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EPIGRAPH

“Human being are members of a whole,

In creation of one essence and soul.

If one member is afflicted with pain,

Other members uneasy will remain.

If you’ve no sympathy for human pain,

The name of human you cannot retain!”

by Saadi (12th century Persian poet), translated by M. Aryanpoor

picture from the entrance of the United Nations building in New York
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Chapter 1

Introduction

1.1 Background

Steel plates and metal sheets have been essential elements of major in-

dustries offering a broad range of applications in automotive, aerospace, defense,

marine, and heavy industries, to name a few. Vehicle bodies, ship hulls, aircraft

fuselages and wings, pressure vessel shells, and many other components of the

modern industrial world are manufactured from sheets of metal based alloys. Steel

plates have been employed to strengthen, reinforce, and cover the core of struc-

tures, protecting them from expected or unexpected external forces and loads. In

many cases, sophisticated flaw detection procedures are routinely carried out on

these parts to avoid possible catastrophic events (e.g. in the case of airplanes).

The substantial role of the metal sheets in reinforcement and structural

protection has motivated many researchers in structural, mechanical and material

sciences to investigate the performance and deformation of steel plates subjected

to various types of loading, aiming towards stronger and lighter alloys and configu-

rations. Numerous kinds of metal based alloys have been developed to improve the

1
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mechanical properties of metal sheets and steel plates. Additionally, the advent of

composite materials and structures has opened a new horizon of opportunities in

designing more effective and reliable protective shells and structures. Various ex-

perimental, theoretical, and numerical studies have been conducted to characterize

the dynamic response and fracture of the steel plates under impulsive loadings.

In a two-part review article, Nurick and Martin [2, 3] have summarized

the theoretical and experimental attempts prior to 1988, which focused on the

deformation of steel plates subjected to impulsive loadings. The early theoretical

methods only considered the bending action and failed to predict large deformations

[4, 5]. Better estimates emerged when the stretching action was taken into account

[6, 7]. In these studies, various mode shapes were assumed and the final deflection

profile of the deformed steel plate was sought using a variety of approaches; e.g.

energy methods, eigenvalue solutions of boundary value problems, etc. Further

experimental attempts revealed different failure modes of simply clamped steel

plates subjected to impulsive loadings [8, 9].

The deflection, failure, and fracture performance of the steel plates sub-

jected to impulsive loadings can be improved by adding highly dissipative ma-

terials to the system. Xue and Hutchinson [10] have noticed an increase in the

necking limits and energy absorption of metal-polymer circular bi-layers subjected

to quasi-static and dynamic loadings. In a systematic experimental and numer-

ical study, Amini et. al. [11, 12, 13, 14] reported a significant improvement to

the performance of steel plates with 1 mm thickness and 3-inch diameter, when

coated with polyurea on the back side (opposite to the load-receiving side). Xue et.

al. [15] have conducted penetration tests on steel-polyurea composites using flat

and pointed projectiles. Supported by their numerical calculations, they reported

an enhancement in energy absorption when a layer of polyurea is placed on the
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back. They also did not notice any significant benefit for steel-polyurea-steel sand-

wich composites. In a numerical effort, Bahei-El-Din et. al. [16] added a polyurea

inter-layer into a sandwich structure and reported a significant improvement in the

response of the structure to blast loads.

In this thesis, experimental and numerical techniques are employed to fur-

ther investigate the performance of steel-polyurea composites of various configura-

tions,i.e. bi-layers, sandwich structures, and layered composites, subjected to bal-

listic and impulsive loadings. Additionally, penetration tests have been conducted

to investigate the ballistic performance of ceramic-polyurea composites. This thesis

also addresses the propagation of impulsive pulses in layered composites.

1.2 Tools and Methodology

In this study, we have used various experimental and numerical tools. The

explicit Finite Element Method (FEM) is extensively employed for our numerical

simulations. A commercially available software package, LS-DYNA, was adopted as

our FEM solver to carry out the computations. LS-DYNA’s user-defined material

model capabilities have allowed us to use our in-house material models for the

polyurea (developed by Amirkhizi et. al. [17]) and the DH-36 steel (developed

by Nemat-Nasser and Guo [18]). FEM models have been mostly generated using

Altair® Hypermesh. Some models have been manually created by codes written

in Matlab. Post-processing of FEM results has been carried out using LS-PrePost

and our in-house codes, which have been written using Python and Matlab.

We have used a 3-inch Split Hopkinson Pressure Bar (SHPB) setup to

perform impact experiments on steel-polyurea-steel sandwich structures. Our ex-

periments on ceramic-polyurea and steel-polyurea layered composites have been
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performed at UCSD/CEAM’s gas gun laboratory that can create high-velocity

impacts (∼ 900 m/s in our case).

1.3 Goals and Achievements

1.3.1 Improving the impact-resistance of steel plates

In a comprehensive numerical study, we have shown that polyurea can im-

prove the impact-resistance of steel plates when coated on the back (not the load-

receiving side). Although different in dimensions, our results agree with the results

reported by other researchers [11, 12, 13, 14].

1.3.2 Better protection against blast and impact

Our experimental and numerical study on steel-polyurea-steel composites

reveals that this sandwich structure can provide better protection against impulsive

loadings than comparable steel-only systems. We have observed that the steel plate

on the back acts as a sacrificial layer and fractures, while the steel plate on the

front remains intact. The steel-only structure fractured when subjected to the same

impulsive loading.

1.3.3 Improving the blast-resistance of layered-composites

We have performed penetration tests on ceramic-polyurea and steel-polyurea

layered composites to investigate their ballistic performance. We have observed

that the ballistic-resistance of steel plates and ceramic tiles improved when coated

by polyurea. However, the enhancement is not as significant as the improvements

reported by other researchers (see the article by Sarva et. al. [19]).
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1.3.4 Filtering high-frequency content of pressure pulses

In a semi-analytical effort, we have solved the problem of wave propagation

in layered cylindrical bars. This structure can effectively filter certain ranges of

frequency content of the traveling pulse. We have employed FEM to verify the

accuracy of our solution.

1.3.5 Characterizing the high strain rate response of con-

crete in tension and compression

Split Hopkinson Pressure Bar is employed to conduct experiments on con-

crete under compression and tension. The rate-dependency of concrete is observed

and reported. FEM models have been developed to clarify the confusions about

sample size and friction effects.

1.4 Manuscript Organization

This manuscript is organized in the following manner. In chapter 2, the FEM

simulations on circular steel-polyurea bi-layers are presented. The steel plates have

a diameter of 1.0 m and the thickness of 1.0 cm. Various thicknesses of polyurea

are considered, and the effect of polyurea thickness on the performance of the

resulting bi-layers is investigated. For each thickness of polyurea, three scenarios

are modeled: 1) polyurea cast on the front (load-receiving side), 2) polyurea cast

on the back, and, 3) no polyurea, with an increase in the steel plate thickness to

match the areal density of the corresponding bi-layers.

Chapter 3 presents the experimental and numerical attempts to investigate

the performance of steel-polyurea-steel composites subjected to impulsive loadings.
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A Hopkinson bar setup is employed to carry out experiments on circular sandwich

samples with 3-inch diameters. The thickness of each steel plate is 1 mm and

the thickness of the polyurea layer is 3.8 mm. The entire experimental process is

simulated in LS-DYNA to investigate the deformation history and fracture modes

in depth. Finally, an axi-symmetric finite element model is presented that focuses

on sandwich structures with larger dimensions.

Chapter 4 details our penetration tests on ceramic-polyurea and steel-

polyurea layered composites. In these experiments, 1
2
-inch ceramic tiles coated with

polyurea are penetrated by flat-ended projectiles with velocities of approximately

900 m/s. The kinetic energy reduction of the projectiles are measured as a metric

to evaluate the ballistic performance of the composites. The same experimental

procedure is also carried out on steel-polyurea layered composites. Samples with

various thicknesses of steel and polyurea are fabricated and tested.

In chapter 5, an approximate solution to the wave propagation problem in

layered cylindrical bars is presented. The dispersion curve for an example problem

is calculated. A numerical procedure is proposed to correct for dispersion effects

occurring in the layered medium. The solution is then compared to the results

of the FEM simulation of the example to verify the accuracy and validity of the

presented approach.

In Chapter 6, I report the results from our unconfined compression and ten-

sion tests on concrete samples. A Split Hopkinson Pressure Bar setup is employed

to carry out the compression experiments. Proposed by Mr. Jon Isaacs, the exper-

imental setup was modified for the tension experiments. Finite elements models

are also presented in this chapter addressing issues such as sample size and friction

effects.



Chapter 2

Performance of Steel-Polyurea

Bi-layers Subjected to Impulsive

Loadings

In this chapter, we present results from our numerical simulations of the

dynamic response and deformation of 1-meter diameter circular DH-36 steel plates

and steel-polyurea bi-layers, subjected to impulsive loadings. Different thicknesses

of polyurea are considered, and the effect of polyurea thickness on the perfor-

mance of the steel plates under high-rate loadings is investigated. For each polyurea

thickness, we have simulated three cases: 1) polyurea cast on the front face (load-

receiving side); 2) polyurea cast on the back face; and, 3) no polyurea but an in-

crease in steel-plate thickness, such that the areal density remains the same in all

three cases. Two types of loading are applied to the polyurea-steel system: (1) direct

application of pressure on the bi-layer system, (2) application of pressure through

a separate medium (polyurethane or water); where the differences are demon-

strated and discussed throughout the scope of the present manuscript. For the

7



8

numerical simulations, we have used physics-based and experimentally-supported

temperature- and rate-sensitive constitutive models for steel and polyurea.

Results from the simulations reveal that in all cases, polyurea cast on the

back face demonstrates superior performance relative to the other two cases. The

differences become more pronounced as polyurea thickness (and the correspond-

ing steel-plate thickness) becomes greater. Also, the differences become less pro-

nounced when direct pressure is applied.

2.1 Introduction

The dynamic response of steel plates and metal sheets to high-rate loadings

has been a topic of interest for many years. Numerous applications of steel plates

in defense, marine, aviation and car industries have called for a thorough investi-

gation on the failure and fracture of steel plates under various types of loading.

Numerous analytical, experimental and numerical approaches have been employed

to comprehend the details of this problem.

The first experimental and theoretical attempts to address this problem

emerged when Taylor [20] and Richardson and Kirkwood [21] investigated the

plastic deformation of thin steel plates subjected to underwater explosions. These

attempts were followed by experimentalists who carried out tests on circular mem-

branes [22, 23, 24]. These approaches were mainly focused on measuring and pre-

dicting the final deflection profile of the circular plates. For more detailed discussion

on the development of this topic, the reader is referred to the reviews published

on dynamic plastic behavior of steel plates by Nurick and Martin [25, 24].

Early attempts considered only bending effects that could only predicted

small deflections. When the steel plate experiences large deformations, however,
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the dynamic response is associated with excessive stretching of the membrane.

Several methods have been proposed to solve the resulting initial-boundary value

problem. Some researchers have assumed several mode shapes and equated the

dissipated strain energy to the initial kinetic energy to obtain the final deflection

profile [26]. Others have proposed and solved eigenvalue problems to calculate the

stationary mode shapes [27]. Wierzbicki and Nurick [28] combined the mode shape

and eigenvalue solutions to arrive to a good match to experimental results. Lee

and Wierzbicki [29, 30] predicted the transient response and fracture of thin plates

to explosive loading with various spacial and temporal distributions, and intensity

of applied loads by analytical and numerical methods.

The advances in numerical techniques such as Finite Element Method (FEM)

have largely contributed to the understanding of many real-world problems. In the

case of dynamic response of steel plates, analytical methods make various simpli-

fying assumptions on governing equations, types of loading, boundary conditions,

plastic response of materials, etc. Nevertheless, an FEM model can treat all the

non-linearities with a measurable error margin while solving governing equations

without ignoring any term. Balden and Nurick [31] employed FEM to simulate

the post-failure motion of steel plates subjected to blast loading. Neuberger et al.

[32] estimated the spring-back of circular clamped armor steel plates subjected to

spherical air-blast loading.

It has been shown that coating steel plates with layers of energy dissipating

materials (such as polymers) can improve the impact resistance of steel plates. In

an extensive experimental and numerical study, Amini et al. [33, 34, 35, 36] have

shown that steel plates with a layer of polyurea coated on the back (with respect to

the impulsive loading) delays the necking and fracture; unlike front coated plates

where the shock is magnified and failure is promoted. In that study, only 3-inch
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diameter circular steel plates with 1-mm thickness were considered, and the con-

clusions were limited to that scale. Polyurea is a well-known reaction and abrasion

resistant polymer and has been extensively used in coating industry (e.g. tunnels,

bridges, roofs, truck beds, etc.). In addition to its coating applications, polyurea

has demonstrated exceptional mechanical and chemical properties leading to its

applications in armor and automotive industries. For example, polyurea has been

employed to increase the resistance of military armor to ballistic loads [37]. Xue

and Hutchinson [38] have investigated the neck retardation and enhanced energy

absorption in metal-polyurea bi-layers. Amirkhizi et al. [39] have systematically

studied the viscoelastic properties of polyurea over a wide range of strain rates

and temperatures. Based on this study, a pressure, temperature, and strain-rate

sensitive model has been developed and implemented into LS-DYNA, a commercial

finite element package.

In this numerical study, the dynamic response of circular steel plates with

and without a layer of polyurea to impulsive loadings is investigated. Different

thicknesses of polyurea are considered, and the position of polyurea with respect to

impulsive loading is also alternated; i.e. polyurea is either placed on the side facing

the loading, or on the opposite side of the plate. The finite element simulations

are conducted by LS-DYNA, with user-defined material models. For polyurea, the

model by Amirkhizi et al. [39] is employed and for steel plates, we used DH-36

Naval structural steel characterized by Nemat-Nasser and Guo [40]. In section

(2.3.2), a complete description of these material models are presented.
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2.2 Problem Description

In this section, the details of the proposed problem are described. This

numerical example is designed to address the possibility of improving the impact-

resistance of steel plates by using highly dissipative materials such as polyurea.

2.2.1 Circular steel plates subjected to impulsive loadings

When a circular plate is subjected to impulsive loadings, it deforms axi-

symmetrically and is typically shaped into a bowl before the failure/fracture occurs.

Figure (2.1) illustrates a rough estimation of the steel plate deformation. The

experimental observations suggest that three different failure modes can occur

[41, 42]: large inelastic deformation and fracture at point A due to excessive tension

(Mode I); tearing at the edge (points B and C) due to shearing (Mode II); or tension

(Mode III). Failure modes II and III are contingent upon the edge conditions and

the methods by which the edges are fixed. Therefore, these failure modes can be

altered or eliminated by thickening the edges or designing different edge shapes.

We focus our attention on the first failure mode, and compare different cases based

upon their resistance to the first failure mode.

2.2.2 Geometry and boundary assumptions

A numerical problem is designed and proposed to serve as a framework

for our study on polyurea-steel bi-layer composites. Figure (2.2), which is an axi-

symmetric view of a 3D model, illustrates the details of the proposed problem. A

3 cm layer of polyurea is placed on a circular steel plate of diameter 1.4m. In our

simulations, we vary the position of polyurea with respect to the steel plate and

its thickness. We refer to the side of the steel plate receiving the pressure pulse as
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(a)

(b)

Figure 2.1: Typical deformation of circular steel plates subjected to axi-symmetric
blast loads: (a) the circular steel plate cross-section before deformation, (b) the
circular steel plate after the blast, shaped into a bowl; failure Mode I occurs at
point A due to excessive tension. Failure Modes II and III occur at points B and/or
C.

Figure 2.2: Axi-symmetric view of the proposed 3D model. The time-varying
impulsive load (uniform here) is applied to the top of the polyurethane that is
radially confined. The steel plate is designed to have a wedge-shape edge to avoid
undesirable failure modes. In this figure, polyurea is placed on the back face.
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the front face, and the side which does not face the loading as the back face. For

example, in figure (2.2), polyurea is placed on the back face. This bi-layer system

of polyurea and steel plate is subjected to an impulsive load with a defined shape

and time-history. In this study, the time-varying pressure pulse is applied to the

system in two ways:

• Indirect: The pressure pulse is applied to a medium with a relatively low

impedance (polyurethane in figure 2.2). The pressure pulse is transmitted

to the bi-layer system through this medium. Such medium ensures capturing

the physics behind the impact phenomenon and wave interactions. In section

(2.4.3), water is used instead of polyurethane and the differences resulting

from this substitution are described.

• Direct: The pressure pulse is directly applied to the bi-layer system. The

shape of the pressure pulse can be uniform or non-uniform. In this study,

a Gaussian distribution for the pressure pulse is assumed, which will be

discussed in section (2.4.4).

The polyurethane is radially fixed. As a result, the pressure pulse travels

through the polyurethane without loosening its uniformity in shape. The circular

steel plate is designed such that it experiences the highest stresses and tension at

the central regions, leading to the first mode of failure explained in section (2.2.1).

More specifically, the edge of the steel plate is designed to be wedge-shaped. The

outer edge of the wedge is fixed both translationally and rotationally. The polyurea

layer is extended to the inner edge of the wedge, and no constraint is applied to

its edges.
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Figure 2.3: The time-history of the pressure pulse applied to the polyurethane.
The pressure rises within 40µs and exponentially declines with a decay constant
of 40µs.

2.2.3 Impulsive loading: time-varying pressure pulse

The impulsive pulse applied to the bi-layer system is assumed to vary in

time as depicted below:

P

Pmax

= pt(t) =
1

2

(
1− cos(π

t

t0
)

)
for t < t0 (2.1)

P

Pmax

= pt(t) = e
− t

t0 for t > t0 (2.2)

where, t0 is the rise-time, and Pmax is the maximum pressure. Figure (2.3) illus-

trates the time-history of the applied pressure pulse.

2.3 Numerical Simulations

In the following section, the finite element model, material models and the

simulated cases are explained in detail.
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Figure 2.4: The finite element mesh: 8-node brick elements are used in all parts;
except for the wedge part for which 6-node wedge elements are used. The mesh is
refined so that an element-size independent solution is achieved.

2.3.1 Finite element model

The proposed problem is numerically modeled and analyzed in an explicit

finite element framework. LS-DYNA, a commercially available software package

well-established in impact engineering, is employed as the FEM solver. Figure

(2.4) illustrates the elements from one quarter of the 3D model. All parts have

8-node Lagrangian brick elements; except the wedge, for which 6-node Lagrangian

wedge elements are used.

