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Abstract

A large proportion of genetic variation underlying differences in behavioral traits and
neurodevelopmental disorders remains unknown despite considerable effort. Much work has
focused on protein-coding regions, which comprise ~1.5% of primate genomes, compared to
functional noncoding elements comprising ~40%. Transcriptional analyses of the developing
brain in distantly related primates, such as humans and rhesus macaques, show that
spatiotemporal expression patterns are largely conserved across lineages, with minor differences
likely contributing to species’ divergence. To delve into genomic mechanisms underlying gene
regulation in the developing primate brain, we have generated transcriptional genomic datasets
(3° Tag-Seq (n=3) and single-cell RNA-seq (n=1)) from diverse regions of fetal macaque brains
(60 days gestation, late first/early second trimester) representing a time of early neurogenesis.
The 3° Tag-Seq expression levels show correlation with previously published data of the same
time point and comparable brain regions and highlights genes important in region-specific
development. The single-cell RNA-seq data has revealed a number of different cell types, the
majority of which are neuronal in all brain regions with the exception of the cerebellum.

We then queried the 3D genome organization of two different brain regions using a
targeted protein mediated approach called Proximity Ligation-Assisted ChIP-Seq (PLAC-Seq) to
identify DNA interactions within chromatin enriched at active promoters in macaque neural
tissue. Our data generated from samples from the prefrontal cortex and cerebellum (n=3, 60 days
gestation) shows low enrichment for the H3K4me3 antibody. Despite this low enrichment, we
were able to identify 32,959 and 13,814 significant chromatin interactions for prefrontal cortex
and cerebellum, respectively. The identified significant interactions in the prefrontal cortex were

connected to over half of the genes implicated in ASD from two separate datasets, while



significant interactions in the cerebellum connected to about a third of those genes, providing
putative cis regulatory elements driving regulation of these disease-associated genes in diverse

brain regions.



Introduction

Recent advances in sequencing efforts of protein-coding regions have elucidated genetic
variation contributing to brain development, neurodevelopmental disorders, and species
differences. In spite of this collective effort, much of the noncoding regions of the genome
remains understudied, leaving most functional genetic variation unknown. Previous studies of
primate neural tissues have characterized the transcriptomic landscape. When coupled with
chromatin marks of enhancers and promoters, putative regulatory elements and genes have been
linked to brain development and neurodevelopmental disorders (An et al., 2018; Brandler et al.,
2018; Turner et al., 2016; Zhou et al., 2019). However, these studies treat the genome as a linear
model in contrast to the 3D structure that DNA exists as in the nucleus wrapped around protein
as chromatin. Because of this, previous studies often fail to couple distal enhancers and
promoters to the genes they may regulate.

Compared with nonhuman primates, the human brain has unique developmental patterns
and anatomy (Sousa et al., 2017). These unique differences in humans can also lead to unique
neurodevelopmental disorders. Using techniques like RNA sequencing (RNA-Seq) and
microarrays, several studies to date have characterized gene transcription of neural tissue from
primates and in human individuals with autism spectrum development (ASD), giving insight into
impact of gene expression levels, but not into how those levels are regulated (An et al., 2018;
Brawand et al., 2011; Gupta et al., 2014; Voineagu et al., 2011; Zhu et al., 2018). There have
been very few studies to characterize genome organization using primary tissue in primates and
even then, those have been limited. One study performed Hi-C of the frontoparietal cortex of
three human fetuses at gestation weeks 17 and 18, dissected from the cortex plate and germinal

zone (Won et al., 2016). They connected 3D genome maps with non-coding variants implicated



in schizophrenia, highlighting multiple candidate risk genes and pathways such as a distal GWAS
loci that regulates FOXG1 expression.

A subsequent study based on the experimental design of Won et al. (2016) took that
previously published human and mouse data and compared it to newly generated ultra-deep Hi-C
of three macaque fetuses at 84 days after gestation in order to identify human-specific chromatin
structure changes that could play a role in human brain development and evolution (Luo et al.,
2021). From this comparison, they identified 499 topologically associating domains (TADs) and
1,266 chromatin loops as human-specific chromatin structure changes. Of the human-specific
loops identified, many were significantly enriched in enhancer-enhancer interactions, and
subsequently those associated regulated genes were shown to be preferentially expressed in the
subplate lamina. They further investigated the target gene of one of the human-specific loops,
EPHA?7, a gene previously implicated in regulating brain development, by disrupting the
enhancer sequence using CRISPR-Cas9 and found that it impacts early neural circuit
development. Additionally, many human sequence changes were found at novel TAD boundaries
and loop anchors, which may lead to species-specific gene regulation, transcription factor
binding sites, and chromatin structures.

Although the aforementioned study resulted in significant findings regarding primate
brain development and neurodevelopmental disorders, it targeted only two cortical layers at a
single developmental time point, which were subsequently merged into one larger dataset to
increase resolution. This was due to the cost limitations of generating genome-wide Hi-C. To
more affordably expand analyses of gene regulation beyond what was previously studied,
targeted chromatin methods can be used to generate 3D genomic maps of actively expressed

genes. One such method, Proximity Ligation-Assisted ChIP-Seq (PLAC-Seq) captures 3D



conformation using antibodies targeting specific proteins of interest (Fang et al., 2016). Itis a
similar protocol to chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) and
HiChIP as these methods are used to identify long-range interactions at promoters and enhancers
(Fullwood et al., 2009; Mumbach et al., 2016). The PLAC-Seq protocol is composed of in situ
proximity ligation, chromatin immunoprecipitation (ChIP), and biotin pull-down followed by
library construction and sequencing. While ChIA-PET requires hundreds of millions of cells for
input, PLAC-Seq conducts proximity ligation in nuclei prior to chromatin shearing and
immunoprecipitation and requires only a few million cells for input, drastically expanding the
diversity of tissue and samples that can be used as input. The targeted nature of PLAC-seq also
allows high resolution maps with relatively shallow sequencing when compared to whole
genome Hi-C.

Since we are interested in brain development and disorders in humans, our experiment
would ideally use fetal brain tissue from humans or our closest primate relatives, chimpanzees
(Chimpanzee Sequencing and Analysis Consortium, 2005). However, because of the difficulties
in obtaining fetal brain tissue from great apes, we used rhesus macaque fetal brain tissue.
Macaque is the most widely studied nonhuman primate. Transcriptional analysis of diverse
prenatal and postnatal brain regions of human and macaque show that distinct changes in
expression across brain regions and developmental time are conserved across primate lineages
(Bakken et al., 2015; Zhu et al., 2018). Macaque is a suitable model for studying the human
brain, so gaining a detailed understanding of gene regulation in macaque through the study of
noncoding regulatory elements can provide insight into human development and disease.

