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Polymorphic alleles in the apolipoprotein E (APOE) gene are the main genetic

determinants of late-onset Alzheimer’s disease (AD) risk. Individuals carrying the APOE

E4 allele are at increased risk to develop AD compared to those carrying the more

common E3 allele, whereas those carrying the E2 allele are at decreased risk for

developing AD. How ApoE isoforms influence risk for AD remains unclear. To help fill this

gap in knowledge, we performed a comparative unbiased mass spectrometry-based

proteomic analysis of post-mortem brain cortical tissues from pathologically-defined AD

or control cases of different APOE genotypes. Control cases (n = 10) were homozygous

for the common E3 allele, whereas AD cases (n = 24) were equally distributed

among E2/3, E3/3, and E4/4 genotypes. We used differential protein expression and

co-expression analytical approaches to assess how changes in the brain proteome are

related to APOE genotype. We observed similar levels of amyloid-β, but reduced levels

of neurofibrillary tau, in E2/3 brains compared to E3/3 and E4/4 AD brains. Weighted

co-expression network analysis revealed 33 modules of co-expressed proteins, 12 of

which were significantly different by APOE genotype in AD. The modules that were

significantly different by APOE genotype were associated with synaptic transmission

and inflammation, among other biological processes. Deconvolution and analysis of

brain cell type changes revealed that the E2 allele suppressed homeostatic and

disease-associated cell type changes in astrocytes, microglia, oligodendroglia, and

endothelia. The E2 allele-specific effect on brain cell type changes was validated in a

separate cohort of 130 brains. Our systems-level proteomic analyses of AD brain reveal

alterations in the brain proteome and brain cell types associated with allelic variants in

APOE, and suggest further areas for investigation into the upstream mechanisms that

drive ApoE-associated risk for AD.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of
dementia and affects millions of people worldwide (Prince et al.,
2015), yet the biological basis of the disease remains poorly
understood. Genetic analysis of late-onset AD has uncovered
a number of single nucleotide polymorphisms (SNPs) that are
associated with risk for the disease, but by far the strongest
risk factor on a population level is genetic variation in the
apolipoprotein E (APOE) gene (Strittmatter et al., 1993; Corder
et al., 1994; Lambert et al., 2013). APOE is present in three
common alleles within humans: ε2 (E2), ε3 (E3), and ε4 (E4). The
E3 allele is themost common, with an allele frequency of 70–80%,
while E2 and E4 are less common, with allele frequencies of 5–
10% and 10–15%, respectively (Mahley and Rall, 2000). APOE E4
and E2 modify risk for AD. One E4 allele increases the relative
odds to develop AD by 3.2, whereas two alleles increases the odds
to 14.9. Consequently, E4 is present in 65–80% of all AD cases.
The presence of an E2 allele lowers the odds to develop AD to 0.6
(Corder et al., 1994; Farrer et al., 1997). A number of hypotheses
have been proposed to explain how the ApoE protein influences
risk for AD, including effects on lipid metabolism, amyloid-β
metabolism, mitochondrial function, cerebrovascular integrity,
and inflammation (Huang, 2010; Verghese et al., 2011; Tai et al.,
2016; Zhao et al., 2018). However, the mechanism(s) by which
allelic variation in the APOE gene influences AD risk remains
unclear.

Unbiased proteomic analysis of AD brain can yield insights
into pathophysiological changes associated with the disease,
and has yielded insights into alterations in individual proteins,
groups of co-expressed proteins, biological processes, and cell
type changes that are associated with AD (Seyfried et al.,
2017). We recently described proteomic analyses of post-mortem
brains from patients with AD, asymptomatic AD (AsymAD),
and controls (Seyfried et al., 2017; Johnson et al., 2018).
We found protein co-expression changes that correlated with
both cognition and AD pathology, and were associated with
AD risk loci identified by genome-wide association studies
(GWAS). Many of the co-expression changes we identified
were distinct from mRNA changes generated from a separate
AD post-mortem brain cohort, suggesting that transcriptomic
and proteomic analyses can generate both complementary and
unique information. Many of these alterations were also strongly
associated with glial biology, suggesting that glial activation is an
important feature of AD progression and cognitive decline.

In this study, we used unbiased mass spectrometry-based
proteomics to analyze the proteomes of 34 post-mortem control
and AD brains of different APOE genotypes to better understand
the brain proteomic changes associated with variation in the
ApoE protein. We found that while there was no difference in
amyloid-β burden among the APOE genotypes studied, E2/3
was associated with a lower tau burden compared to E3/3 and
E4/4 AD cases. Protein co-expression analysis revealed that
ApoE strongly correlated with modules involved in metabolism,
peptidase activity, inflammation, and synaptic activity, and E2/3
was associated with less severe alterations in these protein
coexpression modules. ApoE E2/3 also demonstrated resilience

to “homeostatic” and “disease-associated” cell type changes
across a number of different brain cell types—a finding that
was replicated in a separate cohort of 130 brains. Collectively,
these findings indicate that APOE variation impacts proteomic
network and cell type-specific phenotypes in brain tissue.

MATERIALS AND METHODS

Tissue Samples
Brain tissues used in the primary analysis were obtained from
the autopsy collection of the Emory Alzheimer’s Disease
Research Center (ADRC) Brain Bank, and tissues used in the
validation analysis were obtained from the Banner Sun Health
Research Institute Brain Bank. Human postmortem tissues
were acquired under proper Institutional Review Board (IRB)
protocols with consent from family. In the Emory cohort,
postmortem neuropathological evaluation of amyloid plaque
distribution was performed according to the Consortium to
Establish a Registry for Alzheimer’s Disease (CERAD) criteria
(Mirra et al., 1991) while extent of spread of neurofibrillary
tangle pathology was assessed in accordance with the Braak
staging system (Braak and Braak, 1991). Clinical and pathological
information on all cases including disease status,APOE genotype,
neuropathological criteria, age, sex, and post-mortem interval
is provided in Supplementary Tables 1, 2. For the validation
analysis, brain tissues were purchased from the Banner Sun
Health Research Institute. A description of these tissues is
provided in Supplementary Table 4 and Supplementary Data.
Measures of AD pathology were derived in the Banner cohort as
previously described (Beach et al., 2015).

