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NONPARAMETRIC VECTOR AUTOREGRESSIONS:
SPECIFICATION, ESTIMATION, AND INFERENCE

IVAN JELIAZKOV∗

University of California, Irvine

July, 2013

Abstract

For over three decades, vector autoregressions have played a central role in empirical macroeconomics.
These models are general, can capture sophisticated dynamic behavior, and can be extended to include
features such as structural instability, time-varying parameters, dynamic factors, threshold-crossing be-
havior, and discrete outcomes. Building upon growing evidence that the assumption of linearity may
be undesirable in modeling certain macroeconomic relationships, this paper seeks to add to recent ad-
vances in VAR modeling by proposing a nonparametric dynamic model for multivariate time series. In
this model, the problems of modeling and estimation are approached from a hierarchical Bayesian per-
spective. The article considers the issues of identification, estimation, and model comparison, enabling
nonparametric VAR models to be fit efficiently by Markov chain Monte Carlo algorithms and compared
to parametric and semiparametric alternatives by marginal likelihoods and Bayes factors. Among other
benefits, the methodology allows for a more careful study of structural instability while guarding against
the possibility of unaccounted nonlinearity in otherwise stable economic relationships. Extensions of the
proposed nonparametric model to settings with heteroskedasticity and other important modeling features
are also considered. The techniques are employed to study the post-war US economy, confirming the
presence of distinct volatility regimes and supporting the contention that certain nonlinear relationships
in the data can remain undetected by standard models.

Keywords: Additive model; Vector autoregressive (VAR) model; Bayesian model comparison; Markov
chain Monte Carlo.
JEL Codes: C11, C14, C15, C32, C52, E31, E32, E37, E43, E47.

1 Introduction and Motivation

Following the seminal work of Sims (1980), the vector autoregressive (VAR) model has played a central

role in empirical macroeconomics. The basic model postulates that a q-dimensional vector of time-series
∗Department of Economics, University of California, Irvine, 3151 Social Science Plaza, Irvine, CA 92697-5100. E-mail:

ivan@uci.edu. I am grateful to Tom Fomby, Lutz Killian, Anthony Murphy, two anonymous referees, and my colleagues Dale
Poirier, David Brownstone, Fabio Milani, and especially Angela Vossmeyer, for their careful comments on earlier drafts.
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variables yt = (y1t, . . . , yqt)
′ depends on its past realizations through the specification

yt = c+

p∑
j=1

Bjyt−j + εt, t = 1, . . . , T, (1)

where c is a q-vector of intercepts, {Bj}pj=1 are q× q matrices of parameters, {yt−j}
p
j=1 are lags of yt, and

εt is an error term with mean zero and q× q covariance matrix Ω. VAR models are general and can capture

sophisticated dynamic behavior, even when the lag length p is relatively small. Moreover, VAR models are

very versatile – in the past few decades they have been adapted to incorporate structural instability, regime

switching, time-varying parameters, dynamic factors, threshold-crossing behavior, and discrete data, among

others. Consequently, VAR methodology has been an important instrument in policy analysis, forecasting,

and academic discourse (for a recent review, see Koop and Korobilis, 2009).

While many extensions of the model in (1) are possible, it has been common practice to maintain a para-

metric, typically linear, functional form for the conditional mean of yt given its lags. Important extensions of

the basic setup are afforded by models in which the parameters are allowed to change over time as in regime

switching, changepoint, time-varying parameter, and threshold models.1 For instance, following Hamilton

(1989), much work has been done on estimating models subject to regime shifts in the mean, variance, or

dynamics (e.g., Hansen, 1992; Chib, 1996; Chauvet, 1998; Kim and Nelson, 1999; Kim et al., 2005; Sims

and Zha, 2006). Threshold regressions have been considered in Beaudry and Koop (1993), Potter (1995),

and Pesaran and Potter (1997), while time-varying parameter applications have been examined in Canova

(1993), Stock and Watson (1996), Cogley and Sargent (2001), Primiceri (2005), and Chan and Jeliazkov

(2009), among others. Much more rare in time series analysis has been the application of nonparametric

methods in the modeling and estimation of the conditional mean of a time series process, and this represents

the basic econometric problem motivating this work.

The discussion in this paper is primarily concerned with methods for allowing considerable flexibility

in estimating the dependence on lags in VAR models, while maintaining simplicity, computational tractabil-

ity, and accommodating other modeling features that may be present in the model. The VAR paradigm
1In these cases, the modeling involves an additional state variable that can be latent or observed; conditionally on the state, the

models are linear, whereas marginalization over the state yields piecewise linear regressions or mixtures of linear regressions.
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came to prominence as a methodological framework involving only minimal restrictions. Consequently,

continuing in this tradition, this paper discusses ways of estimating multivariate dynamic systems without

assuming a priori knowledge of the functional form. Even though the nonparametric literature is vast and

diverse, applications to time series have been limited despite their potential appeal and importance. In an

application to exchange rates, Härdle et al. (1998) use local polynomial methods based on kernel-weighted

least squares, to estimate a nonparametric bivariate dynamic system in which both the conditional mean and

variance are unknown functions of the past. The methodology in that paper relates to single-equation tech-

niques and exchange rate applications considered in Härdle and Tsybakov (1997) and Yang et al. (1999).

Univariate nonparametric regressions have been used in Dahl and Gonzalez-Rivera (2003a) to study the

evolution of U.S. GNP growth using the method of Hamilton (2001), who employed the techniques to ad-

dress nonlinearity in the inflation-unemployment trade-off in an example involving the Phillips Curve. Dahl

and Gonzalez-Rivera (2003b) apply the methodology to study the evolution of industrial production for a

subsample of OECD countries. Their results support the contention that much nonlinearity is neglected if

standard linear models are applied in these settings.

These and other papers have provided a growing body of evidence that allowing for various kinds of

nonlinearity in empirical macroeconomics can be very valuable in uncovering important features of time-

series relationships. Building upon these advances, this paper seeks to add to the literature by examining

a nonparametric dynamic model for multivariate time series. Specifically, this paper considers a dynamic

system of q regression equations for data {yt}
T
t=1, where yt = (y1t, . . . , yqt)

′, in which the ith equation

(i = 1, . . . , q) is modeled through the additive form (Hastie and Tibshirani, 1990)

yit =

q∑
j=1

p∑
k=1

gijk(yj,t−k) + εit, t = 1, . . . , T, (2)

where εt = (ε1t, . . . , εqt)
′ ∼ N(0,Ω) and the unknown functions {gijk(yj,t−k)} will be modeled and

estimated nonparametrically. For this reason, in the remainder of this paper, the specification in (2) will be

referred to as a nonparametric VAR (or NPVAR) model. The model in (2) provides a natural extension of

the traditional linear VAR model in (1) – relative to its parametric counterpart, the NPVAR model maintains
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additivity but does not require that the estimated regression relationships lie in a particular class of functions.

Functional flexibility is desirable because nonlinearity is common in both economic theory and practice.