We focused our PLAC-seq efforts on the prefrontal cortex and cerebellum. Our main

focus is on the prefrontal cortex because humans have a greatly expanded neocortex in



comparison to other primates, so the unique cognitive functions of humans are usually attributed
to the neocortex (Rakic, 2009). In addition to unique cognitive functions, many
neurodevelopmental disorders have been associated with the prefrontal cortex (Ouhaz et al.,
2018). Conversely, the cerebellum is generally considered the oldest region of the brain in
evolutionary terms, though it has been shown to have a strong pattern of correlated evolution
with the neocortex (Barton & Venditti, 2017). Both regions have been linked to the etiology of

ASD (Hoeft et al., 2011; Kelly et al., 2020).

Methods to characterize gene expression

We used 3’ Tag-Seq to check for brain region gene expression consistency with
previously published whole transcript RNA-Seq data from the PsychENCODE Consortium in
order to verify consistent brain region isolations (PsychENCODE Consortium et al., 2015). Since
3’ Tag-Seq focuses on sequencing only the 3” end of mRNA fragments and requires less RNA
input, it theoretically costs less in terms of sequencing and tissue than whole transcript RNA-Seq
(Lohman et al., 2016; Meyer et al., 2011). 3° Tag-Seq and similar RNA-Seq methods like
Lexogen’s QuantSeq have been shown to identify the same biological signatures as whole
transcript RNA-Seq methods (Corley et al., 2019; Lohman et al., 2016). In Corley et al. (2019),
QuantSeq and Illumina’s TruSeq (the gold standard of whole transcript RNA-Seq) were
compared using peripheral blood mononuclear cells. After using two different softwares, Salmon
and Tophat2, for gene quantification and normalization, the different RNA-Seq methods were
shown to have high correlation using Spearman’s rank correlation, demonstrating that 3’ Tag-Seq

can be used to check for gene expression consistency with whole transcript RNA-Seq.



Single-cell RNA-Seq (scRNA-Seq) is a powerful emerging tool that enables cell type
clustering and identification of heterogeneous samples (Kolodziejczyk et al., 2015). Differences
in gene expression between individual cells, especially during development, can have a profound
effect on function. With the importance of cell type specific expression for neurodevelopment in
mind, we generated a macaque sScCRNA-Seq dataset to assess the cellular heterogeneity of the
dissected brain regions.

Doublets are technical artifacts of sScRNA-Seq caused when a droplet is filled with two or
more cells and changes in accordance with input cell concentration which follows Poisson
statistics (Bloom, 2018). Generally, fewer cells are sequenced in order to minimize the formation
of doublets since they are known to affect scRNA-seq data analysis by overcounting gene
expression (Ilicic et al., 2016; Stegle et al., 2015). To ensure that our measurement of cellular
heterogeneity is as accurate as possible, we will remove doublets from our data before clustering

and identifying cell types.

Autism spectrum development (ASD)

Leveraging conservation shown across primate lineages, we aim to understand the
genome organization impacting regulation of important brain development genes in macaque in
order to better understand it in humans. ASD is a neurodevelopmental disability with an early
age of onset that describes individuals with specific combinations of social communication
impairments, repetitive behaviors, and highly restricted interests. Previous studies so far have
determined a myriad of genetic causes of risk, but with little practical benefits to date. Though
worldwide prevalence of ASD is ~1%, an increase in ASD diagnoses has occurred over the last

few decades, especially in high income countries (Lord et al., 2006).



Recently, there have been significant sequencing efforts in children with idiopathic ASD,
a neurocognitive disorder where genetic mutations are believed to contribute to about 50% of
cases (Colvert et al., 2015; Sandin et al., 2014). The Simons Foundation Autism Research
Initiative (SFARI) has compiled much of this research into an evolving database called SFARI
Gene in an effort to help researchers track genetic risk factors for ASD (Abrahams et al., 2013).
The large volume of ASD databases and data complexity has made evaluation of genetic risk for
ASD difficult. However, a more recent study from the Autism Sequencing Consortium (ASC)
conducted the largest exome sequencing study of ASD to date (n = 35,584 total samples, 11,986
with ASD) and identified 102 high confidence risk genes at a false discovery rate of 0.1 or less
(Satterstrom et al., 2020). They found that most of these high confidence genes are expressed and
enriched early in excitatory and inhibitory neuronal lineages and mostly affect synapses or
regulate other genes.

While many genes have been implicated in ASD, the majority of patients lack obvious
protein-coding disease-causing variants despite having thousands of ASD genomes sequenced.
This suggests that noncoding regulatory elements may have a significant impact on ASD. In a
recent mutational assessment of ASD, only 11.2% of 2,620 cases carrying gene-impacting
variants were determined to have a molecular basis of disease (C Yuen et al., 2017). Another
whole-genome sequencing study of 53 ASD impacted families showed significant enrichment of
de novo and rare mutations upstream of genes previously associated with ASD (Turner et al.,
2016).

Comprehensively characterizing the 3D genome organization of neural tissue from
macaque will have significant implications on our understanding of brain development and

neurodevelopmental disorders in macaque as well as humans by identifying DNA physical



contacts between putative enhancers and gene promoters. It will provide an invaluable resource
to the research community as it will help us characterize the unknown functions of previously
and newly discovered noncoding regulatory elements. Studying the relationship between
chromatin interactions and noncoding variants can help us better understand how noncoding
variants affect genes. Understanding the role genome organization plays in brain development
and neurodevelopmental disorders early in life may lead to further studies in adolescents and

seniors.