Tissue Homogenization and Protein
Digestion
Each piece of tissue was individually weighed (∼80mg) and
homogenized in 500 µL of urea lysis buffer (8M urea, 100mM
NaHPO4, 10mM Tris, pH 8.5), including 5 µL (100× stock)
HALT protease and phosphatase inhibitor cocktail (Thermo
Scientific, Catalog #1861282), essentially as previously described
(Seyfried et al., 2017). Homogenization was performed using a
Bullet Blender (Next Advance) according to the manufacturer’s
protocols. Each tissue piece was added to urea lysis buffer in
a 1.5 µL Rino tube (Next Advance) that contained 750mg
stainless steel beads (0.9–2mm diameter) and homogenized
twice for 3min periods at 4◦C. Homogenates were centrifuged
for 5min at 5,000 × g at 4◦C, and the resulting supernatant
transferred into 1.5mL Eppendorf tubes and sonicated (Sonic
Dismembrator, Fisher Scientific) three times (5 s, 30% amplitude,
12 s intervals between each sonication period), as previously
reported (Seyfried et al., 2017; Umoh et al., 2018). Protein
concentration was assessed using the bicinchoninic acid (BCA)
method, and each homogenate was analyzed by SDS–PAGE
to assess protein integrity. Samples were stored at 80◦C. For
protein digestion, brain protein homogenates (100 µg) were
reduced with 1mM dithiothreitol (DTT) at 25◦C for 30min
and then alkylated using 5mM iodoacetamide at 25◦C for
30min in the dark. Protein samples were digested with 1:100
(w/w) LysC at 25◦C overnight, then diluted with 50mM
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NH4HCO3 to a final concentration of 1M urea and further
digested with 1:50 (w/w) trypsin overnight at 25◦C. The resulting
peptides were desalted with a Sep-Pak C18 column (Waters)
and then dried under vacuum using a SpeedVac concentrator
(Labconco).

Liquid Chromatography Coupled to
Tandem Mass Spectrometry (LC-MS/MS)
Protein digests (2µg) were resuspended in peptide loading buffer
(0.1% trifluoroacetic acid). Peptide mixtures were separated on
a self-packed C18 (1.9µm, Dr. Maisch, Germany) fused silica
column (50 cm × 75µm internal diameter; New Objective,
Woburn, MA) by an Ultimate 3,000 UHPLC (ThermoFisher
Scientific, San Jose, CA) and monitored on an Orbitrap FusionTM

TribridTM mass spectrometer (ThermoFisher Scientific, San Jose,
CA), as previously described (Umoh et al., 2018). Elution was
performed over a 150min gradient at a rate of 200 nL/min
with buffer B ranging from 1 to 99% (buffer A: 0.1% formic
acid in water, buffer B: 0.1% formic acid in acetonitrile). The
mass spectrometer was programmed in a 3 s cycle during
which the maximum number of data-dependent MS/MS scans
were acquired. The MS scans (300–1,500 m/z range, 200,000
AGC, 50ms maximum ion time) were collected at a resolution
of 120,000 at m/z 200 in profile mode and the MS/MS
spectra (1.5 m/z isolation width, 0.5 m/z offset, 30% HCD
collision energy, 10,000 AGC target, 35ms maximum ion time)
were acquired using the ion trap in rapid mode. Dynamic
exclusion was set to exclude previously sequenced precursor
ions for 20 s within a 10 ppm window. Mass spectrometry
analysis of the Banner cohort was performed on a Q-Exactive
Plus (ThermoFisher) as previously described (Seyfried et al.,
2017).

Database Search and Quantification
Emory and Banner cohort RAW data files were analyzed
separately using MaxQuant v1.6.0.1 and 1.5.3.30, respectively,
with Thermo Foundation 3.0 and 2.0 for RAW file reading
capability essentially as described (Seyfried et al., 2017) with
slight modifications. The MaxQuant-integrated search engine
Andromeda (Cox et al., 2011) was used to build and search a
concatenated target-decoy Uniprot human reference database.
The Uniprot database (downloaded 4/15/2015) included all
Swissprot-curated (canonical) plus Trembl (unreviewed)
sequences, totaling 90,411 FASTA sequence entries. Additional
entries for unique peptides from ApoE E2 and E4 allelic
gene products were included in the database. These were
LLRDADDLQKCLAVYQAGAREGAER (R158C) for E2 and
ELQAAQARLGADMEDVRGRLVQYR (C112R) for E4 alleles.
Several Aβ-specific entries for peptides resulting from cleavages
within the Aβ1-43 sequence were also included in the database.
Protein methionine oxidation (+15.9949 Da), protein N-
terminal acetylation (+42.0106 Da), and glutamine/asparagine
deamidation (+0.9840 Da) were variable modifications (up
to 5 allowed per peptide); cysteine was assigned a fixed
carbamidomethyl modification (+57.0215 Da). Only tryptic
peptides were considered, with up to 2 miscleavages per
peptide, in the database search. A precursor mass tolerance