2.3.2 Material models

For the polyurea, an experimentally-based material model is used, which is

pressure- and temperature-sensitive and has been developed and tested by Amirkhizi

et al. [39]. This model is based upon incremental updates of stress components and

assumes linear viscoelasticity at each time increment. It calculates the bulk and

shear moduli at each step based upon the state variables (i.e. temperature, pres-
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sure and strain rate). In other words, it explicitly computes the following hereditary

integral:

σ(t) =

∫ t

−∞
(3K(t− τ)E1 + 2G(t− τ)E2) : D(τ)dτ (2.3)

where,K andG are the bulk and shear moduli, respectively; and D is the deformation-

rate tensor. Fourth-order tensors, E1 and E2 are simple known tensors from isotropic

elasticity that separate the deviatoric and dilatational parts of the elasticity tensor.

For bulk deformations, the model assumes the following:

tr(σ) = 3κ
lnJ

J
(2.4)

J = det(F) = | ∂x
∂X

| (2.5)

where, J is the Jacobian of the deformation tensor, and κ is a experimentally

obtained bulk modulus that depends linearly on temperature:

κ(T ) = κ(Tref ) +m(T − Tref ) (2.6)

where, Tref is the reference temperature. The deviatoric part of equation (2.3) is

written as:

σ
′
(t) =

∫ t

0

G(τ, T, P )D
′
(τ)dτ (2.7)

where, D
′
is the deviatoric part of the deformation-rate tensor, and G(τ, T, P ) is

extracted from the time-temperature-pressure master curve for polyurea. A four-

term (n = 4) Prony series defines the relaxation function:

G(τ, T, P ) =
T (τ)

Tref

2Gref (ξ(t)− ξ(τ)) (2.8)

Gref (t) = G∞

(
1 +

n∑
i=1

pie
−t/qi

)
(2.9)
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where, pi and qi are Prony series coefficients, and ξ is a reduced time and is related

to time as:

ξ(t) =

∫ t

0

dτ

aT (τ)
(2.10)

aT = 10
A(T−CtpP−Tref )

B+T−CtpP−Tref (2.11)

where, P is pressure, Ctp is a time-pressure coefficient and A, B and Tref are

parameters given by Knauss [43] for polyurea. The temperature, T , at each time

step is evaluated assuming that: (a) the dissipated work is entirely transformed into

heat, (b) the heat is trapped inside the material, and (c) the heat only accounts

for temperature changes:

∂T

∂t
=

1

Cv

∂Wd

∂t
(2.12)

where, Cv is the heat capacity at constant volume, and Wd is the dissipated work.

The dissipated work is evaluated as below:

∂Wd

∂t
= G∞

T (t)

Tref

n∑
i=1

pi

qi
εi

d(t) : εi
d(t) (2.13)

where,

εi
d(t) =

∫ t

0

e−(ξ(t)−ξ(τ))/qiD
′
(τ)dτ (2.14)

Table (2.1) lists the numerical values used for the parameters in polyurea

material model. This polyurea material model shows a reliable match to experi-

mental results [39].

A physics-based material model is available for DH-36 Naval structural

steel. Nemat-Nasser and Guo [40] have conducted a series of experiments on this

material and reported that the DH-36 steel is strongly temperature and strain

rate dependent; with temperature sensitivity greater for temperatures below 400K

and very low above that. Based on the dislocation theory, and with an insight
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Table 2.1: Numerical values of the parameters in the polyurea material model
used for the simulations.

Tref (K) A B Ctp(K/GPa)
273 −10 107.54 7.2

Cv(J/mm
3/K) m(GPa/K) κref G∞

1.997× 10−3 −0.015 4.948 0.0224

p1 p2 p3 p4

0.8458 1.686 3.594 4.342

q1 q2 q3 q4
463.4 0.06407 1.163× 10−4 7.321× 10−7

from experimental data, a physically based model is developed by Nemat-Nasser

and Isaacs [44], Nemat-Nasser et. al. [45] and Nemat-Nasser and Guo [46], applied

to several polycrystalline metals. This model expresses the flow stress (effective

stress), τ , as a function of temperature, T , effective plastic strain, γ, and effective

plastic strain rate, γ̇,

τ = τ 0
aγ

n1 + τ 0

{
1−

[
−kT
G0

(
ln γ̇

γ̇0
+ ln

(
1 + a(T )γ

1
2 )
))] 1

p

} 1
p (

1 + a(T )γ
1
2

)
, forT ≤ Tc (2.15)

τ = c0 + cn1
1 , forT ≥ Tc (2.16)

a(T ) = a0

[
1 +

(
T

Tm

)2
]

(2.17)

where, G0 is the total energy of the shift-range barrier to the motion of dislocations,

and k is the Boltzmann constant. Remaining constants are the material properties

that can be derived by comparison to experimental data. These constants are

derived by Nemat-Nasser and Guo [40] for DH-36 and are used in our simulations.

The polyurethane is modeled by the Moony-Rivlin rubber material model
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[47] which is based on a strain energy function:

W = A(I1 − 3) +B(I2 − 3) + C(
1

I2
3

− 1) +D(I3 − 1)2 (2.18)

where, A and B are user defined constants; whereas C and D are derived from A

and B. I1 − I3 are derived from invariants of the right Cauchy-Green tensor. The

stress update is then given by [48]

Jσi = λi
∂W

∂λi

(2.19)

where, λi’s represent uniform dilatation. Our inputs to this model are shear mod-

ulus G = 16MPa, Poisson’s ratio ν = 0.495 and the density ρ = 1.19g/cc.

2.3.3 Finite element model details

The finite element mesh was generated in Altair Hypermesh. An input file

suitable for LS-DYNA was prepared for an explicit finite element analysis. The

mesh was refined to achieve element-size independent results.

The pressure time-history curve was defined and LS-DYNA keyword,

LOAD SEGMENT SET ID, was used to apply the pressure on top of the polyurethane

(−y direction in our model). The model uses the LS-DYNA contact option,

CONTACT AUTOMATIC SURFACE TO SURFACE TITLE,

to model the interactions between the polyurethane and the bi-layer system.

The outer nodes of the polyurethane column was radially fixed; i.e. ux =

uz = 0. The outer nodes of the steel plate and the wedge were also fixed in all di-

rections. The Flanagan-Belytschko integration hourglass-control algorithm is used

to eliminate zero-energy modes.
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Figure 2.5: Simulated cases based on position of the polyurea with respect to
applied pressure: NPU (no polyurea), BPU (polyurea on the back face) and FPU
(polyurea on the front face). Different thicknesses of polyurea are considered for
each case. Table (2.2) lists all the simulated cases.

2.3.4 Simulated cases with polyurethane and uniform pres-

sure

In this study, the main goal is to determine to what extend placing a layer

of polyurea on a steel plate affects its performance when subjected to impulsive

loadings. The effect of polyurea thickness on overall response of the bi-layer sys-

tem to impulsive loadings is also investigated. Therefore, the following cases are

simulated (figure 2.5):

• BPU (Polyurea on the back face): Polyurea is placed on the side of the steel

plate opposite to the loading. Four cases with different polyurea thicknesses

are simulated: 1 cm, 2 cm, 3 cm and 4 cm. The thickness of steel is maintained

at 1 cm for all the cases.

• FPU (Polyurea on the front face): Polyurea is placed on the side of the
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Table 2.2: The geometry and applied pressure specifications for all the simulated
cases. In these cases, polyurethane parts are employed as the pressure transmitting
media. A uniform pressure is applied to the top of the polyurethane. Parameters,
Pmax, and, t0, are defined in section (2.2.3).

Steel Polyurea Pressure Pmax

Configuration Thickness Thickness Type (MPa) t0(µs)
NPU (NO PU) 1.14 cm 0.0 cm Uniform, Indirect 200 40
BPU (PU-Back) 1.0 cm 1.0 cm Uniform, Indirect 200 40
FPU (PU-Front) 1.0 cm 1.0 cm Uniform, Indirect 200 40
NPU (NO PU) 1.28 cm 0.0 cm Uniform, Indirect 200 40
BPU (PU-Back) 1.0 cm 2.0 cm Uniform, Indirect 200 40
FPU (PU-Front) 1.0 cm 2.0 cm Uniform, Indirect 200 40
NPU (NO PU) 1.42 cm 0.0 cm Uniform, Indirect 200 40
BPU (PU-Back) 1.0 cm 3.0 cm Uniform, Indirect 200 40
FPU (PU-Front) 1.0 cm 3.0 cm Uniform, Indirect 200 40
NPU (NO PU) 1.56 cm 0.0 cm Uniform, Indirect 200 40
BPU (PU-Back) 1.0 cm 4.0 cm Uniform, Indirect 200 40
FPU (PU-Front) 1.0 cm 4.0 cm Uniform, Indirect 200 40

steel plate which receives blast loading. Four cases with different polyurea

thicknesses are simulated: 1 cm, 2 cm, 3 cm and 4 cm. The thickness of steel

is maintained at 1 cm for all the cases.

• NPU (No polyurea): In this case, no polyurea is placed on the steel plate.

The thickness of steel plate, however, is increased such that the same areal

density as the corresponding BPU and FPU cases is attained: 1.14 cm, 1.28

cm, 1.42 cm and 1.56 cm.

In table (2.2), the simulation specifications for all the cases are listed. The

pressure is uniform in all the cases, and a polyurethane part is used to transmit

the load to the bi-layer system.
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Figure 2.6: The steel plate after deformation. To compare the performance of
the steel plates subjected to impulsive loadings, volume average of effective plastic
strain in circle A is calculated for each case.

2.4 Results

In this section, the results from the simulations of section (2.3.4) are pre-

sented. In section (2.4.1), the metric that we used to compare different cases is

introduced and described. In section (2.4.3), the effect of having water instead of

polyurethane is explored. In section (2.4.4), results from the direct application of

the impulsive load to the steel plate is presented.

2.4.1 Comparison metric

To analyze the performance of steel plates under impulsive loading, we com-

pare the plastic deformation that the steel plates undergo during the deformation

process. More specifically, we measure the volume average of effective plastic strain

corresponding to a circular region of diameter 10 cm at the center of steel plates.

The effective plastic strain is defined as:

γ(t) =

∫ t

0

√
2

3
Dp : Dp dt (2.20)
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where, Dp is the plastic part of the deformation rate tensor. Based on their experi-

mental results, Amini et al. [34, 36] have reported a correlation between this metric

and the fracture of DH-36 steel plates and have used this metric as failure/fracture

criteria. Figure (2.6) illustrates the cross-sectional view of a deformed steel plate

and depicts the area for which effective plastic strain is measured and compared

for different cases (circle A). The largest plastic deformations occur inside circle A

and, therefore, the fracture/rupture is believed to initiate in this region.

2.4.2 Comparing BPU, FPU and NPU cases

In this section, the time-histories of the volume average of the effective

plastic strain at the center of steel plates are plotted and discussed for the cases

explained in section (2.3.4). The results are categorized based on the effective

polyurea thickness, i.e. for each polyurea thickness (or no polyurea, with the same

areal density), the average effective plastic strain is plotted for BPU, FPU and

NPU cases.

Figure (2.7) depicts the time-histories of the volume average of the effective

plastic strain in circle A for the cases with 1 cm polyurea. It is observed that

placing polyurea in this case slightly affects the performance of the steel plate,

with negligible difference between the cases.

In figures (2.8), (2.9) and (2.10) the time-histories of the volume average

of the effective plastic strain in circle A for the cases with 2 cm, 3 cm and 4 cm

polyurea are plotted, respectively. In all cases, 1 cm steel with polyurea performs

better than the equivalent steel. Also, polyurea placed on the back face (BPU)

demonstrates a better performance than the other two cases (FPU and NPU).

The differences become more pronounced as polyurea thickness is increased.
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Figure 2.7: The time-history of the average effective plastic strain over a circle of
diameter 10 cm at the center of the steel plate, with an effective polyurea thickness
of 1 cm. With this polyurea thickness, the performance difference between the cases
is nearly negligible.
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Figure 2.8: The time-history of the average effective plastic strain over a circle of
diameter 10 cm at the center of the steel plate, with an effective polyurea thickness
of 2 cm. The performance difference between the cases becomes apparent when the
thickness of polyurea is equal to, or greater than, 2 cm.
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Figure 2.9: The time-history of the average effective plastic strain over a circle of
diameter 10 cm at the center of the steel plate for an effective polyurea thickness
of 3 cm. The performance difference between the cases becomes more pronounced
when the polyurea thickness is increased.
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Figure 2.10: The time-history of the average effective plastic strain at a circle of
diameter 10 cm at the center of the steel plate for an effective polyurea thickness
of 4 cm.
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Figure 2.11: Comparing water and polyurethane as momentum transmitting me-
dia. The time-history of the average effective plastic strain over a circle of diameter
10 cm at the center of the steel plate for an effective polyurea thickness of 3 cm.

2.4.3 Water vs. polyurethane

In this section, we use water instead of polyurethane in our simulation as the

pressure transmitting medium. We compare new results with previous results for

cases with 3 cm polyurea. In figure (2.11), the volume average of the effective plastic

strain in circle A is plotted for NPU, BPU and FPU cases with 3 cm polyurea.

The same overall trend is observed when water is used instead of polyurethane;

i.e. BPU performs better than FPU and NPU. However, in the case of water, the

transmitted momentum is lower and a smaller plastic deformation occurs at the

central regions.

2.4.4 Direct application of the impulsive loading

In this section, we eliminate the momentum transmitting medium (i.e.

polyurethane or water) and directly apply the pressure to the bi-layer system.
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Table 2.3: The geometrical and pressure specifications for the cases simulating
the direct pressure scenarios. In these cases, no pressure transmitting medium is
used and a pressure with a Gaussian spatial distribution is directly applied to the
bi-layer system. Parameters, Pmax, and, t0, are defined in section (2.2.3).

Steel Polyurea Pressure Pmax

Configuration Thickness Thickness Type (MPa) t0(µs)
NPU (NO PU) 1.00 cm 0.0 cm Gaussian, Direct 530 40
NPU (NO PU) 1.14 cm 0.0 cm Gaussian, Direct 530 40
BPU (PU-Back) 1.0 cm 1.0 cm Gaussian, Direct 530 40
FPU (PU-Front) 1.0 cm 1.0 cm Gaussian, Direct 530 40
NPU (NO PU) 1.42 cm 0.0 cm Gaussian, Direct 530 40
BPU (PU-Back) 1.0 cm 3.0 cm Gaussian, Direct 530 40
FPU (PU-Front) 1.0 cm 3.0 cm Gaussian, Direct 530 40

A Gaussian distribution with variance of 20 is assumed for the pressure; varying

with time in the same manner as the former cases (see section 2.2.3). In other

words, the following equation is used for the pressure:

P

Pmax

= e−
x2

2·202 · pt(t) (2.21)

where, pt(t) is the time-varying function given in section (2.2.3). In table (2.3), the

geometrical specifications of the simulated cases are presented.

In figures (2.12) and (2.13), the volume average of the effective plastic strain

over a circle of 10 cm at the center of the steel plate is plotted. Only the cases

with 1 cm and 3 cm polyurea are considered here. The response of the steel plates

to this type of loading is clearly different from the cases in section (2.3.4), where

a uniform pressure is applied to the bi-layer system through a separate medium.

These results suggest that with this type of loading, the effectiveness of polyurea

layer is not observable. In other words, the bi-layer system of the BPU configuration

has a negligible superiority over the NPU configuration, and the use of polyurea

seems redundant. Also, note that in FPU cases, more energy is transmitted to the
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Figure 2.12: The time-history of the average effective plastic strain over a circle
of diameter 10 cm at the center of the steel plate for an effective polyurea thickness
of 1 cm. There is negligible performance difference between BPU and NPU cases.
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Figure 2.13: The time-history of the average effective plastic strain over a circle
of diameter 10 cm at the center of the steel plate for an effective polyurea thickness
of 3 cm. Unlike the former cases, there is negligible difference in the performance
between BPU and NPU cases when the pressure is directly applied to the bi-layer
system.
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bi-layer system and higher plastic deformations are observed in the elements at

the central parts of the steel plates.

2.5 Summary and Conclusion

In this chapter, the effect of polyurea on the performance of polyurea-steel

bi-layers subjected to impulsive loadings was investigated. A numerical problem

was designed and simulated using an explicit finite element model in LS-DYNA.

The primary objective was to determine the effectiveness of polyurea; and sub-

sequently, determine the manner in which the thickness of polyurea affects the

problem. In order to achieve this, different cases were developed and simulated. To

ensure obtaining accurate results, reliable material models and mesh-size indepen-

dent finite element models were employed.

Numerical results suggest that when polyurea is placed on the back face

(the side of the steel plate opposite to the impulsive loading), the average plastic

strain is less than the cases where the polyurea is placed on the load-receiving side

(front face). This result can be explained by considering the unique properties of

polyurea. The stiffness of polyurea is highly pressure-dependent and increases by

orders of magnitude under locally-confined compression [49]. For FPU cases, when

the polyurea layer is confined and compressed by the incoming pressure pulse,

its stiffness is considerably increased. As a result, because of a better impedance

match with the steel plate, it transmits a greater amount of the impact energy to

the steel plate. On the contrary, when polyurea is placed on the back face, it traps

and dissipates a large amount of energy due to excessive tension.

It was shown that polyurea thickness is an essential factor in effectiveness

of its application. In other words, when a thin layer of polyurea is placed on either
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side of the steel plate, the change in performance is negligible. However, when the

thickness is increased, the effect of polyurea is more apparent and appreciable.

The effect of loading type on this problem was also investigated. It was

shown that there is a remarkable difference between direct and indirect applica-

tion of pressure to the bi-layer system. When a pressure transmitting medium is

used, the problem reflects the physics of the problem more realistically. When the

pressure is directly applied to the bi-layer system, however, the wave interactions

are undermined and the performance of the bi-layer changes drastically. However,

for all cases, the most effective case is found to be BPU; i.e. polyurea placed on

the back face.
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Chapter 3

Performance of

Steel-Polymer-Steel Sandwich

Structures Subjected to Impulsive

Loadings

In this chapter, the results from our experiments and numerical modeling

of steel-polymer-steel sandwich structures subjected to high-rate loadings are dis-

cussed. To study the dynamic response, failure and fracture of such structures

under impulsive loadings, a set of impact experiments are performed on circular

steel-polyurea-steel sandwich specimens using a 3” Hopkinson bar setup. The ex-

perimental results from these experiments are limited to final sample shape and the

time-history of force transmitted through the sample. Hence, the entire experiment

is numerically modeled in a finite element software package (LS-DYNA) to study

the impact process in depth. Numerical results are found to be in good agreement

with experimental data indicating the accuracy and validity of the material models

31
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used for polyurea and steel under these loading conditions.

In addition to the aforementioned effort, an independent numerical study

is performed on steel-polyurea-steel sandwich structures with larger dimensions.

