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Abstract 
 

Ecological dynamics have been altered by recent climate change in regions with 

pronounced warming trends. Landscape- and regional-scale ecological processes face change in 

both seasonal patterns and long-term trends as temperature and precipitation regimes shift. 

Interspecific interactions are especially sensitive to environmental change if one species 

responds flexibly to abiotic processes but the other does not. Herbivore movements, 

migrations, and distributions – each of which relate to biotic and abiotic environmental 

variation – are thus likely to change as effects of climate change cascade through ecosystems. 

Yet, multilevel relationships connecting climate with spatial dynamics of herbivores are poorly 

understood, in part due to the difficulties in generating consistent measurements of fine-scale 

ecological processes across broad geographic extents. Here, I use the Sierra Nevada mountains 

of California and Sierra Nevada bighorn sheep (Ovis canadensis sierrae, hereafter “Sierra 

bighorn”) as a model to address three questions about space and time in ungulate ecology: 

First, how does landscape phenology vary along a desert-alpine gradient? Second, what drives 

nomadic migration in Sierra bighorn? And third, how can long-term climate forecasts inform 

conservation of large ungulates at the continental scale? I begin by outlining a niche-centric 

view of altitudinal migration and its marine counterpart, bathymetric migration. I then quantify 

relationships among topography, geography, and weather, and their collective effects on spatial 

patterns in resource phenology. Next, I address movement strategy, organization, and 

migration timing of an alpine specialist as they relate to the resource base. Finally, I 

contextualize ungulate conservation efforts in future climatic conditions, identifying which 

species are most susceptible to loss of protected climate space toward the end of the century. 
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Chapter 1: Seasonality, niche management, and vertical migration in landscapes of relief 
 
Manuscript published in Ecography; citation: 
 
John, C., and Post, E. (2021). Seasonality, niche management and vertical migration 
in landscapes of relief. Ecography 44, 1–13. doi: 10.1111/ecog.05774 
 

Abstract 
 
Landscapes of vertical relief, such as mountains and continental slopes, intensify ecological and 

climatological variation within narrow spatial windows. Seasonal vertical migrants exploit this 

variation during their residence in, and movements between, vertically stratified seasonal 

ranges. Animals in terrestrial, marine, and even human-ecological systems undergo similar 

patterns of seasonal vertical movements. The diversity of arenas in which vertical migration 

evolved lends insight to the factors promoting seasonal use of landscapes of relief. Because 

animals must contend with both endogenous circannual rhythms and exogenous environmental 

seasonality, vertical migrants may be sensitive to inconsistent change across stratified seasonal 

ranges under climate change. To better understand how ongoing and future climatic and 

environmental changes are likely to impact vertical migrants, we examine vertical migration in 

the context of niche tracking and niche switching. Whereas niche trackers minimize variation in 

realized environmental conditions throughout their seasonal movements, niche switchers 

undergo seasonal transitions in realized niche space. These strategies mediate the relationship 

between migrants and their changing environment, and can be used to forecast impacts of 

future change and effectively conserve systems of vertical migration. Niche tracking may be 

hindered by inconsistent or unpredictable environmental change along a single niche axis 

across strata, while niche switching may be sensitive to incongruous spatiotemporal change 
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across factors. We suggest that climate change will affect seasonal patterns in vertical 

environments discontinuously across time, space, and strata, and that vertical migrants are 

likely to face additional anthropogenic threats that interact with environmental seasonality. 

Conservation of vertical migrants should prioritize the availability of, and facilitate movement 

between, stratified seasonal ranges. 

 
Keywords 
 
altitudinal, bathymetric, migration, seasonality, climate change, niche breadth 

biotopic space. Axes of positions in a physical environment, such as elevation or depth. 
fundamental niche. The range of biotic and abiotic conditions over which an organism can, 
theoretically, survive and produce viable offspring. 
geographic migration. Long-distance seasonal movements, such as latitudinal migration.  
landscape. Any environment with a substrate, including terrestrial and marine settings. 
niche space. Axes of positions in an n-dimensional hypervolume of conditions that define an 
organism’s suitable environment.  
realized niche. The range of biotic and abiotic conditions over which an organism actually 
survives and produces viable offspring. This is a sub-set of the organism’s fundamental niche 
constrained by realized environmental conditions at a specific location and time and by 
positive and negative interactions with other organisms. 
season. An intra-annual subset of any annual cycle, such as tropical precipitation patterns, 
Arctic sea ice formation and depletion, or endogenous rhythms in hormone release. 
strata. Two or more positions separated by vertical biotopic space, as in the case of 
movement along topographic or bathymetric slopes. 
vertical migration. Short-distance seasonal movements across strata such as altitudinal or 
bathymetric migrations.  

Glossary 
 

Introduction 
 

Migration is a taxonomically and geographically widespread adaptation to temporal 

variation in the environment. Migration is characterized by movements between spatially 

isolated ranges, on a much greater scale than typical day-to-day movements (Dingle and Drake 
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2007). Seasonal ranges may be separated by hundreds or thousands of kilometers across 

geography, as is the case in long-distance migrations, or just a few hundred meters across 

topography or bathymetry, as is the case in vertical migrations. Whereas long-distance migrants 

face significant energetic demands and risks of mortality during their journeys, vertical migrants 

minimize costs of travel while still realizing considerable ecoclimatic variation. Amphibians, 

birds, and crustaceans are but a few of the taxa represented among Earth’s vertical migrants 

(Aguzzi et al. 2013, Boyle 2017, Hsiung et al. 2018). These climbing creatures seasonally 

traverse mountain sides and marine canyons alike, in pursuit of resources, shelter, and mating 

opportunities. 

Mountains cover a quarter of Earth’s land surface, and shallow seas comprise over a 

tenth of the total global seabed area (Costello et al. 2010, Karagulle et al. 2017). While vast 

distances must be traveled to realize significant changes in ecology or climatology across 

latitudinal gradients, comparable variation can be experienced by traversing only a few 

hundred meters up or down a mountainside (Körner 2007, Klinges and Scheffers 2020). 

Similarly, physical properties of the water column generate abiotic and biotic gradients over 

small distances in depth, compared to the thousands of kilometers that would be required for 

the same apparent change across latitude (Sprintall and Cronin 2001). Together, elevation and 

depth constitute a continuous, 1-dimensional biotopic space which vertical migrants can 

navigate in order to realize or mitigate seasonal change in their environment (Figure 1.1).   

 The magnitude of seasonal rhythms with which migrants contend often varies across 

strata. For example, snowpack is deeper and the snow season is longer in temperate alpine 

regions than in the foothills below. Similarly, deep seafloors are more protected from seasonal 
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storms than shallow coastal waters. Two strategies are available to migrants for coping with 

spatially structured seasonal environmental variation: they can track spatiotemporal variation 

along niche axes (“niche tracking,” Figure 1.1a,c) or undergo seasonal transitions in the niche 

space they occupy (“niche switching,” Figure 1.1b) over the course of their migratory journey 

(Martínez-Meyer et al. 2004, Gómez et al. 2016). Whereas niche trackers maintain constancy or 

dampen seasonal oscillations in their realized niche (e.g. Somveille et al. 2019, Bay et al. 2021), 

niche switchers abandon niche space at the turn of the season and exacerbate variation along 

some niche axes (e.g. Ponti et al. 2020). If seasonal ranges undergo inconsistent environmental 

change, past strategies of niche tracking and niche switching may fail to accommodate novel 

conditions. 

Prevailing patterns of seasonal change across stratified environments may be 

threatened by changes in the climate regime. Inconsistent change in the timing and magnitude 

of seasons across strata, as well as long-term trends in bioclimatic and species distributions, 

modify the pattern of emergence of seasons across landscapes of relief. If phenological shifts in 

exogenous seasonal factors are inconsistent across elevation or depth (e.g. Inouye et al. 2000), 

the ability of both niche trackers and niche switchers to cope with forecasted environmental 

change may be compromised. Inconsistent trends among axes of fundamental niche space may 

lead to the loss of suitable niche space within a range. Simultaneously, direct human impacts 

such as land use change and fencing infrastructure limit migrants’ historical access to seasonal 

ranges. Effective conservation management plans for vertical migrants will account for the 

spatiotemporal complexities of landscapes of relief. 
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In this review, we ask the following questions:  1) Why migrate vertically rather than 

geographically? 2) In what vertical migratory systems do niche tracking and switching emerge? 

and 3) How will anthropogenic change affect systems of vertical migration? To answer these 

questions, we identify how landscapes of relief modify seasonal variation in limiting factors 

across vertical space, and examine the means by which vertical migrants cope with seasonal 

variation in the environment. We then explore how climate shapes the progression of seasons 

across strata, and discuss the mechanisms through which ongoing and future change are likely 

to affect vertical migrants. We conclude by outlining conservation priorities that will help 

protect vertical migrants in the face of forecasted change. 

 
Environmental variation in landscapes of relief 
 
 Seasonal movements such as migration arise in response to temporal variation in 

endogenous or exogenous factors. Relative to the scale of seasonal migration, some 

environmental factors that vary spatially appear to be constant through time, with a similar 

spatial pattern of variation persisting across years. Migrants that experience significant 

seasonal endogenous variation (such as breeding or molting) may exploit temporally “static” 

variation by moving between disparate ranges as the need for - or challenges posed by - 

different conditions arises. Conversely, other environmental factors vary both spatially and 

seasonally due to Earth’s axial tilt and position along its revolution around the Sun. Such 

dynamic exogenous variation may promote migratory movements regardless of the migrant’s 

endogenous state if the relative favorability of seasonal ranges varies across seasons.   
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Static variation: space 
 

Elevation and depth generate environmental variation over short distances through 

static influences on abiotic environmental factors. In general, solar radiation increases while air 

density and temperature decrease with increasing altitude (Körner 2007). Other factors such as 

precipitation and wind may vary across altitude but the pattern of their variation is locally or 

regionally idiosyncratic. For example, temperate latitudes tend to experience increasing annual 

precipitation at higher elevations, while in polar and equatorial latitudes the opposite trend is 

observed. Within regions, relationships among precipitation and elevation are nonlinear, and 

vary across seasons (Körner 2007). Water depth similarly imposes stratified abiotic variation: 

incoming light and solar radiation dramatically decrease through the photic zone, while 

buffering from atmospheric weather is increased. Conversely, temperature, oxygen 

concentration, and salinity vary with depth, but their profiles can be nonlinear and locally 

idiosyncratic (Paulmier and Ruiz-Pino 2009, Shadwick et al. 2015).  

Stratified variation in abiotic factors drives vertical zonation in ecological communities, 

composed of species that are simultaneously adapted to a window of conditions and 

interspecific interactions. Physiological limits of animals and plants determine the vertical range 

of habitat available to them on both mountains (Janzen 1967) and in oceans (Carney 2005). The 

process through which relief generates community stratification is perhaps most famously 

illustrated by the upper limit of tree growth on mountainsides (Körner and Paulsen 2004). In 

the ocean, primary production is largely limited to the shallowest reaches, where sunlight is 

able to penetrate and the rate of photosynthesis is greater than that of respiration (Dennison 

1987). Consequently, a steep decline in forage availability emerges for primary consumers with 
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increasing ocean depth. Similarly, a balance of pressure tolerance, temperature, and oxygen 

availability dictates the bathymetric range of many marine animals (e.g. Brown and Thatje 

2011, Brown et al. 2017). 

Dynamic variation: space-time 
 

Seasonal variation in abiotic factors drives seasonal variation in ecological communities 

(Post 2019). Just as accumulated temperature and precipitation regulate plant growth in many 

terrestrial systems (Cleland et al. 2007), so too do these factors impact the timing, magnitude, 

and species composition of marine phytoplankton blooms (Thompson et al. 2015). 

Temperature, precipitation, and primary productivity cycles underlie the adaptive benefits of 

dormancy and emergence by many terrestrial animals. Seasonal pulsed reproduction by plants 

and animals alike are linked to cascading effects of abiotic seasons (e.g. madwort flowering: 

Gómez 1993, caribou and muskox parturition: Kerby and Post 2013, bivalve spawning: 

Philippart et al. 2014). When seasonal variation follows predictable cycles (e.g. Box 1.1), 

migrants can rely on temporal cues such as photoperiod to coordinate movements with 

anticipated change at the destination. 

Because variation in abiotic and biotic factors is neither linear across strata nor uniform 

among factors, temporal environmental variation is spatially structured in landscapes of relief. 

Landscapes of relief modify the spatial structure of seasonal environmental variation in three 

forms of “seasonal transformation”: phase shifts, phase differences and phase products (Figure 

1.2). In phase shifts (Figure 1.2a), the timing of variation in a factor is shifted with respect to 

strata, but the magnitude, and baseline condition of variation in that factor, remain unchanged. 

For example, plant growth may be delayed with respect to elevation due to the recession of the 
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snowline and variation in accumulated temperature along an elevational gradient. In phase 

differences (Figure 1.2b), the baseline condition of a factor changes with respect to strata, but 

the timing and magnitude of variation in that factor remain unchanged. For example, the timing 

and magnitude of seasonal temperature variation may be consistent across a mountainside, 

while high elevations experience predictably colder temperatures than lower elevations. In 

phase products (Figure 1.2c), the magnitude of variation in a factor is adjusted with respect to 

strata, while the timing and baseline condition of the factor remain unchanged. For example, 

disturbance from seasonal atmospheric storms is greater in shallow waters than in protected 

waters deep below. Finally, landscapes of relief may introduce a combination of these phase 

modifications (Figure 1.2d), where two or more forms of spatiotemporal variation emerge. For 

example, the duration and magnitude of seasonal snow cover may be much greater in an alpine 

environment than the foothills below. Similarly, photosynthetic activity in the euphotic zone 

generates a primary productivity seasonality regime in shallow waters, while primary 

production in deeper waters may be negligible. 

 
Geography and the relative role of relief 
 

Migration may facilitate the pursuit of favorable conditions, or escape from unfavorable 

conditions (Winger et al. 2019). Across broad geographic distances, spatiotemporal variation in 

environmental conditions is generally reliable. For example, movement between a savanna and 

tropical rainforest ensures directional change in moisture and ecosystem structure (Whittaker 

1970). This is also the case to a certain extent across topography or bathymetry (e.g. Whittaker 

and Niering 1968); however, regional variation in climate may predominate in spite of 

considerable local variation in some factors. For example, persistent snow is common at high 
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elevations in the Arctic, while seasonal snow cover characterizes variation across elevations 

(Hammond et al. 2018). Vertical migration would thus be insufficient as a means of complete 

escape from snow in the Arctic; geographical movements are the only available option if that 

region is to be utilized by migrants that cannot cope with snow. At more temperate and tropical 

latitudes, however, persistent snow is rare, and seasonal snow at high elevations is not 

matched at low elevations (Hammond et al. 2018). Altitudinal movements would facilitate a 

response to snow at these latitudes.  

Conversely, vertical retreat from unfavorable winter conditions may be adaptive in 

marine settings at higher latitudes, where sea surface temperatures are most dramatically 

seasonal in shallow waters (Box 1.1). This combined phase difference and amplification at high 

latitudes introduces a strong seasonal signal in the depth gradient in water temperature, of 

particular importance for ectotherms. Tropical waters face comparatively little seasonal 

variation in temperature, but strong seasonality in sea surface salinity due to winds and fresh 

water inputs by precipitation and runoff (Delcroix and Hénin 1991). While vertical migration in 

these waters may satisfy seasonal endogenous requirements, so too may it allow migrants to 

cope with temporally dynamic exogenous factors. 

Terrain structure further complicates general patterns of environmental variation along 

elevation or depth. Slope and aspect are particularly impactful factors in terrestrial temperate 

and Arctic settings, where increased direct solar irradiance on slopes facing the equator leads 

to increased temperature, reduced moisture, and advanced phenology (Jackson 1966, Griffiths 

et al. 2009, Geroy et al. 2011). In marine settings, topography underlies the mixing and 

movement of water masses (Huthnance 1995, Shapiro et al. 2003), impacting temperature, 
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deposition of organic matter, availability of oxygen and nutrients, and community diversity 

(Robertson et al. 2020). Coastal upwelling and its drivers add additional complexities to 

seasonal variation in environmental factors along depth, but simultaneously introduce cues 

that reliably predict imminent environmental change (Largier 2020). Upwelling in California 

(USA), for example, leads to a seasonal influx of nutrients from deeper waters, and 

consequently increases in production of phytoplankton and ultimately krill. Thus ensures 

seasonal arrival by geographically migratory blue whales (Balaenoptera musculus) when 

availability of their preferred food source is high there (Croll et al. 2005). Further from the 

coast, organic carbon deposition reliably follows upwelling events, leading to seasonal influxes 

of consumable detritus and visitation by mobile benthic species on the deep sea-floor (Smith et 

al. 2013). Thus, in spite of coarse regional patterns that underlie some unavoidable seasonal 

environmental, landscapes of relief introduce additional dimensions of local environmental 

variation along which migratory animals can track existing conditions, or seek out novel 

environments.   

 
Niche management in multi-season space 
 

The environmental variation introduced by landscapes of relief can be exploited without 

moving across vast distances, as would be required of long-distance migrants. This reduces the 

endogenous cost of migration, such as energy usage and storage limitations, as well as external 

pressures such as unfavorable conditions faced during long-distance migrations (Alerstam et al. 

2003, Boyle 2017). Migrants must navigate a gamut of exogenous seasons while simultaneously 

facing seasonal variation in endogenous factors such as hormone release, body condition, and 

reproductive status. Animals may therefore use seasonal migration as a tactic to navigate 
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biotopic space while managing their use of niche space. For a given niche axis, migrants may 

maintain access to consistent conditions (“niche tracking”) or seek out completely different 

conditions during a subset of year (“niche switching”, Martínez-Meyer et al. 2004). Whereas 

niche tracking involves the maintenance of niche space during migration, niche switching 

involves a fundamental shift in the realized environmental factors during or as a result of 

migration. Vertical migrants may employ either or both of these strategies to cope with the 

numerous seasons of change they face.  

 
Niche tracking 
 

Niche tracking vertical migrants follow constant environmental conditions across strata 

in landscapes of relief. Because the phenology of seasonal factors such as forage availability and 

accumulated temperature may vary across strata (e.g. Hopkins 1920), niche trackers can 

synchronize their vertical movements with spatially predictable change in their environment 

(Riotte-Lambert and Matthiopoulos 2020). Migrants using this strategy can minimize 

physiological or behavioral adjustments that would be required for major transitions in realized 

environmental factors. 

Many migrating ungulates follow the phase shift in spring plant growth upslope during 

spring in a form of niche tracking called “surfing the green wave” (Albon and Langvatn 1992, 

Mysterud et al. 2001, Merkle et al. 2016). Because newly emergent plant material is nutrient-

rich and easily digested, these migrants can extend the window of high-quality forage access 

and increase fat reserves by tracking green-up through space (Middleton et al. 2018). Recent 

evidence indicates that ungulates are able to more effectively track resource phenology when 

vegetation growth is rapid and progresses sequentially across the landscape, as is the case in 
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many mountain settings (Aikens et al. 2020). Evidence of resource tracking in landscapes of 

relief has also been reported in tortoises (Blake et al. 2013), hares (Rehnus and Bollmann 2020), 

birds (Loiselle and Blake 1991), and human-ecological systems (Beck 1991).  

