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Abstract

Acoustic Methods of Pulmonary Disease Diagnosis

by

Adam Rao

Respiratory diseases are a leading cause of death worldwide. Despite modern antibiotics,

treatment of pneumonia and other lung diseases is often limited by the tools available

to diagnose these disorders in low resource settings. While tools such as chest x-ray and

CT scans are highly accurate, their high cost provides a prohibitive barrier for many pa-

tient populations. On the other hand, the physical exam provides a time-honed method

for diagnosis of many common lung diseases. Unfortunately, due to limited sensitiv-

ity, the pulmonary physical exam is often insufficient for diagnosis. The goal of the re-

search presented in this dissertation is to take advantage of the simplicity of the clinical

physical exam, but to quantify its findings using modern sensors. We present a stan-

dardized approach to analysis which differentiates a healthy lung from a diseased lung

with 91.7% accuracy. For pneumonia specifically, we demonstrated 92.3% accuracy when

distinguishing healthy subjects from pneumonia subjects in a pilot study. In addition to

these findings, we also review this work in the context of the current work in the field and

provide suggestions for next steps to continue quantified acoustic analysis of the lungs.
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Chapter 1

Clinical Motivation

Respiratory diseases are a leading cause of death worldwide. Despite modern antibiotics,

treatment of pneumonia and other lung diseases is often limited by the tools available

to diagnose these disorders in low resource settings. While tools such as chest x-ray and

CT scans are highly accurate, their high cost provides a high barrier for many patient

populations. On the other hand, the physical exam provides a time-honed method for

diagnosis of many common lung diseases. Unfortunately, due to limited sensitivity, the

pulmonary physical exam is often insufficient for diagnosis. The goal of the research

presented in this dissertation is to take advantage of the simplicity of the clinical physical

exam, and to quantify its findings using modern sensors.

1.1 Imaging of fluid in the lungs

Accumulation of excess air and water in the lungs leads to breakdown of respiratory

function and is a common cause of patient hospitalization. Shortness of breath, or dys-

pnea, is a common chief complaint among patients admitted to the hospital, accounting
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for 3.7 million visits to emergency departments in the US in 2011 [1]. Rapid and reliable

diagnosis of the undifferentiated adult patient presenting with acute dyspnea is critical

for appropriate triage, medical management, and identification and/or prevention of im-

minent respiratory collapse. Physical examination is the standard procedure for initial

evaluation of patients who present with respiratory symptoms. A respiratory physical

exam consists of several procedures, including listening to the patient’s thorax with a

stethoscope (auscultation) and tapping on the chest or back to check for areas of dullness

corresponding to pathology (percussion) [2].

Percussion is a technique in which one introduces a sound stimulus through the chest

wall in order to detect change of respiratory functions, as can be an indicator of lung

pathology. By tapping on the patient’s back and listening for certain sounds, a clinician

can determine if a lung field is abnormally occupied by air, fluid, or solid mass. Struc-

tural changes induced by disease cause alterations in acoustic transmission of frequen-

cies through the thoracic cavity [3]. While valuable, appropriate execution of this tech-

nique and interpretation of the findings are both subjective and highly skill dependent

[4]. Exam results often suffer from a high degree of variability and a low interobserver

agreement [5]. This qualitative physical exam has led to the introduction of adjunctive

imaging modalities to assist in the diagnosis of respiratory disease.

Radiographic imaging is one of the most common diagnostic methods used to evalu-

ate the presence of lung disease that might not be detected by the physical exam. While a

key supplement in the diagnosis and management of respiratory patients, the chest radio-

graph has its drawbacks. The use of high-energy ionizing radiation to penetrate tissue for

imaging can lead to mutations that increase the risk of cancer. In addition, certain obstruc-

tive airway diseases such as chronic obstructive pulmonary disease (COPD) and asthma
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may also be missed in an x-ray analysis [6]. Furthermore, the equipment may be cost-

prohibitive in resource-poor settings, where the burden of respiratory disease is greatest.

For example, the cost of deploying an x-ray machine in Northern India is estimated at

$51,500, plus an additional $5,900 per year for operational costs [7]. Consequently, ad-

junctive pulmonary monitoring methods that are low-risk, inexpensive, and accurate are

the subject of active research.

Ultrasound does not carry radiation risks and has established diagnostic utility for

the heart, kidneys, and other major organs. Unfortunately, its utility for directly imaging

lung tissue is still being researched [8]. This is largely due to acoustic impedance mis-

match at high frequencies (on the order of MHz) between the chest wall and air inside

the lungs, resulting in the reflection of ultrasound waves at the surface of the lungs [4].

Lung ultrasound, like the physical exam, also has limitations that are both operator- and

patient-dependent. Utilizing ultrasound and correctly interpreting its findings requires

extensive formal training.

Audible sound shares the advantages of ultrasound while providing a more quantita-

tive method of analysis compared with physical exam techniques. The past few decades

has seen a surge in research into quantifying audible sound to provide metrics for pul-

monary disease diagnosis. Audible sound techniques generally fall into two main cate-

gories: internal sound analysis and external sound analysis [9]. Internal sound analysis

uses signals generated by the human body to provide diagnostic information. External

sound analysis, which is the subject of this study, uses low frequency sound transmit-

ted into the respiratory system by an acoustic actuator for detection on the chest surface.

In this technique, the frequency and time information of the signal are used to provide

diagnostic information about the patient.
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Figure 1.1: A healthy lung, a lung with consolidation characteristic of pneumonia and
a lung with air in the pleural space characteristic of pneumothorax. Pneumonia leads
to the accumulation of protein-rich fluid (exudate) in the lungs. The presence of exu-
date and air accumulation can be detected using different techniques, e.g., chest X-rays
and acoustic analysis

Here, we present a proof of concept for the acoustic detection of structural lung patholo-

gies. We will utilize a low-cost acoustic actuator to provide a fixed signal input and

a digital stethoscope system paired with an innovative audio processing algorithm for

automated classification. The system, named Tabla after the percussive instrument of

the same name, utilizes the technique of auscultatory percussion, wherein a percussive

input sound is sent through the chest and recorded with a digital stethoscope for anal-

ysis. Standardizing the acoustic stimulation is designed to reduce patient and operator

variability. The cost for an acoustic based system is hundreds (rather than thousands)

of dollars, providing a feasible and scalable diagnostic solution for the developing world.

Our investigation into distinguishing features characteristic of normal and abnormal lung

function provides a foundation upon which future studies that examine disease-specific

lung changes can be based. This system aims to provide rapid and accurate diagnosis in

the emergent patient who presents in respiratory distress.
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1.2 Pathophysiology of Common Lung Diseases

Due to both infectious and non-infectious diseases, the lung can become abnormally oc-

cupied by air and fluid. Structural changes induced by disease cause alterations in acous-

tic transmission of frequencies through the thoracic cavity [3]. For the purposes of this

review, we focus on pneumonia, pleural effusion, pneumothorax, chronic obstructive

pulmonary disease (COPD), and asthma. These diseases in particular have pronounced

acoustic findings, and the majority of the research in the field has focused on these disor-

ders. The diseases can be grouped into two broad categories based on their pathophysiol-

ogy: fluid accumulation and air accumulation. Pneumonia is the result of a lung infection

which leads to inflammation and the accumulation of exudate (a protein-rich fluid) in the

lungs [10]. The accumulation of this fluid provides the physiological basis for the acous-

tic physical exam findings of abnormal breath sounds and dullness to percussion [11].

The term "consolidation" refers to the area of the lungs suffering from fluid accumula-

tion. Pleural effusion is similar to pneumonia in that it also results in the accumulation

of fluid; however, the location of the fluid accumulation is in the cavity surrounding the

lungs, called the pleura [10]. In addition to fluid, air can also abnormally occupy the

chest cavity and lead to the collapse of the lungs in an acute disease called pneumotho-

rax [12]. The presence of this air measurably changes the acoustic properties of the lungs

[13]. Asthma and COPD are inflammatory disorders which affect the larger airways; this

inflammation leads to the characteristic wheezes and other pathological breath sounds

associated with these diseases [14, 15]. This inflammation also primarily inhibits exhala-

tion, leading to a trapping of air in the chest cavity, which may affect the resonance of the

chest [16]. Unlike pneumothorax, asthma and COPD are chronic in nature.
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1.3 Automating the Pulmonary Physical Exam

The accumulation of fluid at the site of infection provides the physiological basis for phys-

ical exam findings of pneumonia: egophony, dullness to percussion, increased tactile

fremitus, changes in breath sounds and crackles, among others [11]. A brief explana-

tion of these common pulmonary physical exam maneuvers and other acoustic signals

is covered in Chapter 2, but a detailed summary can be found in [17]. Our device relies

specifically on automation of the physical exam procedure of auscultatory percussion.

Percussion involves the physician tapping on the sternum and specific areas of the

back while listening to the resulting sounds. Experience allows the physician to deter-

mine if these sounds correspond to the presence of healthy or abnormal tissue. In a nor-

mal lung, much of the sound is reflected at the interface between the soft lung tissue and

the semi-rigid chest wall, due to the large impedance mismatch. This leads to a “clear

long lasting sound described as resonant” [3]. In the case of pneumonia, exudate sur-

rounds the soft lung tissue and the acoustic impedance mismatch between the chest wall

and the consolidation is minimal. Vibrations on the surface rapidly propagate to the exu-

date, leading to a “sound of low amplitude and short duration described as dull” [3]. The

principle of operation for our device is the same as for auscultatory percussion, in which

a physician applies a sound input by tapping the sternum with one hand while listening

via a stethoscope held against the back with the other hand [10]. The physician assesses

the acoustic properties of the sound that travels through the chest.

Controlled studies have shown that auscultatory percussion ( the physical examina-

tion technique in which the physician taps on the patient’s chest and listens to the pa-

tient’s back via a stethoscope), is a method capable of detecting various presentations
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of pneumonia [10]. Unfortunately, compared to a chest X-ray, the sensitivity (58%) and

specificity (67%) of physical examination for detection of pneumonia are fairly low [5].

This is due in part to differences in the interpretation of the findings; rates of interob-

server agreement between two internists and a pulmonologist for diagnosing pneumonia

via physical exam ranged from 60–72% in one study [5]. The undesirably high inter-

observer error of physical exams for diagnosing pneumonia has inspired researchers to

seek new, low-cost methods that offer improved sensitivity and specificity by quantifying

physical findings.

1.4 Objectives

The objective of this thesis is to investigate the diagnosis of pulmonary diseases by using

sound transmission into the lungs and to evaluate the performance of the Tabla system in

the detection of fluid accumulation in the chest during various pulmonary diseases. To

achieve these aims the following sub-aims are investigated:

• Review existing acoustic methods of pulmonary diagnosis, including both internal

and external sound sources.

• Explore and analyze measurement systems, including both sensors and actuators,

for acoustic assessment of the lungs.

• Build and perform bench-top and clinical testing with a device utilizing the cus-

tom Tabla measurement system that meets diagnostic and usability requirements

set forth by UNICEF.
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• Devise a signal processing pipeline for data acquisition and exploring classification

accuracy of the Tabla system.

• Explore and reflect upon the best practices for future development of acoustic diag-

nostics.
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Chapter 2

Acoustic Signals and Lung Disease

Recent developments in sensor technology and computational analysis methods enable

new strategies to measure and interpret lung acoustic signals that originate internally,

such as breathing or vocal sounds, or are externally introduced, such as in chest per-

cussion or airway insonification. A better understanding of these sounds has resulted

in new instrumentation that allows for highly accurate as well as portable options for

measurement in the hospital, in the clinic, and even at home. This review outlines in-

strumentation for acoustic stimulation and measurement of the lungs. We first review

the fundamentals of acoustic lung signals and the pathophysiology of the diseases that

these signals are used to detect. Then, we focus on different methods of measuring and

creating signals that have been used in recent research for pulmonary disease diagnosis.

These new methods, combined with signal processing and modeling techniques, lead to

a reduction in noise, and allow improved feature extraction and signal classification. We

conclude by presenting the results of human subject studies taking advantage of both

the instrumentation and signal processing tools to accurately diagnose common lung dis-
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eases. This paper emphasizes the active areas of research within modern lung acoustics,

and encourages the standardization of future work in this field.

2.1 Introduction

The stethoscope has been developed and used for almost two centuries to allow physi-

cians to evaluate the health of the lungs by listening to breath sounds using a technique

called auscultation [18]. Other physical exam procedures, such as percussion, which in-

volves tapping on the patient’s chest, and tactile fremitus, which involves assessing the

way that vocal vibrations travel through the chest, have also remained core components

of the respiratory physical exam [19, 20]. These methods are commonly employed in

the preliminary diagnosis of lung pathologies due to their quick and inexpensive utility.

Utilizing acoustic findings, trained physicians are able to differentiate between normal

and pathological lungs in patients suffering from diseases such as pneumonia, pleural ef-

fusion, pneumothorax, chronic obstructive pulmonary disease (COPD), and asthma [19,

21–24].

Figure 2.1: Summary of the different types of acoustic signals for pulmonary disease
diagnosis. This includes both internal sounds, such as breath sounds, and external
stimuli, such as percussion.
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In spite of the clinical utility of the respiratory physical exam, these techniques suffer

from subjectivity leading to interobserver variability in patient diagnoses [25, 26]. Fur-

ther challenges include the training required to recognize the specific signals necessary

to make a diagnosis. However, over the years, studies into the physics of the lungs have

given us a holistic understanding of their response to acoustic stimuli, including factors

such as how sound travels through the lung tissue (parenchyma) and the specific charac-

teristics of the lung sound signals under healthy and pathologic conditions [27–30].

This understanding has enabled acoustic methods to advance beyond the stethoscope

to employ different hardware and software tools. This paper has been organized to

quickly review basic sound types associated with the lung and provide an overview of

the physics that govern sound transmission in the respiratory system (Sections II-IV).

This is followed by presenting the diverse methods and procedures required for proper

measurement of pulmonary acoustics for disease diagnosis, while focusing on presenting

recent work in the field (Sections V-X). Recent advances include the use of microphone

arrays [31, 32] and ultrasound [33, 34], as well as more sophisticated signal processing

methods for processing and classification [35] such as wavelet analysis and support vec-

tor machines (SVM) [23].

Approaches rooted in these recent advances have been used for analysis of breath

sounds, as well as other internal signals, such as vocal vibrations, together with the intro-

duction of external stimuli into the lungs via the throat or chest. While thorough reviews

of breath sound analysis have been conducted [36–38], to our knowledge a broader re-

view of different acoustic analysis techniques for lung disease has not been performed.

For this purpose, we review automatic classification methods that have been developed

and tested in tandem with various acoustic signals both internal and external. This paper
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surveys current acoustic methods, including both measurement and actuation hardware;

evaluates signal processing methods used to process and analyze measured sound; re-

views selected human subject studies for validation of various methods; and outlines

future challenges in the field.

2.2 Types of Acoustic Signals

In this review, we break down the analysis of lung acoustics into two categories: analysis

of “internal” signals, in particular, analysis of the sounds produced during breathing and

from the vocal chords; and “external” signals, like those that result from chest percussion

and airway insonification [19]. The types of acoustic signals are summarized in Fig. 2.1. A

summary of the frequency ranges, signal types and analysis techniques for both internal

and external signals is provided in Table 2.1.

Internal: Breath sounds

Respiratory sounds occur as the result of air flowing through the lungs and are catego-

rized as normal or abnormal (adventitious). Normal respiratory sounds are defined here

as those that are in healthy airways by physiological unforced breathing. These sounds

are generally subdivided into tracheobronchial and vesicular; the former originate in the

trachea and larger bronchial airways, and the latter may originate in small branches of

the airway tree further from the trachea or from other mechanisms at distal regions of the

lung parenchyma [62]. Absence or deficiency of normal breath sounds or manifestation

of adventitious sounds may be an indicator of pulmonary disease.
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Table 2.1: Sound Stimuli

Sound Frequency Ranges (Hz) Signal Type Analysis Methods

Breath sounds 10–1200 Hz [20, 39,
40], 60–2000 Hz [41],
100–600 Hz [42],
37.5–1000 Hz [23, 36],
75–2000 Hz [43],
80–2000 Hz [44, 45],
75–1000 Hz [46],
0–800 Hz [47]

Non-stationary Meyer wavelet [22, 23],
Autoregressive [44],
Hilbert transform
(envelopes) [22, 46],
Fourier transform [40,
47–49]

Vocal fremitus 0–1000 Hz [50] Non-stationary Autoregressive [50]

Chest insonification 80–1000 Hz [4, 51],
2–10 MHz [33, 34, 52,
53]

Stationary Cross-correlation
[51], Frequency
response function [4,
54]

Airway insonification via mouth 80–1000 Hz [32],
50–1600 Hz [55, 56],
75–2000 Hz [57],
200–2000 Hz [58],
50–2000 Hz [12],
0–20000 Hz [59], 3–35
Hz [60]

Stationary FFT [32, 58, 60], FRF
[55, 57], Convolution
[58], Transit time
analysis [57], Power
analysis [57],
Spectrogram [59]

Airway insonification via endotracheal tube 20–1600 Hz [13, 61],
50–1600 Hz [12]

Stationary PSD [12], FFT [13, 61]

This table provides typical ranges for internal and external sounds useful for analyzing lung structure
and/or function. FFT = Fast Fourier Transform, PSD = Power spectral density, FRF = Frequency response
function

Adventitious respiratory sounds have been classified into several different types, de-

pending on their spectral-temporal characteristics and their location [19, 20]. A variety

of lung pathologies and injuries result in adventitious respiratory sounds and/or alter

sound transmission pathways, with both spectrally and regionally differing effects that,

if properly quantified, may provide additional information about the severity and loca-

tion of the trauma or disease. We briefly review the different types of breath sounds and

their spectral characteristics in this section, and refer the reader seeking more detailed

explanations to the definitions and spectral characteristics set forward by the European

Respiratory Society (ERS) [63].
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Crackles

Crackles, also termed “crepitations" or “rales," are short, discontinuous, and non-stationary

sounds that can be detected during inspiration [14]. Key features often extracted from

crackles include their duration, waveform, and timing, which can be correlated to several

pathologies, such as pneumonia, fibrosis, and other parencymal diseases [14, 62, 64, 65].