This study is solely numerical due to limitations on experimental capabilities when

the sandwich structures are scaled up. The goal is to investigate whether the same

trend could be observed when the scale of the problem is different. Accordingly,

an axi-symmetric finite element model is designed and developed allowing for fine

meshes at a reasonable computational cost.

From experimental and numerical results, it is observed that when a steel-

polyurea-steel sandwich structure is exposed to impulsive loading, the steel plate

facing the load is more likely to remain intact while the steel plate on the opposite

side experiences fracture. In other words, the plate on the back side with respect to

the impact, serves as a sacrificial layer, saving the steel plate on the load-receiving

side.

3.1 Introduction

To investigate the performance of steel-polymer-steel sandwich structures

subjected to impulsive loadings, an experimental and numerical study has been

conducted on circular steel plates with a layer of polyurea cast between each pair.

Polyurea is a well-known reaction and abrasion resistant polymer and has been

extensively used in the coating industry in solid form (e.g. tunnels, bridges, roofs,

truck beds). In addition to its coating applications, polyurea has shown exceptional

mechanical, physical and chemical properties and has found its applications in the

armor and automotive industries. For example, polyurea increases the resistance

of military armor to ballistic loads [50]. Amini et al. [51] have shown that a steel
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plate with a layer of polyurea coated on the back (with respect to impact loads)

delays the necking and rupture of the steel plate, unlike front coated plates where

the shock is magnified and failure is promoted.

Polyurea is the product of reaction between an isocyanate component and

a synthetic resin blend component. Mechanical properties of polyurea are highly

dependent on temperature, pressure and the rate of deformation. The glass tran-

sition temperature, Tg, of polyurea is around -50�[52]. Roland et al. [53] have

reported stress-strain measurements for an elastomer polyurea in uni-axial tension

over a range of strain rates from 0.06 to 573 s−1. Sarva et al. [54] have reported on

the uni-axial compression stress-strain behavior of a representative polyurea over a

wide range of strain rates, from 0.001 s−1 to 10,000 s−1. They have compared their

data to other researchers’ results and observed that polyurea undergoes a transi-

tion from a rubbery-regime behavior at low rates to a leathery-regime behavior at

higher rates. Above the glass transition temperature, polyurea has a nearly elastic

volumetric response and a viscoelastic shear response at moderate pressures and

strain rates. At room temperature, polyurea is highly elastic and can undergo up

to 800% elongation prior to rupture.

While the response of monolithic plates has been studied extensively over

the last few decades [55, 56], the applicability and effectiveness of the polymer-

steel sandwich structures has become a topic of interest recently. Bahei-El-Din

and others [57] have conducted a numerical study on a sandwich structure design

and observed that adding an inter-layer of polyurea improves the performance of

the structure under blast loads. Xue and Hutchinson [58] have explored the ability

of the bi-layer plates to sustain intense impulses and compare the results to the

estimated performance of monolithic steel plates of the same total mass.

In this study, polyurea is made by mixing Isonate 2143L [59] and Versalink
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Figure 3.1: (a) A steel-polyurea-steel sample (b) The geometry and dimensions
of the steel plates

P1000 [60] under proper conditions with a five percent excess of Isonate 2143L to

produce a lightly cross-linked polymer [61]. Amirkhizi et al. [62] have systemat-

ically studied the viscoelastic properties of polyurea over a wide range of strain

rates and temperatures. Based on this study, a pressure, temperature, and strain-

rate sensitive material model has been developed to be utilized in explicit finite

element solvers such as LS-DYNA. Using this model for polyurea, the entire pro-

cess is numerically modeled in LS-DYNA, and the calculations are compared to

the experimental results.

3.2 Materials and Experimental Setup

The steel plates used to fabricate the sandwich samples were machined

from DH-36 naval structural steel. Polyurea prepared in the material processing

lab at UCSD/CEAM was cast between pairs of steel plates. Fabricated samples

were stored in an environmental chamber for at least two weeks prior to testing

to assure that the polyurea was fully cured. Figure (3.1a) illustrates a typical
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(a) (b)

Figure 3.2: Two sandwich sample configurations: (a) SP-PU-SP (steel - polyurea
- steel) (b) SP-PU-SP-PU (steel - polyurea - steel - polyurea)

sandwich sample and figure (3.1b) contains the geometry and dimensions of steel

plates used to fabricate the samples. Each steel plate has a relatively thick rim on

the outer edge that reinforces the structure against large pure rotations. The rim

is designed to ensure that the failure occurs at the center of the steel plate. The

rim plays an important role in the experiments and changing the design can alter

the failure mode, which is discussed in following sections.

For these experiments, samples with three different configurations were fab-

ricated and tested:

1. Regular sandwich sample of figure (3.2a) which has one layer of polyurea and

is referred to as SP-PU-SP

2. The second configuration illustrated in figure (3.2b) has an extra layer of

polyurea and is refereed to as SP-PU-SP-PU

3. And the third configuration consists of two steel plates with no polyurea

layer and is referred to as SP-SP.

A Split Hopkinson Pressure Bar (SHPB) setup was used for conducting the

experiments. Figure (3.3) illustrates the Hopkinson bar facility at UCSD, which
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Figure 3.3: The experimental setup: 3-inch Split Hopkinson Pressure Bar (SHPB)
and the sample confining components. Only the incident bar is shown in this figure.

consists of a gas gun, barrel, incident bar, transmission (output) bar and brakes.

Incident and output bars are each 8-feet long with 3-inch diameters and are made of

a high strength aluminum alloy. Two strain gages are precisely surface mounted in

the middle of each bar, on opposite sides. These gages are elements of a Whetstone

bridge, designed at CEAM, which minimizes possible errors due to bending in the

bars. The output signal from the bridge, proportional to the strain at the location

of strain gages, is recorded by a digitizer at the sampling rate of 1 MHz.

In these experiments1, the sample is placed between the incident bar and the

end of the barrel. Figure (3.4) illustrates the exploded schematic view of the exper-

imental setup. The sandwich structure is placed between a piece of polyurethane

and a hollow steel ring, all fitted in a thick-walled cylindrical confinement. The

confinement is slid over the incident bar to the point where the hollow ring is in

contact with the incident bar.

1The experimental procedure is explained in detail in appendix A.
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Figure 3.4: The sample-confining components and the projectile. This figure il-
lustrates how the components are positioned with respect to one another in the
confinement. Note that only a small part of the incident bar is plotted.

The gas gun is pressurized by a compressed nitrogen tank. When the gun is

triggered, high pressure gas accelerates an aluminum projectile through the barrel

towards the target. The projectile impacts the target with a high velocity. Two

magnetic sensors placed 3 inches apart at the end of the barrel are used to measure

the impact velocity. Polyurethane, which is nearly incompressible, is now confined

between the projectile and the sample. This subjects the sample to an impulsive

pressure pulse.

The stress history transmitted from the sample and hollow ring is measured

by the two strain gages mounted on the incident bar. This is the only quantitative

measurement from the experiments that can be compared to numerical results for

verifying accuracy. This measurement is also a qualitative indication of the average

impact load experienced by the sample. The incident bar is stopped by a clamp
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(a)

(b)

Figure 3.5: Schematic view of a typical thin steel plate blast experiment: The steel
plate is shown (a) before the impact and (b) after the impact. Different modes of
failure are observed at points A, B and C.

brake in a controlled and repetitive manner.

3.3 Experimental Results

Previous experimental studies on thin steel plates have revealed that three

different failure modes can occur [63, 64]. Figure (3.5) illustrates the schematic

view of a typical blast experiment for a monolithic circular steel plate. When the

steel plate is exposed to impulsive loadings, it may experience a large inelastic

deformation and fracture at point A due to excessive tension (Mode I). Also,

tearing might happen at the edge (points B and C) due to shearing (Mode II) or

tension (Mode III). Different modes of failure can be achieved by altering the edge

design. In our experiments, we have designed the rim in order to avoid the second

and third failure modes and have focused our attention on the first mode of failure.

Table (3.1) summarizes the experimental results. Four different configu-



39

rations have been tested with a variety of input energy levels. The impact and

rebound velocities of the projectile are measured and used to calculate the input

kinetic energy. Experimental results suggest a superior performance for sandwich

structures with polyurea (SP-PU-SP and SP-PU-SP-PU) compared with the ones

without polyurea (SP-SP). In other words, in a few experiments with the same in-

put energy level, sandwich structures with no polyurea fractured severely, whereas

the samples with polyurea did not experience mode I fracture. When the input

energy level was increased, the steel plate facing the impact (front plate) did not

experience mode I failure, whereas the steel plate on the opposite side (back plate)

severely fractured.

Table 3.1: Experimental Results. SP: steel plate, PU: polyurea, KE: Kinetic En-
ergy.

When the input energy reaches about 2800J, the sample experiences a mod-

erate tearing at the edge (modes II and III). In figure (3.6), two samples that frac-

tured at the inside rim edge are displayed. Therefore, mode I can not be obtained

with this sample design without the presence of other failure modes. Increasing
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Figure 3.6: The edge effect - some samples undesirably experienced tearing at
the edge of the rim; which means that for this rim design failure mode I can not
occur without the presence of other failure modes.

the projectile velocity leads to severe fracture of the back plate and no fracture on

the front plate.

In figure (3.7), two samples after impact are shown: one with polyurea

between the plates (experiment P04) and one without polyurea (experiment S02).

In all of the samples severe failure occurs. However, different failure trends are

observed in different steel plates. In the sample without polyurea (figure 3.7-left),

both of the plates experience failure mode I. In the sandwich sample with polyurea,

the front face exposed to the impact tears at the edge (mode II), whereas the steel

plate on the back experiences a severe mode I failure. It is remarkable that when

polyurea is cast between the steel plates, the front face is protected and does not

fracture, while more drastic deformation and fracture occur on the back face. We

conclude that the back plate serves as a sacrificial layer, absorbing a great amount

of energy when fracture occurs. As a result, the front plate facing the impact

remains intact.

The only quantity measured in these experiments is the strain history on the

incident bar. This measurement is a qualitative indication of the average pressure
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Figure 3.7: Samples after severe fracture: Experiment S02 (left): two plates with-
out polyurea in between, Experiment P04 (middle): Sandwich structure front side,
which received the impulsive load and did not fracture at the center, Experiment
P04 (right): sandwich structure back side, severely fractured.

applied to the sample. In other words, the pressure applied to the sample creates

strain waves that travel through the ring and incident bar before they are measured

by the strain gages. When the waves travel through the bar, the following issues

should be considered:

• The pulse shape measured at the strain gages is not identical to the pulse

transferred through the sample due to dispersion. Waves with different fre-

quencies travel at different velocities and, after some distance, their phases

shift relative to one another. As a result, the shape of the pulse measured at

the strain gages is not exactly an indication of the time history of the force

applied to the ring from the rim of the sample.

• The pressure pulse which is transmitted through the ring becomes more uni-

form in the cross-section as it travels along the bar. Therefore, the magnitude

of this pressure is not equal to that applied to the ring.

Considering these points, the quantity measured at the strain gages is just

a rough estimation of the pressure applied to the ring from the sample rim. How-

ever, this experimentally acquired quantity can be compared to the results from
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Figure 3.8: Transmitted force for 01 experiments. The input energy in all these
cases is about the same (2000J). Note that the smallest peak belongs to the sample
without polyurea (experiment S01), which also experiences moderate fracture. The
extra layer of polyurea on the back does not seem to affect the deformation process
by much (compare experiments P01 and B01).

the numerical simulations to measure the accuracy and verify the validity of the

simulations.

Figures (3.8) and (3.9) show the measured stress on the incident bar for

experiment sets 01 and 02. The input kinetic energies for experiments 01 and 02

are approximately 2000J and 2400J, respectively. However, in both cases the peak

for the sample without polyurea that experiences fracture is noticeably smaller.

The time-history of the transmitted force for P cases and B cases closely match.

Therefore, the extra layer of polyurea on the back seems to not have much effect

on the deformation process for these experiments.

Figure (3.10) compares the transmitted force for the SP-PU-SP sample

configuration at different input energy levels. An increase in the peak force is

observed from case P01 to case P02. However, from case P02 to P03, although
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Figure 3.9: Transmitted force for 02 experiments. The input energy in all these
cases is about the same (2400J). Note that the smaller peak belongs to the sample
without polyurea (experiment S02), which also experiences severe fracture. The
extra layer of polyurea on the back seems to not affect the deformation process by
much (compare experiments P02 and B02).
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Figure 3.10: Transmitted force for SP-PU-SP samples for different input energy
levels. Peak force is increased from the case P01 to the case P02. The same trend,
however, is not observed when comparing cases P02 and P03. This can be due to
occurrence of a moderate fracture in the case P03, which is a energy dissipative
process.

the input energy increases by 15%, the peak transmitted force does not increase

comparably. This could be due to the occurrence of a moderate fracture in the case

P03, which is an energy dissipative process.

3.4 Finite Element Modeling

A better understanding of sandwich-structure impact experiments can be

achieved using computational techniques. Our experimental measurements and

observations are mostly qualitative and primarily based on the final shape of the

samples. Consequently, a quantitative estimate of the entire process is highly de-

sired. Therefore, a 3D finite element model has been developed that models the

entire experimental process. An explicit finite element solver (LS-DYNA) has been

employed for numerical calculations. A number of factors are involved in obtaining
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Figure 3.11: Finite element mesh - only a small part of the incident bar is shown

accurate and reliable results from the Finite Element Method (FEM):

• The mesh size should be fine enough to capture the variation of field vari-

ables in the model. It is important to reduce the mesh size until a mesh-size

independent solution is achieved. However, since an explicit integration is

involved, the time step is determined by the size of the smallest element in

the model to guarantee stability. Therefore, unnecessary refinement of the

mesh size leads to not only a larger numerical problem but also smaller time

steps and subsequently, a more computationally expensive problem.

• The boundary conditions and contact surfaces should be realistic and local

loadings (for example on one node) should be avoided.

• The most important factor is the use of reliable material models. The material

models should cover the physics of the problem.

In this section the details of the finite element model are explained and

discussed.
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3.4.1 Elements and boundary conditions

Figure (3.11) contains the main part of the finite element mesh. 8-node solid

elements with the Lagrangian formulation are used for all parts except polyurethane

for which the Arbitrary Lagrangian Eulerian (ALE) formulation is used. Polyurethane

experiences very high and unusual deformation and the Lagrangian formulation

can not capture the process due to the occurrence of a negative Jacobian(self-

interference) in some elements. When the Lagrangian formulation is used, before

the model crashes due to a negative Jacobian, the stresses and strains are generally

lower compared to the case where the ALE formulation is used.

The loading process is through the polyurethane and no external loads

(surface tractions) are directly applied to the sample nodes. The only initial con-

dition is the projectile’s velocity which is applied directly to the projectile nodes.

Polyurethane which is placed between the projectile and the sample is radially

constrained. A non-reflecting boundary condition is applied after the strain gages

on the bar, and the rest of the incident bar is not included in the model. In the

experiments we are not interested in measuring the waves reflected from the end of

the incident bar and we don’t need to take them into account in our simulations.

3.4.2 Finite element solver

LS-DYNA, a finite element software package well-known in impact and

blast applications, was employed to carry out the calculations. One of the main

advantages of this software is its user-defined material model capability. For our

simulations, material models for DH-36 steel and polyurea were compiled into the

executive file. In section (3.4.3), each material model is explained in detail. Some

of the essential LS-DYNA keywords used in this model are as follows:
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• *CONSTRAINED LAGRANGE IN SOLID; This keyword is used to distin-

guish the ALE elements from the Lagrangian elements. The interaction be-

tween ALE and Lagrangian elements is computed and handled when this

keyword is used.

• *CONTACT AUTOMATIC SURFACE TO SURFACE TITLE; This keyword

is used to define the contact surfaces between different parts.

• *CONTACT TIED SURFACE TO SURFACE TITLE; This keyword is used

to define the contact surface between the polyurea and steel plates.

• *BOUNDARY NON REFLECTING; This keyword is used at the location

of strain gages on the incident bar. LS-DYNA assumes that the geometry is

extended to infinity wherever this keyword is used.

• *INITIAL VELOCITY; This keyword is used to apply the initial velocity to

the projectile’s nodes.

All the calculations were carried out on a workstation with an Intel Pentium

D 3.4GHz CPU and RedHat Enterprise 5.0 operating system. Total calculation

time was about 12 hours.

3.4.3 Material models

In this section2, the material models used in our finite element simula-

tions are introduced. For polyurea, an experimentally-based material model is used

which is pressure- and temperature-sensitive and has been developed and tested by

2This section is the duplicate of section (2.3.2) and is repeated here for the sake of chapter
independence and readability.
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Amirkhizi et al. [62]. This model is based upon incremental updates of stress com-

ponents and assumes linear viscoelasticity at each time step. It evaluates bulk and

shear moduli at each step based upon state variables (i.e. temperature, pressure

and strain rate). In other words, it explicitly evaluates the following hereditary

integral:

σ(t) =

∫ t

−∞
(3K(t− τ)E1 + 2G(t− τ)E2) : D(τ)dτ (3.1)

where, K and G are bulk and shear moduli, respectively; and D is the deformation-

rate tensor. Fourth-order tensors, E1 and E2 are simple known tensors from isotropic

elasticity which separate the deviatoric and dilatational parts of the elasticity ten-

sor. For bulk deformation, the model assumes

tr(σ) = 3κ
lnJ

J
(3.2)

J = det(F) = | ∂x
∂X

| (3.3)

where, J is the Jacobian of the deformation tensor, and κ is a experimentally

evaluated modified bulk modulus that depends linearly on temperature:

κ(T ) = κ(Tref ) +m(T − Tref ) (3.4)

where, Tref is the reference temperature. The deviatoric part of equation (3.1) is

written as:

σ
′
(t) =

∫ t

0

G(τ, T, P )D
′
(τ)dτ (3.5)

where, D
′
is the deviatoric part of the deformation-rate tensor, and G(τ, T, P ) is

extracted from the time-temperature-pressure master curve for polyurea. A four-
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term (n = 4) Prony series defines the relaxation function:

G(τ, T, P ) =
T (τ)

Tref

2Gref (ξ(t)− ξ(τ)) (3.6)

Gref (t) = G∞

(
1 +

n∑
i=1

pie
−t/qi

)
(3.7)

where, pi and qi are Prony series coefficients, and ξ is a reduced time and is related

to time as shown:

ξ(t) =

∫ t

0

dτ

aT (τ)
(3.8)

aT = 10
A(T−CtpP−Tref )

B+T−CtpP−Tref (3.9)

where, P is pressure, Ctp is a time-pressure coefficient and A, B and Tref are pa-

rameters which are given by Knauss [52] for polyurea. The temperature, T , at each

time step is evaluated assuming that the dissipated work is entirely transformed

into heat which is trapped in the material and only accounts for temperature

changes:

∂T

∂t
=

1

Cv

∂Wd

∂t
(3.10)

where, Cv is the heat capacity at constant volume, and Wd is the dissipated work.

