We then focused on a detailed analysis of our datasets. A PC analysis
showed that global gene expression profiles change gradually over the
7-day course post-injury, illustrated by the samples clustering ac-
cording to and sequential in time along PC1 (Figure 2A). While gene
expression at 1 and 2 dpi are still similar, a larger shift can be seen
from 2 to 4 dpi and a second shift happens from 4 to 7 dpi
(Figure 2A,B). Analysis of differentially expressed genes (DEGs, adj.
P < 0.05, log2FC > 1) revealed that many genes are up- or down-
regulated (Figure 2C,D). We could cluster the DEG dynamics into 9
distinct expression patterns (Figure 2E). Gene Ontology (GO) analysis
for all ontologies confirmed that large and coordinated gene expression
changes occur during the first week post-injury. Three clusters contain
genes with declining expression over time (clusters 3, 4 and 6). Cluster
6 genes decrease gradually over time, cluster 3 genes go down at 2
dpi and cluster 4 genes at 4 dpi. (Pro-)inflammatory processes were
the top enriched GO terms for genes that go down at 2 dpi (cluster 3,
Suppl. File 1), and also the other two clusters, with gradually down-
regulated genes (cluster 6) or genes downregulated specifically at 4
dpi (cluster 4) were enriched for pro-inflammatory GO terms, such as
‘myeloid leukocyte migration’, ‘regulation of inflammatory response’
and ‘cytokine-mediated signalling pathway’ (Figure 2F). This is
consistent with a downregulation of the proinflammatory Ly6C status
over time post-injury (Fig. S1B and [8]) as well as with our own FACS
data which shows a shift from Ly6Chi to Ly6Clo that starts at 2 dpi and
is complete at 4 dpi (Figure 1). Besides inflammatory GO terms, genes
in cluster 4 (downregulated by 4 dpi) were most strongly enriched for
RNA and protein synthesis biology (Figure 2F, Suppl. File 1). Genes that
gradually go down (cluster 6) were most enriched for cellular bio-
energetic terms including several glycolysis terms as well as DNA/
RNA/protein-synthesis (Suppl. File 1). Notably, glycolysis-related GO
terms such as ‘glycolytic process through glucose-6-phosphate’,
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1: Profiling of immune cells in muscle after hindlimb ischemia. A) Schematic illustration of the experimental set-up. Muscle ischemia was induced by the ligation of
the femoral artery and macrophages were analysed at 1, 2, 4, 7 dpi. B) FACS plots of immune cells in blood and muscle at 1, 2, 4, 7 dpi. C) Quantification of circulating/non-
infiltrated CD45þ cells (b-CD45þt-CD45þ) versus infiltrated CD45þ cells (b-CD45�t-CD45þ) at 1, 2, 4, 7 dpi. D) Quantification of the different infiltrated b-CD45�t-CD45þCD11bþ

populations in the muscle at 1, 2, 4, 7 dpi. E) Ly6C expression levels in the macrophage population (F4/80þCD64þ) in muscle at 1, 2, 4, 7 dpi. ANOVA test p-values are indicated
for each comparison. *p value < 0.05, **p value < 0.01, ***p value < 0.001, ****p value < 0.0001.
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Figure 2: RNA-seq was used to profile gene expression dynamics in macrophages recruited to the muscle after hindlimb ischemia. A) PCA of all RNA-seq datasets
depicting the first and second principal component. B) Pearson correlation and unsupervised hierarchical clustering of normalised gene expression of all samples. C) Gene
expression changes for all 3 transitions in time are depicted in volcano plots showing the log2FC on the x-axis and -log10 adjusted p-values on the y-axis. Significantly differentially
expressed genes (DEGs, defined as abs(log2FC) > 1 and adjusted p-value <0.05) are coloured in red (upregulated) or turquoise (downregulated). D) Numbers of DEGs for each
transition are depicted as bar plots coloured in red (upregulated) or turquoise (downregulated). E) Heatmap of all DEGs from panel D. Unsupervised hierarchical clustering identified
9 clusters with distinct gene expression dynamics in time. The mean expression of each cluster is depicted in the left panels. F) comparative GO analysis of all clusters identified in
panel E. G) Gene expression of genes associated to glycolysis-related GO terms enriched in cluster 3 or 6 and of Ldha and Ldhb, depicted as boxplots containing log2CPM gene
expression values.