Methods
Tissue collection and dissection

Tissue collection and dissections were carried out by Dr. Megan Dennis in collaboration
with Dr. Alice Tarantal at the California National Primate Research Center (CNPRC). Rhesus
macaque (Macaca mulatta) brain samples were collected postmortem from 5 individuals.
Samples for 3 individuals were collected at 60 days gestation and samples for 2 individuals were
collected at 150 days gestation. Brain samples were dissected into 5-6 distinct brain regions for
the 60 days gestation individuals and 15 distinct brain regions for the 150 days gestation
individuals. After dissection, 1 mL of tissue was used for papain which provides the best
dissociation and viability of neurons. Tissue was incubated at 37°C for 30 min with an EBSS,
papain, and DNase solution. Papain was deactivated using FBS/DNase solution and Hibernate E
complete media followed by trituration of the mixture with a 10 mL serological pipette.
Following neuron isolation, cells were mixed with Trypan blue and counted with Countess II.
For PLAC-seq experiments, cells were then fixed in a 1% final concentration of formaldehyde,

quenched with 125 mM glycine and washed with 1x PBS. At this point, cells were flash frozen



in liquid nitrogen and stored at -80°C until. For RNA-seq experiments, cells were resuspended in
RNALater ready following manufacturer’s protocol (Qiagen) and stored at 4°C for one week
followed by -80°C for later RNA extraction. For scRNA-seq experiments, cells were fixed in

methanol following 10X Genomics recommended protocol.

3’ Tag-Seq

Whole RNA was extracted from cells stored in RNALater using the Qiagen RNeasy
extraction kit following the manufacturer's protocol. RNA integrity/quality was assayed using a
Bioanalyzer and subsequent library was prepared and sequenced by the UC Davis Genome
Center DNA Technologies Core. Barcoded 3' Tag-Seq libraries were prepared using the
QuantSeq FWD kit (Lexogen, Vienna, Austria) for multiplexed sequencing according to the
recommendations of the manufacturer. The fragment size distribution of the libraries was
verified via micro-capillary gel electrophoresis on a Bioanalyzer 2100 (Agilent, Santa Clara,
CA). The libraries were quantified by fluorometry on a Qubit instrument (LifeTechnologies,
Carlsbad, CA), and pooled in equimolar ratios. Libraries were sequenced on one lane of a
NextSeq500 sequencer (I1lumina, San Diego, CA) with single-end 85 bp reads. The sequencing
generated more than 4 million reads per library.

Raw reads data were downloaded from the PsychENCODE consortium to check for
consistency with previously published data. For both the 3 Tag-Seq and PsychENCODE
datasets, raw reads were trimmed and mapped to the rhesus macaque genome (Macaca mulatta,
Feb. 2019 rheMac10) using two bioinformatics pipelines. For the first pipeline, we used Salmon
to trim, map, and count reads (Patro et al., 2017). We then used tximport to normalize counts

(Soneson et al., 2015). The second pipeline utilized Trim Galore to trim the raw reads, STAR to



map the reads, HT'Seq to count reads, and edgeR to normalize counts (Babraham Bioinformatics
- Trim Galore!, n.d.; Dobin et al., 2013; Putri et al., 2022; M. D. Robinson et al., 2010).

To measure consistency between our 3’ Tag-Seq data and PsychENCODE whole
RNA-Seq data, we calculated the Spearman’s rank correlation coefficient of the expression levels
for all genes with expression greater than zero. Biological replicates were combined by taking
the average expression levels. For expression levels mapped from the Salmon pipeline,
Spearman’s rank correlation coefficients of the transcripts per million (TPMs) were calculated,
and for expression levels mapped from the Trim Galore, STAR, HTSeq, edgeR pipeline,
Spearman’s rank correlation coefficients of the counts per million reads mapped (CPMs) were
calculated. We then performed a differential expression (DE) analysis. We compared only the
prefrontal cortex and cerebellum since those were the brain regions we focused on for

PLAC-Seq.

scRNA-Seq

Cells from six dissected macaque brain region samples from one of the 60 days gestation
individuals (189-0518) were fixed in methanol. Macaque methanol-fixed brain samples were
submitted to the DNA technologies Core at the UC Davis Genome Center for library preparation
using 10X Genomics Chromium with a targeted cell count of 10,000. Libraries were sequenced
on a shared NovaSeq S4000 lane at UC Berkeley in paired-end mode at 150 bp read length.

Raw reads were counted with 10x Genomics Cell Ranger 5.0.1 using cellranger count
and an expected cell count of 10,000 cells (Zheng et al., 2017). We used Seurat 4.1.0 to cluster
and identify cell types following a standard workflow (Hao et al., 2021). Counts output from Cell

Ranger was read in as a Seurat object and normalized with the global-scaling normalization



method “LogNormalize™ and scale.factor = 10000 followed by scaling the data. Doublets were
removed using DoubletFinder which was integrated with the Seurat processing (McGinnis et al.,
2019). Expected doublet rate was based on the estimated number of cells in each sample. Then,
we performed linear dimensional reduction on the data and determined the dimensionality of the
dataset. A graph-based clustering approach was used to cluster the cells, beginning with a
K-nearest neighbor (KNN) graph and then using a non-linear dimensional reduction technique
called Uniform Manifold Approximation and Projection (UMAP) to visualize the clusters. Cell
type identification of the clusters was determined by comparing the top difterentially expressed
genes in each cluster to databases of previously determined gene markers. These databases
included CellMarker, PanglaoDB, and CellKb (Franzén et al., 2019; Patil & Patil, n.d.; X. Zhang

etal., 2019).

PLAC-Seq

PLAC-Seq protocol trials were initially carried out using the protocol from Fang et al.
(2016) with lymphoblastoid cell lines (LCLs) from GM12878 crosslinked with 1%
formaldehyde. Ultimately, we switched to the Arima-HiC+ kit (P/N A101020) to complete
PLAC-Seq trials and generate PLAC-Seq data in accordance with the manufacturer’s protocols.
Trials for the Arima-HiC+ kit were conducted using LCLs. Two technical replicates of LCLs
were crosslinked with 2% formaldehyde at room temperature for 10 minutes in accordance with
Arima’s protocol. After crosslinking, approximately 5 million cells were used as input for each
replicate for PLAC-Seq.

The previously described dissected macaque brain samples were prepared via cell

extraction for PLAC-Seq after brain region isolation. We note that macaque cells were
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crosslinked using 1% formaldehyde at room temperature for 10 minutes following original
guidance from Fang et al. (2016). PLAC-Seq trials were performed with two technical replicates
of ~3 million cells from the parietal lobe (left hemisphere) of one of the 150 days gestation
individuals (178-0503). PLAC-Seq data was generated for the right hemisphere prefrontal cortex
(PFC) and cerebellum (CBC) of three biological replicates (Individuals 189-0247, 189-0249, and
189-0518). Each of the three prefrontal cortex biological replicates had a cell input of ~5 million
cells. CBC1 had a cell input of ~5 million cells, CBC2 had a cell input of ~2.5 million cells and
CBC3 had a cell input of ~3.3 million cells.