The dissipated work is evaluated as below:

∂Wd

∂t
= G∞

T (t)

Tref

n∑
i=1

pi

qi
εi

d(t) : εi
d(t) (3.11)

where,

εi
d(t) =

∫ t

0

e−(ξ(t)−ξ(τ))/qiD
′
(τ)dτ (3.12)

Table (3.2) lists the numerical values used for the parameters in polyurea

material model. This polyurea material model shows a reliable match to experi-

mental results [62].
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Table 3.2: Numerical values of parameters in polyurea material model used for
our simulations.

Tref (K) A B Ctp(K/GPa)
273 −10 107.54 7.2

Cv(J/mm
3/K) m(GPa/K) κref G∞

1.997× 10−3 −0.015 4.948 0.0224

p1 p2 p3 p4

0.8458 1.686 3.594 4.342

q1 q2 q3 q4
463.4 0.06407 1.163× 10−4 7.321× 10−7

A physics-based material model is available for DH-36 Naval structural

steel. Nemat-Nasser and Guo [40] have conducted a series of experiments on this

material and reported that the DH-36 steel is strongly temperature and strain

rate dependent; with temperature sensitivity greater for temperatures below 400K

and very low above that. Based on the dislocation theory, and with an insight

from experimental data, a physically based model is developed by Nemat-Nasser

and Isaacs [44], Nemat-Nasser et. al. [45] and Nemat-Nasser and Guo [46], applied

to several polycrystalline metals. This model expresses the flow stress (effective

stress), τ , as a function of temperature, T , effective plastic strain, γ, and effective

plastic strain rate, γ̇,

τ = τ 0
aγ

n1 + τ 0

{
1−

[
−kT
G0

(
ln γ̇

γ̇0
+ ln

(
1 + a(T )γ

1
2 )
))] 1

p

} 1
p (

1 + a(T )γ
1
2

)
, forT ≤ Tc (3.13)

τ = c0 + cn1
1 , forT ≥ Tc (3.14)

a(T ) = a0

[
1 +

(
T

Tm

)2
]

(3.15)
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where, G0 is total energy of the shift-range barrier to the motion of dislocations,

k is the Boltzmann constant. Remaining constants are material properties which

can be derived by comparison to experimental data. These constants are derived

by Nemat-Nasser and Guo [65] for DH-36 and are used in our simulations.

Polyurethane is modeled by LS-Dyna incompressible Moony-Rivlin rubber

material model [66] which is based on a strain energy function:

W = A(I1 − 3) +B(I2 − 3) + C(
1

I2
3

− 1) +D(I3 − 1)2 (3.16)

where, A and B are user defined constants; whereas C and D are derived from A

and B. I1 − I3 are derived from invariants of the right Cauchy-Green tensor. The

stress update is then given by [67]

Jσi = λi
∂W

∂λi

(3.17)

where, λi’s represent uniform dilatation. Our inputs to this model are shear mod-

ulus G = 16MPa, Poisson’s ratio ν = 0.495 and the density ρ = 1.19g/cc.

Since field variables (strain, temperature, etc) in the projectile, ring and

output bar do not experience non-elastic effects, elastic models with proper values

are used for those parts.

3.5 Numerical Results and Comparison

Experimental observations can be explained by the results from the finite

element calculations. However, the accuracy and validity of numerical calculations

should be verified. We compare the stress measured at the strain gages on the

incident bar from the experiments to the stress at that location computed by

numerical simulations. Figure (3.12) compares the experimental and numerical

results for experiment P03, which has an input energy of 2800J. There is a very



52

0 50 100 150 200 250 300 350
−20

0

20

40

60

80

100

120

140

160

time (µs)

S
tr

es
s 

(M
P

a)

 

 
From Finite Element Simulation
Experimental Data

Figure 3.12: The time history of the transmitted force calculated from the finite
element solution is compare to the experimental results.

close match in the beginning, the loading phase, and at the end, the release phase.

The results during mid-phase are not promising and the problem needs to be

investigated and the finite element model needs to be improved. The problem may

be due to the fact that the failure was not modeled for these simulations. Therefore,

more energy is transferred to the incident bar leading to a smaller decrease of

transmitted force.

The deformation history of the sandwich sample is displayed in figure (3.13).

The entire deformation process lasts about 140µs. We first compare Von Mises

stress contours of the steel plates on the front and the back. In figure (3.14), Von

Mises stresses are plotted for all of the elements of the two steel plates. It is evident

that the highest stresses occur at the center in the steel plate on the back, whereas

for the front plate, the highest stresses occur at the edge of the rim. Therefore

fracture at the center is expected for the back face (mode I) and for the front
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Figure 3.13: The deformation history of steel-polyurea sandwich structure. The
model is split in half for illustration purposes.

plate, the second mode of failure is expected, which agrees with the experimental

observations.

As another comparison metric, the amount of plastic deformation that the

steel plates undergo during the course of deformation is considered at critical lo-

cations. The effective plastic strain is defined as:

γ(t) =

∫ t

0

√
2

3
Dp : Dp dt (3.18)

where, Dp is the plastic part of the deformation rate tensor. Based on their experi-

mental results, Amini et al. [68, 69] have noticed a correlation between this metric

and the fracture of DH-36 steel plates and have used this metric as failure and

fracture criteria in their numerical computations. The largest plastic deformation

occurs at the central region of the steel plates. Therefore, the fracture/rupture is

believed to initiate at this region. Consequently, we measure the volume average
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Figure 3.14: Von Mises stresses in the elements of the steel plates on the front
and back. The highest stresses occur at the center of the back plate. The model is
split in half for illustration purposes.

of the effective plastic strain corresponding to a circular region of diameter 10mm

at the center of steel plates.

Figure (3.15) displays the volume average of effective plastic strain over the

elements of the aforementioned circle for the steel plates on the front and the back.

There is a substantial difference between the plastic deformation of the two plates.

The plate that is confronting the impulsive load (front plate) experiences lower

plastic deformation and remains intact. However, the back plate which experiences

more plastic deformation fractures and, in that process, absorbs and dissipates

energy serving as a sacrificial layer to save the front plate.
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Figure 3.15: The volume average of effective plastic strain over a circle of 10mm
diameter at the center of steel plates. The steel plate on the back undergoes higher
plastic deformations and is more likely to fracture.

Figure 3.16: The geometry of the axi-symmetric model. A uniform time-varying
impulsive load is applied to the top of the polyurethane cylindrical part, which is
radially confined. The steel plates are extended far enough to avoid edge compli-
cations. The polyurea is sandwiched between the steel plates.
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3.6 Axi-symmetric Finite Element Model (Large

Scale)

To investigate the role of polyurea in sandwich structures with larger dimen-

sions subjected to high-rate loadings, an axi-symmetric finite element model was

developed. This numerical problem is designed and proposed to serve as a frame-

work for our study on steel-polyurea-steel sandwich composites. Some remarkable

features of this numerical model are:

• Element size: compared to a 3D model, an axi-symmetric model can include

finer meshes with the same computational cost. This model is refined to

obtain a mesh-size independent solution.

• Edge-effect: as shown in figure (3.16), the sandwich structure is extended far

from the loading region to avoid possible edge complications.

• Fracture modeling: a failure/fracture criterion based on the value of effective

plastic strain is included in this model.

To compare the performance of the sandwich structure subjected to impul-

sive loadings to that of bare steel, the model was modified to exclude polyurea

and include a steel plate with the same thickness as the sandwich composite, while

other conditions remained the same. The results from these models are displayed

and compared in section (3.6.5).

3.6.1 Geometry and boundary assumptions

Figure (3.16) illustrates the geometry and details of the proposed numerical

problem. A 2cm layer of polyurea is sandwiched between two steel plates of diame-
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Figure 3.17: The time-history of the normalized pressure; the pressure rises within
40µs and exponentially declines, with a decay constant of 40µs.

ter 1.2m and thickness 0.5cm. As mentioned before, we refer to the side of the steel

plate that receives the pressure pulse as the front face, and to the opposite side

as the back face. A uniform time-varying pressure pulse is applied to the system

through a medium with a relatively low impedance (polyurethane in figure 3.16).

The shape and time-history of this impulsive pressure pulse is plotted in figure

(3.17).

Direct application of the pressure pulse to the structure is avoided to attain

a more physical and realistic scenario. In other words, employing polyurethane as

a pressure-transmitting medium assures the capturing of the physics behind the

impact phenomenon and wave interactions. The pressure pulse propagates through

the polyurethane and, when it impacts the structure, a wave is generated at the

interface which reflects back to the polyurethane. The height of the polyurethane

is designed so that when the reflection of this wave from the top arrives back to

the interface, the structure is completely detached from the polyurethane.

The polyurethane is radially fixed. As a result, the pressure pulse travels
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through the polyurethane without losing its uniformity in shape. The circular steel

plates are designed such that they experience the highest stresses and deformations

at the central regions, leading to the first mode of failure explained in section (3.3).

More specifically, steel plates are extended far from the polyurethane part to avoid

edge complications. A fixed cylindrical wall is included to confine the deformation

to a circle of 80cm. Steel plates are fixed at 120cm from the center, which eliminates

of the possibility of obtaining the highest stresses at the fixed edge.

3.6.2 Time-varying pressure pulse

The impulsive loading applied to the sandwich structure as a pressure pulse

is assumed to vary in time as depicted below:

P

Pmax

=
1

2

(
1− cos(π

t

t0
)
)

for t < t0 (3.19)

P

Pmax

= e
− t

t0 for t > t0 (3.20)

where, t0 is the rise-time, and Pmax is the maximum pressure. In figure (3.17), the

magnitude of pressure pulse versus time is plotted. The values of Pmax and t0 used

in the simulations were 270MPa and 40µs, respectively.

3.6.3 Failure criterion

To capture the fracture of steel plates, a criterion based on the nodal values

of the effective plastic strain is introduced in this model. This criterion is only

added to the section of steel underneath the polyurethane (a circle of radius 20cm)

within which the highest stresses and strains are observed. All the elements under

consideration are created separately; i.e. adjacent elements do not share nodes.

In other words, adjacent elements are not connected even though they share an
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edge. Coincident nodes are then tied with one another using the LS-DYNA key-

word *CONSTRAINED TIED NODES FAILURE. When the nodal value of the

effective plastic strain reaches a critical value, the tying condition is removed and

nodes separate. The critical value for effective plastic strain in our simulations was

0.4.

3.6.4 Finite element solver

LS-DYNA was employed to carry out the calculations. Material models

used for these simulations were the same as the 3-dimensional model explained in

section (3.4.3). We highlight some of the essential LS-DYNA keywords employed

in this model:

• *CONTACT 2D AUTOMATIC SURFACE TO SURFACE TITLE:

This keyword is used to define polyurethane-steel and steel-wall contact sur-

faces.

• *CONTACT 2D AUTOMATIC TIED TITLE: This keyword was used to tie

the nodes from the section of the steel that was under fracture criterion to

the nodes from the rest of the steel at their interface (see section 3.6.3).

Note that even though the nodes at the interface are coincident, they are not

connected.

• *CONSTRAINED TIED NODES FAILURE: Refer to section (3.6.3) for de-

tails.

All the calculations were carried out on a workstation with an Intel Pentium

D 3.4GHz CPU and RedHat Enterprise 5.0 operating system. Total calculation

time was about 2 hours.
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Figure 3.18: The shape of the steel plate at t = 950µs; the fracture does not
occur at the center under the assumed fracture criterion.

3.6.5 Results and discussion

In this section, the performance and fracture mechanism of the two struc-

tures, steel-polyurea-steel and steel-only, subjected to the defined impulsive loading

are compared. In figure (3.18), the shape of the steel-only structure at t = 950µs

is depicted. The fracture starts at t ≈ 700µs, when the deflection of the center of

the steel plate is about 11.69cm. Numerical results reveal that, in this case, the

fracture is not initiated from the center.

Figure (3.19) illustrates the shape of the steel-polyurea-steel sandwich struc-

ture at time t = 950µs. The fracture starts at t ≈ 800µs when the deflection of

the center of the steel plate is about 11.70cm. The results suggest that under this

type of loading, the steel plate on the back fractures, whereas no fracturing oc-

curs on the front plate. It is also clear that the fracture on the back face does not

start from the center. This agrees with experimental observations from some of our

tested samples. Figure (3.20) demonstrates the final shape and fracture of the back
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Figure 3.19: The shape of the sandwich structure at t = 950µs; the steel plate on
the back is fractured while the steel plate on the front, which receives the impulsive
loading, remains intact. In this case, the fracture does not start from the center.

plate of a sandwich structure after the experiment. Although in the experiment

the geometry and loading condition were different from the simulations, the same

trend can be observed. In other words, the fracture did not start from the center

in both cases.

In comparison, the steel-polyurea-steel sandwich structure demonstrates a

different behavior compared to the steel-only structure subjected to impulsive load-

ing. The remarkable fact that the front plate is saved from fracturing can be viewed

as a potential for applications where the leakage of a substance into the system

is of great danger, for example after a blast or an accident. However, it is neces-

sary to regard that these results can not be generalized to all types of loading and

conditions without further exploration.
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Figure 3.20: The back plate from the experiment HH4 after the impact test.
The fracture does not occur at the center. This trend, which is predicted by the
numerical model, is observed in a few, but not all, of the tested samples.

3.7 Summary and Conclusion

The results from experiments and numerical modeling of steel-polymer-

steel sandwich structures subjected to high-rate loadings have been presented. To

study the dynamic response, failure and fracture of such structures under impulsive

loadings, a set of impact experiments was performed on circular steel-polyurea-steel

sandwich specimens using a 3” Hopkinson bar setup. The experimental results from

these experiments are limited to the final sample shape and the time-history of force

transmitted through the sample. The entire experiment was numerically modeled

in a finite element software package (LS-DYNA) to study the impact process in

depth. Numerical results were found to be in good agreement with experimental

data indicating the accuracy and validity of the material models used for polyurea

and steel under these loading conditions.

In addition to the aforementioned effort, an independent numerical study

was performed on steel-polyurea-steel sandwich structures with larger dimensions.
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The goal was to investigate whether the same trend could be observed when the

scale of the problem is different. Accordingly, an axi-symmetric finite element

model was designed and developed allowing for fine meshes and yet a reasonable

computational cost.

From experimental and numerical results, it is observed that when a steel-

polyurea-steel sandwich structure is exposed to impulsive loading, the steel plate

facing the load is more likely to survive whereas the steel plate on the opposite

side experiences fracture. In other words, the plate on the back side with respect

to the impact, serves as a sacrificial layer and fractures, thereby saving the steel

plate on the load-receiving side.
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Chapter 4

Ballistic Performance of

Polyurea-Coated Armor Grade

Ceramic Tiles and Steel Plates

Experiments have been conducted to study the ballistic performance of

polyurea-ceramic and polyurea-steel layered composites. The application of ce-

ramics as blast resistant materials has been studied by many researchers. Recent

studies suggest a 25% improvement in the ballistic performance of ceramics, when

they are restrained by thin layers of certain materials, such as E-glass/epoxy and

carbon-fiber/epoxy [70]. Any modification to the ceramic or steel structure that

enhances the energy absorbing properties of the system is significant. In this study,

the effect of polyurea - an excellent energy dissipating agent - on the blast resisting

properties of the resulting ceramic- and steel-based composites is investigated.

Polyurea is cast on top or in between layers of ceramic tiles or steel plates to

fabricate layered structures. Sets of penetration tests have been carried out on these

composites. In the experiments, a high velocity projectile is propelled to impact

64
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and perforate the layered composite. The velocity and the mass of the projectile are

measured before and after the penetration. The change in the kinetic energy of the

projectile is considered as a metric for comparing the ballistic performance of the

different composites. Experimental results suggest that polyurea is not as effective

as other restraining materials, such as E-glass/epoxy and carbon-fiber/epoxy, in

the case of ceramic-based composites. For steel-based composites, the superior

performance is observed when polyurea is cast on the side facing the blast.

4.1 Introduction

The application and variety of ceramics have been continuously increasing

over the past few decades. The dynamic mechanical properties of ceramics has

become a subject of interest over the last two decades. The problem of the ballistic

performance of ceramic targets has been tackled by many researchers and a few

repeatable facts have been established. Most of the experiments have involved a

high strength alloy projectile penetrating a ceramic target at a velocity range of

0.5-5.0 km/s. Using highspeed photography and flash radiography, it has been

observed that the ceramic ahead of the projectile pulverizes and is ejected from

the front and back faces of the ceramic. The process of fragmentation and the size

of fragments have been studied. Experimental results from different researchers

suggest that the process of pulverization and the fragmentation of the ceramic is

directly related to the ballistic performance of the ceramic tiles.

Bless et. al. [71] have reported that the penetration resistance of alumina

decreases with velocity for armor-piercing bullets and is relatively independent of

velocity for rods and fragment-simulating projectiles. Rosenberg et. al. [72] have

conducted a series of terminal ballistic experiments with small scale tungsten alloy
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penetrators with impact velocities ranging between 1.25 to 3.0 km/s in order to

quantify the ballistic efficiency of confined ceramic tiles and found that the dif-

ferential ballistic efficiency of alumina tiles is practically independent on impact

velocity and the tile thickness.

Lundberg et. al. [73] have investigated the penetration of long tungsten

projectiles into the steel-backed alumina targets and concluded that the laws of

replica-scaling hold with sufficient degree of accuracy to justify scaled-down ex-

periments. Orphal and Franzen [74] measured the penetration of simple confined

boron carbide targets by long tungsten rods with impact velocities ranged from 1.5

to about 5.0 km/s and observed an initial steady state penetration. Shockey et. al.

[75] have suggested that non-conventional material properties such as the dynamic

compressive failure energy and the friction, flow and abrasive properties of the

finely fragmented material govern the penetration resistance of confined ceramics.

Woodward et. al. [76] have conducted experiments in which both confined

and unconfined ceramic targets are perforated by pointed and blunt projectiles and

established a correlation between increased degree of fragmentation and reduced

ceramic toughness. They attributed the fine fragments to crushing ahead of the

impacting projectile, and coarse fragmentation to the interaction of stress relief

waves to explain the effects of confinement in terms of a simple model for loading

and stress relief during perforation. Curren et. al. [77] present a micro-mechanical

model to describe the non-elastically deformation of ceramics which is caused by

sliding and ride-up of fragments and suggest that friction, flow and abrasive prop-

erties of the fine fragments govern the penetration resistance of ceramics.