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‘regulation of glycolytic process’ and ‘canonical glycolysis’ were only
enriched in clusters 3 (downregulated by 2 dpi) and 6 (continuously
reducing) (gene expression of the associated genes in Figure 2G), and
were absent in any other cluster. Notably, Ldha expression goes down
gradually in time, while Ldhb expression goes up gradually from 1 to 4
dpi, remaining at a high level at 7 dpi (Figure 2G). Two clusters
represent genes that increase over time. Cluster 7, which goes up
gradually with a strong increase at 7 dpi, is enriched for muscle tissue
development and extracellular organisation terms (Figure 2F,
Suppl. File 1). Cluster 2, which reaches its peak at 4 dpi is enriched for
autophagy, (innate) immune response to IFNb/virus/symbiont terms
(Figure 2F, Suppl. File 1). Four clusters showed dynamic gene
expression in time. Cluster 8 first goes down until 4 dpi, after which it
strongly increases at 7 dpi and is enriched for muscle tissue devel-
opment and activation and cellecell adhesion terms. Cluster 1 goes up
until 4 dpi after which it decreases at 7 dpi and is enriched for DNA
replication and cell division terms (Figure 2F, Suppl. File 1). Cluster 9
resembles cluster 1, except that its upregulation mostly happens be-
tween 2 and 4 dpi instead of between 1 and 2 dpi, and is enriched for
cell division (specifically the metaphase and the anaphase) terms
(Figure 2F, Suppl. File 1). Lastly, cluster 5 goes down from 1 to 2 dpi
after which it increases gradually until 7 dpi and is enriched for antigen
processing and presentation and other immune response terms
(Figure 2F, Suppl. File 1).
The shift from glycolysis to OXPHOS during macrophage polar-
isation, which we found represented in gene expression patterns
(Figure 1G, Suppl. File 1), has been extensively described before
[18]. Importantly, not only lactate generated intracellularly through
glycolysis, but also lactate imported from the microenvironment are
instrumental during the macrophage phenotypic shift [15,31] and
we also observed that lactate in the muscle microenvironment
increased significantly after HLI at 1 dpi (from 0.12 nM/mg of
tissue at basal condition to 0.25 nM/mg of tissue at 1 dpi) and
remained elevated at 3 dpi and 5 dpi (respectively 0.22 nM/mg of
tissue and 0.23 nM/mg of tissue) (Fig. S2). Since extracellular
lactate levels and glycolysis are known to affect histone lactylation
[23], we next explored macrophage histone lactylation dynamics
during muscle regeneration as a possible mechanism driving
macrophage polarisation.

3.3. H3K18la marks active promoters and active enhancers in
macrophages
To evaluate the in vivo dynamics of histone lactylation during macro-
phage polarisation following ischemia-induced muscle injury, we first
assessed global histone lactylation levels by western blot. We focused
on the period where the macrophages’ inflammatory phenotype switch
predominantly takes place and where lactate was shown to be crucial
[7,15,20], i.e. between 2 and 4 dpi. We found that histones are lacty-
lated both using a pan-lactylation antibody and a H3K18la specific
antibody. Moreover, histone lactylation levels increase from 2 to 4 dpi
(Figure 3A,B). This result was unexpected, since previously, histone
lactylation levels were reported to be lower in M2 (restorative, our 4 dpi)
macrophages compared to M1 (inflammatory, our 1e2 dpi) macro-
phages [23].
To evaluate the potential functionality of histone lactylation towards
specific transcriptional changes in the recruited macrophages, we
generated maps of H3K18la genomic distributions by CUT&Tag
(Fig. S3A). To be able to better interpret these, we also created
genomic maps of several key histone PTMs (hPTM), i.e. H3K4me3,
H3K27ac and H3K27me3, which are well characterised for their
relevance in transcriptional control. They respectively mark active
MOLECULAR METABOLISM 83 (2024) 101923 � 2024 The Author(s). Published by Elsevier GmbH. This is
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promoters, active promoters and active enhancers, or repressed
genomic regions.
We called peaks for all hPTMs using the SEACR software which is
optimised for CUT&Run and CUT&Tag datasets [32]. hPTM ‘‘peaks’’
represent genomic areas that are enriched for the respective hPTMs.
H3K18la peaks span about 1000e2000 bp, which is similar to
H3K4me3 (1500e2500 bp) and H3K27ac peaks (1000e3500 bp).
H3K27me3 peaks, on the other hand, are considerably larger, span-
ning between 2000 and 6000 bp (Fig. S3B). We found that H3K18la
peaks are less enriched in promoters than H3K4me3 (Figure 3C,
Fig. S3C) and more in other regions, at considerable distances (10e
100 kb) from the Transcription Start Site (TSS) (Figure 3D, Fig. S3D).