Niche tracking vertical migrations are also useful for coping with seasonal variation in 

temperature. For example, sea surface temperature off the coast of Maine (USA) is highly 

seasonal, generating an attenuation in temperature variation toward deeper, more insulated 

water. Seasonal bathymetric movements have been detected through mark-recapture of deep-

sea lobsters (Homarus americanus) in Maine, where they use shallower waters during the 

summer before retreating to the continental slope for winter (Cooper and Uzmann 1971). 

Migratory lobsters were able to maximize their growth rate, in part because they maintained a 

warm narrow range of temperature across the year, while sympatric lobsters that remained 

resident in shallow waters year-round experienced colder temperatures that were more 

variable (Cooper and Uzmann 1971). In the Mediterranean Sea, similar seasonal variation in 

bathymetric distributions of benthopelagic fish and crustaceans appears to coincide with 

temperature and salinity variability introduced by seasonal subsurface water currents (Aguzzi et 

al. 2013).  

 
Niche switching 
 

Niche switching vertical migrants face major shifts in realized niche space during or as a 

result of their migration. Migrations associated with endogenous schedules, such as dormancy, 

molting, and reproduction frequently include some element of niche switching. Because 

seasonality in physiology and behavior may cyclically require different habitat parameters, 

many niche switching vertical migrants exploit stratified environmental variation that is not 
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necessarily seasonal. By partitioning niche space over the course of the year, niche switchers 

can adjust habitat use to accommodate seasonal life history requirements.  

Seasonal dormancy allows organisms to cope with periodically harsh conditions, and is 

frequently associated with vertical migratory movements. In Costa Rican dry forests, seasonal 

variation in rainfall generates seasonality in vegetation growth. Skipper butterfly (Aguna 

asander) caterpillars rely on leaves of Bauhinia ungulata, a shrub that produces leaves only 

during the rainy season (Assunção et al. 2014). In the absence of Bauhinia leaves, the insects 

migrate uphill to colder strata where they estivate in trees and among rocks. Once the seasonal 

rains resume, A. asander return to the rejuvenated lowland forests to feed and reproduce 

(Janzen 2004). Interestingly, a sympatric predatory paper wasp (Polistes variabilis) undergoes 

similar vertical movements to reach dry season dormancy habitat (Hunt et al. 1999). Bears and 

bats also undergo seasonal vertical movements to access hibernacula, which are separated 

from habitat used during their waking life through amplified snowpack and stratified 

geomorphology (Grachev 1976, Neubaum et al. 2006). 

Niche switching may also facilitate reproductive tasks. A perhaps extreme example of 

this occurs in a transit between terrestrial and marine environments. The ecotone between 

land and sea is inherently stratified and delineates an impressive array of environmental 

conditions. Soldier crabs (Coenobita clypeatus) of Mona Island (Puerto Rico, USA) undergo 

seaward migrations during an annual summer spawning event called the cobada (Nieves-Rivera 

and Williams 2003). Adult C. clypeatus spend most of their time in terrestrial habitat, but 

migrate to the ocean where eggs are deposited, larvae develop, and juveniles claim shells. 

Seaward migrations by land hermit crabs are timed to coincide with seasonal peaks in water 
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temperature, but also attuned to the lunar cycle for favorable tide and lighting conditions (Doi 

et al. 2016, Nio et al. 2019). Niche switching reproductive migrations are also observed among 

some birds, when seasonal courtship, foraging, and roosting habitat are vertically stratified 

(Mussehl 1960, Crawford and Pelren 2001, Zwickel and Bendell 2003), or when reproduction is 

seasonal and sensitive to stratified variation in predation (Boyle 2008). 

 
Navigating the fundamental niche: the tracking-switching continuum 
 

Across the entirety of a migrant’s fundamental niche, both niche tracking and niche 

switching are no doubt employed over the course of a year. Any environmental condition that 

varies in space can be tracked or abandoned by a mobile organism, so long as relocation does 

not require exceeding some physiological constraint (i.e. departing from fundamental niche 

space). Because migrants face a crash of endogenous and exogenous seasons, they potentially 

realize inconsistent variation among niche axes while moving across strata. For example, 

ascending a marine canyon may increase access to forage, but simultaneously lead to changes 

in light, salinity, and hydrostatic pressure. By navigating physical space, migrants can realize 

considerable differentiation along one niche axis, but minimize variation along another. 

Incomplete migratory patterns, such as partial and facultative migrations, lend insight into how 

animals use vertical movements to track or switch among seasonal niche spaces. 

Partial migration is common among vertically migratory species, wherein a subset of the 

population migrates while another does not (e.g. Cooper and Uzmann 1971, Boyle 2017). 

Whereas migration can facilitate tracking favorable environmental variation, remaining resident 

in a particular range may limit the extent to which niche tracking is possible (Laube et al. 2015, 

Gómez et al. 2016). For example, many Sierra Nevada bighorn sheep (Ovis canadensis sierrae) 
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in California (USA) move to low-elevation slopes during winter to avoid deep snow and seek 

foraging opportunities, but they face increased predation pressure compared to those 

remaining in the barren snowy alpine zone (Spitz et al. 2020). While individuals that remain 

resident in the alpine zone may reduce interactions with predators, they must cope with 

increased seasonal variation in temperature, wind speed, snow cover, and forage availability. 

Other factors favoring partial migration include seasonal intraspecific competition and conflict, 

intrapopulation niche differentiation, and thermal tolerance (Chapman et al. 2011). Coping 

with, or evading, these factors, likely underlies how individuals manage niche space: evading 

conditions that are sought after by conspecifics ensures a different realization of total annual 

niche space occupied by the individual.  

Facultative and sub-seasonal movements add flexibility to migrants’ seasonal 

distribution schedule. Niche tracking vertical migrants may be able to entrain their movements 

with environmental conditions by making multiple vertical movements leading up to and during 

the migratory season. The close geographic proximity of seasonal ranges afford vertical 

migrants the opportunity to scout conditions and find refuge from unfavorable weather by 

revisiting seasonal ranges (Horvath and Sullivan 1988, Hahn et al. 2004, Rice 2008, Boyle et al. 

2010). Sub-seasonal vertical movements also arise among multiple-breeding animals, such as 

some birds seeking to track high-quality conditions across reproductive attempts (Brambilla and 

Rubolini 2009, Ceresa et al. 2020). Such fine-scale adjustments in vertical distribution may 

enable some migrants to buffer climate change and maintain access to tracked niche space 

throughout the season (Frey et al. 2016).  
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 Tracking and switching lie on opposite ends of a continuum of strategies for managing 

seasonal niche space. Migrants likely employ both approaches during vertical migration 

because of the numerous factors that vary across strata in landscapes of relief. However, the 

interaction between physiology, behavior, and environmental factors governs whether a 

migrant generally tracks niche space across the year, or switches between seasonal subsets of 

niche space. For example, ectotherms that face seasonal temperature variation without going 

into dormancy track vertical zonation in temperature in order to maintain metabolic activity 

(e.g. Cooper and Uzmann 1971, Crossin et al. 1998). Conversely, species that migrate to 

hibernacula in order to escape unfavorable conditions undergo a massive shift in metabolism, 

activity, and preferred habitat (e.g. Hunt et al. 1999, Haroldson et al. 2002, Neubaum et al. 

2006). Niche switching is similarly dramatic for diadromous and semi-diadromous migrants as 

they deposit larvae in ontogenic habitat (e.g. Elliott et al. 2007, Amorim et al. 2016). The niche 

management strategy employed by vertical migrants, and the faculty to use alternative 

approaches during migration, will likely determine their ability to persist under future climate 

change. 

 
Climate shapes configuration of seasonal niche space 
 

Climate modifies stratified environmental variation in landscapes of relief by shaping 

patterns within and relationships among niche axes across biotopic space (Colwell and Rangel 

2009). Changes in temperature and precipitation, and the seasonality thereof, lead to ecological 

response across strata and through time. Common ecological responses to warming include 

advancing phenology due to more rapidly accumulated spring temperature, and range shifts to 

accommodate physiological constraints (Parmesan 2006). However, the degree of phenological 
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change may vary across strata, as well as the propensity to shift ranges and the availability of 

novel, suitable habitat. Climate-induced changes in migratory propensity may influence 

reproductive exchange within partially migratory populations, ultimately impacting gene flow 

and genetic diversity, potentially driving, or limiting, evolutionary change. Vertical migrants’ 

ability to “keep up” with climate change will depend on modifications to the spatiotemporal 

arrangement of environmental variation in their historic, current, and potentially future habitat, 

as well as change in the phenology and distribution of organisms with which migrants interact. 

 
Seasonal niche space 
 

Inconsistent alteration of stratified ranges by climate change will impact the relative 

timing of transitions between seasons, and consequently the ability of some migrants to track 

spatial variation along some niche axes (Figure 1.3, Niche 1). For example, in the European Alps, 

rapid phenological advance at high elevations has led to more uniform green-up across 

elevation (Vitasse et al. 2018). Earlier green-up and flowering by plants related to climatic 

warming were not matched by parturition of roe deer (Capreolus capreolus) in the Alps (Rehnus 

et al. 2020). Roe deer are income breeders and therefore depend on forage availability during 

the energetically expensive parturition and fawn rearing season. Thus, exacerbation of 

conditions that result in trophic mismatch can be consequential for offspring production and 

survival (Kerby and Post 2013). However, due to the elevational gradient in green-up timing, C. 

capreolus were able to buffer the expanding mismatch by adjusting their migratory schedule to 

account for shifting spatiotemporal dynamics of forage quality (Rehnus et al. 2020). The 

advantages of such a buffer may be stymied by more spatio-temporally uniform plant 

phenological dynamics. A similar pattern is expected for bark beetles (Ips typographus), as the 
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timing of diapause termination and swarming is expected to shift more rapidly at high 

elevations and on south-facing slopes in the Alps (Jakoby et al. 2019). Adjustments to the 

historic elevational trend in insect swarming phenology may impact insectivorous altitudinal 

migrants that live there (e.g. grey wagtails, Klemp 2003). Inconsistent shifts across stratified 

ranges can also be expected in marine settings, where effects of climate change are not 

constant between surface waters and deep ocean (Capotondi et al. 2012). 

Inconsistent climatic change across space also modifies the historic overlap and 

adjacency of stratified niche spaces between seasons. Disruption of the historic relative timing 

of seasonal niche availability may impact the seasonal migration schedule of some niche 

switching vertical migrants (Figure 1.3, Niches 2 and 3). For example, grizzly bears (Ursus arctos 

horribilis) in the greater Yellowstone ecosystem undergo a partial downhill migration after 

emerging from high-elevation dens in spring (Haroldson et al. 2002). They then follow the 

elevational progression of snowmelt into high-elevation habitat in the summer, coincident with 

the summertime aggregations of Army cutworm moths (Euxoa auxiliaris) that migrate to the 

alpine from the Great Plains (Pruess 1967, Servheen 1983, French et al. 1994, White et al. 

1998). This influx of forage facilitates the hyperphagia required of bears leading up to 

hibernation (Nelson et al. 1983, French et al. 1994). Throughout the Rocky Mountains, the 

predictability of seasonal variation in snow cover has changed during recent years (Box 1.1). 

Warming winters and reduced snow accumulation are expected in that area for the coming 

decades (Lapp et al. 2005). If emergence and departure timing of E. auxiliaris in the Great Plains 

becomes decoupled from snowmelt and den emergence by U. a. horibilis in the Rocky 
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Mountains, the efficacy of migratory bears’ switch from hibernating to foraging may be 

compromised. 

 
Fundamental niche space 
 

Response to climate change through range shifts is additionally limited for vertical 

migrants. Abiotic stressors covary with both altitude and depth, imposing novel pressures on 

animals that undergo distributional shifts in response to increasing temperatures (Spence and 

Tingley 2020). In mountains, a finite upper biotopic limit (mountain peaks and ridgelines) 

prohibits indefinite upslope response. The available surface area of mountains is furthermore 

not constant across strata (Körner 2004, Elsen and Tingley 2015) and presents an added 

constraint on altitudinal migrants, particularly if density dependent factors like intraspecific 

competition for resources underlies the elevational distribution of seasonal ranges. In marine 

systems, range shifts toward deeper water are a common response to warming surface waters 

(Pinsky et al. 2013). However, physical and chemical factors prevent an indefinite retreat to 

deeper waters. The twilight zone introduces an absolute maximum depth for visual animals, 

while the sea surface delimits a minimum depth available to marine obligates. Reduced oxygen 

and increased hydrostatic pressure in deep water impose limits on metabolism, introducing a 

barrier that can only be overcome through physiological adaption (Brown and Thatje 2015). 

Because hypoxia tolerance is strongly linked to temperature in some depth migrants (Bigford 

1979, Deutsch et al. 2015), change in ocean temperature and oxygenation, and shifts in the 

depth of the oxygen minimum zone, may be especially limiting for depth shifts by seasonal 

vertical migrants in the ocean.  
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Conserving systems of vertical migration 
 

While the emergence of suitable niche space across vertical biotopic space is prone to 

adjustments by climate, migrants’ access to and availability of seasonal ranges face additional 

threats. Direct processes such as infrastructure development and harvest may inhibit access by 

animals to seasonal ranges, influence population dynamics, and drive microevolutionary change 

in vertical migrants (Pecl et al. 2009, Pigeon et al. 2016, McInturff et al. 2020). Because 

migrants have more expansive annual ranges than nonmigratory animals, more opportunities 

arise for anthropogenic processes to disrupt their life history. Management of systems of 

vertical migration should account for the multifaceted spatiotemporal requirements of 

migrants. 

Seasonal landscapes that actively face direct human-induced change such as 

deforestation and destructive harvest are likely to be immediate concerns for vertical migrants. 

For example, due to rapid and accelerating global deforestation (Hansen et al. 2013, Kim et al. 

2015), habitat fragmentation is of particular concern for migrants that specialize on forests for 

at least part of their life history. The Eastern Arc Mountains of Tanzania house a large 

proportion of forest-dependent birds, but also face a high degree of deforestation (Buchanan et 

al. 2011). Such loss of forest habitat is concerning for both the numerous endemic tree species 

(Hall et al. 2009) and avian altitudinal migrants that live there (Burgess and Mlingwa 2000). One 

such species is the Banded green sunbird (Anthreptes rubritorques), a forest-dependent 

altitudinal migrant endemic to the Eastern Arc Mountains, which is now listed as a Threatened 

species due to habitat loss through deforestation (BirdLife International 2017). Conservation 

efforts must prioritize areas of rapidly vanishing habitat, especially where these intersect with 
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forecasts of climate change impacts on habitat availability, and particularly in instances where 

highly endemic species face extinction (Post and Brodie 2015).  

Parallel to habitat destruction, movement barriers limit the realized availability of 

seasonal ranges to migratory animals. Human infrastructure, including fencing, roads, and 

bridges, interrupt directed movement, thereby preventing migrants from accessing seasonal 

ranges. Because anthropogenic delineations between land designations rarely fall along 

ecological boundaries, fences bar passage across otherwise continuous niche space. Semi-

permeable solutions, such as wildlife-friendly fencing, increase connectivity between seasonal 

ranges, while still fulfilling the original intention of the infrastructure (Paige 2008, Sawyer et al. 

2013). Barrier permeability may be similarly important in marine settings. For example, many 

crabs undergo seasonal movements between shallow estuarine and deeper ocean waters (e.g. 

Bigford 1979). The construction of bridges connecting capes at the mouth of estuaries may 

present temporary or permanent barriers to crab migration: project scheduling and design 

permeability must be considerations if the conservation of marine-estuarine bathymetric 

migrants is a priority. 

Effectively managing for the future will rely on focused consideration of the seasonal 

role humans play in the systems vertical migrants occupy, and the sensitivity of niche space to a 

changing climate. One such example lies in a climate change hotspot, the East Australian 

Current (EAC), which has faced changes in the strength and seasonality of its flow and poleward 

shifts in the distribution of species that inhabit it (Johnson et al. 2011, Champion et al. 2018). 

The southern rock lobster (Jasus edwardsii) is an economically important species that 

undergoes seasonal bathymetric movements to shallow water for molting (MacDiarmid 1991). 
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Jasus sp. lobsters face seasonal fishery pressure in Tasmania, which is also highest in shallow 

waters near the coast. Lobster recruitment is expected to fall in the coming decades as sea 

temperature rises (Pecl et al. 2009), but they face the added threat of invading sea urchins that 

arrived in response to overfishing (Johnson et al. 2011). Accounting for spatiotemporal 

variation in lobster abundance, and determining whether effects of climate and harvest are 

additive or synergistic, are crucial to the success of fishery management there.  

While systems of vertical transhumant pastoralism may not fit neatly under some 

contemporary definitions of “migration,” their seasonal structure of landscape use presents an 

opportunity to forecast dynamics and examine policy through analogy: transhumant 

pastoralism is the practice of leading livestock along seasonal routes to track pasture quality, 

and mountain ranges across the world have served as systems for vertical pastoralism 

throughout human history. A primary concern of shepherds is the condition of grazing and 

wintering lands; decisions about grazing timelines dictate forage quality for livestock, and 

frequently incite conflict (Beck 1991). Shifts in predictable forage phenology may be difficult to 

match by pastoralists due to the often-rigid transit schedules imposed on them through 

political avenues. Nepalese herders have reported earlier snowmelt and advanced plant 

phenology in the Himalaya, where they undergo seasonal vertical movements to maintain yaks 

and other ungulates (Aryal et al. 2016). Added to shifting social and cultural landscapes, 

environmental change amplifies the expected decline of vertical transhumant pastoralism in 

the coming decades (Hock et al. 2019). Protection of the routes that connect seasonal ranges, 

and flexibility by officials to account for changes in ecosystem dynamics, will be central to the 

conservation of this imperiled lifestyle.  
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Conclusions 
 

The evolution of analogous patterns across ecosystems lends insight to both basic and 

applied research questions (Burkepile et al. 2020). One such pattern is the seasonal movement 

between vertically separated habitats: vertical migration. Seasonal vertical migrations have 

evolved not only within marine and terrestrial habitats, but in some cases they involve transit 

between these inherently stratified ecosystems. Vertical migrants can be found throughout the 

animal kingdom, including among arthropods, birds, and even human-ecological systems. The 

heightened environmental variation generated by landscapes of relief allows animals to exploit 

or mediate the seasonality of their environment in order to facilitate growth and reproduction. 

