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EPIGRAPH

Ora tu pensa: un pianoforte.

I tasti iniziano. I tasti finiscono.

Tu sai che sono 88, su questo nessuno può fregarti.

Non sono infiniti, loro. Tu, sei infinito, e dentro quei tasti, infinita è la musica che puoi fare.

—Alessandro Baricco

Novecento: Un monologo teatrale

Adapted translation from Italian:

Now, think about this: a piano.

The keyboard starts. And it ends.

You know that there are 88 keys, no-one can fool you on this.

The keyboard is not infinite. You are infinite, and with those keys you can play infinite music.
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Fiber-reinforced composite materials have become increasingly popular in the past few

decades for lightweight applications, in particular in the aerospace industry where high strength-to-

weight and high stiffness-to-weight ratio are considered key design parameters. At the same time,

new computational technologies are required to support the design process of increasingly complex

structural components and to predict damage growth under non-standard loading conditions.

However, the development of accurate and computationally efficient analysis tools, capable of

predicting the response of laminated composite structures from the elastic regime to the failure

point and beyond, is a complex task. Difficulties stem from the inherent heterogeneous nature

of fiber-reinforced polymer composite materials and from their multi-modal failure mechanisms.

Composite structures optimized for low weight applications are often laminates, consisting of
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several layers of fiber-reinforced material, called laminae, bonded together. Intra-laminar damage

may occur within a given lamina, and inter-laminar damage, or delamination, may occur when

bonds between laminae break down. The unique challenges associated with modeling damage in

these structures may be addressed by means of thin-shell formulations which is naturally developed

in the context of Isogeometric Analysis.

This dissertation presents a novel multi-layer modeling framework based on Isogeometric

Analysis, where each ply or lamina is represented by a Non-Uniform Rational B-Spline (NURBS)

surface, and it is modeled as a Kirchhoff–Love thin shell. A residual stiffness approach is used

to model intra-laminar damage in the framework of Continuum Damage Mechanics. A new

zero-thickness cohesive interface formulation is introduced to model delamination as well as

permitting laminate-level transverse shear compliance. The gradient-enhanced continuum damage

model is then introduced to regularize material instabilities, which are typically associated with

strain-softening damage models. This nonlocal regularization technique aims to re-establish mesh

objectivity by limiting the dependence of damage predictions on the choice of discrete mesh.

To account for the anisotropic damage modes of laminae, the proposed formulation smooths a

tensor-valued strain field by solving an elliptic partial differential equation system on each lamina.

The proposed approach has significant accuracy and efficiency advantages over existing

methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff–Love

shells to represent the individual plies of the composite laminate, while the compliant cohesive

interfaces enable transverse shear deformation of the laminate. Kirchhoff–Love shells give a

faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-

deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness.

This, in combination with higher-order accurate and smooth representation of the shell midsurface

displacement field, allows to adopt relatively coarse in-plane discretizations without sacrificing

solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational

degrees of freedom, which gives additional efficiency benefits relative to more standard shell

formulations.
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1 Introduction and Literature Review

This dissertation summarizes the research work focused on the development of novel analy-

sis methodologies for progressive damage simulation of composite laminates. The literature review

proposed in this introductory chapter defines the state-of-the-art of computational technologies for

damage analysis of composites.

Different modeling approaches for intralaminar and interlaminar damage are discussed

in Section 1.1. Applications of the multi-layer modeling technique for impact simulations are

presented and in Section 1.2. Nonlocal regularization methodologies for strain–softening damage

models are discussed in Section 1.3.

1.1 Modeling techniques for damage simulation of multi-layer com-

posites

Rapid growth in the use of fiber-reinforced composite materials for high-performance and

lightweight applications drives the demand for new computational technologies that are aimed at

supporting the increasingly complex design process and testing of structures and structural compo-

nents. For this purpose, the concept of Isogeometric Analysis (IGA) [58, 32] was recently introduced

to ease the data flow between Computer-Aided Design (CAD) and computational analysis. Besides

having a more direct link with CAD, the use of Non-Uniform Rational B-Splines (NURBS) [83], and

their more advanced versions like T-Splines [12], as basis functions proved to be beneficial for the

accuracy of numerical simulations due to the high-order continuity of the discretized fields, the

variation diminishing property of NURBS, and a more accurate (and, in many cases, exact) represen-

tation of the analysis geometry. The inherent properties of higher-order accuracy and smoothness
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of spline functions, and the fact that splines were developed as a technology for representing

surfaces, have led to rapid development of IGA for shell structures [68, 67, 16, 17, 69], including

the introduction of a new thin-shell formulation based on the Kirchhoff–Love theory discretized

using only displacement degrees of freedom [68]. This formulation, often combined with the

bending-strip technique [67] to handle geometrically complex multi-patch structures, was success-

fully adopted in the framework of the Fluid–Structure Interaction (FSI) analysis [15] to efficiently

simulate the dynamics of wind-turbine structures [70, 110], pulsatile ventricular assist devices [73],

foil-based propulsion [109], hydraulic arresting gears [106], bioprosthetic heart valves [55], and

parachutes [99]. In the present work, we extend the Kirchhoff–Love shell formulation to include, for

an arbitrary number of plies, models that track damage initiation and progression at the individual

ply level, and delamination at the ply interfaces.

The development of accurate and computationally efficient formulations capable of predict-

ing the response of large-scale structures from the linear regime to the failure point, is a complex

task. Indeed, the simulation of progressive damage propagation in fiber-reinforced polymer ma-

trix composite laminates poses several challenges due to the stratified and non-homogeneous

nature of the material. Major modeling challenges stem from the inherently complex mechanics

of damage, which occurs at spatial scales that are often orders of magnitude smaller than the

structural components analyzed. Damage in laminated composites is typically classified into two

categories, namely, intralaminar and interlaminar damage. Intralaminar damage includes all the

types of damage confined to the level of a single ply, such as fiber breaking, matrix cracking and

fiber-matrix debonding. Interlaminar damage, conversely, occurs at the ply interfaces, and involves

physical separation of the initially connected plies. For this reason, it is commonly referred to as

delamination.

Various modeling approaches have been adopted for intralaminar and interlaminar damage.

In recent years, the research has focused on the development of high-fidelity models capable of

reproducing, at the meso-macro scale, the effects of the intralaminar damage. In this context, the

introduction of the Continuum Damage Mechanics (CDM) [64, 27] gave rise to significant progress

toward the unification of continuum mechanics and discrete representation of damage evolution,

which is typically described in terms of discrete fracture mechanics. The purpose of the CDM is to
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simulate, at the continuum level, the equivalent effects of the various intralaminar damage modes.

Several intralaminar damage models have been developed in the framework of the CDM. Ladeveze

and Le Dantec [71] used the CDM to describe the effects of matrix cracking and matrix/fiber

debonding at a macroscopic and continuum level. Matzenmiller et al. [75] proposed a progressive

damage model for fiber-reinforced composites formulated in terms of the degradation of the

original elastic properties. The model made use of the Hashin [46] failure criteria to determine the

initiation of damage. Many studies were conducted in order to enhance this progressive damage

model by introducing sophisticated failure criteria, in particular, for matrix-dominated damage

modes. Puck and Schürmann [89] and Dàvila and Camanho [33] included the nonlinearity of the

material and the effect of fiber kinking, while Pinho et al. [87] developed 3D criteria including

nonlinear matrix shear behavior. The use of CDM was recently extended to IGA by Deng et al. [36],

who proposed to use the residual-stiffness approach in order to predict failure loads of composite

laminates, mainly under in-plane loading conditions.

While models based on the reduction of material stiffness are routinely adopted to ac-

count for the intralaminar damage in large-scale computations, modeling and simulation of the

delamination process is a more delicate task, and represents an attractive research area. Solid-like

shell elements, for example, were developed in the framework of the Extended Finite Element

Method (XFEM) [91] and IGA [54] in order to simulate delamination by introducing kinematics

discontinuities in the through-the-thickness direction. The Floating Node Method (FNM) was

recently proposed by Carvalho et al. [26] in combination with the Virtual Crack Closure Technique

(VCCT) in order to allow the actual splitting of elements in the FEM mesh. An alternative approach

for the simulation of delamination involves the use of cohesive interfaces in combination with

multi-layer modeling procedures [1, 2]. In this framework, the laminate is modeled at the level of

each single ply, or a group of plies. For example, contiguous plies with the same fiber orientation

are typically grouped into a single, thicker, ply for modeling purposes. Cohesive interfaces are

introduced to connect the lamina and to enforce the appropriate traction-separation relationships

between them. The definition of proper criteria for the degradation of the ply-interface stiffness

allows for a continuous simulation of the delamination process, from damage initiation to complete

separation. For this purpose, several cohesive laws have been proposed in recent years. The
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Single-Mode Cohesive Model [8, 24], for example, considers the contribution of each opening

mode as independent, and the delamination is complete only if the interface fails in all directions.

Conversely, Mixed-Mode Cohesive Models [24, 103, 61] are formulated under the assumption that

the delamination is triggered by the interaction of the openings in all directions. The deterioration

of the interface is therefore described in terms of a single damage variable that grows under the

combined action of normal and tangential opening modes.

While cohesive interfaces have been mostly applied in combination with solid elements,

Dávila et. al [34] proposed a cohesive formulation for thick-shell elements. More recently, Nguyen

et al. [79] presented a first example of the application of cohesive interfaces for thin shell elements

in the framework of IGA. However, the purpose of the work in [79] was to present potential uses of

IGA for applications involving cohesive-zone modeling rather than to propose, verify, and validate

a cohesive-interface modeling framework, which we do here.

1.2 Isogeometric multi-layer modeling for progressive damage simula-

tion

Fiber reinforced composite materials show great promise in applications requiring both

high strength and low weight. However, the use of these materials in safety-critical applications is

still limited, due to ongoing difficulties with prediction of damage. These difficulties stem from

the complex, multi-modal failure mechanisms of fiber-reinforced composites [100]. Structures

optimized for low weight frequently take the geometrical form of thin shells. Composite shells

are often laminates, consisting of several layers of fiber-reinforced material, called laminae, or plies,

bonded together. Intralaminar damage may occur within a given lamina, and interlaminar damage,

or delamination may occur when bonds between laminae break down.

Because of the inherent heterogeneous nature of fiber-reinforced polymer composite materi-

als and the complexity of their failure mechanisms, damage can occur at different length scales and

often involves a simultaneous deterioration of the matrix material and separation of the layers that

constitute the laminate, i.e., delamination. This damage mode, which often leads to a significant

loss of strength of a structural component, may be difficult, if not impossible, to detect by visual
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inspection.

For these reasons, the response of composite laminates subjected to low velocity impact

presents an important research direction. Experimental studies of Choi et al. [30] and a literature

review from Richardson et al. [92] identified delamination as a critical factor, which, owing to

local instabilities of the disconnected lamina, severely affects post-impact behavior of structures

subjected to compressive loads. These authors also stressed the fact that failure modes in composite

laminates are interrelated, and that the development of comprehensive modeling approaches that

can simultaneously and accurately capture intralaminar failure and delamination is of primary

importance.

Several models have been proposed, starting from the early 1990’s, to predict damage

growth in laminated composites subjected to low-velocity impact. Choi et al. [30, 29] developed

finite element procedures to predict the extension of the delamination front based on the analysis

of stresses in the plies. The references focused their attention on the interaction between matrix

cracking and propagation of delamination. A prototype of a multi-layer modeling approach, where

the plies are modeled as individual parts connected through discrete interfaces, was proposed in

Allix et al. [1, 2] who developed a cohesive damage model in order to predict delamination under

Mode I, Mode II, and mixed-mode openings. Several authors investigated the use of cohesive

interfaces [77, 34] and cohesive elements [24, 111] to simulate the interaction between discrete

plies in laminated structures, while Turon et al. [103, 104] developed a cohesive damage model

in order to accurately predict delamination in composite laminates under multi-mode loading

conditions. The use of discrete, connected interfaces, implemented either by means of surfaces

or solid elements, allows for the development of multi-layer modeling techniques. As a result, a

multi-layer representation combined with intralaminar damage modeling has become increasingly

popular in recent years for progressive damage simulations of laminated composites.

A phenomenological Residual Stiffness Approach (RSA) [71, 75] is widely used as an

intralaminar damage model. The RSA, which is developed in the framework of the Continuum

Damage Mechanics (CDM), is based on a progressive reduction of the elastic properties of material

as a function of the damage state, which is described in terms of the so-called damage variables that

are evolved according to specific damage initiation and evolution criteria. Recent advances in the
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modeling of intralaminar damage include the introduction of the material nonlinearities [33] such

as fiber kinking [87, 88] and nonlinear shear behavior [37]. Some authors [21, 101] also investigated

the use of matrix plasticity to predict post-impact permanent indentation of the laminates. Several

enhancements have been proposed in the past years for the intralaminar and interlaminar damage

models. The proposed models make use of 3D solid linear [113, 37, 21, 101] and higher-order [43]

Finite Elements (FE) for the discretization of the continuum. Faggiani et al. [41] proposed a mixed

model where, in order to reduce the problem size, solid elements were used in the impact region

while continuum shell elements were employed elsewhere. Davila et al. [34] developed a 2D

cohesive interface for the Reissner–Mindlin shell elements and applied it to simulate delamination

in aerospace structural components under quasi-static loading conditions.

Nevertheless, despite these enhancements, simulation of impact on laminated composite

structures is dominated by 3D linear hexahedral elements. While the computational costs can be

kept at a manageable level (i.e., O(105) elements) for coupon-scale simulations, 3D solid element

technology becomes prohibitively expensive for larger-size structural components. This was one of

the motivating factors for the development of a computational approach based on Isogeometric

Analysis (IGA) [58, 32] in the framework of the multi-layer shell modeling presented in detail in

Part I of this paper. Because the individual plies of a laminate are sufficiently thin to be reasonably

described using the Kirchhoff–Love shell theory, we took the work of [68, 67] on rotation-free shells,

and its extension to CDM in [36], as the starting point. The individual lamina, modeled as thin

shells and discretized using spline-based IGA with only displacement degrees of freedom, were

connected with cohesive interfaces resulting in an accurate and efficient methodology that is able

to simultaneously model intralaminar damage and delamination. The use of IGA has an added

benefit of a natural connection to Computer-Aided Design (CAD), allowing the use of CAD or

other geometric modeling software to model structural components and directly analyze them

using the same geometry representation, without the need to generate FE meshes [56]. We note

that an alternative approach to delamination modeling using IGA may be found in the recently

proposed continuum or solid-like shell formulations [52, 53].
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1.3 Nonlocal regularization of strain–softening damage model for thin

shells

We recently developed an approach for predicting damage in composite laminates that

models laminae as a Kirchhoff–Love thin shells and interlaminar bonds as cohesive zones [14, 84].

Intralaminar damage in this framework evolved according to a continuum damage law accounting

for various failure modes of fiber-reinforced composites. The cited references demonstrated the

validity of this model by replicating several laboratory experiments.

Despite these promising initial results, it is not assured that the approach of [14, 84] will

reliably work as-is for predicting damage in objects with general geometries and/or highly non-

uniform or unstructured discretizations. The model of [14] relied on a local damage law, in which

the strength of material at a point depends on the strain history at that point. This leads to the well-

known strain-localization phenomenon, in which strains become concentrated, non-uniquely, in

sets of measure zero. Finite element function spaces are unable to represent such deformations, and,

as such, strains localize in mesh-dependent ways, and predictions may not converge under mesh

refinement. This ill-posedness of local models is attributable to loss of ellipticity of the governing

partial differential equation (PDE) system [80, 81]. The use of mesh-dependent computational

models that do not correspond to well-posed mathematical models is at odds with the principles

for verification and validation articulated by Babuška and Oden [7], in particular, their assertions

that mathematical models should be well-posed, that exact solutions should be recoverable under

refinement, and that “any validation process in which computational parameters, such as mesh

size, are varied to bring experimental observations into closer agreement with numerical results

are fundamentally flawed” [7, Footnote 4].

A way to improve the well-posedness of damage models is to introduce non-locality, so

that the damage state at a material point depends on the strain history of not just that point, but

neighboring points as well. A variety of non-local models have been proposed over the past several

decades, including integral convolutions [86, 11], peridynamics [98], phase-field fracture models

[3], and gradient-enhanced continuum damage [82]. In this work, we focus on the last of these, in

which non-locality is introduced by solving an elliptic PDE. Gradient-enhanced damage (or, simply,

7



“gradient damage”) models may involve a PDE smoothing strains, damage indexes, or other

quantities. Models smoothing a damage index are closely related to phase-field fracture models

[35], and, in some publications, the terms “gradient-enhanced damage” and “phase-field fracture”

are even used interchangeably. Phase-field fracture has recently attracted much attention, and a

number of authors have proposed such damage-smoothing formulations for thin shell structures

[78, 4, 66, 5]. However, in the present work, we focus on the strain-smoothing family of gradient-

enhanced damage models. Our reasons for this are the following. We wish to adapt an existing,

validated damage model that we studied in [14, 84]. When damage indices degrade material

stiffness in the way stipulated by this model, damage smoothing may result in a phenomenon

called stress locking, in which the model is unable to represent full material failure [62, 9]. 1

A previous study adapted strain-smoothing gradient-enhanced damage modeling to con-

tinuum shell elements [51]. However, to our knowledge, very little (if any) prior work has applied

this type of gradient damage modeling to thin shell structures. This is in part due to the fact that

computational analysis of thin shell structures has only recently gained popularity, with the rise

of isogeometric analysis (IGA). Isogeometric analysis is an emerging paradigm for computational

mechanics, in which approximate solutions to PDEs are represented in the same function space as

the geometry of their domains [58, 32]. Geometries of engineered objects are frequently designed

by specifying surfaces using spaces of smooth spline functions such as NURBS [83], or T-splines

[96]. This makes IGA appealing for analysis of thin shells for two reasons. First, the PDE domain

for thin shell theory is itself a surface, and thus IGA may be applied directly to surface-based

geometrical designs of shells. Second, the spline spaces used to design surfaces typically have C1 or

higher continuity, which, unlike traditional C0 finite element function spaces, allows for standard

Bubnov–Galerkin-type discretizations of fourth-order thin shell theories. IGA of thin shells began

with the influential work of Kiendl and collaborators [68], on whose foundation the present study

builds.
1Although the non-local model analyzed in [62] is not a gradient-enhanced model, our preliminary computations

reported in A.5 indicate that some of the conclusions of [62] carry over.
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1.4 Outline of the dissertation

The dissertation is organized as follow:

• Chapter 2: The concept of Isogeometric analysis is introduced and Non-Uniform Rational

B-Spline surfaces are presented. The chapter focuses on a model reduction technique typically

adopted to represent a solid structure in the three-dimensional space in terms of its reference

midsurface. This technique is based on a kinematic assumption that relates the position of a

material point of a continuum solid to its projection on the thin solid reference plane. Other

relevant quantities for computational mechanics are derived starting from the kinematic

description of the continuum.

• Chapter 3: This chapter introduces the basis of the multi-layer modeling approach developed

for damage simulation of composite laminates. The Residual Stiffness Approach is introduced

in the framework of Continuum Damage Mechanics for intralaminar damage modeling. A

novel zero-thickness cohesive interface for thin-shell elements is presented for interlaminar

damage modeling. Three numerical examples are presented: Two standard delamination

benchmark test are simulated to validate the cohesive interface formulation; A ply-by-ply

model of a thick laminate is simulated to verify that transverse-shear deformability is correctly

reproduced by the proposed multi-layer modeling approach.

• Chapter 4: Several application of the multi-layer modeling approach for progressive damage

simulations are presented in this chapter. Two low-velocity impact scenario on flat composite

plates are simulated and results are compared with experimental results for validation

purposes. An additional low-velocity impact scenario on a stiffened composite panel is

presented. Finally, an hard-landing simulation of a Unmanned Aerial Vehicle is presented in

order to illustrate an application of the design-to-analysis concept.

• Chapter 5: This chapter addresses the issue of strain-localization instability which typically

affects strain-softening damage models. The gradient-enhanced formulation, a nonlocal

regularization technique, is developed for Kirchhoff–Love shells. Several benchmark simula-

tions are presented in order to verify the proposed gradient-enhanced formulation. Finally,
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low-velocity impact simulations are revisited in the framework of nonlocal damage modeling.
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2 Foundation of Isogeometric Analysis

for the structural analysis of thin shells

The Isogeometric concept for structural analysis applications is presented in this chapter.

Non-Uniform Rational B-Spline surfaces are presented in Section 2.1, while Section 2.2 focuses

on a model reduction technique, which is typically adopted to represent thin solid structures

in the three-dimensional space a function of their reference midsurface planes. This technique

is based on a kinematic assumption that relates the position of a material point of a continuum

solid to its projection on the thin solid reference plane. In Section 2.3, other relevant quantities for

computational mechanics are derived starting from the kinematic description of the continuum.

Remark The convention used in this chapter is that lower-case indices correspond to covari-

ant components of tensor-valued variables, while upper-case indices correspond to contravariant

components of tensor-valued variables.

2.1 B-Spline and NURBS surfaces

The concept of Isogeometric Analysis for computational mechanics stems from the use of

smooth Non Uniform Rational B-Spline (NURBS) for geometry representation and discretization of

unknowns. NURBS curves are derived from Basis Spline (B-Spline) curves, which posses superior

approximation properties compared to traditional Lagrange polynomials typically adopted for

Finite Elements analysis. See for example the extensive description reported in Piegl and Tiller [83].

Starting from the definition of B-Spline basis functions, this section summarizes the derivation of

NURBS surfaces in terms of their parametric coordinates.
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2.1.1 B-Spline basis functions

B-Spline basis function are defined in the parametric domain, which is defined by the knot

vector ξ =
[
ξ1, ...,ξn+p+1

]
. B-Spline basis functions are C∞ on a knot span sub-domain ξ ∈ [ξi,ξi+1]

(i.e., between two distinct knots). Continuity of B-Spline basis functions at knots is a function

of the knot multiplicity: a B-Spline basis functions of degree p is Cp−k continuous at a knot with

multiplicity k.

B-Spline curves are constructed in the parametric domain though the Cox–De Boor recursive

algorithm [83]. Starting from the analytical expression of the 0-th degree Ni,0 B-Spline basis function

(order = p+1=1) in the domain ξ ∈ [ξi,ξi+1]:

Ni,0 (ξ) =

1 if ξi ≥ ξ ≥ ξi+1 ,

0 otherwise .
(2.1)

Higher degree B-Spline basis functions in the domain ξ ∈ [ξi,ξi+1] are computed straightforwardly

as:

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) . (2.2)

B-Spline of degree p is non-null over p+1 knot spans of the parametric domain. Paramet-

ric derivatives of B-Spline basis functions can also be computed analogously using a recursive

expression [83]:

N′i,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) . (2.3)

2.1.2 B-Spline curves and surfaces

B-Spline curves are defined as a linear combination of B-Spline basis functions:

C (ξ) =
n

∑
i=1

Ni,p (ξ)Bi , (2.4)

where the coefficients of the linear combination Bi are the called “control points”. A B-Spline curve

in the RNSD space, can be expressed in terms of components ad:

Ck (ξ) =
n

∑
i=1

Ni,p (ξ)Bik , (2.5)

where k = 1, ...,NSD. It is worth noting that B-Spline curves do not interpolate, in general, control

points at their location. A B-Spline curve interpolates a control point only if the multiplicity of the
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knot is k = p, in which case the B-Spline curve is only C0 continuous at that knot.

B-Spline surfaces are constructed from the tensor product of B-Spline basis functions of

degree p and q, which are constructed on their respective parametric domain ξ1 =
[
ξ11 , ...,ξ1n+p+1

]
and ξ2 =

[
ξ21 , ...,ξ2m+q+1

]
:

C (ξ1,ξ2) =
n

∑
i=1

m

∑
j=1

Ni,p (ξ1)Nj,q (ξ2)Bi,j . (2.6)

2.1.3 NURBS basis functions, curves and surfaces

The construction of Non Uniform Rational B-Spline basis functions requires the additional

definition of “weight”, which stems from the concept of projection of the control points from a

higher-dimensional space. Consider, for example, the control point Bw
i for the i-th B-Spline curve in

RNSD+1. Then, the k-th component of the control point in RNSD is defined by projecting :

Bik =
Bw

ik

Bw
iNSD+1

=
Bw

ik

wi
; k = 1, ...,NSD , (2.7)

where xi is the weight of the i-th B-Spline in RNSD+1. NURBS basis functions of degree p are defined

as:

Ri,p (ξ) =
Ni,p (ξ)wi

∑n
t=1 Nt,p (ξ)wt

, (2.8)

while NURBS curves are computed from the linear combination of NURBS basis functions:

C (ξ) =
n

∑
i=1

Ri,p (ξ)Bi , (2.9)

Similarly to B-Spline, basis function of NURBS surfaces are constructed from the tensor

product of NURBS basis functions of degree p and q, which are constructed on their respective

parametric domain ξ1 =
[
ξ11 , ...,ξ1n+p+1

]
and ξ2 =

[
ξ21 , ...,ξ2m+q+1

]
:

R(i,j),(p,q) (ξ1,ξ2) =
Ni,p (ξ1)Mj,q (ξ2)wi,j

∑n
t=1 ∑m

s=1 Nt,p (ξ1)Ms,q (ξ2)wt,s
, (2.10)

where Ni,p and Mj,q are basis functions of B-spline curves. Finally, NURBS surfaces are computed

from a linear combination of NURBS surface basis functions:

S (ξ1,ξ2) =
n

∑
i=1

m

∑
j=1

R(i,j),(p,q) (ξ1,ξ2)Bi,j . (2.11)

For purposes of numerical analysis, “finite elements” are taken to be knot spans, namely,
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[ξi,ξi+1]× [ηj,ηj+1]. A comprehensive analysis of approximation properties of NURBS as shape

functions is reported in [58], where refinement techniques are also discussed.