Wheezes

Wheezes are adventitious continuous sounds that are typically heard at end expiration

with mild obstruction of small airways. They are often detected in subjects affected by

obstructive diseases, in particular asthma and COPD [14, 65–67], as well as in sickle cell

patients experiencing an acute pain crisis [64]. Their dominant spectral content is usually

between 100 to 1000 Hz, with higher harmonics above 1 kHz.

Rhonchi

Rhonchi are musical low-pitched sounds characterized by a sinusoidal waveform [14].

The duration is generally higher than 100 ms and frequency content lower than 300 Hz.

They are associated with abnormal airway collapsibility and the creation of breaches in

fluid films [14]. Rhonchi can be considered indicators of obstruction of large airways with

mucus or other pathologies [14].

Stridor

Stridor, often mistakenly considered a type of wheezing, refers to intense continuous

monophonic sounds best heard over extra-thoracic airways during inspiration. Stridor

is usually considered an indicator of upper airway obstruction. Signal analysis reveals
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that stridor tends to have a sinusoidal waveform, with a fundamental frequency gener-

ally above 500 Hz [14, 68].

Squawks

Squawks are defined as a mixed sound since they are characterized by a crackle followed

by a short musical component resembling a wheeze [14]. They are likely to occur in

fibrotic pulmonary disorders. Acoustically, their waveform is similar to that of short

wheezes, but they are often preceded by a crackle. Mean squawk duration is approxi-

mately 90–320 ms.

Bronchial

Bronchial breath sounds are blasting sounds, audible throughout inspiration and expi-

ration, with a frequency range of 600–1000 Hz [38]. Although normal when heard over

the neck, close to the bronchus, when bronchial sounds are heard over the lung fields it

is usually due to a reduction in the amount of parenchyma through which the sounds

pass resulting from disease [28]. Generally, they have a higher frequency content with re-

spect to normal sounds; this is because consolidation causes a reduction of the low-pass

filtering role of the alveolar region.

Internal: Vocal sounds

Vocal sounds can be viewed as internal to the body but are also an external stimulus to

the airways and lungs. Vocal sounds consist of a fundamental frequency and several

overtones that make up higher frequencies. In healthy patients, auscultation of vocal

sounds often appear muffled due to poor transmission of sound in air-filled lungs, which
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filters out higher frequencies often with a peak at 130–250 Hz [17, 50]. Consolidation has

been found to increase this transmission to 400 Hz [69]. Auscultation of vocal sounds

has been used to exploit its frequency content and response, and is a valuable tool as

certain vocal findings have been found to precede abnormal breath sounds [69]. Different

methods of initiating vocal sounds have been explored by researchers, pairing different

methods of actuation such as ultrasound or sound delivered via speakers with different

types of sensors; however, as they are based on the same principles, it is often up to the

physician to decide which method to use [28].

Pectoriloquy

Pectoriloquy refers to an abnormal increase in the clarity of whispered vocal sounds dur-

ing auscultation due to the presence of lung consolidation, which increases the sound

speed and thus lowers the damping of the vocal signal due to the efficiency of sound

transmission through fluid. A study comparing different methods of diagnosing pneu-

monia, including auscultation of percussion, breath sounds, pectoriloquy, and bronchophony,

showed that pectoriloquy had the lowest inter-rater agreement and was rarely detected

by physicians [5, 70].

Bronchophony

Bronchophony applies the same principles of pectoriloquy, but is spoken instead of whis-

pered. Egophony is a specific type of bronchophony. When a patient speaks the letter

“E" it is normally heard on the chest wall as a muffled “E" in healthy patients, but in

the presence of consolidation, it sounds like a spoken “A" [69]. “E” consists of a funda-

mental frequency between 100–400 Hz and overtones ranging from 2000–3500 Hz, while
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“A" consists of a higher fundamental frequency of up to 600 Hz [17]. Increased density

in the parenchyma from pleural effusion or lung consolidation transmits the higher fre-

quencies of “A" better than the lower frequencies of “E" with no significant transmission

above 1000 Hz, and may stifle transmission from 100–300 Hz, causing the apparent “A"

sound [17]. In several studies, egophony was found to have increased the likelihood of

diagnosing pneumonia but had highly variable positive predictive values, from 20–56%

[71].

Fremitus

For vocal fremitus, the input to the chest is the speech signal at the vocal chords and the

output is the sound heard at the chest wall. To generate the speech in a standard way,

the patient is asked to vocalize a constant sound, such as EEE [19]. The vibrations ini-

tiated by fremitus are decreased in the presence of conditions such as bronchial asthma,

emphysema, obstruction, pleural effusion, and pneumothorax. Air trapping or accumu-

lation decreases the transmission of lower frequency vibrations, while consolidation and

inflammation increases transmission [72].For these reasons, fremitus is often more useful

in male patients, and has been observed to be ineffective in obese patients [69, 72]. Wipf

et al. found that, along with pectoriloquy, vocal fremitus was rarely detected in patients

with pneumonia [5]. Another study corroborates these findings, but suggests that it is dif-

ficult to calculate the reliability of fremitus because it occurs infrequently [70]. For pleural

effusion, fremitus has been shown to have a high sensitivity (82%), specificity (86%), and

negative predictive value (95%) for diagnosis, though the positive predictive value was

low (56%) [73].
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External: Airway insonification

The process of analyzing abnormalities in lung structure can also be done electronically,

by introducing external sound through the oral cavity or the endotracheal tube [12, 13,

51, 55, 57, 61, 74]. Sounds introduced to the oral cavity have ranged from 50–2000 Hz

[55, 57, 74], while sounds introduced through the endotracheal tube have ranged from

20–1600 Hz [13, 61]. A transfer function with the chest as the output has been used to

characterize the structure and/or content of the parenchyma. By utilizing a fixed input

signal, the specific frequencies of interest can be isolated and the differences between

patients’ vocalization discussed above can be avoided [69, 72].

External: Chest insonification

In addition to the vocal tract, sound can also be introduced directly to the chest, which

can be done via percussion, electronic actuators, and ultrasound. Percussion is a term

that refers to exciting a tissue with an impulsive force [3]. The input is a percussive stroke

generated manually by a finger or automatically by an external tool; the output is the

sound heard at the chest wall [3]. If the vibrations from the percussive stroke are less

damped, they persist, known as a resonant or tympanic note. This occurs due to a signif-

icant acoustic mismatch between the gas-filled lungs and chest wall, causing reflections

at the lung–chest wall interface, and thus longer vibrations. In contrast, flat percussive

notes, which die out quickly, are caused by similar tissue beneath the chest wall, such as

over the heart or due to the presence of fluid, which decreases the amount of acoustic

mismatch [28].

In previous studies, dullness from percussion has been shown to be associated with in-
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creased likelihood of pneumonia, though its measurement is hindered by low inter-rater

agreement [5, 70]. Auscultatory percussion, first described by Guarino, is a variation of

direct percussion in which one side of the body is percussed and the sound assessed with

a stethoscope at a distance or on the other side of the body [10]. Bohadana et al. expanded

Guarino’s findings in a study of 98 patients with abnormal chest films; in the blinded

study, direct percussion and auscultatory percussion were compared, demonstrating that

both were about equally effective at detecting pleural effusions, but that neither technique

could detect intrapulmonary masses less than 6 cm in diameter [75]. In a follow-up study,

the same researchers recorded data from several sensors to create a sound map of the

backs of three healthy subjects and four patients with large intrapulmonary lesions (from

6–10 cm), finding that scapulae play a large role in sound transmission for percussion of

the sternum and that intrapulmonary lesions were not detectable [76]. This limitation in

part arises from the low bandwidth of manual percussion sounds (less that 100 Hz), and

in part due to the characteristic transmission of sound through bony structures as well as

through the lung parenchyma.

Automated methods have attempted to address these limitations by expanding the

bandwidth of the input signal to 1000 Hz and recording from areas that exclude the

scapulae. Recent studies have introduced a frequency range of 50–1000 Hz at the chest to

measure changes in velocity and arrival time, the transfer function, or reflections of sound

waves [4, 28, 51, 54]. Apart from an impulsive signal, a controlled input signal such as

a chirp can be input at the chest wall to analyze any abnormalities in its transmission

through the chest structure [4, 54, 77].

In addition to audible range stimulation, ultrasound provides input into the chest of

frequencies above 20 kHz, with most clinical ultrasound systems in the range of 2 to 10
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MHz [33]. As the sound travels into the tissue, a reflection beam called an echo is formed;

production and detection of echos is the basis for all diagnostic ultrasound systems [33].

If two adjacent tissues have different acoustic impedances, they will produce an echo. If

the difference between the two tissues is very large, as is the case in the chest–lung inter-

face, not enough ultrasound signal will remain to image beyond this interface, creating

challenges for thoracic imaging [33]. Despite these challenges, several methods utilizing

the artifacts of the ultrasound image can be used to great effect for pulmonary diagnosis,

these methods are explored in Section V.E.

2.3 Physics of the human thorax

The human thorax is comprised of four different types of materials with significantly dif-

ferent acoustic properties: hard tissue (bone), soft tissue (muscle, fat, etc.), air in the major

conducting airways of the bronchial tree, and parenchymal tissue that is a heterogeneous

mixture of soft tissue and air found in the alveolar sacs and smaller bronchioles. The

characteristics of these different components affect how sound is transmitted through the

thorax.

Absorption

Sound in the lumen of the lung airways experiences a frequency-dependent absorption

into the airway walls and surrounding parenchymal tissue, in which high-frequency

sounds propagate further within the airway branching structure, while low-frequency

sounds tend to couple into the airway walls sooner [20, 28, 78]. However, due to the

attenuation of higher frequency sounds in the surrounding parenchymal tissue, most of
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the signal energy of breath sounds recorded on the torso surface is concentrated at lower

frequencies [20, 56].

Analysis of sound transmission in the chest cavity suggests that the chest, overall,

acts as a low-pass filter, absorbing higher frequencies as sound travels through it [28, 43,

50, 55, 57]. This filtering effect is altered with the presence of different lung conditions,

such as consolidation or fluid build-up, which on the one hand can create large acoustic

impedance mismatches with healthy parenchymal tissue and air, but on the other hand

acoustically couples better to surrounding soft tissue of the chest wall and inherently

allows sound to propagate with less attenuation, as compared to healthy parenchymal

tissue [4].

Transmission and reflection

Transmission and reflection of sound waves is caused by interfaces between the semi-

rigid chest wall, pleural spaces which normally contain air but can fill with fluid in dis-

ease, and the lung tissue, which is typically approximated as a homogeneous mixture of

gas and tissue [79].

Sound intensity is a quantitative measure of transmission. At a given interface, as-

suming normal incidence, the fraction of sound intensity transferred, TI , is a function of

the relative acoustic impedances of the two media, Z1, Z2 [80]:

TI =
4Z1Z2

(Z2 + Z1)2 .

If Z1 ≈ Z2, the two media are very similar, so TI ≈ 1, meaning that almost all of

the sound intensity is transferred to the next medium. At the other extreme, TI ≈ 0 and
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most of the sound intensity is reflected back at the interface. Thus, imaging the lungs

via ultrasound was initially thought to be impossible due to the high acoustic impedance

mismatch between the soft tissue and parenchyma [33].

Resonance

Resonant frequencies are those frequencies at which acoustic waves are reflected back

and forth due to interaction with boundaries or interfaces, leading to constructive in-

terference and an amplified response. When a short (percussive) impulse, with broad

frequency content, is applied to a system, the response at its resonant frequencies will

persist longer than at other frequencies, particularly as damping (viscosity) in the sys-

tem is reduced [81]. For the chest overall, this characteristic depends on several factors,

including the size of the thorax. The first, or lowest, resonant frequency of the chest for

men is around 125 Hz; for women it is slightly higher, at 150–175 Hz; for children it is

300–400 Hz [28]. For sound traveling in the lumen of the airways, the resonant frequen-

cies are a strong function of the geometry and wall properties of the airways whereas

direct chest stimulation will generally bypass these differences [82]. Resonances may also

occur when pathologies create trapped air cavities below the torso surface, such as in the

case of pneumoperitoneum [83, 84].
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Chapter 3

Methods of Measurement and Device

Design

3.1 Methods of Measurement

The classic method of measuring lung sounds is with the stethoscope, which works by

isolating the sounds from the vibrating chest wall and filtering out certain frequencies of

interest mechanically. These sounds can be recorded for analysis by converting the acous-

tic pressure or vibrations of the chest–wall interface into electrical signals. In this section,

we review the filtering characteristics of the stethoscope, discuss common types of sensors

used to digitize this signal and their methods of transduction and end with a discussion

of multi-point measurement systems. These sensors are discussed in the context of Com-

puterized Respiratory Sound Analysis (CORSA) specification recommendations, which

are based on a project of the European Respiratory Society [63].
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The Stethoscope

Conventional stethoscopes rely on analog filtering and amplification of sound for inter-

pretation by a trained professional [46]. Stethoscopes have two sides, a bell and a di-

aphragm, with different frequency characteristics. Bell chestpieces amplify sound below

112 Hz [85], demonstrating superior sound transmission at these frequencies compared

to the diaphragm, which attenuates low frequencies [86]. Both bells and diaphragms

have an important attenuation above 200 Hz, which limits the ability to discern sounds

in this frequency range [85]. The sensitivity of the human ear ranges from 20–20,000 Hz

[42, 86]. Despite the range of human hearing, because the ear follows a logarithmic sen-

sitivity to frequency, greater changes are required at higher frequencies to discern them

as different [46]. Electronic stethoscopes utilize a variety of sensors including condenser

microphones and piezoelectric sensors in order to convert acoustic waves into electrical

signals for filtering and processing [13, 22, 61]. Compared to the conventional version,

electronic stethoscopes allow amplification of the acoustic signals, electronic removal of

noise artifacts, and recording for playback and post-processing [86]. In spite of these

advantages, electronic stethoscopes also suffer from excessive ambient noise, which is ex-

acerbated by amplification; however, this is reduced with the implementation of low-pass

filters from the bell and diaphragm [86]. Depending on the type of sensor utilized, and

the analog and digital filters that are applied, the frequency range varies for these meth-

ods of measurement. The main strength in the electronic stethoscope is the integration of

a familiar technology with advancements in electronics and signal processing (see Section

VII). Low barriers of adoption for medical professionals can facilitate quicker clinical us-

age of lung acoustic diagnostics; however, its main weakness is site-specific dependencies

24



with a single point of measurement.

Sensors

The vibrations of the chest–wall can be recorded using several different methods of trans-

duction, such as condenser and piezoelectric transduction [63]. An ideal sensor should be

small and lightweight, cost-efficient, produce reliable and sensitive measurements with

little noise, and have reproducible frequency response [38]. Due to its flat frequency re-

sponse, high SNR, and advancements in MEMS technology, we recommend condenser

microphones for such an ideal sensor. CORSA provides standard considerations for pick-

ing a condenser microphone for respiratory recordings [87] A majority of recent studies

reviewed in this article (see Table 5.1) have also utilized condenser microphones.

The two main types of microphones used for lung sound analysis are air-coupled and

contact microphones. An air-coupled microphone converts changes in dynamic air pres-

sure within the drum of a stethoscope created by the oscillatory movement of the di-

aphragm or bell pressed against the torso surface into electrical signals, while contact

microphones convert mechanical stress caused by chest movements using piezoelectric

transduction principles [35].

Condenser microphones

Condenser microphones are a type of air-coupled microphone. Condenser microphones

such as electret microphones utilize condenser transduction to detect changes in acous-

tic pressure that change the nominal capacitance values [35, 38, 88]. These microphones

have a nearly flat frequency response over the audio range, leading to minimal distortion
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Table 3.1: CORSA Specification Recommendations for Sensors

Parameter Specification

Frequency response 50–5000 Hz

Dynamic range 60 dB

Sensitivity Defined as the voltage generated when the input
sound pressure is 0.1 Pa; must be stable across all
frequencies, sound directions, and varying noise.
Typical value is 1 mV/Pa.

Signal-to-noise ratio (SNR) Defined as the ratio of the output voltage to the noise
when no input signal is applied. Recommended to be
>60 dB.

Coupling Piezoelectric: contact
Condenser microphones: Conical, diameter 10-25 mm

Fixing Piezoelectric: adhesive ring
Condenser microphones: Adhesive ring or elastic belt

Noise and interference Acoustic: shielded microphone, protection from
mechanical vibrations
EM: Shielded twisted pair or coaxial cable

This table describes the recommended specifications from CORSA (Computerized Respiratory Sound
Analysis) for sensors that detect human pulmonary sounds. EM = Electromagnetic [63]

[38, 88]. However, they require acoustic coupling to the chest wall with an air cavity [66,

87]. Microelectromechanical systems (MEMS) microphones utilize condenser principles

and provide a similar frequency range and SNR as compared to conventional condenser

microphones while providing a smaller form factor [35, 89]. Due to their wide band-

width, high sensitivity, established coupling methods, high SNR (according to CORSA

recommendations), and low costs, condenser microphones are widely used [38, 66, 88].
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Contact microphones

Contact microphones typically utilize piezoelectric transduction principles to create an

output voltage proportional to the displacement of the sensor placed directly onto the

skin without the use of an air chamber [87]. These sensors can be characterized by ex-

tremely high sensitivity (50 mV/Pa) and have the advantage of not picking up as much

ambient noise as condenser microphones, but are conversely very sensitive to motion ar-

tifacts [87, 88]. A study found that loading effects due to the method of coupling from

the transducer to the hand piece of the stethoscope is a significant noise source [90]. One

design solution to this noise source is utilizing foam between the transducer and hand

piece of the stethoscope; progressively softer foam results in reduction of physician hand

noise but also lowers the sensitivity of the piezo sensor [90].