However, the historic pattern of variation may be sensitive to adjustment by climate and 

accessibility by other anthropogenic impacts. Migrants’ capacity to manage seasonal niche 

space by navigating biotopic space may underlie their ability to persist under climate and land 

use change, but well-planned conservation action and policy can help ensure the longevity of 

vertical migrants. 
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Figures 
 

 
Figure 1.1. Landscapes of relief introduce multiple axes of environmental variation over short 
distances, which can be exploited by mobile organisms. In this conceptual illustration, exemplar 
species are shown at the destination end of their seasonal movement path in both the 
perspective landscape plot and niche panels (a-c). Environmental factors that vary vertically are 
indicated along arrows in the perspective plot. In a-c, one axis of niche space is plotted against 
time, with environmental conditions realized by seasonal migration shown in color, and 
environmental conditions realized by non-migration shown by a dashed line. Bighorn sheep 
track springtime plant growth as vegetation green-up progresses uphill (“niche tracking”, a). 
Soldier hermit crabs face a massive shift in realized salinity when they move from their 
terrestrial non-reproductive environment to their marine reproductive and developmental 
environment (“niche switching”, b). Other decapod crustaceans, such as some lobsters, dampen 
wintertime shifts in temperature by migrating to deeper waters (“dampened niche tracking”, c). 
Data are for illustrative purposes only; terrain data from ETOPO1 (Amante and Eakins 2009), 
movement paths generated using directed random steps, and niche space generated using 
normal distributions with shifting center across time (R version 3.6.1). Animal silhouettes 
adapted from phylopic; illustrated by Scott Harmon, Ekaterina Kopeykina, and Joanna Wolf; and 
under public domain and creative commons licenses CC0 1.0 and CC 3.0. 



 25 

 

 
 

Figure 1.2. Landscapes of relief shape the spatiotemporal environmental variation through 
seasonal transformations across strata (tan and blue lines correspond to two environments of 
different elevation or depth). Phase shifts (a) involve a temporal advance or delay in the 
seasonal cycle without change in the intercept or magnitude of the cycle. Phase differences (b) 
arise when the cycle’s intercept changes but without changing the amplitude of the cycle. 
Phase products occur where the same baseline conditions exist across space, but the magnitude 
of the cycle varies in the form of amplification or attenuation (c). Further spatiotemporal 
complexities may arise through a combination of these phase changes (d). The primary axes of 
phase variability are illustrated with black arrows. 
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Figure 1.3. Inconsistent seasonal transformations across biotopic and niche axes precludes 
effective niche tracking and niche switching. Each panel illustrates the vertical gradient (y-axis) 
in niche value (color intensity) across the course of a year (x-axis). The left column of panels 
represents an historic climate regime, while the right column represents novel climatic 
conditions. Each row represents a different niche axis which may be tracked or differentially 
prioritized. Grey contour lines indicate an arbitrary threshold value within niche space that 
migrants seek out. For Niche 1, novel conditions lead to a more synchronous season across 
biotopic space. A tracking migrant may have historically migrated vertically to follow the 
spatiotemporal progression of Niche Variable 1, but under novel conditions more synchronous 
emergence of threshold niche access may reduce incentives to relocate in a coherent vertical 
pattern. For Niches 2 and 3, an advance in the timing of Niche 2 relative to Niche 3 leads to a 
temporal window where suitable space is not available along either niche axis under novel 
conditions (delineated with orange dashed lines). If a niche switcher depends on the historical 
synchrony of senescence in Niche Variable 2 and emergence of Niche Variable 3 during its 
migration, inconsistent change in the onset and termination of these factors will disrupt the 
pattern of environmental variation under which migration was adaptive.  
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Box 1.1. Seasonal variation is not universally predictable in landscapes of relief. 
 
Migration is an adaptive life history strategy when seasonal variation follows a predictable 
schedule (high “contingency”; Colwell 1974, Shaw and Couzin 2013, Riotte-Lambert and 
Matthiopoulos 2020). In mountain and coastal regions, contingency of a given factor may 
vary across space (a). For example, although snow cover is highly contingent in the northern 
Canadian Rocky Mountains, reliable seasonal cycles are diminished toward the south (NDSI, 
a). However, seasonal variation may become more or less predictable over time (b) as factors 
individually respond to cascading effects of climate change. For example, sea surface 
temperature variation in numerous areas throughout the Malay Archipelago became less 
predictable in the 2010’s compared to the 2000’s, but the same pattern was not observed for 
chlorophyll concentration. In (a), contingency was calculated following Colwell (1974) for 
MODIS Terra NDVI and NDSI, and MODIS Aqua L3SMI Chlorophyll a and Sea surface 
temperature products aggregated to 10km pixel resolution. In (b), contingency of each factor 
during 2010-2019 was compared against contingency during 2000-2009 to identify change, 
with |ΔContingency | < 0.025 considered “Negligible.” 
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Chapter 2: drpToolkit: An automated workflow for aligning and analyzing vegetation and 
ground surface time series imagery 
 
Manuscript published in Methods in Ecology and Evolution; reprinted with permission; citation: 
 
John, C., F. Shilling, and E. Post. 2022. drpToolkit: An automated workflow for aligning and 
analysing vegetation and ground surface time-series imagery. Methods in Ecology and Evolution 
13:54–59. 
 
 
Abstract 
 

1. Analysis of ecological data from digital repeat photography requires consistent image 

alignment across the time series of data collection. Current open-source methods 

facilitate the detection of frame shifts, but require manual adjustments by the user to 

reassign regions of interest when shifts occur.  

2. We introduce `drpToolkit`, an open-source Python package that automates data 

management, image alignment, and data extraction from time series image sets. The 

toolkit operates on a folder of images and generates an aligned image time series using 

a user-defined keyframe, and extracts derived greenness and snow indices from user-

defined regions of interest. 

3. Imagery alignment improves the spatial consistency of repeated measures in an image 

set. Particularly among small regions of interest, data extracted from aligned imagery 

reflects observed changes in greenness compared to unaligned imagery. 

4. This software simplifies the process of converting raw imagery stored on an SD card to 

useful ecological data. It automatically refiles imagery using a standardized format used 

in other applications, increasing the opportunity for cross-study comparisons of 
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phenology, and collaboration among researchers and agencies to improve 

understanding of fine-scale ecological response to climate change.   

 
Keywords 

digital repeat photography, open source software, phenology, photogrammetry, time-lapse 

photography 

 
Introduction 
 

Remote sensing data inform research and drive policy surrounding conservation of 

biodiversity and ecosystem function (Skidmore et al., 2021). Scale gaps in remote sensing data, 

such as those arising in measurements of landscape phenology, complicate the problem of 

pairing in-situ measurements with coarsely resolved satellite data for modeling and forecasting 

effects of climate change (Park et al., 2021). Improvements in the consistency, reliability, and 

resolution of remote sensing measurements across scales of detection reduce error accrued 

through modeling processes, and refine our understanding of scaling relationships between 

individuals, species, communities, and ecosystems. 

Digital repeat photography is the iterative measurement of a plot or site using imagery. 

Repeated photogrammetric measures are common in ecology, for applications including 

phenological monitoring, change detection, and occupancy modeling (Burton et al., 2015; 

Crimmins & Crimmins, 2008; Farinotti et al., 2010; Nichols et al., 2016). Temporally constant 

image collection protocols (“time-lapse” photography) are a special case of highly controlled 

data collection, where imagery is collected on a pre-defined interval. In particular, derived 

image bands from time-lapse data are useful for detecting changes in plant greenness and snow 
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cover at fine scales (Ide & Oguma, 2013; Xie et al., 2018). Although common indices generated 

from satellite data (such as the Normalized Difference Vegetation Index, “NDVI” or Normalized 

Difference Snow Index, “NDSI”) rely on radiometric measurements that are not available on 

most consumer-grade cameras, alternative data generated at the ground level can also be 

informative about plant growth and snow presence. 

Over the course of deployment of a time-lapse camera, variation among image scenes 

may result from undesired camera shifting. Thus, a region of interest defined in image 

coordinate space will not consistently represent an area of the physical scene unless imagery is 

aligned prior to data extraction. Therefore, in order to obtain meaningful data from digital 

repeat imagery, regions of interest must be constantly updated to accommodate shifting 

scenes, or images must be aligned to a common reference image prior to data extraction. 

Data management is an additional bottleneck in analysis of digital repeat photography. 

Numerous software pipelines exist for management and analysis of time series imagery, but 

most are interactive and require considerable user input (e.g. Niedballa et al., 2016; 

Seyednasrollah et al., 2019). Consistent directory structure, file-naming conventions, and 

metadata libraries improve not only reproducibility of analysis and results, but also cross-study 

comparisons and meta-analyses. 

To solve the problem of shifting image scenes due to fine rotations by fixed cameras, we 

introduce `drpToolkit`, an open source Python library for estimating image transformations and 

aligning imagery from automated time-lapse photography. For vegetation phenology studies, 

the tool also estimates vegetation greenness from aligned images. This software facilitates the 

data pipeline that connects raw imagery to useful image time series. `drpToolkit` scripts, 



 37 

installation instructions, and sample data are available at 

https://github.com/JepsonNomad/drpToolkit. 

 
Methods 
 
Image alignment 

Image alignment can be achieved by solving for the best transformation between sets of 

keypoint pairs that link two images, a reference image and a novel image. Keypoints are first 

identified using a feature transform which describes points in image coordinate space. The SIFT 

feature transform is useful for identifying points in scenes with illumination variability (Lowe, 

2004). Because some image regions may contain recurrent structural variation irrelevant to 

frame shifts and thus may impact alignment, it may be necessary to disqualify certain image 

regions from keypoint detection. `drpToolkit` combines SIFT features with an optional keypoint 

mask assigned to the reference image in order to identify a selection of high-quality keypoints 

in the reference image, and each novel image. Keypoint pairs are then filtered using RANSAC 

thresholding and Lowe’s ratio to identify the best pairs. 

`drpToolkit` simplifies the image alignment process by treating image scenes as 2-

dimensional surfaces that can be linked by either an affine or homography transformation. 

Although fewer parameters must be identified for affine transformations, homography 

(perspective) transformations may improve alignment. After high-quality keypoint pairs are 

identified, a transformation matrix that describes the relationship between the novel image 

and reference image is estimated. The novel image can then be warped to align to the 

reference image by finding the product of novel image pixel coordinates and the 

transformation matrix.  
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In this toolkit, we assume that camera orientation among images is highly 

autocorrelated, with shifts in the image scene leading to a new temporarily stable orientation. 

Further, the transformation matrix is sequentially estimated across a time series of imagery. 

This approach has two benefits: First, if too few keypoint pairs are detected to generate a 

reliable transformation matrix, the algorithm can default to the last estimated transformation 

matrix. Similarly, if keypoint pairs are detected but the estimated transformation matrix would 

produce a highly warped image (e.g. if the determinant of the matrix is different from 1), the 

algorithm can default to the last reasonable transformation matrix. 

 
Derived image indices 

Digital repeat photography is commonly employed for monitoring plant and snow 

phenology (Ide & Oguma, 2013; Xie et al., 2018). The Normalized Difference Vegetation Index 

(NDVI) and Normalized Difference Snow Index (NDSI) are two derived image bands that are 

commonly used as proxies for vegetation rigor and snow presence, respectively. Calculation of 

both of these indices requires a measurement of nonvisible wavelengths, which are available 

on most publicly accessible satellite imagery. However, because standard consumer-grade 

cameras do not produce imagery with nonvisible wavelengths, alternative approaches to NDVI 

and NDSI are required. The Green Chromatic Coordinate (GCC) is a measure of relative 

greenness in an image, and may be useful even under variable lighting conditions (Reid et al., 

2016). GCC is calculated using equation 1: 

 
GCC = (G) / (R + G + B)          [1] 
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where R, G, and B are the values of red, green, and blue color channels, respectively. Whereas 

NDSI is calculated using the mid infrared band, an alternative approach allows digital camera 

operators to bypass that requirement by identifying the brightness of a pixel or image region 

relative to the total image (Hinkler et al., 2002). This generates a replacement infrared band 

(MIRrep), which can be substituted in to calculate a pseudo-NDSI based on RGB imagery 

(rgbNDSI) using equation 2: 

 
rgbNDSI = (RGB - MIRrep) / (RGB + MIRrep)        [2] 

 
where RGB is the mean value of red, green, and blue color channels for each image pixel. We 

found that at fine plot scales, lighting variation in the image scene often leads to an 

unacceptable rate of high rgbNDSI values in imagery with little or no snow. This stands in 

contrast to its utility for broader scenes (Buus-Hinkler et al., 2006; Fedorov et al., 2016). 

Because digital repeat photography is useful across multiple scales of inquiry, we include the 

rgbNDSI functionality in `drpToolkit` but caution users to closely inspect these results. 

 
Example workflow 
 

A typical workflow for digital repeat photography data management and data extraction 

will follow a scheme of: prepare imagery, align photos, and extract data (Figure 2.1). Because 

`drpToolkit` is modular, its three main workflow components can be called from the command 

line, or individual module functions can be called independently using Python. Here, we 

describe an example workflow for a year of imagery collected at one plot. Documentation is 

available for each module and can be accessed using (e.g.): 
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python3 prep.py --help 

 
All imagery should contain valid EXIF metadata and be contained in a single folder. The 

toolkit avoids removing intermediate datasets, so users should be aware that running 

`drpToolkit` modules will use a comparable amount of storage as the folders of imagery with 

which they are working. Consumer-grade cameras frequently use uninformative filename 

conventions and multiple cameras may use identical filenames. Therefore, in the first step, 

imagery is copied from an existing directory (-i) to a new subdirectory, and renamed according 

to camera site and plot, and image timestamp information, following the conventions of the 

PhenoCam dataset (Richardson et al., 2018). In the following command line call, `drpToolkit` 

identifies imagery in the “data/img” directory (-i). These images can be cropped and resized 

using optional flags. Finally, renamed imagery is saved in a subdirectory defined by the -o flag. 

 
python3 prep.py -i data/img -o prepped 

 
Next, a directory of imagery (-i) is aligned to a common reference image (keyframe; -k). 

Each image is automatically loaded in sequence, the best transformation matrix is identified, 

and the image is remapped using that matrix and stored in the output directory (-o). A 

summary table with transformation matrix elements is stored in the output directory along 

with the aligned images, with the name “transTable.csv”. By default, the transformation model 

is Homography. Users may wish to override this using the optional --transModel flag. Default 

parameters for RANSAC reprojection threshold and Lowe’s ratio may also be overridden using 

the --rRT and --lRT flags.  
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python3 align.py -i data/img/prepped -k data/img/prepped/GB-

03_2018_08_14_120000.JPG -o aligned 

 
Finally, GCC and rgbNDSI are calculated and extracted from each image in a directory (-

i). If desired, indices can be extracted within a selection of regions of interest (optional -r flag). 

If no -r flag is included, the function will extract GCC and rgbNDSI for the entire image. Because 

use of the `align.py` module in advance of `extract.py` may lead to loss of representation by 

some regions of interest (Figure 2.2), the algorithm also summarizes the number of pixels in 

each region and the number of non-zero pixels in each region, for each image measurement.  

 
python3 extract.py -i data/img/prepped/aligned -r 

data/roi/ROIs.csv 

 
If desired, a panelized series of summary images can be generated for inspection of results. 

Although not part of the data pipeline, we advocate for inspecting results before moving on to 

downstream analyses. 

 
python3 panelize.py -i data/img/ prepped/aligned -t extract.csv 

-r data/roi/ROIs.csv 

 
Users should note that the data generated through this pipeline are raw values, and further 

processing will be required depending on the end goal of the study. For example, in some 

phenology applications, a 90th percentile moving window may reduce variation introduced by 

day-to-day variation in scene illumination (Sonnentag et al., 2012). However, many post-
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alignment analytical methods are already widely available, such as the Python package 

`vegindex` (Milliman, 2017/2021). 

 
Limitations, solutions, and alternative approaches 
 
Geometric constraints 

This workflow assumes that the camera sensor did not move in geographical space, and 

only shifts about its core in the three rotational axes of yaw, pitch, and roll. Complete loss of 

scene overlap due to camera rotation will make alignment impossible. The degree of acceptable 

overlap depends on the camera’s angle of view and the distance from focal subject. Wide-angle 

and fisheye lenses have increased radial distortion, leading to difficulty in identifying an 

appropriate image transformation. Internal image distortion will also produce invalid results if 

imagery is collected at a shallow angle with an extreme depth of field.  

If the rotation of a camera results in only slight overlap across images, the calculated 

homography is not likely to produce a realistic image. Significant shifts of the camera position 

resulting in parallax within the dataset should also be avoided. In all of the above cases, it 

would be inappropriate to use the `drpToolkit` workflow, necessitating more sophisticated 

approaches with camera calibration and internal image geometry. For instance, the program 

Hugin (http://hugin.sourceforge.net/) aligns images on the surface of a sphere to account for 

camera calibration (rather than a plane as is the case with `drpToolkit`), however additional 

manual intervention and computational requirements may be necessary in that environment.  
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Temporal considerations 

The software was designed specifically to process time-lapse imagery, but it may be 

useful for some motion-triggered datasets as well. However, the keypoint matching algorithm 

does rely on some degree of consistency across images, which may not be met if photos are 

collected during both daytime and nighttime. Thus, camera trap datasets that include both 

daytime and nighttime images will be difficult to align using this algorithm. A solution to this 

issue is to split such datasets into a diurnal and nocturnal image set, identify a representative 

photo in both sets that are from matching camera orientations, and calculate homography for 

both sets separately. 

 
Computational factors 

Keypoint identification and homography estimation are computationally expensive 

tasks, and may be slow on some machines. We found that resizing imagery to smaller files was 

useful for speeding up the process of alignment and data extraction, but for our plot-scale 

imagery aggregation to ½ resolution imagery was not detrimental to our analyses. If the finest 

resolution imagery must be used, alignment and data extraction may use considerable 

computer resources. On a 2019 Macbook Pro with 16GB memory and 2.8 GHz Quad-Core Intel 

Core i7 processor, `prep.py` ran for about 1 minute, `align.py` for about 15 minutes, and 

`extract.py` about 3.5 minutes for a folder of 365 images. 

 
Conclusions 
 

Here, we presented a new open-source toolkit for preparing and aligning imagery 

generated through digital repeat photography, and for extracting ecologically relevant data 
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from that imagery. Alignment of images is a crucial step in the repeat photography workflow, 

and treating unaligned photos as perfect repeated measures impacts the validity of 

measurements in time-lapse studies. Although future work may improve measures of variation 

in snow presence and vegetation rigor, our toolkit simplifies the data pipeline from images to 

analysis-ready data for researchers, resource managers, and conservationists alike. 
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Figures 
 

 
 
Figure 2.1. The `drpToolkit` workflow. The command-line interface (workflow steps and 
command line functions in blue boxes) operates at the folder level, however image-level 
functionality is available in the Python library (library functions in orange boxes).  
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Figure 2.2. Comparison of ROI positioning in aligned and unaligned imagery. Constant ROI 
assignment across a time series of aligned imagery (a, top row) yields consistent measures in 
space. Constant ROI assignment across a time series of unaligned imagery (a, bottom row) leads 
to inconsistent measures in space. Derived image indices such as GCC (b) are sensitive to shifts 
in camera orientation if imagery is not aligned. For example, autumn browning in 2018 (b, grey 
window, and emphasized as a temporal subset in c) is not detected for most ROIs in unaligned 
imagery due to invalid ROI designation.   
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Chapter 3: Consistency in spring landscape phenology revealed through time-lapse imagery:  

implications for conservation and management of an endangered migratory herbivore 

 
Abstract 
 
Climate change modifies plant phenology through shifts in seasonal temperature and 

precipitation. Because the timing of plant growth can limit herbivore population dynamics, 

climatic alteration of historical patterns of vegetation seasonality may alter population 

trajectories in such taxa. Spatial patterns in the seasonal onset and progression of plant growth 

timing may mediate effects of climate change on herbivore populations, either by extending or 

contracting the available window of foraging opportunities. Thus, sound management decisions 

may depend on understanding how plant growth varies across a landscape within and among 

distinct management units or protected areas. Yet, it is difficult to study patterns in plant 

phenology at a scale relevant to large herbivores, which may prefer certain forage species, 

move between disparate seasonal ranges, and potentially require management actions such as 

translocation to achieve conservation goals. Here, we examine spatial variation in the timing of 

spring plant growth, measured using a network of automated time-lapse cameras distributed 

across the range of endangered Sierra Nevada bighorn sheep (Ovis canadensis sierrae) in 

California, USA. We measured the elevational lapse rate in the timing of spring plant growth 

across distinct management units of Sierra bighorn. Daily time-lapse imagery revealed 

consistent variation in green-up timing across elevation, both among latitudinal zones and 

among individual plant species. Green-up timing was earlier in 2020 than in 2019, reflecting 

differences in the end of the snowy season. Because bighorn forage seasonally on alpine 
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species with a brief growing period, spring migration of bighorn may be linked to variation in 

snowmelt and plant growth across elevational gradients.  

