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Extraction of Blebs in Human Embryonic 
Stem Cell Videos 

Benjamin X. Guan*, Student Member, IEEE, Bir Bhanu*, Fellow, IEEE                                         

Prue Talbot** and Nikki Weng**  

Abstract— Blebbing is an important biological indicator in determining the health of human embryonic stem cells (hESC). 

Especially, areas of a bleb sequence in a video are often used to distinguish two cell blebbing behaviors in hESC; dynamic and 

apoptotic blebbings. This paper analyzes various segmentation methods for bleb extraction in hESC videos and introduces a 

bio-inspired score function to improve the performance in bleb extraction. Full bleb formation consists of bleb expansion and 

retraction. Blebs change their size and image properties dynamically in both processes and between frames. Therefore, 

adaptive parameters are needed for each segmentation method. A score function derived from the change of bleb area and 

orientation between consecutive frames is proposed which provides adaptive parameters for bleb extraction in videos.  In 

comparison to manual analysis, the proposed method provides an automated fast and accurate approach for bleb sequence 

extraction. 

Index Terms— Bleb extraction, bioinformatics, bio-inspired, human embryonic stem cell (hESC). 

——————————      —————————— 

1 INTRODUCTION

lebs are membrane protrusions that appear and disap-
pear from the surface of cells. The extraction of blebs 

and their changing area over time in live videos is im-
portant for understanding the mechanisms and function of 
human embryonic stem cell (hESC) blebbing behavior. 
The nature of blebbing behavior can be used to evaluate 
cell health-dynamic blebs indicate healthy cells and apop-
totic blebs indicate dying cells. The ability to analyze rates 
of bleb formation and retraction are important in the field 
of toxicology and could form the basis of an assay that 
depends on a functional cytoskeleton [1] [2] [3]. The biolo-
gists attempt to clarify the difference between dynamic 
and apoptotic blebbings in hESC by comparing the time of 
their occurrences. Blebbing is considered to be related to 
signaling pathways. It is significant for biologists to have 
enough evidence to determine whether Calcium, ATP and 
P2X7 inhibitors can change the blebbing behavior through 
the Rho-Rock Pathway or not. Inhibitors can alter blebbing 
behavior by either blocking the pathway leading to myo-
sin activation or inhibit myosin directly. The dynamic 
segmentation of blebs enables a rapid analysis to make 
quantified measurements on very large datasets collected 
with hESC under different experimental conditions. This 
will lead to the understanding of foundational mecha-
nisms and function of blebbing which can ultimately con-
trol/regulate dynamic blebbing in hESC. 

Two types of bleb characterization are needed to be 
understood: Image characterization and physical charac-

terization of blebs. Image characterization of blebs re-
quires the development of computational methods that 
can provide high detection accuracy with minimum user 
interaction with blebs in video. Physical characterization 
of blebs provides enormous understanding of the dynamic 
cell behavior. For example, it enables the development of a 
method to prevent blebbing behaviors that lead to cell 
death. Bleb detection in video is a way to accelerate our 
understanding of blebs for the development of its physical 
characterization. 

This paper uses the H9 line of hESC (WiCell, Madison, 
WI.) which are normally about 10 microns in diameter. 
The average bleb-to-cell body ratio is about 16:57. In 2D 
images, a single cell can have an average of 6 or a maxi-
mum of 11 blebs with a 20x objective. This paper is in-
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Fig. 1. Expansion and retraction processes occuring over time. 
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tended to explain the bleb formation phenomena and to 
introduce a method to segment sequences of bleb regions 
in video for further analysis. Bleb formation consists of 
two processes: 1) expansion; 2) retraction [4] [5]. In the first 
stage, the bleb expands sporadically. During the retraction 
stage, the bleb either retracts back and disappears or par-
tially retracts. Complete bleb retraction normally occurs 
during dynamic blebbing, which is a characteristic of 
healthy cells.  However, if bleb retraction does not occur 
or occurs slowly, the cell is likely undergoing apoptosis or 
cell death. Fig. 1 shows the sequences of both bleb expan-
sion and retraction. During expansion, bleb size increases 
while cell body size decreases. In contrast, during bleb 
retraction, bleb size decreases while cell body size increas-
es. At the final stage of expansion, the bleb is called an 
intermediate bleb. The intermediate bleb indicates that tran-
sition from expansion to retraction is occurring. The in-

termediate bleb has the maximum bleb size in full bleb 
formation process. 

Fig. 2 and 3 show phase contrast images of blebbing 
sequences for both expansion and retraction. The expan-
sion and retraction processes are visually similar but bio-
logically distinct [6] [7]. Based on our observation on the 
videos, the change in area and orientation between blebs 
from the consecutive frames are important for the segmen-
tation of blebs. With the modeled distributions of the 
change in area and orientation, adaptive parameters for 
segmentation methods are possible. Additionally, segmen-
tation methods with adaptive parameters improve the 
performance in the detection of blebs.  

Section 2 presents related work and the contributions 
of this paper. Section 3 describes the technical approach in 
detail. Section 4 provides experimental results and discus-
sions on video data. Finally, Section 5 provides the conclu-
sions of the paper.  

2 RELATED WORK AND CONTRIBUTIONS 

2.1 Blebbing of Human Embryonic Stem Cell 

Both hESC dynamic and apoptotic blebbings consist of 
two processes: expansion and retraction. From our previ-
ous studies, we observed that hESC tends to have more 
blebs as well as having a higher rate of blebbings. Apop-
totic blebblings in non-healthy cells are commonly stud-
ied. However, blebs exist in both healthy and non-healthy 
cells. Therefore, it is essential to analyze dynamic 
blebbings in healthy cells. Understanding the differences 
between both dynamic and apoptotic blebbings’ mecha-
nism and function can lead to a breakthrough in develop-
ment of regenerative medicine. 