Sarva et. al. [70] have reported a 25% improvement in ballistic efficiency

of armor grade Al2O3 and SiC tiles by restraining the impact face of ceramics

by materials such as E-glass/epoxy, carbon-fiber/epoxy and Ti-3%Al-2.5%V alloy.
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(a) (b)

Figure 4.1: 1
4
-inch polyurea layer cast on a 1

2
-inch armor grade ceramic tile (Alu-

mina based)

They have shown that the thin membrane restraint restricts the flow of pulver-

ized ceramic debris and causes more resistance to penetration. By comparing the

grain size of ceramics and the pulverized fragments, they have observed that the

pulverization is the result of a sub-grain level failure mechanism.

In this study, we have investigated the effect of adding a polyurea layer on

the ballistic efficiency of ceramic tiles and steel plates by performing perforation

tests on polyurea-ceramic and polyurea-steel composites. A high speed projectile

impacts the composite and the velocity and weight of the projectile are measured

before and after the impact. The change in the kinetic energy of the projectile has

been evaluated and compared for different polyurea-ceramic and steel-polyurea

configurations (e.g. polyurea on the front, polyurea on the back, etc.).
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Figure 4.2: Schematic view of the components of the experimental setup. Note
that the components are not drawn to scale. MD: Momentum Dump

4.2 Materials and Experimental Setup

Layered composites were fabricated at UCSD/CEAM’s material processing

labs. Polyurea was made by mixing Isonate 2143L [78] and Versalink P1000 [79]

with a five percent excess of Isonate 2143L to produce a lightly cross-linked polymer

[80]. 1
2
-inch and 1

4
-inch armor grade Al2O3 ceramic tiles and DH-36 naval structural

steel with variety of thicknesses were used to fabricate ceramic-polyurea and steel-

polyurea layered composites, respectively. In figure (4.1a), a 1
2
-inch ceramic tile

coated with a 1
4
-inch layer of polyurea is depicted. Figure (4.1b) displays a layered

composite with 2 steel layers and 2 polyurea layers, where all layers have the same

thickness of 1
4
-inch.

Figure (4.2) illustrates the schematic view of the experimental setup. The

components are not drawn to scale. Penetration tests were conducted at UCSD/CEAM’s

gas gun facilities laboratory. A ∼10.6g flat-ended cylindrical projectile (diameter

6mm, length 20mm), machined from tungsten heavy alloy (WHA) was employed

as the penetrator. The projectile is carried by an aluminum part, referred to as
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Figure 4.3: Projectile and its aluminum carrier (sabot)

a sabot. In figure (4.3), the projectile and its ∼7g aluminum carrier (sabot) are

depicted.

The experimental procedure is as follows: The sabot-projectile assembly is

placed in the gas gun barrel, which has a 1-inch (2.54cm) diameter and 16-feet

(5m) length. The gun is pressurized to ∼ 2400 psi by helium; and when manually

triggered, the gas is released behind the sabot, propelling it towards the target.

The projectile reaches a velocity of ∼900m/s before penetrating the sample. The

sabot is removed from the projectile by a component made of high strength steel,

and labeled as sabot stripper.

The impact velocity is measured by two velocity sensors placed at the end of

the barrel before the sabot-stripper. The velocity of the projectile after the impact

is measured by two magnetic coil residual velocity sensors. The projectile after

the impact is slightly magnetic due to the iron content in its composition. After

the impact, the magnetized projectile passes through the coils inducing an electro-

magnetic pulse, which is measured by a digital oscilloscope. The time difference

between the peaks of these pulses and the distance between the two coils are used

to calculate the residual velocity of the projectile.

The eroded projectile has a large amount of momentum even after the
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Figure 4.4: : The projectile-sabot assembly arrives at the end of the barrel with
a velocity of approximately 900m/s. Sabot is removed by the sabot-stripper before
the projectile penetrates the sample. After the impact, the projectile passes through
the residual velocity measurement coils and is stopped by the bulk paper stack
(momentum dump).

impact. A bulk paper stack, labeled as momentum dump, is placed after the coils

to stop and recover the remainder of the projectile. In figure (4.4), the experimental

setup - from the end of the barrel to the momentum dump - is displayed. In figure

(4.5), the projectile before and after the impact is displayed. Eroded projectiles

are from the experiments on bare ceramic samples.

Figure 4.5: The projectile before and after the penetration. Eroded projectiles
are from the experiments on bare ceramic samples.
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4.3 Results I: Ceramic-Polyurea Composites

Two sets of experiments were conducted on ceramic-polyurea samples. The

first set contains 3 bare ceramic samples, 2 ceramic-polyurea samples and 3 car-

bon fiber-ceramic-polyurea samples. The results are presented in table (4.1). The

position of polyurea with respect to the penetration side and the increase to the

areal density of the ceramic tiles are specified for each sample in separate columns.

PU-Front refers to cases that the projectile first penetrates the polyurea side of

the sample. PU-Back refers to cases that the penetration occurs from the steel side

of the sample.

Table 4.1: Results of the first set of the experiments on polyurea-ceramic com-
posites. EE: e-glass/epoxy, F(x): x layers of carbon fiber; polyurea is cast on the
back in all EE cases.

Exp. Polyurea Projectile Projectile Areal Kinetic
No. Position Velocity Mass Density Energy

Drop (%) Drop (%) Increase (%) Drop (%)
1 No PU 28 44 - 71
2 No PU 26 42 - 68
3 No PU 28 48 - 73
4 PU-Front 33 50 14 77
5 PU-Back 33 55 12 80
6 EE-F(16)/PU 36 62 27 84
7 EE-F(3)/PU 45 58 8 87
8 EE-F(3)/PU 43 53 9 85

The kinetic energy reduction is a function of the velocity decrease and

weight loss of the projectile. After the impact, The remainder of the projectile is

recovered to measure the weight loss due to erosion. In some cases, the projectile

completely fragmented upon impact, and it was not possible to recover all of the

pieces to obtain complete results. Figures (4.6) and (4.7) show the ceramic tiles

after impact for different cases.

The polyurea layer has a thickness of approximately 1
4
-inch and weighs
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∼60g; this equates to a ∼13 percent areal density increase for the 510g ceramic

tile. Experimental results reveal that the ballistic performance of ceramic tiles is

improved (at most) by 10% when polyurea is cast on them.

A second set of experiments were conducted to verify the results from the

first set. Samples include 3 bare ceramic tiles, 3 polyurea(1
4
”)-ceramic(1

2
”) com-

posites, 2 ceramic(1
4
”)-polyurea(1

4
”)-ceramic(1

4
”) sandwich composites. The major

differences between the two sets are as follows:

• Ceramic-polyurea samples for the second set were fabricated more system-

atically; they all exhibit 13% areal density increase.

• A different design of sabot-stripper was used.

• A new digitizer with a higher sampling rate was employed.

Table (4.2) presents the results of the second set of experiments. Up to

12% improvement in ballistic performance is observed in ceramic-polyurea cases

as evident when comparing experiments cp41 and cp43 to experiments cp31 and cp

32. Ceramic-polyurea-ceramic sandwich composites (experiments cp21 and cp22)

exhibit a slightly inferior performance than ceramic-polyurea samples.

Table 4.2: Results of the second set of the experiments on polyurea-ceramic com-
posites

Exp. Polyurea Projectile Projectile Areal Kinetic
No. Position Velocity Mass Density Energy

Drop (%) Drop (%) Increase (%) Drop (%)
cp41 PU-Front 24 54 13 73
cp42 PU-Back ? 34 13 ?
cp43 PU-Front 28 44 13 71
cp31 NO PU 24 35 0 62
cp32 NO PU 21 33 0 58
cp21 Sandwiched 33 33 13 70
cp22 Sandwiched 33 33 13 70
cp23 NO PU 23 33 0 61
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(a) (b)

Figure 4.6: Ceramic tiles with polyurea coating after the impact: (a) polyurea
cast on the back - back view, (b) polyurea cast on the back - front view.

(a) (b)

Figure 4.7: Ceramic tiles with polyurea coating after the impact: (a) polyurea
cast on the front - back view, (b) polyurea cast on the front - front view.
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Experimental results reveal that a slight improvement in ballistic perfor-

mance of ceramic tiles can be achieved by coating them with polyurea; however,

polyurea does not seem to be as effective as other restraining materials, such as E-

glass/epoxy and carbon-fiber/epoxy, when added to ceramic structures to improve

the ballistic efficiency. In other words, it exhibits lower ballistic performance while

adding more areal density to the system.

4.4 Results II: Steel-Polyurea Composites

Penetration tests have been conducted on steel-polyurea layered compos-

ites to investigate the effect or polyurea on ballistic performance of steel plates.

The experimental setup described in section (4.2) was employed to carry out the

penetration tests. Various samples with different thicknesses and configurations

were fabricated at UCSD/CEAM’s material processing laboratory (some depicted

in figure 4.8):

1. bare: no polyurea is cast on steel (experiments b1 and b2).

2. 1/2”(s-pu): consists of one layer of steel and one layer of polyurea, both

having 1
2
” thickness (experiments s3-s6).

3. 1/4”(s-pu-s-pu): consists of two layers of steel and two layers of polyurea, all

having 1
4
” thickness (experiments s7 and s8).

4. 1/4”s-1/2”pu-1/4”s: one 1
4
”-thick layer of polyurea is sandwiched between

two steel plates with 1
4
” thickness (experiments s9-s11).

5. 1/6”(s-pu-s-pu-s-pu): consists of 3 layers of steel and 3 layers of polyurea, all

having 1
6
” thickness (experiments s12 and s13).
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Figure 4.8: Different steel-polyurea layered composites: (a) 1/2”(s-pu) (b) 1/4”s-
1/2”pu-1/4”s (c) 1/4”(s-pu-s-pu) (d) 1/6”(s-pu-s-pu-s-pu)

Experimental results are presented in tables (4.3) and (4.4). Consistent

results are obtained within samples with the same configuration. Note that the total

thickness of all polyurea-steel samples is 1.0”. Among all configurations, 1/2”(s-pu)

shows a noticeably superior ballistic performance.

4.5 Summary and Conclusion

Experiments have been conducted to study the ballistic performance of

ceramic- and steel-based layered composites. In this study, the effect of polyurea

- an excellent energy dissipating agent - on the blast resisting properties of the

ceramic-polyurea and steel-polyurea layered composites are investigated.

Polyurea is cast on top or in between layers of ceramic tiles or steel plates

to fabricate layered structures. A set of penetration tests have been carried out

on these composites. In the experiments, a high velocity projectile is propelled

to impact and perforate the layered composite. The velocity and the mass of the
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Table 4.3: Details and results of experiments on polyurea-steel composites: m1

and m2 are the mass of projectile before and after the impact, respectively; ∆t1
and ∆t2 are the time difference between the peak of the signals measured from the
input sensors and output sensors, respectively. The starred number is an estimate
due to the lack of reliable experimental data.

Exp. Configuration Polyurea m1 m2 ∆t1 ∆t2
Position (gr) (gr) (µs) (µs)

b1 bare - 10.6300 8.1927 56.8 303.5
b2 bare - 10.5669 7.874 57.2 331.2
s3 1/2”(pu-s) Front 10.4707 8.8061 56.7 429.1
s4 1/2”(pu-s) Front 10.5843 9.0879 56.7* 430.5
s5 1/2”(s-pu) Back 10.5807 7.7752 56.7 342
s6 1/2”(s-pu) Back 10.6276 8.0257 56.4 342.9
s7 1/4”(s-pu-s-pu) Sandwich 10.5272 9.167 56 348
s8 1/4”(s-pu-s-pu) Sandwich 10.6469 9.0845 55.1 332.1
s9 1/4”s-1/2”pu-1/4”s Middle 10.5383 9.2911 56.4 326.2
s10 1/4”s-1/2”pu-1/4”s Middle 10.633 9.4387 56.2 323
s11 1/4”s-1/2”pu-1/4”s Middle 10.6324 9.4879 56.2 324.4
s12 1/6”(s-pu-s-pu-s-pu) Sandwich 10.6351 9.3988 56.5 368.4
s13 1/6”(s-pu-s-pu-s-pu) Sandwich 10.6335 8.5783 56.4 372.9

Table 4.4: Results of experiments on polyurea-steel composites.

Exp. Configuration Mass Velocity Energy
Drop (%) Drop (%) Drop (%)

b1 bare 22.93 43.76 75.62
b2 bare 25.48 48.10 79.93
s3 1/2”(pu-s) 15.90 60.29 86.74
s4 1/2”(pu-s) 14.14 60.42 86.55
s5 1/2”(s-pu) 26.52 50.18 81.76
s6 1/2”(s-pu) 24.48 50.57 81.55
s7 1/4”(s-pu-s-pu) 12.92 51.64 79.64
s8 1/4”(s-pu-s-pu) 14.67 50.14 78.79
s9 1/4”s-1/2”pu-1/4”s 11.83 48.04 76.20
s10 1/4”s-1/2”pu-1/4”s 11.23 47.71 75.73
s11 1/4”s-1/2”pu-1/4”s 10.76 47.94 75.82
s12 1/6”(s-pu-s-pu-s-pu) 11.62 53.91 81.23
s13 1/6”(s-pu-s-pu-s-pu) 19.33 54.55 83.34
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(a) (b)

Figure 4.9: Steel-polyurea composites after the penetration test for the experi-
ment s5: (a) polyurea cast on the back - front view, (b) polyurea cast on the back
- back view; the deformed projectile is also displayed on the top-right corner.

(a) (b)

Figure 4.10: Steel-polyurea composites after the penetration test for the experi-
ment s3: (a) polyurea cast on the front - front view; the deformed projectile is also
displayed on the top-right corner, (b) polyurea cast on the front - back view
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projectile are measured before and after the penetration. The change in the ki-

netic energy of the projectile is considered as a metric for comparing the ballistic

performance of different composites.

Experimental results suggest that polyurea is not as effective as other re-

straining materials such as E-glass/epoxy and carbon-fiber/epoxy in the case of

ceramic-based composites. For steel-based composites, the superior performance is

observed when polyurea is cast on the side facing the blast.
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Chapter 5

Wave Propagation in Layered

Cylindrical Bars

In this chapter, a semi-analytical method to approximate the solution of

the wave propagation problem in periodic layered cylindrical bars is presented.

This method develops upon Rythov’s classical solution of plane harmonic waves in

periodic layered composites and employs the Pochhammer-Chree solutions to ac-

count for Poisson’s effect in a finite cross-section. This method is then employed to

calculate the dispersion curve for a periodic steel-aluminum cylinder. A dispersion

correction routine is developed to obtain the shape of a given pulse at any given

location on the periodic bar. Finite Element Method (FEM) is employed to verify

the accuracy of this method. The dispersion solutions calculated from this method

for periodic cylinders, therefore, are in closer agreement to FEM simulations than

the Rythov dispersion solution.

79
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5.1 Introduction

The most comprehensive solution to the propagation of longitudinal waves

in elastic infinite layered media was first published by Rytov [81]. Many others de-

veloped continuum theories to address the wave propagation problem in laminated

and fiber reinforced composites [82, 83]. Harmonic waves in periodic structures and

elastic composites was the subject of interest in many other attempts [84, 85, 86].

The solutions revealed the dispersive nature of laminated/periodic composites, and

many researchers have attempted to obtain dispersion curves for layered materi-

als. For instance, Minagawa et. al. presented dispersion curves for two-dimensional

layered, fiber-reinforced, and other elastic composites [87]. Verification of the ana-

lytical results has remained a tough challenge.

The exact solution to the wave propagation problem in elastic cylinders

exists (Pochhammer (1876) and Chree (1889)). It has also been shown that elastic

cylindrical bars are dispersive media, and the dispersion relation for these media

has been obtained [1]. This information has been employed to develop methods to

estimate the shape changes of traveling pulses in cylinders for applications such as

Split Hopkinson Pressure Bar [88]. This method, known as dispersion correction,

exhibits a near perfect match to experimental results; and therefore, can be used as

a robust tool for verifying the dispersion relation, which is obtained analytically.

Inspired by this, I have attempted to obtain the dispersion relation for layered

cylindrical bars. The solution has been verified by using the dispersion correction

method.

In this chapter, I have employed Finite Element Method (FEM) to solve

examples of propagation of pressure pulses in a steel-aluminum layered cylinder.

I have proposed an approximate semi-analytical method to obtain the dispersion
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relation for layered cylinders. Then, I have developed a special dispersion correction

routine for layered media capable of estimating the shape changes of traveling

pulses. The finite element results are compared to the results for the dispersion

correction method to verify the accuracy of the proposed solution.

5.2 Solution of Wave Equations

In this section, the solution of wave equations for cylindrical elastic bars is

reviewed. This classic problem was first solved by Pochhammer (1876) and inde-

pendently by Chree (1889). For a more detailed discussion on this subject refer to

Redwood [89], from which most of the equations in this section are adopted.

It is more convenient to treat this problem in cylindrical coordinates (r

θ and z), and in terms of potential functions. The governing equations for the

propagation of elastic waves in a cylindrical bar in terms of potential functions φ

and ψ are as follows:

∂2φ

∂t2
+

1

r

∂φ

∂r
+
∂2φ

∂z2
=

1

c2d

∂2φ

∂t2
(5.1)

∂2ψ

∂t2
+

1

r

∂ψ

∂r
+
∂2ψ

∂z2
=

1

c2t

∂2ψ

∂t2
(5.2)

where cd and ct are the speeds of dilatational and shear waves, respectively:

c2d = (λ+ 2µ)/ρ , c2t = µ/ρ (5.3)

where, λ and µ are Lamé constants and ρ is the density of the elastic bar. In this

problem, the angular deformation (torsion) is not considered, and all the equations

are independent of θ.

We consider the propagation of a harmonic wave with angular velocity

ω along the axis of the bar. In an elastic media with no loss, all quantities are
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harmonic with frequency ω,

φ = φ0(r)e
i(ωt−k0z) , ψ = ψ0(r)e

i(ωt−k0z) (5.4)

where, k0 is the wave number, which is related to the wavelength, Λ, by Λ = 2π/k0.