Contact accelerometers

Similar to the contact microphone, contact accelerometers make use of the piezoelectric

effect, but the output voltage is instead proportional to the acceleration of the sensor. The

accelerations involved in lung acoustics are on the order of 0.1 milligravity, thus requiring

high sensitivity to detect [41]. Low-mass piezoelectric accelerometers are feasible, but

suffer from similar shortcomings as contact microphones [32, 66, 87]. Because of their

miniature size, MEMS accelerometers are useful for continuous respiratory monitoring

and have been used to detect wheezing in asthma and COPD patients [41].
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Multi-point measurements: Sensor array

Lung pathologies alter sound transmission pathways and have both spectral and regional

effects that can benefit from simultaneous measurements at multiple points across the

chest surface. Understanding the location of abnormal lung sounds can help identify

areas of pathology as well as assessing the severity of the pathology based on its spatial

distribution. To better assess location, simultaneous multi-sensor auscultation methods

have been advanced to “map" sounds on the thoracic surface by several groups [42, 66,

91–93].

One multi-sensor system that has undergone considerable study into its efficacy has

been branded as “vibration response imaging" (VRI). VRI involves creating a 2D repre-

sentation of breath sounds using an array of electronic stethoscopes that pick up sounds

from the chest using 18–40 piezo-acoustic sensors to create a gray scale image in real time

that can dynamically track acoustic variation throughout the respiratory cycle [42]. The

sensors in the array have a flat frequency response from 50–400 Hz [42]. This sensor array

has been investigated for distinguishing between healthy subjects versus subjects with

pleural effusion or pneumonia [21, 94, 95], differences in lung sounds between asthmatic

and healthy subjects [96], and differences between subjects with obstructive airway dis-

ease (OAD) and non-OAD subjects [65]. While this system has been applied to a variety

of disorders, it remains bulky compared to systems with fewer sensors, as it relies on 40

different sensors coupled to the patient’s back via a low-suction vacuum. Another limita-

tion is the fact that the signal is filtered from 150–250 Hz, which may reduce lung sound

characteristics contained in frequency bands above 250 Hz [97].

While 2D visualization of breath sounds is an improvement over individual sensor
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recordings, 3D mapping of sound sources may provide further localization for diagno-

sis. Kompis et al. [20] attempted to form a three-dimensional (3D) acoustic image of the

likely sound source location(s) by using multiple sensors and assuming “ray acoustic,"

i.e., “incident field," models for how sound propagated away from these sources. For fu-

ture work, Kompis et al. noted that a useful imaging system for the human lung should:

(a) be robust with respect to acoustic properties, especially speed of sound, which varies

and is not precisely known; (b) provide 3D data sets and resulting images that are intu-

itively interpretable; and (c) be robust with respect to missing sensors or noisy data in

individual sensors [20]. While sensor arrays are ideal for providing a 2D or 3D visualiza-

tion of the lungs, as opposed to the stethoscope which can only provide one location at a

time, current solutions remain bulky, and adoption in the clinic will be more difficult due

to increased costs compared to point based measurements.

3.2 Methods of actuation for external sources

Unlike internal sounds, which are non-stationary and not precisely repeatable signals

[22], externally introduced sounds have the advantage of providing a fixed input signal

generated using a variety of methods.

Actuators

Relatively few studies have investigated the use of fixed input signals for pulmonary di-

agnosis, leading to a lack of standardization for the transducers used to provide the input

signal. Actuators rely on the same principles of transduction as sensors, such as electro-

motive and piezoelectric transduction but provide inverse functionality by converting an
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Table 3.2: Methods of Measurement: Microphones

(Ref) Sampling Rate (Hz) Frequencies (Hz) Method

Microphone
[20] 10240 100–1000 Subjects breathed through a

pneumotachograph in a soundproof room
for at least six complete breath cycles.
Heart sounds and background noise were
recorded separately with the patient’s
breath held.

[55] – 20–500 A sinusoidal signal source driven by a
loudspeaker was inserted into patients’
mouths.

[12] 8192 50–1600 A sound source was connected to the
patient’s mouth to be inserted into the
endotracheal tube when PTX was induced
during thoracic surgery. Sounds recorded
for 20 s

[44] 5000 80–2000 Piezoelectric contact microphone was
attached to the trachea using an elastic
band. Patients also breathed into a
pneumotachograph. Data were measured
for 3 forced expirations.

[58] 8000 80–2500 An acoustic detector was placed on a
region of interest and subjects either spoke
a phrase ("three-three") or breathed
normally.

[57] 4000 75–2000 Sound generated was delivered through a
loudspeaker to the patient’s mouth via a
cardboard mouthpiece. Measurements
were taken 15 times.

[32] 10000 100–700 A probing frequency from 80–1000 Hz
retuned within 20 s was injected into the
mouth

[98] 10000 100–2000 A sensor was placed in a stethoscope for
testing; lung sounds were measured in
commonly used positions in the
abdominal region.

[59] 115000 0–20000 A sound source from a noise generator
was transmitted to the patient’s mouth via
loudspeaker, with measurements taken for
15 s at 1024 samples per impulse response
(8.85 ms).

[45] 4800 80–2000 Four electret microphones attached to
patient via an elastic belt, with a
measurement taken for 13.6 s.

[99] 4000 20–2000 An array of five microphones was used for
measuring lung sounds when the
volunteer coughed twice.

This table provides a comparison of microphone measurements for acoustic detection for lung disor-
ders. The sampling rate and frequencies used for analysis is included where possible.
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Table 3.3: Methods of Measurement: Accelerometers

(Ref) Sampling Rate (Hz) Frequencies (Hz) Method

Accelerometer
[51] – 80–1000 Sound to the mouth was fed from a PC

card. Sound to the chest was provided by
a compact shaker that was attached to the
reference accelerometer.

[56] 4096 75-1400 Sound to the mouth was fed through an
acoustic driver and tube, and spectral
characteristics of acceleration were
measured by an accelerometer at three
locations attached using double-sided
tape.

[100] 10000 100-2000 Subjects were seated in a soundproof
chamber and breathed through a
calibrated pneumotachograph. Contact
sensors were affixed with double sided
tape.

[29] 4096 0–600 Sound inserted at mouth and
measurements taken 8 times for 250 ms at
the T6 chest wall site and extrathoracic
trachea.

[55] – 20–500 A sinusoidal signal driven by a
loudspeaker was inserted into patients’
mouths.

This table provides a comparison of accelerometer measurements for acoustic detection for lung disor-
ders. The sampling rate and frequencies used for analysis is included where possible.

electrical signal into a mechanical signal. Several parameters are considered in choosing

an actuator, such as bandwidth, displacement, force, power, size, and weight. The ideal

actuator is a transducer that can generate a strong signal via displacement or force for a

wide range of frequencies, without excessive power consumption [77].

Dynamic loudspeakers

Dynamic loudspeakers utilize electromagnetic induction to transduce an electrical signal

into sound waves [101]. Surface exciters are a specific type of loudspeaker that do not

have the cone or frame, so their vibrations are coupled to a surface instead of to the air.

They are capable of producing a strong signal at low frequencies as low as 50 Hz, and can
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Figure 3.1: The frequency of different actuators determines the ranges that can be
probed. Solenoids have the lowest range of frequencies while piezoelectric material
has the highest range. Numbers provided here are estimates based on experiments
with a variety of actuators in each category.

be made relatively small [77].

Electromechanical solenoids

Electromechanical solenoids consist of an electromagnet with a plunger, the plunger will

move in or out depending on the direction of the current [102]. They are also capable of

actuating strong low frequency signals but are bulky and require large amounts of current

for operation, which reduces battery life [77].

Piezoelectric

Piezoelectric transducers have found use in generating and detecting ultrasound waves

[103]; therefore, they are notable for their ability to generate large forces at high frequen-

cies with a small size.
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Audible sound: Chest input

Use of a fixed audible input signal into the chest is still an area of active research with

fewer studies compared to breath sound analysis. Several recent studies have introduced

sound through the chest to investigate how sound travels through the chest structure [4,

51, 77]. These studies utilized low frequency audio range transducers which produced

signals generated within the range of 50–1000 Hz [4, 51, 77].

The first of these studies used an electromagnetic shaker (ET-132, Lab-works Inc.,

Costa Mesa, CA) to drive a periodic chirp signal with spectral content from 50–400 Hz

into the sternum [4]. The upper limit of frequency was set by the signal-to-noise ratio

(SNR) for the system, which was limited by the sensitivity of sensors available at the time

of the study. Its goal was to investigate changes in acoustic signals during pneumothorax,

which leads to air accumulation in the lungs and collapse of lung tissue. Simulations us-

ing finite element analysis (COMSOL) predicted changes in pneumothorax in the range

of 100–200 Hz; initial human subject data comparing healthy recordings to two pneu-

mothoracies of different severity demonstrated reduction in signal transmission at 120 Hz

which tracked with severity. A later study utilized a compact shaker (Model 4810, Bruel

& Kjaer) placed on the clavicle with a reference accelerometer attached to the shaker, and

expanded the range to 80–1000 Hz, a range determined by the accelerometer’s sensitivity

[51].

The most recent of these studies utilized a surface exciter to send a linear chirp from

50–1000 Hz into the chest at the sternum [77]. This study investigated changes in acous-

tic transmission during pneumonia, which leads to fluid accumulation in the chest. The

study demonstrated reduction in signal transmission in the 200–400 Hz range when com-
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paring healthy subjects to patients with lobar pneumonia. Another study using the same

equipment expanded the frequency range to 50–1000 Hz and utilized a classification al-

gorithm to classify subjects lungs as healthy or pathological with an accuracy of 92% [54].

These studies indicate potential for a fixed input signal in the range of 50–1000 Hz for

pulmonary disease diagnosis; however, more studies with larger numbers of patients are

needed to confirm these findings and establish a baseline for disease specific changes.

Audible sound: Oral cavity input

Several studies have investigated the introduction of sound through the mouth with ex-

ternal recording from the subject’s chest [51, 55, 57, 60, 74]. For mouth-to-chest wall

transmission, sound propagation is primarily through the parenchyma, as determined by

the consistency of sound transmission across different gases [57]. Studies have focused

on both frequency based analysis of transmission, transit time analysis as well as a respi-

ratory acoustic impedance approach to identify changes in lung pathology.

These studies produce an external sound using a signal generator which is sent di-

rectly into the patient’s mouth and may be broken up into high frequency analysis (50–

2000 Hz) and low frequency analysis [55, 57, 74]. The frequency range of 5–20 kHz has

also been investigated, and found to result in data variability between healthy subjects,

motivating the use of data below 5 kHz for analysis [59]. Controlled inputs via the oral

cavity control for the intersubject variability of breath sounds.

Low frequency analysis can be used to obtain the respiratory impedance by utilizing a

pneumotachograph to measure flow combined with a loudspeaker, which generates low

frequencies. Two approaches exist, each sending a different signal into the oral cavity: the
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forced oscillation technique (FOT) and impulse oscillometry system (IOS) [60, 104].These

techniques assess lung function by measuring acoustic impedance using sound waves in-

serted into the patients’ mouth. The FOT works by sending a sinusoidal signal of single

frequencies into the mouth over a range of 3–35 Hz [104, 105], providing good time res-

olution with measures of respiratory impedance but taking longer because it only sends

one frequency at a time [104]. In contrast, the IOS sends a square wave impulse contain-

ing frequencies ranging from 4–32 Hz. Though this results in inferior temporal resolution

and can cause discomfort for patients at higher frequencies, it offers improved SNR and

can show pressure-flow relationships using frequency analysis [104, 106].

Advantages of FOT/IOS include higher sensitivity in detecting peripheral airway ob-

struction, short duration, and a requirement for little patient cooperation compared to

spirometry, which is difficult for children, the elderly, and physically or cognitively im-

paired patients [104, 105]. For these reasons, FOT/IOS have proven useful in human

studies for diagnosing asthma and COPD [60, 107, 108]. Current challenges to FOT/IOS

come from its relatively recent introduction to the clinical setting, making it difficult to

compare results due to the lack of standardized, healthy values. There have also been

mixed reports regarding the effect of demographics such as age and race on IOS measure-

ments [105], though a study using artificial neural networks (ANNs) to classify asthma

in IOS patterns achieved an accuracy of 94% without including race as a parameter [105,

109].
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Audible sound: Endotracheal input

Studies have also investigated introduction of sound directly into the lungs through an

endotrachial tube [12, 13, 61]. Initial studies in a canine model suggested that a frequency

range of 20–1600 Hz with uniform amplitude could be used distinguish between differ-

ences in lung structure due to pneumothorax [13, 61]. At frequencies below 100 Hz, the

disease and control states were comparable; however, for higher frequencies from 300–

1600 Hz clear attenuation occurred due to disease in all subjects. Specifically, for struc-

tural changes due to air accumulation in the lungs, the canine model demonstrated an

important metric for measuring the impact on the frequency response. Since the spec-

trum contained a large number of values not well suited for diagnostic analysis, a ratio

between the low (<220 Hz) and high (550–770 Hz) spectral energies was used to detect

accumulation of air [13]

Ultrasound: Chest input

The transmission characteristics for ultrasound are similar to audible sound. Longitudi-

nal waves are used in ultrasound, and the speed of ultrasound in soft tissue is about 1540

m/sec [28]. In ultrasound, the frequencies generated are high (1–15 MHz), which allow

a short wavelength (1 to 0.1 mm) [33]. Therefore, it is suitable for detecting small differ-

ences in tissue boundaries which may not be picked up by an audible sound. Like audible

sound, when the ultrasound wave encounters a boundary between two different media,

some of the wave energy bounces back toward the source as an "echo" or reflection. The

higher the difference in acoustic impedance between two objects, the higher the amount

of reflection [28]. For example, at a soft tissue–bone boundary the ultrasound wave is
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highly reflected, and thus appears as a white (hyperechoic) line followed by a posterior

acoustic shadow beyond the boundary (Fig 2a).

Figure 3.2: (a) This soft tissue–bone boundary in which the ultrasound wave is highly
reflected, and thus appears as a white (hyperechoic) line of the femur. (b) A-lines
are static horizontal regularly-spaced hyperechoic lines that represent an aerated lung
created by reverberation artifact. (c) B-lines are discrete, laser-like vertical projections
arising from the pleural line and extending to the bottom of the screen without fading.
(d) Shred (fractal) sign shows echo-poor areas of the pleura, represented as a non-
smooth pleural line.

Lung ultrasound involves the interpretation of ultrasound artifacts instead of evalu-

ation of the actual lung parenchyma. The soft tissue and pleural boundary has a high

acoustic impedance mismatch, such that there is typically a reflection of 99.9% of ultra-

sound waves, rendering this interface virtually impenetrable to ultrasound [28, 33]. Since

there is no ultrasound wave left to image beyond this boundary, performing an ultra-

sound of the lungs was initially thought to be impractical [28]; however, several studies

have shown the usefulness of ultrasound in diagnosing several lung diseases through the

identification of artifacts in the ultrasound signal [52]. There are a variety of static and

dynamic artifacts that represent normal lung parenchyma.

As for electrocardiograms, a nomenclature has been created to describe and charac-

terize these artifacts for communication. A-lines are static horizontal regularly-spaced

hyperechoic lines that represent an aerated lung created by reverberation artifact (Fig 2b).

A reverberation artifact is the bouncing of echo between pleural line and the ultrasound
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transducer. Likewise, lung sliding is a typical dynamic finding and represents the reg-

ular movement of the parietal pleura sliding along the visceral pleura. Lastly, Z-lines

appear as bright beads with hyperechoic tails and are a common finding thought to be

from microbubbles existing between the pleural layers [110].

There are also many ultrasound artifacts that represent pulmonary disease processes.

In particular, comets, echo-graphic signs formed due to water thickened septa, as well as

other static image irregularities combined with dynamic signs formed due to the gravity

dependence of fluid in the lungs have proven to have diagnostic value [34, 53]. These

signs hold particular weight when the alveolar air adjacent to the chest wall is replaced

with fluid, allowing ultrasonic detection [111]. Various artifacts and syndromes associ-

ated with diseases are explored below.

Interstitial syndrome is a diffuse pulmonary process in which an ultrasound reverber-

ation artifact, B-lines, represent fluid accumulation within pulmonary septa. B-lines are

discrete, laser-like vertical projections arising from the pleural line and extending to the

bottom of the screen without fading (Fig. 2c). Interstitial syndrome represents a variety of

diseases such as pulmonary edema, interstitial pneumonia, acute respiratory distress syn-

drome, and pneumonitis. The specific distribution of B-lines and the patient’s clinical pre-

sentation can help elucidate the cause of interstitial fluid [112]. For example, in patients

with a moderate to high pretest probability for acute cardiogenic pulmonary edema, an

ultrasound study showing B-lines can be used to strengthen a physician’s suspicion for

pulmonary edema, while in patients with a low pretest probability of pulmonary edema,

a negative ultrasound study can almost exclude the possibility of pulmonary edema [113].