 
Keywords 

Endangered species, remote sensing, digital repeat photography, phenology, migration, climate 

change 

 
Introduction 

Climate change drives shifts in the timing of plant growth (Walther et al. 2002, Cleland 

et al. 2007, Vitasse et al. 2022), but plant response to changing temperature and precipitation 

regimes is complex  (Primack et al. 2009, Post et al. 2016, Rafferty et al. 2020) and phenological 

variation at fine scales may not translate to landscape-scale patterns (Piao et al. 2019, Park et 

al. 2021). Montane settings generate extreme ecoclimatic variation across a narrow 

geographical range (Körner 2007, Klinges and Scheffers 2020), leading to local variation in the 

timing of plant growth (Hopkins 1920; Richardson et al. 2019). Such variation is important for 

herbivores if they rely on tracking high-quality resources or switching between habitat types to 

fulfill annual life history requirements (John and Post 2022). Yet, climate change stands to 

disrupt historical patterns of vegetation phenology across mountain slopes (Shen et al. 2014, 

Vitasse et al. 2018, Misra et al. 2021). 

Large herbivores can prolong the seasonal duration of access to high-quality forage by 

coordinating movements with spatiotemporal variation in plant growth onset and senescence 

(Albon and Langvatn 1992, Bischof et al. 2012, Kauffman et al. 2021). For many ungulates, 

seasonal movements typified by, for example, migration, are adaptive when plant growth 
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progresses predictably across spatial gradients (Teitelbaum and Mueller 2019, Aikens et al. 

2020b, Abraham et al. 2022). Climate-induced change to spatial patterns of spring plant growth 

can drive variation in herbivore movement (Rickbeil et al. 2019, Aikens et al. 2020a) and even 

reproductive success (Post et al. 2008). Spatial variation in spring plant growth thus mediates 

effects of climate change on herbivore populations, either by extending or contracting the 

available window of foraging opportunities.  

Because herbivores track vegetation over large scales, sound conservation planning for 

herbivores depends on understanding how plant growth varies across landscapes (Morellato et 

al. 2016). Management of migrants requires adequate protection of seasonal ranges and their 

connections (Martin et al. 2007, Runge et al. 2015), so a crucial aspect of wildlife conservation 

and management is identifying drivers, patterns and limitations on animal movements (Barton 

et al. 2015, Allen and Singh 2016). The seasonal and sometimes unpredictable movements of 

migratory and nomadic species make such connections particularly enigmatic (Runge et al. 

2014). One such species, the Sierra Nevada bighorn sheep (“Sierra bighorn,” Ovis canadensis 

sierrae), is an endangered alpine specialist endemic to the Sierra Nevada mountains of 

California, USA (Figure 3.1; U.S. Fish and Wildlife Service 2007). Sierra bighorn undertake a 

partial, facultative altitudinal migration along an elevational gradient that approaches 3000m 

(Spitz et al. 2020). Because migration and lambing in Sierra bighorn is roughly coincident with 

the annual season of snowmelt and plant green-up, variation in the timing and spatial 

progression of plant growth may be especially important for their movement and persistence. 
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Studies of plant phenology in mountain systems are made especially difficult due to variable 

vegetation cover. Although lower slopes may feature dense forests, alpine peaks are often only 

sparsely populated by small plants (Körner 2004). In areas where vegetation cover is less dense, 

the relative coverage of plant material is lower, and consequently plants are proportionately 

less represented in satellite measurements. However, barren and herbaceous alpine regions 

are especially important for bighorn sheep, which rely on keen eyesight and unobstructed 

vision to avoid predators while foraging on sparse vegetation (Geist 1974). Therefore, in order 

to understand the importance of plant phenology for the foraging ecology of bighorn sheep 

(and alpine ungulates more generally), alternative techniques for tracking plant growth are 

required. One approach to overcoming limitations of both scale and accessibility in the study of 

plant phenology in montane systems is the use of time-lapse cameras (Ide and Oguma 2013). 

Time-lapse cameras offer an affordable and scalable means of monitoring plant growth across 

communities, elevations, and regions (Richardson 2018). Here, we use a network of time-lapse 

cameras to investigate variation in spatio-temporal patterns in the timing of plant growth 

across the range of Sierra Nevada bighorn sheep. We examine associations among terrain, 

snow cover, and vegetation phenology, in order to inform conservation and management 

decisions about Sierra bighorn, and compare our results to satellite remote sensing data to 

evaluate the extent to which green-up estimates transfer to novel settings. 
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Materials and Methods 
 
Study system 

Sierra bighorn are managed at the “herd unit” level, which approximately describes 

discrete populations, although some dispersal among herd units has been documented (U.S. 

Fish and Wildlife Service 2007). Since the 1970’s, translocation efforts have expanded 

populations from three isolated groups to include fourteen currently occupied herd units 

(primarily ranging along the east slope of the Sierra, indicated by solid lines in Figure 3.1). Other 

potential areas of reintroduction have been identified and are under consideration for further 

translocation, and are included for context in maps (indicated by dashed lines in Figure 3.1).  

The Sierra lies along the western edge of the American Cordillera, and features 

elevational relief in some places exceeding 2.5km. Mid-to-high elevation areas are 

characterized by heavy snowfall during winter; in some regions of the eastern Sierra, snow 

depth exceeds 5m in heavy snowfall years (Bair et al. 2018). In the alpine zone, sparse plant 

communities of predominantly herbaceous perennial species dot the landscape (Barbour et al. 

1997). Lower slopes in the eastern Sierra are arid due to the rain shadow effect, and feature 

Mojave and Great Basin desert scrublands. The altitudinal range of Sierra bighorn spans from 

the alpine to the base of the Sierra escarpment, which they traverse seasonally. Bighorn tend to 

prefer to remain close to cliffy areas to which they can escape in the event of a predator 

encounter, and specialize on the rugged terrain that characterizes the eastern Sierra (Spitz et al. 

2020).  
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Time-lapse camera network 

Time-lapse, or digital repeat photography, is the serial collection of imagery following a 

fixed temporal interval, and is increasingly used as a near-surface remote sensing technique to 

track seasonal plant growth (Crimmins and Crimmins 2008, Richardson et al. 2009, Bater et al. 

2011, Brown et al. 2016, Richardson 2018). One hundred thirty-five Wingscapes TimelapseCam 

Pro cameras were deployed in the Sierra Nevada mountains of California during the summer of 

2018 based on expert knowledge of habitat use by Sierra bighorn, site accessibility, and 

minimizing impacts on federally-designated Wilderness (Figure 3.1). Because the intent of this 

study was to focus on forage phenology for Sierra bighorn, cameras were positioned across 

their elevational and latitudinal range, with selection of individual plots based on the 

occurrence of plant species consumed by bighorn. The cameras were programmed to capture 

at least three photos daily (at 11am, noon, and 1pm), but only noontime images were used in 

this analysis. Nine of the fourteen occupied herd units were selected for this study in order to 

limit overlap among jurisdictional areas by the camera network. 

 

Image analysis 

For each camera plot, a “keyframe” image was selected as a reference point for the 

remainder of the analysis. All identifiable plant ramets were traced and labeled using the VGG 

Image Annotator (Dutta and Zisserman 2019). In cases of dense beds of mixed or 

undifferentiable plant species, an umbrella “Unidentified/mixed” label was used. When present 

in the keyframe image scene, polygons for several rocks were also annotated in order to track 

seasonal variation in image greenness not associated with plant growth. 
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The software `drpToolkit` v1.0.0 (John et al. 2022) was used to align imagery and extract 

pixel greenness for individual plants from the time series. For each camera, all images were 

aligned using the SIFT algorithm (Lowe 2004) to find shared features between each image and 

that camera’s keyframe, and calculate the 3x3 matrix defining the transformation between the 

raw image and the target keyframe (homography matrix). With all aligned imagery sharing a 

common coordinate space, greenness was extracted from each plant polygon, described above. 

Greenness was calculated using the green chromatic coordinate (GCC), defined as the mean 

value on the green band divided by the sum of the mean of the green + red + blue bands 

(Klosterman et al. 2014, Reid et al. 2016). Snow cover was manually flagged, and when snow 

was present in the foreground of an image, greenness data were censored from the analyses.  

Because the camera model used in this study only allows automatic exposure, we 

retained only imagery that was collected using the 10 most common exposure settings per 

camera-year. Therefore, a camera with a generally darker image scene might have a slower 

selection of acceptable shutter times than a camera with a lighter image scene (for example, 

WH-13 and WH-10, respectively, due to variation in terrain color; Supplementary materials S1). 

We also retained only camera-years containing fewer than 3 months of missing data within the 

year, and fewer than three consecutive weeks of missing data between March and September. 

Derivation of plant phenology indices followed standard procedures (Beck et al. 2006, 

Bischof et al. 2012) applied to plant-specific greenness values. For each region in each plot and 

during each year, greenness was rescaled so that the 0.1 quantile was set to 0 and the 0.925 

quantile was set to 1; the rescaled 0 value was also imputed as a winter baseline when images 

contained snow. Next, a 7-day moving window was used to smooth the time series with the 
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window’s median value. Then, the greenness time series was fit to a double logistic function 

with the form: 

𝐺𝐶𝐶 = $

$%&'(	(+,-./0+
1234/ )

− 	 $

$%&'(	(+,-.70+
12347 )

       [1] 

where GCC is the green chromatic coordinate; x is the ordinal day of year; xmidS and xmidA are 

the timing of the inflection points during the upward phase of spring growth and downward 

phase of autumn senescence, respectively; and scalS and scalA are scaling parameters defining 

the rate of the upward and downward phases of spring and autumn growth and senescence, 

respectively (Beck et al. 2006, Bischof et al. 2012). GCC is an effective metric for tracking 

changes in greenness while minimizing effects of changes in illumination (Sonnentag et al. 

2012). The same approach was used for MOD13Q1 NDVI (Didan 2015) extracted at the location 

of each camera plot. 

Finally, for each camera plot and year, equation 1 was fit to the binary snow cover time 

series to index the timing of seasonal snow cover retreat and onset at the camera level. 

Replacing GCC with binary snow cover, we interpret the xmidS, xmidA , scalS, and scalA 

parameters analogously to the above, but here in reference to snow season parameters.  

 
Statistical analyses 

To examine the effect of snowmelt timing on green-up timing, a Bayesian linear mixed-

effects model was fitted using green-up timing as the response variable, snowmelt timing and 

plant growth form as fixed effects, and year and camera plot ID as random intercepts. A plant’s 

growth form is a coarse description of its stature and durability, and is likely to underlie how 

physiological processes respond to variation in snow depth and soil moisture (Iversen et al. 
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2009). To examine variation in the elevational lapse rate in green-up timing across latitude, we 

compared two models, one with aspect, elevation, and latitude as fixed effects; and one with 

aspect, elevation, latitude, and the interaction between elevation and latitude as fixed effects. 

In both models, green-up timing was the response variable, and year and camera plot ID were 

used as random intercepts. Models were compared based on the estimated log predictive 

density (ELPD; i.e. predictive performance) in a leave-one-out cross-validation approach; when 

∆ELPD was less than 4, models were taken to be equivalent. To examine variation in the 

elevational lapse rate in green-up timing across species, we used only green-up data for species 

that were observed in at least five camera plots. Two models were compared, one with species, 

aspect, and elevation as fixed predictors; and one with species, aspect, elevation, and the 

interaction between species and elevation as fixed predictors. We applied the same model 

comparison approach as that used for the latitudinal models above. When elevation or latitude 

were used as predictor variables, they were centered and scaled to aid model fit and 

evaluation, and aspect was cosine-transformed so that -1 indicates south-facing slopes and 1 

indicates north-facing slopes. 

All statistical analyses used the model fitting library `brms` V2.16.3 in R version 4.1.2. All 

models were fit using a normal distribution, 2500 warmup samples, 5000 iterations, and 4 

chains. Non-informative priors were selected (green-up date intercept: normal distribution, µ 

=100, σ = 100;  sd: cauchy distribution, x =0, 𝛾 = 10; sigma: normal distribution, x =0, 𝛾	= 10). 

Model convergence was evaluated based on MCMC chain inspection, R-hat values, and 

effective sample sizes. Results are reported as mean±SE posterior distribution estimates, and 

where applicable, a 95% Bayesian credible interval is included. 
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Results 
 

The raw dataset comprised 95,188 images generated by 118 cameras. After filtering the 

raw dataset, 32,481 images were used to compile 94 camera-years of imagery, including 1,136 

region-years of greenness, spanning 1448m-3798m elevation (mean = 2906.5m; standard 

deviation = 610.2m). More cameras generated usable time series in 2020 (n = 79) than 2019 (n 

= 16). Because the winter of 2018-2019 was a comparably snowy year across the Sierra 

compared to the dry winter of 2019-2020 (United States Department of Agriculture 2022), we 

compare these years where possible, but all models described hereafter include year as a 

random effect to account for interannual differences while exploring intra-annual covariates of 

interest as fixed effects. Green-up was typically more rapid than senescence across the camera 

network, and varied across elevation and latitude (Figure 3.2). Variation in green-up timing was 

more coherent across elevation than it was across latitude. 

Across plant growth forms, green-up was strongly related to snowmelt timing in both 

years of the study (Figure 3.3). In a linear mixed-effects model with green-up timing as the 

response variable, growth form and snowmelt timing as predictors, and year and camera as 

random effects, green-up was 0.45±0.03 days later per 1-day delay in snowmelt (95% CI: 

0.40,0.51). Annual and perennial grasses were the first growth forms to undergo green-up, 

followed by herbs and mixed vegetation cover, followed by shrubs and trees. Although green-

up timing was associated with snowmelt timing across growth forms, the mean posterior slope 

of the relationship was always less than 1, indicating that with later snowmelt timing the 

temporal lag between snowmelt timing and green-up timing diminished (Figure 3.3). 
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The elevational lapse rate in green-up timing was constant across latitude (Figure 3.4). A 

comparison of two models, one that included aspect, elevation and latitude (which were not 

correlated; Pearson’s R = 0.39) as fixed predictor variables, and one that included aspect, 

elevation, latitude, and the interaction between elevation and latitude as predictor variables, 

did not lend strong support for either model over the other (cross-validated ∆ELPD of no-

interaction model = -0.5±0.4). In the simpler model (Bayesian R2 = 0.845±0.005), green-up was 

delayed by 16.50±4.56 days on north-facing vs. south-facing slopes (95% CI: 7.36, 25.24), by 

24.73±1.60 days per standard deviation in elevation (95% CI: 21.59, 27.83), and by 0.40±1.63 

days per standard deviation in latitude (95% CI: -3.20, 3.98). In this model, the overall unscaled 

elevational lapse rate of 4.21 days per hundred meters of elevation scales to a difference of 

98.9 days in green-up timing between the lowest-elevation and highest-elevation cameras. In 

the interactive model, green-up was delayed by 16.68±4.70 days on north-facing vs. south-

facing slopes (95% CI: 7.36, 25.56), by 24.17±1.79 days per standard deviation in elevation (95% 

CI: 20.63, 27.70), and by 0.41±1.65 days per standard deviation in latitude (95% CI: -2.85, 3.70), 

and the estimated interaction overlapped 0 (-1.00 ±1.59; 95% CI: -4.13, 2.13), indicating that 

latitude did not affect the delay in green-up timing across elevation within the study extent. 

Of the species that were present in more than five unique camera plots within a given 

year, the slope of green-up timing vs. elevation generally did not vary (Figure 3.5). One species, 

Hulsea algida, underwent green-up earliest at the highest-elevation sites in 2020 (Figure 3.5 

main panel), but after including both years of data and accounting for terrain aspect, there was 

no detectable directional pattern in green-up timing across elevation (Figure 3.5 inset). Models 

with elevation and species as fixed effects and camera plot and year as random effects 
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explained over 85% of the variation in green-up timing (Bayesian R2 = 0.854 when no 

interaction is present). A model that also included an interaction between species and elevation 

only marginally increased explanatory performance (Bayesian R2 = 0.857), and the difference in 

expected log predictive density between the models was small (cross-validated ∆ELPD = 

4.5±3.9). Thus, as with latitude, there was not support for an interaction between species and 

elevation. In the model without an interaction, the mean scaled posterior estimate for 

elevation was 21.92±2.26 (95% CI: 17.58, 26.44) days per standard deviation in elevation. 

Green-up timing detected at the satellite level broadly corresponded with green-up 

timing across all vegetation tracked at the camera plot level (Figure 3.6). However, the 

relationship between camera-derived green-up timing and satellite-derived green-up timing 

was mediated by land cover class, where inter-sensor correspondence was highest among 

shrub and forested areas (Pearson’s R = 0.80 and 0.92, respectively), and lower among 

herbaceous and barren areas (Pearson’s R = 0.05 and 0.32, respectively). Data from MOD13Q1 

affirm an elevational delay in green-up timing (slope = 32.73±2.40 days per standard deviation 

in elevation; 95% CI = 28.03, 37.45).  

 
Discussion 
 

Our results reveal consistent patterns in the timing of spring plant growth across the 

range of Sierra Nevada bighorn sheep. Green-up occurred earlier during the drought year of 

2020 than during the comparatively snowy year of 2019. Plant green-up timing was delayed 

with respect to snowmelt timing across plant growth forms in both years of the study. Although 

green-up timing was somewhat delayed with increasing latitude, elevation emerged as a more 
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important axis along which plant green-up timing varies. Among common species in the Sierra, 

the delay in green-up timing with respect to elevation was approximately constant.  

