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Capacity Bounds and Coding Schemes for Cloud Radio Access Networks
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Professor Young-Han Kim, Chair

Cloud radio access networks (C-RANs) have been touted as a viable alternative to current

communication network architectures for handling larger data volumes and higher throughput

requirements, in order to serve a growing number of data-hungry devices. In this dissertation,

we study information theoretic models of uplink and downlink C-RANs and explore questions

on optimal data throughputs and large-network size asymptotics. In addition, as a first step

on the path to achieving these tradeoffs in practice, we demonstrate how one can build codes

for multiuser networks and provide finite-blocklength performance guarantees by starting from

single-user codes.
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Chapter 1

Introduction

With ever-increasing demands for higher data rates, better coverage, and more reliable

connectivity for a large number of devices, new network architectures and protocols are expected

to play an important role in future communication systems. The cloud radio access network

(C-RAN) architecture [42, 43] is one of the candidates, being implemented extensive in the

upcoming 5G systems. In this architecture, communication over a group of cells is coordinated

by a cloud-based central processor. Fig. 1.1 depicts uplink and downlink C-RAN systems

schematically.

Base stations in a C-RAN, unlike in conventional cellular networks, do not perform

all network functionalities locally, but instead delegate most of them to a central processor by

communicating with it over wired or wireless fronthaul links. If these links have unbounded

capacities, the base stations act as spatially distributed antennas of a conventional multiple-input

multiple-output (MIMO) system, that use beamforming to coordinate transmission and mitigate

interference among multiple cells. For the more realistic situation of limited fronthaul link

capacities, beamforming in a downlink C-RAN is typically performed at the central processor

assuming no capacity constraints, and the corresponding baseband signals are digitized individu-

ally for each base-station and transmitted through the fronthaul links. For uplink, the received

signal at each base-station is similarly digitized individually according to the corresponding

link capacity, and transmitted to the base-station. These approaches often lead to high fronthaul

1



capacity requirements.

As an alternative to this greedy beamforming–digitization approach, we investigate near-

optimal coding schemes for the C-RAN architecture and their achievable throughput tradeoffs

by modeling the entire system as a two-hop relay network. In this model, which was studied,

for example, in [43, 68, 69], the base stations act as relays that summarize the received signals

from user devices to the central processor (uplink) and transmit the prescribed signals from the

central processor to user devices (downlink). Communication-theoretic results on this model

were presented in a recent volume edited by Quek, Peng, Simeone, and Yu [43].

User
devices

Radio
heads

Central
processor

User
devices

Radio
heads

Central
processor

Figure 1.1. (a) Uplink and (b) downlink cloud radio access networks.

Several coding schemes have been proposed in the literature for the uplink C-RAN

with K users (senders) and L relays. Zhou and Yu [69] applied the network compress–forward

relaying scheme [26] to this model and showed, by optimizing over quantizers, that under some

symmetry assumptions, this scheme achieves the optimal sum-rate within L/2 bits per real

dimension uniformly over all K and all channel parameters. Sanderovich, Someskh, Poor, and

Shamai [47] used the same scheme and analyzed the large-user asymptotics (i.e., the scaling

law) of symmetric achievable rates when all fronthaul links have equal capacities. Zhou, Xu,

Yu, and Chen [68] subsequently showed that under a sum-capacity constraint on the fronthaul

links, the coding scheme in [69] and [47] can be simplified through successive cancellation

decoding, generalizing an earlier result for the single-sender multiple relay network [46]. Aguerri

and Zaidi [2] proposed a hybrid coding scheme of network compress–forward and compute–

forward [35], and demonstrated that it outperforms the better of the two in general. Aguerri, Zaidi,

Caire, and Shamai [3] specialized the noisy network coding scheme [29] to the uplink C-RAN,

2



the achievable rate region of which coincides with that of network compress–forward [47, 69].

Park et al. [38] studied joint decompression and decoding for the uplink.

The most general outer bound on the capacity region of the uplink C-RAN can be obtained

by specializing the cutset bound [18]; see, for example, [69] and the references therein, as well

as Proposition 2.2.2 in this thesis. The cutset bound has been further tightened under additional

assumptions. Aguerri, Zaidi, Caire, and Shamai [3] studied the uplink C-RAN in which the relays

are oblivious of the codebooks of the senders, and demonstrated that network compress–forward

(or noisy network coding) achieves the capacity region. Simeone, Somekh, Erkip, Poor, and

Shamai [52] studied the uplink C-RAN with one sender, L oblivious relays, and unreliable

fronthaul links, and derived an upper bound on the capacity, which was numerically shown to be

close to the network compress–forward lower bound under certain network parameters.

For the downlink C-RAN with L relays and K receivers, a variety of coding schemes have

been proposed. Hong and Caire [23] studied a low-complexity reverse compute–forward scheme

for symmetric rates. Liu and Yu [31] applied network coding and beamforming to the downlink

model with a noiseless multi-hop fronthaul. Motivated by the MAC–BC duality, Liu, Patil, and

Yu [30] proposed compression-based schemes and established a duality between achievable rate

regions for the uplink and downlink C-RANs. El Bakouri and Nazer [14, 15] applied integer-

forcing based joint beamforming and compression strategies and demonstrated a duality between

uplink and downlink C-RANs under this framework. Bidokhti and Kramer [7] studied the 2-

relay, single-user downlink C-RAN and used rate-splitting across relays and Marton coding with

common message to derive capacity lower bounds. Bidokhti, Kramer, and Shamai [8] studied the

L-relay, single-user downlink C-RAN and used Marton coding and rate-splitting across relays,

but this time with no common message (due to the complexity for L > 2). Wang, Wigger, and

Zaidi [59] studied the three-hop, 2-relay, 2-user downlink C-RAN with relay cooperation, where

the relays communicate with each other once, simultaneously, per network use. They applied the

generalized data-sharing (G-DS) and distributed decode–forward (DDF) [28] coding schemes

to this network, numerically showing that G-DS outperforms DDF in the low-power regime
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with a Gaussian second hop. More recently, Patil and Yu [41] have shown that under fronthaul

sum-capacity constraints, a successive encoding scheme achieves the same rate region as DDF.

Shamai and Zaidel [48] introduced a combined linear pre-processing and encoding scheme for

the Gaussian downlink C-RAN based on factorizing the channel gain matrix and using writing

on dirty paper [10, 11], which was shown to enhance the performance. Jing et al. [24] studied

base station cooperation for downlink transmission in a multicell model for the soft handoff

scenario [65] and analyzed the performance of linear precoding schemes under this framework.

Simeone et al. [53] studied multicell processing for the downlink and investigated transmission

schemes requiring partial or complete channel knowledge at the base stations. Liu and Kang [32]

developed an achievability scheme for the L = 2 relays and K = 2 users case by combining

Marton coding [17, Section 8.3] with using correlated codewords for the multiple access channel.

In a dual approach to [38], Park et al. [39] studied joint precoding and compression for the

downlink.

The most general outer bound on the capacity region of the downlink C-RAN can be

obtained by specializing the cutset bound [18]; see, for example, [8] and the references therein,

as well as Proposition 2.3.2 in this thesis. The cutset bound has been further tightened for specific

network configurations. Bidokhti and Kramer [7] derived capacity upper bounds for the 2-relay,

single-user downlink C-RAN by tightening the cutset bound through channel enhancement

techniques [25,36]. These bounds are tight for the single-user symmetric Gaussian C-RAN under

certain parameters, establishing the capacity for those cases. These upper bounds were further

generalized to L≥ 3 relays and a single user by Bidokhti, Kramer, and Shamai [8]. In related

work, Yang et al. [66] developed outer bounds for the downlink multicell processing model with

L = 2 relays and K = 2 users.

For a more comprehensive review of both uplink and downlink C-RANs, the reader is

referred to [40, 42, 51, 54] and the references therein.

In Chapter 2, we specialize network compress–forward (or equivalently, noisy network

coding) to the uplink C-RAN and approximate the capacity region to within a constant gap per
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user, independent of the channel gain matrix and the power constraint. A similar approximation

is achieved for the downlink C-RAN by simplifying the distributed decode–forward coding

scheme [28].

In Chapter 3, we characterize the scaling behavior of the C-RAN sum-capacity for large

network size under various channel models and compare it to the capacities of currently-used

network architectures.

Chapter 4 extends the results of Chapters 2 and 3 to MIMO C-RANs, in which users and

relays have multiple local antennas.

While it is useful to theoretically quantify the best possible throughput tradeoffs across

multiple users in a communication network, the aforementioned coding schemes are often used

more as proof techniques than as a prescription on how to efficiently transmit information over

real networks in practice. The practical problem of coding for point-to-point channels has

seen enormous advances in recent years, with the advent and extensive studies of several low-

complexity coding schemes that approach or achieve the Shannon capacity. Of particular note

among these are the turbo codes [6], low-density parity-check (LDPC) codes [19, 27, 45], and

polar codes [4]. While a multitude of information-theoretic results on achievable rate tradeoffs

for multi-user channels exist in the literature (see, for example, [17, Chapter 1] and [16] for

comprehensive reviews), we are far from achieving known inner bounds with low complexity

coding schemes due to the high computational complexity in implementing some sophisticated

multi-user coding schemes, such as Marton coding [17, Theorem 8.3 and Proposition 8.1] for

broadcast channels and simultaneous decoding [17, Chapter 4.5.1] for multiple access channels.

At such a juncture, Chapter 5 starts out with the long term goal of turning theoretical

coding schemes into efficient approaches in practice. In this chapter, we start out with Gelfand–

Pinsker (GP) codes [21] for binary-input, binary-state channels and construct codes for binary-

input multiple access channels (MAC) and finite-alphabet broadcast channels (BC). Coding for

these single-hop, multiuser networks are an important first step towards building practical codes

for C-RAN and even more general multihop networks.
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Chapter 6 concludes the thesis, along with comments on possible future directions of

investigation.

Throughout the dissertation, we follow the notation in [17]. In addition, we use the

following. In Chapters 2 and 4, we use ||A||F :=
√

tr(AAT ) =
√

tr(AT A) to denote the Frobenius

norm of a matrix A. For a natural number n, we denote by [n] the set {1, . . . ,n}. We denote

a finite tuple of objects (xl, l ∈ S) by the shorthand notation x(S), for S ⊆ N. For example,

x([n]) = xn = (x1, . . . ,xn). For a tuple of random variables X(S) := (Xl, l ∈ S) and a random

variable Y, we define the total correlation

I∗(X(S) |Y ) := ∑
x(S),y

p(x(S),y) log
p(x(S) |y)

∏l∈S p(xl |y)
= ∑

l∈S
I(Xl;X([l−1]∩S) |Y )

as a multivariate generalization of conditional mutual information [62]. For functions f and

g from N to R, we say f ∼ g if f (n)/g(n)→ 1 as n→ ∞. Further, log(·) and ln(·) denote

logarithms to base 2 and base e, respectively. All information measures are in bits.
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Chapter 2

Approximate Capacities of C-RANs

Uplink and downlink cloud radio access networks are modeled as two-hop K-user

L-relay networks, whereby small base-stations act as relays for end-to-end communications

and are connected to a central processor via orthogonal fronthaul links of finite capacities.

Simplified versions of network compress–forward (or noisy network coding) and distributed

decode–forward are presented to establish inner bounds on the capacity region for uplink

and downlink communications, that match the respective cutset bounds to within a finite gap

independent of the channel gains and signal to noise ratios.

2.1 Introduction

In this chapter, we apply network compress–forward (or equivalently, noisy network

coding) to the uplink C-RAN and show that the scheme achieves the capacity region approx-

imately within (1/2) log(eL) bits per user per real dimension, regardless of the channel gain

matrix, power constraint, and the number of users K. When the fronthaul link capacities are

unbounded, the approximation is precise and the network compress–forward inner bound (as

well as the cutset outer bound) coincides with the fronthaul-unlimited uplink capacity region.

Likewise, we specialize and simplify the distributed decode–forward coding scheme [28]

to the downlink C-RAN with capacity-limited single-hop fronthaul. In this scheme, multicoding

at the encoder (as in Marton coding for broadcast channels [17]) is coupled with coding for
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fronthaul links, which allows more efficient coordination among the transmitted signals at the

base-stations. We show that our rate region achieves a per-user gap of (1/2) log(eKL) bits per

real dimension from the cutset bound. This result refines the best-known linear gap from capacity

for this model (implicit in [30]).

2.2 Uplink C-RANs

2.2.1 General Model

We model the uplink C-RAN as a two-hop relay network in Fig. 2.1, where the first hop,

namely, the (wireless) channel from the user devices (senders) to the radio heads (relays), is

modeled as a discrete memoryless network p(yL|xK), and the second hop, namely, the channel

from the radio heads to the central processor, consists of orthogonal links of capacities C1, . . . ,CL

bits per real dimension, decoupled from the first hop. To be more precise, the channel output at

the central processor (receiver) is (W1, . . . ,WL), where Wl ∈ [2nCl ] is a reliable estimate of what

relay l communicates to the receiver over n transmissions. We assume without loss of generality

that these communication links are noiseless.

CLXK

Y1

YL

Yp(yL|xK)

X1 C1

Figure 2.1. Uplink network model.

A (2nR1 , . . . ,2nRK ,n) code for this network consists of K message sets

[2nR1], . . . , [2nRK ]; K encoders, where encoder k ∈ [K] assigns a codeword xn
k to each mk ∈ [2nRk ];

L relay encoders, where relay encoder l ∈ [L] assigns an index wl ∈ [2nCl ] to each received

sequence yn
l ; and a decoder that assigns message estimates (m̂1, . . . , m̂K) to each index tuple

wL := (w1, . . . ,wL). We assume that the messages M1, . . . ,MK are uniformly distributed and
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independent of each other. The average probability of error is defined as P(n)
e = P(∪K

k=1{M̂k 6=

Mk}). A rate tuple (R1, . . . ,RK) is achievable if there is a sequence of (2nR1, . . . ,2nRK ,n) codes

with limn→∞ P(n)
e = 0. The capacity region is defined as the closure of the set of all achievable

rate tuples.

The noisy network coding scheme [29] can be specialized [3] to the uplink C-RAN model

as follows.