2.2 Shell modeling: differential geometry of manifolds

The point of departure of this work is the derivation of the kinematic equations of a

continuum thin solid in the three-dimensional space as a function of NURBS in-plane parametric

coordinates ξ1 and ξ2. Following a commonly adopted approach, see i.e. Bischoff et al. [19], the

kinematics of a thin continuum solid is described in terms of its midsurface displacement and

shell director. This model is based on the Kirchhoff assumption, which posits that a shell director

remains normal to the shell midsurface during the deformation. It follows that the position vectors

of a material point in the reference and current configuration, denoted respectively by X and x, are

expressed as:

X (ξ1,ξ2,ξ3) = Xζ
0 (ξ1,ξ2) jζ + ξ3Gζ

3 (ξ1,ξ2) jζ ,

x (ξ1,ξ2,ξ3) = xζ
0 (ξ1,ξ2, ) jζ + ξ3gζ

3 (ξ1,ξ2) jζ ,
(2.12)

where X0 and x0 are the position vectors of a material point on the shell midsurface in the reference

and current configuration, ξ3 ∈
[
− hth

2 , hth
2

]
and hth denotes the shell thickness. The vector jζ is

a basis of the global Cartesian coordinate system and ζ = 1, 3 in the three dimensional space.

The covariant in-plane basis vectors Gα and gα are obtained by taking a partial derivative of the

midsurface position vectors with respect to the NURBS parametric coordinates ξ1 and ξ2 as:

Gα = Xζ
0,ξα jζ =

∂Xζ
0

∂ξα
jζ ,

gα = xζ
0,ξα jζ =

∂xζ
0

∂ξα
jζ ,

(2.13)

where index α = 1,2. Since a NURBS surface is defined as function of two in-plane curvilinear

parameters, the third basis vector orthogonal to the midsurface, namely G3 and g3 in Equation (2.12),

is obtained from the cross-products of the in-plane basis vectors as:

G3 =
G1 ×G2

‖G1 ×G2‖
, g3 =

g1 × g2
‖g1 × g2‖

. (2.14)

It is also worth noting that, since the components of basis vectors are expressed with respect to the

global Cartesian basis, the global Cartesian basis j is omitted in order to simplify the notation.

As illustrated in Figure 2.1, a local Cartesian coordinate system is also defined such that e1
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(a) (b)

Figure 2.1: Representation of curvilinear and Cartesian basis vectors on a NURBS patch in the (a)
Reference and (b) Deformed configuration.

is parallel to the vector G1, namely:

e1 =
G1

‖G1‖
, (2.15)

while the second basis vector e2 lies in the plane spanned by G1 and G2 and it is orthogonal to e1

by construction:

e2 =
G2 − (G2 · e1)e1

‖G2 − (G2 · e1)e1‖
. (2.16)

The corresponding in-plane Cartesian basis vectors in the current configuration are denoted by

ecur
1 and ecur

2 and are defined analogously. The out-of-plane vectors of the Cartesian basis coincides

with the normal vectors defined in Equation (2.14), that is, e3 ≡G3 and ecur
3 ≡ g3.

Following the definition of the in-plane basis, it is convenient to introduce the metric tensor

M of the reference midsurface:

M =
[
Gαβ

]
; Gαβ = Gα ·Gβ , (2.17)

The contravariant in-plane basis vector Gα is computed straightforwardly from the covariant basis

vectors Gβ and the components of the inverse midsurface metric:

Gα =
[

Gαβ
]

Gβ , (2.18)

where
[
Gαβ

]
=
[
Gαβ

]−1.

2.3 Kinematic of the Kirchhoff–Love shell

The kinematic model underlying the thin-shell formulation is based on the Kirchhoff

assumption. This hypothesis implies that, at the level of individual plies, transverse shear is

neglected in the model. Furthermore, the kinematics of the shell can be described purely as a
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function of its midsurface displacements without introducing rotational Degrees of Freedom (DOF),

and thus reducing the number of DOFs up to 50% compared to the more standard Reissner–

Mindlin-type thick-shell formulation. In addition, because transverse shear is not present in the

theory, the Kirchhoff–Love shell does not experience any shear locking in the limit of vanishing

thickness. These factors greatly improve the computational efficiency of Kirchhoff–Love-shell-

based formulation for laminated composite structures, especially in the context of layer-by-layer

modeling using multiple shells to represent individual plies or ply groups.

In order formulate a structural model based on the thin shell theory, we introduce the

Green–Lagrange strain measure, which is finite-strain and objective strain tensor, not affected by

rigid body translations:

E =
1
2

(
FTF− I

)
= Eαβ G̃

α ⊗ G̃
β

, (2.19)

where F is the deformation gradient tensor and I is the second-order identity tensor. In Equa-

tion (2.19), G̃
α

represent a contravariant basis vector at a material point X.

Remark It is worth noting that a basis vector G̃α coincide with an in-plane basis vector Gα, as

defined in Equation (2.13), if the material point X lies on the shell midsurface (i.e., if X≡ X0).

In the framework of the Kirchhoff–Love shell kinematics assumptions, the Green–Lagrange

strain tensor can be expressed by separating the membrane and bending contributions. The

separation of the strain tensor into in-plane and curvature components can be justified based on

the kinematic assumption of the thin shell model, as expressed by Equation (2.12). Consider, for

instance, deformation gradient tensor:

F = g̃α ⊗ G̃
β

; FT = G̃
α ⊗ g̃β , (2.20)

where G̃α and g̃α are the covariant basis vectors, obtained by differentiating the position vectors x

and X, as expressed in Equation (2.12), with respect to the NURBS in-plane parametric coordinate

ξα:

G̃
α
=

∂X
∂ξα

=
∂X0

∂ξα
+ ξ3 ∂G3

∂ξα

g̃α =
∂x
∂ξα

=
∂x0

∂ξα
+ ξ3 ∂g3

∂ξα
.

(2.21)

It follows that the covariant components of strain tensor Eαβ can be expressed in terms of the metric

coefficients as:

Eαβ =
1
2

(
g̃αβ − G̃αβ

)
. (2.22)

where the metric coefficients gαβ and Gαβ, are computed straightforwardly by taking the inner
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product of the basis vectors:

G̃αβ =

(
∂X0

∂ξα
+ ξ3 ∂G3

∂ξα

)
·
(

∂X0

∂ξβ
+ ξ3 ∂G3

∂ξβ

)
=

(
Gα + ξ3 ∂G3

∂ξα

)
·
(

Gβ + ξ3 ∂G3

∂ξβ

)
g̃αβ =

(
∂x0

∂ξα
+ ξ3 ∂g3

∂ξα

)
·
(

∂x0

∂ξβ
+ ξ3 ∂g3

∂ξβ

)
=

(
gα + ξ3 ∂g3

∂ξα

)
·
(

gβ + ξ3 ∂g3
∂ξβ

)
.

(2.23)

By introducing Equation (2.23) into Equation (2.22) and by neglecting the terms multiplied by
(
ξ3)2,

which is a reasonable assumption for thin shells since they are proportional to h2
th, the curvilinear

components of the Green-Lagrange strain tensor can be expressed as:

Eαβ =
1
2

(
gα · gβ −Gα ·Gβ

)
+ ξ3

[(
gα ·

∂g3
∂ξβ

+ gβ ·
∂g3
∂ξα

)
−
(

Gα ·
∂G3

∂ξβ
+ Gβ ·

∂G3

∂ξα

)]
.

(2.24)

Because of the orthogonality of in-plane basis gα and the shell normal vector g3, Equation (2.24)

can be further simplified. Consider the following equivalent form that express the curvature of the

manifold in the current configuration:

gα ·
∂g3
∂ξβ

= gβ ·
∂g3
∂ξα

= −∂gα

∂ξβ
· g3. (2.25)

Introducing Equation (2.25) in Equation (2.24) leads to the canonical expression of the Green–

Lagrange strain components for this shells:

Eαβ =
1
2

(
gα · gβ −Gα ·Gβ

)
+ ξ3

(
∂Gα

∂ξβ
·G3 −

∂gα

∂ξβ
· g3

)
= εαβ + ξ3καβ , (2.26)

where the covariant components εαβ of the membrane strain tensor ε are defined as:

εαβ =
1
2

(
gα · gβ −Gα ·Gβ

)
, (2.27)

and the covariant components καβ of the curvature-change strain tensor κ are defined as:

καβ =
(

Gα,ξβ
·G3

)
−
(

gα,ξβ
· g3

)
. (2.28)

Finally, in order to use an orthotropic contitutive law, it is required to compute the compo-
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nents of the strain tensor associated with an orthogonal basis. This is involves the change of basis

from curvilinear (2.13) to local Cartesian (2.15) and (2.16) basis. The Cartesian components of the

membrane strain and curvature tensor are computed from their covariant counterparts as:

εαβ = εγδ

(
G̃

γ · eα

)(
G̃

δ · eβ

)
, (2.29)

καβ = κγδ

(
G̃

γ · eα

)(
G̃

δ · eβ

)
. (2.30)

Details of the transformation from curvilinear to Cartesian components of a second order tensor

are reported in Appendix A.1. Following the change of basis, the Cartesian components of the

Green–Lagrange strain tensor for the Kirchhoff–Love shell formulation are expressed as:

Eαβ = εαβ + ξ3καβ . (2.31)
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3 Isogeometric multi-layer modeling

approach for composite laminates

This chapter outlines the key aspects of the IGA-based multi-layer analysis framework

that were developed for progressive damage analysis of composite laminates. The multi-layer

model developed by the authors is based on the hypothesis that each ply can be represented,

individually, by an independent NURBS (or other spline-based) surface. This allows the modeling

of interlaminar damage and explicit ply separation (i.e., delamination). In addition, intralaminar

damage, which includes fiber breaking, kinking, matrix cracking and fiber debonding, is modeled

at the individual lamina level.

One of the key modeling assumptions is that individual plies of a composite laminate are

represented by the Kirchhoff–Love shell model, which was developed in order to model thin shells.

As discussed in Chapter 2, the kinematics of the Kirchhoff–Love shell element is described purely

as function of the midsfurface displacements. The kinematic model underlying the thin-shell

formulation is based on the Kirchhoff assumption, which posits that the shell director remains

normal to the shell midsurface during the deformation. This hypothesis implies that, at the level of

each individual ply, transverse shear is neglected. However, the shear deformability of the whole

laminate is recovered due to the presence of compliant cohesive interfaces, which allow for relative

in-plane displacement between the connected plies. In particular, we showed [14] that it is possible

to compute a specific value of cohesive stiffness, which depends on the material shear modulus

and ply thickness, such that the multi-layer model mimics correctly the transverse shear behavior

predicted by the First-order Shear Deformable Theory (FSDT).

In the proposed multi-layer model, the plies are connected through zero-thickness cohesive

interface whose stiffness is progressively reduced to account for the evolution of interlaminar

damage, commonly referred as delamination, which involves local separation of individual plies,

or groups of plies, from the original laminate. In the framework of the multi-layer modeling

approach we represent the laminate ply-by-ply and we use zero-thickness cohesive interfaces to

connect adjacent plies. A cohesive interface is defined between distinct NURBS surfaces, thereby
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introducing a surface traction term proportional to the relative displacement. A cohesive damage

law enables the detection of the onset of permanent interlaminar damage and progression of the

delamination front.

The equivalent effects of intralaminar damage are modeled at the lamina level. Intralaminar

damage include failures of the matrix phase, such as matrix cracking, of the reinforcement phase,

such as fiber breaking and fiber kinking, and of the fiber-matrix interface, such as fiber debonding.

While these failures occur at the microscale level, their effects at the meso- and macro-scale levels

are often described using a residual stiffness approach in the framework of Continuum Damage

Mechanics (CDM) [75]. While the theoretical assumptions lead to a simplified representation of

the actual damage state of the material, this model is often preferred for meso- and macro-scale

simulations because, while being relatively simple from computational standpoint, it is still able to

accurately predict damage growth in composite laminates (see, e.g., results for impact damage on

composite laminates [101, 41]).

The modeling framework presented in this dissertation uses a phenomenological Residual

Stiffness Approach (RSA) [75] in order to model the intralaminar damage at the level of each

individual ply. The RSA implementation is developed in the framework of the CDM and it is

based on progressive degradation of the pristine-material elastic properties as a function of local

damage variables. For this purpose, a strain-softening damage model [36] is used to degrade

material stiffness tensor as a function of local damage variables. The use of local damage theories

in combination with strain-softening degradation models may lead to strain localization resulting

in high mesh sensitivity of the solution (see, e.g., the work of Lapczyk and Hurtado [72]). However,

the introduction of a length scale in the damage model, as proposed by Bažant and Oh [10], allows

one to alleviate the global effects of damage localization.

3.1 Equations of structural dynamics

The equations of dynamic equilibrium for structural dynamics are obtained from the

principle of virtual work. This leads to the variational form of the linear momentum equation,

which is stated as follow: Given the trial-function set Sx and the test-function set Sw, find the

configuration x ∈ Sx such that ∀ w ∈ Sw,

∫
Ω0

w · ρ̃0

(
d2x
dt2 − f

)
dΩ +

∫
Ω0

δE : SdΩ−
∫
(Γt)h

w · hdΓ = 0 , (3.1)

where ρ̃0 is the density per unit volume in the reference configuration, f are the body forces acting

on the domain Ω0 and h are the surface traction acting on sub–region of the boundary (Γt)h.
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Following the discussion presented in Chapter 2, the linear momentum equation can

be simplified for thin continuum solids modeled as shells and represented by their reference

midsurface. By introducing the kinematic Equation 2.12 in the variational form (3.1), it is possible

to separate the volume integrals in Equation (3.1) into in-plane and through-the-thickness integrals.

Furthermore, for thin structures plan stress state is typically assumed and the Green–Lagrange

strain tensor in Equation (3.1) may be conveniently expressed in Voigt notation as:

E =


E11

E22

E12

 =


ε11

ε22

ε12

+ ξ3


κ11

κ22

κ12

 . (3.2)

The St. Venant–Kirchhoff material law is then introduced to relate the second Piola–Kirchhoff

stresses to the Green–Lagrange strain as:


S11

S22

S12

 = C


E11

E22

E12

 , (3.3)

where C is the plane stress constitutive material stiffness matrix expressed in the local coordinate

system. It follows that the internal work of Equation (3.1) can be conveniently expressed as:

∫
Ω0

δE : SdΩ =∫
Γs

0

δε ·
[(∫

hth

C dξ3

)
ε +

(∫
hth

ξ3C dξ3

)
κ

]
dΓ

+
∫

Γs
0

δκ ·
[(∫

hth

ξ3C dξ3

)
ε +

(∫
hth

ξ2
3C dξ3

)
κ

]
dΓ .

(3.4)

3.1.1 Basic semi-discrete variational formulation

of the Kirchhoff–Love shell

The Isogeometric discretization then is introduced in the variational Equation (3.1), in

which the position vector of a material point on the shell midsurface is approximated using a set of

NURBS shape functions as:

xh
0 (ξ1,ξ2) =

Nshl

∑
A=1

NA (ξ1,ξ2)dA , (3.5)

where the positions of the NURBS control points dA are the new generalized DOFs of the discrete

formulation.
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Remark With a slight abuse of notation, in the following sections and in Chapter 4, the approxi-

mate position vector of a material point on the shell midsurface is simply denoted as xh instead of xh
0.

The basic semi-discrete variational form of the Kirchhoff–Love shell governing equations

may be stated as follows: Given the trial-function set Sh
x and the test-function set Sh

w, here assumed

to be comprised of NURBS basis functions, find the configuration xh ∈ Sh
x of the shell midsurface

such that ∀ wh ∈ Sh
w, ∫

Γs
0

wh · ρ0hth

(
d2xh

dt2 − fh
)

dΓ

+
∫

Γs
0

δεh ·
(

Kexteεh + Kcoupκh
)

dΓ

+
∫

Γs
0

δκh ·
(

Kcoupεh + Kbendκh
)

dΓ

−
∫
(Γs

t )h

wh · hh dΓ = 0 ,

(3.6)

where the Γs
0 and Γs

t represent the shell midsurface in the reference and current configuration,

respectively, ρ0 is the through-thickness averaged density, fh is the vector of the body forces per

unit mass, εh and κh are membrane-strain and curvature-change vectors, δεh and δκh are their

respective variations, and (Γs
t)h represents the shell midsurface where traction forces hh are applied.

In addition, the matrices Kexte, Kcoup and Kbend represent, respectively, the extensional, coupling,

and bending stiffness, which result from the through-thickness integration of the stress terms. The

integration is simplified according to the Classical Laminated Plate Theory (CLPT) [90], whereby

the integrals are reduced to discrete summations over the laminate plies:

Kexte =
∫

hth

Cdξ3 =
nply

∑
k=1

Ckhthk ,

Kcoup =
∫

hth

ξ3Cdξ3 =
nply

∑
k=1

Ckhthk zk ,

Kbend =
∫

hth

ξ2
3Cdξ3 =

nply

∑
k=1

Ck

(
hthk z2

k +
h3

thk

12

)
.

(3.7)

In Equation (3.7) , hthk is the thickness of the kth ply, while zk is the distance of the ply midsurface

from the laminate midsurface. For each ply k, the matrix Ck is obtained through a transformation

of the constitutive matrix C̃k, which, for composite materials, is typically expressed in terms of

the material axes oriented in the longitudinal (or fiber) and transverse (or matrix) directions. This

transformation is defined as:

Ck = TT (φk) C̃kT (φk) , (3.8)
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where the transformation matrix T (φk) arises due to a change of basis from the principal material

axes to the local lamina coordinate system, and is given by

T (φk) =


cos2 φk sin2 φk cosφk sinφk

sin2 φk cos2 φk −cosφk sinφk

−2cosφk sinφk 2cosφk sinφk cos2 φk − sin2 φk

 , (3.9)

where (φk) is the angle between the fiber direction in the kth ply and the x1-axis of the local Carte-

sian coordinate system.

Remark If the Kirchhoff–Love shell is employed to represent each individual ply in the lami-

nate, which is a key idea of the present modeling approach, then the definitions of Kexte, Kcoup, and

Kbend for each ply reduce to the classical expressions:

Kexte =
∫

hthk

Cdξ3 = Chthk ,

Kcoup =
∫

hthk

ξ3Cdξ3 = 0 ,

Kbend =
∫

hthk

ξ2
3Cdξ3 = C

h3
thk

12
.

(3.10)

However, it is sometime convenient, and computationally efficient, to use the so-called “ply

grouping” approach, where it is implicitly assumed that delamination will not occur within a given

group of plies. This is commonly done for groups of plies made of the same material and with the

same fiber orientation. In that case, this group of plies, also called a sub-laminate, is approximated

as a single Kirchhoff–Love shell with the extensional, coupling, and bending stiffnesses computed

according to Equation (3.7).

3.2 Continuum damage modeling for composite shells

Typical intralaminar damage modes include matrix cracking, fiber pullout caused by failure

of the fiber-matrix interface, and fiber kinking under compression, which is a form of local instability.

While these failures occur at the microscale level, their effects at the macroscopic level are often

described using a residual stiffness approach in the framework of CDM. The residual stiffness

approach adopted in this work was originally proposed in [75], where the authors developed

a relationship between the damage state and effective elastic properties of unidirectional fiber-

reinforced composites with brittle matrix behavior. The model in [75] is based on the following
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assumptions:

• The material is an orthotropic continuum;

• The material is in the state of plane stress;

• The damage process does not affect the orthotropic nature of the material.

In what follows, we summarize the intralaminar damage model as presented in [72],

and further developed for Isogeometric Kirchhoff–Love shells in [36]. The model postulates the

existence of crack arrays that cause, in the damaged material, the reduction of the area through

which the stresses are transmitted. In order to preserve the orthotropic nature of the material, these

cracks arrays are assumed to lie on damage planes orthogonal to the fiber and matrix directions.

The second Piola–Kirchhoff stress S, which is computed from Equation (3.3), is transformed into its

effective counterpart Ŝ in order to take into account the reduction of the effective area as:


Ŝ11

Ŝ22

Ŝ12

 =


1

1− d1
0 0

0
1

1− d2
0

0 0
1

1− d6




S11

S22

S12

 , (3.11)

where d1,d2 and d6 are the fiber, matrix, and shear damage indices that reside in the open interval

[0,1). The compliance matrix H̃ may be expressed as a function of the damage indices as (see [75]):

H̃ =
1
D



1
(1− d1)E0

1
−ν21

E0
2

0

−ν12

E0
1

1
(1− d2)E0

2
0

0 0
1

(1− d6)G0
12

 , (3.12)

and its inverse leads to the material stiffness matrix C̃ given by:

C̃ =
1
D


E0

1 (1− d1) E0
1ν21 (1− d1) (1− d2) 0

E0
2ν12 (1− d1) (1− d2) E0

2 (1− d2) 0

0 0 G0
12D (1− d6)

 , (3.13)

where E0
1, E0

2, G0
12 are the elastic moduli of the undamaged material, ν21 and ν12 are the Poisson’s

ratios, and D = 1− ν21ν12 (1− d1) (1− d2). Prior to damage initiation, d1 = d2 = d6 = 0, and C̃

coincides with the classical constitutive matrix for an orthotropic material. As damage initiates
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and evolves, the lamina stiffness is progressively reduced according to Equation (3.13). Damage

initiation and evolution is discussed in what follows.

3.2.1 Damage initiation

The Hashin criteria for plane stress [47, 46] are used to indicate the onset of damage in

a ply. These criteria, originally formulated for unidirectional composites, have been extensively

used for the analysis of laminates, mostly due to the ease of implementation. More sophisticated

criteria [89, 33] for the plane-stress state have been recently introduced to predict with better

accuracy the failure modes of fiber reinforced composites, particularly under compressive loads.

These criteria take into account orientation of the fracture planes, which are assumed to be fixed in

the approach adopted here, misalignment of the fibers, and the constraining interactions between

the lamina. The latter, commonly referred to as the in-situ effect, has been shown in [97] to increase

the strength of individual plies when these are located between the lamina with different fiber

orientations. We note that the so-called LaRC03 criterion [33] for matrix cracking under compressive

loading coincides with the corresponding Hashin criterion whenever the fracture plane is assumed

to be oriented at a constant angle of 45◦.

Two fiber-dominated and two matrix-dominated, independent intralaminar damage modes

are considered in the present work, namely,

• Mode 1T: fiber breaking under tension;

• Mode 1C: fiber buckling under compression;

• Mode 2T: matrix cracking under traverse tension and shear;

• Mode 2C: matrix cracking under traverse compression and shear.

One failure index is associated with each failure mode. We mark the failure indices with an integer

subscripts to indicate fiber (1) or matrix (2) direction, and with a letter subscript to indicate if the

failure occurs under tensile (T) or compressive (C) stress conditions. The failure indices F1T , F1C ,
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Figure 3.1: Illustration of the bi-linear softening model. In the figure, E0
i and Ei are the elastic

moduli of the material in an undamaged and damaged state, respectively.

F2T , and F2C are computed from the effective stresses as follows:

Mode 1T: F1T =

(
Ŝ11

XT

)2

+ α

(
Ŝ12

ZL

)2

,

Mode 1C: F1C =

(
Ŝ11

XC

)2

,

Mode 2T: F2T =

(
Ŝ22

YT

)2

+

(
Ŝ12

ZL

)2

,

Mode 2C: F2C =

(
Ŝ22

YC

)2

+

(
Ŝ12

ZL

)2

,

(3.14)

where XT and XC are the fiber strengths under tensile and compressive conditions, YT and YC are

the matrix strengths under tensile and compressive conditions, while ZL is the shear strength. The

Hashin equation for the Mode 2C criterion includes also the effect of transverse shear, which was

neglected in Equation (3.14) since it is identically zero under the hypothesis of Kirchhoff–Love

shell theory. If the parameter α is chosen to be equal to zero, according to the original Hashin

criterion [47], the effect of in-plane shear stress is neglected for the tensile fiber failure. However, in

the updated version of the criterion [46], the coefficient α was set to 1.

3.2.2 Damage evolution

Once damage initiation occurs, we use a bi-linear softening model, as shown in Figure 3.1,

in order to compute the damage indices. Each damage mode is associated to a bi-linear curve,

which allows us to compute the corresponding damage variables d1T , d1C , d2T and d2C as:

di =
δ̂F

i
(
δ̂i − δ̂0

i

)
δ̂i
(
δ̂F

i − δ̂0
i

) , (3.15)
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where δ̂i represents the equivalent displacement for the ith damage mode. The displacements δ̂i are

computed from the strains as:

δ̂1T = Lc〈E11〉 ,

δ̂1C = Lc〈−E11〉 ,

δ̂2T = Lc

√
〈E22〉2 + E

2
12 ,

δ̂2C = Lc

√
〈−E22〉2 + E

2
12 ,

(3.16)

and the corresponding stresses are:

Ŝ1T = 〈Ŝ11〉 ,

Ŝ1C = 〈−Ŝ11〉 ,

Ŝ2T =
Lc
(
〈Ŝ22〉〈E22〉+ 〈Ŝ12〉E12

)
δ̂2T

,

Ŝ2C =
Lc
(
〈−Ŝ22〉〈−E22〉+ 〈Ŝ12〉E12

)
δ̂2C

,

(3.17)

where the symbol 〈·〉 represents the Macaulay bracket. The characteristic length Lc is introduced

to mitigate the dependency of the dissipated strain energy on the element size as proposed by

Bažant [10]. We take Lc = 2
√

J, where J = ‖G1 ×G2‖ is the surface Jacobian determinant of the

transformation between the element parent and physical domains.

The displacement δ̂0
i and stress Ŝ0

i corresponding to the onset of permanent damage are

computed as:

δ̂0
i =

δ̂i√
Fi

,

Ŝ0
i =

Ŝi√
Fi

.
(3.18)

The equivalent displacement at failure δ̂F
i is computed by assuming that the strain energy required

in order for the material to fail is equal to the fracture energy Gi of the ith damage mode, namely,

δ̂F
i =

2Gi

Ŝ0
i

. (3.19)

The equivalent displacements δ̂0
i and δ̂F

i are both computed only when the failure index reaches

unity for the first time. Their values are then kept constant for the rest of the simulation, which also

improves nonlinear convergence.