All LCL and macaque cells were stored at -80°C and thawed on ice until ready to begin
PLAC-Seq. Crosslinked cells were then digested using Arima’s restriction enzyme cocktail.
Overhang ends were filled in with biotin-tagged nucleotide followed by proximity ligation of the
ends to capture the chromatin structure with chimeric reads. The ligated DNA was then sheared
by sonication to approximately 500 bp, ranging from 400-1000 bp. Sonication was carried out
using a Covaris E220 with the following parameters: setpoint temperature: 4°C; min/max
temperature: 3-6°C; peak incident power: 75 W, duty factor 10%, cycles per burst: 200,
treatment time: 600 sec. Shearing was followed by binding of the antibody H3K4me3 (Millipore
Cat #04-745), which has been previously validated by Arima and is highly enriched at active
promoters. The proximally-ligated DNA was then immunoprecipitated with Dynabeads Protein
A and purified with KAPA Pure Beads. The proximity ligated DNA was enriched for
biotin-labeled fragments before library preparation with a custom Arima end repair and adapter
ligation protocol that utilizes the Swift Biosciences Accel-NGS 2S Plus DNA Library Kit with
indices from the Swift Biosciences Indexing Kit. Libraries were amplified for 12-16 PCR cycles

using the KAPA Library Amplification Kit and purified with KAPA Pure Beads.
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For the six macaque samples, barcoded libraries were pooled and sent to Novogene for
partial lane sequencing with Illumina NovaSeq 6000. Libraries were sequenced in paired-end
mode at 150 bp read length. A total of 386.7 Gb of raw data was sequenced for all six samples
which produced over 200 million paired-end reads per sample. To analyze the PLAC-Seq data,
two bioinformatics pipelines were considered to call loops, or significant interactions.
Model-based Analysis of PLAC-seq and HiChIP (MAPS) uses Burrows-Wheeler Aligner,
whichArima recommends for their restriction enzymes (Juric et al., 2019; H. Li & Durbin, 2009).
HiC-Pro uses the Bowtie2 software for alignment and was not recommended for Arima
restriction enzymes because mapping parameters were too strict (Langmead & Salzberg, 2012;
Servant et al., 2015). Valid read pairs output from HiC-Pro is then used as input for FitHiChIP to
call significant interactions (Bhattacharyya et al., 2019).

For the LCL trials, we utilized MAPS Arima Version 2.0 and HiC-Pro version 2.11.0
with FitHiChIP version 8.0 with reference ChIP-seq peaks from ensemble and aligned to human
reference genome, hg19. For each individual macaque replicate, we used the same pipelines with
inferred ChIP-seq peaks and aligned to the macaque reference genome, rheMac10. In order to
use theMac10 with MAPS, we generated the genomic features files using the the
Snakefile multienzyme file from MAPS and a bigwig mappability file that was generated from
gem-mappability from the GEM library (GEM Library - Browse /gem-Library at
SourceForge.net, n.d.). While Arima recommends defining protein localization peaks with
ChIP-Seq from the same cells using the same antibody as the Arima-HiC+ experiments, we did
not collect enough cells from macaque cerebellum for additional experiments. Therefore, we
used inferred peaks generated from the macaque PLAC-Seq data using the Model-based

Analysis for ChIP-Seq (MACS2) software and PeakInfer HiChIP.sh script from FitHiChIP (Feng
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etal., 2012; Y. Zhang et al., 2008). All samples analyzed with MAPS used the following
parameters: bin_size = 5000; binning range=2000000; fdr = 2, generate hic = 1, mapq = 30;
length_cutoff = 1000; threads = 16. All samples analyzed with the HiC-Pro used the following
parameters: FORMAT = phred33; MIN MAPQ = 0, BOWTIE2 GLOBAL OPTIONS =
--very-sensitive -L 30 --score-min L,-0.6,-0.2 --end-to-end --reorder;

BOWTIE2 LOCAL OPTIONS = --very-sensitive -L 20 --score-min L,-0.6,-0.2 --end-to-end
--reorder;, BIN _SIZE = 20000 40000 150000 500000 1000000, MATRIX FORMAT = upper,
MAX ITER = 100; FILTER LOW _COUNT PERC = 0.02; FILTER HIGH COUNT PERC =
0; EPS = 0.1. All samples analyzed with the FitHiChIP used the following parameters: GCSize =
200; MappSize = 500, IntType = 3; BINSIZE = 5000; LowDistThr = 20000; UppDistThr =
2000000; QVALUE = 0.01, NBins = 200. Hi-C matrix was produced from the HiC-Pro output
using the hicpro2juicebox.sh utility file from HiC-Pro and visualized with Juicebox (J. T.
Robinson et al., 2018).

We used HiCRep 1.11.0 to validate correlation of Hi-C interaction matrices of three
biological replicates each for cerebellum and prefrontal cortex with stratum adjusted correlation
coefficient (SCC) (Yang et al., 2017). SCC was measured at three different resolutions. For the
1000 kb resolution, SCC was measured with and without read depth correction. Data from
biological replicates of each region were then merged to improve statistical power to call
significant interactions with FitHiChlIP.

As a quality control check, we used the bedrools intersect command from bedtools 2.29
to identify the top differentially expressed genes in prefrontal cortex and cerebellum that
intersect with loop anchors from loops we called from the PLAC-Seq data (Quinlan & Hall,

2010). We then used it to identify high confidence genes implicated in ASD from the SFARI
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Gene database and the Autism Sequencing Consortium (ASC) study that intersect with loop
anchors from significant interactions we called from our PLAC-Seq data (Abrahams et al., 2013;
Satterstrom et al., 2020). Finally, we used bedtools intersect to identify which de novo variants
of the 255,106 identified from 1,902 quartet families from the Simons Simplex Collection
intersect with significant interactions we called from our PLAC-Seq data (An et al., 2018;
Fischbach & Lord, 2010). Rhesus prefrontal cortex and cerebellum significant interaction bed
files were lifted over from rheMac10 to hg38 for analysis with high confidence genes implicated
in ASD and de novo variants (Hinrichs et al., 2006). Loops were visualized using the WashU

Epigenome Browser (D. Li et al., 2022).