Alveolar syndrome represents the loss of air within alveoli secondary to collapse or

fluid accumulation (lung consolidation). Alveolar syndrome can be characterized by sev-
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eral ultrasonographic findings, including shred sign and tissue-like sign. Shred (fractal)

sign shows echo-poor areas of the pleural, represented as a non-smooth pleural line (Fig

2d). Likewise, tissue-like sign, in which extensive consolidation will allow visualization

of the underlying pulmonary tissue, is represented as a structure that appears like tissue.

For these two findings, pulmonary ultrasound relies on the fact that 98% of consolidations

reach the pleural surface and are thus viewable [114].

Recent reports show that ultrasound for pneumonia detection may be superior to chest

radiograph; sensitivity and specificity for the diagnosis of pneumonia using ultrasound

were 94% and 96% [115]. Lichtenstein et al. used a combination of static signs (irregular

boundaries) and dynamic signs (absence of a sinusoidal irregularity) to diagnose alveolar

consolidation, as in pneumonia, with a sensitivity of 90% and specificity of 98% when

compared to CT [34]. Using visible air bronchograms on mechanically ventilated patients,

Lichtenstein et al. also showed 94% specificity in distinguishing between pneumonia

from atelectasis for mechanically ventilated patients who would have appeared the same

by chest radiography [116].

Ultrasound evaluation of pleural effusion is an established technique with excellent

test characteristics [117]. Fluid is an efficient conductor of ultrasound waves and can be

visualized on evaluation [118]. Ultrasound is also helpful before thoracentesis, since it

can reveal septations, estimate the size of effusion, and localize optimal needle place-

ment. Similarly to alveolar consolidation, pleural effusion has also been diagnosed on

ultrasound by using a combination of a static sign (sharp borders) and a dynamic sign

(sinusoidal irregularity) which provided a sensitivity and specificity of 93% [34].

For pneumothorax, Lichtenstein et al. published an approach to evaluating pneu-

mothorax with ultrasound by evaluating the artifact created as the visceral pleura slide
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against the parietal pleura [52]. A pneumothorax is represented as a loss of standard lung

sliding seen in the healthy lung. A recently published review of eight high-quality stud-

ies found that overall, ultrasound had a sensitivity of 90.0% and a specificity of 98.2% for

detecting pneumothorax [119].

Point-of-care ultrasound has been gaining traction within the medical community,

and portable ultrasound that is relatively inexpensive has facilitated this increased us-

age. While extensive studies have been done on pulmonary diagnosis using ultrasound,

its use requires years of training to detect the artifacts associated with lung diseases. Fur-

thermore, the presence of dynamic images in addition to static signs for disease detection

make development of machine classifiers for disease more complex.

Audible Shear Waves: Chest input

While compression waves are useful in determining the effects of short range inter-molecular

interactions and essential to high-resolution ultrasound imaging, acoustic shear waves

can provide information about the shear elasticity and viscosity of a tissue [120–122].

Large changes in shear wave speed caused by diseases affecting the stiffness of the lungs

and other tissues can provide diagnostic information [122]. Previous studies have used

the modulated radiation force of ultrasound or a mechanical shaker to create a harmonic

force in frequencies ranging from 100 to 500 Hz to detect viscoeleastic properties in a

phantom and a pig lung using a laser doppler vibrometer or ultrasound for detection

[123–125]. Future studies investigating the generation of surface waves on the lung through

the intercostal spaces would be particularly interesting.

Acoustic shear wave motion throughout the lung parenchyma can be imaged using
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magnetic resonance (MR) elastography, a phase contrast MR imaging method [126]. Typ-

ically, an external vibration source applied to the chest is driven at frequencies on the

order of 50 Hz. The shear wavelength and attenuation will be altered by changes in the

lung mechanical properties. While MR imaging in general is particularly challenging in

the lungs due to its heterogeneity and air content leading to lack of hydrogen (1H) atoms

(abundant in soft tissue due to its water content), a few groups have had some success in

applying MR elastography to the lung using both 1H [126, 127] and polarized rare gas iso-

tope (3He) MR imaging [128]. Measurable increases in lung stiffness have been observed

in patients suffering from pulmonary fibrosis [129].

Shear wave motion can also be imaged via ultrasound. In this method, surface wave

propagation is induced by an electromagnetic shaker and detected by an ultrasound

probe. Zhang et al. were able to show the feasibility of this method in differentiating be-

tween interstitial lung disease (ILD) and healthy patients, observing higher wave speed

in ILD patients [130].

3.3 Materials and Methods

In this section, we describe the design of the Tabla device from basic principles. Our

design choices are intended to comply with the guidelines for a practical diagnostic tool

for pneumonia set forth by United Nations Children’s Fund (UNICEF) [131], summarized

in Table 3.4.
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Table 3.4: UNICEF design requirements.

Priority Design Parameters

5 (high) Ease of use, high accuracy
4 Long operational lifespan (> 2 years)
3 Highly portable, low cost, reliable, safe, automated diagnosis, robust
2 Low training requirements, long battery life, low maintenance
1 (low) Little to no familiarity with technology required

Different design requirements were assigned a numerical weight by UNICEF to communi-
cate the importance of each parameter as judged by literature review, research, surveys and
interviews. Adapted from [131].

Figure 3.3: the Tabla system consists of a surface exciter which sends sound into the
chest, and the Eko CORE digital stethoscope which records sound from the back

Approach and Statement of Contributions

The objective of this paper is to propose a quantitative alternative to the pulmonary phys-

ical exam that provides improved sensitivity and specificity, in addition to reducing in-

terobserver error. The contributions of this paper are threefold. First, we propose diag-

nosing pneumonia by measuring the acoustics of the lungs with automated input and

output devices. This has the dual advantages of improving the quality of the test (sen-
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sitivity and specificity) and clarity of the results (reducing interobserver error). While

previous work has focused on fully automated tests for pneumothorax [4, 12] or partially

automated tests for pneumonia [21, 50], this approach is novel because it automates both

input and output for detecting pneumonia and provides quantitative results. Second, we

provide a small, easy-to-use prototype which follows design criteria set forth by UNICEF

[131]. The device consists of an automated input unit which we constructed together

with a commercial, off-the-shelf electronic stethoscope (see Figure 3.4). When a button

is pressed, the input unit generates a ‘chirp’ signal and the vibrations on the back are

recorded. A spectrogram of the recording is used to estimate the acoustic frequency re-

sponse of the chest, which gives quantitative information useful for diagnosing pneumo-

nia. Finally, we present initial clinical data with five patients collected under Institutional

Review Board (IRB) study number 15-16814 at University of California, San Francisco

Medical Center, and a proposed quantitative method of discrimination between healthy

and consolidated lung tissue based on Mel-Frequency Cepstral Coefficients (MFCC) and

spectral centroid features of the frequency response of the chest.

Principle of Operation

We chose to focus on an acoustic approach because the sensitivity and specificity of such

systems in diagnosing pneumonia has been demonstrated (as mentioned in Chapter 1).

This choice addresses the two primary design criteria of accuracy and reliability, and has

the additional benefit of removing the radiation exposure inherent in methods such as the

chest X-ray.

Much like the physician’s hand and stethoscope in auscultatory percussion, our device
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Figure 3.4: The Tabla device is placed on the sternum and the stethoscope is moved to
different quadrants of the lungs to record audio data, which is transmitted via Blue-
tooth to a smartphone (not shown).

consists of two components: a sound source (actuator) and a sensor (stethoscope) (Figure

3.4). The actuator uses a surface exciter to send a sound wave with a frequency sweep

from 50 to 1000 Hz into the chest. The stethoscope is placed on the back and records the

sound waves transmitted through the chest. All patient data is collected and stored on a

Health Insurance Portability and Accountability Act (HIPAA)-compliant server for later

analysis with Matlab (R2017b, MathWorks, Natick, Massachusetts).

We initially experimented with a method analogous to regular percussion, sending

the signal in on the same side as the sensor. Early prototypes are shown in Figure 3.5. Un-

fortunately, although this allowed for a compact design that could snap onto the stetho-

scope, the cross talk between the tabla device and stethoscope limited the extent to which

the sound waves interacted with the lungs. We therefore decided to switch to a design

mimicing auscultory percussion and sending sound through the chest.
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Figure 3.5: Early prototypes of the Tabla device.

Previous work suggests that breath sounds in the frequency range 150–250 Hz provide

vital information for pneumonia diagnosis (as discussed in Section ??). Characterization

of the cutoff frequency of normal lungs suggests that frequencies above 1000 Hz do not

contain useful data [43, 50, 132]. Furthermore, fixed-input studies of pneumothorax sug-

gest that an upper limit of 400 Hz is necessary to keep the signal-to-noise ratio (SNR) in

an appropriate range [12]. We expanded this range to 1000 Hz for our human subject

recordings without undesirable effects on SNR.

Actuator

The choice of actuator was based on several considerations: its size, which affects the

portability, cost and comfort of the device; and its intensity at low frequencies as well as

its frequency range, both of which affect the ease of use and reliability of the device.

We considered several types of actuator diagrammed in Figure 3.1, including piezo-

electric transducers, push/pull solenoids, speakers, and surface exciters. The frequency

range and power of each of the potential inputs was measured by its application to two

different body parts: the knee, which is solid and provides a dull response; and the stom-

ach, which is hollow and provides a resonant response. A comparison of each actuator

type’s performance on each of the UNICEF criteria summarized in Table 3.4 is provided
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in Table 3.5.

Table 3.5: Actuator Pugh chart: Scored from 1 (low) to 5 (high).

Actuator Choice

Criteria Weight Piezo Solenoid Speaker Surf. Exciter

Intensity 5 1 5 2 4
Portability 3 5 1 4 4

Cost 3 4 3 3 3
Battery 2 4 2 4 4

Weighted Score 40 41 39 49
Weights of criteria are determined from the design standards listed in Table 3.4. Intensity has
the highest weight due to its effect on accuracy. Scores quantify relative performance with
respect to each criteria, where 1 is the lowest possible score and 5 is the highest.

Piezoelectric transducers are compact and inexpensive, both desirable features; how-

ever, they did not produce a signal of measurable strength. Solenoids, in contrast, pro-

vided strong low-frequency signals, but are bulky and have high power needs, contribut-

ing to shorter device battery life. Bluetooth speakers have been developed to meet con-

sumer market demand for low weight, small size, and long battery life. Despite being

rated for use in the 20 Hz–20 kHz range, many handheld speakers cannot consistently

generate frequencies < 100 Hz, which makes them inappropriate for use in this device.

Surface exciters are a type of sound generator that are essentially speakers with no frame

or cone; upon receiving an input signal, they vibrate an adjacent surface [134]. They are

capable of consistently producing measurable sounds at frequencies as low as 50 Hz and

are small enough to be incorporated in handheld devices. Based on these desirable char-

acteristics, we chose to use a surface exciter (DAEX30 HESF-4, Dayton Audio, Springboro,

OH, USA) in the design of the Tabla device.

As shown in the block labeled “Tabla” in Figure 3.6b, the actuator is driven by an am-
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plifier circuit that uses MP3 data stored on a microSD card and processed by a VS1053B

MP3 decoder chip (VLSI Solution, Tampere, Finland) controlled by an ATmega328p mi-

croprocessor (Atmel, San Jose, CA). The device has a handheld enclosure that contains

the battery, surface exciter, and printed circuit board (PCB). This enclosure has a shell

consisting of manufacturing-grade resins with the properties of injection-molded ther-

moplastics (Carbon 3D, Redwood City, CA, USA), designed using SolidWorks 3D CAD

software (Dassault Systems, Waltham, MA, USA) and 3D printed via stereolithography

with Carbon 3D (Carbon 3D, Redwood City, CA, USA).

MP3 Decoder

The VS1053b is a single chip Ogg Vorbis/MP3/AAC/WMA/MIDI audio decoder. It con-

tains a high performance low-power DSP processor core, and working data memory, se-

rial control and input data interfaces as well as a high-quality vairable sample-rate stereo

ADC and stero DAC. It recieves its input bitstream through a serial input bus, which in

our application is provided by the microcontroller via the SD card. The input stream is

decoded and passed through a digital volume control to an 18 bit over sampling DAC.

This allows the mp3 files from the SD card to be converted to an audio output that is fed

directly into the amplifier circuit. The circuit for the MP3 decoder is shown in Figure 3.7.

Speaker Amplifier

Briefly, the amplification circuit consists of a Class-D audio power amplifier with vol-

ume control, dynamic range compression (DRC), and automatic gain control (AGC). This

amplifier is a commercially available integrated circuit (TPA2016D2, Texas Instruments,

48



Figure 3.7: A commercially available MP3 decoder chip is used to decode the MP3 files
from the SD card. The microcontroller coordinates this conversion. An external 12.28
Hz crystal is used to provide a clock signal to the decoder chip. This chip is driven by
a battery power supply regulated to 3.3V.

Dallas, TX). The DRC and AGC function of the TPA2016D2 is programmable through a

digital I2C interface. These functions can be configured automatically to prevent distor-

tion of the audio signal. The gain can be selected from -28dB and +30dB in 1-dB steps,

this is particularly important as finding the optimum level for chest transmission requires

iterative testing.

The chip is capable of driving 1.5W/Ch at 3.6V into a 4Ω load which matches the

specifications of the surface exciter and LiPo battery. The device also features indepen-

dent software shutdown controls as well as thermal and short-circuit protection. These

features make this chip ideal for cellular devices, PDA’s and portable applications such

as the Tabla device.
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Figure 3.8: A commercially available audio amplifier front end amplifies the signal
from the SD card, which is driven by a battery power supply regulated to 3.3V. The
SPKR leads go to the surface exciter and the VBATT switches the power supply on
and off for the amplifier.

Sensors

Like the choice of actuator, the choice of sensor was influenced by the UNICEF guidelines

for devices of this type. There are a number of small digital stethoscopes on the market

which provide high-quality data at a reasonable cost [135–137]. We compared different

options and found that the Eko Core [136] stethoscope offers several features appropriate

for our application. Notably, the Eko Core has a similar form to the traditional stetho-

scope and can function as a regular stethoscope if the microphone is turned off. In our

initial product feasibility studies, we found familiarity of both form factor and procedure

are important in increasing comfort with, and thus the adoption of, new devices among

medical practitioners. Although the Eko Core was chosen for this study, other digital

stethoscopes, such as the 3M Littmann (3M, Maplewood, MN) and Thinklabs One (Thin-
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(a) Spectrogram (b) Transfer Function

Figure 3.9: (a) spectrogram of a chirp signal applied to the chest of a healthy subject.
Resonance is represented by a bright spot, as indicated by the arrow on the left side
of the figure. Along the line of the chirp, a comparison to a less-bright spot is indi-
cated on the right; harmonics are indicated by the non-parallel lines (circled) above
the chirp; (b) plotting power values along the line of the chirp yields a plot of the
transfer function. Figure from [133]

klabs, Centennial, CO) should offer similar performance.

Wireless Bluetooth pairing of the stethoscope with a smartphone enables cloud storage

of recorded data, facilitating its further use and analysis in telemedicine applications. In

this proof-of-concept study, an iPhone 7 (Apple Inc., Cupertino, CA) was used for data

collection; data were recorded locally and stored in the cloud (Figure 3.6b).

Signal

Considerations that influenced the choice of input signal were the ability to streamline

information processing, which affects the ease of interpretation and training for users;

and the ability to quickly assess the patient, which affects the time required for diagnosis.

There are a number of well-established approaches to system identification. The im-

pulse response is a very brief, sharp input that most closely mimics the tapping of phys-
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ical exams. Its main benefits are speed and uniform power distribution across frequency

bands. However, because of its short duration, it requires a large signal to compensate

for noise [138] and is very demanding of the actuator. The slow sine sweep uses slowly

changing frequencies, which allow the system to settle to a steady state. The main benefit

is a very high signal to noise ratio, but it takes several minutes to run the test. We chose to

use a ‘chirp’, a sinusoidal signal characterized by rapid frequency change. This provides

a balance between the slow sine sweep and impulse response, and has the added benefit

that it is easy to automatically extract the transfer function.

We analyzed the data with a spectrogram, which is the result of performing successive

discrete Fourier transforms within an overlapping time window to estimate signal power

as a function of frequency and time. An illustration of the spectrogram is shown in Figure

3.9a. The transfer function is extracted by using power measurements along the line,

which corresponds to the input chirp signal, shown in Figure 3.9b. The full test takes

only 15 s.

3.4 Tabla System Load Testing

Before performing the clinical testing we performed load testing to determine the effect

of different levels of pressure on both the Tabla device and the Eko Digital Stethoscope.

We placed the device on a soft tissue phantom that is approximately 10 cm thick and

measured the response on the other side using a noncontacting laser Doppler Vibrometer

(LDV). In one case, the Tabla device was placed on the phantom, in the other two cases a

force was applied on top of the Tabla device of 1.8 and 3.0 Newtons. The plots shown in

Figure 3.10a show the frequency response of the Tabla device with the different amounts
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(a) Tabla Load Testing (b) Eko Load Testing

Figure 3.10: (a) frequency response of the Tabla device with different amounts of pres-
sure applied; (b) frequency response of the Eko stethoscope with different amounts of
pressure applied

of pressure applied. The stethoscope was also placed on a soft tissue phantom that has

an embedded acoustic source that was driven with band-limited random noise. In one

case, the stethoscope was placed on the surface, in the other case a mass of 500 grams was

placed on top of the stethoscope. The plots shown in Figure 3.10b show the frequency re-

sponse of the Eko Stethoscope with the different amounts of pressure applied. Although

there is a small difference, the differences that we anticipate from structural lung changes

should result in larger changes. To reduce this small difference as much as possible, the

clinical protocol includes a specification on applied pressure to help standardize record-

ings.