Codebook generation. Fix a pmf p(q)∏
K
k=1 p(xk |q)∏

L
l=1 p(ŷl |yl,q). Randomly generate

a time-sharing sequence qn ∼∏
n
i=1 pQ(qi). For each message mk ∈ [2nRk ], generate xn

k(mk) ∼

∏
n
i=1 pXk|Q(xki|qi) conditionally independently. Define auxiliary indices tl ∈ [2nR̂l ], l ∈ [L], for

some auxiliary rates {R̂l, l ∈ [L]}. For each

(wl, tl) ∈ [2nCl ]× [2nR̂l ] and l ∈ [L], generate ŷn
l (wl, tl)∼∏

n
i=1 pŶl |Q(ŷli |qi).

Encoding. For k ∈ [K], to send message mk, encoder k transmits xn
k(mk).

Relaying. On receiving yn
l , relay l finds (wl, tl) such that (qn,yn

l , ŷ
n
l (wl, tl)) ∈ T (n)

ε ′ and

transmits wl to the central processor via the noiseless fronthaul. The compression at relay l

succeeds w.h.p. if

Cl + R̂l > I(Yl;Ŷl). (2.1)

Decoding. Let ε > ε ′. Upon receiving the index tuple wL, the central processor finds

message estimates m̂1, . . . , m̂K such that

(qn,xn
1(m̂1), . . . ,xn

K(m̂K), ŷn
1(w1, t1), . . . , ŷn

L(wL, tL)) ∈ T (n)
ε

for some t1, . . . , tL. The decoding succeeds w.h.p. if

∑
k∈S1

Rk + ∑
l∈S2

R̂l < I(X(S1);Ŷ (Sc
2)|X(Sc

1))+ ∑
l∈S2

I(Yl;Ŷl)

− ∑
l∈S2

I
(
Yl;Ŷl |Ŷ ([l−1]∩S2),Ŷ (Sc

2),X
K) (2.2)
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for every S1⊆ [K],S2⊆ [L] such that S1 6= /0. Combining (2.1) and (2.2) to eliminate the auxiliary

rates R̂l and introducing a time-sharing random variable Q leads to the following inner bound on

the capacity region of this network. (See Section 2.2.3 for a complete proof.)

Proposition 2.2.1 (Network compress–forward inner bound for the uplink C-RAN). A rate tuple

(R1, . . . ,RK) is achievable if

∑
k∈S1

Rk ≤ I(X(S1);Ŷ (Sc
2) |X(Sc

1),Q)+ ∑
l∈S2

Cl

− ∑
l∈S2

I
(
Yl;Ŷl |Ŷ ([l−1]∩S2) ,Ŷ (Sc

2),X
K,Q

)
(2.3)

for all S1 ⊆ [K] and S2 ⊆ [L] for some pmf p(q)∏
K
k=1 p(xk |q)∏

L
l=1 p(ŷl |yl,q).

Specializing the cutset bound [18] to the uplink C-RAN model leads to the following.

Proposition 2.2.2 (Cutset outer bound for the uplink C-RAN). If a rate tuple

(R1, . . . ,RK) is achievable for the uplink C-RAN, then

∑
k∈S1

Rk ≤ I(X(S1);Y (Sc
2) |X(Sc

1),Q)+ ∑
l∈S2

Cl (2.4)

for all S1 ⊆ [K] and S2 ⊆ [L] for some pmf p(q)∏
K
k=1 p(xk |q).

For completeness, we provide a proof of Proposition 2.2.2 in Section 2.2.3.

Remark 2.2.1. As the fronthaul capacities C1, . . . ,CL tend to infinity, this uplink C-RAN channel

model becomes identical to the “fronthaul-unlimited” uplink channel from K senders to a single

receiver with L receive antennas, i.e., the multiple access channel p(yL|xK) with K senders

X1, . . . ,XK and one receiver Y L. In this regime, both the inner and outer bounds can be shown to

converge to the capacity region of the fronthaul-unlimited uplink channel, characterized by rate
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tuples (R1, . . . ,RK) satisfying

∑
k∈S1

Rk ≤ I(X(S1);Y L |X(Sc
1),Q)

for every S1 ⊆ [K] for some pmf p(q)∏k∈[K] p(xk |q). In contrast, for finite fronthaul link

capacities C1, . . . ,CL, no matter how large, we can always find networks for which the capacity

region of the uplink C-RAN is strictly smaller than the fronthaul-unlimited uplink capacity

region, as demonstrated in Chapter 3.3.1.

2.2.2 Gaussian Model

We now assume that the first hop of the network is Gaussian, i.e.,

Y L = GXK +ZL,

where G ∈ RL×K is a (deterministic) channel gain matrix and ZL is a vector of independent

N(0,1) noise components. We also assume the average power constraint P on each sender, i.e.,

n

∑
i=1

x2
ki(mk)≤ nP, mk ∈ [2nRk ], k ∈ [K].

The network compress–forward inner bound in Proposition 2.2.1 can be specialized to

this Gaussian network model to show the achievability of all rate tuples (R1, . . . ,RK) such that

∑
k∈S1

Rk ≤
1
2

log
∣∣∣ P
σ2 +1

GSc
2 ,S1GT

Sc
2 ,S1

+ I
∣∣∣+ ∑

l∈S2

Cl−
|S2|

2
log
(

1+
1

σ2

)
=: fin(S1,S2) (2.5)

for all S1 ⊆ [K] and S2 ⊆ [L] for some σ2 > 0. Here, GSc
2 ,S1 is the submatrix of G formed by the

rows with indices in Sc
2 and the columns with indices in S1. This follows by considering XK to be

a vector of i.i.d. N(0,P) random variables, and setting Ŷl = Yl + Ẑl , l ∈ [L], where Ẑl ∼ N(0,σ2).

For convenience, for every σ2 > 0, we denote the set of tuples (R1, . . . ,RK) satisfying (2.5) and
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hence, achievable by network compress–forward (NCF), by RNCF
up (σ2). We also denote the

achievable sum-rate for each σ2 > 0 by

RNCF
sum (σ2) := sup

(R1,...,RK)

{R1 + · · ·+RK : (R1, . . . ,RK) ∈RNCF
up (σ2)} (2.6)

= min
S2⊆[L]

(1
2

log
∣∣∣ P
σ2 +1

GSc
2 ,[K]G

T
Sc

2 ,[K]+ I
∣∣∣+ ∑

l∈S2

Cl−
|S2|

2
log
(
1+

1
σ2

))
. (2.7)

We establish the following useful property of the inner bound (2.5), which will be useful in

developing some insight into the nature of the achievable region, as well as in approximating the

capacity region.

Lemma 2.2.1. For any S2 ⊆ [L] and S ′1 ⊆ S1 ⊆ [K],

fin(S ′1,S2)≤ fin(S1,S2).

Proof. Letting GSc
2 ,k denote the column vector consisting of the elements of G with row index in

Sc
2 and column index k, we have

GSc
2 ,S1GT

Sc
2 ,S1

= ∑
k∈S1

GSc
2 ,kGT

Sc
2 ,k
� ∑

k′∈S ′1
GSc

2 ,k
′GT

Sc
2 ,k
′ = GSc

2 ,S ′1GT
Sc

2 ,S ′1
,

which implies that

1
2

log
∣∣∣ P
σ2 +1

GSc
2 ,S1GT

Sc
2 ,S1

+ I
∣∣∣≥ 1

2
log
∣∣∣ P
σ2 +1

GSc
2 ,S ′1GT

Sc
2 ,S ′1

+ I
∣∣∣

and hence, that fin(S ′1,S2)≤ fin(S1,S2), since the other terms remain the same.

Lemma 2.2.1 immediately implies that

min
S2

fin(S ′1,S2)≤min
S2

fin(S1,S2). (2.8)
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Remark 2.2.2. We can establish (2.8) directly from Proposition 2.2.1, which implies that it

continues to hold for the general inner bound. Moreover, we can show that the inner bound (2.5)

is a polymatroid for each fixed σ2 > 0.

We now specialize the cutset bound in Proposition 2.2.2 to the Gaussian uplink C-RAN

model.

Lemma 2.2.2. The cutset bound (2.4) can be simplified and relaxed for the Gaussian model as

∑
k∈S1

Rk ≤
1
2

log
∣∣∣PGSc

2 ,S1GT
Sc

2 ,S1
+ I
∣∣∣+ ∑

l∈S2

Cl

=: fout(S1,S2). (2.9)

Proof. Continuing from (2.4), we have

∑
k∈S1

Rk ≤ I(X(S1);Y (Sc
2)|X(Sc

1),Q)+ ∑
l∈S2

Cl

(a)
= h(Y (Sc

2)|X(Sc
1),Q)− |S

c
2|

2
log(2πe)+ ∑

l∈S2

Cl

= h
(

GSc
2 ,S1X(S1)+GSc

2 ,S
c
1
X(Sc

1)+Z(Sc
2) |X(Sc

1),Q
)
− |S

c
2|

2
log(2πe)+ ∑

l∈S2

Cl

= h
(

GSc
2 ,S1X(S1)+Z(Sc

2) |X(Sc
1),Q

)
− |S

c
2|

2
log(2πe)+ ∑

l∈S2

Cl

(b)
= h(GSc

2 ,S1X(S1)+Z(Sc
2) |Q)− |S

c
2|

2
log(2πe)+ ∑

l∈S2

Cl

= ∑
q

h(GSc
2 ,S1X(S1)+Z(Sc

2) |Q = q)p(q)− |S
c
2|

2
log(2πe)+ ∑

l∈S2

Cl

(c)
≤∑

q

1
2

log
(
(2πe)|S

c
2 |
∣∣∣GSc

2 ,S1 E
[
X(S1)X(S1)

T |Q = q
]

GT
Sc

2 ,S1
+ I
∣∣∣) p(q)

− |S
c
2|

2
log(2πe)+ ∑

l∈S2

Cl

(d)
= ∑

q

1
2

log
∣∣∣GSc

2 ,S1K′S1
(q)GT

Sc
2 ,S1

+ I
∣∣∣ p(q)+ ∑

l∈S2

Cl
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(e)
≤ 1

2
log
∣∣∣GSc

2 ,S1KS1GT
Sc

2 ,S1
+ I
∣∣∣+ ∑

l∈S2

Cl

≤ 1
2

log
∣∣∣PGSc

2 ,S1GT
Sc

2 ,S1
+ I
∣∣∣+ ∑

l∈S2

Cl.

Here, (a) follows since Y (Sc
2) is an i.i.d. Gaussian vector given XK, (b) follows since X(S1) and

X(Sc
1) are conditionally independent given Q, (c) follows from the (vector) maximum entropy

principle, and in (d), K′S1
(q) is a diagonal matrix consisting of {E[X2

k |Q = q],k ∈ S1}. In (e),

KS1 is a diagonal matrix consisting of {E[X2
k ],k ∈ S1}, and (e) follows from the concavity of the

log–determinant function of a symmetric matrix. Finally, the last inequality follows since each

diagonal entry of KS1 is upper-bounded by P.

Our main goal of this section is to quantify how well network compress–forward performs

for the Gaussian network, by comparing its achievable rates in (2.5) with the cutset bound in (2.9).

In particular, we establish the following result.

Theorem 2.2.1. For every G ∈RL×K and every P ∈R+, if a rate tuple (R1, . . . ,RK) is in the

cutset bound (2.9), then the rate tuple ((R1−∆)+, . . . ,(RK−∆)+) is achievable, where

∆≤ 1
2

log(eL)≈ 1
2

logL+0.722.

Moreover, the sum-rate gap between the cutset bound and the network compress–forward inner

bound is upper-bounded as

∆sum := RCS
sum− sup

σ2>0
RNCF

sum (σ2)≤


L
2 H(K/L)≤ K

2 log(eL/K), L≥ 2K,

L
2 , L < 2K,

irrespective of P and G, where H(·) is the binary entropy function.

Remark 2.2.3. Theorem 2.2.1 tightens the existing sum-rate gap of L/2 bits per real dimension

[69].
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Proof of Theorem 2.2.1. Let

∆ := max
S1⊆[K]
S1 6= /0

minS2 fout(S1,S2)−minS2 fin(S1,S2)

|S1|
. (2.10)

Suppose that (R1, . . . ,RK) lies in the cutset bound, and let A = {k : Rk > ∆}. Then, for every

nonempty S1 ⊆ [K],

∑
k∈S1

(Rk−∆)+ = ∑
k∈S1∩A

(Rk−∆)

= ∑
k∈S1∩A

Rk− |S1∩A|∆

(a)
≤min

S2

[
fout(S1∩A,S2)

]
−
(

min
S2

fout(S1∩A,S2)−min
S2

fin(S1∩A,S2)

)
= min

S2
fin(S1∩A,S2)

(b)
≤min

S2
fin(S1,S2),

where (a) follows from the cutset bound (2.9) and the fact that

∆ = max
S1

minS2 fout(S1,S2)−minS2 fin(S1,S2)

|S1|

≥ minS2 fout(S1∩A,S2)−minS2 fin(S1∩A,S2)

|S1∩A|
,

and (b) follows from (2.8). Hence, ∆, as defined in (2.10), satisfies the requirements of Theo-

rem 2.2.1. Now, for every σ2 > 0,

∆ = max
S1

minS2 fout(S1,S2)−minS2 fin(S1,S2)

|S1|
(a)
≤ max

S1,S2

fout(S1,S2)− fin(S1,S2)

|S1|
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(b)
= max

S1,S2

 1
2|S1|

log

∣∣∣PGSc
2 ,S1GT

Sc
2 ,S1

+ I
∣∣∣∣∣∣ P

σ2+1GSc
2 ,S1GT

Sc
2 ,S1

+ I
∣∣∣


(c)
= max

S1,S2

[
1

2|S1|

rank(GSc
2 ,S1

)

∑
i=1

log
Pβi +1
P

σ2+1βi +1
+ |S2| log

(
1+

1
σ2

)]
(d)
≤ max

k∈[K]
l∈{0,...,L}

[min{L− l,k}
2k

log(1+σ
2)+

l
2k

log
(

1+
1

σ2

)]
. (2.11)

Here, (a) follows from the fact that for functions f and g defined over a finite set X , such

that g ≥ f everywhere on X , minx∈X g(x)−minx∈X f (x) ≤ maxx∈X [g(x)− f (x)], (b) follows

from (2.5) and (2.9), and in (c), β1,β2, . . . are the (nonnegative) eigenvalues of GSc
2 ,S1GT

Sc
2 ,S1

.

Finally, in (d), we take |S1|= k, |S2|= l, and upper-bound rank(GSc
2 ,S1) by min{L− l,k}. The

maximization in (2.11) yields

∆≤


1
2 log(σ2 +1)+ L−1

2 log(1+ 1
σ2 ), σ2 ≥ 1,

L
2 log(1+ 1

σ2 ), σ2 ≤ 1.