of ±20 ppm was applied prior to mass accuracy calibration
and ±4.5 ppm after internal MaxQuant calibration. Other
search settings included a maximum peptide mass of 6,000
Da, a minimum peptide length of 6 residues, and 0.6 Da
tolerance for ion trap HCD MS/MS scans (Emory acquired
in the ion trap) or 0.05 Da for high-resolution MS/MS scans
(Banner acquired in the Orbitrap). The false discovery rate
(FDR) for peptide spectral matches, proteins, and site decoy
fraction were all set to 1%. The label-free quantitation (LFQ)
algorithm in MaxQuant was used for protein quantitation
as previously described (Luber et al., 2010; Cox et al., 2014).
To account for possible confounds in run time in the larger
Banner cohort, a brain peptide standard, generated from pooled
samples of homogenized brain, was included at different points
in the run set to control for drift over time and highlight
consistency in the protein measurements. Separate parameter
groups were specified for Banner peptide precursor borrowing
for LFQ within, but not across, four batches. To measure
Tau MTBR and N-terminal signals, a separate search was
performed using Proteome Discoverer 2.1 (ThermoFisher)
with previously published parameters (Ping et al., 2018). All
tau isoforms in the Uniprot human database were replicated
as new “deltaMTBR” entries with the MTBR removed, and a
separate entry for the MTBR encompassing residues 224–370
(of 441) in the Uniprot sequence (accession P10636-8) was
added. LFQ intensity for amyloid-β was determined using the
sum of MS1 chromatographic peak intensities for peptides
HDSGYEVHHQK and LVFFAEDVGSNK, multiplied by
the ratio of APP LFQ intensity divided by protein summed
intensity, as previously described (Seyfried et al., 2017). Missing
peptide-level measurements for these two peptides were imputed
as the lowest non-missing value for the case status group.
Protein abundance was determined by peptide precursor ion-
intensity measurements across LC-MS runs using the label-free
quantification (LFQ) algorithm in MaxQuant (Cox et al., 2014).
All raw data and searched Maxquant files for Emory and Banner
cohorts are deposited on Synapse (Emory Synapse ID 15623112,
doi: 10.7303/syn15623112; Banner Synapse ID 7170616, doi: 10.
7303/syn7170616).

Protein Filtering and Missing Data
Imputation
In total, 53,499 peptides mapping to 4,774 protein groups were
identified among Emory case samples, and 99,130 peptides
mapping to 5,711 protein groups were identified in the
Banner cohort. However, one limitation of data-dependent label-
free quantitative proteomics is missing quantitative measures,
especially for low abundance proteins (Karpievitch et al., 2012;
Seyfried et al., 2017). Thus, only those proteins quantified
in >50% of samples were included in the data analysis.
After filtering, and allowing up to <50% (16 of 34) missing
values across the LC-MS/MS runs, 4,382 unique proteins
were identified and robustly quantified in the Emory cohort,
and 3,710 unique proteins were identified and quantified in
the Banner cohort. The missing protein LFQ values were
imputed using the imputation algorithm of Perseus (Tyanova
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et al., 2016), where the Gaussian distribution of all log2-
transformed non-missing protein quantifications has a mean,
and 1.8 standard deviations less than this mean is considered
as the mean of imputed missing values ± random noise
distributed normally within 0.3 standard deviations, similar
to what has been previously described (Seyfried et al.,
2017).

Outlier Removal and Regression
Outlier removal was performed prior to data analysis using
an initial co-expression network connectivity-by-sample test,
where samples with connectivity 3 standard deviations below
the mean were removed, and the connectivity recalculated. This
process was repeated until no more outliers could be detected,
per Oldham’s “SampleNetworks” v1.06 R script (Oldham et al.,
2008) as previously described (Seyfried et al., 2017). Using this
approach, 2 ApoE E4/E4 cases were removed from the 34 cases
initially considered in the Emory cohort, and 9 of the 130 Banner
cases considered were removed (Supplementary Table 1 and
Supplementary Data).

Bootstrap regression on the remaining 32 (Emory) or 121
(Banner) -case LFQ intensity matrices was then performed,
explicitly modeling case status category while removing
covariation with age at death, gender, and post-mortem interval
(PMI). Regression was followed by principal component analysis
(PCA) of the expression data to confirm appropriate regression
of selected traits, both in the “SampleNetworks” graphical output
and via an in-house R script for PCA Spearman correlation to
the traits for all non-outlier cases, pre- and post-regression. PCA
visualized that the top five principal components had Spearman
correlation rho <0.3 with any of these three regressed covariates,
and <0.02 after regression.

Co-expression Network Analysis
A weighted protein co-expression network analysis
(WPCNA) was performed using the pre-processed protein
abundance matrix by following previously described
procedures for WGCNA (Seyfried et al., 2017), and using
the WGCNA::blockwiseModules() function with the following
settings: soft threshold power beta= 8.0, deepsplit= 4, minimum
module size of 12, merge cut height of 0.07, signed network with
partitioning about medioids (PAM) respecting the dendrogram
and a reassignment threshold of p < 0.05. Specifically, the
WGCNA:blockwiseModules() function calculates pair-wise
biweight mid-correlations (bicor, a correlation metric robust
to outliers) between each protein pair and transforms that
matrix into a signed adjacency matrix (Langfelder and Horvath,
2012). The connection strength of components within this
matrix is used to calculate a topological overlap matrix
that represents measurements of protein expression pattern
similarity across the set of samples in the cohort constructed
on the pairwise correlations for all proteins within the network
(Yip and Horvath, 2007). Hierarchical protein correlation
clustering analysis by this approach is then conducted using
1-TOM, and initial module identifications are established
using dynamic tree cutting; all these steps are implemented in
the WGCNA::blockwiseModules() function (Langfelder and

Horvath, 2008). Module eigenproteins, which represent the
most representative abundance value for a module and which
explain co-variance of all proteins within a module (Miller et al.,
2013), were defined. Pearson correlations between each protein
and each module eigenprotein were performed; this module
membership measure is defined as kME.