2.2 Computational Models for Blebbing 

Charras et al. [4] [5] reasoned that blebbing depends on 
parameters such as pressure, membrane-cortex, adhesion 
energy and membrane tension of a cell. The plasma mem-
brane of a hESC is attached under tension to a cortex of 
filaments. If the connection with the filaments is weak-
ened, a bleb is produced by an event of pouring cytoplas-
mic fluid into the weakened region. When the growth of 
the bleb stops, the bleb either retracts or stays the same. If 
an actin cortex reforms under the bleb membrane, retrac-
tion is likely to occur and is driven by myosin-II.  

StryChalski et al. [6] assumed that blebbing occurs due 
to detachment of the cytoskeleton from the plasma mem-
brane, which produces a pressure-driven flow of cytosol 
toward the area of detachment and into the area of expan-
sion. They proposed a computational model of blebbing 
based on the mechanics of intracellular fluid, the actin 
cortex, and the cell membrane. The model considers the 
bleb formation time as a function of parameters derived 
from cytoplasmic properties [6]. A similar model has been 
proposed in [7]. 

2.3 Detection and Segmentation Methods for Cells 

Due to the abundance, heterogeneity, dimensionality and 
complexity of the image data, manual image processing 

 

Fig. 2. Example of bleb expansion sequence. 

 
  

 

Fig. 3. Example of bleb retraction sequence. 
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and analysis is not feasible. In the analysis of biological 
images, the performance of a segmentation method heavi-
ly depends on the tuning of segmentation parameters [8]. 
It is a tedious process yet the tuned parameters do not 
guarantee the same performance on similar images. Object 
detection and segmentation are essential in the analysis of 
hESC and they are closely related.  

Guan et al. [9] [10] present bio-inspired detec-
tion/segmentation methods for hESC in phase contrast 
images. Their segmentation method was developed based 
on the image property differences between cell region and 
background [10]. Yin et al. [11] also developed a cell seg-
mentation method by using a bag of local Bayesian classi-
fier. Their segmentation method classifies each pixel in a 
region with a Bayesian classifier. However, both methods 
only work for extraction of cell and cell colony from a 
phase contrast video. In this paper, we are concerned with 
the detection of blebs of a single cell. Note that blebs are 
part of the cell with similar image properties. Since there is 
no previous work on detection of blebs, we will exploit the 
following four commonly used methods for image seg-
mentation: region growing, normalized cut, meanshift and 
watershed.  

Region growing (RG) by Adams et al. [12] [13] grows a 
region initially from a seed point and groups its neighbor-
ing pixels to its region based on their similarity coefficient 
threshold. Normalized cut (NC) method by Shi et al. [14] is a 
graph based approach, and performs segmentation by 

maximizing association within groups while minimizing 
disassociation between groups. Meanshift (MS) method by 
Comaniciu et al. [15] is a well-known density based ap-
proach that partitions the image by assigning pixels into 
clusters with the same mode [16] [17]. Watershed (WS) 
method performs a flooding process on a gradient image 
where it starts at a local minima and builds watersheds to 
separate adjacent catchment basins [18] [19].   

2.4 Challenges for Bleb Analysis 

Since a bleb is part of the cell, it brings the following chal-
lenges: i) bleb intensity and texture vary for different cells; 
ii) blebs are connected to the cell body; iii) blebs have simi-
lar intensity/texture as the cell body or background; iv) 
neighboring blebs share similar intensity and texture. Fig. 
4 shows a set of expanding and retracting blebs. Although 
these blebs look similar, they are different from each other 
in intensity and texture. Therefore, the conventional seg-
mentation methods with constant parameters will not 
work well on all the bleb images in a video. Most im-

portantly, blebbing is a dynamic process, and the bleb 
properties change over time. As a result, subsequent blebs 
in the same video sequence might have different image 
properties.  Consequently, the performance of RG, NC, MS 
and WS methods will suffer from any constant input pa-
rameters.  

2.5 Contributions of this Paper 

We propose a bio-inspired optimization method for the 
segmentation of dynamic blebs. The proposed approach 
adapts parameters for images in the bleb formation pro-
cess: expansion and retraction. The parameters for the bio-
inspired metric are derived directly from the distributions 
of change in area and orientation between consecutive 
blebs. Since the health status of a cell can be determined 
from the bleb formation process, it is important to im-
prove the accuracy in bleb detection. Therefore, the pro-
posed optimization method is essential in quantitative 
analysis of cell health.  

3 TECHNICAL APPROACH 

In this section, we first introduce the derivation of the 
statistical models for bio-inspired optimization metric. 
We also elaborate on the optimization metric. We then 
explain the segmentation methods for the detection of 
blebs in video. In addition, a summary of the proposed 
algorithm and a flowchart for segmentation in video are 
also provided. For the convenience of the reader, a sum-
mary of the symbols used in this paper is given in Table 1. 
Fig. 5 shows the overview of the proposed system.  

The proposed system uses exhaustive search to obtain 
an optimal solution. Segmentation result with specific 
parameters is given a score in the bio-inspired optimiza-
tion step. This score is calculated based on the modeled 
distributions. The modeled distributions are the general-

TABLE 1 
DEFINITION OF THE SYMBOLS USED IN THIS PAPER 

Symbol Definition 

𝑡 Index for the distribution functions. 

𝐸(𝑡; 𝐴𝐸) Exponential distribution function. 

𝐴𝐸 Inverse scaling parameter of the exponential. 

𝐺(𝑡; 𝐴𝐺 , 𝐵𝐺) Gaussian distribution function. 

𝐴𝐺 Mean for the Gaussian distribution. 

𝐵𝐺 Standard deviation for the Gaussian distribution. 