Results

Assessing consistency of RNA-seq datasets

To determine consistency within our own generated expression data (3’ Tag Seq) as well
as with existing published results from the PsychENCODE Consortium (PEC) (PsychENCODE
Consortium et al., 2015), we correlated RNA-seq datasets of biological replicates derived from
various brain regions, developmental time points, and studies using two different analysis
approaches. Figure 1 shows Spearman’s rank correlations for all PEC and 3’ Tag-Seq samples. 3’
Tag-Seq samples include timepoints at 60 days gestation (T60) and 150 days gestation (T150).
Correlations were calculated from TPMs counted and normalized from our 3’ Tag-Seq samples
and downloaded PEC raw reads by Salmon (Patro et al., 2017). All samples correlate well
between replicates from the same study, brain region, and timepoints. Samples from the PEC

dataset have a correlation >0.94 and T60 samples have a correlation >0.89. Samples for the T150
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dataset have lower correlations with each other, ranging from 0.75-0.86. The two cerebellum
regions at T150 correlate the most in that set, and seem to separate from the other samples.

We replicated our correlation analysis across the same datasets using an alternative
RNA-seq analysis pipeline (utilizing Trim Galore, STAR, HTSeq, and edgeR) by calculating
CPMs (Babraham Bioinformatics - Trim Galore!, n.d.; Dobin et al., 2013; Putri et al., 2022; M.
D. Robinson et al., 2010). The overall trends were similar to correlations calculated from the
Salmon pipeline. However, all correlations were higher with the CPMs from edgeR. This
increase was also seen when we only compared the PEC and T60 datasets, as shown in Figure 3.
When comparing PEC samples to T60 samples with TPMs from Salmon, correlations ranged
from 0.62-0.69 whereas those same correlations with CPMs from edgeR ranged from 0.75-0.79.
Since mapping rates were higher and Spearman’s rank correlations were higher with normalized
counts from HTSeq and edgeR, we decided to use the counts from HTSeq to carry out a
differential expression analysis.

Overall, since we found that correlations between our dataset and PEC for the same brain
regions and time points ranged from 0.75-0.79, we determined this correlation was insufficient to
justify combining the two for a larger meta-analysis. Further, we observed more consistent
results across biological replicates in cerebellum. When comparing PEC biological replicates and
T60 biological replicates with CPMs from edgeR, correlations within PEC biological replicates
ranged from 0.89-0.96, correlations within T60 biological replicates ranged from 0.85-0.90,
whereas correlations across datasets were much lower ranging from 0.51-0.59. As such, moving

forward we only used our 3°Tag seq data generated for T60 brain regions.
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Figure 1. RNA-Seq Spearman’s rank correlation for PsychENCODE (60 days gestation)
and 3’ Tag-Seq (60 and 150 days gestation) expression using TPM output from Salmon.

PsychENCODE (PEC) brain regions: MFC — medial prefrontal cortex; [PC —

inferior posterior

08

08

07

parietal cortex; STC — superior temporal cortex; ITC — inferior temporal cortex; V1C — primary
visual cortex; CBC — cerebellar cortex. 3’ Tag-Seq 60 days gestation (T60) brain regions:
prefrontal cortex left — PFCL; prefrontal cortex right — PFCR; cerebellum right — CBCR;
temporal lobe right —- TMLR; parietal lobe right — PRLR; visual cortex right — VICR. 3’ Tag-Seq
PFCL; prefrontal cortex right —

150 days gestation (T150) brain regions: prefrontal cortex left —
PFCR; cerebellum left — CBCL; cerebellum right — CBCR; temporal lobe left —

lobe right — TMLR; parietal lobe left — PRLL; parietal lobe right — PRLR; visual cortex left —
VICL; visual cortex right — VICR; hippocampus — HPCM; striatum — STRT.
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Figure 2. Spearman’s rank correlation for PEC (60 days gestation) and 3’ Tag-Seq (60 and
150 days gestation) expression of CPM output from edgeR. Reads were aligned with STAR
and counted with HTSeq. Abbreviations for brain regions are defined in Figure 1.
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Figure 3. Spearman’s rank correlation for PEC (60 days gestation) and 3’ Tag-Seq (60 days
gestation) expression. (A) Correlation of TPM output using Salmon. (B) Correlation of CPM
output using edgeR. Reads were aligned with STAR and counted with HTSeq.

Differential expression (DE) analysis across prefrontal cortex and cerebellum

Based on the consistency of our dataset at the earlier developmental timepoint, counts
from HTSeq were used to perform a DE analysis for the prefrontal cortex and cerebellum at 60
days gestation. We first looked at a multidimensional scaling (MDS) plot of all the biological
replicates to determine the relationships between them by seeing how well they cluster together.
As shown in Figure 4, the prefrontal cortex biological replicates cluster together along both
dimensions, though PFC_60 3 separates slightly along dimension 2. The prefrontal cortex and
cerebellum samples are separated well from each other along dimension 1. However, CBC 60 3
also has a large separation from the first two cerebellum samples along dimension 2. This result
could be expected due to batch effects because the first two replicates were prepared together

while the third replicates were prepared on a different day. However, since the separation
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between prefrontal cortex and cerebellum samples was so large, we continued with grouping by

brain region for the DE analysis.
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Figure 4. MDS plot of prefrontal cortex and cerebellum biological replicates. Cerebellum
samples are separated from the prefrontal cortex samples along dimension 1. CBC_60_3 also
separates from the other two cerebellum biological replicates along dimension 2.

We then performed a DE analysis to determine the most differentially expressed genes
between prefrontal cortex and cerebellum. Figure 5 shows a heatmap of the z-scores for the top
40 differentially expressed genes with the color scheme scaled by row. As expected, genes highly
expressed in the prefrontal cortex had low expression in cerebellum and vice versa. Additionally,
z-scores for CBC_60 3 seemed to follow the same pattern as the other cerebellum samples
despite not clustering well with them in the MDS plot. We then used these top differentially
expressed genes for downstream analysis to see if there are any brain region specific differences

in significant interactions identified by PLAC-Seq.
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Figure 5. Heatmap of top 40 most differentially expressed genes when comparing
prefrontal cortex and cerebellum. Z-scores and color scheme scaled by row.