Overall, we observed that H3K18la genomic distributions resembled
the H3K27ac distribution more than the H3K4me3 distribution. Given
that H3K27ac is considered an active enhancer mark (in addition to an
active promoter mark), we wanted to investigate how well H3K18la
peaks overlap with candidate cis-regulatory elements (cCREs, based
on The ENCODE Project Consortium [33]). cCREs represent regions in
the genome that have specific regulatory behaviour, such as that of
promoters or enhancers. cCREs overlap with DNase hypersensitivity
sites, meaning they represent sites of open chromatin. They are
defined based on the presence and/or absence of specific hPTMs
(H3K4me3, H3K27ac), binding of CTCF and distance to TSS. We
regrouped these elements into promoter-like sequences (PLS), prox-
imal enhancer-like sequences (pELS, close to TSS), distal enhancer-
like sequences (dELS, far from TSS), CTCF-only regions and
H3K4me3/DNase sensitive regions. Although more fine-grained clas-
sification of such regulator elements exists (specifying whether they
are co-localised with CTCF-binding sites), we did not observe signif-
icant differences between such subgroups (CTCF-bound or CTCF-not-
bound). Furthermore, due to the physical vicinity of pELS regions to
PLS, and their relatively small size (þ/�350 bp) compared to the
average peak widths, most (>94%) pELS-overlapping H3K18la peaks
also overlap nearby PLS, which were annotated to the latter (see
methods). We found that only 19% of H3K18la peaks overlapped with
PLS, while for H3K4me3 (active promoter) this was 56%, further
suggesting that e as compared to the archetype active promoter mark
H3K4me3 e H3K18la may be more important in other regions than in
promoters. 44% of H3K18la peaks overlap with dELS (Figure 3E,
Fig. S3E), which is higher than any other assessed hPTM (41% for
H3K27ac peaks). This confirms that H3K18la, besides being an active
promoter mark, also marks enhancers [28]. To evaluate its importance
to promoter/enhancer activity, we assessed peak strengths (peak max
values, peak total values and peak read counts) at different genomic
elements and cCRE (Figs. S3FeG, Figure 3F) and found that H3K18la
peaks overlapping with dELS were at least as strong as peaks over-
lapping with PLS (the differences in peak strength variables were not
significant) and stronger than those at any other genomic element
(p < 2e-16). This was not true for the active H3K4me3 or H3K27ac
marks, which showed significantly higher peaks at promoter and/or
PLS sites compared to peaks at any other element (p < 2e-16,
Figure 3F). Further supporting the importance of H3K18la at enhancers
over promoters is the closer resemblance of H3K18la genomic dis-
tribution to published enhanceremark profiles as compared to
promoteremark profiles (Fig. S3H).
Regardless of these findings and although previously demonstrated to
also mark active enhancers, H3K18la is primarily described as an
active promoter mark [23,28]. Indeed, we found that genes whose PLS
is marked by an H3K18la peak were higher expressed than those
without a PLS-overlapping H3K18la peak (Fig. S4A). The same is true
for the other active marks, H3K4me3 and H3K27ac, but not for the
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Figure 3: CUT&Tag was used to profile hPTM genomic distribution dynamics in macrophages recruited to the muscle after hindlimb ischemia. A) Representative image and
quantification of Western blot for PanKla on isolated muscle macrophages after hindlimb ischemia at 2, 3, and 4 dpi. B) Representative image and quantification of Western blot on
H3K18la on isolated muscle macrophages after hindlimb ischemia at 2, 3, and 4 dpi. C) ChIPseeker annotation of hPTMs to genetic elements. D) Distance of hPTMs to TSS. E)
Annotation of hPTMs to cCRE. F) hPTM peak levels (log2CPM) depicted as boxplots according to their cCRE-overlap. G) Gene expression levels (RPKM) depicted as boxplots according to
gene PLS-overlapping peak levels H) Gene expression levels (RPKM) depicted as boxplots according to genes closest to dELS-overlapping peak levels I) GO analysis of the top 2000
genes closest to dELS covered by the highest H3K18la peaks. All analyses were performed on the master peaks merged for all samples per hPTM with averaged peak counts/values.
ANOVA test (A, B) and Wilcoxon test (F, G, H) p-values are indicated for each comparison. *p value < 0.05, **p value < 0.01, ***p value < 0.001, ****p value < 0.0001.