3.5 Results and Discussion

In this section, we present and discuss several experiments performed with Tabla. In

Section 3.5, we compare the measured acoustic properties of wet and dry sponges, which
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share a similar density with the lungs [139]. In Section 3.5, we present results on the

acoustic properties of the knee, which is composed of solid tissue, versus the stomach,

which is hollow. Finally, in Section 3.5, we present preliminary clinical data collected

at University of California, San Francisco (UCSF) Medical Center from five pneumonia

patients and eight healthy subjects.

Water Filled Sponge vs. Air Filled Sponge

We use sponges as a bench-top model for pneumonia since they mimic the texture and

density of the lungs [139]. Lung density normally ranges between 0.2–0.5 gm/mL [28]. A

hydrophilated grouting sponge QEP 70005Q-6D (QEP, Boca Raton, FL, USA) was chosen

for density comparable to human lung. When the sponge is dry, it is slightly lower in

density than that of the lungs at 0.05 gm/mL. Our device was placed on one side of the

sponge with the stethoscope placed on the other side. Next, the sponge was filled with

water until an effective density of 0.6 gm/mL similar to the density of consolidation was

obtained. A set of 10 measurements was taken for both the dry and wet sponge, and a

mean was calculated.

The results are shown in Figure 3.11. For the dry sponge, we observe a resonant peak

at 180 Hz and its first harmonic at 360 Hz, with higher frequencies being attenuated. The

wet sponge behaves like a high-pass filter with decreased absorption of sound waves

above 200 Hz; note that higher frequencies are less attenuated than in the dry sponge

frequency response. These model findings are consistent with physical predictions that

accumulation of water (which reduces acoustic mismatch) leads to improved transmis-

sion of higher frequencies. Specifically, the introduction of water led to an increase of
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transmitted sound intensity at 500 Hz of approximately 40 dB.

Solid Tissue vs. Air-Filled Cavity Response

Solid areas of the body, such as bone, typically result in “dull” findings upon percussion

[140]. Based on percussion data, the knee was chosen as a model for consolidation. The

device was placed on the anterior portion of the knee, and the stethoscope placed on the

posterior portion. Tympanic sound is found over air filled cavities, and represents the

opposite extreme from ”dull” findings. Typical tympanic sound is found over the stom-

ach, where percussion is commonly utilized to determine liver span [140]. The device

was placed on the stomach and the stethoscope placed on the back; the findings can be

seen in Figure 3.11. Note that, due to the increased thickness of the stomach, as well as

the improved sound conduction of bone, the volume of the input signal was adjusted to

compensate. Since we are concerned with frequency patterns rather than amplitude, this

change should not interfere with our results.

The results are similar to the model system, with resonant peaks notable in the fre-

quency response of the air filled stomach, and high-pass filter characteristics in the fre-

quency response of the knee. For the stomach, resonant peaks can be seen between 200–

400 Hz. However, frequencies above 400 Hz are filtered out. The response for the knee

is similar to the wet sponge and appears to behave as a high-pass filter; however, the ef-

fect is less pronounced and begins to attenuate above 450 Hz. The measured increase in

transmitted sound intensity of approximately 10 dB at 500 Hz is also less dramatic than in

the sponge experiment, indicating that the difference between the stomach and the knee

is less pronounced than the wet and dry sponges.
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Figure 3.11: The frequency spectrum from 0–500 Hz for sound signals recorded for
the wet (dotted line) vs. dry (solid line) sponge, and for the stomach (soft tissue, solid
line) vs. knee (hard tissue, dotted line). Lines represent mean values from 10 con-
secutive measurements. The sponge experiment findings are consistent with physical
predictions that accumulation of water, which reduces acoustic mismatch, leads to
improved transmission of higher frequencies. The response for the knee is similar to
the wet sponge and appears to behave as a high-pass filter; however, the effect is less
pronounced and begins to attenuate above 450 Hz. Figure from [133]

Clinical Proof of Concept

Under an IRB-approved study at the University of California, San Francisco Medical Cen-

ter, we have collected acoustic recordings from volunteer pneumonia patients using our

prototype. At the beginning of the clinical examination, the patient was asked to sit up

and the gown untied to ensure direct skin contact. Before recording began, each patient

was asked to cough to clear their throat and then asked to breathe normally. For each

subject, the device was placed over the manubrium, the stethoscope on the appropriate

spot on the subject’s back, and the input chirp signal applied. The stethoscope was ap-

plied at six locations on the back, corresponding to the different quadrants of the lungs.

A 15-s sound recording was taken at each location to allow analysis for differences in

sound transmission.

We obtained acoustic recordings from eight healthy subjects and five pneumonia pa-
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tients, with several factors influencing inclusion in the initial study. The most impor-

tant inclusion factor is that the patient had recently been diagnosed with pneumonia by

chest X-ray. Healthy subjects consisted of individuals who did not have active respira-

tory symptoms or medical history of a confounding pulmonary pathology. The group

of patients and healthy subjects were both restricted to English speakers between 18–85

years of age. The healthy group was 50% male with an average age of 27 ± 5. The patient

group was 40% male with an average age of 72 ± 28.

Results from the left lower lobe of five pneumonia patients and eight healthy subjects

are shown in Figure 3.12. The average frequency response was calculated from the left

lower lobe recordings of the healthy subjects and pneumonia patients known to have left

lower lobe consolidation. The range of frequency for the clinical data was expanded from

500 Hz to 1000 Hz; there is an overall decrease in power for the spectrum of the pneumo-

nia patients, compared with the healthy subjects, that is most pronounced in the range

of 100 to 300 Hz. Additionally, the resonance peak occurs at 148 Hz on the spectrum

for healthy subjects, compared with 160 Hz for pneumonia patients. Due to differences

between thorax size and pneumonia severity, specific spectral features vary between sub-

jects.

3.6 Conclusions

Rapid prototyping was employed to develop a low cost, non-invasive acoustic device

that uses frequency analysis to characterize structural changes in the lungs during pneu-

monia. Preliminary clinical results suggest that the frequency spectrum of pneumonia

patients contains less power in the region of consolidation when compared with healthy
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Figure 3.12: The frequency spectrum from 0–1000 Hz from the sound signal recorded
from the left lower lobe of eight healthy subjects and five pneumonia patients, mean
values are plotted for the pneumonia patients (solid line) and healthy subjects (dotted
line) with standard error bars.

subjects. These data suggest that it is feasible to develop a low-cost diagnostic tool that

uses acoustic analysis to aid in the pulmonary physical exam. Although these results are

encouraging, there are limitations to this analysis. The recordings were collected from

only 13 subjects, which prevented splitting the data into separate sets for training and

testing and increased the risk of over-fitting. From a device perspective, shortening the

length of the chirp input will be explored in order to gather recordings without the noise

from patient breathing (apnea) and the trade-off for lower frequency resolution for shorter

recordings will be investigated. Future work will explore the effect of clinical features

such as age and gender, which influence thorax size and could therefore be confounding

variables that affect the transfer function. By including these data as inputs, we anticipate
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improved device performance. While our current focus is on the reliable diagnosis of

pneumonia, the capabilities of our device could also be expanded to include detection of

other pulmonary pathologies, such as pulmonary edema, chronic obstructive pulmonary

disease, and atelectasis.
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Chapter 4

Signal Processing and Analysis

Analysis of sound transmission in the chest cavity suggests that the chest, overall, acts

as a low-pass filter absorbing higher frequencies as sound travels through it [17, 27, 28,

43, 50, 55, 57]. Spectral characteristics are affected by structural changes in the lungs

caused by fluid or air accumulation, and can be studied and/or recognized using different

techniques and classifiers in both the time and/or frequency domain.

4.1 Frequency range for analysis

Frequency analysis of lung sounds have shown to be a useful classifier for patients for dis-

eases such as pneumonia, emphysema, pneumothorax, and asthma [4, 23, 42, 44]. The fre-

quency range considered physiologically important for nearly all heart and lung sounds

is up to 2000 Hz [23, 85]. In various studies, frequency ranges of interest included 0–2000

Hz for breath sounds [20, 23, 36, 39, 41, 42, 89] or sound evaluated at the chest [32, 41].

For sound through the mouth, several studies have used a range of 50–1600 Hz [32, 55,

56, 58]. In general, frequencies above 100 Hz are used to eliminate significant noise from
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the heart and muscle, as well as 60 Hz electrical interference [141].

Frequency ranges for specific diseases

Pneumonia is often associated with crackles, which in one study was found to have an

average frequency of 300 Hz [24, 38]. In a separate study, pneumonia was found to have

a decrease in frequency response [77]. Another paper in line with these findings suggests

that 300–600 Hz is important for pneumonia due to changes in bronchial breathing [141].

One review paper suggests a median frequency of 230 Hz for lung sounds [38].

For airway obstruction pathologies, such as asthma and COPD, the dominant rele-

vant frequencies lie below 400 Hz [23]. The median frequency of lung sounds has been

reported to be higher in asthmatic patients (239 Hz) than in healthy individuals (206 Hz)

[41]; Schreur et al. found a lower median frequency of 165 Hz in allergen-induced asthma

patients [142]. Another study found that asthmatic patients had wheezes and crackles

with an average frequency of 300 Hz, while COPD patients had only crackles at the same

average frequency, supporting the relevant frequency range below 400 Hz [24]. Patients

with asthma also had a higher proportion of time spent wheezing at inspiration (10%)

compared to COPD patients (1–2%) with average frequencies around 130–140 Hz [38].

Analysis strictly based on wheezes and crackles may not be a reliable method for diag-

nosing COPD, as a review paper found that the number of COPD crackles can vary per

patient, but have an average lower inspiration frequency (233–311 Hz) than crackles in

asthmatic patients (329 Hz) [38]. Pneumothorax has also been found to be associated

with a significant drop in sound amplitude from 400–600 Hz [12].
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4.2 Analysis methods

Several analysis methods are used for feature extraction from recordings of lung sounds.

These analysis techniques are critical for classification by extracting distinctive features

of sound such as wheezes, rhonchi, stridor, etc., which can be found in the time domain,

frequency domain, or the time–frequency domain. We discuss frequently used methods,

such as statistical analyses for time domain; the transfer function, Fourier transforms, and

mel-frequency cepstrum analysis for the frequency domain; and wavelet analyses and the

autoregressive (AR) model for the time-frequency domain.

Statistical analyses

Statistical methods, such as distribution features, higher-order statistics, and cross-correlation,

have also been used to characterize lung sounds. While these methods are useful in both

the time and frequency domain, they are especially important in the time domain, as the

frequency domain often lends itself to other powerful analytical methods described be-

low. Analysis in the time domain can also elicit unique information from non-periodic

signals, such as crackles. Traditional frequency domain analyses assume stationarity that

cannot be applied to such adventitious sounds and does not account for changes through-

out the respiratory cycle [69].

Distribution features such as mean, median, mode, and variance can be useful in char-

acterizing breath sounds and creating a mathematical model, such as wheezes which have

biomodal distributions [69]. Breath sounds, however, are often more closely modeled as

non-Gaussian, random processes, making distribution features less useful [38, 69]. There-

fore, higher-order statistics, which measure deviations from the normal distribution, can
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be more useful. Higher order statistics including skewness and kurtosis, have also been

utilized for breath sound analysis [38, 69]. Notably, kurtosis is a sensitive but not very

specific measure; a few outliers can heavily influence its value. This characteristic has

been used in detecting the presence of crackles [69].

Cross-correlation is another useful method for analysis in the time domain, and works

by detecting similarities between two signals. This has been used in previous studies to

analyze the time delay of sound traveling through the parenchyma with multi-sensor

arrays [51, 91], which can facilitate understanding of sound wave speed/propagation

through the lungs, including changes that relate to different diseases.

Calculating sound intensity has also been used to produce images; notably, applica-

tion of multi-sensor arrays to calculate intensity has been shown to be useful in both

localizing the signal and understanding its timing in the breathing cycle [20, 31, 46]. An

envelope can be used to represent the acoustic energy for each sensor to provide an acous-

tic heat map of the lungs [97, 143]. A Hilbert transform can be utilized to calculate this

envelope of the acoustic signals to provide a measure of sound intensity [46].

Discrete Fourier transform

The Fourier transform (FT) is the most commonly used spectral analysis technique to cal-

culate the frequency content of a signal [37, 40, 47, 49, 143]. The discrete Fourier transform

(DFT) is a type of Fourier transform that is used to analyze discretely sampled data, such

as digitized lung sounds. The DFT takes a signal from the time domain to the frequency

domain, but operates on an assumption of stationary data over a time period. The short-

time Fourier transform (STFT) sacrifices frequency resolution in order to keep the time
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window short and more accurately track nonstationary signals [144]. The Fast Fourier

transform (FFT) is an efficient algorithm used to calculate these Fourier transforms [145].

Different lung pathologies yield different sounds observed at the chest, such as wheezes

and crackles, that contain different frequency ranges. Analysis of frequency range content

and duration can be useful in distinguishing between diseases. Several studies have used

different Fourier-related transforms to produce spectrograms or power spectral density

(PSD) functions [47, 48, 146].

Frequency response function (FRF)

The FRF, which can be calculated a few different ways, is essentially the ratio of the DFT

of an output signal to the DFT of an input signal. It assumes the input signal is well-

defined or measurable. Analysis using FRFs involves examining the amplitude or power

of a signal that is transmitted from the input to the output within a range of frequencies.

Several studies have utilized the FRF to understand the physics of the lungs, notably the

ways in which sound is transmitted through the varying geometries in the parenchyma

at different frequencies, and which frequencies become attenuated [12, 19, 29, 32, 57, 77].

Specifically, the FRF can change with different conditions, such as pneumonia, due to

changes to the geometry of the lung, which cause it to transmit or attenuate sound differ-

ently [47]. Several studies have used the FRF to detect excess fluid in or around the lung

[77, 147–150] and pneumothorax [12].
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Mel-frequency cepstrum

Similar to the DFT, mel-frequency cepstrum analysis is useful for feature extraction from

audio signals. They closely follows the mel scale, which approximates the human hearing

range [36]. This technique is commonly used in music information retrieval (MIR) to sort

through different music types [151]. MFC is implemented using DFT coefficients that

are filtered through the mel scale. The features extracted from MFC, outputting mel-

frequency cepstrum coefficients (MFCC) that can then be fed into different classification

schemes for automated lung sound analysis [36]. MFCC has been widely used in speech

recognition and lung sound analysis in recent studies [36, 54, 62, 149, 152–156].

Wavelet and Hilbert–Huang transforms

Due to the non-stationary and non-periodic nature of breath sounds, the Fourier trans-

form alone is insufficient to capture important time-domain characteristics of the signal

[22, 157]. Using the wavelet transform (WT), partial time and frequency information can

be utilized to help more accurately characterize the signal by means of windows of vari-

able size [22, 144, 158]. Wavelet transforms focus on particular frequencies by applying

successive high- and low-pass filters without the need to know a frequency range in ad-

vance [22]. Another method for modeling lung sounds this way is the Hilbert-Huang

transform (HHT), used to extract oscillating components in the time-domain, which can

be useful in determining characteristics of different lung sounds such as crackles [38], or

denoising.

Several different wavelet transforms exist each with a different set of wavelet filters

and characteristics [144, 159]. The Meyer wavelet filter, in particular, has been shown to
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be successful in characterizing COPD and asthma by enhancing the signal of interest and

allowing the use of cross-correlation and thresholding for detection [22]. Furthermore,

the use of wavelet-based features has been proved effective by the work of Kandaswamy

et al., who reported a classification accuracy of 100% of the type of adventitious sounds

for the training set using wavelet decomposition and ANNs [144]. Other studies have

also shown the applicability of WT in analyzing lung sounds [158].

Autoregressive (AR) modeling

Autoregressive (AR) modeling, also known as linear predictive coding (LPC), is particu-

larly useful for time-varying signals. By assuming that each sample can be represented

by a linear combination of previous samples [62], the model yields an output dependent

on the bases given by the previous samples, scaled by stochastic predictor coefficients. In-

tersubject and even intrasubject variability with respect to microphone and utterance can

lead to poor predictor coefficients with high error, but a previous study suggests that the

use of AR with a moving-average (ARMA) model minimizes this variability [50]. Studies

have utilized the AR model to estimate the power spectral density function [44, 50], ba-

sic feature extraction [160, 161], and extraction with reduced computational complexity

[162].

4.3 Classification algorithms

When used in tandem with pre-processing techniques, classification algorithms have

proven useful for automatic detection of adventitious lung sounds and/or diagnosis of
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lung pathologies. In this section, we discuss the major classification algorithms that have

been implemented with promising results.

Support vector machines (SVM)

The support vector machine (SVM) classifier is a kernel-based supervised learning algo-

rithm particularly useful for binary and/or non-linear classification. Training SVM classi-

fiers involves building a model, mapping a decision boundary for each class, and defining

a hyperplane that separates the classes [36, 163]. Increasing the hyperplane margin, thus

increasing the distance between the classes, helps improve classification accuracy. Only a

few studies have implemented SVM for breath sound classification [163, 164]. Palaniap-

pan et al. utilized SVM in order to classify healthy, pathological, and airway obstruction

sounds, achieving a mean accuracy of 90.77% [36], but also showed that the k-nearest

neighbors (KNN) algorithm was superior to SVM for generalization and classification

[23]. Serbes et al. noted that improved pre-processing techniques boosted classification,

with a maximum classification accuracy of crackles at 97.20% [159].