A ment of cell ithin brain sampl

With our increasing understanding of the importance of cell type specific expression for
neurodevelopment, we set out to assess the cellular heterogeneity of the dissected brain regions
by generating a macaque scRNA-Seq dataset. Before clustering and identifying cell types, we

removed doublets using DoubletFinder in order to minimize its effect when measuring cellular
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heterogeneity (McGinnis et al., 2019). The number of doublets removed was based on the

number of cells counted by Cell Ranger. The number of expected doublets increases as the

number of cells increases. Cerebellum had only 5,816 cells so we removed the least number of

doublets from that brain region with only a 4.6% expected doublet rate. All the other samples

had an expected doublet percent of 6.1% or 6.9%. In Figure 6, we checked the number of genes

expressed for cells identified as doublets and singlets to confirm that we removed doublets

instead of singlets. As expected, cells identified as doublets tended to have a higher number of

genes expressed than cells identified as singlets.

Table 1. Doublets removed using DoubletFinder. Expected doublet percent is based on the
number of cells in each sample.

Sample Cell Expected Number of Cell Count With
Count | Doublet Percent | Doublets Doublets Removed
Parietal Lobe (R) 9,038 |6.9% 624 8,414
Visual Cortex (R) 8,225 16.1% 502 7,723
Temporal Lobe (R) 7,952 16.1% 485 7,467
Cerebellum 5,816 | 4.6% 268 5,548
Prefrontal Cortex (L) |8.535 |6.9% 589 7,946
Prefrontal Cortex (R) | 7,820 | 6.1% 477 7,343
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Figure 6. Number of genes expressed of doublets and singlets for parietal lobe (R). Cells
identified as doublets show a higher number of genes expressed than singlets.

Figure 7 shows UMAP plots for six isolated macaque brain regions. All six brain regions
show cellular heterogeneity. Despite having the least number of cells with only 5,548, the
cerebellum has the most identified cell types with 16 clusters. The parietal lobe has 12 clusters
while the other four brain regions have 11 clusters. All of the samples mostly comprised a variety
of glia or neuronal cells. Clusters were assigned cell types by comparing previously determined
gene markers from the CellMarker, PanglaoDB, and CellKb databases (Franzén et al., 2019; Patil
& Patil, n.d.; X. Zhang et al., 2019). Of note, many of the top DE genes from our DE analysis
represent gene markers that were used to identify cell types in prefrontal cortex and cerebellum
(Supplementary Table S1). NEUROD?2 was found to be upregulated in the prefrontal cortex and
was a gene marker for newborn excitatory neurons. Similarly, SPARCLI, upregulated in

cerebellum, was a gene marker for astrocytes.
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Figure 7. UMAP plot of gene expression relationships for macaque brain regions collected
at 60 days gestation. (A) Parietal lobe of the right hemisphere (n = 1; 8,414 cells). Cells are
colored by cluster identity into 12 clusters. (B) Visual cortex of the right hemisphere (n = 1;
7,723 cells). Cells are colored by cluster identity into 11 clusters. (C) Temporal lobe of the right
hemisphere (n = 1; 7,467 cells). Cells are colored by cluster identity into 11 clusters. (D)
Cerebellum (n = 1; 5,548 cells). Cells are colored by cluster identity into 16 clusters. (E)
Prefrontal cortex of the left hemisphere (n = 1; 7,946 cells). Cells are colored by cluster identity
into 11 clusters. (F) Prefrontal cortex of the right hemisphere (n = 1; 7,343 cells). Cells are
colored by cluster identity into 11 clusters.
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To better quantify the cellular heterogeneity of our samples, we looked at cell class
abundance. Cell types were classified into five broad classes: blood cells, endothelial cells, glia,
neural progenitor cells (NPCs), or neurons. The cells for sScRNA-seq were processed with papain
dissociation to specifically enrich neuronal cells, so most of the cells identified were neuronal.
Only the cerebellum and prefrontal cortex (left) had a neuron abundance less than 0.50. If we
consider NPCs and neurons together, the cerebellum is the only brain region with an abundance

less than 0.50 for those two cell classes.
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Figure 8. Cell class abundance for 6 brain regions (n=1) at 60 days gestation. Cell types
identified by Seurat were categorized into 5 larger cell classes.
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Assessment of genome organization in prefrontal cortex and cerebellum

In order to understand putative cis-regulatory elements contributing to gene regulation in
prefrontal cortex and cerebellum, we used PLAC-Seq to generate targeted 3D genomic maps. To
begin, we performed PLAC-Seq on an LCL. GM 12878 to verify our ability to perform the
method. As a quality control check, we wanted to assess whether there were any issues with
alignment of valid read pairs before calling loops, or significant interactions, by looking at the
Hi-C interaction matrix. Figure 9 takes all the valid pairs for PFC1 from HiC-Pro and visualizes
a Hi-C matrix with Juicebox (J. T. Robinson et al., 2018). The Hi-C matrices confirmed that
there were no concerns with the alignment step and that the Hi-C portion of PLAC-Seq worked.

A B

0 MB 100 ME 200 M8

Figure 9. Hi-C matrix of macaque brain sample PFC1. (A) Hi-C matrix of all chromosomes.
(B) Hi-C matrix of chromosome 1.

As a quality control check for the ChIP-Seq, we looked at the enrichment at inferred
ChIP peaks for H3K4me3. In Figure 10, the LCLs (GM12878) has the highest enrichment at

ChIP peaks with peak coverage over 4x greater than average genome-wide coverage. Of the
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macaque samples, PFC3 and CBC3 had the best ChIP enrichment with greater than 3x peak
coverage compared to the average genome coverage. The rest of the macaque samples had peak

coverage of 2x or less, indicating very low enrichment of H3K4me3.
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Figure 10. Enrichment at ChIP peaks from MAPS. PFC3 and CBC3 show the highest
enrichment at ChIP peaks of the macaque samples.

We began processing our PLAC-Seq data with the MAPS pipeline because it uses the
Burrows-Wheeler Aligner (BWA) software which is the preferred aligner for Arima’s restriction
enzymes. As shown in Table 2, reads from the LCL trial had a high mapping rate and MAPS
called 44,132 loops from inferred peaks. However, MAPS was unable to call loops for any of the

macaque samples. Although the mapping rate was lower for macaque reads compared to the
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LCL reads, it was not significantly lower where we would expect it to cause an issue with the
downstream analysis. This could suggest there was an issue later in the pipeline, such as with
user generated genomic feature files for the rheMac10 genome. Several MAPS trials with
loosened parameters such as a higher FDR and broad inferred peaks still resulted in no loops
called.

We then utilized the HiC-Pro and FitHiChIP pipeline to call loops, also known as
significant interactions as called by FitHiChIP. HiC-Pro uses Bowtie2 for alignment, which
Arima found was more strict than BWA. However, we found that the mapping rate using
HiC-Pro was higher for all of our samples. Interestingly, MAPS had identified almost 10x more
loops than FitHiChIP despite having a slightly lower mapping rate. We were able to call
significant interactions for all macaque samples with FitHiChIP, though still significantly less
than the number of loops called by MAPS for the LCL trial despite having much greater read
depth coverage.