In order to enforce irreversibility of damage growth, the damage variables di’s are forced to
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grow monotonically. At the kth increment, the damage variable is computed as:

dk
i = max

dk−1
i ,

δ̂F
i

(
δ̂

k

i − δ̂0
i

)
δ̂

k

i

(
δ̂F

i − δ̂0
i

)
 . (3.20)

In the above Equations (3.15), (3.18), (3.19), and (3.20), the index i takes on the values 1T, 1C,

2T and 2C. Finally, the damage indices d1,d2 and d6 are computed from the damage variables d1T ,

d1C , d2T and d2C as:

d1 =

d1T if Ŝ11 ≥ 0 ,

d1C if Ŝ11 < 0 ,

d2 =

d2T if Ŝ22 ≥ 0 ,

d2C if Ŝ22 < 0 ,

d6 = 1− (1− d1T ) (1− d1C) (1− d2T ) (1− d2C) .

(3.21)

In the following chapters the membrane, coupling and stiffness matrices (i.e., Kexte, Kcoup

and Kbend) are explicitly expressed as functions of the damage variables dvar = [d1,d2,d6] to specify

that the modified constitutive stiffness matrix (3.13) is used in Equations (3.7) and (3.10).

3.2.3 Viscous regularization of the damage variables

The bi-linear softening law introduced for the degradation of the elastic properties exhibits

a sharp transition from the linear-elastic regime to the damaged state. A viscous regularization

scheme [72] is introduced in order to mitigate this effect and to also improve nonlinear convergence.

The method is a generalization of the well-known Duvaut and Lions [38] regularization procedure.

The scheme is defined in terms of the rate of change of the regularized variable, which is inversely

proportional to a viscous parameter ρmat, namely,

d
dt
(
dreg

i

)
=

1
ρmat

(
di − dreg

i

)
. (3.22)

The regularization scheme is then implemented by using the backward Euler method for the time

integration of Equation (3.22). Therefore, the regularized damage variables are given by

dreg
i (t + ∆t) =

∆t
ρmat + ∆t

di (t + ∆t) +
ρmat

ρmat + ∆t
dreg

i (t) , (3.23)

where the index i, as before, take on the values 1T, 1C, 2T, and 2C. When the viscous parameter ρmat

is negligible compared to the problem time scale, the regularized damage variable essentially coin-

cides with the non-regularized one computed according to the procedure described in Section 3.2.2.
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When the parameter ρmat grows, a delay is introduced in the growth of the damage variables. In the

limit of ρmat→∞, the regularized damage variable essentially remains equal to its value defined at

the initial time.

3.3 Cohesive interface model for Kirchhoff–Love shells

We introduce a zero-thickness cohesive interface model in the framework of Kirchhoff–

Love shells in order to simulate the nucleation and progressive growth of the delamination front

between adjacent plies. The proposed cohesive interface model, which defines an appropriate

relationship between the ply-interface traction and separation, may be thought of as a penalty

contact formulation (see e.g., [107]) enriched with an asymmetric multi-mode stiffness degradation

law based on the cohesive properties of the laminate. The cohesive interface is introduced in the

variational formulation given by Equation (3.6) by adding a ply interface traction proportional to

the relative displacement jump between the initially connected lamina. The displacement jump

term is integrated over the true ply interface and is defined consistently with the kinematics

of the Kirchhoff–Love shell. The stiffness degradation law, which is based on the Mixed-Mode

Cohesive Model (MMCM) presented in [103, 104], is then introduced to determine the elastic and

failure limits of the interface. The MMCM was shown in [103, 104] to give accurate prediction of

delamination for a combination of in-plane (Mode II) and out-of-plane (Mode I) opening modes.

The asymmetric stiffness degradation law allows for a different treatment of the interface in case the

plies move away from or toward each other, and prevents the ply interpenetration.

We note that while transverse shear is neglected at the level of individual plies, the introduc-

tion of a cohesive interface model permits laminate-level transverse shear compliance. The cohesive

interface formulation that is consistent with the kinematics of the Kirchhoff–Love shell and the

resulting laminate-level transverse shear compliance present the main novelty of the proposed

multi-layer modeling approach.

3.3.1 Cohesive interface term in the weak form

The variational formulation of the multi-layer Kirchhoff–Love shell that includes a cohesive

interface model may be obtained by adding the following terms to the interface between the plies:

+
∫

Γcoh
t

δδn · (1− dcoh)Kcoh
n δn dΓ +

∫
Γcoh

t

δδτ · (1− dcoh)Kcoh
τ δτ dΓ , (3.24)

where Γcoh
t is the cohesive interface in the current configuration, δn and δτ are the normal and

tangential components of the displacement jump δ, and δδn and δδτ are their variations. The
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Figure 3.2: Schematic representation of two plies connected with a cohesive interface.

displacement jump is separated into the normal and tangential components to allow for a different

treatment of the the normal and tangential opening modes. Also in Equation (3.24) Kcoh
n and Kcoh

τ

are the nominal stiffnesses in the normal and tangential directions, and dcoh is the damage variable.

The normal displacement jump δn is obtained by projecting δ in the direction orthogonal to

the cohesive interface. We use the following definition for the effective interface normal vector ñ,

ñ =
n1 (x1)− n2 (x2)

||n1 (x1)− n2 (x2) ||
, (3.25)

where ni (xi) ≡ ±ēcur
3 (xi) is the unit vector pointing in the direction of the cohesive interface and

orthogonal to the surface Γi, as illustrated in Figure 3.2. The normal and in-plane displacement

jumps are therefore explicitly computed as:

δn = (ñ⊗ ñ)δ ,

δτ = (I− ñ⊗ ñ)δ .
(3.26)

As explained in detail in Appendix A.2, the orthogonality of displacement jumps allows us to

re-write the cohesive interface terms given by Equation (3.24) as a function of δ as:

∫
Γcoh

t

δδ · (1− dcoh)
[
Kcoh

n (ñ⊗ ñ) + Kcoh
τ (I− ñ⊗ ñ)

]
δdΓ , (3.27)

which, in turn, gives an implicit definition of the cohesive traction vector expressed in the global
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coordinate system,

tcoh = (1− dcoh)
[
Kcoh

n (ñ⊗ ñ) + Kcoh
τ (I− ñ⊗ ñ)

]
δ . (3.28)

The displacement jump is computed by using directly the kinematics of the Kirchhoff–Love

shell. Employing the nomenclature of Figure 3.2, which shows two plies (labeled 1 and 2) connected

with a cohesive interface, the spatial location xP
1 of a point on the surface of ply 1 is computed as:

xP
1 = x1 +

hΓ1

2
n1 (x1) , (3.29)

where x1 is the spatial coordinate of the ply midsurface, hΓ1 is the local thickness, and n1 is the

normal vector. The spatial location xP
2 of a point on the surface of ply 2 is computed analogously.

The displacement jump on the cohesive interface is then naturally defined as:

δ = xP
1 − xP

2 =

[(
x1 +

hΓ1

2
n1 (x1)

)
−
(

x2 +
hΓ2

2
n2 (x2)

)]
. (3.30)

The above displacement jump is expressed in terms of the midsurface coordinates, local thicknesses,

and normals of the adjacent plies. The variation of the displacement jump δδ may be computed as:

δδ =

[(
δx1 +

hΓ1

2
δn1

)
−
(

δx2 +
hΓ2

2
δn2

)]
, (3.31)

where, in the notation of Equation (3.6),

δx = w , (3.32)

and

δn =
1

‖x,ξ1 × x,ξ2‖
(I− n⊗ n)

[(
w,ξ1
× x,ξ2

)
+
(

x,ξ1
×w,ξ2

)]
. (3.33)

(See Appendix A.3 for the derivation of the above expression.) The final form of the cohesive

interface terms is obtained by introducing Equations (3.30) and (3.31) into Equation (3.27), and

using the expressions given by Equations (3.32) and (3.33).

Remark The cohesive interface formulation requires that the integration in Equation (3.27) is

carried out over the surface Γcoh
t . In practice, we do not define a cohesive interface surface explicitly.

Instead, we carry out the integration of the terms involving δx1 and δx2 over the respective shell

middle surfaces Γ1 and Γ2. As shown in Appendix A.4, this simplification introduces an error of

O(h2) in the evaluation of the surface Jacobian determinant. This is quite acceptable given that in

the derivation of the Kirchhoff–Love shell theory itself the terms of O(h2) are typically neglected.
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3.3.2 Enforcement of the ply non-interpenetration condition

The structure of the cohesive interface formulation given by Equation (3.27) is that of a

penalty method. Although the relative displacement of the plies is penalized, the penalty factor,

which is proportional to (1− dcoh), goes to zero when the cohesive interface fails. As a result, in that

limit, the cohesive interface formulation is not able to prevent the non-physical interpenetration

of the plies. In order to overcome this limitation, one can either develop an additional contact

formulation, or introduce a modification to the cohesive interface stiffness degradation law, which

is asymmetric with respect to the direction of the normal displacement jump.

In order to accomplish this, we first define the gap function δ̄ as:

δ̄ =
[(

xP
1 − XP

1

)
−
(

xP
2 − XP

2

)]
· ñ (x1,x2) . (3.34)

The positive value of δ̄ indicates that the interface is closing. In this case, a repulsive force between

the plies needs to be applied in the direction normal to the cohesive interface. In addition, be-

cause this force is due to contact only, its magnitude needs to be independent of the value of the

cohesive-damage variable dcoh. To reflect this design, we replace the symmetric cohesive interface

formulation given by Equation (3.27) by its asymmetric counterpart as:

∫
Γcoh

t

δδ · tcoh dΓ =


∫

Γcoh
t

δδ · (1− dcoh)
[
Kcoh

n (ñ⊗ ñ) + Kcoh
τ (I− ñ⊗ ñ)

]
δdΓ if δ̄ ≤ 0 ,∫

Γcoh
t

δδ ·
[
Kcoh

n (ñ⊗ ñ) + (1− dcoh)Kcoh
τ (I− ñ⊗ ñ)

]
δdΓ if δ̄ > 0 .

(3.35)

3.3.3 Mixed-mode cohesive model

We describe a mixed-mode cohesive model employed in this work. MMCM gives an

evolution law for a single damage variable dcoh, and assumes that the damage growth is related to

a suitable combination of all the interface-traction components. We begin with a definition of the

mixed-mode displacement jump δm,

δm =


√

δ2
n + δ2

τ if δ̄ ≤ 0,

|δτ| if δ̄ > 0 ,
(3.36)

where δn and δτ are the magnitudes of the displacement jumps defined in Equation (3.26). The

definition of δm depends on the sign of the gap function. In the case of interface closing, only the

tangential component contributes to the total displacement jump.

Turon et al. [103] proposed damage initiation criteria in the framework of the MMCM which
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ensures, for any generic mixed-mode opening condition, a smooth transition from the initiation

to propagation of damage. The initiation of delamination is defined in terms of the equivalent

displacement jump δ0
m given by

δ0
m =

√
(δ0

n)
2 +

(
(δ0

τ)
2 − (δ0

n)
2
)( β2

1 + 2β2 − 2β

)η

, (3.37)

which corresponds to the onset of permanent cohesive interface damage. Here,

δ0
n =

t0
n

Kcoh
n

,

δ0
τ =

t0
τ

Kcoh
τ

,
(3.38)

are the displacement-jump values where the delamination is initiated under pure normal and tan-

gential opening modes, respectively, with t0
n and t0

τ denoting the corresponding cohesive strengths.

Also in Equation (3.37) the semi-empirical, material-specific parameter η is employed to fit the

experimental data obtained under mixed-mode opening conditions, while the mixed-mode ratio

β is a relative weight for the resultant opening mode defined as a function of the normal and

tangential displacement jumps as:

β =


δτ

δτ + δn
if δ̄ ≤ 0 ,

1, if δ̄ > 0 .
(3.39)

Failure of the cohesive interface occurs according to the Benzeggagh and Kenane [18] damage

evolution criterion, which states that the interface fails when the current energy release rate reaches

the value of the critical energy release rate, namely,

3

∑
i=1

Gi ≥ Gcn + (Gcτ −Gcn)

(
β2

1 + 2β2 − 2β

)η

, (3.40)

where Gi’s are the critical energy release rates under pure ith-mode opening. The equivalent

displacement jump δF
m, corresponding to failure of the cohesive interface, is then obtained for a

generic mixed-mode ratio [103] as:

δF
m =

δ0
nδF

n +
(
δ0

τδF
τ − δ0

nδF
n
)( β2

1 + 2β2 − 2β

)η

δ0
m

, (3.41)
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Figure 3.3: Graphical depiction of the MMCM.

where
δF

n =
2Gn

t0
n

,

δF
τ =

2Gτ

t0
τ

,
(3.42)

are the displacement jumps corresponding to a complete failure of the interface under pure normal

and tangential opening mode, respectively, with Gn and Gτ denoting the respective fracture

toughness values. The pure opening Mode I (normal) and Mode II (tangential) are therefore

included in the MMCM when β = 0 and β = 1, respectively. (See Equations (3.37) and (3.41), where

it is clear that for β = 0, δ0
m = δ0

n and δF
m = δF

n , while for β = 1, δ0
m = δ0

τ and δF
m = δF

τ .)

Graphical depiction of the MMCM is shown in Figure 3.3, where the traction is computed

as a function of the normal and tangential displacement jumps. The shaded triangles represent

bilinear degradation law for pure Mode I and Mode II openings. It is clear from the figure that, if

the interface is closing, the degradation of the cohesive interface is only a function of the tangential

displacement jump.

From Equations (3.37) and (3.41) one infers that, under mixed-mode opening, both the

initial and failure displacement jumps are not constant, but are functions of the current mixed-mode

ratio. Nevertheless, one must ensure that the damage growth is irreversible in order to prevent

non-physical recovery of the cohesive interface elastic properties. This condition is satisfied by

choosing appropriate values for the normal and tangential interface strengths. Turon et al. [104]

showed that, for a cohesive interface with mode-independent stiffness, irreversibility of damage is

guaranteed by choosing the tangential strength as:

t0
τ = t0

n

√
Gcτ

Gcn

. (3.43)
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In the present work, the normal and tangential stiffnesses are assumed to be equal, and

we set Kcoh
n = Kcoh

τ = Kcoh. The discussion of how Kcoh is selected is provided later in the chapter.

Finally, in order to numerically enforce the irreversible damage growth condition, the mixed-mode

damage variable at the kth analysis step is computed as:

dk
coh = max

dk−1
coh ,

δFk

m

(
δ

k

m − δ0k

m

)
δk

m
(
δFk

m − δ0k
m
)
 . (3.44)

Analogously to intralaminar damage, viscous regularization of the cohesive damage variable is

also introduced in order to mitigate the effects of rapid changes in the cohesive stiffness induced by

the softening law. The regularized cohesive damage variable is assumed to satisfy the differential

equation
d
dt
(
dreg

coh

)
=

1
ρcoh

(
dcoh − dreg

coh

)
, (3.45)

which is, in turn, integrated using the Backward Euler method. (See Section 3.2.3 for details.)

3.4 Discrete formulation and numerical aspects

For a laminated composite structure comprised of Np plies (or sublaminates in the case of

ply grouping) and Nc cohesive interfaces, the semi-discrete variational formulation may be stated

as follows: Find the configuration xh ∈ Sh
x, such that, ∀wh ∈ Sh

w,

Np

∑
ip=1

{∫
(ΓS

0)ip

wh · ρ0ip hthip

(
d2xh

dt2 − fh
)

dΓ

+
∫
(ΓS

0)ip

δεh ·
(

Kexte
ip

(
dvarip

)
εh + Kcoup

ip

(
dvarip

)
κh
)

dΓ

+
∫
(ΓS

0)ip

δκh ·
(

Kcoup
ip

(
dvarip

)
εh + Kbend

ip

(
dvarip

)
κh
)

dΓ

−
∫
(ΓS

t )h

wh · hh dΓ

}

+
Nc

∑
ic=1

{∫
(Γcoh

t )ic

[(
wh

1ic
+

hΓ1ic

2
δnh

1ic

)
−
(

wh
2ic

+
hΓ2ic

2
δnh

2ic

)]
· tcoh dΓ

}
= 0 .

(3.46)

In the above formulation the trial and test function sets are, as before, comprised of NURBS

basis functions, however, the sets are defined on each ply, and are discontinuous from ply to ply. In the

cohesive interface terms of the of the above formulation the subscripts 1ic and 2ic are consistent

with the notation introduced in Section 3.3.1. The intralaminar CDM presented in Section 3.2 is

35



implicitly embedded in the definition of the extensional, coupling, and bending stiffness matrices

of each ply, and automatically accounts for their current damage state.

The Generalized-α method [31], which is an enhancement of the HHT-α method [49, 57] that

enables control over high-frequency dissipation, is used for the time integration of the semi-discrete

formulation given by Equation (3.46). We adopt a predictor-multicorrector algorithm [32, 15],

which, at every time-step, solves the following system of nonlinear equations:

R(d̈n+αm , ḋn+α f ,dn+α f ) = 0 . (3.47)

Here, R is the discrete control-point residual, d is the vector of control-point position unknowns, ḋ

and d̈ are its first and second time derivatives, respectively. Equation 3.47 can be written explicitly

as:

Fmass (d̈n+αm

)
+ Fdamp

(
ḋn+α f

)
+ Fint

(
dn+α f

)
− Fext

(
dn+α f

)
= 0 , (3.48)

where Fmass is the vector of inertial forces coming from the discretization of the acceleration terms,

Fint are the internal forces obtained from the discretization of the internal stress and cohesive

interface terms, Fext is the vector of external forces obtained from the discretization of body-force

and surface-traction terms. In addition, although this term is not explicitly part of Equation (3.46),

Fdamp represents the vector of forces due to damping, which may be included in the formulation.

Equation (3.47) states that the discrete residual is collocated using acceleration evaluated at the

intermediate time level n + αm and velocity and position evaluated at the intermediate time level

n + α f , where the α levels are chosen to ensure second-order accuracy and unconditional stability

of the algorithm (see [31] for more details.)

The nonlinear-equation system is solved using the Newton–Raphson method, which in-

volves, at every nonlinear iteration, solution of a linear-equation system given by

dRi

dd̈n+1
∆d̈n+1 = −Ri

n+1 , (3.49)

where i is the nonlinear-iteration index and ∆d̈n+1 is the acceleration increment. In Equation (3.49),
dRi

dd̈n+1
is the tangent matrix, which may be expressed as:

dRi

dd̈n+1
=

∂Ri

∂d̈n+αm

∂d̈n+αm

∂d̈n+1
+

∂Ri

∂ḋn+α f

∂ḋn+α f

∂ḋn+1

∂ḋn+1

∂d̈n+1
+

∂Ri

∂dn+α f

∂dn+α f

∂dn+1

∂dn+1

∂d̈n+1

=
∂Ri

∂d̈n+αm

αm +
∂Ri

∂ḋn+α f

α f γ∆t +
∂Ri

∂dn+α f

α f β∆t2

= Mαm + Cα f γ∆t + Kα f β∆t2 ,

(3.50)
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where γ and β are the additional parameters of the Generalized-α scheme arising in the well-known

Newmark formulae, and M, C, and K are the mass, damping, and tangent stiffness matrices.

Remark Particular attention is required for the evaluation of the tangent stiffness matrix com-

ing from the cohesive interface terms because they give rise to the coupling of the degrees of

freedom coming from the adjacent plies. If a sparse-matrix data structure is employed, it needs to

be able to accommodate these cross-stiffness terms.

3.5 Numerical examples

In this section the proposed multi-layer shell formulation is tested on a set of benchmark

examples. The first two numerical examples simulate the Double Cantilever Beam (DCB) and

End Notched Flexure (ENF) tests. DCB and ENF tests are standard experimental procedures to

measure the interlaminar fracture toughness for pure Mode I and Mode II opening, respectively,

and are widely employed to validate cohesive models in their ability to predict delamination under

simple loading conditions. Numerical results are compared with analytical models developed in

the framework of Linear Elastic Fracture Mechanics (LEFM). The LEFM close-form solutions for

the DCB and ENF tests are derived by Mi et al. [77]. Because the LEFM solutions model each of the

DCB and ENF legs as beams, in order to obtain numerical results consistent with the theoretical

predictions, we model the legs as isotropic IGA shells with zero Poisson ratio and using a single

element in the lateral direction. The inertial effects are also disregarded since the tests are performed

under quasi-static loading conditions.

The third numerical example involves a thick composite laminated plate subjected to a

point load applied at its center. Following the approach proposed in the dissertation, the laminate is

modeled ply by ply, and the lamina are connected through cohesive interfaces. The purpose of this

example is to examine the ability of the multi-layer model, developed in the framework of Kirchhoff–

Love shell theory at the ply-level, to effectively represent transverse-shear behavior at the overall

laminate level. Here the comparisons are made with the solution generated in the framework of

First-Order Shear Deformation Theory (FSDT), commonly referred as the Reissner–Mindlin shell

theory.

For all the simulations presented in this section we use C1-continuous quadratic NURBS. In

addition, in the computations presented, we do not account for intralaminar damage. The latter is

tested in the context of impact simulations presented in Chapter 4 of this dissertation.
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Figure 3.4: Schematic representation of the DCB test with two legs. The initially delaminated
region of size a0 is marked in red.

3.5.1 Validation of the cohesive model: DCB test

The DCB test is used to validate the cohesive model under pure Mode I opening, where the

delamination propagates due to opening of the plies in the direction orthogonal to their interface.

The configuration of the DCB test [104] is schematically represented in Figure 3.4. The overall

specimen length is L = 150 mm, the lateral dimension is b = 20 mm, and the thickness of each leg

is h/2 = 1.55 mm. The length of the initially delaminated region is a0 = 35 mm.

Table 3.1: Specimen material properties for the DCB test.

E[GPa] ν Kcoh [N/mm3] t0
n [N/mm2] GCn [N/mm] GCτ

[N/mm]
120.0 0.0 5× 106 30.0 - 120.0 0.26 1.002

The elastic and cohesive interface material properties for the DCB test chosen for a typical

carbon/epoxy composite, and are summarized in Table 3.1. Mode I critical strain energy release rate,

being a well-documented, measured property, is kept constant for all the DCB test simulations. The

cohesive penalty stiffness Kcoh is chosen large enough to not introduce any significant compliance

in the model. Several simulations have been performed by increasing the value of Kcoh until the

force-displacement curve no longer exhibits significant variations. The value chosen for the DCB

test is Kcoh = 5× 106 N/mm3. A range of values for the normal cohesive strength t0
n are tested in

order to assess the sensitivity of the solution with respect to the maximum allowable traction at the

interface. The tangential strength t0
τ is computed according to Equation (3.43). The coefficient η in

Equations 3.37 and 3.41 is set equal to 1. Viscous regularization of the cohesive damage variable is

not used in the simulations of the DCB test.

We use a non-uniform mesh in the longitudinal direction for the discretization of the

specimen due to high gradients near the crack front. It was shown in [105] that, in the case of linear

FEM, three to ten elements are required in the direction of delamination propagation in order to

accurately reproduce the interface behavior in the area from the crack tip to the point of maximum

traction ( 1 mm length scale), where the stress gradient is large compared to the rest of the specimen.

The extension of the this critical transition area is commonly referred to as cohesive length, and it
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(a)

(b)

Figure 3.5: DCB test simulation. Top and side views of the specimen. (a) Initial configuration; (b)
Configuration at relative displacement ∆ = 3.5 mm. Top view shows contours of the cohesive
damage variable.

may be estimated a priori as [42]:

lcoh =
9

32
πE

GCn(
t0
n
)2 . (3.51)

Given the parameters reported in Table 3.1, cohesive length corresponding to cohesive strength of

t0
n = 120 N/mm2 is lcoh = 1.91 mm. Therefore, the mesh is designed such that the element size is

0.2 mm (≈ 10% of lcoh) inside the delamination propagation region and 2 mm outside away from

this region.

We followed the same semi-heuristic criteria formulated in the framework of linear FEM

for the estimation of the critical element size. However, the higher-order accuracy and continuity

of the field variables introduced by the NURBS discretization admits a possibility of using coarser

discretizations without sacrificing the accuracy and stability of the analysis. Impact simulations

presented in Chapter 4 of this dissertation partially support this claim. However, the use of higher-

order and higher-continuity discretizations in the context of cohesive-zone modeling is not at all

common, and requires a separate investigation.

In our simulations, cohesive interface extends along the entire length of the specimen. In the

beginning of the simulation, the damage variable dcoh is set to unity inside the initially delaminated

area and zero elsewhere, as shown in Figure 3.5(a). In order to achieve a stable propagation of the

delamination front [2], the simulations are performed under displacement-controlled conditions by

imposing the displacement of the control points on the right edge of the specimen. The coupon is

constrained by imposing a zero displacement boundary condition on the first two rows of control

points at the left edge of the specimen, as shown in Figure 3.4. The configuration at relative

prescribed displacement ∆ = 3.5 mm is shown in Figure 3.5(b).
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Figure 3.6: DCB test simulation. Load-displacement curves obtained for different interface
strengths.

The force-displacement diagrams obtained from the simulations are compared with the

LEFM solution and shown in Figure 3.6. The results are in close agreement with the beam theory

based on the LEFM solution. As expected, a larger value of the interface strength results in a larger

peak force at the initiation of delamination. However, no noticeable differences in the response are

found during the delamination propagation stage.

Propagation of the delamination front is shown in Figure 3.7 for different levels of cohesive

strength, where the cohesive traction (top panels) and damage variable (bottom panels) are plotted

as a function of the longitudinal coordinate x (horizontal axis) and imposed displacement ∆ (left

axis). The contour plots show the distribution of tcoh and of dcoh over a portion of the specimen,

characterized by a longitudinal coordinate x ∈ [100,116] mm, where the delamination front propa-

gates. A vertical read on the plot gives the evolution of tcoh and dcoh as a function of the applied ∆

for a material point of the specimen located at the coordinate x. Conversely, an horizontal read

gives the distribution of tcoh and dcoh along the specimen for a given applied displacement.