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repressive H3K27me3 marks (Fig. S4A). Furthermore, we found that
the higher a gene’s PLS H3K18la-levels were, the higher their gene
expression was, which was also the case for the other active marks,
while the opposite was true (high PLS marking, low gene expression)
for the repressive H3K27me3 mark (Figure 3G).
Contrary to PLS peaks, which are unambiguously linked to their
downstream gene, the gene enhancer (dELS) relationship is less clear
and could span large distances. Due to the lack of experimental evi-
dence, we assumed simplified putative dELS-gene interactions. We
used an in silico approach where we linked dELS to their closest gene,
as done also by others [28,34,35]. Similar to PLS-marks, genes closest
to H3K18la-occupied dELS were higher expressed than genes closest
to dELS without H3K18la occupancy, which we also observed for the
other assessed active marks (Fig. S4B). Moreover, gene expression of
linked genes increased when dELS H3K18la peaks increased
(excluding those that also overlap with PLS) (Figure 3H). Such stepwise
increase in gene expression according to dELS H3K18la peak levels
was seen to some extent for H3K27ac, but not for H3K4me3. GO
analysis of the 2000 genes linked to the top dELS H3K18la peaks
confirmed that H3K18la marks enhancers that lie close to genes
important to the specific functions of muscle-infiltrating macrophages
(Figure 3I, Table S1 for complete GO results, Table S2 for the 2000
genes), including the stimulation of muscle cell proliferation and dif-
ferentiation, regulation of striated muscle tissue development
(Table S3 contains all genes related to terms containing ‘muscle’),
lymphocyte differentiation and leukocyte migration.
Since some peaks may overlap with PLS and dELS at the same time
and since some genes may have peaks at both their PLS and a close
dELS, we also distinguished these from genes that have only a PLS-
located peak or only a peak at a nearby dELS. As expected, genes
with (a) peak(s) that overlap(s) both PLS and dELS were significantly
higher expressed than genes with only a PLS-located peak or only a
dELS-peak (for all active marks) (Fig. S4C). Since PLS-peaks can be
unambiguously annotated to the corresponding gene while our dELS-
closest-gene links are only a simplified approximation, it is expected
that PLS-peaks correspond better to gene expression than dELS-peaks
(Figure 3G vs Figure 3H, Fig. S4C). In conclusion, we here confirm that
H3K18la marks active promoters as well as tissue-specific enhancers.
These results are in line with our earlier report on macrophages and
other cell types [28], where we have investigated in-depth tissue-
specific steady-state H3K18la profiles and its comparison, overlap and
coordination to and with other hPTM profiles (including H3K4me3,
H3K27ac and H3K27me3) along the genome.

3.4. H3K18la dynamics correlate to and predict gene expression
dynamics
To better understand the possible function of histone lactylation in
macrophages during muscle repair, we decided to investigate whether
and which H3K18la changes occur after muscle injury and how they
relate to H3K4me3, H3K27ac and H3K27me3 changes. Considering
that the biggest shifts in macrophage abundance, inflammatory
phenotype (Figure 1 and [7,20]), and gene expression (Fig. 2) occur
between 2 and 4 dpi and considering the previously suggested role of
histone lactylation for macrophage polarisation [23], we hypothesised
that there would be a (functionally) important shift in histone lactylation
patterns between 2 and 4 dpi. While hypothesised to be instrumental
for the switch from a pro-inflammatory to a restorative phenotype [23],
no previous study has investigated how histone lactylation profiles
change upon adaptation of a restorative phenotype.
We did not observe large qualitative changes with regards to the
overall genomic distribution of H3K18la peaks (Figs. S3CeE), or to that
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of H3K4me3 and H3K27ac peaks. Repressive H3K27me3 peaks were
slightly less present in promoters at 4 dpi compared to 2 dpi. Only
10.5% of H3K18la peaks called at 2 dpi were not detected in any 4 dpi
H3K18la peak set and only 4.2% peaks called at 4 dpi were not
detected at 2 dpi. Furthermore, only 7.7% of the 3281 promoters that
had a H3K18la peak at 2 dpi were not marked by a H3K18la-peak at 4
dpi and only 2.9% of the 3157 promoters that were marked by a
H3K18la-peak at 4 dpi were not marked by a H3K18la-peak at 2 dpi.
None of both groups were enriched for a specific GO term.