Moreover, nonparametric additive modeling has desirable practical and theoretical properties and can serve

as a useful exploratory tool that is easily inserted in more complex models. Even though the estimation

of unknown functions is a complex high-dimensional problem, the additive framework is well suited for

dealing with the “curse of dimensionality” because the argument of each function is a single variable.

The specification of the NPVAR model will be approached from a hierarchical Bayesian perspective

with special emphasis on the issues of identification, estimation, and model comparison, enabling NPVAR

models to be fit efficiently by Markov chain Monte Carlo (MCMC) algorithms and compared to nested

and non-nested parametric and semiparametric alternatives by marginal likelihoods and Bayes factors. The

methodology is useful in its own right as an exploratory and modeling tool, but is also appealing because

it enables a more careful study of other structural features while guarding against the possibility of unac-

counted nonlinearity. Doing so is important for theoretical and practical reasons, and because the conse-

quences of ignored nonlinearity can be severe.

The types of misspecification that arise from assuming an inappropriate functional form can be illus-

trated by considering two simple motivating examples. Imagine that data are generated from the model

yt = g(xt) + εt, εt ∼ N(0, σ2), and g(·) is the nonlinear function in panel (a) of Figure 1. If estimation

is by linear regression (the resulting regression line is also shown in the panel (a) of the Figure), it is easy

to see that the regression residuals will be heteroskedastic, owing to the neglected nonlinearity in g(·). If

the covariate xt is a lag of yt, the misspecification can also lead to erroneous findings of serial correlation

in the errors. Furthermore, even though the original errors used to generate the data were Gaussian, in a

linear regression they will appear non-Gaussian (see panel (b) of Figure 1). Due to the omitted nonlinearity,

the error distribution will be a location mixture of normals, and consequently one would conclude that the

Gaussian assumption is inadequate when the real culprit is neglected nonlinearity. Note that these problems

will not be resolved by using estimators that are robust to distributional misspecification.

For our second example, consider panel (c) of Figure 1. In this case, imagine that the researcher is
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Figure 1: Ignored nonlinearity can lead to erroneous conclusions about the presence of heteroskedasticity or
autocorrelation, the adequacy of the distributional assumptions, the structural stability of the regression, or
lead to conclusions that more profligate models are required.
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aware that the data generating process involves a nonlinear mean, but chooses to restrict attention to the

class of piecewise linear polynomials. Although heteroskedasticity, autocorrelation, and non-Gaussianity

may not be significant (or even discernable) problems if a bilinear model is fit to the particular data in panel

(c) of the Figure, one can erroneously conclude that there is evidence of structural instability. For instance,

regime switching, changepoint, threshold, and time-varying parameter models may appreciably improve the

fit relative to a linear model, although one should bear in mind that these would be spurious findings of

instability or structural breaks since the underlying data generating process is a stable, although nonlinear,

function of the covariates that is not properly accommodated in the regressions. Such spurious instability,

unfortunately, is not the only pitfall that can be induced by this type of misspecification. The poor fit of low

order linear dynamic systems may also lead researchers to explore more profligate models involving more

lags. This would lead to loss of parsimony as additional lag components are incorporated but simply act as

atheoretical fitting parameters in the model.

These examples provide strong motivation for studying the NPVAR model because the problems they

identify can not be addressed satisfactorily without directly addressing the flexibility of the functional form.

This, of course, is not to say that features such as heteroskedasticity, autocorrelation, non-Gaussianity,

or structural instability can not be present in nonlinear models. On the contrary, they can be important

5



integral parts of the NPVAR model, and many such extensions will be considered in Section 5 and the

application in Section 6. However, the examples do suggest that before jumping to conclusions about the

presence of any of the aforementioned features, one must ensure that they are not spuriously induced by

functional form misspecifcation. To enable this task to be carried out, this paper provides methodology for

the specification, estimation, and comparison of nonparametric models, which can be useful in this pursuit,

as demonstrated in a study of U.S. macroeconomic data. The application reveals that the NPVAR model

supports the existence of distinct volatility regimes in the data, and provides evidence that means remain

stable but exhibit interesting nonlinearities.

The remainder of this article deals with the hierarchical structure of NPVAR models and their imple-

mentation in practice. Specifically, Section 2 presents the specification of the NPVAR model together with a

computationally convenient identification restriction on the unknown additive functions. Section 3 presents

an efficient fitting algorithm based on MCMC simulation techniques, which subsumes frequentist estima-

tion by backfitting as a special case. Section 4 addresses the problem of model comparison and model

averaging by discussing the computation of marginal likelihoods and Bayes factors. Section 5 outlines

extensions to settings with heteroskedasticity, Student-t errors, structural instability, heteroskedasticity or

stochastic volatility, dynamic factors, and discrete outcomes, and provides references to the relevant litera-

ture. Section 6 considers the application of the NPVAR model to data for the post-war US economy, whereas

Section 7 offers concluding remarks.

2 Hierarchical Model Specification

The NPVAR model will be specified through the following distributional hierarchy. The likelihood function

f(y|{gijk(·)},Ω) obtained from the additive model in (2) will be augmented with a prior distribution (or

model) for the each unknown function π(gijk(·)|τ2ijk) that will, in turn, depend on a hyperparameter τ2ijk.

The hierarchy will be completed by the priors on τ2ijk and Ω, denoted by π(τ2ijk) and π(Ω), respectively.

The prior π(gijk(·)|τ2ijk) is often referred to as a “smoothness prior” because it aims at penalizing rough

functions but does not absolutely rule out any values that the function can take. The prior is very similar to
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the roughness penalty in frequentist penalized likelihood estimation. The parameters τ2ijk are often called

smoothness parameters because they control the degree of smoothness of gijk(·) in π(gijk(·)|τ2ijk). Details

will be provided in the remainder of this section, but it is important to note that the methodology leans on

a vast literature in Bayesian nonparametric estimation in a variety of areas with continuous, discrete, and

censored responses, including cross-sectional settings (Besag et al., 1995; Wood and Kohn, 1998; Hastie and

Tibshirani, 2000; Fahrmeir and Lang, 2001; Wood et al., 2002; Koop and Poirier, 2004), multiple equation

systems (Smith and Kohn, 2000; Holmes et al., 2002; Koop et al., 2005), panel data (Chib and Jeliazkov,

2006), sample selection models (Chib and Greenberg, 2007; Chib et al., 2009), and time series applications

(Hamilton, 2001). Extensions to Bayesian models with free-knot splines have been pursued in Denison et al.

(1998) and DiMatteo et al. (2001), while Bayesian estimation techniques for multivariate functions have

been provided in Shively et al. (1999) and Wood et al. (2002). Useful reviews and introduction to many

aspects of nonparametric modeling can be found in Hastie and Tibshirani (1990), Denison et al. (2002),

Koop (2003), Ruppert et al. (2003), Wasserman (2006), and Ahamada and Flachaire (2010).2 Nonparametric

functional modeling has appealing frequentist and Bayesian properties, and many of its advantages have

been illustrated in the aforementioned works.