Since this holds for every σ2 > 0, we set σ2 = L−1 for L≥ 2 to obtain

∆≤ 1
2

logL+
L−1

2
log
(

1+
1

L−1

)
(a)
≤ 1

2
logL+

L−1
2
· 1

L−1
loge

≤ 1
2

log(eL). (2.12)

Here, (a) follows since from elementary calculus, we know that for x > 0, log(1+ x)≤ x loge.

For L = 1, we can choose σ2 = 1 to obtain ∆≤ 1. This, together with (2.12), establishes

the first part of Theorem 2.2.1. For the sum-rate gap, we simply consider

∆sum ≤ max
S1,S2

( fout(S1,S2)− fin(S1,S2))

16



≤ max
k∈[K]

l∈{0,...,L}

[min{L− l,k}
2

log(1+σ
2)+

l
2

log
(

1+
1

σ2

)]
. (2.13)

Maximization of (2.13) over l and k yields, for σ2 ≥ 1,

∆sum ≤


K
2 log(1+σ2)+ L−K

2 log(1+ 1
σ2 ), L≥ K,

L
2 log(1+σ2), L < K.

For L≤ 2K, we can then choose σ2 = 1 to obtain an upper bound ∆sum ≤ L/2. For L > 2K, we

can choose σ2 = L/K−1≥ 1 to obtain

∆sum ≤
K
2

log
(

L
K

)
+

L−K
2

log
(

1+
K

L−K

)
(2.14)

=
L
2

(
K
L

log
(

L
K

)
+

(
1− K

L

)
log

1
1− K

L

)

=
L
2

H(K/L),

completing the proof.

2.2.3 Proofs of General Bounds on the Capacity Region

Proof of Proposition 2.2.1. Our analysis of the coding scheme follows that in [29] but is consid-

erably simpler because of the relative simplicity of our network model. We omit the time-sharing

sequence qn for simplicity of notation.

Without loss of generality, let mK = (1, . . . ,1) be the messages sent. Then the error events

17



are:

E0 =
{(

Y n
l ,Ŷ

n
l (wl, tl)

)
/∈ T (n)

ε ′ for all (wl, tl,) for some l
}
.

E1 =
{(

Xn
1 (1), . . . ,X

n
K(1),Ŷ

n
1 (W1, t1), . . . ,Ŷ n

L (WL, tL)
)
/∈ T (n)

ε for all tL
}
.

E2 =
{(

Xn
1 (m1), . . . ,Xn

K(mK),Ŷ n
1 (W1, t1), . . . ,Ŷ n

L (WL, tL)
)
∈ T (n)

ε for some tL and

some mK 6= (1, . . . ,1)
}
.

Here, (W1, . . . ,WL) represent the indices transmitted by the relays. By the packing lemma and

union of events, P(E0)→ 0 as n→ ∞ if

Cl + R̂l > I(Yl;Ŷl) (2.15)

for all l ∈ [L].

By the Markov lemma [17, Lemma 12.1] and union of events bound (Ŷl→Yl→ XK form

a Markov chain), P(E1∩Ec
0)→ 0 as n→ ∞.

To analyze P(E2), let tL = (1, . . . ,1) be the t-indices chosen at the relays. Then, by the

union of events bound,

P(E2)≤ ∑
mK ,tL

mK 6=(1,...,1)

P
((

Xn
1 (m1), . . . ,Xn

K(mK),Ŷ n
1 (W1, t1), . . . ,Ŷ n

L (WL, tL)
)
∈ T (n)

ε

)

=: ∑
mK ,tL:

mK 6=(1,...,1)

pmK ,tL . (2.16)

In order to bound each term on the right-hand side of (2.16), we need the following

generalization of the joint typicality Lemma.

Lemma 2.2.3. [29, Lemma 2] Let (XN ,Y N ,Z)∼ p(xN ,yN ,z). Let the n-length random vector

18



Ẑ be distributed according to some arbitrary pmf p(ẑ) and let

(X̂n
1 , . . . , X̂

n
N ,Ŷ

n
1 , . . . ,Ŷ

n
N)∼

n

∏
i=1

pXN (x̂1i, . . . , x̂Ni)
N

∏
k=1

n

∏
i=1

pYk|Xk
(ŷki |x̂ki)

be distributed independently of Ẑ. Then, there exists δ (ε) that tends to zero as ε → 0, such that

P
(
(Ẑ, X̂n

1 , . . . , X̂
n
N ,Ŷ

n
1 , . . . ,Ŷ

n
N) ∈ T

(n)
ε

)
≤ 2−n[I(Z;XN)+∑

N
k=1 I(Yk;XN ,Y k−1,Z|Xk)−δ (ε)].

For a given tL and mK 6= (1, . . . ,1), let S2(tL) = {l ∈ [L] : tl 6= 1} and S1(mK) = {k ∈

[K] : mk 6= 1}. Then, (Xn(S1(mK)),Ŷ n(S2(tL))) is independent of (Xn(Sc
1(m

K)),Ŷ n(Sc
2(t

L))).

Then, using (Xn(Sc
1(m

K)),Ŷ n(Sc
2(t

L))) as Ẑn in Lemma 2.2.3, we obtain

pmK ,tL

≤ 2
−n
[

I(X(S1(mK));X(Sc
1(m

K)),Ŷ (Sc
2(t

L)))

]
×

2
−n
[

∑l∈S2(t
L) I(Ŷl ;X(S1(mK)),Ŷ ([l−1]∩S2(tL)),X(Sc

1(m
K)),Ŷ (Sc

2(t
L)))−δ (ε)

]
.
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The terms in the exponent of the right-hand expression (excluding the factor of −n ) are given by

I(X(S1(mK));X(Sc
1(m)),Ŷ (Sc

2(t
L)))

+ ∑
l∈S2(tL)

I(Ŷl;X(S1(mK)),Ŷ ([l−1]∩S2(tL)),X(Sc
1(m

K)),Ŷ (Sc
2(t

L)))−δ (ε)

(a)
= I(X(S1(mK));Ŷ (Sc

2(t
L)) |X(Sc

1(m
K)))+ ∑

l∈S2(tL)

I(Yl;Ŷl)

− ∑
l∈S2(tL)

(
I(Yl;Ŷl)− I(Ŷl;Ŷ ([l−1]∩S2(tL)),Ŷ (Sc

2(t
L)),XK)

)
−δ (ε)

(b)
=I(X(S1(mK));Ŷ (Sc

2(t
L)) |X(Sc

1(m
K)))+ ∑

l∈S2(tL)

I(Yl;Ŷl)

− ∑
l∈S2(tL)

I
(
Yl;Ŷl |Ŷ ([l−1]∩S2(tL)),Ŷ (Sc

2(t
L)),XK)−δ (ε).

Here, (b) follows from the fact that
(
Ŷ ([l−1]∩S2(tL)),Ŷ (Sc

2(t
L)),XK) → Yl → Ŷl form a

Markov chain and (a) follows from the independence of X(S1(mK)) and X(Sc
1(m

K)).

Defining

J(S1,S2)

:= I(X(S1);Ŷ (Sc
2)|X(Sc

1))+ ∑
l∈S2

I(Yl;Ŷl)− ∑
l∈S2

I
(

Yl;Ŷl

∣∣∣Ŷ ([l−1]∩S2),Ŷ (Sc
2),X

K
)

and continuing (2.16), we have

P(E2)≤ ∑
mK ,tL:

mK 6=(1,...,1)

2−n[J(S1(mK),S2(tL))−δ (ε)]

≤ ∑
S1⊆[K]
S2⊆[L]
S1 6= /0

2−n[J(S1,S2)−∑k∈S1
Rk−∑l∈S2

R̂l−δ (ε)].
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Therefore, P(E2)→ 0 as n→ ∞ if

∑
k∈S1

Rk + ∑
l∈S2

R̂l < J(S1,S2) (2.17)

for all S1 ⊆ [K] and S2 ⊆ [L] such that S1 6= /0. Combining (2.17) with (2.15) to eliminate the

auxiliary rates (R̂1, . . . , R̂L), we obtain the inequalities

∑
k∈S1

Rk < I(X(S1);Ŷ (Sc
2)|X(Sc

1))+ ∑
l∈S2

Cl− ∑
l∈S2

I
(

Yl;Ŷl

∣∣∣Ŷ ([l−1]∩S2) ,Ŷ (Sc
2),X

K
)

(2.18)

for all S1 ⊆ [K] and S2 ⊆ [L] such that S1 6= /0.

Proof of Proposition 2.2.2. For k ∈ [K], let Mk denote the message communicated by sender

k and let Wl denote the index sent by relay l to the central processor. Also, for S1 ⊆ [K] and

S2 ⊆ [L], denote by Xi(S1) the tuple (Xki,k ∈ S1) and by Yi(S2) the tuple (Yli, l ∈ S2). Similarly,

Xn(S1) stands for (Xki,k ∈ S1, i ∈ [n]) and Y n(S2) stands for (Yli, l ∈ S2, i ∈ [n]). Then, for every

S1 ⊆ [K] and S2 ⊆ [L], Xn(S1) is a function of M(S1) and W (S2) is a function of Y n(S2). For

every S1 ⊆ [K],S1 6= /0 and S2 ⊆ [L], we must have, by Fano’s inequality,

H(M(S1) |M(Sc
1),Y

n(Sc
2),W

L)≤ H(M(S1) |W L)≤ nεn,
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where εn→ 0 as n→ ∞. Therefore, since H(M(S1) |M(Sc
1)) = n∑k∈S1 Rk, we have

n ∑
k∈S1

Rk

≤ I(M(S1);Y n(Sc
2),W

L |M(Sc
1))+nεn

(a)
= I(M(S1);Y n(Sc

2),W (S2) |M(Sc
1))+nεn

= I(M(S1);Y n(Sc
2) |M(Sc

1))+ I(M(S1);W (S2) |M(Sc
1),Y

n(Sc
2))+nεn

≤
n

∑
i=1

I(M(S1);Yi(Sc
2) |M(Sc

1),Y
i−1(Sc

2))+H(W (S2))+nεn

(b)
=

n

∑
i=1

I(M(S1);Yi(Sc
2) |M(Sc

1),Xi(Sc
1),Y

i−1(Sc
2))+H(W (S2))+nεn

≤
n

∑
i=1

I(M(S1),M(Sc
1),Y

i−1(Sc
2);Yi(Sc

2) |Xi(Sc
1))+H(W (S2))+nεn

(c)
=

n

∑
i=1

I(M(S1),M(Sc
1),Xi(S1),Y i−1(Sc

2);Yi(Sc
2) |Xi(Sc

1))+H(W (S2))+nεn

(d)
=

n

∑
i=1

I(Xi(S1);Yi(Sc
2) |Xi(Sc

1))+H(W (S2))+nεn

(e)
≤

n

∑
i=1

I(Xi(S1);Yi(Sc
2) |Xi(Sc

1))+n ∑
l∈S2

Cl +nεn.

Here, (a) follows since W (Sc
2) is a function of Y n(Sc

2), (b) follows since Xi(Sc
1) is a function of

M(Sc
1), (c) follows since Xi(S1) is a function of M(S1), (d) follows since

(M(S1),M(Sc
1),Y

i−1(Sc
2))→ (Xi(S1),Xi(Sc

1))→ (Yi(Sc
2)) form a Markov chain (by the memo-

rylessness of the first hop), and (e) follows since W (S2) is supported on a set of size ∏l∈S2 2nCl .

Defining a random variable Q∼ Unif([n]) independent of all the other random variables, writing

X(S1) := XQ(S1) and Y (S2) := YQ(S2), and letting n tend to infinity leads to

∑
k∈S1

Rk ≤ I(X(S1);Y (Sc
2) |X(Sc

1),Q)+ ∑
l∈S2

Cl (2.19)

for all S1 ⊆ [K],S1 6= /0,S2 ⊆ [L] for some pmf p(q)∏k∈[K] p(xk |q), and thus completes the

proof.
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2.3 Downlink C-RANs

2.3.1 General Model

Similar to the uplink case, we model the downlink C-RAN as a two-hop relay network in

Fig. 2.2, where the first hop (central processor to radio heads) consists of orthogonal noiseless

links of capacities C1, . . . ,CL bits per real dimension and the second hop (radio heads to user

devices or receivers) is modeled as a discrete memoryless network p(yK |xL).

CL

Y1

YK

X1

XL

p(yK|xL)X

C1

Figure 2.2. Downlink network model.

A (2nR1 , . . . ,2nRK ,n) code for this network consists of K message sets

[2nR1], . . . , [2nRk ]; an encoder wL(m1, . . . ,mK) ∈∏
L
l=1[2

nCl ]; relay encoders xn
l (wl), l ∈ [L]; and

decoders m̂k(yn
k) ∈ [2nRk ], k ∈ [K]. The average probability of error, achievability of a rate tuple,

and the capacity region are defined similar to Section 2.2.1.

The distributed decode–forward coding scheme [28] can be specialized to the downlink

C-RAN model as follows.

Codebook generation. Fix a pmf p(xL,uK). For each wl ∈ [2nCl ], l ∈ [L], generate

xn
l (wl) ∼ ∏

n
i=1 pXl(xli). Define auxiliary indices sk ∈ [2nR̃k ],k ∈ [K], for some auxiliary rates

(R̃k,k ∈ [k]). For each (mk,sk) ∈ [2nRk ]× [2nR̃k ] and k ∈ [K], generate un
k(mk,sk)∼∏

n
i=1 pUk(uki).

Encoding. To transmit messages mK = (m1, . . . ,mK), the encoder transmits wL =

(w1, . . . ,wL), such that

(xn
1(w1), . . . ,xn

L(wL),un
1(m1,s1), . . . ,un

K(mK,sK)) ∈ T (n)
ε ′
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for some sK ∈ [2nR̃1]×·· ·× [2nR̃K ]. The encoding succeeds w.h.p. if

∑
l∈Sc

1

Cl + ∑
k∈Sc

2

R̃k > I∗(X(Sc
1),U(Sc

2)) (2.20)

for every S1 ⊆ [L] and S2 ⊆ [K].

Relaying. On receiving the index wl, relay l transmits xn
l (wl).