Next, to investigate whether quantitative changes occurred, we
computed a master peak file combining all 4 peak sets (n¼ 2 for 2 dpi
and n¼ 2 for 4 dpi) per hPTM which was quantified in all 4 samples of
the respective hPTM. PC analysis confirmed that the biological repli-
cates from 2 dpi were more similar to each other than to the replicates
from 4 dpi, and this for all 4 hPTMs, indicating that robust quantitative
changes did occur for all 4 hPTMs (Figure 4A). Using stringent cut-off
criteria (log2FC > 0.5 and FDR <0.05) to define differentially marked
regions, we found 141 hyperlactylated and 159 hypolactylated regions
from 2 to 4 dpi (Figure 4B, Fig. S5A, example in Figure 4C). The
genomic distribution of these hyper- and hypolactylated peaks over
various cCREs was comparable to that of the overall H3K18la peak
distribution (Fig. S5B). Genes with significantly increased H3K18la PLS
marking (and gene expression, see further) (n ¼ 20, 10 of which have
their PLS covered by the same peak that also covers the PLS of another
gene and 10 of which do not share a PLS-peak with another gene,
Table S4) were enriched almost exclusively in GO terms (n ¼ 30)
related to lymphocyte mediated immunity (Table S5, Fig. S5C).
Sixteen out of the 20 genes with significantly increased H3K18la PLS-
overlapping-peaks showed concordant upregulation in their expression
from 2 to 4 dpi (Figure 4D, Fig. S6). As expected, such concordance
between a stronger PLS-localised peak signal and its associated
gene’s overexpression was also observed for the other active hPTMs,
H3K27ac and H3K4me3 while the opposite was seen for the repressive
H3K27me3 mark (Figure 4D). Four genes (Supt6, Ccrl2, Rab20 and
R3hdm2) did not follow this pattern, but these four genes showed
increased expression from 4 to 7 dpi (Fig. S6), indicating that the in-
crease in PLS-localised H3K18la may be instructive for future gene
expression induction. Furthermore, the PLS of two of these genes
(Supt6 and Rab20) were covered by increased H3K18la-peaks that
also covered the PLS of an adjacent gene that did have correlating
elevated gene expression (Sdf2 and E230013L22Rik, respectively)
(Figs. S5D and E). For a third gene, R3hdm2, the increased H3K18la
peak overlapped with one of its 6 PLS as well as with a nearby dELS,
which is where the actual H3K18la-increase appeared to happen
(Fig. S5F). Ccrl2, the fourth of these genes with increased H3K18la
PLS-marking but no change in gene expression (log2FC ¼ �0.014,
P ¼ 0.95), also had increased H3K4me3 (log2FC ¼ 0.55, P ¼ 5.4E-
05) and H3K27ac (log2FC ¼ 0.65, P ¼ 0.0014) PLS-marking.
Such mechanisms where H3K18la promoter increases anticipate later
gene expression increments were also described in the original paper
describing histone lactylation [23]. We therefore correlated all signif-
icant hPTM PLS-peak changes from 2 to 4 dpi to gene expression
changes from 1 to 2 dpi (Fig. S7A) and from 4 to 7 dpi (Fig. S7B) and
found that H3K18la PLS changes indeed correlate better with future
gene expression changes than to past gene expression changes. When
evaluating the gene expression profiles of genes that have hyper-
lactylated promoters from 2 to 4 dpi, 18 (out of 20) genes show
increased gene expression from 4 to 7 dpi (Fig. S6). On the other hand,
12 (out of 20) genes with hyperlactylated promoters from 2 to 4 dpi
showed a downregulation in expression from 1 to 2 dpi. This indicates
that H3K18la primes for gene expression changes later in time rather
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Figure 4: H3K18la dynamics correlate to/predict gene expression dynamics. A) PCA of quantified peaks of each hPTM.B) Volcano plots depicting hPTM changes between 2 and 4
dpi. On the x-axis, log2FC are depicted, on the y-axis, -log10 adjusted P-values are depicted. Significantly hyper- and hyporegulated peaks are defined as having a log2FC> 0.5 and
log2FC< (�0.5), respectively and an adjusted P-value<0.05. Hyperlactylated peaks are depicted in red and hypolactylated peaks are depicted in turquoise. C) Snapshot of IGV view
depicting all profiled hPTM genomic distributions at a region containing hyperlactylated peaks at the PLS of C1qa and C1qc. Each track is group normalised together with the other tracks
from the same hPTM. D) Scatterplots showing log2FC gene expression changes on the y-axis and log2FC of hPTM peaks covering the gene-associated PLS on the x-axis. Only pairs with
a significantly changed peak are depicted. Blue dotted lines indicate the linear regression for the gene expression versus hPTM changes. Red dotted lines indicate the baseline x- and y-
axes.