K-nearest neighbors (KNN)

K-nearest neighbors is an instance-based classification algorithm that has been used in

several studies to classify recorded signals into different abnormal lung sound types [45,

49, 54, 149, 152, 160, 161]. The algorithm is trained on a data set, compressing the data into

representative cluster centers for each abnormal sound; newly recorded data is mapped

onto the same space, and the algorithm finds the K nearest neighbors, or data points, as

measured by Euclidean distance [152]. The majority cluster center represented by these
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neighbors corresponds to the class of the abnormal sound the data resembles. Rao et

al. showed superior classification accuracy for pathology using KNN compared to Gaus-

sian mixture models (GMM) and ANN [54]. Furthermore, for COPD specifically, using

FOT measurements and utilizing KNN, SVM, and ANN showed consistently superior

classification for KNN with an accuracy of 93–95% [165]. A study also comparing vari-

ous pre-processing techniques in both KNN and SVM showed consistent superiority for

KNN [149].

Artificial neural networks (ANN)

Neural networks have been used in several studies to automatically classify lung sounds,

often yielding promising results [15, 40, 47, 109, 144, 146, 155, 158, 162, 163]. The most

common method for training ANNs is the backpropagation algorithm [109]. ANNs work

by modeling complex relationships between inputs and outputs. The model is formed

by an interconnected group of artificial neurons that learns by adjusting its connective

weights using training data in order to more accurately represent these relationships with

minimal error [162, 163]. Although ANNs are widely represented in the literature due to

their ability to classify both linear and non-linear data with high accuracy, they require a

large data set to avoid over-fitting [54, 164].

Gaussian mixture model (GMM)

Gaussian mixture models (GMM) are widely used for speaker identification or verifica-

tion [153]. Similarly to KNN, training data is used to obtain sound classes, which are

represented by a GMM. Newly recorded data is mapped onto the same space and com-
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pared to each GMM, with the final classification based on the highest maximum likeli-

hood (ML) criterion [153, 166]. Several studies have used GMMs to classify lung sounds

[62, 153, 154, 166]. Bahoura et al. showed superior sensitivity and specificity using MFCC

combined to GMM to classify normal versus wheeze sounds compared to autoregressive

methods with KNN and wavelet transform with ANN [62]. Comparatively, Mayorga et

al. showed promising accuracy for crackles due to its characteristic frequency peaks [166],

which contributed to a more robust GMM due to higher variance and distinctive mean.

However, wheezes, crackles, and asthma-related signals performed poorly due to less de-

fined or complex signals that could be improved with a larger dataset including different

measurement locations and age groups and/or focus on a specific frequency band.

Other methods

The use of several other classification algorithms for lung sound analysis, such as fuzzy

logic and hybrid algorithms, has been documented in the literature. Fuzzy logic has been

used to score the severity of certain pathologies such as asthma and COPD based on

variables acquired by the physician and the patient, such as coughing frequency, forced

expiratory volume, or frequency of missing school/work [167]. This system allows the

combination of acoustic variables such as IOS measurments of acoustic impedance with

clinical variables to reach a classification decision. Badnjevic et al. combined fuzzy logic

with ANNs, an approach they call a “neuro-fuzzy" system to obtain 99.41% classifica-

tion accuracy for asthma patients and 99.19% classification accuracy for COPD patients,

showing that a combination of methods can yield better accuracy [15]. They furthered

the ANN-FL logic into an expert diagnostic system (EDS), yielding a sensitivity of 96%
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and specificity of 98% in a prospective system [168]. Barua et al. were also able to achieve

a high classification accuracy using ANN, but recommended further development to ex-

tract expert rules to obtain a human understanding of the network’s knowledge. The au-

thors suggested that obtaining these fuzzy logic decision rules could help create a more

powerful hybrid neuro-fuzzy classifier, supporting the idea that hybrid algorithms yield

superior classification [109]. In addition to superior classification, fuzzy-logic eliminates

the black box nature inherent with ANNs, demystifying the logic behind its classifica-

tions, which is more user-friendly to doctors and upholds physician authority. Hybrid

algorithms are a recent advance in classification methods and thus merit further study.

4.4 Methods

Approach and Statement of Contributions

The objective of this paper is to present an alternative to automated breath sound analysis

that provides improved performance for lung pathology assessment. The key idea is to

provide a fixed input signal to the chest, which sweeps across the frequencies of interest

for analysis. By using a fixed input signal, we ensure that differences observed are purely

a result of differences in the structure of the system being probed. This allows calculation

of the acoustic frequency response of the chest and extraction of relevant features for

classification.

The contributions of the paper are threefold. First, we present a noise-robust method

of chirp signal tracking for acoustic system identification. Second, we provide a proposed

set of classification features for healthy compared to pathological lungs, using both acous-
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tic and clinical features for analysis. Finally, we present our classification results for the

device and compare them to existing methods of breath sound analysis, comparing 216

recordings from six healthy subjects to 216 recordings from six patients. By using acoustic

features to distinguish between these two groups, we achieved a classification accuracy

of 92%.

Study Design and Subjects

The study was conducted at University of California, San Francisco Medical Center un-

der approved institutional review board study number 15-16814. The study cohort con-

sisted of patients with respiratory disease and healthy controls. The group of patients

with respiratory disease consisted of English-speaking patients between 18–85 years of

age who presented to the emergency department with a chief complaint of acute short-

ness of breath (dyspnea). Our study includes patients presenting with decompensated

heart failure, chronic obstructive pulmonary disease (COPD), and asthma, the most com-

mon diagnoses among patients presenting to Emergency Department with a complaint

of acute dypsnea and signs of respiratory distress [169]. The diagnosis of respiratory dis-

ease was provided by the treating physician, and was obtained from the medical chart for

comparison. The healthy controls group consisted of individuals who did not have active

respiratory symptoms or a medical history of confounding pulmonary pathology at the

time of enrollment. All participants provided written informed consent prior to inclusion

in the study.
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Instrumentation

We used a hand-held acoustic device to emit a controlled audio signal into the chest [170].

The device consists of a lithium polymer battery, a printed circuit board (PCB), and sur-

face exciter, all contained in a 3D-printed plastic enclosure. The signal is a chirp of uni-

form intensity that increases linearly from 50 Hz to 1000 Hz over a 14 second period. A

‘chirp’ signal was chosen to provide adequate power in each frequency band for analy-

sis, and was based on preliminary studies with the device [138, 170]. For recording, we

used the Eko Core digital stethoscope, which demonstrated a sufficiently flat frequency

response in the frequency range of our analysis (50Hz–2000Hz)[136]. Since a fixed signal

was used for both healthy subjects and patients, the transfer functions of the transducer

and microphone were constant and did not contribute to differences between the two

groups.

Table 4.1: Clinical features of healthy subjects and
patients

Features Healthy Subjects Patients
Age 27 ± 5% 54 ± 12%

Gender 50% Male 50% Male
Height (cm) 166 ± 23 166 ± 8
Weight (kg) 72 ± 21 84 ± 20

Thorax Circ (cm) 95 ± 12 106 ± 10
Clinical features used to further refine analysis.
Age, Gender, Height, Weight, Thorax Circumfer-
ence were obtained from each subject.

Frequency Range Selection

COPD and asthma are highly prevalent diseases; both are associated with airway inflam-

mation and obstruction, leading to air trapped in the lungs [171]. For asthma, the median
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frequency of lung sound changes has been reported in the range of 240 Hz, while lung

sound changes for COPD have been reported under 400 Hz [23, 41]. Heart failure and

pleural effusion result in an analogous build-up of fluid in the lung tissue (parenchyma)

and surrounding cavity due to leakage from the circulatory system. Diseases that result

in trapped air and fluid lead to alterations in sound transmission due to the differences in

acoustic characteristics of different media [28, 79]. The dominant frequency of parenchy-

mal pathology ranges from 200 to 2000 Hz. Previous work investigating sound transmis-

sion in the chest cavity demonstrated significant attenuation at frequencies above 1000

Hz, suggesting an area of interest for analysis below this cutoff [28, 43, 50]. These fre-

quency considerations led to the choice of stimulation frequencies between 50 to 1000

Hz.

Recording Procedure

The clinical study visit consisted of two types of audio recordings through the Eko Core

digital stethoscope: percussion sounds and breath sounds. Recordings were obtained

at six different locations: the right and left upper, middle, and lower lung fields. The

recordings were taken from symmetric locations from the apices to the lung bases accord-

ing to Bates’ guide for physical examination [2]. Percussion sounds and breath sounds

were each recorded in triplicate, leading to 36 recordings for each patient, each 15 sec-

onds long. Percussion sounds were produced by the acoustic device, which emitted a

controlled chirp held against the body of the sternum. Breath sounds consisted of record-

ings of the patient’s respiration without the device. In additional to audio recordings,

thoracic circumference and demographic data including age, gender, height, weight were
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collected for each patient.

Audio Pre-Processing

Several pre-processing steps were performed to isolate the signal of interest. Each stetho-

scope recording was 15 seconds long; since the chirp lasted for 14 seconds, it was sur-

rounded by periods of silence and low-energy background noise. Areas of silence are

discarded when computing the features of the audio because certain features which rely

on spectral energy would be adversely affected by their inclusion. To identify and crop

the recordings to isolate the chirp, we used a sinusoidal model with sine tracking.

Figure 4.1: This ODF is tuned to detect acoustic events at 1000 Hz, unfortunately due
to the presence of broadband noise, the largest peak at 1000 Hz does not occur at the
end of the signal. This technique therefore is not appropriate for locating the end of
the chirp.

An Onset Detection Function (ODF) is used to detect acoustic events, such as the onset

of a certain frequency, in an audio stream [172]. In music information retrieval (MIR)

ODFs are used to detect the beginning of a musical note or a percussion stroke. Typically,
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ODFs will return a high value at the onset of an acoustic event of interest and are therefore

typically well suited for chirp detection. We created an ODF to search for the end of

the chirp and locate a peak of energy at 1000 Hz, as seen in Figure 4.1. Unfortunately,

our signal contained broadband noise as seen in Figure 1 and it was essential that our

algorithm be robust enough to detect chirp length with this noise. Due to the presence of

broadband noise in the signal we explored an alternative processing technique, sinusoidal

analysis.

Sinusoidal analysis approximates a signal with a sum of a finite number of sinusoidal

with time-varying amplitude and frequency [173]. An input sound s(t) is modeled by

s(t) =
R

∑
r=1

Ar(t)cos[θr(t)]

where Ar(t) and θr(t) are the instantaneous amplitude and phase function of the sinu-

soid, respectively. This model assumes that the sinusoids are stable partials of the sound

and that each has a slowly changing amplitude and frequency. The sinusoidal model has

several parameters that can be adjusted according to the sound being analyzed. Simi-

lar to the short-time Fourier transform (STFT), the sinusoidal model performs successive

discrete Fourier transforms (DFT) by utilizing a moving windowing function.

Parameters were chosen specific to our stimulation signal. The size of our DFT was

2048 points, chosen to provide adequate frequency resolution for our sampling rate of

4 kHz. We chose the Blackman-Harris window because its main lobe includes most of

the energy, which reduces the artifacts of windowing. For a chirp signal, the frequency

continuously changes, which necessitates a shorter window. Thus, we chose a window

size of 401 samples with additional points set to zero with zero padding. This window
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was moved by a hop size of 50 samples to avoid artifacts that arise when the hop size

is too large. For each frame of the STFT, the sinusoidal analysis identified the largest

sinusoidal component. This sinusoid was tracked for the duration of the signal, and the

time and frequency tuples were used to isolate the chirp, as seen in Figure 4.2. These

parameter choices allowed the chirp to be isolated despite background noise and resulted

in superior performance compared to standard methods of acoustic event detection which

rely on energy changes between frames [172].

As a final pre-processing step, we applied a cross-fade (a 500 ms fade in and fade out),

a technique used when the periodic timing of a signal is difficult to predict, in order to

increase the fidelity of the DFT [174].

Figure 4.2: Sinusoidal modeling of the received signal results in improved chip isola-
tion when compared with the standard onset detection. The model tracks the chirp
and returns the value at 1000 Hz when the chirp terminates, shown here occurring at
13.8 seconds.
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Frequency Principle Component Analysis

A three-component principal component analysis (PCA) was conducted on the spectra of

chirp audio to determine which frequencies contributed most significantly to the variabil-

ity between subject recordings. We used the FFT to find the power in the chirp within the

range of 50 to 1000 Hz. We recorded the variability captured by each of the three princi-

pal components and examined which frequencies contributed most to these components.

This analysis was completed at a resolution of 8 Hz. Our results were then compared

to prior literature to determine if these frequencies corresponded to differences between

healthy and diseased subjects.

Audio Features for Classification

From the processed data, we extracted specific features: the Mel-frequency cepstral coeffi-

cients (MFCCs) and the spectral centroid of the recordings. MFCCs are a set of coefficients

that are commonly used in audio analysis to represent the frequency spectrum of a signal

in a compact form [175]. The Mel scale approximates the human auditory system, giving

higher weight to differences at lower frequencies. Since we are focusing on frequencies

below 1000 Hz, this weighting is suitable for our analysis.

The spectral centroid is another commonly used audio feature that characterizes a

spectrum by finding its center of mass [176]. It measures which frequencies are the most

prominent across a signal by considering the spectrum as a distribution in which the val-

ues are the frequencies and the probabilities are the normalized amplitude. The spectral

centroid provides a value for each frame of the signal; these values were then averaged

to obtain the average spectral centroid value for the entire signal. The formula for calcu-
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lation is shown below, where k is the frequency of the signal, l is the frame of the audio

signal, Xl(k) is the value of the DFT at point k for frame l, and N is the size of the DFT

[176].

Spectral Centroid =
∑N/2

k=0 k · Xl(k)

∑N/2
k=0 Xl(k)

For each patient, we averaged the MFCC and spectral centroid values across three tri-

als and six lung regions. An average was obtained because the lung pathologies tend to

be diffuse processes affecting multiple lobes of the lung. The MFCC coefficents and spec-

tral centroid value resulted in a set of 11 features to compare for each patient. The open

source library Essentia was used to implement both the MFCC calculation and centroid

calculation in Python [151].

Algorithmic Classification of Healthy or Diseased Lungs

We combined the audio features and patient features into a single feature set in order

to classify the subject into the healthy or unhealthy classes; this process is illustrated

in Figure 2. We used vector quantization to map our 11-dimensional vector to our 2-

dimensional classification vector space [62].

We considered several vector quantization techniques including KNN, support vector

machines (SVM), and gaussian mixture models (GMM) [177]. Although neural networks

have been shown to produce a very high accuracy classification model for lung sounds

[155], due to the size of our data set, the use of a neural network would most likely lead

to over-fitting. The KNN algorithm has been demonstrated to be superior to SVM for

breath sound (BS) analysis [23]. We performed a comparison of the three classification
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techniques using the percussion sounds (PS) generated by the device. Our comparison of

KNN, SVM and GMM also demonstrated superior accuracy for the KNN. These results

together with KNN’s improved interpretability versus GMM, led us to use KNN for our

analysis.

The KNN algorithm was used to classify the feature set for each patient as either

healthy or unhealthy. KNN classifies participant lung health by choosing the majority

class of the K most similar patients. In this case, similarity is determined by the euclidean

distance of audio and clinical features between patients. The K value refers to the number

of ‘neighbors’ to query when assigning a point to a class. For the analysis, K values were

compared across 1, 3, 5, and 7. Since the algorithm takes a majority vote of the closest

neighbors to assign a class, even values of K are not used to prevent a tie during the vote.

A value of 1 indicates that any point is assigned the class of its closest neighbor, although

this value often leads to 100% clustering, it is susceptible to over-fitting. Higher accuracy

at lower K values can be interpreted as more densely correlated classes; higher values of

K can help account for more noise in the data as more data points are considered to assign

a class.

4.5 Results & Discussion

We obtained acoustic recordings from six healthy subjects and six patients with lung dis-

ease. We first performed a three-component PCA analysis on the 50-1000Hz range of the

spectra of chirp recordings. The three principle components accounted for 60, 12, and

5 percent of the variation among spectra. The 830-860Hz range contributed most sig-

nificantly to the first component, while the 230-260Hz range were the most significant
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Table 4.2: KNN with and without Clinical Fea-
tures

Features K = 1 K = 3 K = 5 K = 7
PS 100% 91.7% 66.7% 66.7%

PS + Clinical 100% 91.7% 91.7% 66.7%
The percussion recordings using the device,
percussion sounds (PS) are evaluated with and
without clinical features. The clinical features
improve performance for the higher K values of
3.

frequencies in the second component. We used MFCC audio features, spectroid audio

features, and patient clinical features processed with the KNN clustering algorithm to

classify healthy and diseased lung states.

Our preliminary frequency analysis indicated that the frequency of greatest variability

occurred in the 830-860 Hz range as well as in the 230-260 Hz range. The 230-260 Hz

range variability lines up with previously reported frequency changes in asthma of 240

Hz [41]. The high level of variability at the 830-860 Hz range could be explained by

changes in parenchymal fluid in heart failure and pleural effusion reported to be in the

range of 200 to 2000 Hz [23]. However, due to this wide range, further investigation is

needed to discriminate the frequency differences for specific disease states. This PCA

result suggests that the presence of structural lung disease leads to detectable alterations

in the sound transmission across the chest. Additional spectral characteristics such as

MFCC and spectral centroid provide more generalizable information about the changes

in acoustic transmission.

The accuracy of lung health classification from the controlled audio signal was tested

across 12 patients and a variety of values of K for the KNN algorithm. Our highest classi-

fication accuracy was 91.7%, obtained by using the features from our acoustic device and

the clinical features of each patient. Using our classifier on the recordings resulted in just
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a single misclassification out of 12 subjects.

From Table 4.2, comparing the KNN classification accuracy obtained from just PS fea-

tures and PS features combined with clinical features, we can see that the inclusion of

clinical features improved accuracy when K = 5 from 66.7% to 91.7%. This aligns with the

notion that these clinical features provide valuable information when classifying signal

transmission. Sound transmission through the thorax is affected by the size of the chest

which contributes to variability between subjects; by including thorax circumference and

other clinical features we improve our classification accuracy.