Decoding. Let ε > ε ′. Upon receiving yn
k , receiver k finds a message estimate m̂k such

that

(un
k(m̂k,sk),yn

k) ∈ T
(n)

ε

for some sk. The decoding at receiver k succeeds w.h.p. if

Rk + R̃k < I(Uk;Yk). (2.21)

Combining (2.20) and (2.21) to eliminate the auxiliary rates R̃1, . . . , R̃K leads to the following

inner bound on the capacity region of this network. (See Section 2.3.3 for a complete proof.)

Proposition 2.3.1 (Distributed decode–forward inner bound for the downlink C-RAN). A rate

tuple (R1, . . . ,RK) is achievable for the downlink C-RAN if

∑
k∈Sc

2

Rk < I(X(S1);U(Sc
2)|X(Sc

1))+ ∑
l∈Sc

1

Cl− ∑
k∈Sc

2

I(Uk;XL |Yk)

− I∗(U(Sc
2) |XL)− I∗(X(Sc

1)) (2.22)

for all S1 ⊆ [L] and S2 ⊆ [K] for some pmf p(xL,uK), such that

I∗(X(S1))≤ ∑
l∈S1

Cl

for all S1 ⊆ [L].

24



Remark 2.3.1. As the fronthaul capacities C1, . . . ,CL tend to infinity, this downlink C-RAN

channel model becomes identical to the “fronthaul-unlimited” downlink channel from a single

sender with L transmit antennas to K receivers, i.e., the broadcast channel p(yK |xL) with one

sender XL and K receivers Y1, . . . ,YK. In this regime, the distributed decode–forward inner bound

converges to the Marton coding inner bound with no common messages [17, Theorem 8.3],

characterized by rate tuples (R1, . . . ,RK) satisfying

∑
k∈S2

Rk ≤ ∑
k∈S2

I(Uk;Yk)− I∗(U(S2))

for every S2 ⊆ [K] for some pmf p(uK) and some function xL(uK).

Specializing the cutset bound [18] to the downlink C-RAN model leads to the following.

Proposition 2.3.2 (Cutset outer bound for the downlink C-RAN). If a rate tuple (R1, . . . ,RK) is

achievable for the downlink C-RAN, then

∑
k∈Sc

2

Rk ≤ I(X(S1);Y (Sc
2)|X(Sc

1))+ ∑
l∈Sc

1

Cl (2.23)

for all S1 ⊆ [L] and S2 ⊆ [K] for some pmf p(xL).

We provide a proof of Proposition 2.3.2 in Section 2.3.3.

2.3.2 Gaussian Model

We now assume that the second hop of the network is Gaussian, i.e., Y K = HXL +ZK ,

where H ∈RK×L is a channel gain matrix and ZK is a vector of i.i.d. N(0,1) noise components.

We also impose the average power constraint P on each relay. For this Gaussian network model,

the distributed decode–forward inner bound in Proposition 2.3.1 can be specialized to establish
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the achievability of all rate tuples (R1, . . . ,RK) such that

∑
k∈Sc

2

Rk ≤
1
2

log
∣∣∣ P
σ2 HSc

2 ,S1HT
Sc

2 ,S1
+ I
∣∣∣+ ∑

l∈Sc
1

Cl−
|Sc

2|
2

log
(

1+
1

σ2

)
=: Fin(S1,S2) (2.24)

for all S1 ⊆ [L] and S2 ⊆ [K] for some σ2 > 0. This follows by setting XL to be a vector of i.i.d.

N(0,P) random variables and defining UK = GXL + ẐK , where ẐK ∼ N(0,σ2I) is independent

of ZK . For every σ2 > 0, we denote the set of rate tuples (R1, . . . ,RK) satisfying (2.24) by

RDDF
down(σ

2). We also denote the achievable sum-rate for each σ2 > 0 by

RDDF
sum (σ2) := sup

(R1,...,RK)

{R1 + · · ·+RK : (R1, . . . ,RK) ∈RDDF
down(σ

2)} (2.25)

= min
S1⊆[L]

(1
2

log
∣∣∣ P
σ2 H[K],S1HT

[K],S1
+ I
∣∣∣+ ∑

l∈Sc
1

Cl

)
− K

2
log
(
1+

1
σ2

)
. (2.26)

Similar to Section 2.2.2, the cutset bound in Proposition 2.3.2 can be specialized to the

rate region characterized by

∑
k∈Sc

2

Rk ≤
1
2

log
∣∣∣HSc

2 ,S1ΓS1|Sc
1
HT
Sc

2 ,S1
+ I
∣∣∣+ ∑

l∈Sc
1

Cl

=: Fout(S1,S2) (2.27)

for all S1 ⊆ [L] and S2 ⊆ [K] for some covariance matrix Γ� 0 satisfying Γll ≤ P for all l ∈ [L].

Here, ΓS1|Sc
1

is the conditional covariance matrix given by

ΓS1|Sc
1
= ΓS1,S1−ΓS1,Sc

1
Γ
−1
Sc

1 ,S
c
1
ΓSc

1 ,S1 .

For each covariance matrix Γ, we denote the set of rate tuples (R1, . . . ,RK) satisfying (2.27) by
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RCS
down(Γ). We denote the sum-rate upper bound by

RCS
sum := sup

(R1,...,RK),Γ

{R1 + · · ·+RK : (R1, . . . ,RK) ∈RCS
down(Γ) for some Γ}. (2.28)

The achievable per-user rate gap ∆, as well as the sum-rate gap ∆sum between the cutset bound

and the distributed decode–forward inner bound (2.24), can be bounded as in the following

result.

Theorem 2.3.1. For every H ∈ RK×L and P ∈ R+, if a rate tuple (R1, . . . ,RK) is in the cutset

bound (2.27), then the rate tuple ((R1−∆)+, . . . ,(RK−∆)+) is achievable, where

∆≤ 1
2

log(eKL)≈ 1
2

log(KL)+0.722.

Moreover, the sum-rate gap between the cutset bound and the distributed decode–forward inner

bound is upper-bounded as

∆sum := RCS
sum− sup

σ2>0
RDDF

sum (σ2)≤ K
2
+

min{L,K}
2

logL

irrespective of P and H.

To prove Theorem 2.3.1, we need the following lemma, which is immediate from

elementary calculus.

Lemma 2.3.1. For x > 1, x logx− (x−1) log(x−1)≤ log(ex).

Proof. Let f (x) = x logx for x > 0. We then have f ′(x) = logx+(1/ ln2) = log(ex), which is

increasing in x. Therefore, for x > 1,

f (x)− f (x−1)≤ f ′(x)(x− (x−1))

= log(ex).
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Proof of Theorem 2.3.1. Note that unlike (2.8) in Section 2.2.2, Fin is not necessarily monotonic.

We overcome this difficulty by rephrasing the inner bound (2.24) as

∑
k∈Sc

2

Rk ≤ min
T2⊆S2

Fin(S1,T2). (2.29)

We observe that the right-hand side of (2.29) is increasing with Sc
2 for a fixed S1, so we can

apply the technique developed in the proof of Theorem 2.2.1 to compute an upper bound on ∆.

We thus write

∆ = max
S2([K]

[
minS1 Fout(S1,S2)

|Sc
2|

− minS1 minT2⊆S2 Fin(S1,T2)

|Sc
2|

]

≤ max
S1⊆[L]
S2([K]
T2⊆S2

Fout(S1,S2)−Fin(S1,T2)

|Sc
2|

= max
S1⊆[L]
S2([K]
T2⊆S2

1
2|Sc

2|

[
log

∣∣∣HSc
2 ,S1ΓS1|Sc

1
HT
Sc

2 ,S1
+ I
∣∣∣∣∣∣ P

σ2 HT c
2 ,S1HT

T c
2 ,S1

+ I
∣∣∣ + |T c

2 | log
(

1+
1

σ2

)]

(a)
≤ max

S1⊆[L]
S2([K]
T2⊆S2

1
2|Sc

2|

[
log

∣∣∣HSc
2 ,S1ΓS1HT

Sc
2 ,S1

+ I
∣∣∣∣∣∣ P

σ2 HSc
2 ,S1HT

Sc
2 ,S1

+ I
∣∣∣ + |T c

2 | log
(

1+
1

σ2

)]
, (2.30)

where (a) follows since ΓS1 � ΓS1|Sc
1

and for any matrix A and α > 0, |I +αAAT | increases

when we add more rows to A. Writing ΓS1 =UΛUT , where U is orthogonal and Λ is diagonal,

and letting HSc
2 ,S1U = [b1 b2 · · · b|S1|], where b1, . . . ,b|S1| are |Sc

2| × 1 vectors satisfying
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∑
|S1|
l=1 ‖bl‖2 =

∥∥∥HSc
2 ,S1

∥∥∥2

F
, we have

log
|HSc

2 ,S1ΓS1HT
Sc

2 ,S1
+ I|

| P
σ2 HSc

2 ,S1HT
Sc

2 ,S1
+ I| = log

∣∣∣I +∑
|S1|
l=1 λlblbT

l

∣∣∣∣∣∣I + P
σ2 ∑

|S1|
l=1 blbT

l

∣∣∣
(a)
≤ log

∣∣∣I +P|S1|∑|S1|
l=1 blbT

l

∣∣∣∣∣∣I + P
σ2 ∑

|S1|
l=1 blbT

l

∣∣∣
(b)
=
|Sc

2 |
∑
k=1

log
1+P|S1|µk

1+ P
σ2 µk

≤ |Sc
2 | log

(
σ

2 |S1 |
)
,

provided σ2 ≥ 1
|S1| . Here, (a) follows since the trace of ΓS1 is upper bounded by P|S1| and in

(b), µ1, . . . ,µ|Sc
2 | are the (non-negative) eigenvalues of ∑

|S1|
l=1 blbT

l . Continuing from (2.30), we

thus have

∆≤ max
S1⊆[L]
S2([K]
T2⊆S2

[ |T c
2 | log

(
1+ 1

σ2

)
2|Sc

2|
+

1
2

log
(
σ

2 |S1 |
)]

=
K
2

log
(

1+
1

σ2

)
+

1
2

log(σ2L). (2.31)

This holds for every σ2 ≥ 1, so we set σ2 = K−1 (for K ≥ 2) to obtain

∆≤ 1
2

logL+
1
2
(K logK− (K−1) log(K−1))

(a)
≤ 1

2

(
logL+ logK +

1
ln2

)
=

1
2

log(eKL).
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Here, (a) follows from lemma 2.3.1. For K = 1, we can set σ2 = 1 in (2.31) to obtain

∆≤ 1
2

log(2L)≤ 1
2

log(eL).

This establishes the first part of the theorem.

For the sum-rate gap, consider

∆sum ≤ max
S1,S2

(Fout(S1,S2)−Fin(S1,S2))

≤ max
S1,S2

1
2

log

∣∣∣HSc
2 ,S1ΓS1HT

Sc
2 ,S1

+ I
∣∣∣∣∣∣ P

σ2 HSc
2 ,S1HT

Sc
2 ,S1

+ I
∣∣∣ + f rac|Sc

2 |2log
(

1+
1

σ2

)
≤ max

S1,S2

1
2

log

∣∣∣I +∑
|S1|
l=1 λlblbT

l

∣∣∣∣∣∣I + P
σ2 ∑

|S1|
l=1 blbT

l

∣∣∣ + f rac|Sc
2 |2log

(
1+

1
σ2

)
≤ max

S1,S2

[
min{|Sc

2|, |S1|}
2

log(σ2 |S1 |)+
|Sc

2|
2

log
(

1+
1

σ2

)]
(2.32)

if σ2 ≥ 1/|S1| for each S1 6= /0. Maximization of (2.32) over |S1| and |Sc
2| yields, for σ2 ≥ 1,

∆sum ≤
min{L,K}

2
log(Lσ

2)+
K
2

log
(

1+
1

σ2

)
. (2.33)

We can then choose σ2 = 1 in (2.33) to obtain

∆sum ≤
min{L,K}

2
logL+

K
2
,

completing the proof.
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2.3.3 Proofs of General Bounds on the Capacity Region

Throughout this section, we use the following additional notation. For a function f : N→

[0,∞) and a real number r 6= 0, we say

f (n) .
= 2nr

if

r = lim
n→∞

log f (n)
n

.

Proof of Proposition 2.3.1. For analyzing the coding scheme and proving Proposition 2.3.1, we

will need the Markov lemma [17, Lemma 12.1] and the following additional elementary result.

Lemma 2.3.2. Let C, T1 and T2 be disjoint and finite index sets and fix a pmf p(x(C ∪T1∪T2)).

For each k ∈ C∪T1∪T2, we independently generate Xn
k according to the marginals ∏

n
i=1 pXk(xki).

Then, as n→ ∞,

P
(

Xn(C ∪T1∪T2) ∈ T (n)
ε

)
.
= 2−nI∗(X(C∪T1∪T2)), (2.34)

and

P
(

Xn(C ∪T1) ∈ T (n)
ε ,Xn(C ∪T2) ∈ T (n)

ε

)
.
= 2−n[I∗(X(C∪T1))+I∗(X(T2))+I(X(C);X(T2))]. (2.35)

Our analysis of the coding scheme follows that in [28] but is considerably simpler because

of the relative simplicity of our network model.

Without loss of generality, let mK = (1, . . . ,1) be the messages sent. Then the error events
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are:

E0 =
{(

Xn
1 (w1), . . . ,Xn

L (wL),Un
1 (1,s1), . . . ,Un

K(1,sK)
)
/∈ T (n)

ε ′ for all wL and sK
}
.

E1 =
{
(Un

k (1,sk),Y n
k ) /∈ T

(n)
ε for all sk, for some k

}
.

E2 =
{
(Un

k (mk,sk),Y n
k ) ∈ T

(n)
ε for some k, some sk, and some mk 6= 1

}
.

By the packing lemma and union of events, P(E2∩Ec
1 ∩Ec

0)→ 0 as n→ ∞ if

Rk + R̃k < I(Uk;Yk) (2.36)

for all k ∈ [K]. By the Markov lemma and union of events bound (Uk→ XL→Yk form a Markov

chain), P(E1∩Ec
0)→ 0 as n→ ∞.

To analyze the error event E0, we observe that by the manner in which the codebook is

generated, P(E0) remains the same if we index the Uks only by the indices sk and drop the mk. In

the following analysis, we do this to simplify notation.

Let

A :=
{
(wL,sK) : (Xn

1 (w1), . . . ,Xn
L (wL),Un

1 (s1), . . . ,Un
K(sK)) ∈ T (n)

ε ′

}
.