Some simplification in the notation can be obtained by denoting the r = qp lagged variables on the right

hand side of the ith equation (i = 1, . . . , q) in (2) by {sijt}rj=1 and writing that equation as

yit = gi1(si1t) + . . .+ gir(sirt) + εit, (t = 1, . . . , T ). (3)

Then, to motivate the hierarchical model for the functions, it is useful to stack the observations and write

the model in matrix notation. Let yi = (yi1, . . . , yiT )
′, εi = (εi1, . . . , εiT )

′, and for each of the j =

1, . . . , r functions in (3), let the T observations in the covariate vectors sij = (sij1, . . . , sijT )
′ determine the

corresponding mj × 1 design point vectors vij =
(
vij1, . . . , vijmj

)′ with entries equal the unique ordered

values of sij , that is vij1 < . . . < vijmj . Let the corresponding function evaluation vectors be denoted by

gij =
(
gij (vij1) , . . . , gij(vijmj )

)′. Then, stacking over time, the ith equation of the system can be written

2Interested readers are referred to these books for further details on a rich variety of nonparametric modeling approaches such
as truncated polynomials, radial basis functions, neural networks, regression trees, wavelets, kernel smoothing, locally weighted
polynomials, B-splines, etc., many of which are beyond the scope of this paper.
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in matrix notation as

yi = Qi1gi1 +Qi2gi2 + . . .+Qirgir + εi, (4)

where Qij are T ×mij incidence matrices with entries Qij(h, k) = 1 if sijh = vijk and 0 otherwise, which

establishes the correspondence between sij and vij . Note that because there may be repeating values in sij ,

we have that mj ≤ T for j = 1, . . . , r. Since all rows of Qj contain a single 1, row t of the product Qijgij

is given by gij(sijt).

The idea behind nonparametric modeling is to view the function evaluations in each gij as the realization

of a stochastic process which controls the degree of local variation between neighboring elements. Despite

differing theoretical foundations and assumptions, the vectors of function evaluations gij can eventually be

written, in a wide range of nonparametric modeling approaches, as random fields of the form

gij |τ2ij ∼ N
(
gij0, τ

2
ijK

−1
ij

)
, j = 1, . . . , r, (5)

where τ2ij is a smoothness parameter and Kij is a matrix whose structure will be discussed shortly. From a

Bayesian perspective, equation (5) can be viewed as a smoothness prior for gij , where as from a frequentist

perspective, it is often viewed as a roughness penalty term in penalized likelihood estimation (Wahba, 1978).

In either case, the goal of the modeling is to introduce a penalty to local variation between successive

elements of gij , without absolutely ruling out any possible value that the elements of gij can take.

The focus in this paper is on models involving banded precision matrices Kij , i.e., matrices which

have non-zero elements only in small bands around the main diagonal. Matrix bandedness is a feature

that significantly reduces the computational costs and makes the analysis of high-dimensional problems

feasible and inexpensive. This paper will examine the construction of gij0 and Kij in (5) for a class of

smoothness priors, which are conceptually simple and easily adaptable, can approximate unknown functions

arbitrarily well, and have been widely used (see, for example, Poirier, 1973; Shiller, 1984; Besag et al.,

1995; Fahrmeir and Lang, 2001; Koop and Poirier, 2004; Koop et al., 2005; Chib and Jeliazkov, 2006; Chib

et al., 2009). The roots of this method can be traced back to Whittaker (1923), and its relationship with

state space models has been discussed in Chan and Jeliazkov (2009). It should be noted that despite the
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focus on a specific smoothness prior, the estimation methodology described in this paper is generic and can

be applied with various modeling approaches for the unknown functions, such as splines (Poirier, 1973;

Shiller, 1984), B-splines (Silverman, 1985), wavelets (Denison et al., 2002), or the approach of Hamilton

(2001). Although bandedness of the precision matrix is a useful characteristic of many of the preceding

nonparametric approaches, it is not a feature of other popular modeling methods, e.g. regression splines or

integrated Wiener process priors, which may be more computationally intensive in high-dimensional cases.

Because the modeling follows identical steps for each of the functions, for the time being we can sim-

plify notation by suppressing the ij subscripts that denote the equation and function numbers. With this

convention, a Markov process prior views the elements of g = (g(v1), . . . , g(vm))′ ≡ (g1, . . . , gm)′ as a

stochastic process observed at the unique and ordered values in v. Specifically, letting hℓ ≡ vℓ − vℓ−1, a

first-order Markov process prior can be defined as

gℓ = gℓ−1 + uℓ, (6)

while a second-order Markov process prior is given by

gℓ =

(
1 +

hℓ
hℓ−1

)
gℓ−1 −

hℓ
hℓ−1

gℓ−2 + uℓ, (7)

where uℓ ∼ N(0, τ2hℓ) and τ2 is a smoothness parameter, such that small values of τ2 produce smoother

functions, while larger values allow the function to be more flexible and interpolate the data more closely.

The weights hℓ adjust the variance to account for possibly irregular spacing between consecutive points in

each design vector; the one given here implies that the variance grows linearly with the distance hℓ, although

other weights are also possible. A distribution for the initial states of the stochastic process is necessary in

order to complete the specification of the smoothness prior. For example, for the first-order prior, the initial

state can be modeled as

g1 ∼ N
(
g10, τ

2G10

)
, (8)

whereas in the second-order case, we have(
g1
g2

)
|τ2 ∼ N

((
g10
g20

)
, τ2G0

)
, (9)
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where G0 is a 2 × 2 symmetric positive definite matrix. The prior on the initial conditions in (8) and (9)

is very important because it induces a proper prior on the remaining observations (see Chib and Jeliazkov,

2006). Specifically, equation (6), starting with the initial condition in (8), implies a penalty on abrupt

jumps between successive function evaluations, whereas (7), starting with (9), induces a more general prior

on linear functions of vj that is conceptually similar to the usual priors placed on the intercept and slope

parameters in linear regression. This can be seen more precisely by iterating (7) in expectation (to eliminate

uℓ which is the source of the nonlinearity), starting with initial states in (9).

The interpretability of the directed Markovian structure of the priors specified by (6)–(9) is a convenient

aspect of this approach, however, it also leads to an equivalent undirected representation that is used in

deriving the random field version of the smoothness prior in (5). This can be shown by recongnizing that

upon defining

H =


1
−1 1

. . . . . .
−1 1

 , Σ =


G10

h2
. . .

hm

 ,

for the first-order case in equations (6) and (8), and similarly letting

H =



1
1

h3
h2

−
(
1 + h3

h2

)
1

. . . . . . . . .
hm

hm−1
−
(
1 + hm

hm−1

)
1


, Σ =


G0

h3
. . .

hm

 ,

for the second-order Markov process in (7) and (9), one can write Hg = u, where u ∼ N(u0,Σ) is used

to denote the errors in the Markov process with u0 = (g10, 0, . . . , 0)
′ and u0 = (g10, g10, 0, . . . , 0)

′ in the

first- and second-order cases, respectively. A simple change of variables technique leads to the distribution

g|τ2 ∼ N
(
g0, τ

2K−1
)
, where the penalty matrix K is given by K = H ′Σ−1H and g0 = H−1u0. This

derivation leads to the distributions presented in (5), where the indices i and j are explicitly present. Note

that g0 can alternatively be derived by taking recursive expectations of either (6) or (7) starting with the

mean in (8) or (9), respectively.