Differential Expression Analysis
Differentially enriched or depleted proteins (p < 0.05) were
identified by ANOVA with Tukey’s test comparing the four
Emory clinical/genotype groups (n = 6 pairwise comparisons)
and the five Banner clinical/genotype groups (n = 10 pairwise
comparisons)(Umoh et al., 2018). Differential expression is
presented as volcano plots, which were generated with the
ggplot2 package in R and restricted to show only proteins arising
from expression of one of the genes in the cell type-specific
enrichment lists.

Determination of Cell Type Marker Groups
Cell type-enriched markers for four cell types (neurons,
oligodendrocytes, astrocytes, and microglia) were based on prior
quantitative thresholding of LFQ abundance proteomic data
from (Sharma et al., 2015), which resulted in comprehensive lists
of proteins that distinguished these cell types in prior analyses
we have performed (Seyfried et al., 2017). Here, we added to
these four cell types a fifth cell type list for endothelia (derived
from Tie2+ mouse brain-derived FACS-sorted cells) similarly
quantitatively thresholded in-house, but where quantitative data
originated from cell type-purified FPKM RNA-Seq data (Zhang
et al., 2014b) quantified and compared to FPKM of all other
purified brain cell types analyzed. Overlapping gene symbols
found in the four other protein-derived cell type marker lists
were removed from consideration as markers of those four
cell types. This resulted in new culled exclusive gene symbol
lists of 522 neuron, 411 oligodendroglia, 531 astrocyte, and 581
microglia cell type markers, and 1,149 endothelial markers, all
from mouse. Gene symbols were converted to human symbols
using the R biomaRt package (conversion against ensemble
database performed on June 15, 2018), resulting in 460, 360, 468,
533, and 1079 respective human marker gene symbols for these
five cell types.

Digital Sorting Algorithm for Cell Type
Proportion Analysis of Tissue Proteomes
Digital sorting of cell types was performed using the sample-
wise unregressed abundances of proteins collapsed to a single
measurement of maximum variance for each gene symbol in
the abundance matrix overlapping with the above gene symbol
lists, essentially as recently published (Johnson et al., 2018).
Specifically, the DSA::EstimateWeight package and function,
with method parameter set to “LM” (i.e., linear modeling), were
used to calculate sample-wise five cell type weights or proportions
of each sample (Zhong et al., 2013). Significance of changes
across APOE genotype plus control/AD status-defined groups—
independent of age, sex, and PMI effects—was then calculated as
a Kruskal-Wallis p value using the R pf function applied to F-
statistics, which were arrived at by summarization of the linear
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model of weights across samples after explicitly considering
group, age, sex, and PMI.

Synthetic Eigenprotein Calculations for
Differentially Expressed Cell Type Protein
Markers
After culling ANOVA-Tukey p value-based significant lists of
proteins to only include cell type markers as defined above
(repeated for each of the five cell types), proteins that were
significantly changed in AD ApoE 3/3 vs. control 3/3 cases were
divided into increasing and decreasing marker lists. Each sublist
of protein isoforms identified by volcano calculations was then
considered as a synthetic coexpression module definition and
passed to the WGCNA::moduleEigengenes weighted eigengene
calculator function, which calculated each synthetic eigenprotein
using the full regressed protein abundance matrix. The same
analysis was independently performed on sublists of proteins
defined by the same protocol in the Banner cohort. APOE
genotype plus control/AD status groups for case samples
represented in the synthetic eigenproteins were then plotted
with the R boxplot function. ANOVA was also performed for
all Tukey pairwise comparisons across groups of cases for each
eigenprotein.

Other Bioinformatic Analyses
Gene Ontology (GO) functional annotation of modules was
performed using GO-Elite 1.2.5 as previously published (Seyfried
et al., 2017; Umoh et al., 2018), with a minimum of five genes
per ontology, and a Fisher exact significance of p < 0.05, i.e.,
a Z-score >1.96. The background gene list for GO-Elite was all
proteins considered for the network analysis, including proteins
not assigned to a module (gray).

SDS-PAGE and Western Blotting
Total brain homogenates (30 µg) in urea were mixed with
Laemmli sample buffer and then resolved by SDS–PAGE using
10% or 4–12% Bolt Bis-Tris gels (Invitrogen) at 80V for 10min
followed by 160V for 35min. Proteins were transferred onto
nitrocellulose membranes (Invitrogen) using the iBlot 7min
dry transfer system (ThermoFisher Scientific). Membranes
were blocked with TBS StartingBlock buffer (ThermoFisher
Scientific) for 40min at room temperature, and then probed
overnight at 4◦C with primary antibodies diluted in TBS
StartingBlock buffer. Membranes were rinsed and incubated
with secondary antibodies for 45min at room temperature.
Primary antibodies were Tau-5 (Invitrogen, MA5-12808, 1:1,000
dilution) and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (Abcam ab8245, 1:2,000), which was used as a
loading control. The corresponding secondary antibodies were
Alexa Fluor790 donkey anti-mouse IgG (H+L) (Invitrogen)
(Invitrogen, A11371, 1:20,000) and Alexa Fluor680 goat anti-
mouse IgG (H+L) (Invitrogen, A21058, 1:20,000). Membranes
were imaged using an Odyssey Infrared Imaging system
(LiCor Biosciences).