Substituting equations (5.4) into the wave equations (5.1) results in two Partial

Differential equations (PDE):

∂2φ0

∂r2
+

1

r

∂φ0

∂r
+
[( ω
cd

)2 − k2
0

]
φ0 = 0 (5.5)

∂2ψ0

∂r2
+

1

r

∂ψ0

∂r
+
[(ω
ct

)2 − k2
0

]
ψ0 = 0 (5.6)

The most general solution to these PDE’s contains Bessel and Neumann

functions; however, to have a finite solution at r = 0, the solution can only exist

in terms of Bessel functions:

φ = AJ0(kdr)e
i(ωt−k0z) (5.7)

ψ = CJ0(ktr)e
i(ωt−k0z) (5.8)

where,

k2
d = (ω/cd)

2 − k2
0 , k2

t = (ω/ct)
2 − k2

0 (5.9)

The potential functions, φ and ψ, are related to ur and uz as follows:

ur =
∂φ

∂r
+

∂2ψ

∂r∂z
(5.10)

uz =
∂φ

∂z
− ∂2ψ

∂r2
− 1

r

∂ψ

∂r
(5.11)

Substitute the solution of potential functions into equations (5.10) and

(5.11) to obtain ur and uz:

ur = {−kdAJ1(kdr) + ik0ktCJ1(ktr)}ei(ωt−k0z) (5.12)

uz = {−ik0AJ0(kdr) + k2
tCJ0(ktr)}ei(ωt−k0z) (5.13)
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The only non-zero stresses in this problem are:

σrr = λ

{
ur

r
+
∂ur

∂r
+
∂uz

∂z

}
+ 2µ

∂ur

∂r
(5.14)

σzr = µ

{
∂ur

∂z
+
∂uz

∂r

}
(5.15)

At the radial boundary (r = a), these stresses must vanish. This leads to

the following system of homogeneous equations:

A
{1

2
(k2

t − k2
0)J0(kda) +

kd

a
J1(kda)

}
+

+C
{
ik0k

2
t J0(kta)−

ik0kt

a
J1(kta)

}
= 0 (5.16)

A
{
2ik0kdJ1(kda)

}
− C

{
k3

t − k2
0kt

}
J1(kta) = 0 (5.17)

Non-trivial solutions to this system of equations exist, only when the deter-

minant of the corresponding matrix vanishes. This yields the characteristic equa-

tion:

k2
0

ktJ0(kta)

J1(kta)
− 1

2

(
ω

ct

)2
1

a
+

{
1

2

(
ω

ct

)2

− k2
0

}2
J0(kda)

kdJ1(kda)
= 0 (5.18)

The characteristic equation, or the dispersion relation, relates the frequency,

ω, to the phase velocity, k0, for given bar radius and material properties. This

indicates that the velocity of a propagating wave in a cylindrical bar is a function

of frequency. Therefore, the shape of a given pressure pulse composed of a range of

frequencies, is subject to modification while traveling in the bar. This phenomenon

is referred to as dispersion.

The most comprehensive solution of the characteristic equation was first

published by Bancfort [1]. The solution contains multiple roots, corresponding to

the various modes of vibration of the bar. Bancroft has plotted the solution for the

first mode of vibration for different Poisson ratios. This plot is reproduced here for

steel and aluminum, and is presented in figure (5.1). In this figure, the normalized
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Figure 5.1: Normalized phase velocity as a function of d/Λ for steel (ν = 0.3) and
aluminum (ν = 0.34); M1,1 (After Bancroft [1])

phase velocity is plotted with respect to a/Λ, where a and Λ are the radius of the

bar and the wavelength of the wave, respectively.

Davies [88] has presented the solution of the first three modes. He argues

that the higher modes correspond to waves of extremely high frequencies and to

forces applied over very small portions of the cross section of the bar. In this study,

none of these conditions exists, and we only focus on the first mode of vibration,

which is most likely the most dominant mode in our examples.

5.3 Wave Propagation in Layered Cylinders

For a cylinder with alternating layers of two materials, the dispersion rela-

tion of equation (5.18) must hold for each individual layer, so that the free-surface

boundary conditions can be satisfied; therefore, each layer has its own dispersion

relationship. Here, we take a similar approach that Rytov [81] employed to treat

the problem of wave propagation in infinite layered media.
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At the interface between every two layer, wave reflections occur due to

impedance miss-match between the two different materials. As a result, we assume

that in each layer, for a given frequency, waves propagate in both directions; thus,

ur and uz in each layer can be written as:

ur = {−kdAJ1(kdr) + ik0ktCJ1(ktr)}ei(ωt−k0z) (5.19)

+{−kdBJ1(kdr) + ik0ktDJ1(ktr)}ei(ωt+k0z)

uz = {−ik0AJ0(kdr) + k2
tCJ0(ktr)}ei(ωt−k0z) (5.20)

+{−ik0BJ0(kdr) + k2
tDJ0(ktr)}ei(ωt+k0z)

Floquet’s (or Block’s) theory requires the harmonic quantities to have the

same periodicity as the layered medium. In other words, the phase difference be-

tween two points, which are one unit cell apart, must be kLu; where Lu is the unit

cell length, and k is the layered medium wave number. We can hereby rewrite the

equations (5.19) and (5.20) as:

ur =
({

− kdAJ1(kdr) + ik0ktCJ1(ktr)
}
e−i(k0+k)z (5.21)

+
{
− kdBJ1(kdr) + ik0ktDJ1(ktr)

}
e−i(k−k0)z

)
ei(ωt+kz)

uz =
({

− ik0AJ0(kdr) + k2
tCJ0(ktr)

}
e−i(k0+k)z (5.22)

+
{
− ik0BJ0(kdr) + k2

tDJ0(ktr)
}
e−i(k−k0)z

)
ei(ωt+kz)

where, k is the overall wave number associated with the Bloch wave.

The schematic view of a cylindrical bar consisting of two alternating mate-

rials is depicted in figure (5.2). Non-zero stresses and displacements in this problem

must fulfill the Bloch periodicity conditions; i.e. the following equations must be
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Figure 5.2: The schematic view of the layered cylindrical bar

satisfied:

ur(r, 0) = ūr(r, 0) , uz(r, 0) = ūz(r, 0) (5.23)

σzz(r, 0) = σ̄zz(r, 0) , σrz(r, 0) = σ̄rz(r, 0) (5.24)

ur(r,−a) = ūr(r, b)e
ik(a+b) , uz(r,−a) = ūz(r, b)e

ik(a+b) (5.25)

σzz(r,−a) = σ̄zz(r, b)e
ik(a+b) , σrz(r,−a) = σ̄rz(r, b)e

ik(a+b) (5.26)

where, a and b are the lengths of two adjacent layers constituting a unit cell, and all

the unbarred and barred quantities correspond to materials I and II, respectively.

Substituting equations (5.21) and (5.22) into the periodicity equations, yields a

system of 8 equations and 8 unknowns. These equations are extremely difficult to

solve; since r can not be simply eliminated from both sides. To arrive at the exact

solution solution, a summation of infinite mode-shapes, each being a root of the

Bessel functions, must be considered. Then, orthogonality condition between these

modes should be used to calculate the unknowns. We, instead, use a first-order

approximation of the Bessel functions which enables us to eliminate r from both

sides, and simplify the problem.
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In the solution for ur and uz, J0 and J1 are zeroth and first order Bessel

functions of the first kind, and can be approximated by their Taylor series:

J0(x) = 1− 1

4
x2 +

1

64
x4 − ... (5.27)

J1(x) =
1

2
x− 1

16
x3 + ... (5.28)

Using the first-order approximation of Bessel functions and their derivatives

to simplify ur and uz yields:

ur =

{
(−Ak

2
d

2
+ iC

k0k
2
t

2
)re−i(k+k0)z + (−Bk

2
d

2
+ iD

k0k
2
t

2
)re−i(k−k0)z

}
ei(ωt+kz)

(5.29)

uz =
{
(−iAk0 + Ck2

t )e
−i(k+k0)z + (−iBk0 +Dk2

t )e
−i(k−k0)z

}
ei(ωt+kz) (5.30)

The non-zero stresses at the interface between each two layer are:

σzz = λ

{
ur

r
+
∂ur

∂r
+
∂uz

∂z

}
+ 2µ

∂uz

∂z
(5.31)

σzr = µ

{
∂ur

∂z
+
∂uz

∂r

}
(5.32)

Finally, we substitute ur and uz into equations (5.31) and (5.32) to arrive

at:

σzr =
(
µ{iA(k0k

2
d/2)re−ik0z + iB(−k0k

2
d/2)reik0z +

+C(k2
0k

2
t /2)re−ik0z +D(−k2

0k
2
t /2)reik0z}

)
eiωt (5.33)

σzz =
(
A(−(λ+ 2µ)k2

0 − λk2
d)e

−ik0z +B((λ+ 2µ)k2
0 − λk2

d)e
ik0z +

+iC(2µk0k
2
t )e

−ik0z + iD(2(λ+ µ)k0k
2
t )re

ik0z
)
eiωt (5.34)

Substituting equations (5.29) - (5.34) into the periodicity equations results

in a homogeneous system of 8 equations and 8 unknowns, all independent of r.

Non-trivial solutions to this system can only exist when the determinant of the
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Figure 5.3: The schematic view of the geometry of the FEM model

corresponding matrix is equal to zero. The numerical solution to this problem is

presented and discussed in section (5.5).

5.4 Steel-Aluminum Example (FEM vs. Analyt-

ical)

In this section, we consider the propagation of elastic waves in a long and

relatively thin cylindrical bar consisting of alternating layers of steel and aluminum.

Finite Element Method (FEM) is employed to investigate the accuracy and valid-

ity of the approximate method of solving the wave propagation problem in layered

cylindrical bars, as presented in section (5.3). To this end, we applied our approx-

imate method to a specific example and compared the results to those calculated

from the Finite Element method. The procedure is summarized below:

• A finite element model was generated consisting of a number of alternating

steel and aluminum cylinders.

• A pressure pulse was defined to be the input to the FEM model.

• The input pulse was applied as pressure to one end of the FEM model, and
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Figure 5.4: Input pressure pulse to the FEM model.

the propagation of this pulse through the layered material was solved using

an explicit FEM software package.

• The system of equations from the periodicity conditions was solved to calcu-

late the corresponding dispersion relationship for this layered medium.

• A dispersion correction routine was written in Matlab. The input to this

routine is the shape of a pulse in time at any given point on the bar. Given

the pulse and the dispersion curve of the medium, this routine is capable of

obtaining the shape of the pulse at any given point on the bar.

• The results from the FEM model and the dispersion correction routine were

compared and discussed.

5.4.1 Finite element model

An axi-symmetric finite element model was developed to solve the wave

propagation problem in a layered cylindrical bar with known material properties.
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A Matlab routine was written to generate the FEM model suitable for explicit

calculations in LS-DYNA, a commercially available FEM solver. Input parameters

to this routine were material properties of each layer, geometry and the size of the

elements. Elastic material constants used for these simulations are:

Esteel = 210GPa , EAl = 70GPa (5.35)

ρsteel = 7800Kg/m3 , ρAl = 2700Kg/m3 (5.36)

νsteel = 0.3 , νAl = 0.34 (5.37)

Figure (5.3) illustrates the geometry of the finite element model. The fol-

lowing list contains the geometrical details of this model:

• Total length of the bar = 300cm

• Diameter of the bar = 3cm (d/2 = 1.5)

• Steel layer thickness = 8cm (a = 8)

• Aluminum layer thickness = 8cm (b = 8)

No external boundary conditions were applied to this model. A pre-defined

pressure pulse was exerted to the left side of this model to generate a pressure wave.

The propagation of this pressure pulse in the z-direction was solved and analyzed.

Figure (5.4) presents the pressure pulse applied to the finite element model. The

total time duration of this pulse is 100µs.

Figure (5.5) presents the results from finite element analysis. In this figure,

the pressure pulse at locations x1 = 40cm and x2 = 200cm is plotted as a function

of time. Note that only one pulse is traveling in the bar; but, for illustration

purposes, it is plotted in the same figure. For the sake of comparison, the same

pressure pulse is applied to a steel-only cylindrical bar, and similarly, the pressure
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Pressure pulse for steel at x = 40cm
Pressure pulse for steel at x = 200cm
Pressure pulse for steel−Al at x = 40cm
Pressure pulse for steel−Al at x = 200cm

Figure 5.5: Time-history of the pressure pulse at different points in the elastic
bar. Note how the shape of the pulse changes as the wave travels further down the
bar. Also, the pulse shape-changes for the steel-only and the layered steel-Al bars
are noticeably different.

pulse is plotted at the same locations: x1 and x2. There is a substantial difference

between the propagation of the same wave in the two cases. It can be seen that

the shape of the pulse changes due to dispersion as it travels from x1 to x2. The

next section deals with the calculation of this dispersive effect and the prediction

of the shape of a pulse as it travels in the composite.

5.4.2 Dispersion correction

Figure (5.5) illustrates how the shape of a pulse deforms while propagating

in a dispersive medium. Dispersion in a medium occurs due to the fact that waves

with different frequencies travel at different velocities. The knowledge of the dis-

persive properties of the medium can assist in estimating the changes in the shape

of a propagating pulse.

Any given pulse can be represented as an infinite sum of harmonic waves of
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different frequencies. In an elastic cylindrical bar, the propagation velocity of these

waves are different. Consequently, starting from the same point, they arrive at any

given location down the bar at different times. This means that in the summation,

each frequency has a different phase shift. These shifts can be computed from the

dispersion curve for any given frequency. As a result, by having the shape of a

wave at one point in a solid bar, the shape of the wave can be obtained by this

shifting process at any given point. This process is known as dispersion correction.

A dispersion correction routine is developed as a Matlab function. The

procedure is straightforward; for a given pulse, v, and a distance x0:

• The Fast Fourier Transform (FFT) of the pulse is calculated: vf = fft(v).

• For each frequency, the phase is corrected: For the jth element of the vector

in Fourier space,

vf
j = aj + ibj =⇒ φj = tan−1(bj/aj) (5.38)

the frequency associated with the jth element of vf is

p =
2π

Tspan

(j − 1)

where, Tspan is the duration of the pulse. The characteristic equation of (5.18)

can be solved to obtain the wave number (k) corresponding to this frequency.

In figure (5.6), the wave number as a function of frequency is plotted for steel

and aluminum for a cylinder of diameter 3cm. The phase (angle) of the jth

element of vf at a distance x0 is evaluated,

φnew
j = φj + kx0

and finally, the real and imaginary parts of vf are updated such that the

magnitude remains intact:

vj
f =

√
a2 + b2 eiφnew

j (5.39)
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Figure 5.6: k−ω relationship for: (1) a steel-only bar, (2) an aluminum-only bar,
(3) a layered steel-aluminum cylindrical bar. The numerical method to obtain the
black solid line related to case (3) is explained in section (5.5).

• An Inverse Fast Fourier Transform (IFFT) is performed on the updated vf

to arrive at the pulse shape at the desired distance (x0) from the original

location.

To verify the accuracy of this routine, the propagation of the pressure pulse

of figure (5.4) in a steel cylinder is considered. First, this problem is solved by the

FEM model and the shape of the pulse at locations x1 = 40cm and x2 = 200cm are

obtained. Then, the pressure pulse at x1 is used as input to the dispersion correction

routine and the deformed pulse at x2 is calculated. Figure (5.7) illustrates the

results, which indicates a near perfect match between the finite element method

and the dispersion correction results.

The analytical solution to the wave propagation problem for elastic cylin-

ders is remarkably accurate over a broad range of frequencies and loading condi-
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Pressure pulse for steel at x = 40cm
Pressure pulse for steel at x = 200cm from FEM
Pressure pulse for steel at x = 200cm from analytical solution

Figure 5.7: The pressure pulse for the steel-only bar is plotted at two different
points in time: (1) from FEM results, (2) from the analytical solution: Using the
dispersion relationship, the pressure pulse at x = 200cm is numerically obtained
from the time-history of the pulse at location x = 40cm.

tions. This has been observed and experimentally approved by many researchers

(reference needed). In fact, the dispersion correction routine has been used over

years in many applications, such as in Split Hopkinson Pressure Bar (SHPB) ex-

periments. Inspired by this method of verifying the analytical solution, we seek to

correct the dispersion occurring in a periodic layered cylinder using our numerical

calculation of the corresponding dispersion curve. Next section presents the nu-

merical method employed to obtain the dispersion curve for a layered cylindrical

medium.

5.5 Dispersion Curve for Layered Cylinders

In this section, a method to numerically obtain the dispersion curve for

layered cylinders is given: for given material properties and geometry, the dispersion

curve for each layer was calculated; i.e. the value of wave number was numerically



95

0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

x 10
5

k×a (Rad)

F
re

qu
en

cy
 (

R
ed

/s
)

 

 

Cylinder Bar (CB)
Infinite Medium
Stop−band From FEM

Figure 5.8: Dispersion curve for the layered steel-aluminum medium: (1) for a
cylindrical bar, (2) for an infinite medium. Also, the stop-band frequencies for a
specific problem is obtained from FEM results (section 5.5.1), and is compared to
case (1).

calculated as a function of frequency for each material (Bancroft’s approach -

Figure 5.6). The system of 8-equations 8-unknowns, obtained in section (5.3), was

formulated in matrix form. The elements of this matrix are functions of k1, k2

and material properties of steel and aluminum. A non-trivial solution can only

exist when the determinant of this matrix becomes zero. For a given frequency,

the determinant of this matrix is a function of k × a, where a is the length of the

unit cell. An optimization routine was designed, and a Matlab script was written

to find the root of this function for any given frequency. The dispersion curve can

then be obtained by running this script over a range of frequencies.

The black solid line in figure (5.8) corresponds to the dispersion curve for

the steel-aluminum layered cylinder of the proposed example. The dispersion curve

for an infinite layered medium for the same material properties is also plotted (red

solid line with plus markers). The frequencies for which k × a = π, correspond
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Pressure pulse for steel−Al at x = 0cm
Pressure pulse for steel−Al at x = 160cm from FEM
Pressure pulse for steel−Al at x = 160cm from analytical solution

Figure 5.9: The pressure pulse for the layered steel-Al bar is plotted at two
different points in time: (1) from FEM results, (2) from the approximate analytical-
numerical solution: Using the dispersion relationship for the layered cylinder, the
pressure pulse at x = 160cm is obtained from the time-history of the pulse at
location x = 0cm.

to stop-bands. At those frequencies, the traveling wave experiences a phase shift

of (2n − 1)π through one unit cell, where n is the number of stop-band (starting

from 1 for the first stop-band and increasing to ∞). At the interface between the

unit cells, part of the wave is reflected with an additional π phase shift. When

the reflected pulse reaches the other side of the unit cell, it is out of phase with

coming waves of that frequency. As a result, the refracted and reflected waves at

this frequency cancel each other out, and the wave is trapped inside the first few

layers.

To apply the dispersion correction method explained in section (6.4) to the

layered cylinder problem, a function is needed to relate each frequency to a wave

number. The dispersion curve of figure (5.8) can be used to extract that function.