Then, P(E0) = P(|A|= 0). We can write

|A| = ∑
wL,sK

Z(wL,sK),

where

Z(wL,sK) := 1{
(Xn

1 (w1),...,Xn
L (wL),Un

1 (s1),...,Un
K(sK))∈T (n)

ε ′
}.
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We have

E[Z(wL,sK)] = P
(
(Xn

1 (w1), . . . ,Xn
L (wL),Un

1 (s1), . . . ,Un
K(sK)) ∈ T (n)

ε ′

)
=: p1

By (2.34),

p1
.
= 2−nI∗(XL,UK). (2.37)

For wL,w′L ∈ [2nC1]×·· ·× [2nCl ] and sK,s′K ∈ [2nR̃1 ]×·· ·× [2nR̃K ], define

S1(wL,w′L) :=
{

l ∈ [L] : wl 6= w′l
}
,

S2(sK,s′K) :=
{

k ∈ [K] : sk 6= s′k
}
.

Then, using (2.35) with index sets

C :=
{

wl : l ∈ S1(wL,w′L)
}
∪
{

sk : k ∈ S2(sK,s′K)
}
,

T1 :=
{

wl : l ∈ Sc
1(w

L,w′L)
}
∪
{

sk : k ∈ Sc
2(s

K,s′K)
}

, and

T2 :=
{

w′l : l ∈ Sc
1(w

L,w′L)
}
∪
{

s′k : k ∈ Sc
2(s

K,s′K)
}
,

we have

E[Z(wL,sK)Z(w′L,s′K)] .
= 2−n[I∗(XL,UK)+I∗(X(S1),U(S2))+I(X(Sc

1),U(Sc
2);X(S1),U(S2))]

=: p2(S1,S2), (2.38)
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where in the definition of p2, we hide the dependence on wL,w′L,sK,s′K. We then have

E
[
|A|2

]
= ∑

wL,sK

E[Z(wL,sK)]+ ∑
wL,w′L,sK ,s′K :

wL 6=w′L or sK 6=s′K

E[Z(wL,sK)Z(w′L,s′K)]

= p1 ·2n(∑
L
l=1 Cl+∑

K
k=1 R̃k)

+ ∑
S1⊆[L],S2⊆[K],
S1 6= /0 or S2 6= /0

(
p2(S1,S2) ·2n(∑

L
l=1 Cl+∑

K
k=1 R̃k) ·

(
2n∑l∈S1

Cl −1
)
×

(
2n∑k∈S2

R̃k−1
))

≤ p1 ·2n(∑
L
l=1 Cl+∑

K
k=1 R̃k)

+ ∑
S1⊆[L],S2⊆[K],
S1 6= /0 or S2 6= /0

p2(S1,S2) ·2n(∑
L
l=1 Cl+∑

K
k=1 R̃k+∑l∈S1

Cl+∑k∈S2
R̃k).

Noting that p2([L], [K]) = p2
1, we then have

Var(|A|)≤ p1 ·2n(∑
L
l=1 Cl+∑

K
k=1 R̃k)

+ ∑
S1⊆[L],S2⊆[K],
S1 6= /0 or S2 6= /0,

S1 6=[L] or S2 6=[K]

p2(S1,S2) ·2n(∑
L
l=1 Cl+∑

K
k=1 R̃k+∑l∈S1

Cl+∑k∈S2
R̃k). (2.39)

We also have

E[|A|] = p1 ·2n(∑
L
l=1 Cl+∑

K
k=1 R̃k). (2.40)

Using (2.37), (2.38), (2.39), and (2.40) and manipulating exponents, we finally have, for some

δ (ε ′) that goes to zero as ε ′→ 0,

Var(|A|)
E[|A|]2 ≤ ∑

S1⊆[L],S2⊆[K],
S1 6=[L] or S2 6=[K]

2−n
(

∑l∈Sc
1

Cl+∑k∈Sc
2

R̃k−I(X(Sc
1),U(Sc

2))−δ (ε ′)
)
.
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Thus, using the inequality P(|A| = 0) ≤ Var(|A|)/E[|A|2], we conclude that P(E0)→ 0 as

n→ ∞ if

∑
l∈Sc

1

Cl + ∑
k∈Sc

2

R̃k > I∗(X(Sc
1),U(Sc

2)) (2.41)

for all S1 ⊆ [L] and S2 ⊆ [K].

Combining this with (2.36) to eliminate the auxiliary rates, the rates Rk satisfy, for every

S1 ⊆ [L] and S2 ⊆ [K],

∑
k∈Sc

2

Rk

< ∑
l∈Sc

1

Cl + ∑
k∈Sc

2

I(Uk;Yk)− I∗(X(Sc
1),U(Sc

2))

= ∑
l∈Sc

1

Cl + ∑
k∈Sc

2

(
I(Uk;XL,Yk)− I(Uk;XL |Yk)

)
− I∗(X(Sc

1),U(Sc
2))

(a)
= ∑

l∈Sc
1

Cl− ∑
k∈Sc

2

I(Uk;XL |Yk)+ ∑
k∈Sc

2

I(Uk;XL)− I∗(X(Sc
1),U(Sc

2))

= ∑
l∈Sc

1

Cl− ∑
k∈Sc

2

I(Uk;XL |Yk)− ∑
k∈Sc

2

H(Uk |XL)− ∑
l∈Sc

1

H(Xl)+H(X(Sc
1),U(Sc

2))

= ∑
l∈Sc

1

Cl− ∑
k∈Sc

2

I(Uk;XL |Yk)− ∑
k∈Sc

2

H(Uk |XL)− I∗(X(Sc
1))+H(U(Sc

2)|X(Sc
1))

= ∑
l∈Sc

1

Cl− ∑
k∈Sc

2

I(Uk;XL |Yk)−H(U(Sc
2)|XL)− I∗(U(Sc

2)|XL)

− I∗(X(Sc
1))+H(U(Sc

2)|X(Sc
1))

= ∑
l∈Sc

1

Cl− ∑
k∈Sc

2

I(Uk;XL |Yk)+ I(X(S1);U(Sc
2)|X(Sc

1))− I∗(X(Sc
1))− I∗(U(Sc

2)|XL). (2.42)

Here, (a) follows from the fact that Uk→ XL→Yk form a Markov chain. In addition, if S2 = [K]
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in (2.41), we obtain the additional conditions

∑
l∈Sc

1

Cl > I∗(X(Sc
1)) (2.43)

for every S1 ( [L]. This completes the proof.

Remark 2.3.2. The constraints (2.43) can be shown to be inactive using techniques similar

to [28, Appendix E].

Proof of Proposition 2.3.2. We use Xi(S1),Xn(S1),Yi(S2),Y n(S2) to convey similar meanings

as in the proof of Proposition 2.2.2 in Section 2.2.3. For k ∈ [K], let Mk denote the message

intended for receiver k and let Wl denote the index communicated by the central processor to

relay l. Then, for every S1 ⊆ [L], Xn(S1) is a function of W (S1), which is itself a function of

MK. For every S1 ⊆ [L],S2 ( [K], we must have, by Fano’s inequality,

H(M(Sc
2) |M(S2),Y n(Sc

2))≤ H(M(Sc
2) |Y n(Sc

2))≤ nεn,

where εn→ 0 as n→ ∞. Therefore, since H(M(Sc
2) |M(S2)) = n∑k∈Sc

2
Rk, we have

n ∑
k∈Sc

2

Rk

≤ I(M(Sc
2);Y

n(Sc
2) |M(S2))+nεn

≤ I(M(Sc
2),W (Sc

1);Y
n(Sc

2) |M(S2))+nεn

= I(M(Sc
2);Y

n(Sc
2) |M(S2),W (Sc

1))+ I(W (Sc
1);Y

n(Sc
2) |M(S2))+nεn

≤ I(M(Sc
2);Y

n(Sc
2) |M(S2),W (Sc

1))+H(W (Sc
1))+nεn

(a)
= I(M(Sc

2),W (S1);Y n(Sc
2) |M(S2),W (Sc

1))+H(W (Sc
1))+nεn

=
n

∑
i=1

I(M(Sc
2),W (S1);Yi(Sc

2) |M(S2),W (Sc
1),Y

i−1(Sc
2))+H(W (Sc

1))+nεn

(b)
=

n

∑
i=1

I(M(Sc
2),W (S1);Yi(Sc

2) |M(S2),W (Sc
1),Y

i−1(Sc
2),Xi(Sc

1))+H(W (Sc
1))+nεn
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≤
n

∑
i=1

I(MK,W L,Y i−1(Sc
2);Yi(Sc

2) |Xi(Sc
1))+H(W (Sc

1))+nεn

(c)
=

n

∑
i=1

I(MK,W L,Y i−1(Sc
2),Xi(S1);Yi(Sc

2) |Xi(Sc
1))+H(W (Sc

1))+nεn

(d)
=

n

∑
i=1

I(Xi(S1);Yi(Sc
2) |Xi(Sc

1))+H(W (Sc
1))+nεn

(e)
≤

n

∑
i=1

I(Xi(S1);Yi(Sc
2) |Xi(Sc

1))+n ∑
l∈Sc

1

Cl +nεn.

Here, (a) follows since conditioned on M(S2), W (S1) is a function of M(Sc
2); (b) follows since

Xi(Sc
1) is a function of W (Sc

1); (c) follows since Xi(S1) is a function of W L; (d) follows since

(MK,W L,Y i−1(Sc
2))→ (Xi(S1),Xi(Sc

1))→ (Yi(Sc
2)) form a Markov chain (by the memoryless-

ness of the second hop), and (e) follows since W (Sc
1) is supported on a set of size ∏l∈Sc

1
2nCl .

Defining a random variable Q ∼ Unif([n]) independent of all other random variables, writing

X(S1) := XQ(S1) and Y (S2) := YQ(S2), noting that Q→ XL→ Y K form a Markov chain, and

letting n tend to infinity leads to

∑
k∈S1

Rk ≤ I(X(S1);Y (Sc
2) |X(Sc

1))+ ∑
l∈Sc

1

Cl (2.44)

for all S1 ⊆ [L],S2 ( [K] for some pmf p(xL), and thus completes the proof.
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Chapter 3

Capacity Scaling of C-RANs

The approximate capacity regions of the uplink and downlink C-RAN are compared with

the capacity regions for networks with no capacity limit on the fronthaul. Although it takes

infinite fronthaul link capacities to achieve these “fronthaul-unlimited” capacity regions exactly,

these capacity regions can be approached approximately with finite-capacity fronthaul. The total

fronthaul link capacities required to approach the fronthaul-unlimited sum-rates (for uplink and

downlink) are characterized. Based on these results, the capacity scaling law in the large network

size limit is established under certain uplink and downlink network models, both theoretically

and via simulations.

3.1 Introduction

In this chapter, we quantify the minimum fronthaul capacity required to achieve the

fronthaul-unlimited uplink and downlink capacity regions approximately. We then use these

results to characterize the scaling behavior of the uplink and downlink C-RAN sum-capacities

for large network size under various channel models and demonstrate that the C-RAN sum-rates

exhibit similar large-user asymptotics as the fronthaul-unlimited sum-capacities for a range of

channel models.
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3.2 Fronthaul-unlimited Networks

Large-network asymptotics and other types of scaling behavior for multi-terminal systems

have been explored ever since the introduction of MIMO. Telatar [56] examined single-user

MIMO systems with multiple transmit and receive antennas and quantified the gains over single-

antenna systems in terms of capacities and error exponents. It was also shown that the ergodic

capacity of such systems scales linearly with the number of antennas in the large-antenna limit

under rich scattering (see Section 3.3.2). Under a similar channel model, Tse et al. [57] studied

the tradeoffs between throughput (multiplexing gain) and error performance (diversity gain) for

multiple access networks. Verdú [58] evaluated transmit energy thresholds for multi-antenna

systems in the wideband (low spectral efficiency) regime under Gaussian as well as Laplacian

noise distributions. For a comprehensive review of literature on the asymptotic behavior of

MIMO systems, we refer the reader to [37, 56, 58] and the references therein.

3.3 Uplink C-RANs

3.3.1 Comparisons with Fronthaul-Unlimited Uplink

In this section, we examine the effect of the capacities Cl of the fronthaul links (in

particular, their sum C∑ :=C1 + · · ·+CL) on the capacity region of the uplink C-RAN. Recall

from Remark 2.2.1 that as the fronthaul link capacities approach infinity, the uplink C-RAN

capacity region becomes the same as the fronthaul-unlimited uplink capacity region in the limit.

However, as shown by the following example, this limit is in general unattainable when the link

capacities are finite.

Example 3.3.1. Consider the single-sender, 2-relay Gaussian uplink C-RAN with first hop given
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by

Y1 = gX +Z1,

Y2 = gX +Z2,

where g ∈R\{0} and Z1,Z2 are i.i.d. N(0,1) noise components. Let us denote the fronthaul link

capacities of this network by C1 and C2, and let there be an average power constraint P > 0 on the

sender. Then the first hop has conditionally i.i.d. outputs Y1,Y2 given X . If C2 = ∞, this network

is equivalent to the relay channel model studied in the Gaussian version of Cover’s problem [12]

and by the results of Wu, Barnes, and Özgür [63], the capacity for any finite C1 is strictly less

than the capacity for C1 = ∞. Thus, even for this simple network, the fronthaul-unlimited uplink

capacity R∞
sum := (1/2) log(1+2g2P) is unattainable unless both the fronthaul link capacities

are infinite. On the positive side, it is possible to approximately achieve the fronthaul-unlimited

X Y

Y1

Y2

p(y1,y2|x)

C1

C2

Figure 3.1. A single sender 2-relay uplink C-RAN.

uplink sum-rate for finite fronthaul capacities, provided we spend a sufficient amount of extra

capacity on the fronthaul. Suppose that we have a certain amount of total capacity C∑ to spend

on the fronthaul links, which we are free to allocate in any way among the two links. The cutset

bound implies that we cannot hope to achieve the capacity (1/2) log(1+2g2P) unless C∑ is at

least equal to this amount. However, if we set

C1 =C2 =
1
2
+

1
4

log(1+2g2P).
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and thus spend the fronthaul sum-capacity of

C∑ =
1
2

log(1+2g2P)+1,

then it can be shown, by taking σ2 = 1 in (2.7), that the uplink C-RAN sum-rate is

min

{
1
2

log(1+g2P),
1
2

log
(

1+
g2P

2

)
+C1−

1
2
,

1
2

log
(

1+
g2P

2

)
+C2−

1
2
,C1 +C2−1

}

= min
{

1
2

log(1+g2P),
1
2

log
(

1+
g2P

2

)
+

1
4

log
(
1+2g2P

)
,
1
2

log(1+2g2P)
}

=
1
2

log(1+g2P)

(b)
≥ 1

2
log(1+2g2P)− 1

2
, (3.1)

where (b) follows since (1+ 2g2P) ≤ 2(1+ g2P). Thus, using a total fronthaul link capacity

only 1 bit higher than the fronthaul-unlimited uplink capacity, we can achieve the fronthaul-

unlimited uplink capacity within half a bit, irrespective of P and g. Thus we can achieve the

fronthaul-unlimited uplink sum-capacity within a finite additive gap using a total fronthaul link

capacity which is also finitely larger than the fronthaul-unlimited sum-capacity in the additive

sense. This statement is formalized and generalized in Corollary 3.3.1 to Theorem 3.3.1.