 𝐿𝑁(𝑡; 𝐴𝐿𝑁 , 𝐵𝐿𝑁) Lognormal distribution function. 

𝐴𝐿𝑁 Location parameter of the lognormal. 

𝐵𝐿𝑁 Scale parameter of the lognormal. 

𝒫(𝑡; 𝐴𝒫) Poisson distribution function. 

𝐴𝒫 Mean parameter of the Poisson. 

𝑅𝐿(𝑡; 𝐴𝑅𝐿) Rayleigh distribution function. 

𝐴𝑅𝐿 Mode parameter of the Rayleigh distribution. 

 𝐺𝐴𝑀(𝑡; 𝐴𝐺𝐴𝑀 , 𝐵𝐺𝐴𝑀) Gamma distribution function. 

𝐴𝐺𝐴𝑀 Shape parameter of the Gamma distribution. 

𝐵𝐺𝐴𝑀 Scale parameter of the Gamma distribution. 

𝑆𝛼,𝜙(Δ𝐴, Δθ)  Bio-inspired optimization metric. 

Δ𝐴, Δ𝜃 Values for change in bleb area and orientation. 

𝛼 Parameters vector of modeled Δ𝐴 distribution. 

𝜙 Parameters vector of modeled Δ𝜃 distribution. 

 

Fig. 4. A sample of blebs. (Note: the variety of blebs that are circled 
in these images) 
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ized distributions obtained from distribution fitting the 
change in bleb areas and orientations. 

3.1 Modeled Distributions 

3.1.1 Motivation  

Since image properties of a bleb changes with time, con-
stant parameters of segmentation methods will perform 
poorly. Therefore, dynamic parameters with considera-
tion of bleb changes over time are needed for the segmen-
tation methods.  Based on our observation of the hESC 
blebbing videos, we concluded that Δ𝐴 and Δ𝜃  between 
consecutive frames provide relative behavior of a bleb 
over time. Fig. 1 shows an example of how bleb changes 
over time. Therefore, we obtain the generalized models 
for Δ𝐴 and Δ𝜃 distributions through model fitting. 

3.1.2 Learning the Distributions of 𝚫𝑨 and 𝚫𝜽 

We used a model fitting technique on the actual distribu-
tions of Δ𝐴 and Δ𝜃. Equations (1)-(6) are used in our mod-
el fitting technique [20] [21]. Definitions of parameters for 
the following equations are provided in Table 1. 
Exponential distribution function: 
                          𝐸(𝑡; 𝐴𝐸) = 𝐴𝐸𝑒− 𝐴𝐸𝑡                                         (1) 
Gaussian distribution function: 

               𝐺(𝑡; 𝐴𝐺 , 𝐵𝐺) =
1

𝐵𝐺√2𝜋
𝑒

− 
(𝑡−𝐴𝐺)

2

2𝐵𝐺
2

                             (2) 

Lognormal distribution function: 

  𝐿𝑁(𝑡; 𝐴𝐿𝑁, 𝐵𝐿𝑁) =
1

𝑡𝐵𝐿𝑁√2𝜋
𝑒

− 
(ln(𝑡)−𝐴𝐿𝑁)

2

2𝐵𝐿𝑁
2

                           (3) 

 Poisson distribution function: 

                      𝒫(𝑡; 𝐴𝒫) =
𝐴𝒫

𝑡

𝑡!
𝑒−𝐴𝒫                                         (4) 

Rayleigh distribution function: 

                      𝑅𝐿(𝑡; 𝐴𝑅𝐿) =  
𝑡

𝐴𝑅𝐿
2 𝑒

− 𝑡2

2𝐴𝑅𝐿
2

                                 (5) 

Gamma distribution function:    

𝐺𝐴𝑀(𝑡; 𝐴𝐺𝐴𝑀 , 𝐵𝐺𝐴𝑀) =  
1

Γ(𝐴𝐺𝐴𝑀)𝐵𝐺𝐴𝑀

𝐴𝐺𝐴𝑀
𝑡𝐴𝐺𝐴𝑀−1𝑒

− 
𝑡

𝐵𝐺𝐴𝑀            (6) 

Γ(∗) is a gamma function operator. The optimal parame-
ters and mean squared error (MSE) for each distribution is 
shown in Table 2. Since we are seeking model that yields 
low MSE for each distribution, we conclude that both Δ𝐴 

and Δ𝜃 can be characterized as Gamma distributions. Fig. 
6 shows the best models that fit the actual Δ𝐴 and Δ𝜃 dis-
tributions.  

3.2 Bio-inspired Optimization for Segmentation 

For this paper, the segmentation methods with the bio-
inspired optimization are called bio-optimized methods. 
The bio-inspired optimization metric provides an adaptive 
solution to the segmentation problem with following two 
steps. First, the metric yields scores for a set of parameters 
in a particular segmentation method and retains the corre-
sponding scores of the parameters in the set. Second, op-
timal solution is selected from the parameters with the 
highest score.  

3.2.1 Bio-inspired Optimization Metric 

The optimization metric 𝑆𝛼,𝜙(Δ𝐴, Δθ) considers 𝐷1and 𝐷2 , 

the modeled Δ𝐴 and Δ𝜃 distributions, as two independent 
distributions. 𝐷1(Δ𝐴; 𝛼) is a score of Δ𝐴 in a distribution 
that is parameterized by 𝛼. 𝐷2(Δ𝜃; 𝜙) is a score of Δ𝜃 in a 
distribution that is parameterized by 𝜙. The general form 
of the optimization metric is shown below. 