RESULTS

ApoE 2/3 AD Brains Contain Similar Levels
of Aβ but Less Tau Than E4/4 AD Brains
We analyzed dorsolateral prefrontal cortex (DLPFC) from 34
Alzheimer’s disease (AD) cases and controls with different ApoE
genotypes from the Emory Brain Bank (Supplementary Table 1)
by mass spectrometry-based proteomics. Our ApoE control and
AD case groups were age-matched (Supplementary Table 2)
to control for potential age-related brain proteome changes.
Using “single-shot” label-free quantification (LFQ-MS), we
were able to quantify the levels of 4,382 proteins across the
experimental cohort. We first compared the levels of amyloid-β
among ApoE genotypes based on quantification of the Aβ6−16

and Aβ17−28 peptides, which we have previously shown is a
reliable marker for levels of amyloid-β and amyloid plaques
as assessed by histopathology (Seyfried et al., 2017; Johnson
et al., 2018). We did not observe a difference in the levels of
amyloid-β by ApoE genotype in AD, although a few ApoE 2/3
carriers had lower amyloid-β levels compared to E3/3 and E4/4
(Figure 1A). We next assessed the levels of tau among ApoE
genotypes. We noted that the levels of different tau peptide
fragments vary considerably from controls in the AD brain
(Supplementary Figure 1A), as has previously been shown (Sato
et al., 2018). We therefore used peptides found within the tau
microtubule binding region (MTBR) to quantify total tau levels,
as this region of the protein aggregates into the neurofibrillary
tangles found in AD and in other tauopathies (Serrano-Pozo
et al., 2011; Lee and Leugers, 2012). We found that ApoE 2/3
carriers contained significantly less MTBR tau than ApoE 4/4
carriers (Figure 1B), suggesting a lower neurofibrillary tangle
burden in E2 carriers. Total tau levels were also lower in
ApoE 2/3 carriers by western blotting (Figure 1C), but were
not significantly different by LFQ-MS given the aforementioned
variability in levels of different tau fragments in the brain
(Supplementary Figure 1B). Assessment of tau tangle burden by
Braak stage correlated better withMTBR tau asmeasured bymass
spectrometry than it did to total tau levels asmeasured by western
blotting (Figure 1D), validating our approach to measurement of
tau in the context of Alzheimer’s disease pathology. Therefore, in
patients who died with AD dementia, we observed similar levels
of amyloid-β across ApoE 2/3, 3/3, and 4/4 genotypes in DLPFC,
and lower levels of tau in E2/3 carriers compared to E4/4 carriers,
with no difference in tau levels between E3/3 and E4/4 carriers.

Protein Co-expression Network Analysis
and Differential Protein Abundance by
APOE Genotype
We performed a weighted protein co-expression network
analysis (WPCNA) on the ApoE cohort (Figure 2A) to identify
groups of co-expressed proteins that correlated with AD
endophenotypes. WPCNA identified 33 groups of co-expressed
proteins (protein “modules”), many of which were significantly
correlated with amyloid plaque or tau tangle burden. We also
assessed whether each module was significantly correlated with
ApoE status and ApoE-associated AD risk using an ordinal
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FIGURE 1 | Effect of APOE Genotype on Amyloid-β and Tau Levels in AD Brain. (A–D) Amyloid-β (Aβ) levels in control and Alzheimer disease (AD) dorsolateral

prefrontal cortex (DLPFC) brain region by APOE genotype, as measured by levels of the Aβ6−16 and Aβ17−28 peptides (see Methods) (A). Levels of Aβ were not

different among AD case groups by one-way ANOVA with Tukey’s test. (B) Tau levels in control and AD DLPFC brain by APOE genotype as measured by the ratio of

tau protein consisting of the microtubule-binding domain region (MTBR) only to the tau protein excluding the MTBR region (1MTBR). For illustration of tau protein level

heterogeneity by protein region, see Supplementary Figure 1A. Levels of tau in AD E2/3 brains were significantly less than in AD E4/4 brains, were nearly

significantly less than in AD E3/3 brains, and were not different from control E3/3 brains, by one-way ANOVA with Tukey’s test. (C) Tau levels by western blotting for

total tau using the Tau-5 antibody. Total tau levels by label-free quantification mass spectrometry (LFQ-MS) are shown in Supplementary Figure 1B. (D) Correlation

between tau levels as measured by western blot densitometry to Braak stage (left panel), tau levels as measured by MTBR/1MTBR LFQ-MS to Braak stage (center

panel), and tau levels as measured by MTBR/1MTBR LFQ-MS to western blot densitometry (right panel). Densitometry measurements are a sum of all tau species

stained by the Tau-5 antibody. Correlations were performed using biweight midcorrelation (bicor).

scale in which an E3 allele was equal to 0, E2 was equal to
−1, and E4 was equal to 1 (therefore, an E4/E4 carrier would
equal 2, while an E2/E3 carrier would equal −1). Modules
that positively correlated to ApoE risk (E4>E3>E2) were M4,
M2, M13, M22, M24, M28, M6, and M7 (Figure 2A, “ApoE”

heatmap row). Modules that negatively correlated to ApoE
risk (E2>E3>E4) were M17, M26, M1, M16, M8, and M14.
Modules that correlated most strongly in a positive direction
with ApoE included M2, M4, and M13, while those that
correlated most strongly in a negative direction with ApoE
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were M1, M5, M17, M26, and M32. ApoE itself fell within
the M4 module. To assess the biological processes associated
with modules that correlated with ApoE-associated AD risk,
we performed a gene ontology (GO) analysis for the most
highly correlated modules (Figure 2B). Modules that correlated
in a positive direction with ApoE were characterized by the
top GO terms “threonine-type peptidase activity,” “L-serine
metabolic process,” and “regulation of inflammatory response.”
Those that correlated in a negative direction with ApoE were
“acute phase response,” “postsynaptic membrane,” “translation,”
“synaptic transmission,” and “mitochondrion.” We compared
each AD ApoE variant to control E3/E3 to assess which modules
contained the most differentially abundant proteins between
disease and control for each variant (Figure 2C). Interestingly,
module M32 contained a larger fraction of proteins that were
decreased in ApoE 2/3 carriers relative to 3/3 and 4/4 carriers,
and the magnitude of reduction was also larger, consistent with
the module eigenprotein differences by APOE genotype. This
was also the case for modules that correlated positively with
ApoE variation, such as M2 and M4. Therefore, protein co-
expression network analysis revealed modules that correlated
with AD endophenotypes and APOE genotype, some of which
had a substantial number of differentially abundant proteins
between AD and control.