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than following gene expression changes earlier in time. This obser-
vation was not (or to a much lesser extent) true for other active hPTMs
(Fig. S7). Furthermore, not all genes that were differentially expressed
earlier in time (from 1 to 2 dpi), also have consequential differential
H3K18la PLS marking from 2 to 4 dpi (Fig. S8A), indicating that altered
H3K18la levels are not a consequence of altered gene expression. In
fact, for any set of differentially expressed genes (earlier in time, at the
same time or later in time Figs. S8BeC), only a subset also had dif-
ferential PLS H3K18la levels, suggesting that H3K18la PLS changes
are selective. Altogether, these results indicate that H3K18la may be
instructive for regulating the expression of specific genes, rather than
being a consequence of altered gene expression.
In fact, among all upregulated DEGs from 2 to 4 dpi (n ¼ 1146,
Figure 2D), only a small subset had concurrent increased H3K18la PLS
levels (338, of which 15 significant), which is far below that for
H3K4me3 (637, of which 144 significant) or H3K27ac (576, of which
24 significant). Among all downregulated DEGs (n ¼ 545, Figure 2D),
also only a small subset had decreased H3K18la PLS levels (144, of
which 4 significant), i.e. lower than H3K4me3 (308, of which 76
significant) or H3K27ac (400, of which 11 significant). To investigate
coordinated action of the various hPTMs in relation to gene expression,
we compared the DEGs to hPTM PLS changes. We overlapped all up-
or downregulated DEGs with genes with significantly hyper- or hypo-
hPTM-marked PLS’s, respectively, and found only few overlapping
pairs (Fig. S8D). Next we correlated PLS hPTM-changes pair-wise,
specifically for the DEGs (Fig. S8E). These correlations show that
H3K18la and H3K4me3 and H3K27ac are actually pair-wise strongly
positively correlated (pearson R between 0.41 and 0.66, all p < 2.2e-
16) and the majority of upregulated genes has increased combinations
of active PLS-hPTM-peaks (represented by the upper-right quadrant;
50.23% for the H3K18la-H3K4me3 pair, 46.16% for the H3K4me3-
H3K27ac pair and 46.31% for the H3K18la-H3K27ac pair). Corre-
spondingly, the majority of downregulated genes has decreased
combinations of active PLS-hPTM-peaks (represented by the lower-left
quadrant; 60.78% for the H3K18la-H3K4me3 pair, 74.29% for the
H3K4me3-H3K27ac pair and 59.49% for the H3K18la-H3K27ac pair).
Lastly, to investigate if hPTM PLS changes are related to genes with
specific biological functions or differ much as to which pathways are
affected, we performed a comparative GO enrichment analysis of the
genes with significantly differentially enriched PLS peaks, comparing
the different hPTMs.
It is important to note that almost all genes with significantly increased
H3K18la PLS-peaks also have an increased H3K4me3 PLS peak
(although often non-significant), but that the opposite is not true: not all
significantly increased H3K4me3 PLS peaks have matching increased
H3K18la PLS-peaks (Fig. S9A). Similarly, almost all genes with
significantly increased H3K27ac PLS-peaks also have an increased
H3K4me3 PLS peak, but not all significantly increased H3K4me3 PLS
peaks have matching increased H3K27ac PLS-peaks (Fig. S9A).
Interestingly, almost all genes with significantly increased H3K18la
PLS-peaks also have an increased H3K27ac PLS peak and the
opposite is also true: almost all significantly increased H3K27ac PLS
peaks have matching increased H3K18la PLS-peaks. In addition,
comparative GO analysis (Fig. S9B) showed that it is the subset of
genes with increased H3K18la as well as H3K27ac and (although not
always significant) H3K4me3 that is enriched for macrophage-specific
functions during 2e4 dpi. Genes that have increased H3K4me3 PLS
levels but not matching increased H3K18la and/or H3K27ac levels on
the other hand were not enriched for macrophage-specific functions.
MOLECULAR METABOLISM 83 (2024) 101923 � 2024 The Author(s). Published by Elsevier GmbH. This is
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This analysis therefore supports the idea that H3K18la is a more se-
lective hPTM when it comes to regulating macrophage-specific biology
as compared to H3K4me3.