          𝑆𝛼,𝜙(Δ𝐴, Δθ) = 𝐷1(Δ𝐴; 𝛼) ∗ 𝐷2(Δ𝜃; 𝜙)                    (7) 

The final form of the optimization metric is shown in the 
following equation: 
                        𝑆𝑚𝑎𝑥 = maxΔ𝐴,Δ𝜃 Sα,ϕ(Δ𝐴, Δ𝜃)                         (8) 

The optimized Smax is found when the metric score is max-
imized with a given Δ𝐴 and Δ𝜃 values. 

3.2.2 Parameter Update 

The initial centroid and area of the bleb are given by the 
end user. Bleb centroid tells the algorithm about the region 
of interest. Bleb area is needed to calculate Δ𝐴 and Δ𝜃 for 
the segmentation parameters. The subsequent bleb cen-
troid and bleb area in a video sequence are generated au-
tomatically. The bleb centroid of the next frame is the cen-
troid of the current detected bleb region [22]. Moreover, 
the assumption of smooth/gradual transition between 
consecutive frames is made for bleb formation processes. 
The detected bleb at each frame is a region where the op-
timal parameters of a segmentation method that maxim-

 

Fig. 5. Overview of the proposed system. 
  

TABLE 2  
 MODELED DISTRIBUTIONS: PARAMETERS AND MSE 

Parameters and MSE for 𝚫𝐀 Distribution 

Parameters Exp. Gauss. Log. Poisson Rayleigh Gamma 

A 61.810 61.810 2.617 61.810 103.134 0.431 

B 'NA' 132.356 2.983 'NA' 'NA' 143.288 

MSE 1.07E-03 1.43E-03 9.48E-04 2.10E-03 1.77E-03 9.29E-04 

Parameters and MSE for 𝚫𝜽 Distribution 

Parameters Exp. Gauss. Log. Poisson Rayleigh Gamma 

A 19.474 19.474 0.970 19.474 31.116 0.338 

B 'NA' 39.535 4.369 'NA' 'NA' 57.574 

MSE 4.29E-03 6.25E-03 4.11E-03 8.80E-03 8.31E-03 3.60E-03 

Note: A and B → parameters for each model distribution;  

MSE → mean squared error; Bold → best result ; Exp. → Exponential;   

Gauss. → Gaussian; Log. → Lognormal;  NA → not applicable. 
 

 

https://www.researchgate.net/publication/246780128_MathWorld-A_Wolfram_Web_Resource?el=1_x_8&enrichId=rgreq-4ac9e6222eae40021308aa162bbac686-XXX&enrichSource=Y292ZXJQYWdlOzI4MjEyNzQ5NTtBUzoyODE5MjAxNjEyMzkwNDBAMTQ0NDIyNjQxMzA1Mg==
https://www.researchgate.net/publication/24392845_Digital_Image_Processing_Third_Edition?el=1_x_8&enrichId=rgreq-4ac9e6222eae40021308aa162bbac686-XXX&enrichSource=Y292ZXJQYWdlOzI4MjEyNzQ5NTtBUzoyODE5MjAxNjEyMzkwNDBAMTQ0NDIyNjQxMzA1Mg==
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ized the bio-inspired optimization metric which is de-
scribed in equation (8). Equation (8) uses the modeled dis-
tributions as shown in Fig. 6 to calculate the scores for the 
segmentation parameters. When the maximum score is 
found, the estimated bleb centroid and current bleb area 
for the next frame are updated. The output of the method 
for a video is a sequence of binary masks of the detected 
blebs. 

3.3 Segmentation Methods Compared 

In this section, we explain each segmentation method in 
detail and show how bio-optimization is achieved. We 
also provide Table 3 which summarizes the search range 
for each optimization parameter. 

3.3.1 Region Growing  

Region growing is a region based segmentation method. It 
starts with an initial seed point and iteratively evolves its 
region by evaluating its region’s neighboring contour. It 
groups the contour pixels based on a similarity threshold. 
The contour pixels are grouped into the region if the simi-
larity between the pixel and region feature is less than a 
threshold. As a result, the performance of the region 
growing method depends on the selection of the thresh-
old. In the bio-optimized region growing approach, the 
threshold is an adaptive parameter that is needed to be 
found. The search range for the optimal threshold in the 
bio-optimized region growing is from 0 to 1 with stepsize 
0.01.  

3.3.2 Normalized Cut  

Normalized cut is a graph based approach. It considers each 
pixel as a vertex and edge as a connection weight between 
pixels. The main objective of this approach is to minimize 
the disassociation between the groups while maximizing 
the association within the groups. The number of possible 
groups is determined by the end user. As a result, the 
number of possible groups in an image is the adaptive 
parameter in the bio-optimized normalized cut. Since the 
bleb is the foreground and the rest of the image is the 
background, we have at least two components in the im-
age. Based on observation, each frame consists of five dif-
ferent regions: 1) background; 2) cell body; 3) halo; 4) bleb; 
5) debris or part of neighboring cell. Since the image con-
tains these five basic regions, the number of expected re-
gions is five under ideal condition. With the consideration 
of the worst case scenario, we double the number of pos-
sible components in an image.  Therefore, the search range 
is set to be 2 to 10 components. 

3.3.3 Meanshift  

Meanshift method is a density based approach. It has two 
parameters: spatial and range bandwidths. It also requires 
the minimum size of a region. In this paper, the minimum 
size of a region is set to be 60 pixels which is the smallest 
recognizable bleb. The spatial range determines the size of 
the search window that computes the meanshift. The 
range bandwidth determines the window size that is used 
to compute the feature. In this paper, the optimization 
search range for the spatial bandwidth is from 1 to 8 and 
the range bandwidth is from 1 to 8. 