The delamination process starts when the energy release rate reaches the value correspond-

ing to the toughness of the interface. The partially delaminated region, where dcoh ∈ ]0,1[, is

contained between the white and black dashed lines. The area to the right of the black dashed

line corresponds to complete delamination. The delamination point is clearly denoted by a sharp

change in the slope of the black dashed line at applied displacement nearing 2.5 mm.

Figure 3.7 shows that the size of partially delaminated region grows monotonically with

the applied displacement until the start of the delamination process, then it remains constant. Note

that lower values of the cohesive strength increase the size of the partially delaminated region.

This effect can be more clearly observed in Figure 3.8 where the cohesive traction and damage

variable are plotted as a function of the longitudinal coordinate for two applied displacement levels.
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t0
n = 30 N/mm2 t0

n = 60 N/mm2

Figure 3.7: DCB test simulation. Cohesive traction (top) and damage variable dcoh (bottom) as a
function of the displacement ∆ and of the longitudinal coordinate. The region to the left of the
white dashed line is characterized by dcoh=0, the region to the right of the black dashed line is
characterized by dcoh=1. For the orientation of the longitudinal axis see Figure 3.4.

The figures show that the maximum cohesive traction does not exceed the value of the interface’s

strength, while the non-interpenetration traction are not bounded. It can also be inferred from the

figure that the damage variable exhibits a sharp initial transition in the direction from the crack tip

to the delaminated region, where it tends to slowly reach the asymptotic value of 1.

3.5.2 Validation of the cohesive model: ENF test

Simulation of the ENF test [77] is more challenging than the DCB test because the specimen

exhibits a snapback instability (i.e., a positive slope of the load-deflection softening branch [25])

when the delamination begins to propagate. Furthermore, the computational model must be able to

effectively handle the interaction between the legs in the fully delaminated region to prevent their

interpenetration. The ENF-test configuration is shown in Figure 3.9. The length of the specimen is

L = 100 mm, the width is b = 1 mm, and the thickness of each leg is h/2 = 1.5 mm. The length of

the initially delaminated region is a0 = 30 mm.

Material properties used in the ENF test are summarized in Table 3.2 for a typical car-

bon/epoxy composite. The Mode II fracture toughness a well-known value and thus is kept

constant in the simulations. The specimen is discretized using a uniform mesh with element size

41



(a) (b)

Figure 3.8: DCB test simulation. Cohesive traction (top) and damage variable dcoh (bottom) as a
function of longitudinal coordinate at (a) ∆=2.0 mm and (b) ∆=3.5 mm.

Figure 3.9: Schematic representation of the ENF test with two legs. The initially delaminated
region is marked in red.

Table 3.2: Specimen material properties for the ENF test simulation.

E[GPa] ν Kcoh [N/mm3] t0
τ [N/mm2] GCn [N/mm] GCτ

[N/mm]
135.3 0.0 1× 104 80.0 - 160.0 0.268 4.0

of 0.8 mm. According to Equation (3.51), and with the assumption that the cohesive length is

discretized using 10 elements, the adopted mesh is suitable for ENF analyses with a cohesive

strength of t0
τ ≤ 245 N/mm2. This mesh allows to satisfy the semi-heuristic criteria, which is

formulated in the framework of linear FEM, with a manageable number of degrees of freedom.

Therefore, no local mesh refinement is required.

The value chosen for the ENF test is Kcoh = 1× 104 N/mm3. The choice of the cohesive
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(a)

(b)

Figure 3.10: ENF test simulation. Top and side views of the specimen. (a) Initial configuration;
(b) Configuration at relative displacement ∆ = 10 mm. Top view shows contours of the cohesive
damage variable.

stiffness is discussed later in this chapter. Different values of the in-plane cohesive strength t0
τ are

tested in order to assess the sensitivity of the solution with respect to maximum allowable traction

at the interface. The normal strength t0
n is computed according to Equation (3.43). The coefficient η

in Equation 3.37 is set equal to 1. For the simulations reported in this section, the regularization

coefficient ρcoh is set to 0. The effect of the viscous regularization of the cohesive damage variable

is discussed later in the chapter.

The ENF test is simulated by imposing displacement of the control points at the centerline of

the upper lamina. The right- and left-side boundary conditions constraining the specimen motion

are imposed on the lower lamina, as shown in Figure 3.9. The deformed configuration at the end

of the simulation is shown in Figure 3.10(b). Note that the cohesive interface correctly enforces

the Kirchhoff condition on the left side of the specimen where the interface is undamaged. On the

right side of the specimen, where the two beams are completely delaminated, the cohesive interface

formulation allows relative sliding while preventing interpenetration.

Simulation results are compared with the LEFM solution in Figure 3.11. The theoretical

load-displacement curve is comprised of three parts identified with (a) the initial linear-elastic

response where the delamination does not propagate; (b) the unloading curve valid for crack length

a < L/2; (c) the propagation curve valid for a ≥ L/2. Because simulations in the present work are

performed by imposing a monotonically increasing vertical displacement, the unloading part of

the curve is not captured. One can do so by adopting an arc-length-type method [48, 77], where

the load and displacement increments are computed as part of the numerical solution. We find

that lower values of the cohesive strength result in a smoother transition from the elastic regime to

the propagation of the delamination front, while the response predicted with larger values of the

cohesive strength is closer to the analytical solution. Note that the response in the delamination
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Figure 3.11: ENF test simulation. Load-displacement curves obtained for different interface
strengths.

propagation region is independent of the choice of the cohesive strength.

3.5.3 Comparison with Reissner–Mindlin shear-deformable theory

In the proposed multi-layer approach, the model of individual plies is based on the

Kirchhoff–Love thin shell theory, which individually do not account for transverse shear de-

formation. Despite the many numerical advantages of this approach, one may argue that the

ability of the model to represent all the key deformation modes is reduced with the increasing shell

thickness. In the proposed framework, the displacement jump between the plies is penalized, and

(1− dcoh)Kcoh acts as the penalty parameter. In the case the interface is undamaged and Kcoh→∞,

the Kirchhoff condition is enforced across the whole laminate and transverse shear deformations of

the laminate are precluded. In practice, however, Kcoh is never infinite. Its values may be obtained

from experiments, and also have upper bounds coming from numerical considerations of accuracy,

stability, and conditioning of the resulting equation systems. As a result, for finite values of Kcoh, a

multi-layer Kirchhoff–Love shell may effectively represent transverse shearing deformations of the

overall laminate, which we demonstrate in the following numerical example.

Table 3.3: Simply supported laminated plate. Ply-level material properties.

E1[GPa] E2[GPa] G12, G13[GPa] G23[GPa] ν12
137.9 10.0 6.89 3.72 0.3

We simulate the static response of a laminated plate under a concentrated transverse load,

and compare the results of the present multi-layer formulation with the analytical solution derived

in the framework of shear-deformable Reissner–Mindlin shell theory. The plate is square with edge
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(a) (b)

Figure 3.12: Simply supported laminated plate. (a) Problem setup and mesh; (b) Contours of
vertical displacement on the deformed configuration. The displacement is scaled by a factor of 20
and only half of the plate is displayed.

Figure 3.13: Simply supported laminated plate. Midsurface vertical displacement on a line
oriented in the direction of the y-axis passing through the plate center. Comparison of the multi-
layer formulation with the Kirchhoff–Love (K–L) and with the Reissner–Mindlin (R–M) shear
deformable theory solutions.

length of L = 38.1 mm and total thickness of h = 1.524 mm. The laminate is composed of 12 plies

with a symmetric lamination sequence [04/902]s. Material properties of the individual plies are

summarized in Table 3.3.

Problem setup is shown in Figure 3.12(a). Simply supported boundary conditions are

enforced on all edges of the bottom ply, and the simulation is carried out by imposing a point force

P = 187.69 N at the center of the laminate. Since the aim is to assess the ability of the multi-layer

construction to represent transverse shear deformation, cohesive interfaces with finite stiffness are

defined, but the cohesive interface damage model is not invoked, and the cohesive damage variable

dcoh is set to zero everywhere during the simulation. The deformed configuration for a 12 layer

model is shown in Figure 3.12(b) where the displacements are magnified for illustration purposes.

The analyses are performed by selecting values for the cohesive stiffness in the range
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Kcoh = 5.43 × 104 − 1.36 × 106 N/mm3. We measure the vertical displacement ∆ of the plate

midsurface on a line oriented in the direction of the y-axis passing through the plate center.

Analytical solutions for the Kirchhoff–Love and for the Reissner–Mindlin shell are obtained using

the Fourier series approach [90], where the global trigonometric basis functions satisfy the simply-

supported boundary conditions on all the plate edges.

Comparisons of the multi-layer, thin-shell, and shear-deformable theory results are shown

in Figure 3.13. Larger values of the cohesive stiffness lead to solutions that better satisfy the

Kirchhoff constraint, and are closer to the thin-shell theory result. Lowering the cohesive interface

stiffness leads to solutions that more and more closely approximate the shear-deformable theory

employing shear correction factor of 5/6. In addition, the multi-layer model is also able to capture

the highly localized deformation near the applied point load.

3.5.4 Discussion of numerical results

Results of the DCB and ENF tests show excellent correlation with the analytical solutions,

derived in the framework of the LEFM, in terms of: (a) The initial elastic response; (b) Initiation of

cohesive interface damage; and (c) Propagation of the delamination front. The ability to predict

the initial elastic response is particularly relevant for the ENF test because it demonstrates that the

bending stiffness of the laminate is recovered by connecting the plies through cohesive interfaces.

Additional discussion of the cohesive interface formulation is provided in what follows.

Cohesive interface strength

From the simulation of the DCB and ENF tests it can be inferred that the numerical solutions

are affected by the choice of interface strength. On the other hand, the LEFM analytical model [1, 77]

is based on the energy released during propagation of delamination, and does not take into account

the interface strength. In the numerical simulations, larger values of t0
n and of t0

τ result in higher

peak loads at the delamination point and result in a better match with the theoretical prediction.

However, the use of larger interface-strength values translates to a smaller cohesive length (see

Equation (3.51)), and thus requires a finer mesh to correctly capture the sharp solution gradients

near the delamination front. Turon et al. [104] showed that energy dissipated during delamination

under pure Mode I or Mode II opening is independent of the cohesive interface strength. Therefore,

in the absence of experimental data, one may specify a lower cohesive strength that meets the

element-size requirements without introducing significant energy-dissipation errors [105].
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Cohesive interface stiffness

Another parameter introduced in the formulation is the cohesive interface stiffness. In the

absence of experimental data, Turon et al. [105] suggest to set Kcoh = αE3/(h/2), where E3 is the

ply out-of-plane Young’s modulus and α is a positive constant O(10− 100). In practice, the upper

bound of the cohesive stiffness is limited by numerical considerations such as the overall stability

of the formulation, conditioning of the resulting equation systems, and stable time-step size for

explicit simulations.

Maximum cohesive stiffness also appears to be dependent on the mode in which the

cohesive interface fails. For example, in case of the DCB test, the cohesive stiffness is set equal to

Kcoh = 5× 106 N/mm3, and the nonlinear solver converges to the required tolerance within a few

iterations, even during the propagation of the delamination front. Conversely, it was found that for

the ENF test the maximum cohesive stiffness that allows convergence of the nonlinear solver is two

orders of magnitude lower than for the DCB test.

In addition, as discussed in the Section 3.5.3, the cohesive interface stiffness affects the

extent to which the multi-layered model is able to mimic the behavior of the Reissner–Mindlin

shear-deformable theory.

Choosing the cohesive interface stiffness to mimic simple shear

As discussed in Section 3.5.3, the cohesive interface stiffness affects the extent to which

the multi-layered model is able to mimic the behavior of the ReissnerMindlin shear-deformable

formulation. As such, the cohesive stiffness of the multi-layer model may actually be selected

to match the shear deformation behavior of the corresponding continuum solid. For this, we

assume that the solid is in the state of simple shear in the through-thickness direction, as shown in

Figure 3.14 a. Assuming isotropic, linear-elastic response, the transverse shear strain is uniform,

and is given by:

εxz =
1
2

∆
h

, (3.52)

and the corresponding transverse shear stress by:

τxz = 2Gεxz = G
∆
h

, (3.53)

where G is the shear modulus and h is the thickness. For the multi-layer model, the applied shear

stress, in the absence of bending, results in no deformation within the plies and relative displace-

ment of the plies at the cohesive interfaces. (See Figure 3.14 b for an illustration corresponding to a
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three-layer case). Simple equilibrium at the ply interface leads to the following relationships:

τxz = Kcoh
1−2 (∆2 − ∆1) , (3.54)

and

τxz = Kcoh
2−3 (∆3 − ∆2) , (3.55)

where Kcoh
i−j denotes the tangential stiffness of the cohesive interface between the plies i and j, and

∆i is the horizontal displacement of the i th ply. To ensure that the laminate global deformation

follows the continuous case, we introduce the following kinematic compatibility conditions:

2εxz =
∆2 − ∆1
h1
2 + h2

2

, (3.56)

and

2εxz =
∆3 − ∆2
h2
2 + h3

2

, (3.57)

where hi is the thickness of the i th ply. Equations (3.56) and (3.57) essentially define the equivalent

cohesive interface strain as the relative displacement between the ply midsurfaces divided by

the distance between them, and equate this strain to its continuum counterpart. Introducing

Equations (3.56) and (3.57) into Equations (3.53), and comparing the results with Equation (3.54)

and (3.55), leads the following expressions for the cohesive stiffness:

Kcoh
1−2 =

G
h1
2 + h2

2

, (3.58)

and

Kcoh
2−3 =

G
h2
2 + h3

2

. (3.59)

For an arbitrary number of ply interfaces, the cohesive stiffness formula generalizes to:

Kcoh
i−j =

G
hi
2 +

hj
2

. (3.60)

To test the cohesive stiffness definition given by Equation (3.60), we revisit the example

of a plate subjected to a point load shown in Fig. 13. This time we assume the plate is made of

isotropic material, and represent it by means of two, six and 12 plies of uniform thickness for the

multi-layer model. The Youngs modulus is set to E = 68,950 MPa and Poisson’s ratio to ν = 0.35,

which gives the shear modulus G = 25,536 MPa. The ply thickness and the corresponding values of

the cohesive stiffness, computed according to Equation (3.60), are reported for all cases in Table 3.4.
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Table 3.4: Value of the cohesive stiffness for the multi-layer models as a function of the ply
thickness.

2 Plies 6 Plies 12 Plies
hth [mm] Kcoh [N/mm3] hth [mm] Kcoh [N/mm3] hth [mm] Kcoh [N/mm3]

0.762 3.3512 ×104 0.254 1.0054 ×105 0.127 2.0107 ×105

(a) (b)

Figure 3.14: Laminate subjected to a uniform shear stress: (a) continuum solid and (b) multi-layer
representation.

(a) (b)

Figure 3.15: Simply supported laminated plate. Midsurface vertical displacement on a line
oriented in the direction of the y-axis passing through the plate center. Comparison of the multi-
layer formulation with the Reissner–Mindlin (R–M) shear deformable theory solutions over (a)
the entire width of the laminate and (b) in the central section where the load is applied.

The plate mid-surface vertical displacement is shown in Figure 3.15 a, while Figure 3.15 b shows

the same results and zooms on the central section where the point load is applied. The plots clearly

show that as the number of plies is increased, the solution converges to that predicted by the shear

deformable theory.
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Figure 3.16: ENF test simulation. Load-displacement curves obtained with and without viscous
regularization of the damage variable.

Viscous regularization

In this section, the ENF test is used to asses the solution sensitivity to the choice of the

cohesive-damage viscous regularization parameter (see Equation (3.45)). We perform a quasi-static

simulation of this case with a load step 10−3. We set the viscous regularization parameter to

ρcoh = 5× 10−4 and compare the results with the non-regularized case. The comparison, reported

in Figure 3.16, shows that the peak force obtained with regularization exceeds by 0.9 % the value ob-

tained without regularization. As expected, the initial linear response and stable propagation region

are not affected by the regularization. However, regularization delays the initiation of delamination,

and gives a smoother transition between the two stable regions in the force-displacement curve.

While this smoother transition is favorable from the numerical viewpoint, excessive regularization

of the damage variable may lead to underprediction of the extent of delamination during an impact

event.
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4 Isogeometric analysis for progressive

damage simulation of composite

laminates

This chapter focuses on the application of the multi-layer IGA shell formulation for damage-

growth simulations of composite laminates. Three numerical simulations of low velocity impact

on composite laminates are presented. These examples aim to represent the broad-spectrum

applicability of the multi-layer analysis framework introduced in this dissertation.

In order to perform impact simulations, the formulation developed in Chapter 3, and

summarized by Equation (3.46), is augmented with a penalty contact model that is presented in

Section 4.1. In Section 4.2 the complete discrete formulation is summarized including intralaminar

damage, delamination, contact interface and bending strips. Applications of the multi-layer

modeling framework for low velocity impact simulations are presented in Section 4.3. Results

of numerical impact simulations and comparison with experimental results are presented in

Section 4.4.

4.1 Contact algorithm for shells

The ability of the method to handle contacts between the impactor and laminate, as well as

between the lamina or sublaminates, is essential for carrying out simulation of impact on laminated

composite structures. In what follows, we describe in detail the contact formulation employed in

this work and its algorithmic implementation. The formulation is presented in the context of thin

isogeometric shells, however, many of its constituents are applicable to a wider class of solid and

structural models.

While several numerical techniques have been developed for contact and impact problems

(see, e.g., [107] for a comprehensive review), the penalty formulation is the most commonly adopted

methodology, especially for large-scale analyses, because, unlike in the case of Lagrange-multiplier
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or mortar-type methods [102], no additional unknowns are introduced in the formulation.

The penalty method is based on the introduction of a repulsive traction in order to enforce,

albeit approximately, the non-interpenetration condition between the disconnected parts. The

contact algorithm presented in this dissertation consists of two separate steps:

1. Search step, where pairs of candidate contact points are identified.

2. Penalization step, where a signed distance function is evaluated in order to verify if the contact

criteria are satisfied.

By definition, a pair of candidate contact points are two material points belonging to two separate

parts, or objects, that satisfy a user-defined search criterion. The existence of a pair of candidate

contact points is only a necessary condition to determine whether the separate parts are in contact.

The actual contact occurs only if the distance between the candidate points is smaller than a

specified threshold. If both the search and penalization steps are successful, meaning that a pair of

candidate contact points exists and the distance between them is small enough to satisfy the contact

criterion, then contact traction is introduced in the multilayer-shell variational formulation. In

what follows, we outline our methodology to detect interaction between separate parts represented

by shell surfaces in 3D. We note that this two-step procedure is efficient because it allows one to

perform the search step, which is computationally demanding, in a configuration of choice, such

as, for example, the reference configuration at the beginning of the simulation. Conversely, the

penalization step is much less expensive as it only requires evaluation of the distance between all

the pairs of candidate contact points, and thus may be performed at every time-integration and/or

nonlinear-iteration step.

4.1.1 Search step

A contact interface is defined as the intersection of two distinct surfaces, namely Γ1 and Γ2,

which, in the framework of our modeling approach, correspond to NURBS surfaces representing

two separate geometric entities. The purpose of the search step is to identify, for each point

x1 ∈ Γ1, the corresponding candidate contact point x2 ∈ Γ2 defined according to a specific proximity

criterion. From a theoretical standpoint, a pair of candidate contact points is defined as a subset of

Γ1 ∩ Γ2. However, this definition is not appropriate in the framework of shell representations of

3D continuum. Indeed, in order to take the shell thickness into account, it is necessary to detect

possible contact before the intersection of the surfaces occurs. We therefore introduce a search

procedure in order to identify all the possible pairs of candidate contact points on all the surfaces

where the contact is activated, while detection of the actual contact is deferred to the penalization

step.
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In our work, we developed a search algorithm based on the technique proposed in [65]. The

search problem is formally defined in terms of finding the points x1 (ξx1) and x2 (ξx2) that satisfy:f1 (ξx2) = (x1 − x2 (ξx2)) · x2 (ξx2),ξ1
= 0 ,

f2 (ξx2) = (x1 − x2 (ξx2)) · x2 (ξx2),ξ2
= 0 .

(4.1)

The above nonlinear-equation system represents the condition that the distance vector x1 − x2 (ξx2)

is orthogonal to the tangent plane of Γ2 defined by the tangent vectors x2 (ξx2),ξ1
and x2 (ξx1),ξ2

.

Note that x1 is not explicitly written as a function of ξx1 because during the search step the point x1

is assumed fixed and its parametric coordinates constant.

The Newton–Raphson iterative method is used to solve the nonlinear-equation system for

the parametric coordinates ξx2 , where each iteration takes on the form:

ξi+1
x2

= ξi
x2
−
[
J
(

ξi
x2

)]−1

f1
(
ξi

x2

)
f2
(
ξi

x2

)
 , (4.2)

where i is the iteration index. The exact Jacobian matrix J of the Newton–Raphson iteration is given

by

J
(

ξi
x2

)
=

J11
(
ξi

x2

)
J12
(
ξi

x2

)
J21
(
ξi

x2

)
J22
(
ξi

x2

)
 , (4.3)

where
J11

(
ξi

x2

)
= x1 · x2,ξ1ξ1 − x2,ξ1 · x2,ξ1 − x2 · x2,ξ1ξ1 ,

J12

(
ξi

x2

)
= x1 · x2,ξ1ξ2 − x2,ξ2 · x2,ξ1 − x2 · x2,ξ1ξ2 ,

J21

(
ξi

x2

)
= x1 · x2,ξ2ξ1 − x2,ξ1 · x2,ξ2 − x2 · x2,ξ2ξ1 ,

J22

(
ξi

x2

)
= x1 · x2,ξ2ξ2 − x2,ξ2 · x2,ξ2 − x2 · x2,ξ2ξ2 .

(4.4)

As pointed out in [13], the IGA representation of contacting surfaces is beneficial for the search

procedure because the surfaces are naturally parameterized (in our case, using NURBS functions),

and the parameterization is smooth almost everywhere allowing for direct evaluation of the

position-vector second derivatives. However, in general, the uniqueness of the nonlinear-system

solution is not guaranteed, and it is often necessary to introduce additional constraints on the

domain of the unknown solution vector ξx2 . In practice, these constrains are enforced by reducing

the search domain from the whole surface Γ2 to a smaller sub-domain located in the proximity of

the point x1. Implementation details of the search step are discussed in Section 4.1.4.
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(a) (b) (c)

Figure 4.1: Penalty contact formulation: Three stages of the impact. (a) No contact, where d≤−h;
(b) Soft contact, where d ∈ (−h,0); (c) Hard contact, where d ≥ 0. Solid black lines represent the
shell middle surfaces, while dashed lines represent the actual surface with shell thickness taken
into account.

4.1.2 Penalization step

The successful search step finds pairs of points x1 and x2 that satisfy the condition given

by Equation (4.1). However, these points are not necessarily in contact as they may be too far

apart. Contact is thus introduced through a penalization step, where we first introduce the signed

distance d (ξx1 ,ξx2) defined as:

d = [x2 (ξx2)− x1 (ξx1)] · n2 (x2 (ξx2)) . (4.5)

Since the distance vector (x2 − x1) is, by definition, parallel to n2, the value of the distance function

is null when the spatial locations x1 and x2 coincide in space and the surfaces are in contact at that

location. We then define the contact pressure Pk to be a non-linear function of d as:

Pk =


0 if d ≤ −h ,

k
2h

(d + h)2 if d ∈ (−h,0) ,

kh
2

+ kd if d ≥ 0 ,

(4.6)

where k is the contact stiffness, while the absolute value of the parameter h determines the distance

at which the candidate points are set to be in contact. In our implementation, the parameter h is

chosen equal to the sum of the local half-thicknesses of the surfaces Γ1 and Γ2 at points x1 (ξx1) and

x2 (ξx2). Note that the contact pressure Pk in Equation (4.6) is designed to be a smooth function of d

in order to improve nonlinear convergence.

Using the contact pressure Pk as above, we define the contact traction by multiplying Pk
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(a) (b) (c)

Figure 4.2: Penalty contact formulation: Evaluation of the distance for the penalization step. (a)
and (b) Asymmetric definition of the distance vector; (c) Symmetrization procedure.

with the normal vector n2 as:

tcon = Pk (n2)n2 , (4.7)

and adding the following terms to the variational formulation of the multi-layer shell:

+
∫

Γcon
t

(w2 −w1) · Pk (n2)n2 dΓ . (4.8)

Equation (4.8) presents the nonlinear penalty-contact formulation, which weakly enforces the sur-

face non-interpenetration condition. Given the definition of the contact pressure in Equation (4.6),

one can identify three stages of impact, namely, no-contact, soft contact, and hard contact. See

Figure 4.1 for an illustration and further description.

4.1.3 Symmetrization of the contact formulation

The contact formulation presented in the previous section introduces a dependence of the

contact pressure, and, as a result, of the contact traction, on which surface, Γ1 or Γ2, is designated as

the contact surface. The difference in the contact traction arises from the difference in the orientation

of the normal vector on the two contacting surfaces. Consider, for example, the case of a curved

and flat surface in contact, as shown in Figures 4.2(a) and 4.2(b). The signed distance function

computed with the curved surface designated as Γ2 is clearly different from that computed by

designating the flat surface as Γ2.

To minimize this dependence, we “symmetrize” the contact formulation by introducing a

two-step search procedure illustrated in Figure 4.2(c) and summarized in what follows.

1. Consider point x1 on Γ1:

(a) Do a search step, keeping x1 fixed, to find x2 on Γ2;
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(b) Compute the contact pressure Pk(n2 (x2)) based on the distance function d = (x2 − x1) ·
n2 (x2).

2. Consider point x2 on Γ2 found in Step 1 above.

(a) Do a search step, keeping x2 fixed, to find x̄1 on Γ1;

(b) Compute the contact pressure P̄k(n1 (x̄1)) based on the distance d̄ = (x̄1 − x2) · n1 (x̄1).