Two key features of the class of priors are that (i) they are proper, which allows for formal Bayesian
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model selection, and (ii) the m×m penalty matrices K are banded, which is of considerable convenience,

as manipulations involving such matrices take O(m) operations, rather than the usual O(m3) operations

for inversions and determinant computations, or O(m2) operations for multiplication by a vector. Given

that m may potentially be as large as the total number of observations T in the sample, this has important

ramifications for the numerical efficiency.

Since the priors on {gij} are defined conditionally on the hyperparameters {τ2ij}, the hierarchical struc-

ture of the model is completed by specifying the prior distributions τ2ij ∼ IG (νij0/2, δij0/2). Similarly,

the prior distribution on the covariance matrix Ω is taken as Ω−1 ∼ W (r0, R0). In setting these priors

it is generally very helpful to consider their mapping to the mean and variance of the inverse gamma and

Wishart distributions (see Gelman et al., 2003, App. A), as the choice of these parameters plays a role in

determining the trade-off between smoothness and goodness of fit. An example of how different settings of

the prior parameters can lead to over- or under-smoothing is presented in Chib and Jeliazkov (2006).

Before we can focus on estimating the model, we must address the likelihood identification problem

that emerges due to the additive structure in (3). Because the likelihood will remain unchanged if we

simultaneously let g∗j (·) = gj(·) +α and g∗k(·) = gk(·)−α for k ̸= j, it is obvious that neither an intercept,

nor the level of the individual functions is likelihood identified. This can also be seen by recognizing that

all rows of every incidence matrix Qj in (4) sum to 1, leading to perfect multicollinearity because model (4)

can be thought of as a saturated dummy variable model. Therefore, the functions must be appropriately

“anchored” in order to achieve likelihood identification.

It is well known that Bayesian models with proper priors do not suffer from identification problems

even when the likelihood is not identified (Lindley, 1971; Poirier, 1998). However, because the nonpara-

metric components of additive models are correlated by construction (since they enter the mean function

additively), likelihood identification is essential for providing a model with well-behaved conditional pos-

terior distributions that will produce quickly-mixing MCMC algorithms for efficient posterior sampling. To

achieve likelihood identification, I remove free constants in the likelihood by employing the identification

restrictions proposed in Jeliazkov (2011). The approach formally identifies the model by centering the func-
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tions in the likelihood and integrating out—instead of holding fixed—any unidentified quantities that enter

the specification.3 Such quantities are marginalized out with respect to a proper prior that is of no relevance

in the likelihood and does not affect marginal likelihood estimation, thus relating this approach to the idea

of marginal data augmentation discussed in Meng and van Dyk (1999), van Dyk and Meng (2001), and Imai

and van Dyk (2005).

One approach to identification is to remove the free constants in the likelihood by restricting r − 1 of

the functions {gij} in each equation to start at zero (e.g., Shively et al., 1999; Koop et al., 2005; Chib et al.,

2009). While this approach is quite natural as it corresponds to creating a baseline category in dummy

variable models, in the context of nonparametric regression it tends to produce funnel-shaped error bands

for the function estimates due to the identification restriction. Consequently, the information content in the

data can be confounded with the repercussions of the identification restriction, so that narrower bands need

not correspond to regions with more data or better identification of the function.

Another possibility for anchoring the functions is to consider the following version of (4)

yi = Qi1gi1 +Qi2M02gi2 + . . .+QirM0rgir + εi, (10)

where

M0j =

(
Imj −

1mj1
′
mj

mj

)
, j = 1, . . . , r,

are mj ×mj symmetric and idempotent mean-differencing matrices (Hastie and Tibshirani, 1990; Lin and

Zhang, 1999). Unfortunately, this identification scheme does not lend itself to computationally efficient pos-

terior simulation and, as pointed out by Gelfand (2000), it has been applied in ways that do not correspond

to well-defined Bayesian models, with centering typically introduced “on the fly” merely as a step in the

fitting algorithm.

For these reasons, this paper employs the closely related, yet computationally very distinct, identification

scheme presented in Jeliazkov (2011), where the additive functions are identified through

yi = Qi1gi1 +M0Qi2gi2 + . . .+M0Qirgir + εi, (11)
3It will be sufficient to apply this centering to r − 1 of the unknown functions in each equation allowing the overall intercept to

be absorbed in the remaining function.
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where the T × T symmetric and idempotent mean-differencing matrix

M0 =

(
IT −

1T1
′
T

T

)
now pre-multiplies the incidence matrices {Qij} and centers the expanded vector of functional evaluations.

The benefits from this identification method are discussed next.

3 Estimation

To motivate the general approach, this section begins by considering the important special case of a single

equation univariate regression model. Given data {yt, st}Tt=1, the scalar responses yt are assumed to depend

on the (scalar) covariate st according to

yt = g (st) + εt, (t = 1, . . . , T ), (12)

where εt ∼ N
(
0, σ2

)
, and g (·) is an unknown smooth function. The model in (12) can be written in stacked

form as

y = Qg + ε, ε ∼ N
(
0, σ2I

)
, (13)

where Q is the incidence matrix defined after equation (4). Given the Gaussian likelihood implied by (13),

and assuming the Gaussian smoothness prior in (5) for either a first- or second-order process together with

inverse Gamma priors τ2 ∼ IG(ν0/2, δ0/2) and σ2 ∼ IG(s0/2, d0/2), yields full-conditional distributions

which are conjugate, i.e. they are in the same family as the priors (see, e.g., Koop, 2003; Greenberg,

2008). Sequential sampling from those full-conditional distributions lays the foundations for the following

algorithm.

Algorithm 1 Univariate Gaussian Nonparametric Model: MCMC Implementation

1. Sample [g|y, τ2, σ2] ∼ N(ĝ,G), where G and ĝ are the usual Bayes updates for linear regression,
namely G =

(
K/τ2 +Q′Q/σ2

)−1 and ĝ = G
(
Kg0/τ

2 +Q′y/σ2
)
. Remark 1 presents important

notes on the sampling in this step.

2. Sample [τ2|g] ∼ IG
(
ν0+m

2 , δ0+(g−g0)
′K(g−g0)
2

)
, where conditionally on g, τ2 is independent of the

remaining parameters and the data.
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3. Sample [σ2|y, g] ∼ IG
(
s0+n
2 , d0+(y−Qg)′(y−Qg)

2

)
.

While steps 2 and 3 of Algorithm 1 are fairly straightforward, step 1 requires careful consideration

because the quantities involved there can be of dimension as high as the sample size n. For this reason,

estimation is performed as follows (see Fahrmeir and Lang, 2001).