The result (3.1) holds for every P and therefore, with this fronthaul allocation strategy, we

can achieve RNCF
sum /R∞

sum approaching 1 as P→∞, with a total fronthaul link capacity C∑ satisfying

C∑/R∞
sum→ 1 as P→ ∞. In fact, we can go one step further and show, letting P go to infinity

in (3.1), that at high SNR, using a C∑ whose ratio to R∞
sum is 1 within O(1/ logP), network

compress–forward can achieve a sum-rate whose ratio to R∞
sum is also 1 within O(1/ logP).

Thus, in a multiplicative sense as well, only a slightly larger fronthaul capacity is sufficient to

approximate the fronthaul-unlimited capacity for this network. This statement is formalized and
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explored in Corollary 3.3.2.

We first quantify the fronthaul requirement for network compress–forward to approximate

the fronthaul-unlimited uplink sum-capacity in Theorem 3.3.1, from which the additive and

multiplicative gap results follow as corollaries.

Theorem 3.3.1. If

C∑ ≥
1
2

log
∣∣∣∣ P
σ2 +1

GGT + I
∣∣∣∣+ L

2
log
(

1+
1

σ2

)
=: C∗(σ2)

for some σ2 > 0, then there exist fronthaul link capacities C1,C2, . . . ,CL ≥ 0 with ∑l∈[L]Cl =C∑

at which network compress–forward can achieve a sum-rate

RNCF
sum (σ2) =

1
2

log
∣∣∣∣ P
σ2 +1

GGT + I
∣∣∣∣ .

Conversely, to achieve a sum-rate of (1/2) log |I + PGGT |, we must have a total fronthaul

capacity

C∑ ≥
1
2

log |I +PGGT |.

Proof. The achievable sum-rate can be written as

RNCF
sum (σ2) = min

S2⊆[L]

(1
2

log
∣∣∣ P
σ2 +1

GSc
2 ,[K]G

T
Sc

2 ,[K]+ I
∣∣∣+ ∑

l∈S2

Cl−
|S2|

2
log
(
1+

1
σ2

))
= min

S2⊆[L]

(
φ(Sc

2)+ψ(S2)
)
, (3.2)

where

φ(Sc
2) :=

1
2

log
∣∣∣∣ P
σ2 +1

GSc
2 ,[K]G

T
Sc

2 ,[K]+ I
∣∣∣∣

and

ψ(S2) := ∑
l∈S2

(
Cl−

1
2

log
(

1+
1

σ2

))
.
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If Cl ≥ (1/2) log(1+ 1/σ2) for all l ∈ [L], the set functions φ and ψ are zero on the null set,

monotonically increasing (with respect to the partial ordering defined by set inclusion), and

are submodular, i.e., we have φ( /0) = 0, φ(S)≤ φ(T ) if S ⊆ T , and φ(S ∪T )+φ(S ∩T )≤

φ(S)+φ(T ). The sets

P(φ) :=
{
(x1, . . . ,xL)⊆ RL

+ : ∑
l∈S

xl ≤ φ(S),S ⊆ [L]
}

and P(ψ), defined in a similar manner, are referred to as polymatroids [13], which generalize

two-dimensional pentagonal regions to L dimensions. The following celebrated result can rewrite

(3.2) in an alternative form.

Lemma 3.3.1 (Edmonds’s polymatroid intersection theorem [13]). If P(φ) and P(ψ) are two

polymatroids, then

max

{
∑

l∈[L]
xl : (x1, . . . ,xL) ∈P(φ)∩P(ψ)

}
= min

S⊆[L]
(φ(S)+ψ(Sc)) .

Using Lemma 3.3.1, we can rewrite (3.2) as

RNCF
sum (σ2) = max

yL

{
∑

l∈[L]
yl : yl ≤ ψ({l}), l ∈ [L], ∑

l∈S2

yl ≤ φ(S2),S2 ⊆ [L]

}
.

Now, let us fix

C∑ ≥ φ([L])+
L
2

log
(

1+
1

σ2

)
=

1
2

log
∣∣∣∣ P
σ2 +1

GGT + I
∣∣∣∣+ L

2
log
(

1+
1

σ2

)
(3.3)

such that C1, . . . ,CL are constrained to satisfy C1 + . . .+CL =C∑. Choose a point

y∗ ≡ (y∗1, . . . ,y
∗
L) ∈P(φ) such that y∗1 + . . .+ y∗L = φ([L]). Such a point always exists since
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P(φ) is a polymatroid. The point ỹ≡ (ỹ1, . . . , ỹL) defined by

ỹl =
C∑− L

2 log
(

1+ 1
σ2

)
φ([L])

y∗l , l ∈ [L],

satisfies ỹ1 + · · ·+ ỹL =C∑− (L/2) log(1+1/σ2). Therefore, choosing Cl = ỹl +(1/2) log(1+

1/σ2) for each l, P(φ) becomes the cuboid

{(y1, . . . ,yL) : yl ≤ ỹl, l ∈ [L]}

with corner point ỹ. Moreover, this cuboid includes the point y∗, since ỹl ≥ y∗l for each l by

(3.3). Thus, the point y∗ lies in the intersection P(φ)∩P(ψ) and therefore, network compress–

forward, with this choice of C1, . . . ,CL, achieves the sum-rate

y∗1 + · · ·+ y∗L = φ([L]) =
1
2

log
∣∣∣∣ P
σ2 +1

GGT + I
∣∣∣∣ ,

establishing the result. The converse follows immediately from the cutset bound.

Remark 3.3.1. Given σ2, P, and G, coming up with a specific allocation (C1, . . . ,CL) satisfying

the sum fronthaul constraint is equivalent to finding a point y∗, as seen from the proof. Such a

point can be found, moreover, by solving a linear feasibility problem

find (y∗1, . . . ,y
∗
L)

subject to ∑
l∈S

y∗l ≤ φ(S), S ( [L],

∑
l∈[L]

y∗l = φ([L]).

Thus, the fronthaul allocation problem is equivalent to checking the feasibility of a linear program

with 2L−2 inequalities and one equality.
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Remark 3.3.2. As an immediate consequence of the polymatroid representation, the best sum-

rate achievable for a given total fronthaul capacity C∑ > 0 can be expressed as

Rmax
sum(C∑) = sup

σ2>0
min

{
C∑−

L
2

log
(

1+
1

σ2

)
,
1
2

log
∣∣∣∣ P
σ2 +1

GGT + I
∣∣∣∣} .

The first term in the minimum increases monotonically from 0 to ∞ as σ2 increases from 0 to

∞, while for G 6= 0, the second term decreases monotonically from ∞ to 0. Therefore, there is a

unique σ2
∗ (C∑) at which the supremum is attained and the two terms in the minimum are equal

for σ2 = σ2
∗ (C∑). This also shows that

lim
C∑→∞

σ
2
∗ (C∑) = 0

and hence, that

lim
C∑→∞

Rmax
sum(C∑) =

1
2

log |PGGT + I | = R∞
sum.

Thus, our coding scheme is asymptotically optimal in the limit of large fronthaul sum-capacity.

Theorem 3.3.1 leads to a formalization of the achievable additive and multiplicative gaps

from the fronthaul-unlimited uplink sum-capacity, that were briefly explored in Example 3.3.1.

Corollary 3.3.1 (Additive gap from fronthaul-unlimited uplink sum-capacity). Denote by R∞
sum

the fronthaul-unlimited uplink sum-capacity, which is given by (1/2) log |I + PGGT |. Then,

for every P and G for some σ2 > 0, if C∑ = R∞
sum +∆1(σ

2), then there exist C1, . . . ,CL with

∑l∈[L]Cl =C∑, at which RNCF
sum (σ2)≥ R∞

sum−∆2(σ
2), where

∆1(σ
2) =

L
2

log
(

1+
1

σ2

)

and

∆2(σ
2) =

min{K,L}
2

log
(
1+σ

2) .
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Proof. We have, from Theorem 3.3.1, that if

C∑ =
1
2

log
∣∣∣∣ P
σ2 +1

GGT + I
∣∣∣∣+ L

2
log
(

1+
1

σ2

)
,

then

C∑−R∞
sum =

1
2

log

∣∣∣ P
σ2+1GGT + I

∣∣∣
|PGGT + I| +

L
2

log
(

1+
1

σ2

)
≤ L

2
log
(

1+
1

σ2

)
, (3.5)

and

R∞
sum−RNCF

sum (σ2) =
1
2

log
|PGGT + I|∣∣∣ P

σ2+1GGT + I
∣∣∣

(a)
≤ rank(G)

2
log(1+σ

2)

≤ min{K,L}
2

log(1+σ
2), (3.6)

where (a) follows from the inequality (1+α)/(1+α/x)≤ x for x > 1,α > 0. Equations (3.5)

and (3.6) establish the result.

As a concrete illustration of the gaps established by Corollary 3.3.1, taking σ2 = L in

(3.5) and (3.6) yields

∆1(σ
2) =

L
2

log
(

1+
1
L

)
(a)
≤ L

2
· loge

L

=
loge

2

and

∆2(σ
2) =

min{K,L}
2

log(1+L).
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Here, (a) follows since log(1+ x)≤ x loge, x > 0. Similarly, setting σ2 = 1/L in (3.5) and (3.6)

yields

∆1(σ
2) =

L
2

log(1+L)

and

∆2(σ
2) =

min{K,L}
2

log
(

1+
1
L

)
≤ min{K,L}

2
· loge

L
≤ loge

2
.

Various choices of σ2, as well as the corresponding tradeoffs between ∆1 and ∆2, are summarized

in Table 3.1. As noted before, Corollary 3.3.1, being a channel- and SNR-independent result,

Table 3.1. Additive gap from fronthaul-unlimited uplink sum-capacity.

σ2 ∆1(σ
2) ∆2(σ

2)

L
loge

2
min{K,L}

2
log(1+L)

1
L
2

min{K,L}
2

1
L

L
2

log(1+L)
loge

2

implies that both RNCF
sum /R∞

sum and C∗/R∞
sum approach 1 at high SNR. The next result is a further

refinement of this statement.

Corollary 3.3.2 (Multiplicative gap from fronthaul-unlimited uplink sum-capacity at high SNR).

For a fixed channel gain matrix G, let P→ ∞ and let σ2 be chosen as σ2 = σ2(P) such that

lim
P→∞

Pσ
2(P) = ∞

and

lim
P→∞

σ
2(P)/P = 0.
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Then,

1− RNCF
sum

R∞
sum
∼ log

(
1+σ2(P)

)
logP

and

C∗

R∞
sum
−1∼



L loge
σ2(P) − rank(G) log(σ2(P))

rank(G) logP
, σ2(P) P→∞−−−→ ∞,

L log(1/σ2(P))
rank(G) logP

, σ2(P) P→∞−−−→ 0,

rank(G) log
(

1
1+σ2

)
+L log

(
1+ 1

σ2

)
rank(G) logP

, σ2 > 0 is fixed,

where RNCF
sum ,R∞

sum, and C∗ depend on P and G (as well as σ2(·) for C∗ and RNCF
sum ).

Proof. Let β1, . . . ,βrank(G) be the non-zero eigenvalues of GGT . Then, we have

1− RNCF
sum (P)

R∞
sum(P)

= 1−
∑

rank(G)
l=1 log

(
1+ Pβl

1+σ2(P)

)
∑

rank(G)
l=1 log(1+Pβl)

=

∑
rank(G)
l=1 log

(
1+Pβl

1+ Pβl
1+σ2(P)

)
∑

rank(G)
l=1 log(1+Pβl)

=

∑
rank(G)
l=1 log

(
1+ Pσ2(P)βl

1+ Pβl
1+σ2(P)

)
∑

rank(G)
l=1 log(1+Pβl)

∼ rank(G) log(1+σ2(P))
rank(G) logP

=
log(1+σ2(P))

logP
, (3.7)

and

C∗(P)
R∞

sum(P)
−1 =

∑
rank(G)
l=1 log

(
1+ Pβl

1+σ2(P)
1+Pβl

)
+L log

(
1+ 1

σ2(P)

)
∑

rank(G)
l=1 log(1+Pβl)

. (3.8)
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If σ2(P)→ ∞ as P→ ∞, (3.8) leads to

C∗(P)
R∞

sum(P)
−1∼

rank(G) log
(
1/σ2(P)

)
+ L loge

σ2(P)

rank(G) logP
∼ log

(
1/σ2(P)

)
logP

, (3.9)

and if σ2(P)→ 0 as P→ ∞, (3.8) leads to

C∗(P)
R∞

sum(P)
−1 =

∑
rank(G)
l=1 log

(
1− Pβlσ

2(P)
(1+σ2(P))(1+Pβl)

)
+L log

(
1+ 1

σ2(P)

)
∑

rank(G)
l=1 log(1+Pβl)

∼ rank(G)σ2(P)+L log(1/σ2(P))
rank(G) logP

∼ L log(1/σ2(P))
rank(G) logP

. (3.10)

Similarly, if σ2 > 0 is fixed, (3.8) leads to

C∗(P)
R∞

sum(P)
−1∼

rank(G) log
(

1
1+σ2

)
+L log

(
1+ 1

σ2

)
rank(G) logP

. (3.11)

For various choices of σ2(P), (3.7), (3.9), (3.10), and (3.11) enable us to make several

statements about the behaviors of the ratios RNCF
sum /R∞

sum and C∗/R∞
sum at high SNR. These are

summarized in Table 3.2. As another result that demonstrates the asymptotically optimal

fronthaul link capacity, we examine how RNCF
sum , R∞

sum, and C∗ scale with network size for specific

network models, in the next section.