3.3.4 Watershed  

Watershed is a topological based method. It is often applied 
on a gradient image. It partitions the image into two dif-
ferent sets: catchment basins and watershed line. The wa-
tershed method floods the topographic surface of a gradi-
ent image from its regional minima. It builds watershed 
lines to prevent waters in different catchment basins from 
merging. In this paper, the gradient image is the Euclidean 
distance transform of the marker image. The marker im-

TABLE 3 
 OPTIMIZATION PARAMETERS AND RANGES 

Method Optimizing Parameters Range of Optimization 

Region Growing Similarity coefficient threshold 0 to 1 with step 0.01 

NCUT Number of clusters 2 to 10 with step 1 

Meanshift 

Spatial bandwidth 1 to 8 with step 1 

Range bandwidth 1 to 8 with step 1 

Watershed  Suppressing value/threshold 1 to 254 with step 1 

 

Fig. 6. Modeled fitting for (a) Δ𝐴 distribution and (b) Δ𝜃 distribution are Gamma. (Δ𝐴 and Δ𝜃 are derived from both expansion and retraction 
datasets.) 

  



6 IEEE TRANSACTIONS ON BIOMEDICAL AND HEALTH INFORMATICS,  MANUSCRIPT ID 

 

age (binary image) is obtained with the extended mini-
mum of the original image [19].  The extended minimum 
approach depends on the suppressing value to binarize 
the image. Therefore, the suppressing value is the adap-
tive parameter for the bio-optimized watershed. Since the 
image is an 8 bit image, the search range for the optimal 
suppressing value is from 1 to 254.  

3.4 Summary of the Proposed Algorithm 

Algorithm 1 Bleb extraction in video 

Input: 𝑉 is a video with a total 𝐹 number of frames. 𝐵𝑐𝑒𝑛𝑡  
and 𝐵𝑎𝑟𝑒𝑎 are given bleb centroid and area initially. 
Output: 𝑅 is a sequence of binary masks of blebs. 

1: procedure BlebExtraction(𝑉, 𝐵𝑐𝑒𝑛𝑡  , 𝐵𝑎𝑟𝑒𝑎) 
2: Set frame index 𝑓 to 1. 
3: Perform segmentation with different segmentation 

parameters on 𝑓𝑡ℎ video frame, 𝑉(𝑓). 
4:  Obtain optimal parameters/segmentation result by 

equation (8) 
5: Save optimal segmentation result to 𝑅(𝑓) 
6: Update estimated 𝐵𝑐𝑒𝑛𝑡  and 𝐵𝑎𝑟𝑒𝑎 with 𝑅(𝑓) 
7: Increment frame index 𝑓 by 1. 
8: Repeat steps 3 to 7 until index 𝑓 > 𝐹 
9:  Output segmentation result  𝑅. 

10: end procedure 

To further explain the segmentation block as shown in 
Fig. 5, a flow chart of segmentation is provided in Fig. 7. 
It shows a general process of segmentation with a set of 
parameters for a single bleb. 

4 EXPERIMENTAL RESULTS 

4.1 Data 

All time lapse videos were obtained with a BioStation IM 
[23] [24]. The frames in the video are phase contrast imag-
es. The videos were acquired using 20x objective with 600 
x 800 resolution. Each video frame is acquired at 2 seconds 
time interval. For this experiment, we have 26 expansion, 
30 retraction, and 9 full bleb formation videos which are 
cropped randomly from the BioStation’s raw videos. A 
total of 692 frames are in the 65 videos. The Δ𝐴 and Δ𝜃 
distributions are derived from the first 13 expansion and 
15 retraction videos. The remaining 13 expansion, 15 re-
traction and 9 full bleb formation videos are used as the 
testing dataset. The ground-truth for all videos was gener-
ated manually by expert biologists.  

4.2 Parameters 

4.2.1 Segmentation Parameters of Standard 
Algorithms 

The conventional segmentation parameters are identified 
individually by a receiver operating characteristic (ROC) 
curve [25]. Fig. 8 shows the ROC curves for four different 
segmentation methods. The training frames are obtained 
from the first frame of each 28 experimental videos. The 
optimal point is the maximum true positive rate within 
the range of 0 to 0.4 false positive rates. Based on the 
ROC, we determined that the region growing’s optimal 
similarity threshold is set to be 0.15. For the normalized 
cut method, the optimal number of components is 2. For 
meanshift, optimal range and spatial bandwidths are 1 
and 3. Its minimum region criterion is set to 60 pixels 
which is the smallest recognizable bleb size. For water-
shed, the optimal suppressing value is 115. 

4.2.2 Parameters for the Proposed Method 

For the proposed method, the first bleb area and center 
were needed initially for each video sequence and were 
provided by the end user. The modeled distribution pa-
rameters are also required for the bio-inspired optimiza-
tion metric. Since Δ𝐴  and Δ𝜃 distributions are best fitted 
by Gamma distribution with different parameters, we 
uses their optimal parameters in the optimization metric. 

 

Fig. 7. Flowchart for segmentation  

Fig.8. ROC plot for (a) Region growing, (b) normalized CUT, (c) meanshift, (d) watershed. 
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Δ𝐴 distribution is modeled as Gamma distribution with 
parameters 𝐴𝐺𝐴𝑀 and 𝐵𝐺𝐴𝑀 equal to 0.431 and 143.288. Δ𝜃 
distribution is also modeled as a Gamma distribution 
with parameters 𝐴𝐺𝐴𝑀 and 𝐵𝐺𝐴𝑀 equal to 0.338 and 57.574. 
The aforementioned model parameter values are used in 
equations (7) and (8).  

There are two different types of parameters that need 
to be considered for our approach: (a) the parameters of 
the optimization metric and (b) the range of parameters of 
the selected segmentation method. For the optimization 
metric parameters, the parameter sensitivity depends on 
the size and the quality (independent samples, image 
quality, etc.) of the representative dataset. Typically, a 
larger training dataset can better generalize the parame-
ters in the optimization metric. For each segmentation 
method, the range of parameter values depends on the 
method and the characteristics of video frames. For this 
paper, a detailed discussion is provided in Subsections 3.3 
and 4.2 to determine the parameter range for each seg-
mentation method. This range provided good segmenta-
tion results for the videos used in this paper. 