Remark 1 Sampling of g. To sample g, note that Q′Q is a diagonal matrix whose t-th diagonal entry
equals the number of values in s corresponding to the design point v. Since K and Q′Q are banded,
G−1 is banded as well. Thus sampling of g need not include an inversion to obtain G and ĝ. The mean
ĝ is found instead by solving G−1ĝ =

(
Kg0/τ

2 +Q′y/σ2
)
, which is done in O(T ) operations by back

substitution. Also, let P ′P = G−1, where P is the Cholesky decomposition of G−1 and is also banded. To
obtain a random draw from N(ĝ,G) efficiently, sample u ∼ N (0, I), and solve Pw = u for w by back
substitution. It follows that w ∼ N (0,G). Adding the mean ĝ to w, one obtains a draw g ∼ N(ĝ,G).

Turning attention to the additive case, let θ denote the vector of all model parameters, i.e. the elements

of {gij}, {τ2ij}, and the unique entries of Ω. Then, based on the identifying restrictions in (11) and the priors

discussed in Section 2, MCMC estimation can proceed through iterative sampling of the following steps.

Algorithm 2 NPVAR Model: MCMC Implementation

1. Sample [gi1|y,θ\gi1] ∼ N
(
ĝi1, Ĝi1

)
, where,

Ĝi1 =

(
1

τ2i1
Ki1 +

1

σ2
i|\i

Q′
i1Qi1

)−1

,

ĝi1 = Ĝi1

 1

τ2i1
Ki1gi10 +

1

σ2
i|\i

Q′
i1

yi − µi|\i −
r∑

j=2

M0Qijgij

 ,

with µi|\i = E(εi|ε\i) and σ2
i|\i = V ar(εi|ε\i). The sampling in this step is carried out efficiently in

O (T ) operations as discussed in Remark 1.

2. Sample [gij |y,θ\gij ] ∼ N
(
ĝj , Ĝj

)
for j = 2, . . . , r and i = 1, . . . , q, where

Ĝij =

(
1

τ2ij
Kij +

1

σ2
i|\i

Q′
ijM0Qij

)−1

, and

ĝij = Ĝij

 1

τ2ij
Kijgij0 +

1

σ2
i|\i

Q′
ijM0

y − µi|\i −Qi1gi1 −
∑

k≥2,k ̸=j

M0Qikgik

 .

Remark 2 below shows how the sampling in this step can be carried out efficiently in O (T ) operations,
even though Ĝj is not banded.
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3. Sample [τ2ij |gij ] ∼ IG
(
[νij0 +mj ]/2, [δij0 +

(
gij − gij0

)′
Kij

(
gij − gij0

)
]/2
)

for i = 1, . . . , q,

and j = 1, . . . , r, where, given gij , τ
2
ij is independent of the other elements in θ and the data y.

4. Sample [Ω−1|y,θ\Ω] ∼ W
(
r0 + T, [R−1

0 +
∑T

t=1 ete
′
t]
−1
)

, where et denotes the q × 1 vector of
residuals in time period t.

Algorithm 2 generalizes Algorithm 1 in a straightforward fashion by sampling each unknown function

conditionally on the remaining ones, making simulation manageable. Importantly, however, Step 2 of Al-

gorithm 2 involves r − 1 non-banded matrices in each equation, and at first glance it would appear that

simulation will be very demanding. Fortunately, however, as shown in Jeliazkov (2011), an application

of the Sherman-Morrison formula makes it possible to sample these functions efficiently. The approach is

presented in greater detail in Remark 2 further below. The modularity and computational advantages of this

estimation strategy can provide important benefits in a variety of settings because simulating the functions

by brute force methods is not always practical owing to the algorithmic complexity of working with high-

dimensional matrices. Moreover, because the frequentist backfitting approach to estimating the unknown

functions can be viewed as a (non-stochastic) simplification of Gibbs sampling (see Hastie and Tibshirani,

2000), Algorithm 2 can also be useful in frequentist estimation.

Remark 2 Sampling of Centered Functions. To draw gij ∼ N
(
ĝij , Ĝij

)
in Step 2 of Algorithm 2, use

the definition of M0 to write

Ĝij =

(
1

τ2ij
Kij +

1

σ2
i|\i

Q′
ijM0Qij

)−1

=

(
1

τ2ij
Kij +

1

σ2
i|\i

Q′
ijQij −

cijc
′
ij

σ2
i|\iT

)−1

,

where cij = Q′
ij1. Letting Aij = 1

τ2ij
Kij +

1
σ2
i|\i

Q′
ijQij , uij = 1√

σ2
i|\iT

cij , and λij = u′
ijA

−1
ij uij , one

can write, by the Sherman-Morrison formula,

Ĝij =
(
Aij − uiju

′
ij

)−1

= A−1
ij +

A−1
ij uiju

′
ijA

−1
ij

1− λij
. (14)

Significant efficiency benefits can be derived from (14) because ĝj in Step 2 of Algorithm 2 can be obtained
by working with Aij without inverting to A−1

ij as outlined in Remark 1. Furthermore, let

Bij =

(
Aij +

uiju
′
ij

1− λij

)
,
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which implies that Ĝij = A−1
ij BijA

−1
ij . Thus, if x ∼ N (0,Bij), then z = A−1

ij x is distributed z ∼
N
(
0, Ĝij

)
, and a draw gij ∼ N

(
ĝij , Ĝij

)
is obtained as gij = ĝij + z. To generate x ∼ N (0,Bij),

draw w1 ∼ N (0,Aij) and w2 ∼ N (0, 1) and let x = w1 + w2uij/
√

1− λij ,

As a consequence of the shortcuts afforded by Remark 2, all operations are O (T ) rather than O
(
T 3
)
.

4 Model Comparison

Empirical studies must inevitably address uncertainty not only about the parameters of a given model, but

also about the model specification itself. This makes model comparison a central issue in statistical analysis.

Given a collection of models {M1, . . . ,ML}, the formal Bayesian approach to model comparison (or

testing the validity of the alternative hypotheses captured by each model) is based on the posterior model

probabilities and their ratios, the posterior odds. Specifically, for any two models Mi and Mj , a simple

application of Bayes’ theorem suggests that the posterior odds can be represented as the product of the prior

odds and the ratio of the marginal likelihoods (the Bayes factor) as follows

Pr(Mi|y)
Pr(Mj |y)

=
Pr(Mi)

Pr(Mj)
× m(y|Mi)

m(y|Mj)
.

In turn, for any model Ml, l = 1, . . . , L, the marginal likelihood is given by

m(y|Ml) =

∫
f(y|θl,Ml)πl(θl|Ml)dθl, (15)

which is the integral of the likelihood function f(y|θl,Ml) with respect to the prior distribution on the

model parameters π(θl|Ml). Because in the case of nonparametric additive models the dimension of θ can

be very large, it should be clear that direct analytical integration will generally be infeasible. However, this

difficulty can be addressed by using the approach of Chib (1995), where after rearranging Bayes’ theorem

m(y|Ml) can alternatively be expressed as

m(y|Ml) =
f(y|θ∗

l ,Ml)π(θ
∗
l |Ml)

π(θ∗
l |y,Ml)

, (16)

so that the integral in (15) is reduced to the more tractable problem of evaluating the likelihood, prior, and

posterior ordinates at a single point θ∗
l (e.g., the posterior mean). Because the numerator terms in (16)
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are available by direct calculation, the marginal likelihood can be computed by finding an estimate of the

posterior ordinate π(θ∗|y).