3. Compute the final contact pressure by averaging Pk and P̄k.

This symmetrization procedure provides significant advantages over the unsymmetrized case if

the difference in the orientation of the normal vectors on the contacting surfaces is large.

Remark. In the last step of the symmetrization procedure it is also possible to average the contract

traction vector directly. However, this option was not pursued in this work.

4.1.4 Increasing the efficiency of the search step

In order to increase the efficiency of the search step, we devised a two-level reduction of

the search domain for a given pair of contact surfaces. The first step involves defining a search box:

all the elements that are not included in a user-defined box region in 3D space are automatically

excluded from the search domain. The second step involves defining a search list: for each element

included in the search box, we create a list that includes only the elements that are closer to it than

a specified threshold. The actual search step, which involves solution of the nonlinear system given

by Equation (4.1), is therefore performed only for the elements included in the search list.

A rigorous application of the contact algorithm requires one to perform a full search and

penalization at each time step and at every iteration of the nonlinear solver in order to accurately

account for the interaction between the contacting surfaces. However, in some situations, this

requirement may be relaxed. For example, if the parts in contact are not subjected to large relative

displacements during the deformation, search for the candidate contact points can be performed

only once in the structure reference configuration. However, even if the search step is performed

only once in the reference configuration, the penalization step must be performed continuously

during the analysis to allow the surfaces to come in and out of contact as dictated by the governing

equations.
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4.2 Extended discrete formulation

For the purposes of impact simulation, we consider a laminated composite structure com-

prised of Np plies or sublaminates and Nc cohesive interfaces. In addition, we assume the structure

also contains Ncon contact interfaces and Nbs bending strips. The complete semi-discrete variational

formulation may be stated as follows: Find the configuration xh ∈ Sh
x, such that, ∀wh ∈ Sh

w,

Np

∑
ip=1

{∫
(ΓS

0)ip

wh · ρ0ip hthip

(
d2xh

dt2 − fh
)

dΓ

+
∫
(ΓS

0)ip

δεh ·
(

Kexte
ip

(
dvarip

)
εh + Kcoup

ip

(
dvarip

)
κh
)

dΓ

+
∫
(ΓS

0)ip

δκh ·
(

Kcoup
ip

(
dvarip

)
εh + Kbend

ip

(
dvarip

)
κh
)

dΓ

−
∫
(ΓS

t )h

wh · hh dΓ

}

+
Nc

∑
ic=1

{∫
(Γcoh

t )ic

[(
wh

1ic
+

hΓ1ic

2
δnh

1ic

)
−
(

wh
2ic

+
hΓ2ic

2
δnh

2ic

)]
· tcoh dΓ

}

+
Ncon

∑
ic=1

{∫
(Γcont

t )ic

(
wh

2ic
−wh

1ic

)
· tcon dΓ

}

+
Nbs

∑
ibs=1

{∫
(Γbs

t )ibs

δκh ·Kbend
ibs κh dΓ

}
−
∫
(ΓS

0)es

wh ·Kes
(

xh − Xh
)

dΓ = 0 ,

(4.9)

where Kbend
ibs is the stiffness matrix associated with the ibs-th bending strip. A detailed

description of the bending strip method is reported in the work of Kiendl et al. [67]. As discussed

in Chapter 3, the trial and test function sets are comprised of NURBS basis functions that are

defined on each ply, and are discontinuous from ply to ply. In the cohesive-interface terms of

the above formulation the subscripts 1ic and 2ic are consistent with the notation introduced in

Chapter 3 of this dissertation, while the subscripts 1ic and 2ic in the contact terms are consistent

with the notation in Section 4.1. Intralaminar damage is implicitly embedded in the definition of the

extensional, coupling, and bending stiffness matrices of each ply, and automatically accounts for

their current damage state. Both the implicit and explicit versions of the Generalized-α method [31]

are employed to integrate the semi-discrete Equations (4.9) in time.

Remark In the above formulation, the last term on the left hand side represents the elastic-support

boundary conditions. The boundary conditions are defined on a subregion
(
ΓS

0

)
es in the reference
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configuration. The matrix Kes is diagonal and may be expressed as:

Kes =


Kes

x 0 0

0 Kes
y 0

0 0 Kes
z

 , (4.10)

where Kes
x , Kes

y and Kes
z are the directional stiffness coefficients expressed in the global coordinate

system. Although the elastic-support boundary conditions are not employed in the computations

presented in the next section, they may be quite useful for representing the effect of frame-like

supports employed in many impact tests.

4.2.1 Numerical integration of constitutive equations

As discussed in Chapter 3.4, the Generalized–α method is used for the numerical solution

of the variational form (4.9). The nonlinear set of equation is solved using the Newton–Raphson

method which, for every nonlinear iteration, involves solution of the following system of linear

equations: (
Mαm + Cα f γ∆t + Kα f β∆t2)∆d̈n+1 = −Ri

n+1 . (4.11)

Impact simulations presented in this Chapter, however, often require small time steps

to accurately capture the underlying fast dynamics. For this reason, an explicit version of the

Generalized-α scheme may be introduced where the tangent matrix given by Equation (3.50) is

simplified to only contain the mass terms, without changing the rest of the Generalized-α algorithm.

In this case, the nonlinear iteration is reduced to

αmM∆d̈n+1 = −Ri
n+1 . (4.12)

In addition, the consistent mass matrix M may be replaced with its “lumped” counterpart using

the row-sum technique [57]. Unlike in the case of Lagrange polynomials, because the NURBS basis

functions are pointwise non-negative, the row-sum procedure results in a lumped mass matrix

with all positive entries for NURBS of any order. For recent advances in explicit time integration

using IGA see [6].

4.3 Impact simulations

In this section, impact test on composite laminates are simulated in order to validate the

modeling procedures through comparison with experimental data and simulations of this test
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reported in the literature.

The first set of numerical examples involves low-velocity impact on flat composite plates.

In the first example, labeled Model 1, a 16-plies composite flat laminate is modeled ply-by-ply and

ply grouping is employed to increase the computational efficiency. For this test, in-house FE-based

Abaqus/Explicit [59] simulations using 3D linear solid elements are also carried out for comparison.

Results of IGA and in-house FE model are compared with results reported in the literature. In the

second example, labeled Model 2, a 24-plies composite flat laminate is modeled ply-by-ply. In order

to obtain a high-fidelity representation of the damage state at the lamina level, no ply grouping is

employed. Numerical results are validated through a comparison with experimental data.

A third numerical example, labeled Model 3, aims to predict damage growth in a stringer-

stiffened composite panel subjected to an accidental impact. Isogeometric analysis is beneficial for

the representation of curved geometries, such as the composite stringer considered in this example.

By providing an exact representation of all conics, the IGA approach allows for more accurate

modeling of curved boundaries using coarser discretizations than more traditional low-order FEM

approximations.

All the IGA-based computations are carried out using an in-house research software that

implements all the methods presented in this dissertation. C1-continuous quadratic NURBS are

employed for all the IGA-based simulations presented in this section.

4.3.1 Experimental setup

Model 1: 16-plies flat laminate

Experimental setup of the impact test is shown in Figure 4.3(a). The coupon measures

150 mm × 100 mm and is supported by a rigid frame with a rectangular open window at its center.

The size of the unsupported test region is 125 mm × 75 mm. The plate is 4.16 mm thick and is

composed of 16 unidirectional carbon/epoxy plies stacked using a symmetric lamination sequence

[02,452,902,−452]s. The impactor head is stiff and spherical, with a diameter of 16 mm and total

mass of 2 kg.

Two cases with different impact-energy levels are considered, 6.5 J and 25 J, with exper-

imental investigations reported in [93] and [50], respectively. The experimental results in these

references are commonly used for the purposes of model validation (see, e.g., [101]). For the lower

energy case, the composite plate is made of T700/M21 material, while for the higher energy case the

material employed is T700GC/M21. The lamina material properties employed in the simulations

are summarized in Table 4.1.
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(a) (b)

(c)

Figure 4.3: Impact on a 16-plies flat panel. (a) Experimental setup, (b) IGA model and mesh and
(c) In-house FE model. Clamped boundary conditions are imposed on the elements highlighted
in red in (b).

Model 2: 24-plies flat laminate

The experimental setup for low-velocity vertical impact on a flat panel is shown in Fig-

ure 4.4(a). The composite laminate, which measures 152.4 mm × 101.6 mm, is clamped by steel

plates on all the edges. The constraining frame has a rectangular open window at its center that

measures 127 mm × 76.2 mm. The plate is 4.809 mm thick and it is made of 24 unidirectional

T800/3900-2 carbon/epoxy plies. Material properties used for the analysis are summarized in

Table 4.1. The lamination sequence is [0/45/90/-45]3s. The impactor has a hemispherical head with

a radius of 25.4 mm. The total impacting mass is 5.605 kg, and the initial kinetic energy is 25.1 J.

Model 3: Stiffened panel

The third example involves the simulation of a low-velocity impact on a reinforced aerospace

panel. The simulation considers a scenario of an accidental impact that occurs at the center of a

stringer flange on the external side of the structure.

The panel, shown in Figure 4.5, measures 990.6 mm in the longitudinal direction of the

stringers and 1308.1 mm in the lateral direction. The stringer cross-section is shown in Figure 4.6,

61



(a) (b)

Figure 4.4: Impact on a 24-plies flat panel. (a) Experimental setup and (b) IGA model and mesh.
Clamped boundary conditions are imposed on the elements highlighted in red.

(a)

(b)

Figure 4.5: Stiffened composite panel: (a) Top view of the manufactured five-stringers panel and
(b) Detailed cross-section view of a single stiffener.

while the distance between the stringer centerlines is 260.35 mm. The impactor has a hemispherical

head with a radius of 12.7 mm. The total impacting mass is 2 kg and the initial kinetic energy is

16 J.

The skin and stringers have an average thickness of 3.2 mm, and are made of 16 unidirec-
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Figure 4.6: Schematic cross-section view of the hat-shaped stringer with dimensions.

(a) (b)

Figure 4.7: Stiffened composite panel: (a) CAD model and (b) IGA model and mesh. Blue thin
surfaces in (a) represent bending strips. Clamped boundary conditions are imposed on the
elements highlighted in red in (b).

tional T800/3900-2 carbon/epoxy plies. Material properties used for the analysis are summarized

in Table 4.1. The lamination sequence is [45/-45/0/45/90/-45/0/90]s. Additional single plies,

oriented at 90◦, are placed between the skin and each stringer. These extend for the entire length of

the panel in the longitudinal direction of the stringers, while in the lateral direction they span the

width of the stringer flanges.

4.3.2 Computational setup for IGA-based simulations

Model 1: 16-plies flat laminate

An illustration of the IGA-based multi-layer shell approach for the laminated-plate impact

test is shown in Figure 4.8. The lamina material properties employed in the simulations are reported

in Table 4.1. The impactor is modeled as a hemispherical shell made from isotropic, stiff material

to minimize compliance, with uniform thickness of 1.5 mm and density chosen to match the total

mass of the experimental impactor. Zero normal displacement and tangential traction boundary

conditions are employed on the plate subdomain supported by the rigid frame.

As proposed in [10], and discussed in Chapter 3 of this dissertation, a characteristic length Lc
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Figure 4.8: Schematic representation of the multi-layer shell model for the impact test. Each ply is
represented by a flat surface discretized with C1-continuous quadratic NURBS. The extensional,
coupling and bending stiffnesses depend on the current damage state, and are computed according
to the procedures introduced in Chapter 3 of this dissertation. Only half of the laminate is shown
for clarity.

Table 4.1: Lamina material properties used in the simulations for the T700/M21 material [93], the
T700GC/M21 material [50] and for the T800/3900-2 material.

Material
Value T700/M21 T700GC/M21 T800/3900-2
ρ [kg/m3] 1,600 1,550
E1 [GPa] 130 159.9
E2 = E3 [GPa] 7.7 8.96
G12 = G13 [GPa] 4.8 6.205
G23 [GPa] 3.8 n.a.
ν12 = ν13 0.3 0.33 0.27
ν23 0.35 n.a.
XT [MPa] 2,080 2,840
XC [MPa] 1,250 1,551
YT [MPa] 60 55.2
YC [MPa] 290 165.5
ZL [MPa] 110 88.2
GXT [N/mm] 133 179.7
GXC [N/mm] 10 40 179.7
GYT [N/mm] 0.5 0.6 0.419
GYC [N/mm] 1.6 2.1 1.187

is introduced in the intralaminar damage model in order to ensure that the strain energy dissipated

during the damage process is independent of the discretization adopted for analysis. As before, we

define Lc =
√

Aele, where Aele is the surface area the shell element. The baseline mesh size employed
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Table 4.2: Cohesive-interface properties used in the simulations for the (a) T700/M21 material [93]
and for the (b) T700GC/M21 and T800/3900-2 materials [50].

Kcoh [N/mm3] t0
n [N/mm2] t0

τ [N/mm2] GCn [N/mm] GCτ
[N/mm] η

1× 104 a,b 20.0a,b 36.0a,b 0.5a,0.6b 1.6a,2.1b 1.45a,b

for the IGA-based simulations is 1 mm near the impact location, and gradually increases to 1.5 mm

outside the impact zone. The baseline IGA model is shown in Figure 4.3(b). A coarser discretization

is also employed for the IGA-based 6.5 J impact-energy simulation in order to investigate the effect

of the mesh size. The mesh size of the coarser isogeometric discretization is 1 mm near the impact

location and gradually increases to 2.8 mm outside the area where damage is expected to occur.

The distribution of Lc in the problem domain is consistent with that of the mesh size.

The cohesive-interface properties employed in the simulations are taken from [101] and

reported in Table 4.2. A detailed discussion about the selection of the cohesive-interface stiffness

may be found in [105]. As shown in Chapter 3, a more compliant interface gives rise to more

pronounced transverse-shear-induced localized deformations, which are inherently neglected in

the pure Kirchhoff–Love shell theory. For IGA-based simulations we selected a cohesive-interface

stiffness of Kcoh = 104 N/mm3.

Cohesive-interface formulations, as a rule, require finer mesh resolution in order to correctly

describe the delamination-front propagation. According to [105], three-to-ten elements are needed

in the cohesive process zone, which is defined as the region between the crack tip and the point

where cohesive traction reaches its maximum value. Several models [42, 111, 112, 45, 105, 108] were

proposed for the estimation of the process-zone length lcoh. Here we make use of the following

expressions for the normal and in-plane opening modes:

lcoh
n = ME′n

GCn(
t0
n
)2 ,

lcoh
τ = ME′τ

GCτ(
t0
τ

)2 ,
(4.13)

where E′ is the equivalent elastic modulus and M is a parameter that depends the model adopted

for the cohesive interface. Following [42], we chose M = 9π/32 in the simulations.

The equivalent elastic modulus for an orthotropic material E′ can conservatively be set equal

to the elastic modulus in the transverse direction E3, as suggested in [105]. Other authors [111, 45]

proposed a definition of the the equivalent elastic modulus for an orthotropic material to be a

function of the fiber-direction elastic modulus E1, the transverse modulus E3, the shear modulus G31,
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and loading conditions. The equivalent elastic modulus is computed [112] under the hypothesis of

the plane-stress state in an unbounded medium. For Mode I opening E′n is computed as:

1
E′n

=

√
1

2E1E2

√√√√√E1

E3
+

E1

2

(
−2ν31

E3
+

1
G13

)
, (4.14)

while for Mode II opening E′τ is computed as:

1
E′τ

=

√
1

2E1

√√√√√ 1
E1E3

+

(
−ν31

E3
+

1
2G13

)
. (4.15)

We note that for isotropic materials the equivalent elastic modulus E′ obtained from either expres-

sion reduces to the classical elastic modulus E.

Substituting the values of E′ given by Equations (4.14) and (4.15) computed for both

T700/M21 and T700GC/M21 materials into Equations (4.13), gives lcoh
n = 11.86 mm, whereas a

more conservative definition from [105] gives lcoh = 8.4 mm. As a result, NURBS meshes created

for the impact simulations allow at least five (quadratic!) elements to resolve the cohesive process

zone.

Ply grouping is adopted for the simulations in order to reduce the computational effort.

This simplification is based on the assumption that delamination is triggered mainly due to

transverse shear at the interface between the plies with different fiber orientations. We note that

while delamination between the sub-plies of a single ply group is neglected, the intralaminar

damage variables are still evaluated at the level of each ply in the group. This different treatment

of interlaminar and intralaminar damage allows us to improve the simulation efficiency without

degrading the solution accuracy.

An implicit version of the Generalized-α algorithm is employed with a time step of 2.5 µs

(10 µs) for the 25 J (6.5 J) impact case to integrate the governing equations in time. Viscous

regularization discussed in Chapter 3 of this dissertation is employed for both intralaminar and

interlaminar damage variables. Viscous regularization parameters are set to 10−7 s (3 ×10−7 s) for

the 25 J (6.5 J) impact case for both intralaminar and interlaminar damage variables.

Model 2: 24-plies flat laminate

For the 24-plies multi-layer model no ply grouping is employed, resulting in a computa-

tional model comprised of 24 rectangular NURBS surfaces connected with 23 cohesive interfaces,

whose properties are summarized in Table 4.2. The baseline IGA model is shown in Figure 4.4(b).

Clamped boundary conditions are only imposed on the top and bottom plies. The impacting device
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is represented as a hemispherical surface and it is modeled as a stiff isotropic material. A contact

interface is defined between the top ply and the impactor.

As discussed in Section 4.3.2, we introduce a reference length in the damage model. The

length scale Lc is defined equal to the square root of the element surface area
√

Aele. The mesh size

in the center of the coupon is 1 mm and it gradually increases to 1.5 mm closer to the clamped

region. According to Eq. (4.13), the critical cohesive length for the selected material is 17.3 mm.

Therefore, the process-zone discretization adopted for IGA guarantees at least ten quadratic

elements anywhere in the domain.

Model 3: Stiffened panel

For this example, in order to improve the computational efficiency, we adopt a ply grouping

technique. In addition, we perform analysis on a subregion of the entire panel that is 127 mm long,

203.2 mm wide, and includes only one stringer. The model is comprised of 31 NURBS patches that

are employed as follows:

• 9 structural patches to represent the stringer;

• 8 bending strips to connect the stringer patches;

• 5 structural patches to represent the skin;

• 4 bending strips to connect the skin patches;

• 3 structural patches to represent the single 90◦ ply;

• 2 bending strips to connect the patches of the 90◦ ply.

Clamped boundary conditions are applied on the long edges of the coupon, while the short edges

are stress-free. The impacting device is represented as a hemispherical surface and it is modeled as

a stiff isotropic material. A contact interface is defined between the skin and the impactor. Five

cohesive interfaces, whose properties are summarized in Table 4.2, are employed to connect the

skin, the 90◦ ply and the stringer flanges. Conforming meshes are used for the stringer flange,

the 90◦ ply and the skin. The mesh size Lc is 1.08 mm in the impact region, while it gradually

increases toward the clamped edges. The mesh size on the non-impacted flange is 4.18 mm. The

discretization satisfies the restrictions imposed by the critical cohesive length computed according

to Eq. (4.13).
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4.4 Results and discussion of impact simulations

4.4.1 Results and discussion: 16-plies flat laminate

The IGA-based model is validated through the correlation of the impact-force time history

with the experimental data available in the literature. In addition, we compare the IGA predictions

with the results obtained using an in-house FE model as well as an FE model from [101]. We refer

to the latter as the reference FE model.

The in-house FE model, shown in Figure 4.3(c), is an Abaqus/Explicit model comprised

of linear brick elements (C3D8R). The in-plane mesh has elements of size 0.5 mm near the impact

location, and the element size is gradually increased to 1.5 mm away from the impact zone. Ply

grouping is employed with one layer of elements per group. The impactor is modeled as a

hemisphere of solid elements with steel elastic properties and mass scaled to 2 kg. Impactor-

to-laminate contact is modeled as hard contact with the impactor surface as the master. The

NASA CompDam subroutine [95, 63] is employed to model intralaminar damage. Delamination is

modeled using the Abaqus built-in cohesive-interface formulation that implements a mixed-mode

bilinear softening law. After delamination, ply-to-ply interactions are modeled via contact with

friction.

The reference FE model is similar to its in-house counterpart, however, in contrast to the

IGA-based and in-house FE models, it also employs a non-symmetric tension-compression material

constitutive law and a model for matrix plasticity. (See [101] for details.)

The baseline discretization for the IGA-based simulations has 128,244 DOFs. This number

is reduced to only 62,766 DOFs for the coarser IGA-based simulation of the 6.5 J impact case. In

contrast, the in-house FE discretization makes use of 772,176 DOFs.

The impact force time histories for the 6.5 J and 25 J impact energy cases are reported in

Figures 4.9(a) and 4.9(b), respectively. The results obtained for the 6.5 J impact exhibit a good

correlation with the experimental test in terms of the maximum impact force. The IGA and

in-house FE models overpredict the peak value by 6% and 9.7%, respectively. In addition, all

numerical simulations show an excellent agreement with the experimental data for impact duration.

No significant differences are found between the IGA simulation results for two different mesh

discretizations (see Figure 4.9(a)), suggesting the baseline IGA mesh is sufficiently fine for the

prediction of the impact force.

The numerical results obtained for the 25 J impact case show a little more discrepancy

compared to the experimental data and to the reference FE model. The maximum impact force

predicted by the IGA-based simulation is 4% larger compared to the in-house FE model, while no

significant differences are found in terms of the impact duration. The IGA model overpredicts the
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(a)

(b)

Figure 4.9: Impact on a 16-plies flat laminate. Impact force time history obtained for the (a) 6.5 J
and (b) 25 J impact energy cases. Experimental data labeled (1) and (3) are reported, respectively,
in [93] and [50]. Reference numerical results labeled (2) and (4) are reported in [101].

peak force by 11.5% relative to the reference FE model and by 20.1% compared to the experimental

data. The predicted duration of the impact event is 0.5 ms shorter compared to the experimental

value. However, in the reference FE model, the authors adopted a non-symmetric constitutive law

for the unidirectional composite, where the compressive elastic modulus is 23% smaller than the

corresponding tensile value of 130 GPa. This can explain a somewhat softer response predicted by

the reference FE model.

A ply-by-ply distribution of the intralaminar matrix damage variable is shown in Fig-
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(a)

(b)

Figure 4.10: Impact on a 16-plies flat laminate. IGA-based simulation results. Intralaminar matrix
damage for plies 1 (bottom) to 7 (impact side) for the (a) 6.5 J and (b) 25 J impact energy cases.
Contour plots of the matrix damage variable d2.

ures 4.10(a) and 4.10(b) for the 6.5 J and 25 J impact-energy cases, respectively. The results show a

symmetric damage pattern within each ply. The most severe damage is predicted to develop on

the back side of the laminate. This is because the matrix tensile stress in the lower lamina causes it

to fail earlier compared to the lamina closer to the impacted side, where compressive stresses are

dominant.

A interface-by-interface distribution of the interlaminar damage variable is shown in Fig-

ures 4.11(a) and 4.11(b) for the 6.5 J and 25 J impact-energy cases, respectively. The most severe

delamination occurs in the lower half of the laminate, between the plies oriented at 90 and -45

degrees. We note that localized compressive stress near the impact location prevents the plies to

reach complete delamination. In the case of high-energy impact, the presence of the support frame

causes the initiation of interlaminar damage at the interface closest to the back of the laminate.

A comparison of matrix damage and delamination between the IGA-based and in-house

FE simulations is shown in Figures 4.12 and 4.13, respectively. Discrepancies in the matrix damage

are attributable to the difference in the intralaminar damage models adopted in the two simula-

tions, and to the fact the FE simulation is able to represent a full 3D state of stress at the lamina

70



(a)

(b)

Figure 4.11: Impact on a 16-plies flat laminate. IGA-based simulation results. Interlaminar
damage for cohesive interfaces 1 (bottom) to 6 (impact side) for the (a) 6.5 J and (b) 25 J impact
energy cases. Contour plots of the cohesive damage variable dcoh.

level. Compared to the IGA results, the in-house FE model predicts a more severe and extended

delamination on all the ply interfaces, especially for the higher-energy impact case. This, in turn,

explains a slightly softer response of the in-house FE model for the prediction of the peak force

during impact for this case.

Finally, the distribution of the matrix and of the interlaminar damage predicted by the IGA-

based model is compared with the results of the reference FE model for the 6.5 J impact scenario.

The comparison is shown in Figure 4.14. The dashed red line in the bottom-right panel defines the

contour of the delaminated area obtained from experimental test. The models show good agreement

in terms of damage extension and of its distribution on the coupon surface. Discrepancies in the

predicted intralaminar damage can be attributed to different damage initiation criteria adopted

for the matrix phase, which are based on the description of the state of stress in the IGA-based

(plane stress) and in the reference FE (three-dimensional stress) model. The damage distribution

in the matrix phase of each ply affects the local compliance of the material and, as a consequence

of the displacement-based cohesive interfaces adopted for the analysis, differences in the relative
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(a) (b)

Figure 4.12: Impact on a 16-plies flat laminate. Matrix failure for the (a) 6.5 J and (b) 25 J impact
impact energy cases. Top: IGA-based results. Bottom: in-house FEM-based results. View from the
impacted side.

displacements between the plies lead to discrepancies in the predicted interlaminar damage. It

is also worth to recall that the displacement jump computed at the interface between the plies is

related to the different kinematics assumptions of the thin shell and of the 3D hexahedral elements.
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(a) (b)

Figure 4.13: Impact on a 16-plies flat laminate. Delamination for the (a) 6.5 J and (b) 25 J impact
impact energy cases. Top: IGA-based results. Bottom: in-house FEM-based results. View from the
impacted side.
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(a) (b)

Figure 4.14: Impact on a 16-plies flat laminate. Comparison of damage predicted by the (a)
IGA-based and by the (b) reference FE model for the 6.5 J impact case. Contour plots of the (top)
matrix damage variable d2 and (bottom) of the cohesive damage variable dcoh. Source: sub-figures
(b) edited from [101].
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Figure 4.15: Impact on a 24-plies flat laminate. Comparison of impact-force time history.