4.3 Performance Measures 

For comparison, we use methods suggested by Shattuck et 
al. [25][26]. Our comparison metrics are Jaccard similarity 
(JAC), Dice coefficient (DIC), sensitivity (SEN), specificity 
(SPC) and balanced accuracy (BAC). The JAC is a measure of 
similarity between experimental results and the ground-truth. 
The DIC is the measure of the agreement between experi-
mental results and ground-truth. The SEN is a measurement 
of the proportion of actual positives which are correctly identi-
fied. The SPC measures the proportion of the actual negatives 
which are correctly identified. Moreover, the true positive rate 
(TPR) is equivalent to SEN, and the false positive rate (FPR) is 
same as SPC subtracted from 1.  The BAC is an average of 
SEN and SPC. The equation for each metric is shown below: 

                                 𝐽𝐴𝐶 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃+𝐹𝑁)
                                 (9) 

                             𝐷𝐼𝐶 =  
2𝑇𝑃

(2𝑇𝑃+𝐹𝑃+𝐹𝑁)
                              (10) 

                               𝑆𝐸𝑁 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                   (11) 

                                    𝑆𝑃𝐶 =  
𝑇𝑁

(𝐹𝑃+𝑇𝑁)
                                  (12) 

                               𝐵𝐴𝐶 =  
𝑆𝐸𝑁+𝑆𝑃𝐶

2
                                 (13) 

The variables are defined as follows: 1) true positive (TP), 
2) true negative (TN), 3) false positive (FP) and 4) false 
negative (FN). TP indicates the overlapped region of the 
detected bleb’s binary mask and the bleb ground-truth’s 
binary mask. TN is the overlapped region of the detected 
background’s binary mask and the background ground-
truth’s binary mask. FP is the detected background’s bina-
ry mask that is falsely identified as part of the bleb region. 
FN is the detected bleb’s binary mask that is falsely identi-
fied as part of the background. 

4.4 Segmentation Results 

4.4.1 Qualitative Results 

The bio-inspired optimization on all segmentation meth-
ods, combined bio-optimized method, has better perfor-
mance on average than other methods as shown in Fig. 9.  
All bio-optimized methods have segmentation results 
closer to the ground-truth. Since the segmentation with 
the bio-optimized methods is constrained by the bio-
optimization metric, over-segmentation was less signifi-
cant than the conventional methods.  

4.4.2 Quantitative Results 

The segmentation methods with the bio-inspired optimi-
zation outperformed all conventional segmentation 
methods in this paper. The conventional meanshift with 
fixed parameters outperforms the other conventional 
segmentation methods. Based on average mean JAC and 
average mean DIC of the three datasets, the bio-
optimized meanshift outperformed the conventional 
meanshift by more than 12%. In addition, all other bio-
optimized methods outperformed their conventional 
counterparts by at least 5% in both mean JAC and mean 
DIC. The mean JAC and mean DIC performances for each 
dataset are shown in Table 4.   

 
Fig.9. Visual comparisons of four different blebs with results from (a) expansion process and (b) retraction process. (Note that frames from 
two sets of videos are used in the figure: expansion and retraction videos.  Expansion results are outlined in blue and retraction results are 
outlined in red. ) 

https://www.researchgate.net/publication/12030487_Magnetic_Resonance_Image_Tissue_Classification_Using_a_Partial_Volume_Model?el=1_x_8&enrichId=rgreq-4ac9e6222eae40021308aa162bbac686-XXX&enrichSource=Y292ZXJQYWdlOzI4MjEyNzQ5NTtBUzoyODE5MjAxNjEyMzkwNDBAMTQ0NDIyNjQxMzA1Mg==
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The top four performers based on the average mean 
JAC and average mean DIC of the three datasets are 
ranked as combined bio-optimized method, bio-
optimized region growing, bio-optimized meanshift and 
bio-optimized watershed. Table 5 shows corresponding 

average mean JAC and average mean DIC for the afore-
mentioned top performers. The combined bio-optimized 
method is the best performer in all datasets. The com-
bined bio-optimized method also has 79.19% in average 
mean BAC which is the best overall performance in all 

TABLE 4 
RESULTS ON EXPERIMENTAL DATA (NOTE ALL VALUES ARE IN PERCENTAGE) 

Results on Expansion Videos 

Metric JAC DIC SEN SPC 

Method Min Max Std Mean Min Max Std Mean Min Max Std Mean Min Max Std Mean 

Region Growing 2.02 77.96 26.42 21.92 3.95 87.61 29.36 30.16 68.75 99.86 9.27 84.09 3.00 99.97 40.49 49.04 

Region Growing* 43.22 80.69 12.97 60.11 60.35 89.31 10.12 74.33 43.22 81.18 12.59 63.73 95.56 100.00 1.38 99.44 

NCUT 1.97 62.11 20.49 21.75 3.86 76.62 25.05 31.87 58.87 100.00 15.24 78.43 2.86 100.00 35.73 61.18 

NCUT* 9.58 62.07 20.16 42.90 17.48 76.59 21.97 57.19 55.17 83.62 9.14 67.71 85.61 100.00 5.12 95.48 

Meanshift 2.57 69.74 20.84 39.78 5.01 82.18 23.74 53.68 46.25 73.55 8.89 60.95 35.84 100.00 17.58 90.94 

Meanshift* 29.83 73.70 13.67 55.24 45.95 84.86 12.02 70.19 29.89 77.36 14.63 58.62 96.93 100.00 0.82 99.59 