ApoE Variants Affect Phenotypic Cell Type
Changes in AD
While ApoE is produced in the brain primarily by astrocytes
(Boyles et al., 1985; Pitas et al., 1987), the cell type biological
effects of ApoE that affect risk for AD are unclear. We performed
a cell type enrichment analysis across the network using cell type
protein marker lists derived from four purified brain cell types—
neuron, astrocyte, microglia, and oligodendrocyte (Sharma et al.,
2015)—in order to assess the cell type character of those modules
that correlated with ApoE variation. In addition to these four
brain cell types, we also included an endothelial protein marker
list derived from RNAseq data of purified brain endothelial cells
(Zhang et al., 2014b) to examine endothelial cell type enrichment,
given the known effects of ApoE polymorphism on vascular
biology and cerebrovascular disease (Bell et al., 2012; Schilling
et al., 2013; Tai et al., 2016; Bouchareychas and Raffai, 2018).
Analysis of cell type enrichment across the network revealed
that modules M2 and M4, which correlated positively with
APOE genotype, were strongly glial in nature, while modules
M1 and M17 that correlated negatively with APOE genotype
were neuronal in nature (Figure 3A, Supplementary Table 3).
Interestingly, M32, which correlated negatively with ApoE, was
largely endothelial, as well as its closely related module M11.
However, M11 tended to correlate in an opposite direction
with ApoE compared to M32. The anticorrelation with APOE
genotype between two closely related endothelial modules
prompted us to question whether there may be particular
subpopulations within each cell type that are affected differently
by allelic variation in APOE. To investigate this possibility, we
first used a digital sorting algorithm (DSA) (Zhong et al., 2013) to
estimate changes in bulk cell type abundance for the five different

cell types by APOE genotype (Figure 3B), and correlated these
changes in cell type abundance to amyloid plaque load and tau
tangle burden. We observed that astrocytes increased in AD,
and correlated with amyloid plaque and tau tangle burden. The
fraction of astrocytes also correlated positively with ApoE status,
suggesting that the astroglial response in AD is affected by ApoE.
Interestingly, there was a trend toward a significant difference in
fraction of endothelial cells, with elevated levels in AD E3/3 and
E4/4 compared to control and AD E2/3. We then measured the
differential expression of cell type specific proteins between AD
and control for each of the five cell type protein marker lists. For
all cell types except neurons, we found a significant number of
cell type markers that were expressed in the opposite direction
of what would be expected based on total cell type abundance
measurements (Figure 4, Supplementary Figure 2). For future
discussion and reference, we term groups of cell typemarkers that
change in accordance with total cell type abundance “disease-
associated,” while those that change in the opposite direction
of total cell type abundance changes “homeostatic,” as has been
previously suggested for different states of microglia function
(Ransohoff and Perry, 2009; Liddelow et al., 2017; Rangaraju
et al., 2018a,b). We assessed how ApoE variants might affect
homeostatic and disease-associated cell subtype populations by
measuring the levels of each disease-associated or homeostatic
protein marker group (using a weighted principal component, or
synthetic “eigenprotein,” for each marker group) among ApoE
variants (Figure 4). We found that ApoE 2/3 suppressed both
homeostatic and disease-associated cell subtype changes, while
ApoE 4/4 had varied effects on phenotypic changes, compared
to ApoE 3/3.

To validate that the observed effects of APOE genotype
on disease-associated and homeostatic phenotypes were not
specific to our particular cohort of AD cases, we analyzed
a separate cohort of AD brains from the Banner Research
Institute using the same methodology. This validation cohort
consisted of 121 AD and control brains (Supplementary Table 4,
Supplementary Data), and included ApoE 2/3 control brains
to verify that the observed effects were specific to AD. In this
separate cohort of AD brains we observed the same changes
(significant or trend) in cell type subpopulations by ApoE status
(Supplementary Figure 3), validating the findings in the Emory
cohort, and confirmed that these effects were most pronounced
in AD.

In summary, we found that certain protein co-expression
modules were enriched for particular brain cell type markers,
and that astrocytes were significantly increased in abundance in
AD. Within each cell type studied—except for neurons—there
was a significant fraction of cell type markers that changed in an
opposite direction to bulk measurements, and both homeostatic
and disease-associated marker changes were attenuated by
ApoE 2/3.

DISCUSSION

In this study on the effects of APOE genotype on proteomic
changes in Alzheimer’s disease brain, we found that in patients
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A

B

C

FIGURE 2 | Protein Coexpression Network and Differential Abundance by APOE Genotype in AD. (A–C) Weighted Protein Correlational Network Analysis (WPCNA)

was performed on 32 control and AD cases, and the resulting module eigenproteins were correlated to tau tangle burden (Braak stage), neuritic amyloid plaque

burden (CERAD score), and APOE genotype using an ordinal scale where an E2 allele = −1, E3 = 0, and E4 = 1 (see main text) (A). Strength of correlation to each

trait is shown by heatmap, where red indicates positive correlation, and blue indicates negative correlation. Module-trait correlations were performed using biweight

midcorrelation (bicor). *p < 0.05, **p < 0.01, ***p < 0.001. (B) Selected modules that showed significant trait correlations were analyzed by gene ontology (GO)

analysis, with the resulting top GO term for each module listed as the module description. The most highly correlated proteins within each module (“hub proteins”) are

listed below each module. Module eigenprotein values are plotted in control and AD APOE genotypes. (C) Differential protein abundance for each AD case group

compared to control E3/3, by module. The height of the bars represents the fraction of module member proteins that had a difference in abundance compared to

control. The bars are color coded by heatmap for average log2 difference in abundance, where red represents an increase in abundance in AD, and blue represents a

decrease in abundance in AD.