Note that the value of k is needed to find the phase shift of the pulse at a given

distance. Dividing the values in figure (5.8) by a would not result in proper values
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of k. The correct wave number can be obtained by,

kc =
(−1)m+1{k×a(from figure 5.8)}+mπ

a

where, m and a are the branch number and the unit cell length, respectively. The

black solid line in figure (5.6) shows k versus frequency for the steel-aluminum

layered cylinder, which remarkably lies between k1 and k2 corresponding to the

steel and aluminum bars, respectively.

In figure (5.9), the result of dispersion correction for the steel-aluminum

layered cylinder is presented and compared to the finite element results. The pres-

sure pulse at x1 = 0 was the input to the Matlab code (blue line with plus markers)

and the shape of the pulse at x2 = 160cm was calculated (black solid line). The red

line with star markers corresponds to the solution of the finite element model for

this problem at x2 = 160cm. The figure exhibits a good match between the pulses

calculated from FEM method and the proposed analytical/numerical method. This

plot clearly ascertains the validity of the presented approach to approximate the

propagation of the elastic waves in elastic cylinders. It is expected that for higher

frequencies when the first order Taylor Series approximation of the Bessel functions

is not adequate to represent the mode shapes of the cylinders, the results of the

proposed method may diverge from actual results. At those frequencies, evaluating

the accuracy of this method requires further investigation.

5.5.1 Solution for a pulse containing high-frequency con-

tent

A simple Fourier analysis of the input pulse of the example presented in the

previous section reveals that the high frequency content (above the first stop-band)

is relatively insignificant. In this section, we investigate the accuracy and validity
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Pressure pulse for steel−Al at x = 0cm
Pressure pulse for steel−Al at x = 160cm from FEM
Pressure pulse for steel−Al at x = 160cm from analytical solution

Figure 5.10: The pressure pulse of section (5.5.1) is plotted for the layered steel-
Al bar at two different points in time: (1) from FEM results, (2) from the ap-
proximate analytical-numerical solution: Using the dispersion relationship for the
layered cylinder, the pressure pulse at x = 160cm is obtained from the time-history
of the pulse at location x = 0cm.

of our proposed solution for layered cylinders at higher frequencies. Subsequently,

a very short pulse containing high frequencies was applied to the same problem;

followed by the same comparison approach used in previous section: First, the

propagation of this pulse was solved by FEM and the shape of the pulse at x2 =

160cm was recorded. Then, the dispersion correction procedure was employed to

obtain the shape of the pulse at the same location (x2). Figure (5.10) illustrates the

results. Again, a very good match between the the proposed dispersion correction

method and finite element results is achieved.

FEM results are employed to verify the accuracy of the proposed approx-

imate method in finding the stop-bands. Figure (5.11) depicts the Fourier Trans-

form’s of: (1) the sharp input pulse at x1 = 0cm, blue line with plus markers; (2)

the pulse that traveled along the bar to reach the location x2 = 160cm from the

FEM results, red line with star markers. It is clear from the figure that some of the
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Figure 5.11: The frequency content of the pressure pulse of section (5.5.1) from
FEM results: (1) at location x = 0cm (2) down the bar at location x = 160cm. It is
clear that some frequencies are filtered when the wave travels along the cylindrical
bar. The solid black line is our estimate of the stop-bands for this example.



100

frequencies are filtered. The first four stop-bands are approximated by the solid

black line. These frequencies are plotted as black stars in figure (5.8). Remarkably,

the approximate solution of the wave propagation problem for layered cylinders

yields very accurate results in finding the stop-bands.

5.6 Summary and Conclusion

An analytical-numerical method to approximate the solution of wave prop-

agation problem in periodic layered cylindrical bars was presented. This method

was then employed to obtain the dispersion curve for a periodic steel-aluminum

cylinder. A dispersion correction routine was developed to obtain the shape of a

given pulse at any given location on the periodic bar.

To verify the accuracy and validity of this approach, a numerical example

was designed with a pre-defined pressure pulse as the input. A finite element model

of the example was developed, suitable for explicit calculations in LS-DYNA. The

propagation of the applied pressure pulse was first solved by FEM. Then, the

problem was solved by the proposed dispersion correction routine and the results

were compared to FEM calculations.

The results exhibit a good match between the two methods of solving the

wave propagation problem in layered cylinders. It was also shown that the proposed

analytical-numerical method was capable of measuring the pass-bands accurately.
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Chapter 6

High Strain Rate Behavior of

Concrete Under Compression and

Tension

Unconfined compression and tension tests have been performed on cylin-

drical samples prepared from a newly developed concrete. A 3-inch Split Hopkin-

son Pressure Bar (SHPB) setup has been employed to experimentally obtain the

stress-strain relation of the concrete at different strain rates. A novel procedure is

introduced to conduct tension tests. Initiation and propagation of cracks in con-

crete samples are captured by high-speed photography. The experimental data will

be used to improve the existing concrete material models.

Extracting stress-strain relations from the experimentally obtained SHPB

data requires assumptions about the sample size and the friction between the

sample and the bars. The effect of violating these assumptions on the validity of

experimentally acquired stress-strain results is explored by performing a full-scale

finite element simulation of the entire process. Numerical results reveal that in

102
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(a) (b)

Figure 6.1: (a) Compression test specimen: 75 mm in diameter, 50 mm in length
(b) Tension test specimen: 75 mm in diameter, 89 mm in length - A 6.35 mm
wide notch with diameter 57.2 mm is designed to force the fracture to occur in the
middle.

the presence of friction, the strain and stress history are not uniform within the

sample. The usual method of analyzing the Hopkinson bar experimental results

that generally overlooks this fact can be corrected by minor calibration on the

data.

6.1 Compression Tests

In this section, we report the experimental results of our unconfined tests on

concrete in compression subjected to high strain rate loadings. A Split Hopkinson

Pressure Bar (SHPB) setup has been employed for the experiments. A compression

sample is illustrated in figure (6.1a), which is nominally 75mm in diameter and

50mm in length. In Hopkinson bar experiments, the samples are usually small and

thin. In our experiments, however, the size of aggregate was the leading factor in

designing the samples, and the dimensions had to be chosen large enough to reduce
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Figure 6.2: Split Hopkinson Pressure Bar (SHPB) setup for compression tests

the local effects. In other words, a small sample would result in material properties

corresponding to aggregate or cement only. The effect of large sample size on the

accuracy and validity of the experimental results is investigated numerically in

section (6.3).

The primary objective of these experiments was to obtain a relationship

between the strain rate and the stiffness of the samples. For that, the stress-strain

results are presented in section (6.1.3).

6.1.1 Compression experimental setup

A Split Hopkinson Pressure Bar (SHPB) is employed to conduct experi-

ments on concrete in compression. Pioneered by Hopkinson (1872) and fundamen-

tally modified to its current form by Kolskey (1949), SHPB has been extensively

used to study the high strain rate properties of materials.

In figure (6.2), a SHPB setup is schematically illustrated. A sample is sand-

wiched between two relatively long cylindrical bars known as incident and trans-

mission bars. A gas gun is used to accelerate a striker towards the incident bar. The

striker is usually impedance-matched with the bars. The impact of the striker with

the incident bar generates a longitudinal pressure wave, which travels along the

bars. When this wave reaches the sample, part of it is reflected, and the remaining

part is transmitted. This is the result of the impedance mis-match between the
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Figure 6.3: Experimental setup - 3” Split Hopkinson Pressure Bar in the high
strain rate lab at UCSD’s CEAM

bars and the sample. The time-histories of the initial, reflected and transmitted

waves are measured by strain gages surface-mounted at the mid-length of each bar.

Typical raw data from the gages on the incident and transmission bars is plotted

in figure (6.4). This data can be used to calculate the true stress and strain expe-

rienced by the sample. The corresponding equations, which are derived from one

dimensional wave propagation solution, are written as (see Nemat-Nasser et. al.

(1991) and Gray (1999)):

dεs(t)

dt
= −2c0

Ls

εR(t) (6.1)

εs(t) =

∫ t

0

ε̇s(t)dt (6.2)

σs(t) = E0
A0

As

εT (t) (6.3)

where, εs and σs are the true strain and stress in the sample, respectively; εR and

εT are the strains on the bars corresponding to the reflected and transmitted waves,
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Figure 6.4: Typical raw data from the gages on the incident and transmission
bars

respectively; Ls, As, A0, E0 and c0 are the length of the sample, cross-sectional

area of the sample, cross-sectional area of the bars, modulus of elasticity of the bars

and the longitudinal wave velocity in the bars, respectively. We refer to equations

(6.1-6.3) as the Hopkinson bar equations.

A few remarks on the accuracy and validity of the Hopkinson bar equations,

which are derived under certain assumptions:

• The striker, incident and transmission bars must remain elastic. In these ex-

periments, the bars are made of a high strength aluminum alloy. The highest

stresses occurring in the concrete samples are far from exceeding the elastic

limit of this aluminum.

• These equations are derived assuming that the sample deforms uniformly;

i.e. the forces acting on the two sides of the sample are assumed to be equal

at all times.

• The strain-histories measured at the gages are not identical to strains at

the interfaces of the sample and the bars, due to the dispersion of waves in
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elastic cylindrical bars.

• The friction at the interfaces of the sample and the bars is neglected.

A popular approximation for the time needed to reach the state of equilib-

rium is the time required for π-reverberations of the wave within the sample [90].

Therefore, thin samples are usually more appropriate for a SHPB experiment. For

brittle materials, a common approach is to employ a ramp-shape pulse, which can

be obtained by placing a thin circular piece of a ductile material, for instance

copper, between the striker and the incident bar. Consequently, the brittle sample

would have enough time to reach the equilibrium state before fracture. The brittle

material most likely fails (fractures) during the rise time of the pulse. The strain

rate also increases during the course of deformation, and does not remain constant.

Therefore, unlike ductile materials, it is very unlikely to achieve a constant strain

rate during the deformation for brittle materials. In other words, assigning a strain

rate to the results from a Hopkinson bar experiment on a brittle material is not

acceptable. Further explanation on the strain rate issue is presented in section

(6.1.2).

The exact analytical solution of the propagation of longitudinal waves in

cylindrical elastic bars (Pochhammer (1876), Chree (1889), and Bancroft [91])

indicates that waves with different frequencies travel with different velocities. More

specifically, waves with higher frequencies tend to propagate slower in the bar. This

gives rise to a pulse shape-change which we refer to as dispersion. When a pulse

containing waves with different frequencies travels along a bar, it preserves all the

waves; however, the waves are phase-shifted relative to one another. These phase

shifts can be calculated for different frequencies, and a dispersion correction routine

can be developed to evaluate the shape of the pulse at any given location on the



108

0 0.5 1 1.5 2 2.5

x 10
−4

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Time(s)

Y
−

S
tr

ai
n 

in
 in

ci
de

nt
 b

ar
 (

m
m

/m
m

)

 

 
High rate (Experiment 9D )
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Low rate (Experiment 10A )

Figure 6.5: Compression waves generated by strikers with various sizes and impact
velocities to produce different strain-rates; recorded from the gages on the incident
bar.

bar. For out experiments, all the measured waves at the gages were dispersion

corrected to obtain the exact strain history as arrived at the interfaces. A detailed

explanation of this process in presented in section (6.4).

6.1.2 Input pulses and strain rates

The strain-history at the mid-length of the incident and transmission bars

are measured by the gages. As discussed before, achieving constant deformation

rates in brittle samples seems unlikely. Therefore, instead of assigning a value of

strain rate to each experiment, we differentiate them as high, medium and low

rates. To obtain different deformation rates, the length and the impact velocity

of the striker were varied. Figure (6.5) displays the three input pressure pulses

generated for our compression tests.

The reflected pulses from the sample, and measured at the gages on the
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Figure 6.6: Time-histories of strain rate for three experiments in compression
tests. Note that the strain rate is not constant during the course of deformation.

incident pulse, are dispersion corrected, and equation (6.1) is employed to calculate

the strain rate history of the sample. In figure (6.6), the time-histories of the strain

rate for three experiments are illustrated. Note that the strain rate is not constant

during the course of deformation; however, to be able to quantitatively analyze

the response of concrete to high rate loadings, we define a metric as an indication

of deformation rate for each experiment. This metric is defined as the strain rate

at the time of failure. Figure (6.7) demonstrates how the metric is assigned to the

experiments: first, the time at which the maximum stress (from equation (6.3))

occurs in the sample is determined. Then, the strain rate at that time is measured

from equation (6.1), and is assigned to the corresponding experiment.
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Figure 6.7: The strain rate at the time of failure is assigned to each experiment
as a metric of deformation rate in the sample.

6.1.3 Experimental results

The compression samples were fragmented into pieces after the experiments

(figure 6.8a). High-speed photography reveals that the initial cracks propagate

along the planes parallel to the wave propagation in compression samples.

Equations (6.1)-(6.3) are employed to calculate the strain- and stress-histories

for all the samples. In figure (6.9), the stress-strain relationships for all the com-

pression samples are plotted. The highest stresses are designated by red circles.

The stress is normalized by the quasi-static failure stress of the same concrete.

Note that three separate groups of data, each corresponding to a rate level, can be

identified.

In figure (6.10), the normalized failure stresses of the tested samples are

plotted versus the strain rates at the times of fracture. These results suggest that

a correlation exists between the rate of loading and the maximum stress in the
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(a) (b)

Figure 6.8: (a) A compression sample after the experiment (b) A tension sample
after the experiment
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Figure 6.9: Compression test results: normalized stress vs. strain
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Figure 6.10: Concrete strengthening with rate in compression: Normalized stress
vs. strain rate

sample before the fracture.

The slopes of the stress-strain curves in figure (6.9) are calculated to inves-

tigate the effect of the rate of loading on the elastic modulus of this concrete. In

figure (6.11), the elastic moduli for all the compression tests are plotted versus the

strain rates at the times of failure; no definitive correlation can be observed.

6.2 Tension Tests

In this section, the results of the tension experiments on concrete subjected

to high strain rate loadings are presented. A modified Split Hopkinson Pressure

Bar (SHPB) setup has been employed for the experiments. A tension sample is

illustrated in figure (6.1b), which is 75 mm in diameter and 89 mm in length. The

sample is glued between two bars, and pulled to fracture. A 6.35 mm wide notch

with diameter 57.2 mm is designed to force the fracture to occur in the middle,
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Figure 6.11: Elastic modulus in compression

Figure 6.12: Split Hopkinson Pressure Bar (SHPB) setup for tension tests

i.e. at the cross-section of the notch rather than the glue line. The presence of

the notch precludes application of equation (6.1) in accurately measuring the rate

of strain in the samples. Nevertheless, this equation can be used to approximate

the rate of deformation of the sample. On the other hand, equation (6.3) remains

applicable for measuring the stress in the samples.
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Figure 6.13: The tension Hopkinson bar setup at the high strain rate lab at
UCSD’s CEAM

6.2.1 Tension experimental setup

A novel method was proposed and developed by Mr. Jon Isaacs to carry out

the tension experiments on concrete. Figure (6.12) illustrates the schematic view of

the tension experimental setup. A tension sample (figure 6.1b) is glued between the

incident and transmission bars using a special epoxy glue. The sample is slightly

compressed for one-and-a-half hour, until the glue is fully cured. A striker tube is

mounted on the incident bar. The tube is bolted to two aluminum bars, which are

attached to a cross-head on their other end. The cross-head is placed in front of

the barrel of a gas gun. A piston is employed to push the cross-head away from the

barrel, causing the aluminum bars to accelerate the striker tube towards a flange,

which is bolted to the incident bar. The impact of the striker tube with the flange

generates a tension pulse in the incident bar. A braking system is installed to stop

the incident bar after the impact. The tension experimental setup is displayed in
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Figure 6.14: Tension waves generated by strikers having various sizes and impact
velocities to produce different strain-rates; Recorded from the gages on the incident
bar.

figure (6.13).

Upon the arrival of the tension pulse to the sample, part of the pulse is

reflected, and the remaining is transmitted through the sample to the output bar.

Note that in these tests, unlike the compression cases, two stages of impedance

mismatch occur; one, between the sample and the bars (because of the change in

the speed of sound and the density), and, at the notch (because of the change in

the cross-sectional area). This gives rise to complications in using the Hopkinson

bar equations, which were discussed before.

6.2.2 Strain rate and stress rate

As discussed before, the use of the Hopkinson bar equations to calculate

the rate of strain in the sample does not yield accurate results; however, they can

be used to approximate the strain rate for comparative purposes. In this section,
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Figure 6.15: Strain-rates under which the samples were loaded in tension tests.

for the sake of comprehensiveness, we present some results containing strain rates.

Figure (6.14) contains the three tension pulses generated in the incident

bar. The length and impact velocity of the striker tube were varied to create three

different deformation rate levels in the samples. In figure (6.15), the time histories

of the approximate strain rates are plotted.

The stress measurement in tension tests is more accurate; therefore, stress

rate can be calculated from the linear part of the stress time history as a more

reliable metric for comparing different cases.

6.2.3 Experimental results

In this section, the experimental results of the tension tests are presented.

In figure (6.16), the stress-strain curves for all the tension tests are plotted. Un-

like the compression case, the curves can not be distinguished into three separate

groups. Little correlation can be observed between the maximum stresses and the
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Figure 6.16: Tension test results
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Figure 6.17: Concrete strengthening with rate in tension
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Figure 6.18: Stress versus time in tension

approximate strain rates at the times of failure (figure 6.17).

In figure (6.18), the time histories of stress experienced by tension samples

are presented. The linear part of each curve is used to measure the stress rate for

each case. Subsequently, the stress at the time of failure is plotted versus the stress

rate. Figure (6.19) demonstrates that the strength of the concrete is increased

under higher stress rates.

6.3 Finite Element Model

A 3-dimensional finite element model is developed to numerically simulate

the experiments in both compression and tension. The objectives of this numerical

study is summarized as below:

• Exploring the effect of sample size on the validity and accuracy of the the

Hopkinson bar equations, which are employed to obtain the stress-strain
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Figure 6.19: Concrete strengthening with stress rate in tension

Figure 6.20: Finite element mesh for compression; for illustration purposes, the
model is split in half. The model only contains 8-node brick elements.
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Figure 6.21: The numerical results from the finite element simulations: The trape-
zoidal pressure pulse (blue solid line) is applied to point A. Red line with diamond
markers corresponds to stress history at point B, where the strain gage on the
incident bar is located. Black line with plus markers corresponds to stress history
of point C, where the strain gage on the transmission bar is located. The colored
bar at the bottom, illustrates a snap shot of the y-strain in the bar at t = 399.7µs.
The location of the pulse on the bar at that instant can be identified as the red
region. Note that the sample is located at point D.

curves from the experimental data.

• Investigating the effect of friction at the sample-bar interfaces on the com-

pression tests and the role of lubricating the interfaces.