3.3.2 Capacity Scaling

In this section, as opposed to keeping the network size fixed and varying the SNR and

the channel coefficients, we let the network size grow and examine how the sum-rates and the

fronthaul capacity requirement behave under certain network models. In Section 3.3.2, we

consider a channel model, referred to as the rich scattering model, where the entries of the
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Table 3.2. Multiplicative gap from fronthaul-unlimited uplink sum-capacity.

σ2(P)
C∗(P)

R∞
sum(P)

−1 1− RNCF
sum (P)

R∞
sum(P)

1 O
(

1
logP

)
O
(

1
logP

)

logP O
(

log logP
logP

)
O
(

log logP
logP

)

(logP)−ε , ε ∈ (0,1) O
(

log logP
logP

)
O
(

1
(logP)1+ε

)

channel gain matrix G are i.i.d. N(0,1) random variables. In Section 3.3.2, we study a stochastic

geometry model through simulations, where users and relays are physically distributed over a

two-dimensional area at random, and the channel coefficient between a particular user–relay pair

is determined by the Euclidean distance between the two.

In contrast to the current treatment, large network size asymptotics for achievable sym-

metric rates was considered in [47] for L = K and equal fronthaul link capacities, under various

localized interference models such as the Wyner model [65] and the soft-handoff model [55].

Specifically, under these models, the limit of the symmetric achievable rate was computed as the

network size grows to infinity. The high- and low-SNR behaviors of this limit were then studied.

Fading was incorporated into the same localized interference model and similar studies were

made on the limit of the ergodic capacity.

Rich scattering

We consider a rich scattering network model with slow fading, where the entries of the

channel gain matrix G are i.i.d. random variables with variance 1 and are assumed fixed for the

duration of transmission. Moreover, the average power constraint P is kept fixed. We recall the

following.

Lemma 3.3.2 (Telatar [56], Silverstein [50]). Let W be an m×n random matrix with i.i.d. entries
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Wi j, each of which has unit variance. Then, as n→ ∞ such that n/m→ ρ ∈ [1,∞), the limiting

density of the empirical distribution of the eigenvalues of WW T/m is given, almost surely, by

fΛ(λ ) =

√
(λ −α(ρ))(β (ρ)−λ )

2πλ
1[α(ρ),β (ρ)],

where α(ρ) := (
√

ρ − 1)2 and β (ρ) := (
√

ρ + 1)2. On the other hand, if n/m→ ∞, all the

eigenvalues of WW T/n approach 1 a.s.

Using Lemma 3.3.2, we can establish the following result on the large network size

behavior of RNCF
sum (σ2), C∗(σ2), and R∞

sum.

Theorem 3.3.2. Let the entries of the L×K channel gain matrix G be distributed as i.i.d. random

variables with unit variance, and let σ2 = σ2(L,K)> 0. If L→ ∞ such that L/K→ ρ ∈ (1,∞]

and L/σ2→ ∞, then

R∞
sum ∼

K
2

logL

and

RNCF
sum =C∗− L

2
log
(

1+
1

σ2

)
∼ K

2
log(L/σ

2),

a.s. in G. Similarly, if K→ ∞ such that L/K→ ρ ∈ [0,1) and K/σ2→ ∞, then

R∞
sum ∼

L
2

logK

and

RNCF
sum =C∗− L

2
log
(

1+
1

σ2

)
∼ L

2
log(K/σ

2),

a.s. in G.

Theorem 3.3.2 acts as a powerful tool to examine the large network size asymptotics for

RNCF
sum ,R∞

sum, and the fronthaul link capacity requirement C∗. We consider various scaling regimes

of L and K, namely, K fixed and L growing, L = γK with γ /∈ {0,1}, and L = Kγ with γ /∈ {0,1}.
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For each case, we choose σ2 = σ2(L,K) appropriately and use Theorem 3.3.2 to establish the

scaling laws for this rich scattering model. The results are summarized in Table 3.3.

Table 3.3. Sum-rate scaling for fronthaul-limited and fronthaul-unlimited uplink C-RAN; γ > 0,
γ 6= 1, 0 < δ < γ−1, 0 < ε < 1.

L vs. K σ2 C∗ RNCF
sum R∞

sum

L = γK
(γ > 1) 1

K
2

logL
K
2

logL
K
2

logL

(γ < 1) 1
L
2

logK
L
2

logK
L
2

logK

L = Kγ

(γ > 1)
Kγ−1 K

2
logK

K
2

logK
K
2

logL
Kγ−1−δ

K1+δ

2
loge (1+δ )

K
2

logK

(γ < 1) 1
L
2

logK
L
2

logK
L
2

logK

K fixed Lε
L1−ε

2
loge (1− ε)

K
2

logL
K
2

logL

L fixed 1
L
2

logK
L
2

logK
L
2

logK

Derivation of Table 3.3. First note that for all cases considered,

RMIMO
sum ∼ min{K,L}

2
log(Pmax{K,L})∼ min{K,L}

2
log(max{K,L}) .
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For L = γK with γ > 1, we can choose σ2 = 1 to obtain, from Theorem 3.3.1 and Lemma 3.3.2,

C∗(σ2)∼ K
2

log(L/2)+
L
2
∼ K

2
logL,

and

RNCF
sum (σ2)∼ K

2
log(L/2)∼ K

2
logL. (3.12)

For L = γK with γ ∈ (0,1), we can similarly choose σ2 = 1 to obtain, from Theorem 3.3.1 and

Lemma 3.3.2,

C∗(σ2)∼ L
2

log(K/2)+
L
2
∼ L

2
logK,

and

RNCF
sum (σ2)∼ L

2
log(K/2)∼ L

2
logK. (3.13)

For L = Kγ with γ > 1, we can choose σ2 = Kγ−1 to obtain

C∗(σ2)∼ K
2

log(L/Kγ−1)+
L loge
2Kγ−1 ∼

K
2

logK,

and

RNCF
sum (σ2))∼ K

2
log(L/Kγ−1)∼ K

2
logK.

Alternatively, for the same scaling regime, we can choose σ2 = Kγ−1−δ for some δ ∈ (0,γ−1)

to obtain

C∗(σ2)∼ K
2

log(L/Kγ−1−δ )+
L loge

2Kγ−1−δ
∼ K1+δ

2
loge,

and

RNCF
sum (σ2)∼ K

2
log(L/Kγ−1−δ )∼ (1+δ )

K
2

logK.

For L = Kγ with γ ∈ (0,1), we can choose σ2 = 1 to obtain

C∗(σ2)∼ L
2

log(K/2)+
L
2
∼ L

2
logK,
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and

RNCF
sum (σ2)∼ L

2
log(K/2)∼ L

2
logK.

For fixed K with L growing, we can choose σ2 = Lε for some ε ∈ (0,1) to obtain

C∗(σ2)∼ K
2

log(L/Lε)+
L loge

2Lε
∼ L1−ε

2
loge,

and

RNCF
sum (σ2)∼ K

2
log(L/Lε)∼ (1− ε)

K
2

logL.

Finally, for fixed L with K growing, we can choose σ2 = 1 to obtain

C∗(σ2)∼ L
2

log(K/2)+
L
2
∼ L

2
logK,

and

RNCF
sum (σ2)∼ L

2
log(K/2)∼ L

2
logK.

Remark 3.3.3. When L is fixed and K is growing, or L = Kγ with γ < 1, the sum-rates scale

sublinearly in K and therefore, the per-user rate is asymptotically zero if one attempts to serve

all users fairly.

Remark 3.3.4. We note that most of the classical scaling results in the literature, as reviewed in

Section 3.2, consider ergodic capacities and their limits. In contrast, our results focus on global

interference network models with certain known statistical properties of the channel and make

high-probability predictions on achievable rate regions.

Remark 3.3.5. The theory developed here does not lead to the same a.s. statements for the case

L = K→ ∞. As a workaround, for every ε > 0, however small, one can choose to only serve
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(1− ε)K of the users, thereby leading to a sum-rate scaling of

(1− ε)K logK/2

for this case, in accordance with Table 3.3.

Proof of Theorem 3.3.2. We will prove the first part, i.e., the case when L→ ∞. The second part

will follow from this by exchanging the roles of K and L. Note that

log
∣∣∣∣I + P

σ2 +1
GGT

∣∣∣∣= log
∣∣∣∣I + P

σ2 +1
GT G

∣∣∣∣ .
In the regime considered, L≥ K eventually, therefore we can use GT in place of W in

Lemma 3.3.2. Assume first that ρ < ∞. We can conclude from Lemma 3.3.2 that w.p. 1, for every

δ > 0, there exists L∗(δ ) such that for all L≥ L∗(δ ), all eigenvlaues Λ1, . . . ,ΛK of GT G/K lie

in [
(
√

ρ−1)2−δ ,(
√

ρ +1)2 +δ

]
.

Therefore, w.p. 1, for every L≥ L∗(δ ), we have

log
∣∣∣∣I + P

σ2 +1
GGT

∣∣∣∣
=

K

∑
k=1

log
(

1+
PK

σ2 +1
Λk

)
∈
[

K log
(

1+
PK

σ2 +1
((
√

ρ−1)2−δ )

)
,K log

(
1+

PK
σ2 +1

((
√

ρ +1)2 +δ )

)]
. (3.14)
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Further, we have

lim
L→∞

K log
(

1+ PK
σ2+1((

√
ρ±1)2±δ )

)
K log

(
PL
σ2

)
= lim

L→∞

log
(

1+ PL
σ2+1 ·

((
√

ρ±1)2±δ )
L/K

)
log
(

PL
σ2+1

)
= lim

L→∞

[
log
(

1+ PL
σ2+1 ·

((
√

ρ±1)2±δ )
L/K

)
log
(

1+ PL
σ2+1 ·

((
√

ρ±1)2±δ )
ρ

) × log
(

1+ PL
σ2+1 ·

((
√

ρ±1)2±δ )
ρ

)
log
(

PL
σ2+1 ·

((
√

ρ±1)2±δ )
ρ

)
×

log
(

PL
σ2+1 ·

((
√

ρ±1)2±δ )
ρ

)
log
(

PL
σ2

) ]

= 1,

since each factor approaches 1. Therefore, from (3.14), we obtain the limiting behavior

log
∣∣∣∣I + P

σ2 +1
GGT

∣∣∣∣∼ K log
(

PL
σ2

)
∼ K log(L/σ

2) w.p. 1.

For the case L/K→ ∞, since all K eigenvalues of GT G/L approach 1, we have

log
∣∣∣∣I + P

σ2 +1
GGT

∣∣∣∣∼ K log
(

PL
σ2

)
∼ K log(L/σ

2) w.p. 1.

A similar line of reasoning with P/(σ2 +1) replaced by P yields the result for R∞
sum.

Stochastic geometry

We now consider an alternative network model based on stochastic geometry [5]. In

this model, users and relays are distributed over a 100m×100m area according to independent

Poisson point processes with intensities λu and λr (per 104 square meters) respectively. All

channel gains are assumed to be real and unchanged for the duration of transmission.

As an initial simple model, the gain Glk from sender k to relay l, separated by Euclidean
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distance rlk, is modeled by max{r0,rlk}−β , where β is the path loss exponent and r0 (set to 1

meter) is a minimum link distance to prohibit the singularity of the path loss for rlk → 0. In

contrast to the rich scattering model, the channel randomness now comes exclusively from the

placement of user and relay nodes, and once the nodes are fixed, the channel coefficients become

deterministic. Therefore, this simple model approximates line-of-sight (LOS) propagation with

no multipath component.

Following [33], we also study a more practical channel model based on stochastic

geometry, where multipath effects such as blockage, shadowing, and fast fading are considered.

More specifically, the multipath channel gain is given by

Glk =


G(LOS)

lk w.p. pLOS (rlk) ,

G(NLOS)
lk w.p. 1− pLOS (rlk) ,

where

G(LOS)
lk =

A(LOS)
lk Θ

(LOS)
lk

κ (max{r0,rlk})β (LOS)

and

G(NLOS)
lk =

A(NLOS)
lk Θ

(NLOS)
lk

κ (max{r0,rlk})β (NLOS) .

Here, NLOS stands for non-LOS. The random variable Alk represents the fast fading component

for modeling small-scale fluctuations in the envelope of the links in LOS and in NLOS. A(LOS)
lk and

A(NLOS)
lk follow a Nakagami-m distribution with m = 2 and scale parameter Ω = 1, and a Rayleigh

distribution with scale parameter Ω = 1, respectively. The factor Θlk models the shadowing effect

due to changes in the surrounding environment. We consider a typical log-normal shadowing and

set Θ
(LOS)
lk and Θ

(NLOS)
lk as log-normal random variables with means and standard deviations as

specified in [33]. We also assume that Alk and Θlk are independently distributed. The parameter

κ is the free-space path loss at a distance of 1 meter from the sender at the center frequency fc

(which is set to 2.1 GHz here), and β (LOS) and β (NLOS) denote the path loss exponent for LOS
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and NLOS scenarios, respectively. We take β (LOS) = 2.5 and β (NLOS) = 3.5. Finally, pLOS (rlk)

represents the probability that the link is in LOS and is modeled according to the 3GPP urban

micro (UMi) channel model [1] as

pLOS (rlk) = min{18/rlk,1}
(

1− e−rlk/36
)
+ e−rlk/36,

where rlk is measured in meters.

For simulating the large network asymptotics for all the aforementioned channel models,

we examine the cases λr = 2λu, λr = λ 2
u , and λu fixed. The corresponding median sum-rates

for fronthaul-limited and fronthaul-unlimited C-RAN uplink, as well as the corresponding C∗

required, are plotted as functions of λu in Fig. 3.2 for different values of β . The median values

are taken over 1000 runs of the simulations. For each simulation run, σ2 is chosen so as to

(numerically) minimize

max
{

C∗(σ2)−R∞
sum,R

∞
sum−RNCF

sum (σ2)
}
.

From the plots, we observe that RNCF
sum scales in a similar fashion as R∞

sum, remaining only slightly

lower, provided we have a slightly larger amount to spend on the fronthaul. Moreover, for

λr = 2λu as well as for λr = λ 2
u , the sum-rates show an approximately linear scaling with λr

(and hence with L), unlike the K logL scaling observed for the rich scattering case. This loss

seems to be caused by the dependence among the channel coefficients, which are still identically

distributed but not independent of each other.