Watershed 3.89 61.10 18.21 21.99 7.50 75.85 22.37 32.99 43.11 100.00 18.61 76.91 23.51 98.77 22.81 73.91 

Watershed* 27.55 73.99 15.17 45.99 43.20 85.05 14.00 61.67 27.55 78.63 17.69 51.14 96.21 100.00 1.16 99.14 

Combined* 45.06 78.87 9.05 60.68 62.13 88.18 7.05 75.17 48.12 81.18 9.76 65.30 96.30 100.00 0.99 99.54 

Results on Retraction Videos 

Metric JAC DIC SEN SPC 

Method Min Max Std Mean Min Max Std Mean Min Max Std Mean Min Max Std Mean 

Region Growing 4.68 32.64 8.39 12.78 8.94 49.22 12.36 21.80 63.59 98.30 8.97 81.43 4.71 86.57 30.18 53.22 

Region Growing* 15.21 74.55 14.86 57.26 26.41 85.42 14.65 71.54 37.82 74.57 9.63 62.31 76.12 100.00 6.12 98.22 

NCUT 2.69 16.66 4.15 10.95 5.24 28.57 6.85 19.50 66.24 100.00 11.66 84.78 5.78 82.21 22.09 51.10 

NCUT* 14.30 62.62 13.31 43.20 25.03 77.01 13.98 59.13 47.47 86.69 11.76 62.90 78.70 99.95 6.67 95.51 

Meanshift 4.82 70.87 20.30 42.23 9.21 82.95 21.73 56.52 41.91 76.04 10.12 59.96 77.12 100.00 6.74 95.34 

Meanshift* 41.63 73.77 9.22 58.30 58.78 84.90 7.53 73.25 46.53 76.84 7.99 60.97 99.02 100.00 0.28 99.77 

Watershed 5.73 49.89 14.23 22.22 10.83 66.57 18.07 34.40 32.34 94.16 19.34 62.27 53.77 98.63 15.08 82.52 

Watershed* 26.62 68.73 13.41 47.59 42.04 81.47 12.84 63.40 28.08 78.80 15.09 52.63 97.83 100.00 0.75 99.21 

Combined* 41.63 73.77 9.42 59.92 58.78 84.90 7.60 74.52 49.48 82.05 10.41 65.73 96.35 100.00 1.00 99.32 

Results on Full Bleb Formation Videos 

Metric JAC DIC SEN SPC 

Method Min Max Std Mean Min Max Std Mean Min Max Std Mean Min Max Std Mean 

Region Growing 1.25 21.45 6.60 5.07 2.47 35.33 10.78 9.05 62.65 91.32 8.55 78.76 2.83 96.43 33.70 55.73 

Region Growing* 9.71 55.08 13.71 40.79 17.70 71.03 16.15 56.56 11.45 55.28 13.11 41.94 99.60 100.00 0.13 99.93 

NCUT 1.44 4.08 0.84 2.49 2.85 7.85 1.60 4.84 87.05 100.00 4.55 97.22 1.43 77.52 19.56 45.31 

NCUT* 1.47 36.22 15.49 16.95 2.89 53.18 22.62 26.33 50.05 99.67 21.48 73.29 1.43 99.53 35.23 71.28 

Meanshift 3.57 48.78 17.02 37.46 6.90 65.58 21.82 52.10 16.04 56.30 12.18 47.85 83.05 99.93 5.57 97.90 

Meanshift* 11.15 55.79 13.02 43.33 20.06 71.62 15.36 59.23 14.02 56.62 12.54 44.46 99.42 100.00 0.19 99.92 

Watershed 2.81 64.93 20.20 17.24 5.47 78.74 24.10 25.75 19.48 88.07 19.07 64.57 76.63 99.77 8.44 90.86 

Watershed* 13.52 58.35 19.19 33.97 23.82 73.70 21.17 48.03 17.72 69.68 20.19 37.56 98.08 100.00 0.62 99.71 

Combined* 11.15 55.79 13.14 44.07 20.06 71.62 15.51 59.92 14.02 56.62 12.62 45.24 99.42 100.00 0.19 99.92 

* denotes a bio-optimized method and bold denote the top four performers. Combined* denotes optimization on all four segmentation 
methods.  
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three experimental datasets. The combined bio-
optimized’s average mean BAC shows that at least 79% of 
bleb and background regions can be accurately retrieved. 

To determine the statistical significance of the top four 
performers (combined*, region growing*, meanshift*, and 
watershed*) as shown in Table 5, a t-test with 5% signifi-
cant level for the combined* method against the other 
three top performers (region growing*, meanshift* and 
watershed*) is carried out. The t-test was done for DIC 
measure. We found that the bio-optimized combined 
method failed to reject the null hypothesis for the bio-
optimized region growing and bio-optimized meanshift 
methods. However, the null hypothesis was rejected for 
the bio-optimized watershed method. The acceptance of 
the null hypothesis was due to the fact that the combined* 
approach favored one individual segmentation method in 
some experiments. Therefore, it essentially yields the 
same solution as a particular segmentation method. 

Based on Table 4, the bio-optimized methods generally 
have lower average standard deviation (Std) in both JAC 
and DIC measures than their counterparts with exceptions 
of bio-optimized NC and bio-optimized RG. The conven-
tional NC and RG have consistent lower performances in 
both JAC and DIC for all three datasets. Since the cell and 
the bleb are dynamically changing over time, adaptive 
parameters that are found with the bio-optimized metric 
improves the performance and consistency of the segmen-
tation methods significantly. The fixed parameters in the 
conventional segmentation methods are not sufficient to 
handle the blebbing sequence where the bleb’s image 
properties change over time.  