• Comparing the experimental and numerical results to improve the current

concrete material model.

The model consists of three parts: incident bar, sample and transmission

bar. All the elements are 8-node brick elements (figure (6.20)). The finite element
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meshes are refined to achieve a mesh-size independent solution. Contact surfaces

are defined between the bars and the sample. Instead of using a striker bar, the

input pulse is manually applied as a pressure pulse on the incident pulse. Elastic

material models are used for Aluminum bars. For concrete, the material model

developed by Karagozian and Case (K&C) is employed. This material model in-

corporates failure and strain rate effects into the finite element calculations [47].

6.3.1 Sample size effect

Here, the experimental process is duplicated by the finite element model.

Material properties of a generic concrete is inputted to the (K&C) concrete mate-

rial model. A trapezoidal pressure pulse is applied to the incident bar. The strain

histories of the elements located at the position of the gages are numerically cal-

culated. This data is used to calculate the stress and strain histories by employing

the Hopkinson bar equations, mimicking the post-processing of the experimental

data. This result is then compared with the actual stress and stain histories in-

side the sample, which is available from the finite element simulations. In these

simulations, the friction between the sample and the bars is neglected.

In figure (6.21), the results from the finite element simulations are presented.

The trapezoidal pressure pulse (blue solid line) is applied to point A. The stress

history is measured at points B and C, where the strain gages are located. Red line

with diamond markers corresponds to the strain gage on the incident pulse. Note

that the shape of the pulse changes traveling from point A to B. The reflected

and transmitted pulses, which are used to find the stress and strain histories in

the sample from the Hopkinson bar equations, are also shown.

In figure (6.22), two stress-strain curves are plotted, which are derived in

two different ways: (1) red line with ’×’ markers, from an element at the center
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Figure 6.22: The strain-strain curves obtained from the experimental data

of the sample; (2) black line with ’+’ markers, from the Hopkinson bar equations,

using the strain histories of the elements at the locations of the strain gages. The

numerical results suggest that the sample size effect is not a major issue if the

friction is minimal.

6.3.2 Friction effect

From finite element results, it is observed that in the absence of friction,

the strain history is fairly equal in the elements of a given cross-section, both in

the sample and in the bars. However, when a high friction exists at the interfaces

between the sample and the bars, the elements of a given cross-section in the

sample experience different stress and strain histories.

In figure (6.23), a section of the sample is shown, and 9 elements are chosen

form different locations in the sample. In figure (6.24), the solid lines present the

stress-strain curves for the elements shown in figure (6.23). The dotted line is the
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Figure 6.23: 9 elements in the compression sample are chosen. In figure (6.24),
the stress-strain curves for these elements are plotted.

strain-stress curve obtained by applying the Hopkinson bar equations to the strain

histories of the elements located at the position of gages. Significant differences

between the strain-stress curves of different elements are observed. High friction

between the interfaces leads to unreliable results; therefore, proper lubrication is

necessary for compression tests.

6.4 Dispersion Correction in SHPB and Experi-

mental Verification

In this section1, the dispersion phenomenon in cylindrical solid bars is re-

viewed, and the process of dispersion correction is discussed in detail. Here, we

are aiming for the analytical solution of the propagation of longitudinal waves in

elastic cylindrical bars. We start with the conservation of linear momentum in a

1The notations and most of the equations in this section is adopted from “Stress Waves in
Solids” by H. Kolsky (1963).
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Figure 6.24: The effect of sample-bar friction: the strain-strain curves for the
elements shown in figure (6.23) are plotted (solid lines). The dotted line is the
stress-strain curve obtained from Hopkinson bar equations using the data from
the elements at the strain gages positions. These plots suggest a non-uniform state
of deformation throughout the sample when the friction is significant at the bar-
sample interface.
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continuum:

σij,j + ρfi = ρv̇i (6.4)

For an elastic medium, equation (6.4) reduces to:

σij = Cijklεkl (6.5)

where Cijkl is one component of the symmetric fourth order elasticity tensor, C.

For isotropic elastic solids, equation (6.5) reduces to:

σij = λεkkδij + 2µεij (6.6)

where λ and µ are Lamé constants, and δij is the Kronecker delta. In the absence

of body forces and thermal effects and for infinitesimal strains εij = (ui,j + uj,i)/2,

equation (6.4) becomes:

µui,ji + (µ+ λ)ui,ij = ρü (6.7)

or µ∇2u + (λ+ µ)∇(∇ · u) = ρü (6.8)

By applying divergence (∇·) and curl (∇×) operations on both sides of

the equation (6.8) two wave equations can be obtained,

∇2(∇ · u) =
1

c21

∂2(∇ · u)

∂t2
(6.9)

∇2(∇× u) =
1

c22

∂2(∇× u)

∂t2
(6.10)

where,

c21 =
λ+ 2µ

ρ
, c22 =

µ

ρ
(6.11)

c1 and c2 are the speeds of dilatational or equivoluminal and shear or

irrotational waves, respectively. The problem of wave propagation in an infinite

elastic bar was first investigated by Pochhammer (1876) and independently by
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Chree (1989). The problem is formulated in cylindrical coordinates (r, θ, z). In the

case of Hopkinson bar tests, the problem becomes axi-symmetric, for which ur

and uz are not functions of θ, and uθ vanishes. We consider the propagation of

harmonic waves for which the displacements, ur and uz are harmonic functions of

z and time:

ur = Uei(pt+γz) and uz = Zei(pt+γz) (6.12)

where U and Z are functions of r. As a result, p/2π is the frequency of waves with

wavelength of 2π/γ. The wave velocity is then, c = p/γ. If the wave equations (6.9)

and (6.10) are written in cylindrical coordinates and the axi-symmetric assumption

is applied, we obtain,

∂2∆

∂r2
+

1

r

∂∆

∂r
+ h2∆ = 0 (6.13)

∂2ωθ

∂r2
+

1

r

∂ωθ

∂r
− ωθ

r2
+ k2ωθ = 0 (6.14)

where, ∆ is the dilatation in cylindrical coordinates, and ωθ is the rotation about

θ-axis,

∆ =
1

r

∂(rur)

∂r
+

1

r

∂uθ

∂θ
+
∂uz

∂z
and 2ωθ =

∂ur

∂z
− ∂uz

∂r
(6.15)

and h and k are given by:

h2 = ρp2/(λ+ 2µ)− γ2 and k2 = ρp2/µ− γ2 (6.16)

Substituting equations (6.12) into (6.13) and (6.14) yields two second order

partial differential equations for U and Z, which fall into Bessel problem category

and can be easily solved. The emerging constants can be found by substituting U

and Z into the boundary condition equations, which in this case are:
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σrr = λ∆ + 2µ
ur

r
= 0 at r = a (6.17)

σrθ = µ

[
∂ur

∂z
+
∂uz

∂r

]
= 0 at r = a (6.18)

where a is the radius of the bar. Applying these boundary conditions to the solution

results in the following algebraic equations:

A

[
2µ
∂2J0(ha)

∂r2
− λ

λ+ 2µ
p2ρJ0(ha)

]
+ 2Bµγ

∂J1(ka)

∂r
= 0 (6.19)

2Aγ
∂J0(ha)

∂r
+B

(
2γ2 − p2ρ

µ

)
J1(ka) = 0 (6.20)

where A and B are constants. The non-trivial solution of these equations is an

algebraic equation, which involves the frequency and wavelength of the harmonic

wave, the elastic constants λ and µ, the density ρ and the radius of the bar a.

This equation is known as the frequency equation. This result indicates that in an

infinite elastic bar, harmonic waves with different frequencies travel with different

velocities.

Bancroft [91] has given the solution of the frequency problem as a function of

wavelength and wave speed for different Poisson’s ratios. Here, we numerically solve

the frequency equation and find γ with respect to p. Having the radius and material

properties of the bar, the frequency equation is solved to obtain the relationship

between the wavelength and frequency. Figure (6.25) compares the Bancroft’s so-

lution to our numerical results for the Poisson’s ratio of 0.3 and two different bar

diameters. This result is significant as it explains the common phenomenon of dis-

persion is solid bars. This phenomenon can be seen figure (6.26). In this figure the

time-history of the strain is given at four different points on the bar. Notice that

only one pulse is traveling in the bar, but for illustration purposes it is plotted four
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Figure 6.25: The solution of frequency equation for Poisson’s ratio 0.3 and two
different bar diameters

times on the same plot and at different locations. Nevertheless, the time axis is

correct. Note that the shape of the pressure pulse changes as it propagates along

the bar. We consider the initial pulse as an infinite sum of harmonic waves. Having

different velocities, these waves arrive at a different point on the bar at different

times. Consequently, the terms of the corresponding infinite sum at that point are

phase shifted. These shifts can be calculated from the frequency equation for any

given frequency. Therefore, by having the time-history of a pressure pulse at one

point in a solid bar, the shape of the wave can be obtained at any other point by

this shifting process, which is known as dispersion correction.

We developed a dispersion correction routine in Matlab and verified it by

comparing to experimental results. The process is straightforward. For a given

pulse, v, and a distance x0:

• The Fast Fourier Transform (FFT) of the given pulse is calculated, vf =

fft(v).
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Figure 6.26: Dispersion of waves in an elastic solid bar with the diameter of 3-inch
and Poisson’s ratio of 0.34

• For each frequency, the phase is properly modified. Assume that the jth

element of the vector in Fourier space is

vf
j = aj + ibj =⇒ φj = tan−1(bj/aj) (6.21)

The frequency associated with the jth component of vf is

p =
2π

Tspan

(j − 1)

where Tspan is the duration of the pulse. Having the frequency, we can solve

the frequency equation and find the corresponding wavelength and γ. The

new phase (angle) at a distance x0 can be evaluated,

φnew
j = φj + γx0

and finally the real and imaginary parts of v are corrected such that the

magnitude remains unchanged:

vj
f =

√
a2 + b2 eiφnew

j (6.22)
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Figure 6.27: Dispersion correction verification - experimental vs. analytical

• An Inverse Fast Fourier Transform (IFFT) is performed on the updated vf

to obtain the pulse shape at x0.

In figure (6.27), a pressure pulse from a Hopkinson bar experiment and the

dispersion corrected version of that pulse are presented. The pulse is the strain

history at the mid-length of a free-ended 96-inch aluminum bar (the incident bar

of a Hopkinson bar setup). After the striker impacts the incident bar, it generates

a compression wave which travels through the bar and passes the strain gage (first

pulse) and is reflected as tension from the free end of the bar making the second

pulse. This reflection process continues numerous times before the pulse is damped.

The distance traveled by the pulse between two subsequent passings from strain

gages is 96-inch. In figure (6.27), the red curve with cross markers is the dispersion

corrected version of the input pulse. There is a remarkable match between the

experimental and analytical results. Also, this plot verifies the accuracy of our

dispersion correction routine.
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6.5 Conclusions

A set of high strain rate compression and tension tests on concrete samples

were performed, and stress-strain curves were generated from the experimental

results. The accuracy and validity of the generated strain-stress curves were ex-

plored by a full-scale finite element model. The sample size and friction effects

were investigated. A dispersion correction routine was developed and validated by

comparing to experimental results.
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Appendix A

The Procedure of

Steel-Polyurea-Steel Experiments

In this appendix, we explain in detail, the methods and instructions to per-

form blast experiments on steel-polyurea-steel sandwich structures, using a 3-inch

Hopkinson Bar in the high-strain rate lab at CEAM/UCSD. These experiments in-

volve a high pressure gas gun and a high-velocity striker, which can be potentially

hazardous if not exercised with extreme caution. The major concern in this process

is safety; all the guidelines must be followed very closely, carefully and slowly.

A.1 Preparation

To perform these experiments the following components must be prepared

and functional. The operator(s) must put on proper footwear covering the entire

foot. Sandals and flip-flops are not acceptable.

• Safety goggles and ear muffs.

• Lab book: Should contain enough information about the experiment so that

132
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Figure A.1: Hopkinson Bar Setup

the process may be repeated by others in the future. It should indicate where

the data is stored, and should have a qualitative description of experimental

outcome. The list of the items written in the lab book for these experiments

is presented at the end of section A.3.

• Hopkinson Bar: These experiments are performed using a 3-inch Split-Hopkinson

Pressure Bar (SHPB). SHPB consists of the following components which are

shown in figure (A.1):

1. Incident bar

2. Transmission bar

3. Gas gun

4. Barrel

5. Four strain-gages on the bars

6. Two magnetic coils to measure the velocity of the striker
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Figure A.2: Sandwich sample geometry

• Digitizer: Output signals from strain gages and magnetic coils are measured

and digitized by a Nicolet digitizer. The digitizer is triggered by the signal

arriving from the first magnetic coil.

• Nitrogen tank: To pressurize the gas gun up to 200psi.

• Sample: The sample may be a monolithic circular steel plate, a steel-polymer

bi-layer or any combination of polymer-steel composite structure. Figure

(A.2) illustrates a steel-polyurea-steel sandwich sample. It consists of two

monolithic steel plates which are manufactured in a machine shop, consist-

ing of a layer of polyurea cast between the plates. Note that at least two

weeks are required for the polyurea to be completely cured.

• Confinement, ring and polyurethane piece: figure (A.1) illustrates the com-

ponents which are used to place the sample in the impact zone. We define the

impact zone as region in which the high-speed striker exits the Hopkinson

Bar and collides with the polyurethane piece.

• A torque-meter is used to set the brakes in a repeatable and reliable manner.
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A.2 Brief Description of the Experiment

The sample is sandwiched between the ring and the polyurethane piece

inside the confinement. The confinement is placed on the incident bar and is po-

sitioned 1
2

inch from the end of the barrel. The striker is slid inside the barrel to

its position. Gas gun is pressurized to the desired pressure. The brakes are set,

and the digitizer is made ready to record the data. Subsequently, the gas gun trig-

ger is set off to accelerate the striker towards the sample through the barrel. The

signal arriving from the magnetic coils and the strain gages on the incident bar

are digitized and stored. Note that the transmission bar is not involved in these

experiments.

A.3 Experiment Procedure

In this section, the experimental process is explained in detail. It is impor-

tant to follow steps below very closely:

1. Ensure nothing is inside the barrel. This process should be done by two

people. First, unscrew the barrel cap (figure A.3), remove it and place it

aside. One person should look inside the barrel while the second person moves

something visible at the other end of the barrel. Person one must ensure they

can clearly observe the moving object at the other end of the barrel.

2. Place the sample in the confinement: Find the front side of the confinement

which is marked by a red marker. First, slide the ring inside the confinement.

Then, place the sample on the ring and push the polyurethane piece into the

confinement, pressing onto the sample with a quarter of an inch clearance

from the edge of the confinement. Figure (A.4) illustrates the exploded view



136

Figure A.3: Gas-gun components

of the components inside the confinement. Some samples might not slide into

the confinement easily due to manufacturing issues. If that is the case, try to

assemble the system from the back of the confinement which has a slightly

larger diameter than the front side.

3. Place the confinement on the incident bar: Find the back side of the confine-

ment and slide the incident bar inside the confinement until it is positioned

behind the ring. A black marker can be found on the incident bar which

indicates how far the incident bar should penetrate the confinement. When

the confinement edge reaches the black marker, the sample is guaranteed to

have been placed properly.

4. Adjust the incident bar position: Make use of a 1
2

inch thick spacer. The

space between the end of barrel and the confinement is determined by the

spacer. A black arrow is drawn on the incident bar which should point to the
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Figure A.4: Assembly of the components inside the confinement

edge of the front incident bar stanchion (or mount), when the incident bar

is properly positioned.

5. Set the brakes to 25 lbf-in: Using the torque-meter shown in figure (A.5),

fasten the bolts on the incident bar stanchion at the end of the bar to 25

lbf-in. Notice that the incident bar lies on two stanchions. The bolts form

the stanchion which is furthest to the sample assembly should be fastened.

6. Place the metal cover on the impact area: The cover should be lifted by two

people and placed on top of the area at which the impact takes place.

7. Strain gages are incorporated into a Wheatstone bridge which uses a constant

30.0 voltage on its ends. Use a voltmeter to check the output voltage of the

power supplies used for Wheatstone Bridges on each bar.

8. Set the digitizer: The digitizer has to be pre-set by a competent operator

for channel settings, signal levels, trigger options, etc. Continue with the

following only when the digitizer is ready to function correctly. In the Nicolet
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Figure A.5: Brake system and torque-meter

Windows, select the ”one shot” option. To ensure that the system is ready,

do a manual trigger by pressing Ctrl-T on the keyboard. By doing so, the

”one shot” check-mark should disappear and the receiving signal should be

flat without much noise and a reasonable voltage level, around zero. After

this check, select the ”one shot” option again. Now, green and yellow lights

on the digitizer should be on. They should remain up until the impact.

9. Prepare the gas gun: Slide the striker inside the barrel and screw the barrel

cap in position. Using the copper bar, push the striker to the second black

mark on the copper bar. Close all the valves on the gas-gun and attach the

nitrogen tank hose to the gas-gun as shown in figure (A.3).

10. Wear safety goggles and ear muffs.

11. Pressurize the gas tank: Double check the valves and ensure they are all

closed. Open the nitrogen tank valve and pressurize the gas tank to desired

pressure. You can adjust the pressure by using the valve on the pressure

gauge.
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12. IMPORTANT CHECK-LIST: Double check the following items before ad-

vancing to the next step:

• Safety goggles and ear muffs.

• Are brakes set?

• Is the impact zone covered?

• Are the green and yellow lights on the digitizer on?

• Is the pressure level correct?

• Is the striker positioned correctly by the copper bar?

13. Set off the trigger: At this point, everybody in the Lab must step away from

the Hopkinson Bar and only the main operator remains next to the gas-gun.

After ensuring that everybody in the lab has their safety goggles and ear

muffs on, the main operator iterates the following loudly: ”Firing... three...

two... one!” and opens the green valve which acts as the trigger.

14. Right after the impact unscrew the gas-gun cap and remove it.

15. Save the data.

16. Release the brake by unscrewing the bolts of the incident bar stanchion.

17. Remove the cover from the impact zone and move the incident bar back-

wards in order to slide the confinement off. Remove the sample, ring and

polyurethane piece from the inside of the confinement.

The experimental process is completed at this point. Note that all the major

values and observations must be written carefully in the lab book. We write the

following in the lab book for these experiments:
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• Date

• Sample specifications (dimensions, weight, etc.)

• Striker weight

• Torque applied for the brake

• The folder in which the data is stored

• Time at which the coming signal from the first magnetic coil reaches its peak

• Time at which the coming signal from the second magnetic coil reaches its

peak

• Final shape of the sample in terms of fracture
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