Since we were unable to call any significant interactions with MAPS, we decided to
move forward with the HiC-Pro and FitHiChIP pipeline. While we were able to call some
significant interactions with this pipeline despite low enrichment, we predicted merging the
biological replicates would allow us to improve the statistical power to call significant
interactions as merging the data would not only increase overall read depth coverage, but
enrichment at peaks as well. In order to confidently merge the biological replicates, we
confirmed the consistency of the Hi-C interaction matrices across the biological replicates.
Typical measurements for correlation such as the Pearson correlation coetficient or Spearman’s
rank correlation coefficient disregard spatial features found in Hi-C data because they only

consider point interactions. To avoid these pitfalls, we used HiCRep to assess reproducibility and
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consistency of the three biological replicates for cerebellum and prefrontal cortex (Yang et al.,
2017). HiCRep introduced stratum adjusted correlation coefficient (SCC) which quantifies the
similarity between Hi-C interaction matrices. While based on the Pearson correlation coefficient,
SCC takes into account factors such as domain structure and distance dependence.

We first measured SCC at 1000 kb with no read depth correction as shown in Figure 11.
SCC comparing biological replicates ranged from 0.98-0.99 for prefrontal cortex and 0.96-0.99
for cerebellum while SCC comparing brain regions showed a dip in the range from 0.94-0.98.
CBC3 stood out as an outlier as it had the lowest SCC values when compared to the other
cerebellum biological replicates and the prefrontal cortex. We then tested SCC with read depth
correction and at higher resolutions. As expected, the SCC values dropped as we increased
resolution. Overall, the trends of the SCC values across the different resolutions did not change,
but the ranges of SCC widened as we increased the resolution which made it easier to identify
outliers. CBC3 continued to have the lowest SCC values, demonstrating that it has the least
correlation with all other biological replicates according to the Hi-C interaction matrices. This is
in line with results from the MDS plot for 3° Tag-Seq expression from Figure 4 which shows that

CBC3 is separated from the prefrontal cortex as well as the other two cerebellum samples.
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Figure 11. Stratum adjusted correlation coefficient (SCC) of cerebellum and prefrontal
cortex biological replicates at different resolutions. All SCC plots include read depth
correction unless noted otherwise. (A) 1000 kb without read depth correction. (B) 1000 kb. (C)
100 kb. (D) 10 kb.

As expected, after merging the HiCPro valid pairs output from the three biological

replicates for both prefrontal cortex and cerebellum, we were able to call significantly more
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loops for both brain regions. As shown in Table 2, for the prefrontal cortex, FitHiChIP called

32,959 significant interactions while 13,814 significant interactions were called for the

cerebellum.

Table 2. Summary stats of LCL trial and macaque PLAC-Seq data using MAPS and
HiC-Pro FitHiChIP pipelines. LCL reads were mapped to the hg19 reference genome.
Macaque reads were mapped to the rheMac10 reference genome.

Sample Number of Mapping rate Average genome | Significant
paired-end reads read depth interactions

MAPS pipeline

LCL 64,376,806 88.62% 2.73 44,132

PFC1 316,833,246 80.72% 25.82 0

PFC2 162,044,442 77.82% 12.73 0

PFC3 205,216,917 75.95% 15.74 0

CBC1 215,622,758 77.86% 16.95 0

CBC2 187,402,006 79.19% 14.98 0

CBC3 201,880,439 81.09% 16.53 0

HiC-Pro FitHiChIP Pipeline

LCL 64,376,806 93.50% 2.88 4,665

PFC1 316,833,246 93.00% 29.75 12,807

PFC2 162,044,442 90.85% 14.86 161

PFC3 205,216,917 90.10% 18.67 5,116

CBCl1 215,622,758 91.50% 19.92 973

CBC2 187,402,006 91.30% 17.27 1,930

CBC3 201,880,439 86.25% 17.58 3,087

PFC merged | 1,368,189.,210 92.62% 63.28 32,959

CBC merged | 1,209,810,406 89.69% 54.77 13,814
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Before looking into how the called significant interactions are connected to ASD, we
identified significant interactions connected to the top DE genes from our 3’ Tag-Seq data. While
nearly none of the promoters of our DE genes had significant interactions connected to them, we
did identify XX DE genes from cerebellum with significant interacting regions. In Figure 12,
PBX3 which is a top DE gene upregulated in the cerebellum, has six connected loops in the
cerebellum but no connected loops in the prefrontal cortex. This pattern was also seen in
SEMA6A and TOX. However, unlike PBX3 and SEMA6A which are upregulated in cerebellum,

TOX was upregulated in the prefrontal cortex.
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Figure 12. PBX3 connected to loops identified in the cerebellum. No loops are connected in
the prefrontal cortex.

ASD implicated genes and variants connected to significant interactions

In order to assess the impact of chromatin organization on ASD, we first looked at the
significant interactions identified from our PLAC-Seq data connected to genes that have been
previously implicated in ASD with high confidence. These genes were pulled from two data
sources: a 102 gene dataset from the Autism Sequencing Consortium (ASC-generated WES
sequencing data) (Satterstrom et al., 2020) and a 1,044 gene dataset from the SFARI Gene

database (Abrahams et al., 2013). Table 3 shows that over half of the promoters of these genes
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from both datasets had a connection to significant interactions in the prefrontal cortex, with 69

genes from ASC and 544 genes from SFARI. Many genes were connected to significant

interactions in both the prefrontal cortex and cerebellum such as FOXP1, SYNGAPI, and

KDM35B (Supplementary Tables S2-S5). The significant interactions identified in the cerebellum

connected to fewer genes, with only 34 genes from ASC and 274 genes from SFARI. Overall,

significantly more genes, such as CHDS and GRIN2B, and significant interactions were

connected in the prefrontal cortex than cerebellum which was expected since nearly three times

more significant interactions were identified in the prefrontal cortex.

Table 3. Number of loop anchors that intersect with genes implicated in ASD from the
ASC-generated WES sequencing data and SFARI Gene database. ASC-generated WES
sequencing data has 102 genes. SFARI Gene database has 1044 genes.