In the current context, the hierarchical structure of NPVAR models allows application of (16) in two

different ways. One approach relies on

m(y) =
f
(
y|
{
τ2∗ij

}
,Ω∗,

{
g∗
ij

})
π
({

τ2∗ij

}
,Ω∗,

{
g∗
ij

})
π
({

τ2∗ij

}
,Ω∗,

{
g∗
ij

}
|y
) ,

where the nonparametric functions are explicitly included in the identity (see Chib and Jeliazkov, 2006;

Chib et al., 2009). However, owing to the Gaussian structure of the model, the marginal likelihood can also

be computed using

m(y) =
f
(
y|{τ2∗ij },Ω∗

)
π
(
{τ2∗ij },Ω∗

)
π
(
{τ2∗j },Ω∗|y

) ,

where all quantities are marginalized over the high-dimensional blocks {gij}. This marginalization is pos-

sible because conditionally on
({

τ2∗ij

}
,Ω∗

)
, the density f

(
y|{τ2∗ij },Ω∗

)
, marginalized over {gij} with

respect to the prior distributions in (5), is also normal (Koop and Poirier, 2004) and can be evaluated di-

rectly for the typical sample sizes T encountered in macroeconomic applications. Because of this analytical

tractability, m (y) can then be found after the main run where, using the conditional independence of the

densities in Steps 3 and 4 of Algorithm 2, one computes

π
({

τ2∗ij
}
,Ω∗|y

)
≈ T−1

T∑
t=1

{
fIW

(
Ω∗|y,

{
g
(t)
j

}) p∏
i=1

fIG

(
τ2∗j |g(t)

j

)}

using draws {g(t)j } from the main MCMC run. In instances where T is large or there are other complications

(e.g., discrete outcomes), the decomposition involving {gij} is more appropriate and readers are referred

to Chib and Jeliazkov (2006) and Chib et al. (2009) for methods that use reduced runs or to Jeliazkov and

Lee (2010) for a method that employs the Gibbs kernel and invariance of the Markov chain to estimate the

posterior ordinate π({τ2∗ij },Ω∗, {g∗
ij}|y).

An important point mentioned earlier is that the marginal likelihood for the additive NPVAR model does

not depend on the (likelihood unidentified) levels of the functions that are centered for identification. This
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can be seen by recognizing that if f(y|θ1,θ2) = f(y|θ1), i.e. the likelihood depends only on θ1 whereas

θ2 is unidentified, but we have a proper prior π(θ1,θ2), then the marginal likelihood

m (y) =

∫
f (y|θ1,θ2)π (θ1,θ2) dθ1dθ2

=

∫
f (y|θ1)π (θ1)

∫
π (θ2|θ1) dθ2dθ1

=

∫
f (y|θ1)π (θ1) dθ1,

is not influenced by the prior on θ2. In practice this is important for modeling, because it implies that

researchers with different beliefs about unidentified parameters will nevertheless reach identical conclusions

about the relative ranking of alternative models.

Finally, note that because estimation of the marginal likelihood does not require maximization, it is less

computationally intensive in nonparametric additive models than evaluation of information criteria such as

AIC and BIC. This point has been overlooked and not fully appreciated in the literature despite its impor-

tance for model selection and model averaging on the basis of {Pr(Ml|y)}.

5 Model Extensions

The estimation techniques presented in this paper are fully modular and readily applicable in various other

settings since estimation of the unknown functions {gij} can be done conditionally on modifications in

other parts of the model. The goal of this discussion is to briefly review the relevant literature and provide

references that could guide researchers interested in pursuing such extensions.

One should note that the methods in Section 2 and Section 3 trivially generalize to cases where one or

more exogenous covariates enter the regression as in seemingly unrelated regression models (e.g., Smith

and Kohn, 2000; Holmes et al., 2002; Koop et al., 2005). Further extensions of the framework to Bayesian

models with nonparametric endogeneity or sample selection can be pursued following Chib and Greenberg

(2007) or Chib et al. (2009), respectively; the modeling would also be useful in guiding future research on

structural NPVAR models and impulse response analysis. Many of the aforementioned papers also trivially

subsume semiparametric and partially linear cases where some of the covariates enter the model linearly.
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Estimation of such models is a straightforward extension of Algorithms 1 and 2, and proceeds by using

the partial residuals yi − Xiβ when simulating {gij}, followed by simulating β conditionally upon the

functions {gij}.

The methods in this paper, including the above extensions, can also be applied, using data augmentation

techniques (Tanner and Wong, 1987; Albert and Chib, 1993), to the analysis of dynamic systems involving

binary, polychotomous, censored, and other discrete outcomes such as the qualitative VAR model of Dueker

(2005). The main advantage of this approach is that conditionally on the latent data, estimation of the

parameters and the unknown functions closely mirrors the methods for continuous data. The methodology

presented here is also applicable to the class of additive mixed models for continuous and discrete data (e.g.,

Lin and Zhang, 1999). For example, Chib and Jeliazkov (2006) discuss the specification and estimation of

a semiparametric partially linear model for dynamic binary panel data with multivariate heterogeneity. The

estimation algorithm in that paper can be easily modified to include an additive structure whose estimation

can be carried out by the methods presented in Section 3.

While the specification and estimation of NPVAR models was discussed in detail for homoskedastic

Gaussian models, extensions to other distributions (e.g., Student’s t, mixtures of normals, or Dirichlet pro-

cess priors for nonparametric distributional modeling) and heteroskedasticity (e.g., regime switching models

with different variance regimes, or models with stochastic volatility) may be very desirable in certain appli-

cations. One such example, relating to different variance regimes, will be studied in Section 6. Fortunately,

such extensions can be estimated using data augmentation techniques that could build upon the homoskedas-

tic Gaussian specification discussed earlier. In particular, consider a heteroskedastic model in which the ith

equation can be written as

yi = Qi1gi1 +M0Qi2gi2 + . . .+M0Qirgir + εi

with Σi ≡ Var(εi) = diag(σ2
i1, . . . , σ

2
iT). Due to the heteroskedasticity, the covariance matrix of [gij |y,θ]

is not of the form presented in Remark 2, and estimation can not be performed efficiently by relying on the

Sherman-Morrison formula. This poses an important computational difficulty because estimation in large
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dimensional models would be very difficult and potentially infeasible. In this paper, I propose a solution to

this problem that employs data augmentation to reduce the heteroskedastic model to a homoskedastic one

enabling application of the methods discussed in Algorithm 2 and Remark 2. In particular, following Chib

and Jeliazkov (2006), we can write

yi = Qi1gi1 +M0Qi2gi2 + . . .+M0Qirgir + ηi + νi,

where ηi
iid∼ N(0,Σi − κiI) and νi

iid∼ N(0, κiI) with 0 < κi ≤ min{σ2
it}. Consequently, given a draw of

ηi, which is simple and inexpensive to obtain, the model

yi − ηi = Qi1gi1 +M0Qi2gi2 + . . .+M0Qirgir + νi

is homoskedastic because Var(ν i) = κiI . In our context, it would actually be optimal to set κi = min{σ2
it}

because this would imply that the corresponding elements of ηi would be identically 0 and will not need to

be sampled. This leads to the following extension of Algorithm 2:

Algorithm 3 NPVAR Model: MCMC Estimation of Heteroskedastic Model

1. For i = 1, . . . , q:

(a) Sample [ηi|y,θ] by drawing, for t = 1, . . . , T , ηit ∼ N(η̂it, Ĥit), where Ĥit = κi(σ
2
it −

κi)/σ
2
it and η̂it = (σ2

it − κi)(yit − µit|\i,t − mit)/σ
2
it, where mit is the t-th row of Qi1gi1 +∑

k≥2M0Qikgik, µit|\i,t is the t-th row of µi|\i = E(εi|ε\i), and κi = min{σ2
it}, where

σ2
it = V ar(εit|ε\i,t). Note that for cases where κi = σ2

it, the corresponding entry in ηi is
identically zero and need not be sampled.

(b) Sample [gi1|y,ηi,θ\gi1] ∼ N
(
ĝi1, Ĝi1

)
, where,

Ĝi1 =

(
1

τ2i1
Ki1 +

1

κi
Q′

i1Qi1

)−1

,

ĝi1 = Ĝi1

 1

τ2i1
Ki1gi10 +

1

κi
Q′

i1

yi − ηi − µi|\i −
r∑

j=2

M0Qijgij

 ,

with µi|\i = E(εi|ε\i) and κi = min{σ2
it}, where σ2

it = V ar(εit|ε\i,t). The sampling in this
step is carried out efficiently as in Remark 1.

(c) Sample [gij |y,ηi,θ\gij ] ∼ N
(
ĝj , Ĝj

)
for j = 2, . . . , r and i = 1, . . . , q, where

Ĝij =

(
1

τ2ij
Kij +

1

κi
Q′

ijM0Qij

)−1

, and
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ĝij = Ĝij

 1

τ2ij
Kijgij0 +

1

κi
Q′

ijM0

y − ηi − µi|\i −Qi1gi1 −
∑

k≥2,k ̸=j

M0Qikgik

 .

This is done as in Remark 2.

2. Sample [τ2ij |gij ] for i = 1, . . . , q, and j = 1, . . . , r, as in Algorithm 2.

3. Sample [Ωit
−1|y,θ\Ω] according to the volatility process under consideration.

The above machinery also applies to mixture-of-normals and scale mixture-of-normals models. In par-

ticular, a model with t errors with ν degrees of freedom can be represented as a conditionally Gaussian

model, whose variance, given a set of a priori gamma latent variables λt ∼ G(ν/2, ν/2), t = 1, . . . , T , is

given by Var(εt|λt) = σ2/λt (Andrews and Mallows, 1974; Albert and Chib, 1993). Estimation of these

models is straightforward because given {λi}, one can decompose εi into ηi and νi and proceed as above.

In this way, NPVAR models can be adapted to a variety of specifications for the error variance, including

changepoint and regime switching models (Chib, 1996, 1998; Sims and Zha, 2006), time-varying parameter

models (Primiceri, 2005; Chan and Jeliazkov, 2009), factor models (Kose et al., 2003; Belviso and Milani,

2006; Kose et al., 2008; Chan and Jeliazkov, 2009), and others.

6 Application to U.S. Macroeconomic Data

The data sample for this application contains post-war quarterly macroeconomic data for the U.S. from

1948:Q1 to 2005:Q1. The set of variables includes output growth gt measured by log differences of real

GDP between two consecutive quarters, average quarterly unemployment rate ut, inflation πt measured

by the percentage change in the Consumer Price Index between consecutive quarters, and interest rates it

measured by the average quarterly secondary market yield on the 3-month Treasury bill. The first three of

these variables are seasonally adjusted. These variables, summarized in Table 1, reflect the general state

of the economy, and have been widely used in empirical macroeconomics.4 From the Table, we see that
4The sample period excludes the past recession for a number of reasons. Over the last few years, interest rates have approached

and stayed very close to their lower bound of zero. This could lead to findings of nonlinearity due to the effects of the lower bound,
thereby favoring the methods of the paper over a linear model. Moreover, traditional modeling may be inadequate near the bound,
where the distribution of the interest rate process is truncated and exhibits point mass. Appropriate modeling in this case is still an
open research problem. Finally, if the “Great Recession” marked a possible structural break, at present there would be insufficient
observations estimate the model after the break.
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the average quarterly GDP growth over the sample period is 0.85 percent, which amounts to annual GDP

growth of 3.4 percent. A similar computation shows an average annual inflation rate of approximately 3.7

percent. Unemployment and interest rates average at 5.63 and 4.81 percent, respectively.

Table 1: Descriptive statistics for the data sample (in percentage points).
Variable Mean SD Min Max
Quarterly growth in real GDP 0.85 1.00 -2.76 4.02
Unemployment rate 5.63 1.52 2.60 10.70
Nominal interest rate 4.81 2.92 0.79 15.05
Quarterly Inflation 0.92 0.85 -1.24 4.08

These data are analyzed using the econometric techniques discussed earlier. The empirical strategy for

studying the behavior of the dynamic system in (2) is to address both model and functional form uncertainty.

The first area of model uncertainty in the macroeconomic system has to do with determination its dynamics

– i.e., the number of lags needed in equation (2). This one-lag model was compared to several more richly

parameterized models in order to gauge whether restricting attention to an NPVAR(1) specification is a

sensible empirical strategy. The baseline NPVAR(1) model, which contains a single lag of yt with 16

unknown functions, was compared with an NPVAR(2) model (with 32 such functions). The baseline model

overwhelmingly outperformed the longer lag specification – its log-marginal likelihood exceeded that of the

larger model by over 40, implying a Bayes factor of over e40 in favor of the NPVAR(1) specification.5

Guided by earlier research findings suggesting the possibility of a structural break (at least in error

volatility as in Stock and Watson (2003) and Sims and Zha (2006)), I also used split-sample estimation

to capture the possibility of structural breaks in the series. Specifically, an NPVAR(1) model was fit on

data in the pre-Volcker era (prior to 1979:Q2), and a separate model was fit on the data thereafter (following

1979:Q3). The marginal likelihood for the pre-Volcker model was −539.5, and that for the second part of the

data sample was −438.7. Compared to the log-marginal likelihood of −908.8 for the baseline NPVAR(1)

model on the entire data sample, the split sample measure of fit, as captured by the marginal likelihood, was
5A specification including a fourth (year-ago) lag was also considered but it also did not perform competitively with the

NPVAR(1) specification.
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far worse (the sum of the log-marginal likelihoods for the two subsamples is −978.2, which is far below

marginal likelihood for the overall NPVAR(1) model of −908.8). These results are interesting because (i)

they suggest that the simpler and parsimonious NPVAR(1) fit on the entire specification appears preferable to

the (twice as big) split sample model and (ii) they demonstrate the ability of the Bayesian model comparison

framework to penalize overparameterized specifications.