Due to the bio-optimized metric, the bio-optimized 
segmentation methods did not suffer from severe over-
segmentation. The bio-optimized segmentation methods’ 
solutions are bounded by the bio-optimized metric. There-
fore, the bio-optimized segmentation methods have higher 
performance for the blebbing sequence than the conven-

tional segmentation methods.  The constant parameters in 
the conventional segmentation approaches are the cause 
for their low performance. The proposed methods with 
adaptive parameters are able to capture the local region of 
the bleb more accurately.  

4.5 Discussion 

4.5.1 Effect of Model Parameters on Performance 

The parameters that characterized the Δ𝐴 and Δ𝜃 distribu-
tions are essential in the optimization process. Inaccurate 
model parameter values might lead to either under-
segmentation or over-segmentation of the bleb. As a re-
sult, the model parameters found through model fitting 
are important for equation (7) which yields a score for 
each element in a set of segmentation parameters.  

4.5.2 Effect of Bleb and Cell Sizes on Performance 

The bleb and cell body size are important for the perfor-
mance in the optimization process. There are three types 
of small blebs that have poor performance in the proposed 
method: 

1. Small blebs due to smaller cell (typically a small 
bleb has roughly 240 pixels or less). 

2. Small blebs at the initial stage of the expansion. 
3. Small blebs at the final stage of the retraction. 

The smaller blebs for any process are not fully developed 
and often have similar intensity and texture as the cell 
body. Therefore, over-segmentation is bound to happen if 
the cell body and its bleb share similar image properties. 
The proposed method yields a lower value in comparison 
metric for small blebs. However, larger cells with larger 
blebs often perform better. A typical large bleb has 1700 or 
more pixels.  

4.5.3 Automation in Segmentation  

The bio-optimized segmentation method is a semi-
automated approach in which the initial bleb centroid and 
area is given by the user in the first frame.  Automation is 
done on the subsequent frames in a video for the optimal 
segmentation result with equation (8). However, it still 
alleviates the biologist’s burden from complete manual 
extraction of bleb in video for analysis. The proposed 
yields bleb area distribution and provides the bleb bound-
ary over time. It is a useful data mining approach to help 
biologist quantify analyses on dynamic and apoptotic 
blebbing behavior. 

4.5.4 Time Complexity 

Since the proposed method was an iterative optimization 
process, it yielded higher time complexity for all bio-
optimized segmentation methods. The best performer 
among the bio-optimized segmentation methods was the 
combined bio-optimized method. However, it required an 
average of 36.14 seconds to process a single frame as 
shown in Table 6. The bio-optimized meanshift was the 
only bio-optimized method with the lowest time complex-
ity. The tradeoffs between the bio-optimized meanshift 
and combined bio-optimized method were performance 
and time complexity. The experiments were done on a 

TABLE 5 
 TOP FOUR PERFORMERS 

Measure Combined* 
Region 

 Growing* 
Meanshift* Watershed* 

Average  

Mean JAC 54.89% 52.72% 52.29% 42.52% 

Average  

Mean DIC 69.87% 67.48% 67.56% 57.70% 

Average 

Mean BAC 79.17% 77.59% 77.22% 73.23% 

* denotes a bio-optimized method, and bold denotes best performance. 

TABLE 6 
 COMPUTATIONAL TIME STATISTICS PER FRAME IN SECONDS  

Method Min Max Mean Std 

Region Growing 0.02 1.39 0.32 0.35 

Region Growing* 2.42 38.52 12.52 11.99 

NCUT 0.29 4.81 1.74 1.48 

NCUT* 2.36 47.56 16.49 14.18 

Meanshift 0.02 0.17 0.06 0.05 

Meanshift* 0.33 3.86 1.22 1.13 

Watershed 0.01 0.05 0.02 0.01 

Watershed* 1.67 12.79 4.85 3.28 

Combined* 6.61 122.54 36.14 35.07 

* denotes a bio-optimized method. 

Z. Zhu and D. Huangfu, "Human pluripotent stem cells: an emerging 
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laptop with an Intel(R) Core™ 2 DUO CPU processor that 
run at 2.53 GHz. 

5 CONCLUSIONS 

The bio-optimized segmentation methods have better per-
formances than their conventional counterparts. Their 
high performance shows the modeled distributions is sig-
nificant for segmenting blebs in videos. With the bio-
inspired optimization metric, low performance due to 
over-segmentation is reduced. However, the segmentation 
method might not generate an ideal/exact solution to op-
timize the metric tightly due to the fact that a bleb has sim-
ilar image properties to its cell body. The over-
segmentation in the approach is the inability of the seg-
mentation method to discern the bleb from its cell body.  

In terms of biological contribution, this paper intro-
duces a new concept that the bleb formation/retraction 
process can be used as a biological indicator of cell health. 
Healthy cells retract their blebs back to the cell body, while 
non-healthy cells do not retract them or retract them slow-
ly.  In terms of a computational contribution, this paper 
suggests a bio-inspired optimization metric to segment 
bleb regions. We introduced an approach to improve bleb 
detection accuracy by using adaptive parameters instead 
of using constant parameters for all bleb frames in a video.  
The proposed segmentation methods with adaptive pa-
rameters found by the bio-inspired optimization metric 
has consistently higher performance. In the future work, 
we will consider incorporating shape prior information in 
our approach for accurate bleb detection [27][28]. Shape 
prior will introduce shape variability consideration in our 
approach [27]. 

This work can be used by biologists to evaluate the 
state of health of hESC in culture in various experimental 
conditions. It could be valuable in drug screening and in 
toxicological studies where short times to an endpoint are 
desirable, as well as resource and time saving. It may be 
adaptable in the future to high throughput screening of 
chemicals and drugs that need to be evaluated for embry-
otoxicity.  
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