who died with Alzheimer’s disease dementia, those with APOE
E2/3 genotype had 1) the same amount of amyloid-β burden
in the brain but less neurofibrillary tau compared to E3/3
and E4/4 carriers; 2) fewer abnormal changes in protein

coexpression modules that highly correlated with ApoE status
and AD endophenotypes, including modules characterized by
GO terms “regulation of inflammatory response,” “L-serine
metabolic process,” and “threonine-type peptidase activity”; and
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A

B

FIGURE 3 | Network Module Cell Type Enrichment and Effect of APOE Genotype on Cell Type Changes in AD. (A,B) Cell type protein markers for microglia,

astrocytes, neurons, and oligodendrocytes (Sharma et al., 2015)—and mRNA markers from endothelial cells (Zhang et al., 2014b)—from purified brain cell types were

used to assess cell type enrichment for each network module by Fisher’s exact test (A). Significance of enrichment for a given cell type is shown by one-color heat

map, with p values provided for selected cell type overlaps in Supplementary Table 3. P values were corrected by the Benjamini-Hochberg false discovery rate

method. *p < 0.05, **p < 0.01, ***p < 0.001. (B) Cell type fraction estimation in control and AD cases by APOE genotype, and correlation of cell type fraction with

amyloid plaque burden (CERAD score) and tau neurofibrillary tangle burden (Braak stage). Differences in cell type fraction among control and AD cases were assessed

after one-way ANOVA. Correlations were performed using biweight midcorrelation (bicor).

3) resilience to cell type changes associated with AD, including in
homeostatic and disease-associated markers for each cell type.

The effects of APOE genotype on amyloid-β burden in
the brain have been previously studied. ApoE has been
found to regulate clearance of Aβ in an isoform-dependent
fashion (E2>E3>E4) in animal models of AD and in humans
without cognitive impairment (Castellano et al., 2011; Grothe
et al., 2017). We did not observe a difference in Aβ burden
among ApoE variants in our cohort, which may be due to

analysis of brain at an end-stage of disease where Aβ neuritic
plaque levels may have already plateaued, as suggested from
post-mortem neuropathological analysis of Aβ plaque burden
in E2 carriers (Serrano-Pozo et al., 2015). We observed a
clear reduction of neurofibrillary tau, however, in E2/3 carriers
compared to E3/3 and E4/4 carriers by LFQ-MS proteomics,
consistent with previous neuropathological findings in a similar
experimental cohort (Serrano-Pozo et al., 2015). We found
that it was important to measure the MTBR domain of

Frontiers in Molecular Neuroscience | www.frontiersin.org 9 December 2018 | Volume 11 | Article 454

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Dai et al. APOE Effects on AD Brain Proteome

A B

C D

FIGURE 4 | Differential Expression of Cell Type Markers in AD and Effects of APOE Genotype on Marker Expression. (A–D) Cell type markers for endothelia (A),

microglia (B), astrocytes (C), and oligodendrocytes (D) were analyzed for significant changes between control and AD on the ApoE 3/3 background. For those

markers that were significantly increased (red) or decreased (blue) in AD E3/3 compared to control E3/3 brains (p < 0.05), a synthetic eigenprotein was generated for

the significantly increased or decreased protein groups and analyzed for changes across APOE genotype by one-way ANOVA with Tukey’s test. P values for one-way

ANOVA are given in the box plots. Differences between AD E2/3 and control E3/3 were insignificant, while differences between AD E2/3 and AD E3/3 were significant,

for decreased (or “homeostatic”) cell type marker eigenproteins for all cell types except endothelia (not significant for either comparison). Differences between AD E2/3

and AD E3/3 were significant for all increased (or “disease-associated”) cell type marker eigenproteins, while differences between AD E2/3 and control E3/3 were

insignificant only for astrocytes (p = 0.06) and endothelia (p = 0.11). For a list of all p values after Tukey’s test and a description of all markers, see

Supplementary Data. CT, control; AD, Alzheimer’s disease.

tau, rather than total tau, by mass spectrometry in order
to obtain an accurate measurement of tau tangle burden.
This is likely due to the fact that those regions of the

tau protein that are not directly involved in the binding
interactions between tau monomers to form tangles are removed
and degraded in the brain, leading to low levels of these
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fragments and reduction of measured total tau levels if these
fragments are included in abundance calculations (Sato et al.,
2018). Therefore, peptide- and domain-level measurements
for tau are an important consideration for measurement
of this protein by standard mass spectrometry proteomic
approaches.