Figure 2: Full sample estimates: the rows represent the functions in each equation, columns contain the
functions of a given lagged variable across equations.
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Figure 2 presents the estimated functions for the full-sample NPVAR(1) model. The figure shows that

a linear model would be reasonable for many of the economic relationships – particularly in modeling the

effects of lagged unemployment. To a lesser extent, the same is true in other instances (e.g. the dependence

of interest on its past value), where the function estimates do not reveal drastic departures from linearity.

On the other hand, however, in many equations, the effects of lagged financial variables (interest and infla-

tion), as well as the effects of lagged growth, appear to be quite nonlinear. This finding concurs with earlier

studies that have found nonlinearity in growth behavior (Dahl and Gonzalez-Rivera, 2003a,b) and financial
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markets (Härdle and Tsybakov, 1997; Härdle et al., 1998). The Figure shows, for instance, that lagged infla-

tion exhibits significant nonlinearities in every equation, whereas the function estimates for lagged interest

exhibit nonlinearities in three of the four equations. For this reason, future analysis of financial variables

might benefit considerably from employing nonparametric methods. Regarding the effects of lagged GDP

growth, a review of the estimated functions reveals that although there is much nonlinearity, there are also

large regions where the function estimates are approximately linear. This suggests that an interesting future

research question would be to examine whether those types of nonlinearities can be adequately captured

through threshold models.

For comparison purposes, Figures 3 and 4 show function estimates for the pre- and post-Volcker periods,

respectively. It is interesting to note that, although the function estimates differ in some respects, most point

to the same types of nonlinearities as the estimates from the overall sample.6 This is quite instructive, as

it provides evidence that the econometric relationships may be stable but nonlinear, and therefore omitted

nonlinearity may be a significant driver in findings of structural instability (cf. Hamilton, 2001). Resolving

this issue should be an important item on the research agenda of studies focusing on structural (in)stability.

The apparent stability of the nonparametric function estimates across subsamples naturally leads to

another important research question that has attracted much attention recently. Specifically, it would be of

interest to consider whether an NPVAR model would exhibit evidence of a structural change in variances,

which has been widely documented in contexts utilizing linear models. Such findings (e.g., Stock and

Watson (1996, 2003), Sims and Zha (2006)) have led to the conclusion that a reduction in error volatility

has been a driving force in the “Great Moderation” of the 1980s and 1990s. To formally test the stability of

the mean relationships while allowing for structural breaks in variances, I have estimated three additional

NPVAR models. The first allows for a single structural break between 1979:Q2 and 1979:Q3 with the

Volcker appointment. The second model employs a single structural break between 1982:Q4 and 1983:Q1

with the following the Fed’s disinflation of the early 1980s. The third model allows for both of these

break points. The models were estimated using Algorithm 3 of Section 5, and the marginal likelihoods
6Since the range and level of each function may differ across samples, readers are cautioned to compare those functions over

the relevant ranges, keeping in mind that the level of the functions will shift to satisfy the identification constraints.
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Figure 3: Pre-Volcker estimates: the rows represent the functions in each equation, columns contain the
functions of a given lagged variable across equations.
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were estimated as discussed in Section 4. The marginal likelihood for the first model was estimated to be

−891.4, whereas that of the second was estimated to be −880.1, showing that, conditionally on a single

break, the data favor the 1982/83 breakpoint. However, a much more dramatic improvement is offered by

the third model, the one which allows for both a 1979 and a 1982/83 breakpoints. The marginal likelihood

for that model is −838.4, leading to the conclusion that these three periods in the U.S. sample are indeed

dramatically different. This if further confirmed by examining the estimated covariance matrices for the

three sub-periods:

Ω48:79 =


1.135 −0.254 0.085 −0.060
−0.254 0.144 −0.033 0.002
0.085 −0.033 0.255 0.044
−0.060 0.002 0.044 0.463

 ,

Ω79:82 =


1.327 −0.285 1.095 0.636
−0.285 0.367 −0.575 −0.261
1.095 −0.575 4.348 1.445
0.636 −0.261 1.445 1.048

 ,
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Figure 4: Post-Volcker estimates: the rows represent the functions in each equation, columns contain the
functions of a given lagged variable across equations.

−2 0 2

−0.5
0

0.5
1

1.5
gr

ow
th

growth
t−1

5 10
−0.5

0

0.5

1

unemployment
t−1

5 10 15
−1.5

−1
−0.5

0

interest
t−1

0 2 4
−1.5

−1
−0.5

0
0.5

inflation
t−1

−2 0 2

6

7

un
em

pl
oy

m
en

t

5 10
−2

0

2

4

5 10 15
−0.2

0
0.2
0.4
0.6

0 2 4
−0.2

0
0.2
0.4
0.6

−2 0 2
5

6

7

in
te

re
st

5 10

−0.5

0

0.5

5 10 15
−5

0

5

0 2 4
−1

0

1

−2 0 2
0

0.5

1

in
fla

tio
n

5 10
−0.8
−0.6
−0.4
−0.2

0
0.2

5 10 15
−0.5

0
0.5

1

0 2 4

0

1

2

and

Ω83:05 =


0.234 −0.032 0.051 0.008
−0.032 0.066 −0.031 −0.010
0.051 −0.031 0.202 0.044
0.008 −0.010 0.044 0.216

 .

These covariance matrices clearly demonstrate the dramatic peak in the error variances of all variables except

growth (i.e. unemployment, interest rates, and inflation) during the disinflation period and the subsequent

“moderation” of all 4 variables in 1983. A notable feature is the large jump, and subsequent decrease, in the

estimated error variance in the interest rate equation during the period 1979-1982, which can be accounted

for by the Fed’s change of policy instrument from the federal funds rate to reserve targeting, as well as the

unprecedented increase in interest rates during the disinflation period.

Figure 5 presents the function estimates from the model with three variance regimes. The figure demon-

strates that the same type of nonlinearities that were present in the homoskedastic models are still present

here. Therefore, even though the heteroskedastic NPVAR model has confirmed earlier conclusions that
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changes were large due to breaks in variances, it also shows that there is much nonlinearity that would

remain unexplored by linear models and that future research should study such features of the economic

relationships more closely.

Figure 5: Full sample estimates from model with 3 volatility regimes: the rows represent the functions in
each equation, columns contain the functions of a given lagged variable across equations.
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7 Concluding Remarks

This article has examined the specification, estimation, and comparison of nonparametric VAR models.

Efficient MCMC sampling and model comparison techniques are discussed in the context of a new scheme

for identifying the unknown covariate functions, and extensions to heteroskedastic and other settings have

been examined. An application of the NPVAR model to U.S. post-war data on GDP growth, unemployment,

interest rates, and inflation, has confirmed the presence of distinct volatility regimes in the post-war U.S.

macroeconomic series, but has also revealed that important nonlinearities is certain economic relationships

may remain undetected by standard regressions. Implementation of these techniques in related settings, such
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as those considered in Section 5, is an interesting area for future research.
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