These findings corroborate the results from other work identifying a pattern of delayed 

vegetation green-up timing with increasing elevation (Hopkins 1920, Albon and Langvatn 1992, 

Vitasse et al. 2018 but also see Wang et al. 2014). Terrain factors alone explained over 80% of 

variation in green-up timing in the eastern Sierra, and modeling results suggest that topography 

may drive differences in the magnitude and duration of the green-up season across herd units 

(Figure 3.7). Due to the extreme topographic relief of the Sierra, low-elevation sites may 

undergo green-up months before high-elevation sites that are only a few kilometers away.  

Additional spatial and interspecific variation in predominant drivers of plant phenology 

are important for understanding how future climate change will impact the resource landscape 

(John et al. 2020). For example, a recent study using PhenoCam data found an important role of 

temperature in driving the elevational delay in deciduous forest phenology, but also uncovered 

intra- and interannual differences in the main factors driving green-up phenology in grasslands 

(Richardson et al. 2019). Disentangling how these factors structure landscape phenology will 

help refine ecological forecasts, a clear need in applied conservation settings. 

Snowpack, snowmelt, and conditions during the snow-free season are central to alpine 

plants’ life history and community composition (Winkler et al. 2018, Jerome et al. 2021). An 

increasingly severe drought across California is related in part to reductions in snowpack across 

the Sierra (Reich et al. 2018). However, model uncertainty around future drought conditions 

makes anticipating future change in snowpack across the Sierra difficult (Cook et al. 2018). 

Critically, the biggest losses in spring snowpack along the eastern Sierra occur at elevations 



 62 

between 1500m and 2500m during drought years (Berg and Hall 2017); areas near the base of 

the escarpment around these elevations are where migratory Sierra bighorn overwinter (Spitz 

et al. 2017).  

Notably, the lag between snowmelt timing and green-up timing was greatest when 

snowmelt was earlier. This occurred mainly at low elevations, presumably due to the relative 

importance of abiotic constraints on the plant growing season: While months of deep snow 

cover represents a predominant constraint for plant growth in the alpine, brief and scant snow 

cover offers increased sun exposure in a comparatively warmer environment for plants at lower 

elevations. Because moisture availability is limited to local snowmelt and rainfall for plants in 

xeric mountain sites (Williams et al. 2009), low-elevation plants in the eastern Sierra likely rely 

on local rain events unrelated to snowmelt for meeting moisture demands. Drought response is 

important in structuring vegetation communities in arid environments, underpinning 

phenological variation across elevation (Fallon and Cavender-Bares 2018). If the movements of 

bighorn relate to forage phenology (e.g. Merkle et al. 2016), elevation-dependent adjustment 

to the snowpack regime may modify habitat selection by bighorn, especially during the early 

spring and at low elevations.  

In this study, species-specific plant green-up timing varied by approximately ten days at 

the median elevation, indicating that conspecific plants at similar elevations may exhibit 

different green-up timing, and conspecifics at different elevations may exhibit similar green-up 

timing. Spatial variation in plant green-up timing can be further explained by incorporating 

other terrain factors such as aspect; our models support including cosine-transformed terrain 

aspect (i.e. slope northness) as an explanatory variable for green-up timing. Phenological 
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variation within and across elevational ranges may help explain the vacillating movements 

taken by some bighorn during their spring migration (Denryter et al. 2021).  

Although green-up timing derived from the time-lapse camera network broadly 

corresponded to green-up timing derived from satellite measurements, that relationship was 

stronger for shrubland and forested areas; in plots with barren and herbaceous land cover, the 

relationship was only weakly positive or nonsignificant (Figure 3.6). Other work has identified 

relationships between satellite sensors and point estimates on the ground (Fontana et al. 2008, 

Moon et al. 2021), but also shows that the correspondence between time-lapse and satellite-

derived measures of plant growth timing depend on the degree to which the camera scene 

represents the broader local landscape (Hufkens et al. 2012, Browning et al. 2017). “Barren” 

landscapes are notoriously difficult to monitor with coarse satellite measurements, and are 

often excluded from analyses (e.g. Nijland et al. 2016, Bolton et al. 2020). It is likely that the 

discrepancy we report here between time-lapse and satellite measurements among barren and 

herbaceous landscapes relates not just to the resolution of satellite observations, but also to 

the ramet-specific approach we applied to tracking image greenness. Notably, the closest 

relationship between time-lapse and satellite-derived phenology estimates was apparent for 

shrubland, a cover type that is both dense (and therefore conducive to high-quality satellite 

estimates of landscape phenology) and common in the study area. 

Because green-up timing on barren and herbaceous landscapes was poorly measured by 

satellite data, conclusions drawn from satellite-derived measures of plant phenology should be 

generated with caution. Rather than indexing the timing of plant growth, variation in coarse 

measures of NDVI in these areas could instead relate to patterns in snow cover, soil moisture, 
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and terrain change (Sesnie et al. 2012, Huang et al. 2021). For example, in 2020 a single camera 

on barren terrain reported approximately median plant growth timing compared to other 

cameras on barren land, yet the satellite-derived measure of green-up timing at that location 

was delayed compared to other satellite-derived measures (Figure 3.6B, top-left panel). 

Coincidentally, a massive rockslide was observed at that site after a 5.8 magnitude earthquake 

struck near Lone Pine, CA in late June that summer. The “late” green-up date detected by 

satellite-derived NDVI could have been related not to delayed plant growth but instead to 

change in the spectral properties of landscape reflectance. Similarly, although there is general 

correspondence among time-lapse and satellite measures of green-up timing, satellite 

measures of senescence timing were often much later than measurements from the camera 

network, possibly related more to the onset of the snowy season than to senescence in 

biomass production. Because barren and herbaceous land cover are central to bighorn sheep 

habitat selection and foraging (Festa-Bianchet 1988), the results presented here suggest that 

more finely-resolved forms of remote sensing may uncover critical seasonal vegetation 

dynamics that are not captured at the satellite level. 

Our results reveal that the elevational lapse rate in green-up timing is approximately 

constant across the range of Sierra bighorn. However, because of the varied structure of 

topographic relief across herd units, modeling results indicate that the duration of the green-up 

season may not be constant across herd units. Therefore, animals that undergo translocation to 

achieve conservation goals may not make optimal movement decisions in their new 

environment. Because climate change is expected to drive inconsistent change in future 

temperature and snow cover regimes across elevation in the Sierra (Reich et al. 2018), it is likely 
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that the historical pattern of landscape phenological change will be similarly disrupted. 

Although translocated ungulates may require an adjustment period before effectively “surfing 

the green wave,” the presence of experienced conspecifics, coupled with knowledge of local 

variation in spring phenology, facilitates that adjustment (Jesmer et al. 2018). In addition to 

social factors, knowledge and perception of available alternative conditions underlies migratory 

decision-making in Sierra bighorn (Berger et al. 2022). Thus, management decisions in response 

to and anticipation of environmental change should account for the multiple environmental 

novelties that translocated Sierra bighorn are likely to encounter. 

 



 66 

Figures 
 
 

 
 
Figure 3.1. The time-lapse camera network (blue dots) spans the latitudinal range of Sierra 
Nevada bighorn sheep (A; currently occupied herd units designated by solid orange lines). 
Sierra bighorn captured by a time-lapse camera on Mt. Gibbs forage in a small meadow in late 
summer, 2019 (B). The east slope of the Sierra features dramatic escarpment with elevational 
relief in some places exceeding 2500m (C). Map of California compiled from Landsat 8 imagery 
courtesy of U.S. Geological Survey. 
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Figure 3.2. Seasonal variation in scaled greenness, aggregated by camera plot, follows a 
seasonal pattern of greening and senescing across elevation (A) and latitude (B). Although 
green-up occurred earlier in 2020 than 2019 (difference = 15.07±4.97 days, p < 0.001), 
senescence timing remained approximately constant across the two years (difference = 
3.85±8.37 days, p > 0.1). 
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Figure 3.3. Green-up timing varies by over three months in the camera network, but is strongly 
correlated with local snowmelt timing in both years. Note that single deciduous tree species 
(Cercocarpus ledifolius) is shown with a black dot in 2020 and does not include a trend because 
it is the sole representative of that growth form. 
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Figure 3.4. Timing of green-up in 2020, aggregated to the plot level, and binned equally into 
three latitudinal bins. The time-lapse camera network reveals a comparable elevational lapse 
rate in green-up timing across latitude. 
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Figure 3.5. Timing of green-up in 2020 for species observed in at least five unique camera plots 
reveals variation in plant phenological response to increasing elevation. Contrast plot (inset) 
shows the elevational lapse rate (with 95% highest posterior density interval) for each species 
from a model including 2019 and 2020 data, with elevation and aspect as fixed effects and year 
and camera plot as random effects.  
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Figure 3.6. Green-up and senescence timing measured with MOD13Q1 NDVI in 2019 and 2020 
(A), and comparison of 2020 green-up timing across the time-lapse camera network and 
MOD13Q1-derived landscape phenology, faceted by land cover classification (B). 
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Figure 3.7. A terrain-only model (using elevation and cosine-transformed aspect as fixed 
predictors) explains 84.5% of variation in green-up timing across the time-lapse camera 
network. Model predictions reveal variation in the intensity of the green-up season across 
Sierra bighorn herd units (A). Throughout the region (B), the spatial window of areas at peak 
green-up (red) varies by elevation and time. 
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Chapter 4: Pursuit and escape drive fine-scale movement variation during migration in a 
temperate alpine ungulate 
 
 
Abstract 
 
Climate change reduces snowpack, advances snowmelt phenology, drives summer warming, 

alters precipitation regimes, and consequently modifies vegetation phenology in mountain 

systems. Altitudinal migrants cope with seasonal variation in such conditions by moving 

between seasonal ranges at different elevations, but vertical movements may be complex and 

are often not unidirectional during the spring migratory season. We uncover drivers of vertical 

movement variation in an endangered alpine specialist, Sierra Nevada bighorn sheep. We used 

step selection analysis to determine factors that promote vertical movements, and factors that 

drive selection of destinations after vertical movements. Our results reveal that high 

temperatures consistently drive uphill movements, and provide some evidence for the 

contribution of precipitation events to downhill movements. Furthermore, bighorn select 

destinations that have a high relative index of forage growth and an intermediate delay since 

snowmelt. These results indicate that although Sierra bighorn seek out foraging opportunities 

related to landscape phenology, they compensate for fine-scale environmental stressors by 

undertaking brief vertical movements. Future warming or increased storm intensity may 

therefore impact fine-scale vertical movements – and tradeoffs related to forage access – by 

migrants. 

 
Keywords 

Green wave hypothesis, forage maturation hypothesis, altitudinal migration, endangered 

species 
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Introduction  
 

Recent and ongoing climate change disrupt the spatiotemporal pattern of spring plant 

growth through modified precipitation and temperature regimes (Asam et al. 2018, Park et al. 

2019). Because herbivores commonly track plant phenology during their spring migration 

(Abrahms et al. 2019, Kauffman et al. 2021, La Sorte and Graham 2021), climate change may 

affect spatiotemporal patterns of herbivore movement and migration (Seebacher and Post 

2015). Forage tracking is a useful tactic for herbivores in landscapes with gradients in plant 

phenology, because access to highly digestible plant material is maintained or maximized 

through time (van der Graaf 2006, Aikens et al. 2017).  

Many migratory ungulates track forage phenology across elevational gradients in a form 

of seasonal vertical migration (Albon and Langvatn 1992, Hebblewhite et al. 2008, Sawyer and 

Kauffman 2011). Although vertical migration in ungulates may emerge in a traditional, 

“undistracted” form of movement from one range to another, the geographical proximity of 

seasonal ranges separated by elevation allows migrants to use a broader portfolio of 

redistribution tactics that span a range of directedness (Denryter et al. 2021). Migrants may 

undergo several movements during a foraging season to maximize resource access across 

multiple sub-seasonal ranges (Couriot et al. 2018, van de Kerk et al. 2021).  

However, fine-scale movements during the migratory season could be additionally 

influenced by factors other than foraging opportunities. Because landscapes of relief generate 

multiple axes of ecoclimatic variation, vertical movements enable herbivores to realize change 

in multiple environmental conditions (John and Post 2022). Vertical movements may allow 

migrants to alleviate or intensify realized environmental conditions through both static 
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landscape variation (ecological variability across space but not time) and dynamic landscape 

variation (variability across both space and time). Whereas seasonal variation in snow cover 

and forage availability may ultimately underlie seasonal redistribution of migrants, variation in 

exposure to high temperatures or severe storms can be mitigated by moving across elevation 

(Boyle et al. 2010, Semenzato et al. 2021). Because temperatures tend to decrease at higher 

elevations, upward movements can lead to a reduction experienced heat; conversely, dangers 

associated with rain and storms on alpine plateaus can be relieved by moving down slope faces 

into comparatively protected canyons. 

 The objective of this study was to evaluate the extent to which static and dynamic 

variation in environmental conditions leads to complex use of elevation in an herbivorous 

altitudinal migrant, Sierra Nevada bighorn sheep (“Sierra bighorn”, Ovis canadensis sierrae). 

Sierra bighorn are a federally endangered subspecies of bighorn sheep endemic to the Sierra 

Nevada mountains of California (USA) that migrates between the Owens Valley and High Sierra 

each spring, but with substantial variation in day-to-day elevation use (Denryter et al. 2021). 

We expected that migration timing and habitat selection would broadly correspond with 

landscape phenology, but that fine-scale variation in elevation use during the migratory season 

would arise in response to fine-scale stressors such as high temperature and potentially 

dangerous precipitation events. To test this expectation, we used a three-part approach to 

explore Sierra bighorn movement responses to dynamic landscape variation: First, we 

determined whether upslope migration timing was related to green-up timing. Second, we 

tested the extent to which variation in environmental stressors and resources promoted 
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adjustments in elevation use. And third, we examined whether Sierra bighorn tracked 

spatiotemporal variation in landscape phenology.  

 
Methods 
 
Study system 

Sierra Nevada bighorn sheep are alpine specialists and partial, facultative, altitudinal 

migrants in the Sierra Nevada mountains of California (Spitz et al. 2020; Figure 4.1). Sierra 

bighorn that undergo uphill spring displacement typically follow one of two migratory patterns 

(Denryter et al. 2021): In undistracted migrations, individuals undertake a single, uphill trip, 

departing from low-elevation winter range and settling on high-elevation summer range. In 

vacillating migrations, individuals undertake multiple up-and-down movements over a period of 

days or weeks before settling on high-elevation summer range. Sierra bighorn occupy 14 “herd 

units,” a spatial delineation used for conservation metrics and management decisions, and 

which approximately represent discrete bighorn populations (U.S. Fish and Wildlife Service 

2007). 

 
Movement data 

Bighorn were fit with GPS collars (various models from Advanced Telemetry Systems, 

North Star Science and Tech LLC, LOTEK Engineering Ltd., Televilt, VECTRONIC Aerospace 

GmbH, Followit, and Sirtrack LTD; described in Anderson et al. 2022) during spring and fall 

capture seasons (March and October) between 2004-2016. Animal handling was done under 

veterinarian supervision and approved under the California Department of Fish and Wildlife 

Animal Welfare Policy (2017-02). In total, 196 unique individuals were tracked for a total of 370 
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animal-years, with an average of 30.8±17.8 animals per year. Collars were deployed in 13 herd 

units that span the full latitudinal, longitudinal, and elevational range of current Sierra bighorn 

habitat. Collars were programmed to collect GPS locations at a minimum frequency of 1 fix per 

12 hours.  

 
Raster data 

USGS 3DEP 10m National Map elevation data were acquired via Google Earth Engine 

(Gorelick et al. 2017, U.S. Geological Survey 2022). Slope and aspect were calculated using the 

4-neighbor rule, and escape terrain was classified using a 30° slope threshold. Distance from 

escape terrain was calculated using the fasterraster v.0.6.0 R plugin for QGIS v.3.22 (Morelli et 

al. 2020, QGIS.org 2022). 

Forage vegetation production and phenology were indexed using MOD13Q1 NDVI 

(Didan 2015). Landscape phenology was determined by rescaling NDVI values from the bottom 

2.5 percentile and top 97.5 quartile to 0 and 1, respectively, and smoothing with a 3-day 

median window (Bischof et al. 2012) before fitting to a double logistic function following the 

form: 

𝑁𝐷𝑉𝐼 = 	 $

$%&'(	(+,-./0+
1234/ )

− 	 $

$%&'(	(+,-.70+
12347 )

        [1] 

where x is the ordinal day of year, xmidS and xmidA are the ordinal days of green-up and 

senescence inflection points respectively, and scalS and scalA are scaling parameters describing 

the rate of green-up and senescence, respectively (Beck et al. 2006). Scaled, interpolated NDVI 

(siNDVI) was taken to represent forage production at the pixel level relative to production at 

that pixel during other times of the year. 



 85 

A modeled snow dataset was used to index fractional snow cover (FSC) and snowmelt 

timing (Rittger et al. 2021). This dataset was generated using a data fusion and machine 

learning approach that combines Landsat 5, Landsat 7, and MODIS satellite imagery to generate 

daily FSC estimates at 30m resolution. Independent validation reveals strong concurrence 

among FSC in this dataset and point estimates of snow cover throughout the range of Sierra 

bighorn (Supplementary materials S1). Snow cover was also fit to Equation 1 above by 

substituting FSC for NDVI and fitting the curve on a [0,100] interval rather than a [0,1] interval. 

Daily temperatures and precipitation were extracted from the DAYMET V4 dataset at 

1km resolution (Thornton et al. 2020). Because we were interested in temperature as a driver 

of uphill movement, we used daily maximum temperature to index potential heat stress across 

the eastern Sierra. Precipitation is infrequent in the Sierra outside winter, but is often 

associated with high winds and lightning, and causes terrain in the alpine zone to become wet 

and particularly unstable (Wieczorek and Jäger 1996).  

 
Migration classification 

Seasonal elevation use was determined by extracting elevation from the 3DEP National 

Map using the raw bighorn GPS location data. Migrants were classified using the migrateR 

package (Spitz et al. 2017). MigrateR uses an elevational analogue for measuring net squared 

displacement, and classifies individuals as “resident”, “disperser”, or “migrant” based on a 

model comparison approach between a consistent position through time, a single upward 

movement across time, or an up-and-down redistribution through time. We used minimum 

thresholds of 500m between elevational ranges and 21 days spent on each seasonal range 

when classifying individuals as residents, dispersers, and migrants (Spitz et al. 2017, 2018). 
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Because the focus of this study was on uphill spring migration, any uphill dispersers were 

combined into the migrant class.  

 
Integrated step selection modeling 

Habitat selection was examined using integrated step selection analysis (Avgar et al. 

2016). A population-wide step selection framework was taken to incorporate the maximum 

information about movement variation during the spring migratory period. We chose a 

population-level model rather than individual-based assessment because minimal endpoint 

variance in predictor variables constrained our ability to resolve movement processes for 

animals that used short step lengths on terrain with poor-quality remote sensing data. A 

population-level model allowed us to include a greater number of individuals and test a greater 

number of candidate movement drivers simultaneously. To maintain sampling consistency 

across individuals, the three weeks centered on each migrant’s migratory window was used for 

the analysis. For residents, the three weeks centered on the mean migration timing of that 

individual’s herd unit in that year was used. If no migrants were detected in a resident’s herd 

unit in a given year, the resident was excluded from the analysis. Only individuals with equal 

numbers of GPS observations were retained in order to avoid bias in the model design.  