4. DISCUSSION

Previous in vitro work has shown that lactate drives histone lactylation
and gene expression in macrophages, promoting the expression of a
specific set of `restorative’ genes within inflammatory macrophages
[23]. The role of histone lactylation during in vivomacrophage functional
reprogramming, has remained unexplored and its distribution in
restorative macrophages has not been described. The dynamic
reprogramming of macrophages from a pro-inflammatory Ly6Chi to-
wards a restorative Ly6Clo phenotype during skeletal muscle regener-
ation is well characterised [1,7,15,20,36]. Here we have investigated
the accompanying transcriptional and epigenetic changes of macro-
phages that are recruited to muscles upon ischemic injury from 1 to 7
dpi. Comparing the transcriptional changes in macrophages upon
ischemia-induced muscle injury with previous work in the field that
analysed transcriptional changes after CTX-induced injury showed that
both injuries result in similar transcriptional changes, suggesting a
conservedmacrophage response uponmuscle injury, independent of its
cause [7,8]. We however cannot exclude that the specific setting of
hypoxia in this arterial ligation-induced injury model, might differently
affect macrophage metabolism and/or genetic drivers of macrophage
repolarization.
When investigating the potential function of H3K18la for macrophage
biology, we chose to profile it in both inflammatory and restorative
macrophages and to compare its genomic distribution to several
reference hPTMs that are well characterised. Importantly, by creating
the data for both H3K18la and the reference hPTMs in-house, in the
same study, using the same samples, we made sure that they are
comparable to each other, originating from cells that were subjected to
the exact same conditions. Epigenetic profiles are specific to the cell
type and cell state, and are known to change when cells are exposed to
different environments and/or stimuli. Therefore, comparing H3K18la
distributions to that of reference hPTMs obtained from the same cell
populations allowed us to better estimate H3K18la genomic enrich-
ment and potential function.
In our analysis, we did not robustly detect novel peaks from 2 to 4 dpi
or vice versa. Relaxing or tightening peak calling thresholds could
result in the discovery of more or less unique peaks, but will inevitably
also result in more or less false or true positive results.
A crucial step in the investigation of the potential function of epigenetic
modifications, is their link to (and effect on) transcriptional dynamics.
Our study is the first to create H3K18la profiles for inflammatory as well
as for restorative macrophages and to also include corresponding RNA-
seq data. Linking epigenetic changes to transcriptional changes is
relatively straightforward for epigenetic changes occurring at gene
promoters (PLS). The relation between a gene’s promoter epigenetic
state and its transcriptional output is very well described for a plethora
of epigenetic modifications, including the hPTMs used here as refer-
ences, and our findings are in line with literature. We observed that
increased H3K18la PLS marking matches future gene expression
changes better than past or concurrent gene expression changes. In
fact, similar observations were made in in vitro polarised macrophages
where promoter H3K18la changes of M0 versus M1 macrophages
appeared most specifically at pro-restorative genes (n¼ 6), for instance
of Arg1 which is typically expressed at the end of M1-polarisation (24h
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Original article
exposure to LPS-IFNy), and not at early-induction inflammatory genes
(expressed after 4he8h exposure to lPS-IFNy) [23]. However, none of
the 6 example restorative genes from Zhang et al.‘s study was recov-
ered in the top hits from our study and also the time-line of macrophage
polarisation was considerably different. These discrepancies between
both studies are most likely the result of the different models, notably
using an in vivo versus in vitro system to studymacrophage polarisation,
altered lactate production kinetics or levels, altered lactate sources
(intracellular only versus intra- and extracellular), and/or the focus on
different phenotypic transitions: M0/M1 H3K18la changes versus 2 dpi
(inflammatory)/4 dpi (restorative) H3K18la changes.
As shown here, as well as in various other cell and tissue types
[28,35], H3K18la appears to be an important active enhancer mark
that is dynamically changing during cell state transitions. H3K18la was
the only hPTM investigated (including the known active enhancer mark
H3K27ac) for which enhancer signals were as strong as promoter
signals. Linking enhancers to their target genes is not as simple as
linking promoters to their target genes. Empirically determining
genome-wide enhancer-target gene-links requires complex Hi-C ex-
periments which comprehensively characterise genome-wide chro-
matin interactions. The outcomes of those experiments are cell type
and time point specific, due to constantly changing enhanceregene
interactions. Therefore, we opted for an in silico approach where we
linked enhancers to their closest gene, without overlapping with its
promoter region, which has limitations, but is often used as an
approximation to estimate the effect of enhancer activity on gene
expression [28,34,35]. Using this strategy, we found that H3K18la
marks enhancers linked to genes important for macrophage-mediated
muscle regeneration (being enriched for terms such as lymphocyte
differentiation and muscle cell differentiation). Furthermore, we also
found that gene expression increases stepwise with higher H3K18la
enhancer peaks, which was not the case for the other hPTMs.