4.4.2 Results and discussion: 24-plies flat laminate

The experimental data used for validation corresponds to a vertical drop test and post-

impact non-destructive investigation of the damaged coupon conducted at the NASA Langley

Research Center. Numerical simulation was performed using implicit time integration with a

constant time-step of 2.5 µs. The model discretization has 436,215 DOFs. The correlation of the

impact force, measured on the impacting device, is shown in Figure 4.15. The results of the IGA

multi-layer shell model show excellent agreement with the experimental data. The simulation

over-predicts the peak force by 3.44%, while no noticeable differences are found in the case of

impact duration. No structural damping was introduced in the analysis; the oscillatory response

obtained after the peak load is associated with local vibration of the panel at and near the contact

interface.

Numerical results in Figures 4.16 and 4.17 show the extent of delamination front at every

interface. Every sub-figure represents an individual cohesive interface. Interface numbering follows

top-to-bottom ordering, where interface 23 is closest to the impacted surface. Highlighted areas

identify where the cohesive damage variable dcoh ≥ 0.5. For each cohesive interface, solid black

lines represent the boundary of the area where the matrix damage d2 on the plies located above

and below the interface is larger than 0.5. Figures 4.16 and 4.17 demonstrate the ability of the

multi-layer IGA shell model to correctly capture coupling mechanisms of matrix cracking and

delamination. Although the interaction of these damage modes is not taken explicitly into account,

numerical results indicate a clear correlation. In particular, it can be observed that discrepancies in

the matrix damage level on two adjacent plies result in a delaminated area with boundaries aligned

with those of the matrix-damage zone. This implicit interaction between the damage modes can

be explained by considering that matrix damage generates in-plane variations in the compliance.

75



Interf. 23 (0◦ / 45◦) Interf. 22 (45◦ / 90◦) Interf. 21 (90◦ / -45◦) Interf. 20 (-45◦ / 0◦)

Interf. 19 (0◦ / 45◦) Interf. 18 (45◦ / 90◦) Interf. 17 (90◦ / -45◦) Interf. 16 (-45◦ / 0◦)

Interf. 15 (0◦ / 45◦) Interf. 14 (45◦ / 90◦) Interf. 13 (90◦ / -45◦) Interf. 12 (-45◦ / -45◦)

Figure 4.16: Impact on a 24-plies flat laminate. Correlation between matrix damage and delamina-
tion predicted by IGA simulation for cohesive interfaces 12-23. Cohesive interface 23 is at the top
of the laminate (impacted side). The black solid line represents isocurves corresponding to d2=0.5,
while the highlighted area represent the sub-domain of cohesive interface where dcoh ≥ 0.5.

When loads are applied, differences in compliance on two adjacent plies lead to larger displacement

jump at the interface. Combined with different orientations of the connected lamina, for large

enough loads, this leads to onset of permanent delamination.

In Figures 4.18 and 4.19, we compare, for every interface, the numerical prediction of

delamination with experimental data obtained from rasterization of Computed Tomography (CT)
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Interf. 11 (-45◦ / 90◦) Interf. 10 (90◦ / 45◦) Interf. 9 (45◦ / 0◦) Interf. 8 (0◦ / -45◦)

Interf. 7 (-45◦ / 90◦) Interf. 6 (90◦ / 45◦) Interf. 5 (45◦ / 0◦) Interf. 4 (0◦ / -45◦)

Interf. 3 (-45◦ / 90◦) Interf. 2 (90◦ / 45◦) Interf. 1 (45◦ / 0◦)

Figure 4.17: Impact on a 24-plies flat laminate. Correlation between matrix damage and delamina-
tion predicted by IGA simulation for cohesive interfaces 1-11. Cohesive interface 1 is at the bottom
of the laminate (non-impacted side). The black solid line represents isocurves corresponding to
d2=0.5, while the highlighted area represent the sub-domain of cohesive interface where dcoh ≥
0.5.

images. Likewise, in Figures 4.20 and 4.21 we compare, for each ply, the matrix damage. Numerical

values of cohesive and matrix damage variables are evaluated directly at the mesh quadrature

points, where damage is computed, evolved, and stored. CT scans are performed on impacted

specimens in order to obtain detailed information about the damage state in individual plies and
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Interf. 23 (0◦ / 45◦) Interf. 22 (45◦ / 90◦) Interf. 21 (90◦ / -45◦) Interf. 20 (-45◦ / 0◦)

Interf. 19 (0◦ / 45◦) Interf. 18 (45◦ / 90◦) Interf. 17 (90◦ / -45◦) Interf. 16 (-45◦ / 0◦)

Interf. 15 (0◦ / 45◦) Interf. 14 (45◦ / 90◦) Interf. 13 (90◦ / -45◦) Interf. 12 (-45◦ / -45◦)

Figure 4.18: Impact on a 24-plies flat laminate. Correlation of (top) CT-scan results and (bottom)
Delamination predicted by the IGA simulation for cohesive interfaces 12-23. Cohesive interface
23 is at the top of the laminate (impacted side). Each frame represents a 80 mm × 60 mm area in
the center of the panel.

at interfaces between the plies. The technique developed to extract interlaminar and intralaminar

damage data from CT images is described in the work of Ellison and Kim [39].

Numerical prediction and experimental data show good correlation in terms of the orien-

78



Interf. 11 (-45◦ / 90◦) Interf. 10 (90◦ / 45◦) Interf. 9 (45◦ / 0◦) Interf. 8 (0◦ / -45◦)

Interf. 7 (-45◦ / 90◦) Interf. 6 (90◦ / 45◦) Interf. 5 (45◦ / 0◦) Interf. 4 (0◦ / -45◦)

Interf. 3 (-45◦ / 90◦) Interf. 2 (90◦ / 45◦) Interf. 1 (45◦ / 0◦)

Figure 4.19: Impact on a 24-plies flat laminate. Correlation of (top) CT-scan results and (bottom)
Delamination predicted by the IGA simulation for cohesive interfaces 1-11. Cohesive interface 1
is at the bottom of the laminate (non-impacted side). Each frame represents a 80 mm × 60 mm
area in the center of the panel.

tation of delamination boundaries and the relative extent of delamination zones. The model also

accurately predicts the absence of delamination in the impact area on the upper interfaces due to

the presence of compressive stress introduced by the impactor. Although the simulation tends to
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Ply 24 (0◦) Ply 23 (45◦) Ply 22 (90◦) Ply 21 (-45◦)

Ply 20 (0◦) Ply 19 (45◦) Ply 18 (90◦) Ply 17 (-45◦)

Ply 16 (0◦) Ply 15 (45◦) Ply 14 (90◦) Ply 13 (-45◦)

Figure 4.20: Impact on a 24-plies flat laminate. Correlation of (top) CT-scan results and (bottom)
Matrix damage predicted by the IGA simulation for plies 13-24. Ply 24 is at the top of the laminate
(impacted side). Each frame represents a 80 mm × 60 mm area in the center of the panel.

predict larger interlaminar and intralaminar damage compared to experimental observation, it is

worth noting that rasterization of CT images introduces some level of arbitrariness in the definition

of the damage extent.
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Ply 12 (-45◦) Ply 11 (90◦) Ply 10 (45◦) Ply 9 (0◦)

Ply 8 (-45◦) Ply 7 (90◦) Ply 6 (45◦) Ply 5 (0◦)

Ply 4 (-45◦) Ply 3 (90◦) Ply 2 (45◦) Ply 1 (0◦)

Figure 4.21: Impact on a 24-plies flat laminate. Correlation of (top) CT-scan results and (bottom)
Matrix damage predicted by the IGA simulation for plies 1-12. Ply 1 is at the bottom of the
laminate (non-impacted side). Each frame represents a 80 mm × 60 mm area in the center of the
panel.

The discrete nature of matrix cracking is clearly visible in the processed CT images, where

damage appears to be confined along narrow crack-bands oriented parallel to fiber direction. The

orientation and length of matrix cracks predicted by the numerical model is in good agreement
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with the CT results. However, the extent of matrix damage is larger compared to experimental

observations. These discrepancies can be attributed to the continuous nature of models based on

damage mechanics, where the predicted damage areas represent the effect of coalescence of parallel

crack-bands aligned in the fiber direction.
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4.4.3 Results and discussion: Stiffened panel

Figure 4.22: Impact simulation on a stringer-stiffened panel. Impact-force time history obtained
from the IGA simulation.

The low velocity impact scenario on reinforced composite panel is investigated from a

numerical point of view only. Experimental data are not presently available for this case. Numerical

simulations are performed using implicit time integration with a constant time step of 2.0 µs. The

IGA model uses 75,891 displacement-only DOFs for the discretization of the problem. The impact

force time history, shown in Figure 4.22, exhibits a sharp drop related to a sudden propagation of

the delamination front at the interface between the skin and 90◦ ply.

Figure 4.23: Impact on a stiffened panel. Contour plot of the intralaminar matrix damage variable
d2: envelope of maximum damage obtained for each ply of the laminate.

Figures 4.23 and 4.24 show the contour plots of matrix and interlaminar damage, respec-

tively. Since ply grouping technique is enabled, we report the envelope of damage variable d2

obtained, for each point, by taking its maximum value in the through-thickness direction on all

the the plies of the laminate. As expected, matrix damage is confined to the impact area, while the

extension of matrix damage is larger on the stringer, where tensile stresses are dominant.
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(a) (b)

Figure 4.24: Impact on a stiffened panel. Contour plots of the interlaminar damage variable dcoh:
interface (a) skin / 90◦ ply and (b) 90◦ ply / stringer flange.

Remark Enabling ply grouping allows for significant improvements in computational performance,

while still satisfying mesh size requirements for continuum damage and delamination. On the

other hand, this approach artificially prevents delamination of plies that belong to the same group.

Particular attention to ply grouping choices is therefore required since delamination significantly

affects the laminate residual bending stiffness.

4.5 Hard landing simulation of a UAV

Figure 4.25: Simplified CAD model of the Aurora Flight Sciences LCAAT UAV. Courtesy of
Prof. A. Korobenko, U. Calgary.

In this section we present an application of the design-to-analysis concept, which is the key

idea behind IGA and drives much of the research and development in this area. The IGA multi-layer

modeling approach is applied for progressive damage simulation of a full-scale Unmanned Aerial

Vehicle (UAV). The UAV is a prototype designed and manufactured by Aurora Flight Sciences with

a wingspan of 3.66 m. It belongs to a new class of air vehicles developed within the Low Cost
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(a)

(b)

Figure 4.26: Detailed NURBS-based CAD model of the LCAAT semi-wing for IGA: (a) View of the
internal structural components and (b) Global view of the assembled wing. In (a), the following
color code is used to distinguish structural parts: (gray) skin, (blue) spar, (red) ribs, (yellow)
ailerons. Non-structural geometries are also represented: (green) bending strips and (blue-green)
cohesive interface.

Attritable Aircraft Technology (LCAAT) research program managed by the US Air Force Research

Laboratory. A simplified CAD model of the LCAAT UAV is shown in Figure 4.25.

We investigate the structural response of the UAV main wing, focusing on the skin / spar

cap debonding that may occur during a hard landing scenario. The fuselage is not modeled and

the analysis is performed under the conservative assumption that the impact loads are transferred

directly to the wing. The wing presents a traditional single-spar design with four ribs and one

reinforced rib at the wing root. The spar runs for the entire length of the wing. The IGA model

is comprised of 127 NURBS patches that are used to represent all structural components, such

as spar, ribs, and skin, as well as aerodynamic surfaces. The ply grouping technique is adopted

for computational efficiency. Cohesive interfaces are used to connect the skin to spar caps. The

properties employed in the current analysis are reported in Table 4.2.

We make use of the commercial CAD software Rhinoceros3D [76] for modeling purposes

in order to create the basic geometry and carry out mesh refinement required for simulation. It

is worth mentioning that NURBS-based CAD software, in general, represent surfaces using the

minimum required number of control points such that the geometry is visually accurate. For

analysis purposes, however, h-refinement (i.e., increasing the number of non-repeated knots in

the NURBS parametric space) or p-refinement (i.e., increasing the polynomial order of the NURBS
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Figure 4.27: Hard landing simulation of LCAAT UAV. Contour plot of the vertical displacement.
Mesh in the undeformed configuration is superimposed to visualize wing deformation. Contour
color is not reported for those elements at wing’s root where acceleration is imposed.

(a)

(b)

Figure 4.28: Hard landing simulation of LCAAT UAV. Contours plots of the cohesive damage
variable dcoh on (a) Top of the wing and (b) Bottom of the wing.

functions while keeping the number of non-repeated knots constant) are often required to achieve

sufficient accuracy. A detailed description of the refinement procedures is reported by Cottrell et

al. [32]. These refinement procedures may be performed directly in the CAD environment, which is one

of the more attractive features of the IGA approach. The final, analysis-ready UAV wing NURBS

model and mesh are shown in Figure 4.26.

A hard landing simulation is performed by imposing an initial uniform downward velocity

of 3 m/s on the entire semi-wing. An upward acceleration ramp from 0 g to 6 g is imposed in

the time frame 0 s to 0.1 s. Boundary conditions are imposed on the portion of the wing that is
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connected to the fuselage (not modeled). After 0.1 s, the deceleration is kept constant until the

constrained control points come to rest. Numerical simulations are performed using implicit time

integration with a constant time step of 0.5 ms. The model uses 129,626 DOFs for the discretization

of the problem. Simulation results are shown in Figure 4.27, where the deformed configuration

is represented at the moment of maximum deflection. Figure 4.28 shows the distribution of the

interlaminar damage on the connection between the spar cap and skin. Despite the presence of a

delamination trigger, introduced ad-hoc on both sides of the wind to facilitate the propagation of

the delamination front, the model predicts the onset of interlaminar damage in the area closer to

the wing-fuselage connection. In this area, stresses in the spar are high, giving rise to interlaminar

shear due to different elastic properties between the spar cap and skin.
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5 Gradient–enhanced damage modeling

in Kirchhoff–Love shells

This chapter aims to address the issue of material instability, which typically affects strain-

softening damage models described in the previous chapters. We begin, in Section 5.1, by formu-

lating a strain-smoothing model for the Green–Lagrange strain, for a general 3D continuum. In

contrast to much prior work on gradient damage, we smooth the full tensor-valued strain (rather

than a scalar effective strain), to account for the anisotropic damage modes of fiber-reinforced

composites. Further, we formulate our model using the tensor generalization of the Laplace–

Beltrami operator on manifolds and provide formulas for arbitrary coordinate charts, to facilitate

the reduction to a shell theory. Section 5.2 specializes this model to the case of a thin shell by

introducing kinematic assumptions, and Section 5.3 applies it to laminated composite shells. In

Section 5.5, we provide several examples illustrating the validity and general applicability of the

new gradient damage model.

5.1 Gradient-Enhanced damage on manifolds

Building on our prior work [36, 14, 84] on continuum damage in composite shell structures,

we assume that the damage law is driven by the Green–Lagrange strain, which encapsulates

information about the change in length of small line segments embedded in a deforming material.

For an un-deformed body modeled by manifold Ω0, mapped to a deformed body Ω by the motion

φ, the Green–Lagrange strain E satisfies:

2E[ = φ∗(g)−G , (5.1)

where g is the metric tensor on Ω, G is the metric tensor on Ω0, φ∗ is the pull-back by φ, and the

superscript [ indicates an associated tensor taking all vector arguments. The ] symbol will be

used to denote an associated tensor taking all co-vector arguments. For a review of mathematical
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prerequisites for large-strain elasticity, refer to [74, Chapter 1], whose notational conventions we

largely follow. In index notation, the pulled-back metric is given by:

(φ∗(g))AB = gabFa
AFb

B , (5.2)

where F = Dφ is the deformation gradient, raised indices indicate co-vector arguments, lowered

indices indicate vector arguments, and repeated indices denote contraction. We follow the conven-

tion that lower-case Roman-letter indices correspond to tensor arguments in (co)tangent spaces

of points in Ω, while upper-case Roman-letter indices refer to Ω0. The formula (5.1) becomes the

familiar FTF− I in Cartesian coordinates, with gab = δab, GAB = δAB, and (·)T understood as matrix

transposition (vs. [74, Proposition 3.4(ii), Chapter 1]), but we retain the generality of the manifold

viewpoint here, to facilitate reduction to a shell theory.

To avoid unstable strain localization, we propose to instead drive damage with a smoothed

Green–Lagrange strain. We build on the Gradient-Enhanced damage model of [82], in which a

scalar effective strain ε0 is smoothed to obtain ε̃0 satisfying the PDE:

ε̃0 − c∆ε̃0 = ε0 , (5.3)

where c is a scalar parameter with dimensions of area and ∆ is the Laplace operator. By analogy,

we consider a smoothed Green–Lagrange strain Ẽ satisfying the PDE:

Ẽ−DIV
(

cGRAD Ẽ
)
= E , (5.4)

where DIV and GRAD are the divergence and gradient operators on the reference configuration

Ω0, and the tensor c permits anisotropy in the strain smoothing. The full tensor-valued strain E is

smoothed because the damage model of [14] requires anisotropic strain information. The smoothed

strain Ẽ will then be used in place of the Green–Lagrange strain to drive damage evolution.

Multiplying by a tensor-valued test function W, integrating by parts, and (again following [82] by

analogy) assuming natural boundary conditions (i.e.,
(

cGRAD Ẽ
)
·N = 0, where N is the outward

normal to ∂Ω0), we obtain the weak form: Find Ẽ[ ∈ VE such that for all W[ ∈ VE:

∫
Ω0

Ẽ[ : W] dΩ0 +
∫

Ω0

(
cGRAD Ẽ

)[
: (GRAD W)] dΩ0 =

∫
Ω0

E[ : W] dΩ0 , (5.5)

where the tensor contraction operator “ : ” indicates contraction over all indices of its operands, i.e.,

(cf. [74, Definition 4.12, Chapter 1]):

S[ : T] = SABC... TABC... . (5.6)
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In index notation, (5.5) may be written unambiguously:

∫
Ω0

ẼABWAB dΩ0 +
∫

Ω0

cF
GẼAB|CWDE|FGDAGEBGGC dΩ0 =

∫
Ω0

EABWAB dΩ0 , (5.7)

where the vertical stroke “ | ” indicates covariant differentiation and GAB are components of G−1.

For a tensor A of type (0
2), covariant differentiation can be expressed in a coordinate chart {ξA} as

[74, Box 4.1, Chapter 1]:

(∇A)ABC = AAB|C = AAB,C − ADBΓD
AC − AADΓD

BC , (5.8)

where the comma indicates partial differentiation and the Γs are Christoffel symbols, i.e.,

∇GA GB = ΓC
ABGC , (5.9)

in which ∇w denotes covariant differentiation in the direction w and

GA =
∂

∂ξA (5.10)

are the covariant basis vectors associated with the coordinates.

5.2 Specialization for thin shells

We now choose a particular coordinate chart tailored to the case of a thin shell structure

whose thickness, hth, is assumed to be much smaller than the overall size of the structure. Let

{ξα}2
α=1 be coordinates of the shell structure’s 2D un-deformed midsurface, Γ0, and let the coordi-

nate ξ3 ∈ [−hth/2, hth/2] parameterize the through-thickness direction orthogonal to Γ0. Unless

otherwise specified, we follow the notational convention that Greek-letter indices have range 1,2,

while Roman-letter indices have range 1,2,3. Assuming standard Kirchhoff–Love kinematics, we

consider:

Eα3 = E3α = E33 = 0 , (5.11)

and likewise for Ẽ and W. We make the further approximation that {Gα} do not depend on ξ3.

This contradicts (5.10) unless Γ0 is flat, but it is consistent with the assumptions frequently made to

permit analytical through-thickness integration of Kirchhoff–Love shell formulations, as in [68]; see

[19, Section 4.4.4] for more detailed justification. With this assumption, ∇G3Gα = 0, or

ΓB
α3 = ΓB

3α = 0 . (5.12)
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Kirchhoff–Love thin shell kinematics allow for a separation of membrane and bending components

of the in-plane strain, so that:

Eαβ = εαβ + ξ3καβ , (5.13)

Ẽαβ = ε̃αβ + ξ3κ̃αβ , (5.14)

Wαβ = δεαβ + ξ3δκαβ , (5.15)

where ε and κ are membrane and curvature-change strains (defined by [14, Section 2.1]), ε̃ and κ̃

are their smoothed counterparts, and δε and δκ are the corresponding test functions. Due to our

use of midsurface basis vectors {Gα} through the entire thickness, E[ in (5.13) operates on tangent

vectors of Γ0 for all ξ3. (We acknowledge the slight abuse of notation, in using the same symbol for

the 3D continuum strain, operating on tangent vectors of Ω0.) Given the strain decompositions

(5.13)–(5.15), we may split the weak problem (5.5) into two independent problems. First: Find ε̃

such that for all δε,

hth

(∫
Γ0

ε̃αβ δεαβ dΓ0 +
∫

Γ0

cζ
ν ε̃αβ|γ δεδε|ζ GδαGεβGγν dΓ0

)
= hth

∫
Γ0

εαβ δεαβ dΓ0 (5.16)

and, second: Find κ̃ such that for all δκ,

h3
th

12

(∫
Γ0

κ̃αβ δκαβ dΓ0 +
∫

Γ0

cζ
ν κ̃αβ|γ δκδε|ζ GδαGεβGγν dΓ0

)
+hth

∫
Γ0

c3
3 κ̃αβ δκαβ dΓ0 =

h3
th

12

∫
Γ0

καβ δκαβ dΓ0 . (5.17)

Terms coupling ε̃ and κ̃ have canceled, due to integration of odd powers of ξ3 over the symmetric

interval (−hth/2, hth/2). The “extra” term proportional to hth in (5.17) comes from smoothing of

3D strain in the ξ3 direction:

Ẽαβ|3 =
∂
(
ε̃αβ + ξ3κ̃αβ

)
∂ξ3 − ẼDβΓD

α3 − ẼαDΓD
β3 = κ̃αβ (5.18)

and, likewise,

Wαβ|3 = δκαβ , (5.19)

so that:

Ẽαβ|3Wαβ
|3G33 = κ̃αβ δκαβ , (5.20)

where we use assumptions (5.12) in the second equality of (5.18), and the fact that G33 = 1 in (5.20).

This additional term will dominate the problem for κ̃ in the limit of hth→ 0, driving κ̃→ 0. This is
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expected when smoothing the odd-in-ξ3 function ξ3κ̃ over a small interval about ξ3 = 0.

Remark 1. The use of covariant differentiation in the diffusive terms of (5.16) and (5.17) ensures

that damage models relying on the smoothed strain will be independent of the choice of coordinates

on Γ0. Most prior studies on Gradient-Enhanced damage (and related phase field methods) smooth

only a scalar-valued field, say, s, in which case s|α = s,α. However, this is no longer true for

higher-rank fields.

5.3 Application to continuum damage modeling for laminated compos-

ite shells

Following our earlier work [14], we model multi-layer laminated composite shell structures

as collections of Kirchhoff–Love thin shells coupled through cohesive zones, with one Kirchhoff–

Love shell representing each lamina. The problem (5.16) is used to determine the smoothed

membrane strain in each of these layers. Based on the assumption that the individual laminae are

very thin, we assume that κ̃ = 0, as implied by the hth→ 0 limit of (5.17). This does not preclude

damage due to bending of the full laminated shell; laminae away from the neutral axis will have

nonzero membrane strains. For a single ply, then, we have Ẽ[ = ε̃ for all ξ3 ∈ [−hth/2, hth/2] For

the ply group construction of [14, Section 2.2], in which a collection of lamina are represented by a

single Kirchhoff–Love shell, but may be damaged independently, we modify this to:

Ẽ[
k = ε̃ + ξ3

kκ , (5.21)

where Ẽ[
k is the smoothed strain within the kth ply, ξ3

k is the through-thickness coordinate of the

midsurface of the kth ply, ε̃ is the smoothed membrane strain of the entire group, and κ is the

unsmoothed bending strain of the group. This assumes that individual plies are thin enough to

consider Ẽ constant through the thickness of each ply, but still permits damage to be caused by

pure bending movements of the ply group. We re-use the damage model detailed in [14, Section 3],

but alter the definitions of the “equivalent displacements” that are used to drive the evolution of

damage parameters associated with different damage modes. As in [14], we consider each lamina

to be composed of an orthotropic material, reinforced by fibers aligned along a single direction. We

consider four distinct modes of damage in such materials:

• Mode 1T: Fiber breaking under tension.

• Mode 1C: Fiber buckling under compression.

• Mode 2T: Matrix cracking under transverse tension and shear.
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• Mode 2C: Matrix cracking under transverse compression and shear.

These modes are associated with equivalent displacements δ̂1T , δ̂1C , δ̂2T , and δ̂2C . Equivalent

displacements are computed from dimensionless strains through multiplication by a length scale.

In the case of local damage models, this length scale is tied to the choice of discretization, and is

chosen to be the smallest distance within which strains can be localized in a discrete displacement

field, in an attempt to prevent mesh-dependent energy dissipation. However, the choice of length

scale is by heuristic, at best, for problems discretized on general unstructured meshes in multiple

space dimensions. In the case of Gradient-Enhanced damage modeling, the localization of strains

is controlled by the model parameter c, and we may consider
√

c to be an appropriate mesh-

independent length scale for computing equivalent displacements from smoothed strains.