Table 4.3: KNN between percussion sounds
and breath sounds feature set with Clinical
Features

Features K = 1 K = 3 K = 5 K = 7
PS 100% 91.7% 91.7% 66.7%
BS 100% 75.0% 66.7% 66.7%

PS+BS 100% 75.0% 75.0% 58.3%
The percussion recordings using the device,
percussion sounds (PS) are compared to the
recordings of breath sounds (BS) from the
patient. PS sounds can be seen to provide
higher classification accuracy than BS.

From Table 4.3, we can see that classification using PS features outperformed classifi-

cation based on BS features when K = 3 and K = 5. Not only did the PS features perform

better, the introduction of BS features with PS features hindered classification accuracy

when K = 5 and 7 compared to the PS features alone. Providing a controlled audio in-

put across patients provides a cleaner signal than breath sounds which vary between

patients and between trials. Furthermore, inclusion of BS appears to add noise to the sys-

tem, reducing the accuracy of the KNN algorithm. The improved performance therefore

motivates the use of a standardized audio signal rather than breath sounds for acoustic
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analysis of lung fluid.

There are limitations to this analysis; the recordings were collected from 12 subjects,

which prevented splitting the data into training and testing sets and increased the risk

of over-fitting. Despite this limitation, because the clustering was performed identically

for both the PS and BS features, the risk of overfitting would apply equally to both data

sets. An additional limitation is the difference in age between the control group and the

patient group. Future studies to control for age related lung changes will require a larger

patient cohort with age matched controls.

This work also prompts further study of lung disease-specific classification to distin-

guish between respiratory conditions and to aid in differential diagnosis. Extending our

analysis to allow for localized classification could be particularly helpful in conditions

such as pneumonia, tuberculosis, or lung cancer, which can affect individual lobes of the

lung. Larger disease-specific studies provide an opportunity to improve classification ac-

curacy as different diseases lead to different structural changes. Another area of interest

would be to measure changes in audio features over time, as a patient’s clinical course

and corresponding fluid buildup or trapped air in the lungs worsens or resolves. This

has particularly relevant applications in respiratory conditions such as congestive heart

failure, and could allow physicians the ability to monitor lung fluid status, reducing heart

failure exacerbation and costly hospital admissions.

4.6 Conclusion

In this analysis we demonstrated that the presence of structural lung disease leads to

detectable frequency differences using an PCA analysis of the frequencies from an FFT
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of the recorded signal. KNN clustering of standard MFCC and spectroid audio features

extracted from the recordings resulted in successful segmentation of healthy and patho-

logical cases. Furthermore we demonstrated that classification of the standardized stim-

ulation features outperforms classification based on breath sound features. This may be

due to the amount of variability in breath sound recordings and is evidence toward one of

our initial assumptions: a controlled, patient-independent input signal provides the most

robust classification features. Future work will focus on collecting more patient data from

specific disease states and applying more flexible classification techniques such as neural

networks to extract new and more complex patterns from its features.
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Chapter 5

Designing Human Subject Studies

Collaboration between physicians and biomedical researchers is essential to successful

implementation of clinical feasibility studies. This process begins with acquisition of IRB

approval from the ethics committee of the University, or an independent company. One of

the largest challenges is coordination between biomedical researchers, clinical researchers

and providers in order to ensure patient safety and satisfy research project requirements.

The results from the human subjects studies for this dissertation are presented in detail

in 3 and 4. In this chapter, we briefly review the steps taken to expand this study from

benchtop studies to clinical studies, and present the findings from this dissertation in the

context of other human subject studies in the field.
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5.1 Designing a Clinical Protocol for Medical Device

Studies

Although the methods of obtaining IRB approval differ from institution to institution,

crafting a clinical research protocol is pivotal to translating research goals into goals of a

clinical study in order to prepare for a successful IRB application. One important consid-

eration when creating a protocol is to frame a broad IRB, focused on patient safety while

still allowing for several areas of investigation. Our IRB covers the investigation of pul-

monary pathology, so therefore, in addition to investigating pneumonia we have explored

applications of the device to other pulmonary diseases such as Asthma and cardiogenic

pulmonary edema secondary to congestive heart failure (CHF). The details of writing a

clinical protocol are outlined in [178], however, we present several sections of the protocol

for our pneumonia study to provide a framework to understand this process. The meth-

ods section, which contains the epidemiological design of the study as well as inclusion

and exclusion criteria for patients. The measurements section is particularly interesting.

The language of clinical research prefers the use of singular categorical or numeric vari-

ables for predictor and outcome variables. This is considerably different from engineering

which has a much larger variety of data structures and methods of data visualization. It is

however quite similar to format of feature vectors for classification problems. Although

it may be challenging to represent the data from the device with a single variable, this

method does allow for statistical estimation of the scale of clinical study needed for veri-

fication. The statistical calculations section helps to estimate the size of the clinical study

needed to help provide a scope for the study. The quality control section describes how

the quality of the clinical study will be maintained. This is particularly important as the
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person collecting the clinical data is often different from the biomedical researchers and

clinical researchers.

Methods

Study Design – Early in development of a diagnostic test, case control studies help to

evaluate a test for its ability to distinguish between subjects with clear cut disease and

healthy controls [12]. For our initial study we have therefore chosen to do a case-control

analytic study, which will allow for further evaluation of the effect size of interest for

future studies. The participants will have recordings taken during a 20 to 40-minute

session. Measurements include electronic stethoscope recordings taken at six locations

on the participant’s back. The acoustic recordings will be processed to generate a mean

“chest frequency response” value to compare measurements for pneumonia patients and

healthy controls; therefore, it is an analytic and not a descriptive study. This is a prelimi-

nary observational study; no intervention or treatment is being given.

Study Participants – This study is part of a larger pilot study intended to utilize chest

acoustics to help diagnose lung pathology. One of the primary aims of the parent study is

determining the characteristic chest frequency response of pneumonia, CHF, and asthma.

For the purposes of this smaller study, only pneumonia patients and healthy controls will

be evaluated. Inclusion criteria for pneumonia patients include: age 18-85, evidence of

lobar consolidation on chest x-ray, and ICD-10 diagnosis code for pneumonia. Inclusion

criteria for healthy volunteers include: age 18-85, non-smoker, and no confounding med-

ical history (e.g. lung pathology, heart pathology, cancer). Exclusion criteria for both

groups include: participants that cannot understand English, are critically ill such that
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participation would be dangerous or uncomfortable, and those with decreased decision

making capacity.

Measurements

Another major decision point for a clinical study is the choice of which variables to focus

on. For a diagnostic device, the predictor variable is the gold standard for diagnosing the

disease and the outcome variable is the output from the device. Since clinical studies are

challenging to conduct, other variables are collected to allow for additional investigations

within the same clinical study.

Predictor variable: presence of lobar consolidation on chest x ray and ICD 10 diagno-

sis. Regionally isolated to: Right Upper Lobe (RUL), Right Middle Lobe (RML), Right

Lower Lobe (RLL), Left Upper Lobe (LUL), and the Left Lower Lobe (LLL). In addition

to the diagnosis, several predictor variables of interest will be collected from the patient

including: age, gender, height, weight, and thorax circumference. The values for these

measurements will be obtained by direct reporting from the patient, direct measurement

and chart review. We will also restrict measurements to under 24 hours after the latest

chest x-ray showing lobar consolidation since antibiotics will gradually improve the in-

fection altering the acoustic signature.

Outcome variable: Change in chest frequency response, as determined through frequency

analysis of the electronic stethoscope recordings.

Candidate covariates:

• Thorax circumference (in mm)

• Age (in years)
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• Gender (female or male)

• Comorbidities (atelectasis, pleural effusion, lung fibrosis, pneumothorax, COPD,

CHF)

Statistical Calculations

Because this is a pilot study designed to test feasibility and lead to preliminary results

upon which a larger, more formal study will be based, the sample size can be set to the

parameters of the study five pneumonia patients and eight healthy volunteers. From this

starting point, better estimates of effect size can be calculated. A theoretical calculation of

the sample size can be made based on studies of pneumothorax, a disease which effects

chest frequency response in similar magnitude.

Our hypothesis is that the mean chest frequency drop is different in pneumonia pa-

tients than in healthy volunteers. The null hypothesis is that the mean chest frequency

drop recorded is the same in pneumonia patients as healthy volunteers. Since the predic-

tor variable is dichotomous (pneumonia vs. healthy) and the outcome is continuous (fre-

quency level in decibels), we would want to use a test similar to the t-test to analyze our

results. Although chest frequency response has not been obtained in pneumonia, studies

in patients with pneumothorax are likely to have the opposite effect on chest frequency

response as pneumonia and can be used as an estimate of effect size.

Standardized effect size was calculated from data in a recent paper by Mansy et al.

[13] looking at the effect of pneumothorax on chest frequency response. Results were

given in mean frequency drop in decibels. Pneumothorax was induced in patients as a

normal part of a surgical procedure and measurements after pneumothorax induction
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found a frequency drop of 8dB. We anticipate that the fluid accumulation in the lungs

during pneumonia would lead to an opposite effect size of at least half this magnitude

(i.e. 4dB). Using the calculator on “sample-size.net” for effect size given sample size uti-

lizing the T-statistic and values (α=0.05, β=0.2, SD=2, N1=30, N2=30) we find that E=1.47,

suggesting that the study has 80% power to detect an effect size of 3.5dB given a sam-

ple of five patients and eight controls. Given the effect size found in this experiment,

we hope to motivate future larger studies investigating the link between pneumonia and

chest frequency response.

Quality Control

Several measures will be taken to ensure quality control throughout this clinical study.

Detailed coverage of this material will be assembled in an operations manual for the

study. Clinical staff members will be trained in the use of the device and in the use of

a case report form for data collection. In addition to device measurements, information

on how each variable is measured will be included in the operations manual. Further-

more, certifications will take place on a monthly basis to ensure procedural integrity. For

de-identified data management, a Google Drive spreadsheet will be used to provide flags

for incomplete or out of range data entry. A quality control coordinator will check the

spreadsheet weekly for compliance. During the study, individual meetings will be held

weekly with each of the clinical staff. Furthermore, weekly staff meetings will be held

with all members of the study. During recruitment of healthy volunteers, measurements

will be compared across technicians to estimate inter-observer variability in device mea-

surements.

90



5.2 From Bench to Bedside

Translational research refers to research which helps to turn studies that have been run

in the lab into studies that can be run in the clinic. From a device perspective, this pro-

cess can be assisted through the use of the software design life cycle which emphasizes

iteration. A device can be made in a laboratory ensuring that all variables are controlled

for and demonstrating the promise of a certain technique. The next step is to go to the

end-users and ensure that a clinically-viable device, which satisfies clinical needs such as

battery life, ease-of-use by staff, sanitation, and other important design metrics, can be

constructed. Furthermore, a preliminary competitive analysis, market analysis and sto-

ryboarding of the main device use can help guide design. The storyboard for the device

is included in this dissertation in Appendix A. At this point, design for manufacturing

principles can be utilized to ensure that the cost of the device at scale will fall within

an acceptable range. The cost of the individual devices can be reduced by utilizing 3D-

printing instead of injection molding while in the early prototype phase. After assessing

the performance of the device in IRB-approved studies, the Regulatory Path and Reim-

bursement Path must also be assessed. From an academic engineering perspective, much

of the novelty is in benchtop and proof of concept data from patients. From a clinical

perspective, large, randomized-controlled studies are the ideal for changing patient care.

Designing cross-sectional, cohort or case control studies for medical devices serve as a

middle ground in which greater attention must be paid to design of the devices for clini-

cal use as well as quality assurance of the clinical protocol. Furthermore, providing open

lines of communication between biomedical researchers, clinical research coordinators,

and healthcare providers is essential to conduct an efficient study.
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5.3 Human Subjects Studies

Respiratory diseases lead to structural lung changes that can be detected acoustically.

The existence of such changes has spurred numerous studies utilizing both internal and

external sounds to diagnose a variety of lung diseases. For the purposes of this review,

we focus on pneumonia, asthma, COPD, pleural effusion and pneumothorax. We also

include several miscellaneous studies with results that further elucidate different analysis

methods. Table 5.1 summarizes human subject studies investigating acoustic changes in

the diseases discussed in this review.

Acoustic detection of pneumonia and pleural effusion represents an important clinical

need due to the high cost and radiation exposure of the gold standard chest X-ray (CXR).

For example, the cost of deploying an x-ray machine in Northern India is estimated at

$51,500 plus $5,900 per year to operate [7]. Several studies utilizing both internal and ex-

ternal sounds have been conducted to aid in pneumonia diagnosis. Three studies utilized

multiple microphones to provide a sound map of the chest similar to a chest x-ray [20, 21,

95]. The highest reported sensitivity and specificity for pneumonia using this method was

70% and 80%, respectively [21]. Furthermore, inter-observer agreement for this method

was high, with 80% agreement on the presence of an abnormality and inter-rater agree-

ment of 90% [95]. Pleural effusion was detected with higher accuracy, with sensitivity of

95%, specificity of 88%, and 80% agreement on diagnosis compared to CXR [21, 94].

Another important clinical need is the ability to distinguish between pneumonia and

atelectasis (lung collapse), a distinction chest x-ray cannot provide. Ultrasound has been

used to rule out atelectasis with a specificity of 94% and sensitivity of 61% [116]. Breath

sounds have also been analyzed for pneumonia patients with standard electret micro-

92



phones. In that study, 29% of pneumonia patients had wheezes, 29% had rhonchi and 87%

had crackles [24]. The average frequency of the crackles which correlated most closely

with diagnosis of pneumonia was found to be 300 Hz at inspiration and 285 Hz at expi-

ration for pneumonia [24]. A more recent proof-of-concept study examining the use of

external sound for pneumonia diagnosis utilized an external surface exciter with a linear

chirp from 50–1000 Hz to detect pneumonia [77]. That study reported frequency changes

between healthy and consolidated lung.

Discrimination between asthma and COPD also represents an important clinical prob-

lem, as current diagnosis is largely based on clinical observation. Quantifying the findings

for these diseases provides a route for faster and more consistent diagnosis. The diagno-

sis of both asthma and COPD is based on signs of airway obstruction, causing COPD to

be often misdiagnosed as asthma due to the overlapping symptoms [143]. One study,

however, was able to differentiate between the two with 85% accuracy; its approach was

based on dynamic images of lung activity acquired during a 12 second recording using

an array of stethoscopes on the back [143].

Several studies on asthma have highlighted characteristics that could differentiate be-

tween the two disorders; one large study found that a majority of asthmatic patients had

wheezes and crackles with an average frequency of 300 Hz, while a majority of COPD pa-

tients only had crackles with a similar average frequency [24]. An algorithm for wheeze

peak detection was developed and tested on asthmatic patients with a sensitivity of 100%,

87.8%, and 71% for high, middle, and low flow rates, respectively, potentially allowing

clinicians to diagnose asthma versus COPD based on the presence of wheezing episodes

[179]. A study of asthmatic patients who had taken bronchodilator drugs showed a de-

creased in centroid frequency during forced expiration from 500 Hz to 200 Hz, suggesting
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that the frequency characteristics of breath sounds can be used to detect response to treat-

ment [44].

Similarly, studies have focused on the various acoustic characteristics present in COPD

patients. In a study of COPD patients with a history of smoking, these individuals were

shown to have larger peak signal amplitudes from 0–5 kHz when compared with healthy

subjects [59]. This suggests a frequency range of interest for COPD detection. Further-

more, another study evaluated eleven different parameters to diagnose COPD, such as

lead and lag time of inspiration at different locations and ratio of inspiratory to expiratory

time; the authors concluded that all 11 parameters possessed differences between COPD

and healthy patients that were statistically significant, suggesting that further study into

these differences should be carried out [180].

The use of IOS, which measures lung function parameterized by airway acoustic in-

put impedance, has also shown potential to differentiate asthma and COPD. In studies of

COPD patients, IOS analyses showed changes in reactance are correlated with changes

in airflow obstruction [107, 181], while another study using asthmatic children showed

measurement of changes in resistance rather than reactance better indicated asthmatic

patients [104, 108]. In spite of these promising results, a large 3-year clinical trial found

that although IOS could differentiate COPD patients amongst healthy patients and deter-

mine the degree of severity of airflow limitation, measurement data from COPD patients

was similar to that of healthy non-smokers. The authors concluded that IOS cannot yet

replace spirometry but may instead prove valuable in distinguishing between different

subgroups of COPD [60]. While IOS is a valuable tool, more portable acoustic methods

of monitoring COPD patients for acute exacerbation, allowing patients to monitor their

own health over time, have been demonstrated [182].
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Similar to pneumonia, the current standard for diagnosing pneumothorax (PTX) in-

cludes radiography, which is both expensive and not readily available [13]. Several stud-

ies have examined changes in sound and frequency transmission due to the presence of

air accumulation between the chest wall and lungs, which would affect how sound is

transferred due to the existence of another interface. One study utilizing external stimuli

found that a significant decrease in sound transmission and the power spectral density

(PSD) function was evident using 400–600 Hz sound inserted at the mouth and measured

over the chest [12]. In another study using an array of stethoscopes on the back, abnor-

malities of the pleural space were identified with a sensitivity of 100% and specificity of

87% [183]. Another study using ultrasound used the disappearance of lung sliding to rep-

resent the air pocket from PTX that causes the lung–wall interface to appear motionless

[52]. This method had a sensitivity of 95.3% and specificity of 91.1%.