Although we do not have cognitive data in our cohort to
assess the relationship of ApoE status to cognitive function,
prior studies have shown that E2 carriers show less severe
cognitive deficits compared to E3 and E4 carriers (Serrano-
Pozo et al., 2015), even when levels of pathological forms of
tau and Aβ are similar (Berlau et al., 2009), suggesting that
the protective effects of the E2 allele may be independent from
its effects on Aβ and tau pathology. Our systems-level analysis
suggests other potential mediators of the ApoE effect on cognitive
decline. Protein co-expression modules characterized by GO
terms “L-serine metabolic process,” “threonine-type peptidase
activity,” “regulation of inflammatory response,” “translation,”
“post-synaptic membrane,” and “synaptic transmission” were
strongly associated with variation in ApoE. It is currently
unknown the extent to which each of these protein modules
is an upstream driver of the ApoE effect, but we find it
notable that one of the modules most strongly correlated
with ApoE was the inflammatory module M4. ApoE has been
shown to regulate immune function in mouse models of
AD and other diseases, and may be a key regulator of the
brain’s response to neurofibrillary tangle formation (Stoll and
Bendszus, 2006; Shi et al., 2017). However, a direct neuronal
effect of ApoE is also possible given “post-synaptic membrane”
and “synaptic transmission” module changes. ApoE can be
expressed in neurons under conditions of cellular stress (Boschert
et al., 1999), and lead to tau phosphorylation as well as
mitochondrial toxicity (Chang et al., 2005; Wang et al., 2018).
These possibilities are not mutually exclusive, and require further
study to define their potential contributions to AD pathology in
humans.

While deconvolution of cell type abundance from bulk tissue
measurements in AD brain has previously been performed
(Li et al., 2018), a novel aspect of our study is that we
assessed for phenotypic changes associated with each cell type
analyzed—neurons, astrocytes, microglia, oligodendrocytes, and
endothelia—as reflected by markers for each cell type that
increase or decrease in AD. We term these “homeostatic” and
“disease-associated” cell phenotypes, as previously suggested
for microglia (Ransohoff and Perry, 2009; Liddelow et al.,
2017; Rangaraju et al., 2018a,b) and, in a similar fashion, for
astrocytes (Zamanian et al., 2012). Parsing phenotypic cell type
changes in such a manner leads to additional insight into
cell type changes in AD beyond bulk changes assessed by
deconvolution. We found that the ApoE 2/3 variant suppressed
almost all homeostatic and disease-associated AD cell type
changes, while the E4/4 variant did not show increased severity
of these phenotypes compared to E3/3. These observations
were replicated in a separate cohort of brains, suggesting that
they are not unique to our Emory cohort. One possibility
for the minimal difference between E3/3 and E4/4 carriers
in cellular phenotypes is the stage at which we analyzed the

tissues, where at end-stage the differences in pathologies may
have largely plateaued between these two variants, as suggested
from the Aβ and MTBR tau measurements. The observed
suppression of the disease-associated microglia phenotype by
the E2 allele in our study is a corollary finding to the reported
suppression of an aged microglia phenotype by E2 in post-
mortem human brain, as well as the lack of an E4 effect
on aged microglia (Olah et al., 2018). The suppression of
homeostatic and disease-associated microglial changes by E2
further supports an ApoE effect on brain inflammatory response
pathways.

Another novel aspect of our study is that, in addition to
four other canonical brain cell types, we assessed for endothelial
cell type enrichment and changes by ApoE status given the
role of ApoE in vascular disease (Bell et al., 2012; Schilling
et al., 2013; Tai et al., 2016; Bouchareychas and Raffai, 2018).
Deconvolution of cell type showed that the E2 allele prevented
an increase in endothelial cells in AD, and tended to suppress
changes in homeostatic and disease-associated endothelia. The
E2 effects on endothelia and oligodendrocytes are noteworthy
given the robust observation that E2 carriers have a larger
burden of white matter hyperintensities on MRI compared
to E3 and E4 carriers (Schmidt et al., 1997; Lemmens et al.,
2007; Raz et al., 2012; Schilling et al., 2013)—which are often
considered to reflect vascular pathology and/or myelination
changes—and have a higher risk for brain infarction and lobar
intracranial hemorrhage compared to E3 carriers (Biffi et al.,
2010, 2011; Schilling et al., 2013). This is despite the fact
that E2 lowers total cholesterol and LDL (Sing and Davignon,
1985; Schmidt et al., 1997). There are two caveats to our
endothelial cell type analysis. One is that mRNA rather than
protein markers were used to define the endothelial cell type.
The correlation between mRNA and protein levels can vary
substantially, and is often of moderate strength (Zhang et al.,
2014a; Seyfried et al., 2017; Olah et al., 2018). Therefore, use
of an mRNA-derived marker list may have introduced some
variability in our analysis of endothelial cells, and an endothelial
marker list derived from protein measurements on purified
endothelial cells would be a useful contribution to proteomic
endothelial cell type analyses. The second caveat is that we
enforced exclusion of markers to a particular cell type. In reality,
such markers are rarely exclusively expressed in a given cell
type, and this is especially true for endothelia and microglia
given their common mesodermal embryonic origin (Zhang
et al., 2014b). The protein co-expression network reflects this
similarity in cell type markers between endothelia and microglia,
where two highly related modules M4 and M11 were found
to be strongly enriched in microglial (M4) and endothelial
(M11) markers. In future analyses, it may be interesting to
include a “micro/endo” phenotype for cell type deconvolution.
Nevertheless, the relationship between E2 and endothelial and
oligodendrocyte changes is intriguing, and deserves further study
in the context of AD risk modification. A final caveat is that our
primary cohort contained E3/3 only as the control group with
which to compare E2/3, E3/3, and E4/4 effects. Our validation
cohort contained an E2/3 control group that was very similar to
E3/3 in the cell type marker analysis, suggesting that E2 effects
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are most evident in AD. However, future studies would benefit
from exactly matched ApoE controls, even though these can
be difficult to obtain due to the low population frequencies of
the E2 and E4 alleles and the elevated AD risk imparted by
E4/4.

In summary, our analysis of AD brain revealed proteomic and
cell type changes influenced byAPOE genotype, and suggests that
ApoE may influence AD risk through a combination of effects on
inflammation, metabolism, and cerebral vasculature, rather than
through direct effects mediated by amyloid-β and tau.
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request.
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