Together, these findings indicate that dynamic H3K18la marking at
both enhancers and promoters instructs future gene expression
changes of macrophages to convert from a pro-inflammatory to a pro-
restorative phenotype.
The contribution of glycolysis and/or glycolysis-induced lactate
secretion in macrophage biology has received significant attention.
High glycolysis and lactate production is a key feature of inflammatory
macrophages which directly links metabolism to inflammatory cyto-
kine production and macrophage migration [19]. Lactate also affects
the polarisation of macrophages towards a restorative phenotype and
contributes to orchestrating macrophage effector functions. But
whether glycolysis-derived lactate or lactate that is taken up from the
environment drives alterations in histone lactylation, is not clear. In
cancer for instance, lactate uptake from the tumour microenvironment
promotes macrophage polarisation through stabilising the HIF-1a
transcription factor [31]. In the ischemic skeletal muscle, lactate
levels rapidly rise [15,37,38] (Fig. S2). This rise is fast and occurs
before the arrival of monocytes and their differentiation to macro-
phages, but lactate levels remain high for several days after ischemia.
The cellular origin of this surge in lactate levels is unclear. While the
hypoxic muscle fibers likely are the main source of lactate, we have
surprisingly measured that also angiogenic endothelial cells, which are
highly glycolytic and upregulate glycolysis further during the formation
of new blood vessels following ischemia, contribute to the rise of
muscle lactate levels [15]. On similar note, the high number of
glycolytic neutrophils and macrophages in the hypoxic muscle few
days after induction of ischemia (where meanwhile many fibers are
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dying or are dead - likely reducing the production of lactate from fi-
bers), potentially affects lactate levels inside the muscle. The exact
contribution of different cell types is however difficult to unravel given
existing lactate shuttles and extensive previous work showing that
inhibition of lactate production in cells might affect their function and/or
metabolism via alternative mechanisms [31,39e41]. Focusing on
macrophages, we showed that under ex vivo conditions, they can take
up lactate and that this contributes to their repolarization towards
reparative macrophages. Also blocking MCT1 (Slc16a1) -dependent
lactate uptake prevented the repolarization of macrophages in vivo, but
the underlying mechanism was not resolved [15]. On the other hand, in
the hypoxic muscle, newly recruited pro-inflammatory macrophages
need high glycolysis and generate lactate themselves. For instance,
efferocytosis-induced lactate production induces the proliferation of
restorative macrophages through its receptor GPR132 [42]. At the
same time, lactate also enhances the expression of efferocytosis re-
ceptors MerTK and LRP1 to boost continuous efferocytosis via an
intracellular Ca2þ-dependent mechanism [43]. Manipulation of lactate
levels via increasing glycolysis-dependent lactate production or by
increasing extracellular lactate availability could affect macrophage
gene regulatory networks and function either through metabolic
regulation, or through metabolic control of epigenetic marks and at the
same time affect histone lactylation. We observed detectable levels of
histone lactylation at 2 days after ischemia induction in macrophages
(that likely arrived less than 24 h before harvesting), and lactylation
levels increased by day 4. Between day 2 and day 4, we already
observed decreasing expression of glycolytic genes, including Ldha
versus an increase in Ldhb (see Figure 2G). Based on those obser-
vations and knowing that lactate levels are high as soon as monocytes
enter the ischemic tissue, we can only speculate that main changes in
lactylation could be driven by extracellular lactate levels. However,
given potential delays between glycolysis and lactylation in vivo,
mechanisms of cellular crosstalk etc, and the lack of clear evidence
supporting this hypothesis, future studies using novel tools to affect
lactylation independent of other (metabolic) effects of lactate will be
required to univocally show the critical contribution of lactylation for
macrophage function, and its potential for therapeutic targeting.

5. CONCLUSION

In this work, we show that macrophages recruited to the muscle after
ischemic injury modify their histone lactylome between 2 and 4 days
post injury. Absolute histone lactylation levels increased and also,
although subtly, the genomic enrichment of H3K18la changed from 2
to 4 days post injury. This suggests that changes in lactylation are
functional and not the mere consequence of altered lactate availability.
Interestingly, we found that alterations in H3K18la genomic enrichment
from day 2 to day 4 post injury are predictive for gene expression
changes later in time, from day 4 to day 7, rather than being a
reflection of past gene expression changes from day 1 to day 2. Future
studies using novel tools to affect lactylation independent of other
(metabolic) effects of lactate will be required to univocally show the
critical contribution of lactylation for macrophage function.
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