In particular, we compute the equivalent displacements by:

δ̂1T = L1

〈
Ẽ11

〉
, (5.22)

δ̂1C = L1

〈
−Ẽ11

〉
, (5.23)

δ̂2T = L2

√〈
Ẽ22

〉2
+
(

Ẽ12

)2
, (5.24)

δ̂2C = L2

√〈
−Ẽ22

〉2
+
(

Ẽ12

)2
, (5.25)

where Ẽαβ are dimensionless components of the smoothed strain Ẽ[ with respect to an orthonormal

basis {eα} for the co-tangent space of the lamina midsurface, in which e1 is parallel to fiber direction

in the lamina (cf. [14, Section 2.1]). Angle brackets 〈·〉 are Macaulay brackets, isolating the non-

negative part of their argument. The coefficients {Lα} are the length scales used to convert from

strains to equivalent displacements; in [14], we assumed L1 = L2 and computed these length scales

from the Jacobian of the mapping from a standard element to physical space, to limit the effects

of mesh-dependent damage localization. In the present work, we compute {Lα} from c. First, we

introduce the assumption that c[ is diagonal in the basis {eα}, then set:

Lα =
√

cαα , (5.26)

where the bar again indicates that components are in the fiber-aligned orthonormal basis, and the

repeated index is underlined to indicate that no summation takes place in this instance. As we

do not presently have a method for estimating appropriate anisotropy of c, we assume, for the

remainder of this paper, that:

cα
β = cδα

β , (5.27)

94



where the scalar parameter c has dimensions of area. The remainder of the shell structure mechanics,

laminar damage modeling, and interlaminar cohesive coupling from [14] is unchanged, and we

refer the reader to the cited reference for additional details.

Remark 2. The introduction of a new model parameter, c, may seem unappealing to practitioners

working with local models, who have no established protocol for calibrating a strain-smoothing

length scale. However, mesh-dependence of solutions to local models means that the number,

positions, and connectivity of nodes in a finite element mesh must all be considered free parameters.

This makes calibration with specific geometries difficult, and renders intractable the end goal of

predicting damage in new scenarios, for which experimental data is not available.

5.4 Isogeometric discretization of strain smoothing

To apply the smoothed-strain damage model of Sections 5.2–5.3 in computer simulations,

the numerical framework of [14] is extended to solve for an approximate solution to (5.16) at each

time (or load) step of a simulation. The smoothed strain is nonlinearly coupled to the mechanics

and damage evolution of the structure. However, the problem of solving for ε̃ given a fixed

structural deformation is linear, with only the source term depending on the deformation. The

relative straightforwardness of the fixed-displacement strain smoothing problem leads us to adopt

a staggered approach to solving the fully-coupled problem, in which we alternate between solving

structural mechanics and strain smoothing subproblems, holding the solution to the other fixed

in each, until arriving at a fixed point. The precise algorithm for applying this staggered solution

procedure in conjunction with the generalized-α time integration used in [14] is essentially identical

to that given for phase field fracture analysis in [20, Section 3.3.2], with the strain smoothing

subproblem taking the place of the phase field subproblem.

The discretization of the structural mechanics subproblem is as specified in [14] and ref-

erences therein. We discretize the new strain smoothing subproblem (5.16) using a standard

Bubnov–Galerkin approach, i.e., posing (5.16) over a finite-dimensional subspace V h
E of VE. For

convenience, each of the three unique components of the symmetric tensor ε̃ (as expressed in

the curvilinear basis {Gα}) is considered to be in the same finite-dimensional scalar-valued space

as the components of shell structure displacement. Test and trial spaces for the second-order

strain smoothing subproblem need only be H1(Γ0)-conforming, but we use C1 isogeometric spline

functions, due to the more stringent constraints on the displacement spaces, from the higher-order

bending terms of the Kirchhoff–Love shell formulation. In particular, we use B-spline and NURBS

function spaces, and assume that the curvilinear coordinates {ξα} correspond to the parameter

spaces of the spline patches.
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Remark 3. The discretization of curvilinear (rather than Cartesian) tensor components is in contrast

to some prior finite element discretizations of surface differential operators acting on unknown

fields of nonzero rank, e.g., [94, 44, 60]. The approaches of the cited references introduce redundant

degrees of freedom by seeking higher-dimensional tensor-valued solutions, and require extra mech-

anisms to enforce solution tangency, albeit with various advantages discussed in [60]. Our approach

in the present work is analogous in some ways to the treatment of isogeometric discrete differential

forms in [23, 22], where the coupled unknown scalar fields are associated with parametric rather

than spatial directions. In the same way that divergence-conforming B-spline discretizations of

incompressible flows fail to satisfy exact global momentum balance [40, Section 9.7], our smoothed

strain field may fail certain “patch tests” such as exactly reproducing spatially-uniform strains.

However, the error converges under refinement and is likely negligible for approximation spaces

sufficient to represent accurate displacement solutions to strain-softening damage models. Further,

Eh = 0 still implies Ẽh = 0, so rigid-body motions cannot result in spurious damage.

The only terms in the formulation (5.16) that are not readily available within prior frame-

works for isogeometric analysis of Kirchhoff–Love shell structures (as detailed in, e.g., [68, 69, 66])

are the Christoffel symbols, Γα
βγ. These may be computed from the metric tensor G using the

formula [74, Lemma 3.29, Chapter 1]:

Γα
δγ =

1
2

Gαβ
(
Gγβ,δ + Gδβ,γ − Gδγ,β

)
. (5.28)

The necessary partial derivatives of G can be obtained via:

Gαβ,γ =
(
X,α · X,β

)
,γ =

(
XD

,αδDEXE
,β

)
,γ
= XD

,αγδDEXE
,β + XD

,αδDEXE
,βγ , (5.29)

where X : R2 → R3 maps from coordinates {ξα} to embeddings of the corresponding points

of Γ0 into a Cartesian coordinate representation of 3D space. (The Kronecker delta δAB gives

the components of the 3D metric tensor in Cartesian coordinates.) In standard isogeometric

discretizations, position components XA are linear combinations of scalar basis functions defined

on the parameter space, and thus the derivatives XA
,α and XA

,αβ are straightforwardly constructed

as linear combinations of derivatives of shape functions.

5.5 Numerical results

Reinstatement of mesh objectivity is the primary objective of the Gradient-Enhanced

method. Results presented in the literature (i.e., see [82, 53, 35]) proved that it is possible to
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obtain mesh-independent damage predictions by adopting the Gradient-Enhanced strain regular-

ization technique. However, to the authors knowledge, the accuracy of the Gradient-Enhanced

method has not been investigated yet for applications on severely distorted meshes.

The formulation presented in Sections 5.2–5.3 is specifically developed for Isogeometric

applications, in which mesh regularity is strictly connected to the NURBS representation of geome-

tries. Therefore, in this section, we show applications of the Gradient-Enhanced strain-smoothing

method in order to verify the robustness of the proposed formulation in terms of sensitivity with

respect to mesh distortion.

First, three benchmark problems are presented in order to assess convergence properties

under h- and k refinements and to verify mesh objectivity with respect to damage prediction.

The nonlocal strain regularization is then applied for impact simulations in combination with

full multi-layer modeling approach. In the first example, the low velocity impact on a 24-plies

flat laminate, presented in Section 4.4.2, is revisited and results obtained from local and nonlocal

damage formulations are compared. The last example shows the application of the nonlocal

damage theory for a low-velocity impact on a reinforced composite panel.

It is worth to mention that all the graphics results are obtained by projecting the solution,

computed at NURBS control points, on a lower order linear polynomial space. This allows us to

use traditional visualization tools developed for Finite Element applications.

5.5.1 Convergence of the Gradient-Enhanced method under h-refinement

The method of manufactured solution is applied in order to verify the accuracy of the

proposed strain-smoothing method (5.5) under mesh h-refinement. In particular we employ the

formulation (5.16) developed for Kirchhoff–Love shell elements under plane-stress assumption.

The manufactured strain field Ẽ is defined with respect to the global Cartesian basis {eα} on the

domain Γ0 = (−1,1)2, and its components are chosen ad-hoc such that the flux-free natural boundary

condition (see, e.g., [82]) is identically satisfied anywhere on ∂Γ0:

Ẽ] = ε̃
αβ eα ⊗ eβ = cos

(
πX1

)
mαβ eα ⊗ eβ , (5.30)

where X1 is the coordinate associated with the global basis e1, while m is a constant second order

tensor with m11 = 1 , m22 = 3 and m12 = m12 = 2. It is worth noting that, since ε̃
αβ

are defined with

respect to a Cartesian basis, their values are unaffected by raising and lowering of indices. The

components of the source term ε in (5.16) are straightforwardly computed in Cartesian coordinates

from (5.4) and, thereafter, transformed into covariant component εαβ for consistency with the

equation (5.16). The components cα
β of the smoothing tensor are set to δα

β.
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Convergence test is performed using both regular and skewed discretization. In the first

case, local curvilinear basis {Gα} are constant and point-wise parallel to the global axes. In case

of skewed mesh, the length and the orientation of the basis vary along the curvilinear parametric

coordinates {ξα}. The purpose of the test is to verify the convergence rate of the numerical solution

Ẽh as a result of mesh refinement. For the current test, we employ quadratic NURBS shape functions.

The L2 norm of the error ‖Ẽ− Ẽh‖ is reported in Figure 5.1. It can be observed that the the error

converges correctly as a cubic function of the characteristic element size lele = 2
√
‖G1 ⊗G2‖.

Figure 5.1: Convergence of Gradient-Enhanced method: Convergence rate, as a function of mesh
size, for regular and skewed meshes.

A qualitative comparison of the numerical results obtained for different distorted meshes

is shown in Figure 5.2. The mesh skew factor is computed for quadrilateral elements as SF =

max‖cosα‖, where α is the angle between the edges at the element center.

5.5.2 Uniaxial tensile test

The second benchmark simulates an uniaxial tensile test on a slender bar [82]. The purposes

of this test are:

• To investigate damage localization using NURBS shape function of increasingly higher-order

and higher inter-element continuity NURBS shape functions in combination with a local

damage model;

• To verify that, if nonlocal regularization is employed, the numerical solution converges under

mesh refinement.

The coupon, that is shown in Figure 5.3, measures 100 mm and 10 mm in the longitudinal

and in the lateral direction, respectively. The bar has a constant thickness of 1 mm except for a
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(a) (b)

Figure 5.2: Convergence test performed by using the manufactured solution method. Plot

contours represent (a) the distribution of the skew factor of the mesh and (b) the Ẽ
h
11 component

referred to the global Cartesian basis {eα}.

central section, which extends for a length of 10 mm, where the thickness is reduced to 0.9 mm.

Clamped boundary condition is imposed on one short side of the bar, while uniform displacement

is imposed on the opposite short side. The test is performed under displacement control boundary

condition in order to ensure stability of the simulation during the softening damage process. The

material is isotropic with a Young’s modulus is E=20 GPa. Poisson’s ratio is set to ν=0 in to simulate

a true uniaxial stress along the bar.

The isotropic damage model is based on a residual-stiffness constitutive law:

S = (1− diso)C : E , (5.31)

where S denotes the second Piola–Kirchhoff stress tensor, diso a scalar isotropic damage variable

and C the fourth-order tensor of elastic moduli. A bilinear damage law is introduced in order to
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Figure 5.3: Schematic depiction of the uniaxial tensile test simulation. Section view in the
longitudinal direction.

compute the isotropic damage variable diso as a function of the parameter κ:

diso (κ) =


0 if κ ≤ κ0 ,

κF

κ

κ − κ0

κF − κ0 if κ0 ≤ κ ≤ κF ,

1 if κ > κF ,

(5.32)

where κ0 = 1.0−4 and κF = 1.25× 1.0−2. It is worth to mention that, as opposed to the intralaminar

damage model presented in [14], in this isotropic damage model the damage-initiation criterion is

based solely on the value of the parameter κ compared to κ0.

Damage localization under k-refinement

Isogeometric analysis introduced the concept of k-refinement (i.e., see [32]) which allows to

simultaneously elevate NURBS order as well as the order of inter-knot continuity. Three different

discretization are considered for the coupon shown in Figure 5.3: (a) 160 linear C0 elements; (b)

160 quadratic C1 elements; (c) 160 cubic C2 elements. Element size in the longitudinal direction is

constant and equal to 0.625 mm. Discretization in the lateral direction is limited to one element. It

is worth to mention that linear C0 NURBS correspond to linear Lagrange polynomials, which are

typically adopted as shape functions in the framework of Finite Element analysis.

For this simulation, the parameter κ in (5.32) is defined equal to the local (i.e., non-smooth)

axial component of strain E1. No length scale is used in the damage law (5.32) and κ0 and κF

represent, respectively, the limit strains at which permanent damage initiates and the material is

fully damaged.

Force-displacement curves from numerical simulations are shown in Figure 5.4. Results

obtained using linear C0 NURBS shape functions clearly indicate that bar exhibits almost instan-

taneous loss of stiffness once damage initiation occurs. This paradoxical result stems from the

discontinuous nature of the strain field computed from linear C0 shape functions, which is discon-

tinuous across the elements. Therefore, strain localizes in the element where damage initiation
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criterion is initially met, while the remainder of the bar unload elastically. Similar results are

reported in [72] for a local damage theory in which a length scale is omitted in the definition of the

damage law. In this case, damage localization instability leads, for sufficiently refined meshes and

linear C0 shape functions, to failure without energy dissipation. This results clearly contradicts the

principles for verification and validation articulated by Babuška and Oden [7].

Figure 5.4: Uniaxial tensile test: Local damage model. Force-displacement curves obtained from
simulation performed on 160 elements-mesh with progressively higher order and continuity
NURBS shape functions.

The problem of damage localization is partially alleviated by employing higher-order

continuity shape functions, as shown in Figure 5.5. Because of the higher-order continuity of the

strain field, axial strain does not localize in the single element where damage initiates. Instead,

axial strain localize over the length corresponding to the support region of those shape functions

which also have support in the element where damage is initially detected.

It is worth noting that, if local effects related to the discontinuity of the thickness are

neglected, the nominal axial strain is constant in the weak section of the bar. Therefore, damage

initiation may theoretically occur anywhere in the region x ∈ [45,55] mm. This is the case simulated

using linear C0 NURBS shape functions, which are able to capture the sharp discontinuity of the

strain field. However, if higher-order continuous shape functions are employed, damage initiation

is triggered in the proximity of the thickness discontinuity due to numerical fluctuations of strain

typically associated with Gibbs phenomenon.

Remark 4. In the framework of IGA, the support of a p-th order NURBS shape function spans

over p+1 knot intervals, or elements. Therefore, the support of linear (p=1) NURBS extents for two

elements, the support of quadratic (p=2) NURBS extents for three elements and the support of cubic

(p=3) NURBS extents for four elements. Impact simulations presented in the following section, as
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Figure 5.5: Uniaxial tensile test: Local damage model. Simulation results obtained using a
discretization of 160 (a) linear C0, (b) quadratic C1 and (c) cubic C2 elements. Contour plot of the
local axial strain component E11. Results obtained for an applied displacement ∆ = 0.045 mm.
View from top.

well as results published in [14, 84, 85], require to use, at least, quadratic C1 shape functions due

to the presence of curvature-change strain tensor. Curvature effects are neglected for the uniaxial

tensile test.

Convergence using the Gradient-Enhanced nonlocal model

The Gradient-Enhanced method is therefore employed to regularize the strain field, which

is used to compute the isotropic damage variable. For this purpose, the parameter κ in (5.32) is

defined equal to the smooth axial component of strain Ẽ1. Convergence is investigated by using

four progressively-refined meshes comprised of 40, 80, 160 and 320 elements uniformly distributed

in the longitudinal direction. Quadratic C1 NURBS shape functions are employed, while the

smoothing parameter c is set equal to 1 mm2.

Force-displacement curves obtained from numerical simulations, see Figure 5.6, show that

the solution quickly converges under h-refinement and the dissipated energy is independent with

respect to mesh discretization.

Figure 5.7 shows the distribution of the istotropic damage variable diso as a function of

the longitudinal coordinate. The simulation performed with a very coarse mesh fails to predict

a symmetric distribution of the damage variable. However, results obtained from progressively

refined meshes show that the damage distribution converges to a symmetrical solution.
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Figure 5.6: Uniaxial tensile test: Gradient-Enhanced nonlocal regularization. Force-displacement
curves obtained by using quadratic C1 NURBS shape functions, progressively refined discretiza-
tion and a smoothing parameter c = 1 mm2.

Figure 5.7: Uniaxial tensile test: Gradient-Enhanced nonlocal regularization. Distribution of the
isotropic damage variable obtained by using quadratic C1 NURBS shape functions, progressively
refined discretization and a smoothing parameter c = 1 mm2. Results obtained for an applied
displacement ∆ = 0.04 mm.

5.5.3 Three-point bending test

A three-point bending test [35] is considered. The dimension of the beam, as shown in

Figure 5.10, are 2000 mm and 300 mm in the longitudinal and lateral direction, respectively. The

thickness is constant and equal to 50 mm. Simply supported boundary conditions are imposed

on the lower corners, while prescribed-displacement boundary conditions are imposed on the

upper edge. The material is assumed to be linear isotropic with a Young’s modulus E = 20 GPa

and a Poisson’s ratio ν = 0.2. The Poisson’s ratio is assumed to remain constant during the damage

process. The isotropic softening constitutive law is defined in (5.31). For this simulation, the
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Figure 5.8: Uniaxial tensile test: Gradient-Enhanced nonlocal regularization. Contour plot of
the local axial strain component E11 obtained by using quadratic C1 NURBS shape functions,
smoothing parameter c = 1 mm2, (a) 40 and (320) elements. Results obtained for an applied
displacement ∆ = 0.04 mm. View from top.

Figure 5.9: Uniaxial tensile test: Gradient-Enhanced nonlocal regularization. Contour plot of the
isotropic damage variable diso obtained by using quadratic C1 NURBS shape functions, smoothing
parameter c = 1 mm2, (a) 40 and (320) elements. Results obtained for an applied displacement ∆ =
0.04 mm. View from top.

Figure 5.10: Schematic depiction of the three-point bending test simulation.

isotropic damage variable diso is computed using an exponential damage law that is a function of a

history damage variable δ̂:

diso(δ̂) =


0 if δ̂ ≤ δ̂0 ,

1− δ̂

δ̂0

{
(1− α) + αexp

[
β
(
δ̂0 − δ̂

)]}
if δ̂ > δ̂0 ,

(5.33)

104



where α and β are material parameters, while δ̂0 a critical value of the history damage variable at

which damage is initiated. For this simulation, the onset of permanent damage is determined by

δ̂0 = 10−4, while material parameters are set to α = 0.99 and β = 500. Equations (5.31) and (5.33)

are complemented by a damage loading function:

f
(
η, δ̂
)
= η − δ̂ , (5.34)

where η denotes an equivalent strain measure. The damage loading function f and the rate of the

history damage variable ˙̂δ satisfy the Kuhn–Tucker conditions which ensures non-reversibility of

damage:

f ˙̂δ = 0 , f ≤ 0 , ˙̂δ ≥ 0 , (5.35)

while the equivalent strain measure η used for the damage loading function f
(
η, δ̂
)

is:

η
(

Ẽ
)
=

√〈
Ẽ1

〉2
+
〈

Ẽ2

〉2
, (5.36)

where Ẽ1 and Ẽ2 are the in-plane principal strains expressed in the global orthogonal coordinate

system. Macaulay brackets allow for damage growth only for tensile strains.

This three-point bending test is simulated using three different meshes, shown in Figure 5.11

and two values of the Gradient-Enhanced scalar parameter c, which is defined in Equation (5.27).

The baseline model uses a regular mesh with rectangular elements whose edges are oriented

parallel to global axes. Progressively distorted mesh are then considered to verify the robustness of

the Gradient-Enhanced method. Simulations are performed by setting the parameter c = 50 mm2

and c = 200 mm2. Distribution of the damage variable along the beam for different meshes and

smoothing parameter are shown in Figure 5.12.

The length scale of the damaged area is proportional to the square root of c as defined in

Equation (5.26), thus the damaged area for c = 200 mm2 is expected to be twice as wide as the

damaged area for c = 50 mm2. Results shown in Figure 5.12 are in good agreement with theoretical

prediction. It can be observed that differences in the distribution of the damage variable, computed

using different meshes, is negligible.

Figure 5.13 shows force-displacement curves from numerical simulations. No significant

discrepancies can be observed between the baseline and the skewed symmetrical model. Dis-

crepancy in the maximum predicted force can be observed in simulation performed using the

skewed asymmetrical mesh. Compared to the baseline simulation, the model over-predicts the

peak force by 0.5%, for a smoothing parameter c = 50 mm2, and by 3.1% for c = 200 mm2. It can be

inferred that the use of a severely distorted discretization results in the under-estimation of the
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Figure 5.11: Three-point bending test: Meshes used for the simulation. Contour plot of the mesh
skew factor for the (a) Regular, (b) Skewed symmetrical and (c) Skewed asymmetrical mesh.

damage. We hypothesize that the cause of this ill behavior is numerical and attributable to the

solution of the nonlinear system of equation for each time-step. Small elements located in the area

of large damage gradient, have a relative marginal contribution to the global residual. While the

Newton-Raphson method iteratively minimizes the global residual, difficulties may arise in the

minimization of the local residual since convergence criterion of the iterative nonlinear solver is

related to the norm of the global residual. Therefore, small errors in highly-stressed elements can

propagate and compromise the overall accuracy of the solution.

Sensitivity of the solution with respect to mesh orientation

The presence of Christoffel symbols in the Gradient-Enhanced formulation assumes rel-

evance when the orientation of covariant basis vectors is not constant over the domain. The

three-point bending test simulation is revisited using a simplified version of the Gradient-Enhanced

method, in which all the terms associated with the Christoffel symbols in the definition of covari-

ant differentiation (5.8) are neglected. This test allows to assess the sensitivity of the solution in

connection to the derivatives of local curvilinear basis vectors with respect to global axis. For this

purpose, two meshes are considered: A regular mesh and an asymmetrical skewed mesh, as shown

in Figure 5.11 (a) and (c), respectively.

Figure 5.14 shows the comparison of force-displacement curves obtained using both the

complete and the simplified Gradient-Enhanced formulation on two different meshes. In case of

regular discretization, the local curvilinear coordinate system is aligned with the global Cartesian

axes. Therefore, the Christoffel symbols are identically null and results coincide. However, signifi-

cant discrepancies can be observed by comparing results obtained from simulations performed
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Figure 5.12: Three-point bending test: Gradient-Enhanced nonlocal regularization. Contour
plots of isotropic damage variable diso for three different discretization: (a,d) Regular mesh, (b,e)
Skewed symmetrical mesh and (c,f) Skewed asymmetrical mesh. Results (a), (b) and (c) are
obtained for a prescribed displacement ∆ = 0.65 mm and a parameter c = 50 mm2. Results (d), (e)
and (f) are obtained for a prescribed displacement ∆ = 1.0 mm and a parameter c = 200 mm2.

on the asymmetrical skewed mesh. Differences are related to the incompleteness of the simplified

smoothing formulation, which introduces inaccuracies in the covariant differentiation of the strain

field (5.8).

5.5.4 Low-velocity impact on a flat composite laminate

In this section the simulation of a low-velocity impact scenario on a flat composite lami-

nate [85] is revisited in order to compare the effect of the nonlocal regularization technique. The

rectangular plate measures 152.4 mm × 101.6 mm. Clamped boundary conditions are enforced

on all the sides over a domain that extend for 12.7 mm from the edges. The actual test window
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(a)

(b)

Figure 5.13: Three-point bending test: Force-displacement curves computed for three different
discretization using the Gradient-Enhanced nonlocal regularization. Results obtained for a
smoothing parameter (a) c = 50 mm2 and (b) c = 200 mm2.

Figure 5.14: Three-point bending test: Force-displacement curves computed for two different
discretization. Results obtained using the complete Gradient-Enhanced (G-E) formulation and the
simplified counterpart in which all the terms associated with Christoffel symbols are neglected.
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at the center of the coupon measures 127 mm × 76.2 mm. The plate is made of 24 unidirectional

T800/3900-2 carbon/epoxy plies and the total thickness is 4.809 mm. Laminae are stacked accord-

ing to the sequence [0/45/90/-45]3s. Material and cohesive properties used for the simulation are

reported in [85]. The impacting device has a hemispherical head with a radius of 25.4 mm and the

impact energy is 25.1 J. No ply grouping [14] is employed and the plate is modeled ply-by-ply using

24 rectangular NURBS surfaces connected with 23 cohesive interfaces. The Gradient-Enhanced

method for strain smoothing is enabled on all the NURBS surfaces. A penalty contact interface [14]

is defined between the impactor and the first lamina on top of the plate.

For this simulation we use the same mesh discretization adopted in [85], in which the

characteristic element size in the center of the plate is 1 mm, while it gradually increases to 1.5 mm

closer to the clamped edges. The cohesive model imposes restriction on the mesh size. As discussed

by Turon et al. [105], a fine mesh resolution is required in order to correctly capture the propagation

of the delamination front. The local damage model [14] is replaced with the nonlocal version

presented in Section 5.3. Isotropic smoothing is employed due to lack of theoretical evidences

supporting the adoption of an anisotropic, or orthotropic, smoothing model. As discussed in

Section 5.3 we tie the smoothing parameter c to the length-scale Lα of the damage model. Therefore,

both the parameters are set equal to the characteristic element length. The model has a total number

of 872,430 Degree Of Freedom (DOFs), equally distributed between structural displacements DOFs

and smooth-strain DOFs, and the generalized–α method [31] is used to integrate in time the

governing equations with a constant time-step of 2 µs.

The impact-force time history, obtained using the Gradient-Enhanced nonlocal regulariza-

tion method, is shown in Figure 5.15. Results obtained from experimental test [85], as well as from

a baseline Isogeometric model based on a local damage model, are also reported for comparison.

Numerical result obtained using the Gradient-Enhanced regularization exhibits an excellent corre-

lation with experimental data, as the peak force is over-predicted by 0.3% while no differences can

be observed in the impact duration.