Brain region

# of genes

# of loops connected

ASC-generated WES sequencing data

Prefrontal cortex 69 337
Cerebellum 34 98
SFARI Gene

Prefrontal cortex 544 2348
Cerebellum 274 855
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Figure 13. Loops connected to FOXPI. Five loops connected in cerebellum. 12 loops
connected in prefrontal cortex.

We next overlaid our interacting regions from prefrontal cortex and cerebellum with
identified de novo variants from affected probands and unaffected siblings sequenced as part of
the Simons Simplex Collection (SSC) (An et al., 2018). From this, we identified six total unique
de novo variants falling within promoters or putative cis regulatory elements of top ASD
candidate genes (as defined by our PLAC-seq interactions). Two de novo variants were identified
in cerebellum and four in prefrontal cortex, with one de novo variant identified in both regions.
In Figure 15, comparing frequencies between probands and unaffected siblings in prefrontal
cortex and cerebellum shows no association of loop connection to a proband de novo variant

(p-value = 1).
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Table 4. Number of loops that intersect with de novo variants identified in ASD quartet
families from the SCC. 255,106 de novo variants identified in 1902 families were overlaid with
13,814 and 32,959 loops from cerebellum and prefrontal cortex, respectively.

Chr | Position Ref | Alt | Type | Phenotype | Nearest gene | # of loops connected

Cerebellum
chrS | 151446389 | G A SNV | proband SLC3641 5
chr8 |[69666932 |CT |C Indel | sibling SULF1 1

Prefrontal Cortex

chr5 | 151446389 | G A | SNV [ proband SLC36A41 7
chr8 |[30669624 |T C SNV | proband GTF2E2 1
chr8 69666932 |CT | C |Indel |sibling SULF1 1
chr12 | 1689584 T C SNV | sibling ADIPOR2 2

chrl6 [ 48703313 [ C CT | Indel [ sibling AC007611.1 1
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Figure 14. Loops connected to a de novo variant nearest to SLC36A41. Five loops connected
in cerebellum. Seven loops connected in prefrontal cortex.
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Figure 15. Fisher’s exact test. No association of de novo variants in specific brain regions based
on proband variant frequencies.

Discussion

Our study aimed to investigate the underlying chromatin organization differences that
affect neurodevelopment and associated disorders. Although we only generated targeted 3D
genomic maps for one early developmental time point, we were able to identify tens of thousands
of significant chromatin interactions in the prefrontal cortex and cerebellum at 60 days gestation,
many of which are connected to genes that have been previously implicated in ASD. Despite the
limited number of significant interactions called, when overlaid with de novo variants previously
identified in ASD quartet families we were able to connect six de novo variants.

We were able to call significant interactions using the HiC-Pro FitHiChIP pipeline,

despite having low ChIP enrichment for our macaque samples. We would have been able to call
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more significant interactions if we had greater ChIP enrichment as we saw in the LCL trial. One
possible explanation for this lower ChIP enrichment is that the macaque brain samples were
crosslinked using 1% formaldehyde in accordance with Fang et al. 2016 compared to 2%
formaldehyde fixation used in the Arima-HiC+ kit for the LCL trial. MAPS was able to call
44,132 significant interactions for the LCL trial compared to only 32,959 and 13,814 for the
prefrontal cortex and cerebellum respectively even though the LCL trial only had 64 million
reads compared to over 1.2 and 1.3 billion reads for the macaque samples. However, we
acknowledge this comparison is not exact as the significant interactions for LCLs and macaque
were not called using the same pipeline and as mentioned before, there may be an issue with the
genome files for macaque when using MAPS that affected the downstream analysis. Regardless,
future PLAC-Seq runs for macaque brain samples should be prepped using 2% formaldehyde for
crosslinking.

One way to continue to use our PLAC-seq data and improve the called interactions is to
enhance it using computational methods based on deep neural networks. Several methods
including HiCPlus, HICNN, HiCNN2, DeepHiC and Variationally Encoded Hi-C Loss Enhancer
(VEHICLE), have been developed to enhance the sequencing depth of Hi-C data and have also
been shown to work with targeted protein mediated chromatin interaction methods like
PLAC-Seq data (Huang et al., 2022). They found that most models produced enhanced datasets
that lead to improved detection of long-range chromatin interactions. While models can be
trained using Hi-C data or PLAC-Seq data, model performance was higher when trained with
PLAC-Seq data. Using one of these Hi-C data enhancement methods could uncover new insights

from our existing dataset.
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We also aimed to characterize gene expression of our isolated macaque brain regions
using 3’ Tag-Seq. We checked the consistency of our 3° Tag-Seq data with previously published
data from the PEC using Spearman’s rank correlation with the goal of incorporating the PEC
data into our analysis. However, our correlations were not high enough between datasets to
confidently merge them, despite having downloaded the raw data and treating each dataset with
the same analysis. There are several potential factors that contributed to this lower correlation.
The PEC used whole RNA-Seq to generate their dataset while we used 3° Tag-Seq. While this
could be a contributing factor, previous studies have shown that expression levels of these two
methods are comparable (Danielsson et al., 2015). Differences and variability between
dissections was likely a bigger factor in the differences between the two datasets since brain
regions compared were dissected slightly differently. T150 samples had the lowest correlations
within a dataset, but this is expected as there were more dissected and diverse brain regions. We
also did not have PLAC-Seq data for any of the T150 samples, so 3° Tag-Seq data of T150
samples was excluded from downstream analysis.

With our scRNA-Seq dataset, we set out to determine the cellular heterogeneity of our
macaque brain regions. As expected, most of the cell types identified were neuronal cells
because of the papain dissociation preparation. Overall, the identified cell types corresponded to
the correct brain regions showing accuracy of the brain region isolations. In the future, one
possible use for this sScRNA-Seq dataset is in deconvolution methods. As single cell technology
has improved recently, the importance of cell type composition has become increasingly
apparent when trying to understand function, development, and disease. Bulk RNA-Seq datasets
are typically confounded by differences in cell type proportions, so researchers have developed

many computational methods to infer cell type proportions from bulk transcriptomics data.
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While older deconvolution methods like CIBERSORT and dtangle infer cell type proportions
from bulk RNA-Seq data, some newer methods like MuSiC and SCDC use scRNA-Seq data as
reference (Avila Cobos et al., 2020). The newer methods generally had comparable performance
to the best performing bulk methods, with some significantly down run time. Our scRNA-Seq
dataset can be used in those newer deconvolution methods where a sScRNA-Seq dataset is

required.
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