In cases where the GPS fix rate was more frequent than 12 hours, relocation data were 

temporally rarified to a 12-hour frequency. Each resampled fix was treated as a startpoint, with 

the following fix treated as a used endpoint. Thirty random destinations were used as available 

endpoints. Endpoints were drawn from gamma and von Mises distributions fitted to each 

individual’s step length and turning angle history, respectively. 
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Environmental covariates were extracted at all start- and endpoints. Terrain features 

were treated as fixed across time. Snowmelt timing and green-up timing were fixed across time 

within years, while FSC, distance from snow, siNDVI, temperature, and precipitation all varied 

daily. Elevation, terrain slope, and temperature were normalized across the full extracted 

dataset to aid in model fitting. Aspect was cosine-transformed such that north-facing slopes 

were 1 and south-facing slopes were -1. Precipitation, distance from escape terrain, and 

distance from snow were transformed using log(value + 1). 

Drivers of habitat selection during migration movements were evaluated using 

conditional logistic regression with case (positive endpoint = 1; negative endpoint = 0) as the 

response variable and habitat covariates as predictor variables. Two model families were built:  

First, a complete movement model included startpoint conditions as interactions with the 

endpoint elevation to identify drivers of movement (i.e., an impetus), as well as fixed endpoint 

conditions to identify drivers of habitat selection (i.e., an outcome).  The second family included 

all of the same predictor variables except for interactive effects (i.e. startpoint values), in order 

to explore variation in relative selection strength along the quadratic terms (time since peak 

snowmelt)^2 and (time since peak green-up)^2.  

Two applications of step selection modeling were used to understand the catalysts and 

outcomes of fine-scale elevational movement by bighorn sheep (Supplementary materials S2). 

In the first model family (“full movement model”), drivers and outcomes of bighorn movement 

were combined into a single model by including conditions at the beginning and end of each 

movement step. Startpoint conditions were allowed to interact with endpoint elevation in 

order to test hypotheses about drivers of elevational movements. Endpoint conditions were 
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included to evaluate factors important for destination selection. A model was constructed for 

the full Sierra bighorn dataset, and four additional models were constructed for migrants only, 

residents only, males only, and females only. In the second model family (“habitat selection 

model”), no interaction terms were included, and instead only endpoint variables (i.e., variables 

that are potentially important for habitat selection) were analyzed. These models were 

constructed to evaluate relative selection strength along continuous variables, compared with 

the mean condition of those variables. Specifically, snowmelt recency and green-up recency, 

and their polynomials, may be important for selection because they index the relative 

phenological status of the landscape.  

All statistical analyses were done using R version 4.1.2 (R Core Team 2019).  

 
Results 
 

Across the study system, green-up timing was consistently later in years when snowmelt 

timing was later (Figure 4.2A). In a mixed-effects model with green-up timing as the response 

variable, snowmelt timing as the predictor variable, and year as a random intercept, green-up 

was 6.2±0.20 days later per 10-day delay in snowmelt at the herd unit level (p < 0.001; 

conditional R2 = 0.86). Thus, years with especially early snowmelt were characterized by a 

greater lag between the timing of peak snowmelt and peak green-up. The mean difference in 

timing between peak snowmelt and peak green-up was 137.2±1.2 days. 

Uphill migration timing covaried with green-up timing, and in years with later green-up 

timing, migration timing was delayed as well (Figure 4.2B). Mean migration timing occurred 

before mean green-up timing at the herd unit level in 81.4% of cases, however anomalously 

late migrations were observed in several cases when bighorn moved uphill as late as mid-
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September. The earliest migrant relative to green-up timing migrated 67 days prior to mean 

green-up timing at the herd unit level, while the latest migrant relative to green-up timing 

migrated 71 days after mean green-up timing at the herd unit level. A linear mixed-effects 

model that had migration timing as the response variable, green-up timing as a predictor, and 

herd unit identity and year as random intercepts, revealed that the midpoint of migration was 

6.8±1.4 days later per 10-day delay in green-up timing (p < 0.001; conditional R2 = 0.53). 

Throughout the migratory season, bighorn selected steep, south-facing slopes that were 

close to escape terrain. Temperature at the onset of movement interacted with destination 

elevation, leading to selection toward higher elevations on days with warmer temperatures 

(Figure 4.3). However, males continued to select destinations with high temperatures, whereas 

females selected against destination temperature. Precipitation at the onset of movement 

interacted with destination elevation leading to downhill movements by bighorn on rainy days, 

but this relationship was restricted to migrants and females. When siNDVI was at its peak, it 

was 1.3 times as likely to be selected than when at its winter baseline, but females were more 

likely to select high-NDVI habitat than males.  

In the no-interaction (habitat selection) model, bighorn avoided high temperature and 

minimized distance to snow, and selected steep, south-facing slopes near escape terrain with 

high siNDVI (Figure 4.4A). Snowmelt and green-up recency were both significant predictors of 

selection when used in isolation, but in a model containing both snowmelt recency, green-up 

recency, and their polynomials, only snowmelt recency was significant (Supplementary 

Materials S3). Although we show the results of the model including snowmelt recency, green-

up recency and their polynomials, green-up recency and snowmelt recency were moderately 
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correlated (r = 0.41). Comparison by QIC revealed the strongest support for the model including 

all four terms (∆QIC=0), but favored the snowmelt-only model (∆QIC=13.48) over the green-up-

only model (∆QIC=1919.21). Importantly, across all three of the habitat selection models, the 

polynomial terms for snowmelt and green-up recency reveal that selection is strongest for 

destinations with an intermediate lag since fractional snow cover loss was at its fastest (Figure 

4.4B). Although there was less support for including green-up recency, the relationship in both 

the full model and the green-up only model follows a pattern of diminishing selection strength 

with increasing time since peak green-up (Figure 4.4C). 

 
Discussion  

Sierra Nevada bighorn sheep undertake a partial, facultative vertical migration during 

the spring snowmelt and green-up season (Spitz et al. 2020), but vertical movements by Sierra 

bighorn are rarely unidirectional and often lead to complex use of elevation (Denryter et al. 

2021). Although seasonal variation in space use leads to a general pattern of redistribution 

across elevation, our results indicate that fine-scale vertical movements during the migratory 

season might allow bighorn to realize multiple goals, including pursuing foraging opportunities, 

avoiding heat stress, and seeking refuge from storms.  

Uphill migration timing by Sierra bighorn was broadly associated with green-up timing at 

the herd unit level, which was in turn associated with snowmelt timing. Coordinating migration 

timing with resource phenology is common among ungulates, presumably because foraging 

efficiency increases with access to highly digestible early-stage plant growth (Jesmer et al. 2018, 

Gurarie et al. 2019, Aikens et al. 2020). The Sierra Nevada mountains feature strong interannual 

variation in snow cover, snowmelt timing, and green-up timing, with over three months 
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between the earliest and latest green-up records over the course of this study. Although most 

uphill migrations occurred before mean green-up timing at the herd unit level, some individuals 

underwent comparatively late uphill movements, possibly related to intraspecific competition 

or social avoidance. 

Our full movement model identified a positive interaction between startpoint 

temperature and endpoint elevation in driving step selection. This indicates that brief uphill 

forays were associated with high temperatures, presumably related to escape from heat stress. 

Heat stress in other ungulates drives similar behavioral responses, leading to selection toward 

higher elevation and modified daily foraging schedules during hot days (Semenzato et al. 2021). 

In the eastern Sierra Nevada, high spring temperatures accelerate snowmelt, and where 

snowmelt is earliest, the lag between snowmelt timing and green-up timing is greatest (Chapter 

3 this dissertation). Therefore, higher spring temperatures may cause bighorn to spend 

increased time at high elevations while there is still high-quality forage below. 

Conversely, we found a slight negative effect of precipitation on elevation selection, 

indicating that storms may drive downhill movements, presumably related to escape from 

either risk of lightning strike or rockslides. While downhill movements in response to storms are 

known in birds (Boyle et al. 2010), our study provides evidence of similar responses to storms 

by ungulates. Notably, this effect was driven mostly by migrants, whereas residents displayed 

less selection against elevation when precipitation was high, suggesting that migrants are more 

flexible in their response to dynamic environmental variation. If the frequency of spring and 

summer storms increases across the Sierra, bighorn sheep may sacrifice foraging opportunities 
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at high elevations in favor of seeking out protected combes and canyons further down 

mountainsides. 

Because the migratory season of bighorn sheep generally corresponds with lambing, 

ewes must balance heightened nutritional requirements with selection of habitat that 

accommodates safe lamb rearing (Forshee 2018, Robinson et al. 2020). Movements toward 

steep terrain at high elevations by ewes may therefore reflect habitat selection for parturition 

and lamb rearing rather than habitat selection for foraging. Our full movement model results 

indicated that ewes were more responsive to abiotic stressors (high temperatures and 

precipitation) in their use of elevation than were rams, while simultaneously selecting for NDVI 

more strongly than rams. Other wild sheep species also exhibit sex-specific habitat selection, 

with ewes prioritizing areas that will facilitate lamb growth and survival, and rams prioritizing 

foraging opportunities at the expense of access to safe terrain (Marchand et al. 2015). While 

our model did not identify strong selection for siNDVI by rams, we suspect that rams pursued 

highly digestible, freshly emergent plant material which had not yet reached peak siNDVI.  

Of the candidate habitat selection variables, bighorn followed expected patterns of 

selecting for steep slopes and against distance from escape terrain (Spitz et al. 2020). Bighorn 

also selected against cosine-transformed aspect, possibly related to foraging opportunities, 

which are abundant on south-facing slopes during spring. Endpoint precipitation varied only 

marginally across space, and therefore could not be included as a habitat selection variable 

(Supplementary materials S4). However, endpoint temperature was highly variable and by 

moving across elevation, bighorn achieved considerable change in realized heat. In the habitat 
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selection models, bighorn selected strongly against endpoint temperature; a 1-standard 

deviation increase in temperature was associated with a 59.6% likelihood of selecting that step.  

Model comparison revealed that snowmelt timing was more important than green-up 

timing for habitat selection by bighorn. Notably, however, we analyzed snowmelt using a daily 

30m modeled fractional snow cover product (Rittger et al. 2021), whereas we analyzed green-

up using 16-day 250m MOD13Q1 satellite imagery (Didan 2015). We suspect the snow model 

was selected over the green-up model due to the comparatively fine spatial and temporal 

resolution of the snow product, coupled with spectral difficulties in determining vegetation 

growth in high alpine barren landscapes using MODIS data. Combined, these factors could 

result in the snow product revealing fine-scale landscape phenological variation that is masked 

at coarser scales (Park et al. 2021). Because snowmelt and plant growth are so tightly linked in 

alpine systems (e.g. Winkler et al. 2018, and Chapter 3 this dissertation), we attribute habitat 

selection for snowmelt recency in this analysis to forage phenology and availability. Indeed, at 

the coarse level, relative selection was strong for siNDVI (Figure 4.4A), suggesting that bighorn 

selected for areas when NDVI at that site peaked. Further, selection for snowmelt recency 

peaked at 106 days, just shorter than the average lag between peak snowmelt timing and peak 

green-up timing. 

The 3000m elevational gradient of the Sierra Nevada generates a broad ecoclimatic 

window that bighorn sheep can use in response to both short- and long-term abiotic stressors. 

Reduced future snowpack and higher temperatures at low-mid elevations along the Sierra 

escarpment (Schwartz et al. 2017, Sun et al. 2019) will likely modify the historic pattern of 

vegetation green-up, thereby complicating the balance between stress avoidance, forage 
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pursuit, and access to escape terrain. Since the delay between snowmelt and green-up timing is 

greatest at low elevations where snowmelt is earliest, increasingly early snowmelt at low-mid 

elevations may lead to a vertical contraction in the range of terrain where plant growth 

predictably and immediately follows snowmelt. Simultaneously, a higher frequency of hot days 

may drive bighorn away from areas at a peak phase of forage quality. Therefore, if abiotic stress 

avoidance and forage access are to be maintained, site visitation by bighorn during spring will 

likely shift toward higher elevations where escape terrain is nearby while maintaining a 

resource supply that is digestible and nutritious.  

To better understand how movement responses to diel and seasonal environmental 

variation translate into nutritional and energetic outcomes, finer data on bighorn movement 

and landscape patterns in digestible nutrients are required. Work combining accelerometry and 

high-resolution remote sensing data could shed light on energy expenditure and intake, 

particularly if they are paired with measurements of bighorn body condition and plant nutrient 

concentration. Improving inference about individual survival and reproductive capacity, and 

ultimately carrying capacity at the level of management units, will facilitate conservation of 

existing Sierra bighorn populations and potentially inform site selection for future 

reintroductions. 
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Figures 
 
 

 

 
Figure 4.1. Sierra Nevada bighorn sheep confront variation in stressors and resources 
throughout spring migrations between low-elevation winter range and high-elevation summer 
range (left). For some individuals, spring migration follows a unidirectional, undistracted path 
(right, tan), whereas for others multiple up-and-down movements slow down the mean pace of 
vertical redistribution (blue). For yet other individuals, wintertime residency at high elevations 
leads to consistent use of a narrower range of elevational strata throughout the spring (black). 
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Figure 4.2. Green-up timing vs. snowmelt timing (A) and migration timing vs. green-up timing 
(B) aggregated at the herd unit level, 2005-2016. 
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Figure 4.3. Full modeling results for population-level step selection analysis Sierra bighorn 
movement. Start and end parentheticals connote whether the value was collected at the 
initiation of a step or the terminus of a step, respectively.
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Figure 4.4. Relative selection strength (RSS) for Sierra bighorn in a habitat selection model (A) 
suggests selection for destination NDVI, steep terrain, and south-facing slopes during migration 
periods. Relative selection strength varies across snowmelt recency and green-up recency, 
including their polynomial terms (B, C, respectively). 
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Chapter 5: Projected bioclimatic distributions in Nearctic Bovidae signal the potential for 
reduced overlap with protected areas 
 
Manuscript accepted for publication in Ecology and Evolution 
 
 
Abstract 
 
Assumptions about factors such as climate in shaping species’ realized and potential 

distributions underlie much of conservation planning and wildlife management. Climate and 

climatic change lead to shifts in species distributions through both direct and indirect ecological 

pressures. Distributional shifts may be particularly important if range overlap is altered 

between interacting species, or between species and protected areas. The cattle family 

(Bovidae) represents a culturally, economically, and ecologically important taxon that occupies 

many of the world’s rangelands. In contemporary North America, five wild bovid species inhabit 

deserts, prairies, mountains, and tundra from Mexico to Greenland. Here, we aim to 

understand how future climate change will modify environmental characteristics associated 

with North American bovid species relative to the distribution of extant protected areas. We fit 

species distribution models for each species to climate, topography, and land cover data using 

observations from a citizen science dataset. We then projected modeled distributions to the 

end of the 21st century for each bovid species under two scenarios of anticipated climate 

change. Modeling results suggest that suitable habitat will shift inconsistently across species, 

and that such shifts will lead to species-specific variation in overlap between potential habitat 

and existing protected areas. Furthermore, projected overlap with protected areas was 

sensitive to the warming scenario under consideration, with diminished realized protected area 
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under greater warming. Conservation priorities and designation of new protected areas should 

account for ecological consequences of climate change. 

 
Keywords 

Bovidae, Climate change, Conservation, Species distribution modeling, MaxEnt, Range shift 

 
Introduction 
 

Elevational and latitudinal shifts in species’ ranges constitute widely documented 

ecological responses to climate change (Chen et al., 2011; Büntgen et al., 2017; Williams and 

Blois, 2018). Through both direct (e.g. thermal stress) and indirect (e.g. temperature-mediated 

natural enemy activity) mechanisms, climate shapes species distributions across local, regional, 

and global scales (Araújo and Luoto, 2007). As ongoing human pressure further shapes 

contemporary species distributions (Laliberte and Ripple, 2004; Faurby and Araújo, 2018), 

identifying factors associated with species presence and measuring how these factors will 

change lends insight on how potential species distributions may shift in the coming decades. 

Effective conservation planning therefore relies on well-defined forecasts of change in species 

distribution (Rodríguez et al., 2007). Yet, for many species, the extent to which future 

distributions will overlap with existing protected areas remains unresolved (IPBES, 2019).  

The designation of effective protected areas requires balancing the immediate needs of 

imperiled species with anticipated conditions decades or centuries into the future. Although 

the establishment of protected areas has increased dramatically over the past century (Watson 

et al., 2014), the density, area, and governance of protected areas varies considerably across 

space (Bingham et al., 2019; UNEP-WCMW and IUCN, 2021). As conserved spaces continue to 
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be planned and adopted, formal analyses of interactions among climate and geographical 

factors governing species distributions and projected changes in them will aid in the 

prioritization of areas to protect (Monzón, Moyer-Horner and Palamar, 2011; Scridel et al., 

2021; Sierra-Morales et al., 2021). Biotic interactions may yet further control species 

distributions, especially for herbivores that specialize on particular food resources (e.g. Beumer 

et al., 2019). Thus, effective conservation planning will take into account not only future change 

in temperature and precipitation, but also shifts in vegetation distributions and landcover 

types.  

In North America, the mammalian family Bovidae is represented by five extant species: 

bighorn sheep (Ovis canadensis), thinhorn sheep (Ovis dalli), North American bison (Bison 

bison), mountain goat (Oreamnos americanus), and muskox (Ovibos moschatus). These species 

constitute a broad-ranging phylogeographic clade that survived marked warming at the end of 

the Pleistocene. Today, they occupy deserts, prairies, tundra, and alpine zones across the 

Nearctic (Castelló, 2016). The bovid species of North America accumulated a legacy of hunting, 

introduced disease, and human development, leading to shifts in abundance, migratory 

propensity, and distributions. 

Here, we fit and project Ecological Niche Models (ENMs) for Nearctic bovid species 

under two scenarios of anticipated climate change generated using occurrence data from a 

public database of species observations. We relate modeled current and future species 

distributions to existing protected areas, with the goals of identifying how environmental 

parameters may shift in the coming decades, and how well current protected areas align with 
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modeled distributions. We discuss our modeling results in the context of other work on 

conservation and spatial variation in wild bovids.  