As discussed in our recent work [85], the global stability of the analysis performed using a

local model was not affected by local instabilities associated with material strain-softening. Dif-

ferences between local and nonlocal damage formulations stem from regularization of the strain

field used to compute damage variables. The adoption of the Gradient-Enhanced regularization

improves also the convergence rate of the nonlinear solver. The comparison of normalized conver-

gence rates, computed at every integration time-step, is reported in Figure 5.16. It can be observed

that the convergence rate is improved up to a factor of 10 during the stage of maximum damage

formation and propagation. It is worth noting that these results were obtained using a staggered, or

loosely-coupled, approach for the solution of structural and Gradient-Enhanced equations.
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Figure 5.15: Impact on a flat laminate: Simulation result. Correlation of impact-force time history
obtained for a 25.1 J impact simulation. Results obtained using the local damage model [85] are
reported for comparison.

Figure 5.16: Impact on a flat laminate: Comparison of normalized residual obtained for a constant
number of nonlinear Newton-Raphson iterations at every integration time-step. Simulation
performed using local damage model is used as reference.

Ply-by-ply distribution of matrix damage is shown in Figure 5.17. Results obtained using

a local damage model, which are reported for comparison purposes, exhibit spurious damage

features. It can be observed that the nonlocal regularization re-establish the symmetry of damage

patterns. Symmetrical distribution of predicted damage is in accordance with the symmetric setup

of the numerical experiment.

It can also be observed from the interface-by-interface distribution of cohesive damage

variable, shown in Figure 5.18, that the adoption of a strain-regularization technique for in-ply

damage leads to a symmetric distribution of predicted delamination. While in-ply and interlaminar

110



damage modes are not explicitly coupled through constitutive equations, the interaction of these

damage modes is implicitly embedded in the damage mechanics of layered composites, which is

correctly captured by the multi-layer analysis framework.

(a) (b)

Figure 5.17: Impact on a flat laminate: Simulation results. Ply-by-ply contour plots of matrix
damage: colored areas represent, for each ply, the sub-domain where d2 ≥ 0.5. Comparison of
results obtained using the (a) nonlocal and the (b) local damage model. Clamped boundary
condition enforced on elements highlighted in red.

5.5.5 Low-velocity impact on a stiffener-reinforced composite panel

The last example proposed in this chapter is the simulation of a low-velocity impact on a

stringer-reinforced composite panel. Numerical results obtained from a simplified model of the

reinforced panel were originally reported in [85]. However, the original modeling approach made

use of the ply-grouping technique which precludes to simulate delamination within groups of

laminae. This often results in an over-prediction of impact forces. In this section, a full multi-layer

model of the stringer-reinforced panel is considered.

The model is comprised of a flat skin panel, a hat-shaped stringer and a single lamina,

oriented at 90◦, placed between those parts. The panel, shown in Figure 4.5 and 4.6, measures

990.6 mm in the longitudinal direction of the stringers and 1308.1 mm in the lateral direction. The

distance between the stringer centerlines is 260.35 mm. The impactor has a hemispherical head
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(a) (b)

Figure 5.18: Impact on a flat laminate: Simulation results. Interface-by-interface contour plots of
inter-laminar damage: colored areas represent, for each interface, the sub-domain where dcoh ≥ 0.5.
Comparison of results obtained using the (a) nonlocal and the (b) local damage model. Clamped
boundary condition enforced on elements highlighted in red.

with a radius of 12.7 mm. The total impacting mass is 5.067 kg and the initial kinetic energy is 30 J.

For this full multi-layer simulation, we consider the scenario of an impact occurring on the top of

the stringer cap.

The baseline NURBS representation, as shown in Figure 5.19, is comprised of:

• 9 NURBS patches to represent the stringer;

• 5 NURBS patches to represent the skin;

• 3 NURBS patches to represent the single 90◦ ply;

• 1 NURBS patch to represent the impactor.

Bending strips are employed to connect NURBS patches that belongs to the same lamina. The

bending strip technique (i.e., see [67]) was developed for IGA purposes, in combination with the

thin-shell element model, in order to transfer bending moment across the boundaries of NURBS

patches.

Starting from the baseline geometry, the multi-layer model is constructed using the commer-

cial CAD software Rhinoceros3D [76] by off-setting NURBS surfaces. The lamination sequence for
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Figure 5.19: Impact on a reinforced panel: Baseline representation of the stringer-reinforced panel.
Colored patches identify (green) skin, (blue) extra 90◦ ply, (purple) stringer and (red) impactor.
Yellow narrows bands represent bending strips used to connect separate NURBS patches that
belong to the same part.

skin and stringer is [45/-45/0/45/90/-45/0/90]s. By taking advantage of the symmetric lamination

sequence, the skin and the stringer are both represented by means of 15 distinct layers of NURBS

patches. Considering the extra lamina, the complete multi-layer model is comprised of:

• 213 NURBS surfaces to represent skin, stringer and extra 90◦ ply;

• 182 Bending strips.

A total number of 201 zero-thickness cohesive interfaces are employed to connect laminae

of individual parts, as well as for connecting the skin to the 90◦ ply and the 90◦ ply to the stringer.

Material and cohesive properties used for the analysis are reported in Table 4.1 and Table 4.2,

respectively. Clamped boundary conditions are only imposed on the long sides of the panel over

a domain that extends for 2.5 mm from the edges. The characteristic element size in the impact

area is 1.2 mm. The multi-layer model, shown in Figure 5.20 has a total number of 2,475,726 DOFs,

equally distributed between structural displacements and smooth-strain.

Damage predictions for the low-velocity impact case are reported in Figure 5.21 and Fig-

ure 5.22. These figures show contour plots of maximum matrix and interlaminar damage obtained

from the impact simulation. It can be observed that the damage distribution obtained using the

Gradient-Enhanced damage model is continuous across NURBS patches, where displacement field

is only C0 continuous. This stem from the definition of the regularized strain as an independent

unknown field. As such, C0 continuity of the smooth strain is strictly enforced between NURBS

patches by merging the corresponding and coincident degrees of freedom on connected patches.

Experimental results for the impact-test setup illustrated in this section are not available
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Figure 5.20: Impact on a reinforced panel: Multi-layer representation of the experimental setup
for the impact simulation.

(a) (b)

Figure 5.21: Impact on a reinforced panel: Simulation results. ply-by-ply contour plot of matrix
damage variable d2 obtained using nonlocal damage model. Clamped boundary condition
enforced on elements highlighted in red.

(a) (b)

Figure 5.22: Impact on a reinforced panel: Simulation results. Interface-by-interface contour plot
of cohesive damage variable dcoh obtained using nonlocal damage model. Clamped boundary
condition enforced on elements highlighted in red.

at the time this dissertation is drafted. Correlation of impact forces and damage profiles will be

presented in future works.
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6 Conclusions and future directions

This dissertation introduces a comprehensive Isogeometric numerical framework for model-

ing progressive damage in composite laminates. The framework is based on a multi-layer modeling

approach, in which each lamina is modeled as a Kirchhoff–Love shell discretized with NURBS

surfaces. Multiple shell layers interact via novel zero-thickness cohesive interfaces, which allow

representation of transverse shear compliance at the laminate level, and modeling of interlaminar

damage and delamination. Continuum Damage Mechanics is used to model intralaminar damage

by progressively degrading the elastic properties of the material. The Gradient-Enhanced nonlocal

regularization is introduced to re-establish mesh objectivity and to minimize instabilities associated

with strain-softening damage models.

Following a comprehensive state-of-the-art review of numerical methods for progressive

damage simulations in composite materials, this dissertation explores new modeling techniques

enabled by the introduction of the Isogeometric Analysis concept. The foundations of the novel

analysis framework are presented and developed in Chapter 2. Starting from the definition of

B-Spline and NURBS surfaces, a local curvilinear coordinate system and a metric tensor are defined

on the basis of geometry parametrization. Then, the deformation gradient and the nonlinear

Green-Lagrange strain tensor are derived. The structural model is based on the kinematic of

the Kirchhoff–Love shell, which is computationally efficient and it is suitable to represent thin

structural components, such as composite laminae, without exhibiting shear-locking effects. The

presence of the curvature-change strain requires the use of shape functions that are, at least, C1

continuous across the elements. Finally, the introduction of the Kirchhoff-St. Venant constitutive

model enable the use of NURBS surfaces for structural analysis, whose governing equations are

derived from the principle of virtual work.

The development of the multi-layer Isogeometric Analysis framework is extended in Chap-

ter 3. This chapter summarizes our earlier work on Kirchhoff–Love shells in combination with

interlaminar Continuum Damage Mechanics. A new zero-thickness cohesive-interface formulation

suitable for Kirchhoff–Love shells is introduced in order to enable ply-by-ply representation of

composite laminates. The formulation is validated using standard Mode I and Mode II delami-
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nation tests. The proposed formulation showed the ability of the multi-layer model to effectively

represent transverse-shear behavior, and thus model thicker laminates. In addition, a thorough

discussion of the effect of the cohesive-interface modeling parameters on the computational results

is provided at the end of the chapter.

Applications of the Isogeometric Analysis framework are presented in Chapter 4. First,

two low-velocity impact scenarios from the literature are used for validation purposes. Excellent

agreement with experimental data was obtained for a lower-energy impact case. In case of higher-

energy impact simulations, however, numerical results obtained with the IGA- and an in-house

FE-based models exhibited some discrepancies with the experimental data. These are likely related

to the lack of a plasticity model for the matrix phase and to the use of a symmetric tension-

compression constitutive law. A new low-velocity impact simulation of a 24-ply flat coupon is

also presented. Experimental test and non-destructive evaluation test [39] were performed by

co-authors [85] at NASA Langley Research Center. Simulation results showed good agreement

for the impact-force time history and for experimentally measured delamination at each one of

the 23 ply interfaces. In addition, from the analysis of individual cohesive interfaces, we observed

the expected correlation between matrix damage and delamination, despite them being treated as

independent damage modes in the modeling framework. Applications of the multi-layer model

to simulate low-velocity impact on a stiffened panel and a hard landing scenario for a novel UAV

design are also shown. Results obtained for the low-velocity impact simulation, and, in particular,

their comparison with experimental results, clearly demonstrate the accuracy and efficiency of the

IGA-based approach to progressive damage modeling in laminated aerospace composite structures.

The simulations also demonstrate the ease of going from geometry design to IGA simulations using

existing geometry modeling tools.

In this dissertations it is shown that the proposed IGA-based formulation for progressive

damage modeling in laminated composite structures, which is developed in the framework of multi-

layer modeling using rotation-free Kirchhoff–Love shells, is an accurate and efficient alternative

to the more traditional low-order solid-element FE approaches. In particular, the new IGA-based

formulation is capable of reproducing impact-damage results using a fraction of the degrees of

freedom required for traditional FE analysis. The reasons for this increased efficiency, besides the

lack of rotational degrees of freedom in the discrete formulation, are as follows. Rotation-free

Kirchhoff–Love shells, unlike solids or shear-deformable shells, do not suffer from transverse-shear

locking in the limit of vanishing thickness. This property, in combination with higher-order accurate

and smooth representation of the shell midsurface geometry and solution fields, allows one to

adopt relatively coarse in-plane discretizations while maintaining good solution accuracy.

The use of NURBS and other type of spline functions allows for accurate and smooth

117



representation of geometrically complex surfaces. NURBS permit a straightforward increase in

the approximation order, as well as relatively effortless specification of the degree of continuity

of the basis functions across element boundaries. It is precisely the higher-order continuity of

these discretizations that enables the use of Kirchhoff–Love shell theory at the ply level, thus

increasing computational efficiency and eliminating shear locking, such as seen in traditional FEM

discretizations of thin structures, and which requires specialized numerical treatment.

As discussed in our recent work [85], the global stability of the analysis performed using

a local damage model was not affected by local instabilities related to material strain-softening.

However, further research is required in order to address damage localization issues, especially in

the context of IGA-based Kirchhoff–Love shells.

For this purpose, the multi-layer Isogeometric Analysis framework for composite laminates

is extended in order to incorporate a nonlocal damage model. The Gradient-Enhanced method is

introduced in Chapter 5. This regularization technique aims to re-establish mesh objectivity by

introducing a smooth nonlocal strain field that drives the Continuum Damage Mechanics model.

The Gradient-Enhanced formulation presented in this dissertation was specifically developed for

thin shell elements, whose kinematic assumptions require an ad-hoc treatment for strain smoothing.

Several benchmark simulations are presented to prove the convergence and the accuracy of the

nonlocal damage model under h- and k-refinements. Results show that the Gradient-Enhanced

technique allows to re-establish mesh objectivity for damage prediction. Nonlocal regularization

improves the stability of the analysis, which leads to a faster convergence rate for the solution of the

nonlinear system of equations. This compensate for the additional computational cost required to

compute the distribution of the smooth-strain field. It was shown that, due to the implicit coupling

of matrix damage and delamination, regularization of in-ply damage leads to a regular distribution

of interlaminar damage. Finally, the introduction of the smooth-strain as an additional unknown

field, allows to obtain a continuous damage distribution across connected NURBS patches.

6.1 Future research directions

Prediction of post-impact residual strength of composite laminate is paramount, in par-

ticular for aerospace and advanced-automotive industries. The reduction of the nominal struc-

tural capacity is typically assessed by performing a quasi-static tensile or compression test on

a component with a pre-existing damage state. Interlaminar and intralaminar damage can be

intentionally introduced in pristine composite components by performing dynamic impact or quasi-

static indentation test. In future research efforts we plan to carry out impact and, subsequently,

Compression-After-Impact (CAI) analyses of larger-scale stiffened panels in order to assess the
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ability of the proposed IGA-based formulation to deliver accurate results in this setting.

Preliminary results showed that residual indentations on flat composite coupons are of

primary importance for CAI test. Indeed, geometrical out-of-plane imperfections trigger local

instabilities, such as lamina buckling, which represent the major failure mode under compressive

loading condition. In the current implementation of the multi-layer model, plasticity is neglected.

While typical reinforcement materials, such as carbon, exhibit an elastic behavior until failure,

this is not the case for polymer matrices which may exhibit a plastic behavior. Accumulation

of debris in micro-cracks, formed during the impact stage, is also considered another source of

plasticity [21] since cracks cannot close during the unloading stage due to the presence of debris.

For this purposes, we consider the introduction of a model for matrix plasticity (i.e., see [28]) in

order to predict permanent deformation following impact simulations.

Another interesting development is the coupling of the efficient “equivalent single-layer

representation” with the high-fidelity multi-layer modeling approach presented in this dissertation.

While the ply-by-ply representation of composite laminates allows for accurate damage prediction,

multi-layer modeling may be unfeasible, or extremely inefficient, for large scale components due

to the amount of DOFs required to represent individual plies. For this reason, we envision the

adoption of an hybrid modeling approach, in which multi-layer modeling is enabled only where

delamination is expected to occur. The presence of matrix damage, which can be computed also if

ply-grouping is enabled as discussed in Section 3.1.1, is an indicator that interlaminar damage has

possibly occurred and a higher-fidelity representation of the laminate is locally required.
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Appendix

A.1 Transformation of tensor components

In order to transform the components of a generic tensor E from the curvilinear basis Gα,Gβ

to a Cartesian basis ecur
α ,ecur

β , consider first the equivalence:

E = Eαβ Gα ⊗Gβ = Eαβ ecur
α ⊗ ecur

β , (A.1)

where Eαβ are the covariant components of the tensor E associated with the contravariant basis

Gα,Gβ, while Eαβ are the Cartesian components of the tensor E associated with the Cartesian

basis ecur
α ,ecur

β . The transformation is obtained by multiplying the left- and right-hand side of

Equation (A.1) by ecur
κ and ecur

γ :

Eαβecur
κ

(
Gα ⊗Gβ

)
ecur

γ = Eαβecur
κ

(
ecur

α ⊗ ecur
β

)
ecur

γ ,

Eαβ (ecur
κ ·Gα)

(
Gβ · ecur

γ

)
= Eαβ (ecur

κ · ecur
α )

(
ecur

β · ecur
γ

)
,

Eαβ (ecur
κ ·Gα)

(
Gβ · ecur

γ

)
= Eαβδα

κ δ
β
γ ,

Eαβ (ecur
κ ·Gα)

(
Gβ · ecur

γ

)
= Eκγ .

(A.2)

In Equation (A.2) we introduce the Kronecker Delta symbol in order to simplify the notation.

Due to the orthogonality of the Cartesian basis ecur
β · ecur

γ = δ
β
γ.

In general, the transformation between two curvilinear basis follows the same rule. Consider,

for example, the equivalence:

E = Eαβ Gα ⊗Gβ = Eαβ Gα ⊗Gβ . (A.3)

Again, by multiplying the left- and right-hand side of Equation (A.1) by Gκ and Gγ:

Eαβ (Gκ ·Gα)
(

Gβ ·Gγ
)
= Eκγ , (A.4)
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where the equation is simplified due to the orthogonality property of reciprocal basis Gβ ·Cγ = δ
β
γ.

In a similar way, it is possible to derive all the following transformation rules:

Eαβ (Gκ ·Gα)
(
Gβ ·Gγ

)
= Eκγ ,

Eαβ (Gκ ·Gα)
(
Gβ ·Gγ

)
= Eκγ ,

Eαβ (Gκ ·Gα)
(

Gβ ·Gγ
)
= Eκγ .

(A.5)

A.2 Simplification of the cohesive variational form

Equation (3.24) involves the dot products δδn · δn and δδτ · δτ, which may be expressed as:

δδn · δn = δ [(ñ⊗ ñ)δ]T (ñ⊗ ñ)δ

≈ δδT (ñ⊗ ñ)T (ñ⊗ ñ)δ

= δδT (ñ⊗ ñ)δ

= δδ · δn ,

(A.6)

and
δδτ · δτ = δ [(I− ñ⊗ ñ)δ]T (I− ñ⊗ ñ)δ

≈ δδT (I− ñ⊗ ñ)T (I− ñ⊗ ñ)δ

= δδT
[
ITI− 2IT (ñ⊗ ñ) + (ñ⊗ ñ)T (ñ⊗ ñ)

]
δ

= δδ · (I− ñ⊗ ñ)δ

= δδ · δτ ,

(A.7)

where, going from first to second line, we neglect the variation of the equivalent normal vector.

A.3 Variation of the normal vector

In what follows we make use of the Einstein summation convention. In the current configu-

ration, the unit outward normal vector n coincides with the third covariant basis vector g3 given by
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Eq. (2.14). As a result, the variation δn may be computed as follows:

δn = δ

(
x,ξ1 × x,ξ2

‖x,ξ1 × x,ξ2‖

)
=

δ
(
x,ξ1 × x,ξ2

)
‖x,ξ1 × x,ξ2‖ −

(
x,ξ1 × x,ξ2

)
δ‖x,ξ1 × x,ξ2‖

‖x,ξ1 × x,ξ2‖2

=

(
δx,ξ1 × x,ξ2

)
+
(
x,ξ1 × δx,ξ2

)
‖x,ξ1 × x,ξ2‖

−
(
x,ξ1 × x,ξ2

) (δx,ξ1 × x,ξ2

)
+
(
x,ξ1 × δx,ξ2

)
‖x,ξ1 × x,ξ2‖3 .

(A.8)

The cross product is expressed using index notation by taking advantage of the Levi–Civita symbol

εklm as:

a× b = εklmalbmek . (A.9)

Therefore, the variation δn may be expressed using index notation as:

δnk =
1

‖εpqrxq,ξ2
xr,ξ1
‖
(
Ikj − nknj

)[(
εjilxl,ξ2

δxi,ξ1

)
+
(

εjlixl,ξ1
δxi,ξ2

)]
, (A.10)

where I is the identity matrix. The derivatives of the coordinate vector x,ξα
can be expressed in

terms of the derivatives of the shape function by introducing the IGA discretization:

xi,ξα
=

nsh

∑
A=1

NA,ξα
dAi . (A.11)

Finally, the derivative of the k-th component of the normal vector n w.r.t. the degree of freedom dAi

is
∂nk

∂dAi

=
1

‖εpqrxq,ξ2
xr,ξ1
‖
(
Ikj − nknj

)(
εjilxl,ξ2

∂xi,ξ1

∂dAi

)
+

1
‖εpqrxq,ξ2

xr,ξ1
‖
(
Ikj − nknj

)(
εjlixl,ξ1

∂xi,ξ2

∂dAi

)
.

(A.12)

In order to simplify notation, we introduce the terms:

Aki =
1

‖εpqrxq,ξ2
xr,ξ1
‖
(
Ikj − nknj

)(
εjilxl,ξ2

)
,

Bki =
1

‖εpqrxq,ξ2
xr,ξ1
‖
(
Ikj − nknj

)(
εjlixl,ξ1

)
,

(A.13)

and compactly rewrite the derivative of the normal vector as:

∂nk

∂dAi

= AkiNA,ξ1 + BkiNA,ξ2 . (A.14)
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A.4 Integration over the cohesive interface

Transformation of integrals from the physical to parametric domain requires the evaluation

of the surface Jacobian JΓS
that is given by

JΓS
= ‖x,ξ1 × x,ξ2‖ . (A.15)

Analogously, the transformation of the integrals over the the cohesive interface requires the evalua-

tion of the surface Jacobian JΓcoh
that is given by

JΓcoh
= ||xP

,ξ1
× xP

,ξ2
|| , (A.16)

where xP is defined according to Eq. (3.29). We introduce Eq. (3.29) into Eq. (A.16) and compute:

xP
,ξ1
× xP

,ξ2
=

(
x,ξ1 +

hΓS

2
n,ξ1

)
×
(

x,ξ2 +
hΓS

2
n,ξ2

)
= x,ξ1 × x,ξ2 +

hΓS

2
(
x,ξ1 × n,ξ2 + n,ξ1 × x,ξ2

)
+

h2
ΓS

4
(
n,ξ1 × n,ξ2

)
= x,ξ1 × x,ξ2 +

hΓS

2
(
−x,ξ1ξ2 × n− n× x,ξ1ξ2

)
+

h2
ΓS

4
(
n,ξ1 × n,ξ2

)
= x,ξ1 × x,ξ2 +

h2
ΓS

4
(
n,ξ1 × n,ξ2

)
.

(A.17)

The above equation implies

xP
,ξ1
× xP

,ξ2
= x,ξ1 × x,ξ2 +O(h

2
ΓS) , (A.18)

which gives the following relationship between the surface Jacobians,

JΓcoh
= JΓS

+O(h2
ΓS) ≈ JΓS

, (A.19)

and justifies performing the integration of the cohesive-interface terms over the corresponding

shell midsurface.

A.5 Comparison of strain-smoothing and damage-smoothing formula-

tions

Reference [35] discusses a family of gradient damage models in which damage variable

rather than strain is smoothed by a PDE. Such models closely-resemble the phase field fracture

models that have recently become popular, and a thorough comparison is made in [35]. However,
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as suggested by Jirásek’s earlier work on strongly-nonlocal models [62], damage smoothing may

give rise to a “stress locking” phenomenon, in which the material is incapable of complete failure,

thus limiting the model’s range of applicability. For additional discussion on strong and weak

models and effects of different smoothing schemes, see [9]. The results presented in this appendix

indicate that Jirásek’s conclusions apply also to weakly-nonlocal damage-smoothing models.

In particular, we consider a damage-smoothing formulation that softens material using

smoothed damage indices {d̃ℵ}, ℵ ∈ {1,2,6}, satisfying the PDEs: Find d̃ℵ ∈ Vd, ℵ ∈ {1,2,6}, such

that, for all sℵ ∈ Vd, ∫
Γ0

(
cd̃ℵ,α Gαβsℵ,β +

(
d̃ℵ − dℵ

)
sℵ
)

dΓ0 = 0 , (A.20)

where {dℵ} are the locally-computed damage indices from the formulation of [14] and the space Vd

of trial and test functions is scalar-valued, i.e., ℵ does not refer to a 2D (Greek letter) or 3D (Roman

letter) tensor index. As in the strain-smoothing case, we discretize the PDEs (A.20) by Galerkin’s

method and couple them with the displacement subproblem in a staggered fashion.

In case the Gradient-Enhanced method is used to regularize damage variables, Cartesian

components of the local strain tensor Eαβ replace their smooth counterpart in the definition of

equivalent displacements δ̂i in Equations (5.22), as described in [14]. The definition of tangent

moduli in the residual-stiffness approach [14, Section 3] is also modified and the material stiffness

matrix C̃, expressed in local material axes, is parametrized as a function of nonlocal damage

variables computed from (A.20):

C̃ =
1
D


E1

(
1− d̃1

)
E1ν21

(
1− d̃1

)(
1− d̃2

)
0

E1ν21

(
1− d̃1

)(
1− d̃2

)
E2

(
1− d̃2

)
0

0 0 G12D
(

1− d̃6

)
 , (A.21)

where D = 1− ν21ν12

(
1− d̃1

)(
1− d̃2

)
. In case of isotropic constitutive law, all the components

of the tensor of tangent moduli are scaled proportionally to a single isotropic damage variable. It

follows that:

S =
(

1− d̃iso

)
C : E . (A.22)

In order to compare differences, we apply the modified Gradient-Enhance model (A.20)

to simulate the uniaxial tensile test presented in Section 5.5.2. Two discretization of 80 and 160

elements are considered and quadratic C1 NURBS are used as shape functions. The smoothing

parameter c is set equal to 1 mm2. Results obtained numerical analysis are shown in Figure A.2

and A.1. The distribution of d̃iso as a function of the axial coordinates shows that, compared to the

local counterpart, the smooth damage variable does not reach the limit of one anywhere in the bar.
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Figure A.1: Uniaxial tensile test: Gradient-Enhanced nonlocal regularization. Distribution of the
(diso) local and (d̃iso) nonlocal isotropic damage variable obtained using the modified Gradient-
Enhanced on a mesh of 160 elements. Results obtained for an applied displacement ∆ = 0.045 mm.
Result from the baseline Gradient-Enhanced method is reported for comparison.

Figure A.2: Uniaxial tensile test: Gradient-Enhanced nonlocal regularization. Force-displacement
curves obtained using the modified Gradient-Enhanced method. Result from the baseline
Gradient-Enhanced method is reported for comparison.

While the damage area extend for a larger portion of the domain, the force-displacement curve

does not exhibit the expected strain-softening response. These results corroborate the stress-locking

effect predicted in [62].
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