Several studies have investigated the broader question of how accurately lung pathol-

ogy can be distinguished from healthy lung. Although this approach does not provide

direct clinical benefit, it provides a foundation upon which future studies can build and

demonstrates a variety of analysis methods and sensor technologies. Ultrasound has

shown promise in prediction of consolidated lung, as well as for detecting fluid accu-

mulation [53, 111]. One analytical method of interest is the use of MFCC coefficients com-

bined with KNN to develop an automated method of extracting data from the frequency

domain and classify the sounds into diseased and healthy categories.

Two recent studies utilizing this method demonstrated the use of this approach for

breath sounds as well as external sounds. A 2015 study used a digital stethoscope to

record lung sounds for classification of abnormal lung sounds achieving a classification

accuracy of 91.3% [152]. A 2018 study extended this work to external sounds, using a
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surface exciter placed on the chest and a digital stethoscope placed on the back, achieving

a classification accuracy of 91.7% for distinguishing between healthy subjects and patients

with lung pathology [54]. Finally, regular use of an array of stethoscopic measurements

on the back has shown potential in preventative medicine, where it has been used to track

the progression of lung disease in smokers. Changes in the intensity of breath sounds

were correlated with pack-year history among smokers [184].
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Table 5.1: Comparison of acoustic methods for lung disorder diagnosis

[Ref] Sensor Type (n) Comparison Results

Pneumonia

[21] Contact microphone array 20 CXR Study found that the
system provided 70%
sensitivity & 80%
specificity in diagnosing
patients with pneumonia
without workup.

[20] Condenser microphone array 5 CXR Built a spatial
representation similar to
CXR, with high active
area in lower lung
corresponding to lung
consolidation.

[116] Ultrasound imaging 58 Fibroscopy
or
bacteriology

Evaluated the ability of
ultrasound to
differentiate between
pneumonia and
atelectasis. Dynamic air
bronchograms were used
to rule out atelectasis,
with a specificity of 94%
and sensitivity of 61%.

[24] Condenser microphone array 122 Physician
diagnosis

29% of symptomatic
patients were found to
have wheezes, 29% were
found to have rhonchi,
and 87% were found to
have crackles.

[77] Condenser microphone 13 CXR Encouraging results from
proof-of-concept study
with eight healthy
subjects and five lobar
pneumonia patients.

Pleural Effusion

[21] Condenser microphone array 20 CXR Pleural effusion was
detected with a 95%
sensitivity and 88%
specificity.

Cont. on next page
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(Ref) Sensor Type (n) Comparison Results

[94] Condenser microphone array 56 CXR, Ul-
trasound

Agreement of diagnosis
via clinical assessment
compared to CXR was
80%, and with
ultrasound was 75%.

Asthma

[143] Condenser microphone array 31 Spirometry Found 81% and 74%
accurate in
differentiating between
COPD and asthma; 85%
overall accuracy when
using quantitative data in
addition to generated
images.

[24] Condenser microphone array 51 Physician
diagnosis

59% of symptomatic
patients were found to
have wheezes, 27% were
found to have rhonchi,
and 65% were found to
have crackles.

[179] Contact
microphone

16 Spirometry An algorithm for wheeze
peak detection and
grouping to find episodes
was used. The algorithm
has a sensitivity of 100%,
87.8%, and 71% for high,
middle, and low flow
respectively.

[44] Contact microphone 17 Spirometry Patients with bronchial
asthma who had taken
bronchodilator drugs
showed a decrease in
centroid frequency after
taking the drugs during
forced expiration.

Cont. on next page
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(Ref) Sensor Type (n) Comparison Results

[108] IOS 132 Spirometry While spirometry did not
show significantly
different results between
asthmatic and healthy
children, IOS indicated
significant differences in
resistance at 10 Hz and
bronchodilator responses
at 5 and 35 Hz.

[109] IOS 41 Spirometry An ANN achieved a
generalized classification
accuracy of 94.44% in
detecting airway
obstruction from
asthmatic children using
their IOS patterns and
age, weight, and height
demographics.

COPD

[143] Contact microphone array 35 Spirometry 81% and 74% accurate in
differentiating between
COPD and asthma; 85%
overall accuracy when
using quantitative data in
addition to generated
images.

[24] Condenser microphone array 94 Physician
diagnosis

39% of symptomatic
patients had wheezes,
26% had rhonchi, and
71% had crackles.

[59] Condenser microphone 11 – Discriminated between
“normal" smokers’ lungs
and the presence of
COPD in smokers by
noting peak signal
amplitudes in COPD
patients were slightly
larger at frequencies from
0–5 kHz.

Cont. on next page
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(Ref) Sensor Type (n) Comparison Results

[180] Condenser microphone array 90 Physician diagnosis 11 parameters, including
inspiratory/expiratory
crackle rate and ratio of
inspiration to expiration
time, were found to be
statistically significant in
diagnosing COPD.

[107] IOS 180 Spirometry Measured reactance,
particularly at 5 Hz, was
shown to be correlated
with forced expiratory
values and changes
caused by airflow
obstruction.

[60] IOS 2609 Spirometry, CT IOS showed reduced
impedance in COPD
patients and could
identify different
subgroups of COPD
patients based on
severity. Data did not
suggest IOS is an
appropriate replacement
for spirometry.

[182] Condenser microphone 16 Hospital visit Promising results in
predicting acute
exacerbation COPD
(AECOPD) were
reported.

[12] Condenser microphone 19 Surgically
induced

The occurence of PTX
was associated with a
drop in sound amplitude
most noticeable in
mid-frequency ranges
(400–600Hz). Increasing
the frequency further
decreased amplitude due
to increased tissue
damping.

Cont. on next page
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(Ref) Sensor Type (n) Comparison Results

[183] Contact microphone array 14 CXR Using dynamic breath
sound distribution
images generated from
the VRI, diagnosing PTX
had a sensitivity of 100%
and specificity of 87%.

[52] Ultrasound 43 CT, CXR On the basis of lung
sliding in ultrasound,
diagnosis of
pneumothorax had 95.3%
sensitivity and 91.1%
sensitivity.

Miscellaneous

[53] Ultrasound 121 CXR Ultrasound was used to
find echographic comets
to determine extent of
extravascular lung water;
significant correlation
was found between
ultrasound and CXR
methods (r = 0.78).

[111] Ultrasound 39 CXR Sonographic air
bronchograms (92.30%),
fluid bronchograms
(92.30%), and superficial
fluid alveolograms
(100%) were observed.

[152] Condenser
microphone

20 – Using a stethoscope for
recording and a
condenser mic to upload
lung sound data for
processing, this study
achieved 95%
identification for normal
lung sounds and 91.3%
for abnormal sounds.

[54] Condenser microphone 12 Physician
diagnosis

A classification accuracy
of 91.7% was achieved by
analyzing a chirp signal
inserted into the patient
chest using MFCC and
KNN.

Cont. on next page
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(Ref) Sensor Type (n) Comparison Results

[184] Contact microphone array 151 CXR,
Spirometry,
Ausculta-
tion

Smokers showed a
significant reduction of
vibrational energy
compared to
nonsmokers, particularly
with increase in
pack-year of cigarette
smoking.

This table provides a comparison of different methods of acoustic detection for lung disorders.
The lung disorder being detected is listed alongside the number of subjects in the study (n), the
gold standard used for comparison and the major outcomes of the study. CXR = Chest x-ray,
IOS = Impulse oscillometry system, VRI = Vibration response imaging, COPD = Chronic obstructive
pulmonary disorder.

102



Chapter 6

Conclusions

Recent advances in acoustic monitoring for pulmonary diseases indicate the strong po-

tential of these measurements to address a wide variety of clinical needs, in particular,

providing quantitative metrics of lung health without the dangers and expense of ra-

diography, and without the requirement for patient compliance associated with spirom-

etry. In addition to these key advantages, acoustic monitoring also provides a route to

telemedicine applications that can allow patients to be monitored outside of the clinic.

Acoustic measurements can be taken with highly precise instrumentation, or with inex-

pensive sensors, making acoustic devices well suited for hospital-grade diagnostics as

well as home monitoring of chronic diseases. Despite the rich potential of acoustic moni-

toring, the physiological origins of the signals should be studied further with greater stan-

dardization and larger scale human studies to ensure maximum interpretability of these

signals. Finally, an extensive open database – not just for breath sound recordings but

also featuring responses to external stimuli, processing tools, and even microcontroller

code – needs to be made available. Such as database would truly expand the capabil-
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ity of researchers to investigate these phenomena, apply them to their own studies, and

establish techniques that can facilitate their translation into the clinic.

6.1 Automating the pulmonary physical exam

The pulmonary physical exam consists of several techniques designed to assess the health

of the patient’s lungs. These techniques include the analysis of both internal and external

sound sources using a variety of methods. Each of these methods helps to detect different

diseases and provides an encouraging alternative to more expensive methods of imag-

ing, however, the qualitative nature of these techniques and differences in application of

these techniques limits their clinical utility. The goal of this dissertation is to provide an

automated method of assessing lung pathology and to review the current state-of-the-art

methods for acoustic assessment of the respiratory system.

Transmission of sound into the respiratory system is a more recent method of acoustic

analysis of the lungs. This dissertation explored the use of an external sound source to

send sound of low frequencies (under 1kHz) into the chest in order to determine the ef-

fects of pulmonary pathologies on sound transmission through the thorax. Because fluid

in the lungs changes the characteristics of sound transmission, the frequency response

can be used to assess changes in the lungs. In this technique, a chirp with a frequency

range of 50 to 1000 Hz was used to probe the thorax and assess sound transmission.

After signal conditioning and computation of the frequency response, this method was

presented as proof of concept for detection of lobar pneumonia. There are several advan-

tages to an external acoustic signal, including non-invasiveness, lack of radiation, low

cost, standardized input and simplicity.
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In order to create a device which would fit seamlessly into the physical exam, UNICEF

design requirements were consulted for the ideal characteristics of a low cost pneumonia

detection tool. The device characteristics were optimized for signal-to-noise ratio, porta-

bility, cost, and battery life. Additionally, the device pairs with a digital stethoscope in

order to leverage physician familiarity and improve interoperability. Furthermore, test-

ing was conducted to ensure that the user differences in application pressure of the device

did not have a large impact on the signal. After performing bench-top experiments on

materials with density similar to the lungs as well as hard and soft tissue, this method was

applied to patients with lobar pneumonia and to healthy volunteers. In an IRB-approved

study at the University of California, San Francisco Medical center, data was collected

from eight healthy subjects and five pneumonia patients. The frequency response was

analyzed and plotted for the two groups. The results indicated considerable differences

between the frequency response for pneumonia patients and healthy subjects.

Although the use of the frequency response presents encouraging physical intuition,

the large amount of data presented in graphical format presents challenges for rapid clin-

ical interpretation and raises the barrier for training. In order to reduce this burden, a

data pipeline was developed to process the data and classify the recording as patholog-

ical or healthy. This could provide a screening tool for detection of common pulmonary

pathologies such as COPD, asthma, pneumothorax and pneumonia. In addition to com-

pressing the audio data to a more interpretable number of discrete values, the addition

of other clinical variables such as the patients height and weight can help to improve the

accuracy of the system.

Another important distinction that we highlighted was assessing the difference be-

tween internal and external sounds for pulmonary pathology assessment, specifically, the
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differences between using breath sounds compared with a fixed input percussion signal.

We found that not only did percussion sound features result in improved classification,

but the inclusion of breath sound features hindered classification accuracy. This suggests

that the use of a fixed signal provides a more standardized method for pulmonary exam

automation.

Although these results are encouraging, larger scale clinical trials need to be con-

ducted in order to validate these findings. The results obtained in this dissertation are

examined alongside other human subject studies in the field of acoustic pulmonary diag-

nosis. This review highlights the importance of standardization of these methods and the

need for larger scale clinical assessment. In order to get these studies out of the lab and

into the clinic, a focus on the end user is equally important.

6.2 Challenges and prospects: The path to standardization

Acoustic methods of pulmonary diagnosis are valuable indicators of respiratory health.

Several factors have prevented clinical application of recent experimental advances in the

field. In spite of decades of research in the area of breath sound analysis, standardized

information for sensor usage, signal processing, nomenclature, and frequency or time

information in the context of pathologies remains a challenge, arguably deterring the

wider adoption of lung sound analysis in the clinic. Standardization of information with

regards to the acoustic characteristics and physics of the lungs, especially with different

pathologies, was undertaken by CORSA [63], but its recommendations still have not been

widely adopted, and an updated standard is overdue [38]. Differing methods as to what

to sense (internal vs. external sounds) and how to analyze these signals, has made it
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difficult to begin translation of these methods into the clinic. Specifically, future work

should focus on expanding the human subject studies in each disease to provide adequate

samples for clinical application.

Translational challenges act as the main barrier between the different groups working

on advancing acoustic analysis of the lungs. The creators of a device may not understand

the different nomenclature or needs of physicians, and physicians may not have the en-

gineering experience required to communicate sensor, processing, and/or classification

specifications. As a result, research into both internal and external methods of acoustic

analysis to diagnose the lungs has used a wide array of sensors, usually microphones

or accelerometers, which have different specifications, yielding different measurements.

With advances in transducer fabrication methods, such as using MEMS technology, and

other sensor research, we finally land on a description of the ideal sensor, one that is

lightweight, reliable, and sensitive, which will help standardize our understanding of the

characteristics of the lungs with respect to internal and external sounds.

In addition to translational challenges between clinicians and device engineers, those

working on signal processing and classification techniques also need to be included in

future collaborations. Despite the value of machine-learning algorithms, it is important

that they provide outputs that can be interpreted by a clinician rather than automatically

outputting a diagnosis. Acoustic information can provide a digital biomarker for diagno-

sis or likelihood scores but should not be used to classify the patient without the context

provided by a clinician and a thorough medical history.

Further research is needed to understand the clinical utility of analyzing external

sound through the parenchyma instead of internal breath sounds. The analysis of sounds

acquired through the parenchyma has the benefit of providing a controllable, well-characterized

107



input signal that lends itself to application of new advances, including signal processing

and classification schemes. The frequency ranges for the diseases discussed in this re-

view are presented to provide a foundation for researchers in the field to develop such

a system, consistent with CORSA, as well as other relevant research. Similarly, the use

of an array of sensors is a notable method to improve SNR and provide localization in-

formation that invites further research. There are different external methods of sensor

actuation with regard to location and system. The ideal actuator should be selected based

on size (which influences portability, cost, and comfort), intensity at frequencies of inter-

est, and current draw, which affects battery life. The ideal system would also help with

monitoring, as aforementioned; integration with the electronic health record (EHR) could

contribute to online databases for pathologies, facilitating further research into changes

in lungs parameters in response to disease.

6.3 Looking ahead: Telemedicine and mobile health

Outside the hospital, the capability of wirelessly transmitting and storing data is increas-

ingly becoming a standard feature in medical devices [77, 182, 185]. This capability offers

the potential to develop and advance the field of telemedicine, which will allow physi-

cians to access live data on the acoustic biomarkers for their patients’ lung health and

change the course of their care accordingly [182, 185]. This can be done through mo-

bile solutions, such as apps, which are widely available. Certain digital stethoscopes

have already provided this platform [135–137], but it has yet to be established for multi-

sensor recording systems. Notably in the field of lung diagnosis, a telehealth system

was prospectively studied by Gurbeta et al. for use in diagnosing patients with COPD
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and asthma based on neural network and fuzzy logic systems with promising results

[186]. This system showed the potential of telemedicine and mobile health for improv-

ing quality of care in low-resource settings and less mobile patients. Integration of new

technologies with these modern systems (EHR, mobile) is essential because it not only

provides better means of monitoring, but also gives context to the treatment of patients

with respect to differing demographics and conditions. Creation of such a database will

facilitate development of more accurate sensors and analytical techniques in the future.

6.4 Recommendations

The results of this dissertation show that external sound excitation is a promising tech-

nique in the diagnosis of pneumonia and other pulmonary pathologies. However, the

following recommendations are made for future research in this area.

• In these studies, a digital stethoscope with an electret microphone was used as the

sensing component. This was chosen to leverage physician familiarity and reduce

interoperability. However, the use of a piezoelectric microphone would be benefi-

cial in reducing surrounding noise. There are trade-offs to this choice, and peizo-

electric microphones require considerable signal conditioning; however, for low-

resource regions and loud hospital environments this feature is desirable and likely

would yield more accurate results.

• In addition to the use of piezoelectric sensors, using a sensor array as several studies

have indicated would provide a richer source of spatial information. This approach,
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however, should be weighed against the increased cost to determine which device

provides the largest amount of clinical utility.

• In these studies, thorax circumference was used as a method of normalization be-

tween patients. However, this is a proxy for lung volume which would be a pre-

ferred metric by which to normalize patient data. Spirometry can help to provide

lung volume and could be used adjunctively to improve performance.

• In these studies, inhalation and exhalation were not controlled and the patients were

asked to breath normally while the Tabla system recorded measurements for fifteen

seconds. Although asking these patients to hold their breath may not be feasible,

the direct effect of breath holding should be investigated. Additionally, reduction

of the recording time to less than fifteen seconds at the cost of frequency resolution

could be weighed against the benefits of a fixed lung volume.

• In these studies, chest excitation was explored. However, sound input through the

mouth provides another avenue of research. It was found through user studies that

patients do not prefer mouth based sound input, and there are infection concerns

with that design. On the other hand, chest excitation provides a route of sound

transmission directly through the rib-cage that is not desirable which may be miti-

gated through this alternative method. Both methods should be compared in larger

scale clinical trials to compare and validate their performance.
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Appendix A

Device Storyboard

Creating a storyboard provides a platform to show design ideas and give a rationale for

usage. It clearly indicates the functionality of a device and what the user interface looks

like. Each scene shows a major task that the device performs. This helps to ensure that the

device design is user-centric and carefully thought out. Shown below is the storyboard

for the Tabla device.
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