 
Methods 
 
Species presence data 

Species presence data were downloaded from the Global Biodiversity Information 

Facility (“GBIF” (GBIF, 2022)). This database includes species presence observations from 

museum collections, university records, and citizen science contributions. Presence data were 

extracted using the `rgbif` library in R v.3.6.1 (Chamberlain et al., 2021), with GBIF taxon key 

associated with each of the five North American bovids (Ovis canadensis, 2441119; Ovis dalli, 

2441118; Oreamnos americanus, 2441151; Ovibos moschatus, 2441108; and Bison bison, 

2441176), as well as the remaining North American members of Artiodactyla (Antilocapra 

americana, 2440902; Odocoileus hemionus, 2440974; Odocoileus virginianus, 2440965; Cervus 

canadensis, 8600904; Alces alces, 4262283; Rangifer tarandus, 5220114; and Dicotyles tajacu, 

2440996). Occurrence data were sent through a cleaning process to remove biased, 

uninformative, or inappropriate observations (for a full description of removed observations 

see “Biodiversity data” in Supplementary materials S5.1). First, points with missing geographic 

information were censored. Next, observations outside of North America were removed, as 

were cases where observation locations did not correspond with observation country. Records 

with no associated observation date, and records with observation date prior to 1980, were 

removed. Finally, irrelevant observation locations (e.g. bighorn sheep at the Chicago Zoo) were 

removed.  
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Data generated through citizen science collection face concerns over validity and 

sampling bias (Yesson et al., 2007; Beck et al., 2013). The dataset we used constitutes a set of 

charismatic, easily-identified species, in a generally well-sampled geographic region (see 

supplementary materials S5.1, Biodiversity Data). Because presence-only species distribution 

models are sensitive to spatial biases in sampling effort (Phillips et al., 2009), we used 

occurrence data from the full set of North American even-toed ungulates to generate a 

sampling bias grid, which was used during the background data generation (described below). 

Furthermore, we coarsened the resolution of the predictor dataset to accommodate 

uncertainty in observation location. However, our efforts to control for biases in species 

presence data limit the resolving power of species distribution, and we were thus unable to 

account for effects of microclimate (e.g. Lembrechts et al., 2019) in our models, or incorporate 

anticipated fine-scale change in our projections.  

 
Climate, land cover, and topography data 

Historical and projected Worldclim v. 2.1 data (Fick and Hijmans, 2017), present and 

future GCAM land cover data (Chen et al., 2020), and North America Elevation GRID data 

(available at https://www.sciencebase.gov/catalog/item/4fb5495ee4b04cb937751d6d) were 

used as baseline environmental covariates. All predictors were coarsened to 6x6km pixels in an 

equal-area projection to accommodate spatial uncertainty and match the resolution of the 

coarsest predictor data product in species occurrence data using bilinear interpolation. 

Current and future climate data were accessed from the Worldclim v. 2.1 dataset. We 

selected data generated from all eight available global climate models (GCMs; BCC-CSM2-MR, 

CanESM5, CNRM-CM6-1, CNRM-ESM2-1, IPSL-CM6A-LR, MIROC-ES2L, MIROC6, and MRI-ESM2-
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0) under two shared socio-economic pathways (SSPs; SSP2-4.5 and SSP5-8.5) for the period 

2081-2100. SSPs were adopted with the CMIP6 models, and incorporate socioeconomic growth 

with the previously-used representative concentration pathways (Riahi et al., 2017). SSP2 

reflects a future with moderate development, on track with historical growth and inequality, 

but with reduced dependence on fossil fuels; whereas SSP5 reflects a future with accelerating 

socioeconomic development and reduced global inequality, but with a heavy reliance on fossil 

fuels. SSP2-4.5 predicts about 3°C warming by the end of this century, while SSP5-8.5 predicts 

about 5°C warming relative to the 1850-1900 average (Tebaldi et al., 2021). Data on future 

conditions were re-centered and transformed according to the approach described for 

historical data above.  

Current and future (2081-2100) land use/land cover data were accessed from the GCAM 

Demeter land use dataset (Chen et al., 2020). GCAM data are reported by cover type on a 

fractional scale from 0-100, where 100 indicates the pixel is saturated by that type. We 

aggregated each of the GCAM tree cover types into their respective biome (PFT4 and 6; 1, 5, 

and 7; and 2, 3, and 8 representing tropical, temperate, and boreal trees, respectively), and 

PFT15-30 into an umbrella category, “Agriculture”, to reduce the size of the candidate predictor 

pool. Thus, from the GCAM data we included 14 vegetation layers, an agriculture layer, a barren 

layer, and an urban layer. We used the SSP1-2.6 2015 model to index current land cover 

conditions. Because GCAM data are not available for the same CMIP6 models as Worldclim, we 

condensed the five available models of land use futures into their respective SSP scenarios 

(SSP2-4.5 and SSP5-8.5) by taking the mean value of each fractional land cover type for each 
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pixel across the five available models. The “current” SSP1-2.6 scenario was also condensed from 

the five available models. 

To account for topographic constraints on species distribution, we included elevation 

and terrain ruggedness as predictors. Terrain ruggedness (TRI) was calculated following 

standard gdal protocols (GDAL/OGR contributors, 2021). Finally, elevation and TRI were 

centered by subtracting the mean layer value from all grid cells within each layer. Topography 

data were treated as static, and therefore the same topography products were used for present 

and future (2081-2100) datasets.  

 
Vector spatial data 

Land boundaries of North America were extracted from the 

rnaturalearth::ne_countries() dataset (South, 2017). The periphery of the Greenland Inland Ice 

Sheet was delineated by vectorizing all cells classified as “ice” in the raster version of the 

Circumpolar Arctic Vegetation Map (Raynolds et al., 2019). Protected area boundaries were 

identified using the World Database of Protected Areas (UNEP-WCMW and IUCN, 2021), and 

filtered to include only polygons with area greater than 100km2. 

 
Statistical modeling 

Complete details on overview, data, model design, assessment, and prediction (ODMAP; 

(Zurell et al., 2020)) are available in Supplementary materials S5.1. MaxEnt v. 3.4.3 models 

(Phillips, Dudík and Schapire, 2021) were fit to presence and background locations for each 

bovid species. We used the `SDMtune` library (Vignali et al., 2020) to fit, evaluate, and generate 

predictions with MaxEnt models. For each species, a MaxEnt model was constructed using the 



 109 

following approach: Occurrence records were spatially thinned to a radius of 6km. A bias grid 

was generated using occurrence data from all North American artiodactyl species to account for 

sampling bias in occurrence data (Phillips et al., 2009). We assumed that sampling bias was 

equivalent across Artiodactyla, given that they are large, charismatic, and easily identifiable, 

and therefore used one bias grid for the continent. The bias grid was calculated by generating a 

continental raster with 6x6km pixel resolution, identifying all pixels containing artiodactyl 

species occurrences, and applying a 2-dimensional kernel density estimator with a normal 

reference bandwidth. Ten thousand background points were randomly sampled from the bias 

grid in lieu of absence data for model fitting for each species. Occurrence and background data 

were subdivided into 60% training, 20% validation, and 20% testing partitions. Naïve MaxEnt 

models were fit with training data and spatial cross-validation using the checkerboard1 function 

in the R package ENMeval (Kass et al., 2021). To minimize model complexity and reduce the 

likelihood of overfitting, we considered only linear and quadratic feature classes (Elith et al., 

2011). We assumed no a priori knowledge of factors associated with species presence and 

therefore included all 19 bioclimatic variables, all topographic covariates, and all land cover 

indices in the naïve models. A data-drive variable selection procedure was then employed to 

remove highly correlated predictor variables, based on a Spearman correlation threshold of 0.7 

(Vignali et al., 2020). After removing correlated predictors, models were optimized for 

complexity using a genetic algorithm to identify the most robust combination of model 

hyperparameters. We considered regularization multipliers between 0.5 (most complex) and 10 

(least complex) and linear as well as linear+quadratic feature classes. Finally, we removed non-

important variables from the optimized models to maximize parsimony using a leave-one-out 
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jackknife test. We refer to these optimized models with selected variables as the “final model” 

for each species. Final model reports were generated for each species (summarized in 

Supplementary materials S5.3). 

Species distributions were predicted using final models and three raster stacks: 

“current” conditions defined by the training data, and two future scenarios (SSP2-4.5 and SSP5-

8.5), both for the period spanning 2081-2100. Because MaxEnt models generate continuous 

prediction surfaces, model-specific response thresholds were used to differentiate between 

predicted “presence” and “absence”. We used two thresholds (Liu, White and Newell, 2013): 

one with equal model sensitivity and specificity (ESS), and one which maximized the sum of 

sensitivity and specificity (MSS). For each future SSP scenario, model consensus was calculated 

as the sum of the MaxEnt model predictions under each GCM that were above the MSS 

threshold, based on a comparison between the two thresholds under current conditions 

revealing few differences except for a more constrained bison range using MSS. Correlative 

distribution modeling approaches such as MaxEnt are limited by uncertainty in future 

conditions, non-analogue conditions, and exclusion of endogenous factors that may allow 

species to adapt or tolerate future change (Dawson et al., 2011). Uncertainty in climate 

forecasts was accounted for by compositing modeled species distributions across 

environmental covariates predicted under a suite of GCM models. To account for non-analogue 

conditions, we applied a clamping procedure to prevent projecting results outside the range of 

conditions present during model training. We also generated multivariate environmental 

similarity surfaces (“MESS grids”), and limited predictions to areas with positive MESS values 

(Elith, Kearney and Phillips, 2010). MESS grids were calculated using the R package dismo 
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instantiation of `mess()` with all continuous predictors in the dataset, and are shown in 

Supplementary materials S5.1. We were unable to account for species’ adaptive potential, and 

thus limit our interpretation of the results below to anticipated change in distribution of 

environmental characteristics associated with bovid species presence, rather than distribution 

of bovid species themselves. 

Comparisons among species of land area, range elevation, range latitude, and realized 

protected area, were calculated by taking the mean value of current and projected data layers 

grouped by species and SSP. Standard errors of mean projected range measurements were 

calculated by treating GCM as a replicate. All analyses were performed in R v. 4.1.2 (R Core 

Team, 2019).  

 
Results 
 

We accessed 32,999 North American bovid records from GBIF. We removed 14,514 

observations during data quality checks and 14,927 during data thinning, leaving 3,558 records 

for model fitting. Within the cleaned, thinned dataset, bighorn sheep were represented by 1915 

records, thinhorn sheep by 218 records, mountain goats by 659 records, muskoxen by 218 

records, and North American bison by 519 records.  

In general, modeled potential habitat shifted in response to projected climate change in 

2081-2100 (Figure 5.1). Modeled future habitat covered less area under the SSP5-8.5 scenario 

than under the SSP2-4.5 scenario for all species except thinhorn sheep (Table 5.1). Projected 

change in the surface area of modeled habitat was inconsistent across species, but with a trend 

of increasing change at higher latitudes (Table 5.1). For example, over a quarter of modeled 

potential habitat space is expected to be lost for thinhorn sheep by 2100 regardless of the SSP, 
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while the projected change for bighorn sheep is less coherent. The total area of modeled 

potential habitat was never consistently higher under both scenarios for any species (although 

modeled potential habitat increased slightly under SSP2-4.5 for bighorn sheep and mountain 

goats). 

Projected elevational range shifts were variable among species (Supplementary 

materials S5.2). Whereas projections for bighorn sheep featured marginal elevational change 

(current mean elevation = 1527m; SSP2-4.5 mean elevation = 1537±5m; SSP5-8.5 mean 

elevation = 1583±7m), stronger elevational contraction was evident for thinhorn sheep (current 

mean elevation = 826m; SSP2-4.5 mean elevation = 932±17m; SSP5-8.5 mean elevation = 

934±44m). Projected latitudinal range shifts were similarly variable among species. For 

example, modeled muskox habitat faces a significant northward contraction due to limited 

available land area further north (current mean latitude = 68.1°N; SSP2-4.5 mean latitude = 

71.7±0.4°N; SSP5-8.5 mean latitude = 74.5±0.5°N), while modeled mountain goat habitat shifts 

slightly southward (current mean latitude = 53.1°N; SSP2-4.5 mean latitude = 52.2±0.4°N; SSP5-

8.5 mean latitude = 51.8±0.9°N).  

Overlap between ENM projections and current protected areas varied among species, 

and future overlap is expected to vary by species as well (Figure 5.2). Whereas habitat of 

southerly montane species with minimal projected range shifts (bighorn sheep and mountain 

goats) is not projected to face significant change in potential protected area, habitat of 

northerly species such as thinhorn sheep and muskoxen is projected to face a considerable 

reduction in potential protected area (38.6% and 43.1% of protected area for thinhorn sheep 

and muskoxen, respectively, under SSP2-4.5, and 30.5% and 62.9% under SSP5-8.5). Projected 
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loss of potential protected area for bison followed a similar pattern (55.3% and 59.3% for SSP2-

4.5 and SSP5-8.5 respectively). For the only obligate Arctic species, muskoxen, the projected 

reduction in potential protected area is considerably greater under the SSP5-8.5 scenario than 

under SSP2-4.5 (nearly 20% greater reduction in potential protected area under SSP5-8.5).  

The proportion of potential species distributions that overlaps with protected area, and 

the proportion of protected area that overlaps with potential distributions, reveal different 

patterns in potential protected area among the bovid species (Figure 5.3). Although 

approximately proportional loss of protected area relative to potential species distributions is 

projected across the five North American bovid species (indicated by overlapping current and 

projected estimates in Figure 5.3a), the percentage of currently protected area that is projected 

to feature environments characterized by bovid presence is projected to drop across SSP’s for 

thinhorn sheep, muskox, and American bison (indicated by the marked reduction in fraction of 

protected area estimated for these species in Figure 5.3b). 

 
Discussion  
 

We identified discordant projections by Maxent distribution models across Nearctic 

bovids. Inconsistent projections among species arose through two processes: unequal response 

by species to different topographic, land cover, and bioclimatic variables, and uneven projected 

environmental change across space. Projected potential habitat shifts in response to 

anticipated climate change are greatest for species at high latitudes, where observed warming 

outpaced change at lower latitudes, and is expected to continue to do so (Post, Steinman and 

Mann, 2018; Post et al., 2019). Furthermore, for some species, the total area of potential 

protected space is projected to decrease more dramatically under the higher emissions 
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scenario, SSP5-8.5. Shifts in climatically suitable habitat seem likely for other high latitude 

species, where effects of climate change are amplified.  

Other species distribution modeling efforts corroborate the importance of human 

impacts, terrain, and land cover characteristics for ungulate distributions (Kuemmerle et al., 

2012; Herrera-Sánchez et al., 2020; Jenkins et al., 2020). To our knowledge this is the first study 

to simultaneously explore future distributions of multiple North American bovids in the context 

of protected areas. However, modeling studies that employ different data sources and different 

scales of analysis have uncovered important relationships between bovid species and their 

environment that help contextualize our findings.  

In a recent study, a MaxEnt model for desert bighorn sheep (Ovis canadensis nelsoni) 

was hindcast to investigate range dynamics during the mid-Holocene (Gámez-Brunswick and 

Rojas-Soto, 2020). Although this subspecies occupies only a portion of the total range of 

bighorn sheep, the modeled current potential distribution of desert bighorn in that study 

largely mirrors the current potential distribution of bighorn sheep across the southwest United 

States predicted by our models. Importantly, our results suggest that potential habitat extends 

further northward along the American cordillera than either the hindcast model of desert 

bighorn or the actual current distribution of bighorn sheep (Brewer et al., 2014). The predicted 

presence of bighorn sheep through Yukon and Alaska likely relates to the similar life history 

requirements of the closely related thinhorn sheep (Ovis dalli), which inhabits these higher 

latitude regions of the cordillera. Indeed, among the selected predictor variables that were 

shared among bighorn and thinhorn sheep Maxent models, most univariate response curves 

were approximately comparable with shifted centers. Furthermore, a comparison of the two 
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species’ modeled distributions reveals considerable overlap north of British Colombia. It is 

possible that the lack of bighorn sheep at high latitudes stems from competitive exclusion by 

thinhorn sheep, or through fine-scale environmental variation that was not evident at the scale 

of our study. 

Maxent distribution models have also been used to examine spatial dynamics of 

muskoxen at local to regional, but not continental scales (Beumer et al., 2019; Jenkins et al., 

2020; van Beest et al., 2021). In those applications, GPS collars and systematic human 

observations were used to identify environmental covariates underlying muskox distribution in 

Northeast Greenland and the Canadian Arctic. Across levels of analysis, elevation emerged as 

an important covariate of muskox distribution, following the same tendency of selection 

toward low elevations we found here (Beumer et al., 2019; Jenkins et al., 2020). Notably, our 

variable selection and model optimization process did not retain the same bioclimatic variables 

that were selected in one study using Worldclim2 data (van Beest et al., 2021), but that work 

included a subset of candidate predictor variables, used a coarser covariate resolution (20km), 

and the study extent was limited to northeast Greenland, as opposed to our 6km analysis of 

North America.  

The results of this modeling study suggest a broader spatial range of present potential 

habitat than is realized for any of these five bovid species (Meagher, 1986; Côté and Festa-

Bianchet, 2003; Demarchi and Hartwig, 2004; Brewer et al., 2014; Cuyler et al., 2020). For 

example, predictions from the muskox model indicate that Southampton and Baffin Islands are 

within the potential distribution of muskox, yet that species is not known to live there. 

Overprediction of actual distributions may have resulted from the coarse nature of our 



 116 

predictor data (6x6km pixels), limiting factors that we were not able to account for (e.g. 

predation, important forage species, or habitat fragmentation by non-permeable barriers), or 

more complex responses to environmental variables than we allowed in our modeling design 

(such as absolute thermal tolerance thresholds or interactions among variables). Thus, the 

modeling results should be interpreted in the context of predicted change in environmental 

factors associated with bovid presence, rather than spatial redistribution of bovid species 

themselves.  

The predictive ability of species distribution models is limited by the extent to which 

current predictor variables relate to the environment at the time of occurrence data collection, 

and the degree to which covariate forecasts represent future conditions. Worldclim data are 

least reliable in mountainous terrain, where fine-scale complexity overwhelms broad 

geographic variation and in remote areas where only sparse meteorological records were 

available for model training (Hijmans et al., 2005; Fick and Hijmans, 2017). Furthermore, 

species distribution forecasts may be sensitive to inconsistent variation among modeled 

bioclimatological futures (Cerasoli, D’Alessandro and Biondi, 2022), and uncertainty related to 

the underlying GCMs (Foley, 2010; Bedia, Herrera and Gutiérrez, 2013). Finally, predicted future 

distributions rest upon assumptions about future change; for example, GCAM land use data 

incorporates no developments in urbanization through the end of the century, and modeled 

vegetation change stems only from land use impacts, as opposed to vegetation response to 

warming (Chen et al., 2020), which is complex (Myers-Smith et al., 2020) and important for 

spatial dynamics of large herbivores (Tape et al., 2016).  
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Our model projections are based on relationships between observations of bovids and 

environmental factors where they were observed. In reality, drivers of range dynamics in large 

herbivores are complex and unlikely to relate directly to climatological variability. Instead, 

indirect effects of climate such as forage distribution and phenology, distribution of 

competitors and natural enemies, and frequency and severity of extreme weather events are 

likely to play important roles in changes in species distributions related to climate change 

(Parmesan, Root and Willig, 2000; Creel et al., 2005; Winnie, Cross and Getz, 2008; Ponti and 

Sannolo, 2022). Historical relationships among humans and megafauna may drive patterns in 

species distribution, particularly if species are refugees from human exploitation (Cromsigt, 

Kerley and Kowalczyk, 2012). The importance of human impacts was evident for several of the 

species we investigated; for example, fractional agriculture and urban cover were the second- 

and third-most important variables in the thinhorn sheep model, which revealed strong 

patterns of selection against both cover types. Agriculture was the fifth-most important 

variable in the bison model, which showed a weaker pattern of selection against urban cover. 

While agriculture and urban land cover did not emerge as important factors in other models, it 

is likely that a more precise land cover data product (both in terms of spatial resolution and 

cover type) would reveal significant human effects. For example, the Human Footprint Index 

(1km resolution) may uncover fine-scale impacts of light and infrastructure on current bovid 

distributions that we could not explore here (Venter et al., 2016), but a comparable forecast 

product is not currently available. Further, the ability of bovid populations to redistribute in the 

future will be limited by not only available destination space, but also by barriers to movement 

(Sawyer et al., 2013; McInturff et al., 2020). 
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Conservation planning is sensitive to biases in species distribution models (Wilson et al., 

2005), and we emphasize the need to incorporate multiple approaches and lines of evidence in 

planning future protected areas. Furthermore, although spatial priorities for protected areas 

increasingly rely on species distribution projections under climate change, they often ignore 

human response to climate change (Post and Brodie, 2015; Jones et al., 2016). Human influence 

on the landscape limits movements by animals, which may ultimately lead to the local exclusion 

of broad-ranging migrants (Tucker et al., 2018). Other work on large bovids has emphasized the 

importance of anthropogenic influence on habitat suitability (Epps et al., 2005; Kuemmerle et 

al., 2010). We were unable to include movement barriers and some human impacts on species 

ranges, such as roads and fencing, tourism, and recreation. More precise estimates of future 

suitable habitat for large herbivores will become possible as forecasts of anthropogenic change 

across the landscape become clearer.  

Most immediately, North American bovids contend with alteration of existing suitable 

habitat (Krausman and Bleich, 2013), limitations on movement between seasonal ranges 

(Courtemanch et al., 2017; Stoellinger et al., 2020), and introduction of zoonotic disease 

(Clifford et al., 2009). These threats are difficult to predict, and changes in their distribution and 

magnitude should be considered while crafting management and conservation plans. Of the 

protected areas that are already home to wild bovids, those which are expected to retain 

ecological and climatic characteristics that are associated with bovid presence may become 

especially important in the coming decades. As conservation planners make decisions about 

designation of new protected areas, it will be imperative to consider not just the future 

distribution of Nearctic bovids, but also future conditions for ecosystem services and human 
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response to change (IPBES, 2019). Protected areas conserve ecosystem function, culturally 

important settings, recreational hotspots, and natural resources. However, if biodiversity, or 

the longevity of a particular species is the goal, future climatological conditions and their 

implication for the focal species and increased human access to remote regions should be a top 

consideration in the prioritization of protected lands. 
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Figures 
 

 
 
Figure 5.1. Predicted current potential habitat (top subplots) and consensus future potential 
habitat under future conditions in 2081-2100 modeled using two SSPs (bottom subplots) for 
each Nearctic bovid species. For the current plots, predicted potential habitat is indicated by 
pale blue (for the ESS threshold) and pale green (for the MSS threshold). For the consensus 
plots, the fill value increases in intensity with increasing predicted suitability across GCMs (using 
the MSS threshold). Protected areas indicated by merlot polygons, data from (UNEP-WCMW 
and IUCN, 2021). 
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Figure 5.2. Protected area of modeled species distributions in millions of km2. Squares indicate 
the land area of modeled current distributions that fall within protected areas, and boxes 
illustrate land area for modeled future distributions within protected areas under projected 
conditions for 2081-2100 under SSP2-4.5 (purple) and SSP5-8.5 (tan). 
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Figure 5.3. Potential protected area expressed as a percentage of potential species distributions 
(a) and as a percentage of currently protected area (b). In a, the proportion is calculated based 
on the percentage of each species, GCM, and SSP-specific potential distribution that overlaps 
with protected areas. In b, the proportion is calculated based on the percentage of currently 
protected areas that overlap with each species, GCM, and SSP-specific potential distribution. 
Black dots indicate current potential distribution estimates, purple boxes show variation in 
SSP2-4.5 scenarios across GCMs, and tan boxes show variation in SSP5-8.5 scenarios across 
GCMs. 
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Tables 
 
Table 5.1. Surface area of modeled species distributions under current (1970-2000) and 
projected future (2081-2100) conditions, expressed in millions of km2. 
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Supplementary materials S5.1 
 
ODMAP protocol for ENM reporting: 
 

ODMAP 
section 

ODMAP 
subsection 

ODMAP elements 

Overview Authorship Christian John and Eric Post. Department of Wildlife, Fish, 
and Conservation Biology at the University of California, 
Davis. Contact: cjohn@ucdavis.edu. Projected bioclimatic 
distributions in Nearctic Bovidae signal the potential for 
reduced overlap with protected areas. doi available upon 
acceptance for publication. 

Model objective Predict changes in overlap between North American bovid 
species and currently protected areas. The target output is 
forecasted species distributions for 5 North American bovid 
species 

Taxon Bighorn sheep (Ovis canadensis), Thinhorn sheep (Ovis 
dalli), Mountain goat (Oreamnos americanus), Muskox 
(Ovibos moschatus), and American bison (Bison bison) 

Location Terrestrial North America and its islands 
Scale of analysis Spatial extent designed using political boundaries and 

includes Central and North America (xmin = 171.79°W; 
xmax = 12.20°W; ymin = 7.22°N; ymax = 83.65°N). Raster 
data were resampled to 6kmx6km pixels in Albers 
projection (+proj=aea +lat_0=40 +lon_0=-96 +lat_1=20 
+lat_2=60 +x_0=0 +y_0=0 +datum=NAD83 +units=m 
+no_defs). "Present" climate data were from 1970-2000; 
Future climate data for 2081-2100.  

Biodiversity 
data overview 

Observation data (presence-only) collected from GBIF 
records; predictor variables generated from WorldClim 
v2.1 (https://www.worldclim.org/), GCAM Demeter land 
use (https://data.pnnl.gov/group/nodes/dataset/13192), 
and North America Elevation 1-kilometer resolution GRID 
(https://www.sciencebase.gov/catalog/item/4fb5495ee4b
04cb937751d6d). Topography data were treated as fixed, 
not varying between model fitting and prediction. 

Type of 
predictors 

WorldClim bioclimatic variables, Demeter land use/land 
cover variables, and elevation/topography data. 
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Hypotheses We expected northward shifts and elevational contractions 
between historical and future modeled distributions, 
adjusting the representation of bioclimatic ranges in 
currently protected areas. 

Assumptions We assume niche conservatism, error-free predictors, full 
knowledge of important predictors, observation 
independence, spp.-environment equilibrium, unbiased 
observations, and stationarity in model predictive ability. 

SDM algorithms MaxEnt v3.4.3 was used with presence and 10000 
background observations. Model results were compared 
with an identical procedure with 5000 background points 
and found to be in general agreement (r > 0.7 for all 
species). 

 Model workflow For each species, MaxEnt models were fit to a 60% training, 
20% validation, and 20% testing subset of occurrence data 
using checkerboard cross-validation. Variable importance 
was assessed with permutation and jackknife tests. After 
cross-validation, full models were fit for each species. Full 
models were then used to project 2081-2100 suitable 
habitat using CMIP6 climate projections. 

Software, codes, 
and data 

R version v3.6.1 "Action of the Toes", dismo v1.3.3, and 
Maxent v3.4.1 were used. Code for data access, cleaning, 
and model fit and predictions available at 
<https://github.com/JepsonNomad/NA_Bovidae_SDM>. 
Data available for bioclimatic data at 
<https://www.worldclim.org/>; for landuse data 
<https://data.pnnl.gov/group/nodes/dataset/13192>; for 
Elevation data 
<https://www.sciencebase.gov/catalog/item/4fb5495ee4b
04cb937751d6d>; and for GBIF occurrences 
<https://doi.org/10.15468/dl.burd8t > 



 131 

Data Biodiversity 
data 

Taxon names described above. Data were analyzed at the 
species level, using the GBIF system with species ID's 
2441119, 2441118, 2441151, 2441108, 2441176 
(respectively). GBIF occurrence data 
(<https://www.gbif.org/>) were accessed 5 May 2022 by 
way of the R package `rgbif` and the GBIF API.  Data were 
filtered to retain only points on North America and 
Greenland, and to remove occurrences where latitude and 
longitude were not available, or where the listed 
observation coordinates were in a different country from 
the listed observation country. Points with observation 
dates prior to 1980 were also removed. Preserved 
specimens and fossil records were removed. Finally, 
several additional GBIF records were manually removed for 
other idiosyncratic reasons (Table 1). Occurrence records 
were thinned to a 6km radius, following the resolution of 
predictor data, to avoid duplicate sampling.  
 

Table 1. GBIF records that were manually removed 
from the SDM analyses, and their reasons for 
removal. 
Species GBIF ID Reason for removal 
Bighorn sheep 922490545  Denali (probably thinhorn) 

Bighorn sheep 1019041688  Recorded at zoo in Lansing Michigan 

American bison 2596125567  Camp Pendleton, introduced 

American bison 1850921137  Camp Pendleton, introduced 

American bison 2381410738  Camp Pendleton, introduced 

American bison 2269206648  Camp Pendleton, introduced 

American bison 3079682696 Camp Pendleton, introduced 

American bison 3415452210 Camp Pendleton, introduced 

American bison 3457071522 Camp Pendleton, introduced 

American bison 2631191303  San Fransisco Zoo 

American bison 2631191308  San Fransisco Zoo 

American bison 2631191306  Golden Gate Park 

American bison 1893583451  Weird Mexico loc’s 

American bison 1893583408  Weird Mexico loc’s 

American bison 3456432067 Ranch near Santa Ysabel 
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Occurrence map for the 5 North American bovid species:

 
Data 
partitioning 

We used a 60% subset of the original data to train the 
model for each species, and a 20% subset for validation. 
The remaining 20% were used for model testing. GBIF 
occurrence records, thinning, training, validation, and 
testing data partitioning can be recreated using the code 
on our GitHub repository 
<https://github.com/JepsonNomad/NA_Bovidae_SDM>. 

Predictor 
variables 

Historic and future (CMIP6) bioclimatic variables were 
accessed at the WorldClim (v2.1) website 
(<https://worldclim.org/>) on 2 March 2021. We accessed 
2.5m global data but cropped the dataset to North America 
and  resampled to 6km pixels in an Albers Equal Area 
projection (see above) using bilinear interpolation with 
GDAL. GCAM Demeter data were accessed from the PNNL 
website 
(<https://data.pnnl.gov/group/nodes/dataset/13192>) on 
3 June 2021 and resampled as above. Terrain data were 
accessed from 
<https://www.sciencebase.gov/catalog/item/4fb5495ee4b
04cb937751d6d> on 26 July 2018 and resampled as above. 
Terrain ruggedness index (TRI) were also calculated using 
default GDAL settings. 
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 Transfer data 
for projection 

 All available CMIP6 model forecasts under SSP2-4.5 and 
SSP5-8.5 in the WorldClim v2 dataset were used for the 
period 2081-2100. Data were accessed at the WorldClim 
(v2.1) website <https://worldclim.org/>, and resampled 
following the same protocol as predictor variables used for 
model training. Differences between historical data and 
forecasts were visualized by converting temperature data 
to °C (original data in °C*10), centering based on historical 
data, and averaging across CMIP6 model projections. 

Model Variable pre-
selection 

All predictor variables were centered using the mean value 
of the resampled historic data. CMIP6 forecast data were 
centered according to the historic center values. GCAM 
Demeter data were condensed into single scenarios from 
CMIP6 models because the individual models available did 
not correspond with those from Worldclim. Elevation and 
terrain ruggedness index were also included. These 
variables remained unchanged between fitting the model 
on historic data and predicting with CMIP6 forecasts.  

Multicollinearity Variables were removed through an iterative data-driven 
modeling process (Vignali et al 2020). For each species, 
Maxent models were fit with checkerboard1 cross-
validation and allowing only linear and quadratic feature 
classes. When variables were highly correlated (r > 0.7), the 
variable with the most explanatory power (identified using 
a leave-one-out jackknife test) was retained. This process 
was repeated for the resulting model until correlations 
among predictor variables fell below 0.7. Model transfers 
were fit using CMIP6 forecasts for the bioclimatic layers, 
GCAM Demeter forecasts for the landcover data, and 
unchanged terrain data. 

Model settings We used clamping and limited predictions to areas with 
positive MESS values (Elith et al 2010) to avoid 
extrapolation of conditions outside the range of the 
training data. 20% of input data were held for model 
testing. We allowed only linear and quadratic feature types 
to be used in model fitting, and then used a genetic 
algorithm to identify the best set of model 
hyperparameters (Vignali et al 2020).  

Model estimates Variable importance was determined through data 
permutation and jackknife tests (Vignali et al 2020). 

Model selection We did not use ensemble modeling to generate estimates, 
and instead relied on the final model generated after 
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selection of model hyperparameters and variable 
reduction. 

Non-
independence 
correction 

Non-independence is an inherent feature of many citizen 
science datasets, and we acknowledge that points used to 
train the models described here likely feature both spatial 
and temporal autocorrelation. We used spatial thinning of 
occurrence to account for spatial autocorrelation and bias 
grids to generate background data.  

Threshold 
selection 

Thresholding was used in order to translate the 8 CMIP 
model-based ENM projections into consensus plots, so that 
each model was equally weighted as 0=absent, 1=present. 
Sensitivity and specificity were maximized to determine the 
species-specific presence/absence threshold, although we 
compared this metric to a threshold based on equal 
sensitivity and specificity in Figure 5.1 (finding similar 
results). In preliminary modeling steps, we found this 
threshold selection technique related closely to the 
maximized true skill statistic. 

Assessment Performance 
statistics 

Training and testing AUC were compared to assess model 
training. Models were evaluated using a 20% partition of 
fully-withheld testing data.  

 
 

 
Plausibility 
check 

We performed plausibility checks for each species-specific 
model by plotting predicted presence for the baseline 
(1970-2000) predictor conditions, and found that models 
were generally predictive of known current species 
distributions (but see discussion on pattern of 
overprediction). Plausibility was also ascertained using 
marginal and sole-predictor response curves of important 
variables. 

Prediction Prediction 
output 

Prediction outputs were defined using thresholding to 
differentiate potential presence (1) and absence (0), which 
we interpreted as "suitable" and "unsuitable" habitat, 
respectively. Across CMIP6 models, prediction outputs for 
future climate scenarios resulted in a discrete model 
consensus surface with the minimum possible value being 
0 (no models predict presence) and maximum possible 
value being 8 (all models agree on presence). 

Uncertainty 
quantification 

Uncertainty in future conditions was assessed using multi-
model consensus, outlined above. Boundary conditions – 
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such as non-analogue climates – were accounted for using 
clamping and MESS grid during predictions, described 
above.  
 
 
Future climate MESS grids (positive values only shown): 

 SSP 2-4.5 SSP 5-8.5 
BCC-
CSM2-
MR 

  
CanESM5 

  
CNRM-
CM6-1 

  
CNRM-
ESM2-1 

  
IPSL-
CM6A-LR 

  
MIROC-
ES2L 

  
MIROC6 

  
MRI-
ESM2-0 
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Supplementary materials S5.2 
 
Table 1. Modeled current and projected mean elevation of each Nearctic bovid species, in 
meters above sea level. 
 

 
 
 
Table 2. Modeled current and projected mean latitude of each Nearctic bovid species, shown in 
degrees N. 
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Supplementary materials S5.3. The following are Receiver-Operator Characteristic curves, variable 
importance tables, and univariate response curves for the 5 most important variables for each species. 
Univariate response curves can be interpreted as the response of habitat suitability to that variable on its 
own, without considering other variables. 
 

Bighorn sheep 
 

 

Variable Permutation_importance sd 

TRI 41.0 0.003 

Biocl_12 36.5 0.004 

Biocl_04 11.6 0.004 

C3_gra_arc 3.4 0.002 

Biocl_08 2.1 0.001 

treeTemperate 1.4 0.001 

Biocl_15 1.1 0.001 

treeBoreal 1.0 0.000 

C4_gra 0.9 0.001 

Biocl_02 0.7 0.001 

C3_gra 0.2 0.000 
 

  

  

 

 
TRI: Terrain ruggedness index 
Biocl_12: Annual precipitation 
Biocl_04: Temperature seasonality 
C3_gra_arc: C3 Arctic grasses fractional cover 
Biocl_08: Mean temperature of wettest quarter 
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Thinhorn sheep 
 

 

Variable Permutation_importance sd 

Biocl_03 61.1 0.014 

AGR 13.0 0.008 

Urban 8.8 0.007 

Biocl_19 6.8 0.010 

treeTemperate 6.7 0.003 

TRI 2.7 0.001 

treeBoreal 0.5 0.000 

C3_gra_arc 0.2 0.000 

C3_gra 0.1 0.000 
 

  

  

 

 
Biocl_03: Isothermality 
AGR: Agriculture fractional cover 
Urban: Urban fractional cover 
Biocl_19: Precipitation of coldest quarter 
treeTemperate: Temperate tree fractional cover 
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Mountain goat 
 

 

Variable Permutation_importance sd 

TRI 63.6 0.005 

Biocl_03 24.2 0.007 

treeTemperate 3.8 0.001 

BDS_tem 2.6 0.002 

Biocl_18 2.0 0.001 

C4_gra 1.3 0.001 

DEM 0.9 0.000 

treeBoreal 0.6 0.000 

Biocl_15 0.4 0.000 

C3_gra 0.4 0.000 

Biocl_19 0.2 0.000 

BDS_bor 0.1 0.000 
 

  

  

 

 
TRI: Terrain ruggedness index 
Biocl_03: Isothermality 
treeTemperate: Temperate tree fractional cover 
BDS_tem: Broadleaf deciduous shrub fractional cover 
Biocl_18: Precipitation of warmest quarter 
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Muskox 
 

 

Variable Permutation_importance sd 

Biocl_10 70.6 0.022 

DEM 17.1 0.006 

treeTemperate 7.4 0.005 

Biocl_14 1.3 0.002 

Biocl_18 0.9 0.000 

treeBoreal 0.9 0.001 

Biocl_04 0.8 0.001 

TRI 0.7 0.001 

C3_gra 0.2 0.000 
 

  

  

 

 
Biocl_10: Mean temperature of warmest quarter 
DEM: Elevation 
treeTemperate: Temperate tree fractional cover 
Biocl_14: Precipitation of driest month 
Biocl_18: Precipitation of warmest quarter 
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American bison 
 

 

Variable Permutation_importance sd 

Biocl_19 26.3 0.009 

Biocl_18 23.3 0.006 

Biocl_08 13.1 0.003 

Biocl_02 10.9 0.005 

AGR 9.6 0.004 

treeBoreal 6.0 0.002 

treeTemperate 3.0 0.003 

TRI 2.7 0.002 

BDS_tem 2.1 0.002 

C3_gra_arc 1.5 0.002 

C4_gra 1.0 0.001 

DEM 0.5 0.001 

Urban 0.0 0.001 
 

  

  

 

 
Biocl_19: Precipitation of coldest quarter 
Biocl_18: Precipitation of warmest quarter 
Biocl_08: Mean temperature of wettest quarter 
Biocl_02: Mean diurnal range  
AGR: Agriculture fractional cover 

 

 