3.4 Downlink C-RANs

3.4.1 Comparisons with Fronthaul-Unlimited Downlink

Similar to Section 3.3.1, we can use Edmonds’s polymatroid intersection theorem to

quantify the total fronthaul C∑ :=C1 + · · ·+CL required to approximate the fronthaul-unlimited
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Figure 3.2. Uplink capacity scaling under stochastic geometry.

downlink sum-capacity.

Theorem 3.4.1. If

C∑ ≥
1
2

log
∣∣∣∣ P
σ2 HHT + I

∣∣∣∣=: C∗(σ2)

for some σ2 > 0, then there exist C1,C2, . . . ,CL ≥ 0 with ∑l∈[L]Cl = C∑ at which distributed

decode–forward can achieve a sum-rate

RDDF
sum (σ2) =

1
2

log
∣∣∣∣ P
σ2 HHT + I

∣∣∣∣− K
2

log
(

1+
1

σ2

)
.

Conversely, to achieve a sum-rate of (1/2) log |I +PHHT |, we must have a total fronthaul
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capacity

C∑ ≥
1
2

log |I +PHHT |.

Proof. We assume that

1
2

log
∣∣∣∣ P
σ2 HHT + I

∣∣∣∣≥ K
2

log
(

1+
1

σ2

)
, (3.15)

since a negative sum-rate has no physical meaning. Define rk := Rk +(1/2) log(1+ 1/σ2),

k ∈ [K]. We will work with the tuple (r1, . . . ,rK) instead of (R1, . . . ,RK). The maximum sum

r1 + · · ·+ rK corresponding to RDDF
down(σ

2) can be written as

rmax = min
S1⊆[L]

(1
2

log
∣∣∣ P
σ2 H[K],S1HT

[K],S1
+ I
∣∣∣+ ∑

l∈Sc
1

Cl

)
= min

S1⊆[L]

(
φ(S1)+ψ(Sc

1)
)
, (3.16)

where

φ(S1) :=
1
2

log
∣∣∣ P
σ2 H[K],S1HT

[K],S1
+ I
∣∣∣

and

ψ(Sc
1) := ∑

l∈Sc
1

Cl

are such that P(φ) and P(ψ) are both polymatroids. Therefore, by Edmonds’s polymatroid

intersection theorem,

rmax = max
yL

{
∑

l∈[L]
yl : yl ≤ ψ({l}), l ∈ [L], ∑

l∈S1

yl ≤ φ(S1),S1 ⊆ [L]

}
.

Now, let us fix

C∑ ≥ φ([L]) =
1
2

log
∣∣∣∣ P
σ2 HHT + I

∣∣∣∣ (3.17)

such that C1, . . . ,CL are constrained to satisfy C1 + · · ·+CL =C∑. Choose a point
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y∗ ≡ (y∗1, · · · ,y∗L)∈P(φ) such that y∗1+ . . .+y∗L = φ([L]) and y∗l ≥ (1/2) log(1+1/σ2) for each

l. Such a point always exists since P(φ) is a polymatroid and since (3.15) holds. The point

ỹ≡ (ỹ1, . . . , ỹL) defined by

ỹl =
C∑

φ([L])
y∗l , l ∈ [L],

satisfies ỹ1 + · · ·+ ỹL =C∑. Therefore, choosing Cl = ỹl for each l, P(φ) becomes the cuboid

with corner point ỹ. Moreover, this cuboid includes the point y∗, since ỹl ≥ y∗l for each l by

(3.17). Thus, the point y∗ lies in the intersection P(φ)∩P(ψ) and therefore,

rmax ≥ y∗1 + · · ·+ y∗L = φ([L]) =
1
2

log
∣∣∣∣ P
σ2 HHT + I

∣∣∣∣ ,
which implies that distributed decode–forward with the same fronthaul link capacities

(C1, . . . ,CL) can achieve

RDDF
sum = φ([L])− K

2
log
(

1+
1

σ2

)
=

1
2

log
∣∣∣∣ P
σ2 HHT + I

∣∣∣∣− K
2

log
(

1+
1

σ2

)
,

establishing the result. The converse follows immediately from the cutset bound.

Remark 3.4.1. The best sum-rate achievable by our coding scheme for a given total fronthaul

capacity C∑ > 0 can be expressed as

Rmax
sum(C∑) = sup

σ2>0

(
min

{
C∑,

1
2

log
∣∣∣∣ P
σ2 HHT + I

∣∣∣∣}− K
2

log
(

1+
1

σ2

))
.

Remark 3.4.2. As demonstrated in [67], one can write the sum-capacity of the fronthaul-

unlimited downlink with channel gain matrix H ∈ RK×L as the solution of the optimization
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problem

min
Q

max
Σ

1
2

log
|HT ΣH +Q|
|Q|

subject to Σ� 0 diagonal, tr(Σ)≤ 1,

Q� 0 diagonal, tr(Q)≤ 1/P.

Taking Q = (1/PL)I and Σ = I therefore yields an upper bound

R∞
sum ≤

1
2

log |PLHHT + I |.

3.4.2 Capacity Scaling

Similar to Section 3.3.2, we first consider a rich scattering model. We can use

Lemma 3.3.2 to establish the following theorem on the large network size behavior of RDDF
sum (σ2),

C∗(σ2), and R∞
sum. The proof is similar to that of Theorem 3.3.2 and is omitted.

Theorem 3.4.2. Let the entries of the K×L channel gain matrix H be distributed as i.i.d. random

variables with variance 1, and let σ2 = σ2(L,K)> 0. If L→∞ such that L/K→ ρ ∈ (1,∞] and

L/σ2→ ∞, then
1
2
≤ liminf

R∞
sum

K logL
≤ limsup

R∞
sum

K logL
≤ 1

and

RDDF
sum =C∗− K

2
log
(

1+
1

σ2

)
∼ K

2
log(L/σ

2)− K
2

log
(

1+
1

σ2

)
,

a.s. in H. Similarly, if K→ ∞ such that L/K→ ρ ∈ [0,1) and K/σ2→ ∞, then

1
2
≤ liminf

R∞
sum

L logK
≤ limsup

R∞
sum

L logK
≤ 1

and

RDDF
sum =C∗− K

2
log
(

1+
1

σ2

)
∼ L

2
log(K/σ

2)− K
2

log
(

1+
1

σ2

)
,
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a.s. in H.

Using Theorem 3.4.2 and choosing σ2 = σ2(L,K) appropriately, we summarize the

scaling laws for RDDF
sum ,R∞

sum, and the fronthaul link capacity requirement C∗ in Table 3.4.

Remark 3.4.3. Unlike Table 3.3, Table 3.4 does not have an exact coefficient in the scaling law

for R∞
sum for downlink. The upper bound in Remark 3.4.2 scales as L logK or K logL, while

RDDF
sum serves as a lower bound on R∞

sum.

For a stochastic geometry model similar to that in Section 3.3.2, Fig. 3.3 plots the median

sum-rates obtained experimentally over 1000 simulation runs each, for different scaling regimes

and different path loss exponents. The power constraint P at each relay is kept fixed. For each

Table 3.4. Sum-rate scaling for fronthaul-limited and fronthaul-unlimited downlink C-RAN;
α ∈ [1/2,1], γ > 0, γ 6= 1, 0 < δ < γ−1, 0 < ε < 1.

L vs. K σ2 C∗ RDDF
sum R∞

sum

L = γK
(γ > 1) 1

K
2

logL
K
2

logL αK logL

(γ < 1) 1
L
2

logK
L
2

logK αL logK

L = Kγ

(γ < 1)
L1/γ−1 L

2
logL

L
2

logL
αL logK

L1/γ−1+δ
(1−δ )L logL

2
(1−δ )L logL

2

(γ > 1) 1
K
2

logL
K
2

logL αK logL

K fixed 1
K
2

logL
K
2

logL αK logL
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realization of the channel gain matrix H, σ2 is chosen to (numerically) maximize RDDF
sum , and then

C∗ is calculated using this value of σ2. As before, the C-RAN downlink sum-rate closely tracks

the fronthaul-unlimited downlink sum-capacity using a similar amount of fronthaul capacity. We

note here that the plots show an upper bound on R∞
sum, corresponding to choosing randomized

values of the entries of the matrix Q in the dual characterization mentioned in Remark 3.4.2 and

maximizing over the input covariance matrix Σ using the singular value decomposition of the

channel gain matrix and water-filling power allocation (see, for example, [17, Section 9.1]).
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Figure 3.3. Downlink capacity scaling under stochastic geometry.
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Chapter 4

MIMO C-RANs

4.1 Introduction

In this chapter, we extend the results of Chapters 2 and 3 to the situation in which

each user has Nu local antennas and each relay has Nr local antennas. The apparently more

general situation in which users and/or relays have different numbers of antennas can be handled

by setting the channel gain matrix appropriately. We assume a total average transmit power

constraint P at each node and consider channel matrices G ∈ RNrL×NuK and H ∈ RNuK×NrL for

uplink and downlink C-RANs, respectively. The objects RNCF
up , RNCF

sum , RCS
up , RCS

sum, R
DDF
down, RDDF

sum ,

and RCS
down are defined as in Chapter 2.

4.2 Approximate Capacity

Similar to (2.5) in Section 2.2.2, the network compress–forward inner bound RNCF
up for

the uplink Gaussian MIMO C-RAN is characterized by the rate tuples (R1, . . . ,RK) satisfying

∑
k∈S1

Rk ≤
1
2

log
∣∣∣∑k∈S1 GSc

2 ,kΓkGT
Sc

2 ,k

σ2 +1
+ I
∣∣∣+ ∑

l∈S2

Cl−
Nr|S2|

2
log
(

1+
1

σ2

)
=: fin(S1,S2,Γ1, . . . ,ΓK) (4.1)

for all S1 ⊆ [K] and S2 ⊆ [L] for some σ2 > 0 and for some covariance matrices Γ1, . . . ,ΓK � 0

such that tr(Γk) = P, k ∈ [K]. Here, for S2 ⊆ [L] and k ∈ [K], GSc
2 ,k denotes the Nr|Sc

2| ×Nu
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channel gain matrix between user k and the relays in Sc
2. For each fixed σ2,Γ1, . . . ,ΓK, we

denote this region by RNCF
up (σ2,Γ1, . . . ,ΓK). The cutset bound RCS

up is characterized by rate

tuples (R1, . . . ,RK) satisfying

∑
k∈S1

Rk ≤
1
2

log
∣∣∣ ∑

k∈S1

GSc
2 ,kΓkGT

Sc
2 ,k

+ I
∣∣∣+ ∑

l∈S2

Cl

=: fout(S1,S2,Γ1, . . . ,ΓK). (4.2)

Similar to (2.24) in Section 2.3.2, the distributed decode–forward inner bound RDDF
down for the

downlink Gaussian MIMO C-RAN is characterized by rate tuples (R1, . . . ,RK) satisfying

∑
k∈Sc

2

Rk ≤
1
2

log
∣∣∣∑l∈S1 HSc

2 ,lΓlHT
Sc

2 ,l

σ2 + I
∣∣∣+ ∑

l∈Sc
1

Cl−
Nu|Sc

2|
2

log
(

1+
1

σ2

)
=: Fin(S1,S2,Γ1, . . . ,ΓL) (4.3)

for all S1 ⊆ [L] and S2 ⊆ [K] for some σ2 > 0 and for some covariance matrices Γ1, . . . ,ΓL � 0

satisfying tr(Γl) = P, l ∈ [L]. For each fixed σ2,Γ1, . . . ,ΓL, we denote this region by

RDDF
down(σ

2,Γ1, . . . ,ΓL). The cutset bound RCS
down is characterized by rate tuples (R1, . . . ,RK)

satisfying

∑
k∈Sc

2

Rk ≤
1
2

log
∣∣∣HSc

2 ,S1Γ̃S1|Sc
1
HT
Sc

2 ,S1
+ I
∣∣∣+ ∑

l∈Sc
1

Cl

=: Fout(S1,S2, Γ̃), (4.4)

where Γ̃ is a general NrL×NrL input covariance matrix satisfying the block trace constraints.

Here, HSc
2 ,l denotes the Nu|Sc

2|×Nr channel gain matrix between relay l and the users in Sc
2, and

HSc
2 ,S1 denotes the Nu|Sc

2|×Nr|S1| channel gain matrix between the relays in S1 and the users in

Sc
2.

We have the following result on the achievable per-user gaps from the capacity of the
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MIMO C-RAN.

Proposition 4.2.1. For every G ∈RNrL×NuK and every P ∈R+, if a rate tuple (R1, . . . ,RK) is in

RCS
up , then the rate tuple ((R1−∆up)+, . . . ,(RK−∆up)+) is achievable, where

∆
up ≤ Nu

2
log
(

eNrL
Nu

)
.

Moreover,

∆
up
sum := RCS

sum− sup
σ2,Γ1,...,ΓK

RNCF
sum (σ2,Γ1, . . . ,ΓK)≤


NrL

2 H
(

NuK
NrL

)
, NrL≥ 2NuK,

NrL
2 , NrL < 2NuK.

Similarly, for every H ∈ RNuK×NrL and P ∈ R+, if a rate tuple (R1, . . . ,RK) is in RCS
down, then the

rate tuple ((R1−∆down)+, . . . ,(RK−∆down)+) is achievable, where

∆
down ≤



Nu
2 log(eNrLK), Nu < NrL,

NrL
2 log(eNuK), Nu ≥ NrL, NuK ≥ 2NrL,

Nu
2 + NrL

2 log(NrL), K = 1, NrL≤ Nu < 2NrL.

Moreover,

∆
down
sum := RCS

sum− sup
σ2,Γ1,...,ΓL

RDDF
sum (σ2,Γ1, . . . ,ΓL)≤

NuK
2

+
min{NrL,NuK}

2
log(NrL).

Remark 4.2.1. Proposition 4.2.1 recovers the results of Theorems 2.2.1 and 2.3.1 when we set

Nu = Nr = 1. From the expressions for ∆up and ∆down, we observe that the capacity gaps are

the same as if there were Nr×L single-antenna relays. The sum-rate gaps are the same as if

there were Nu×K single-antenna users, while ∆up and ∆down are in general larger than the gaps

obtained with Nu×K single-antenna users.
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Proof sketch of Proposition 4.2.1. The proof is an extension of the proofs of Theorems 2.2.1

and 2.3.1. Let us focus on the uplink first. Similar to Lemma 2.2.1, fin(S1,S2,Γ1, . . . ,ΓK)

satisfies the monotonicity property for each fixed S2,Γ1, . . . ,ΓK. Therefore, similar to the line of

argument in Section 2.2.2, the per-user rate gap from the cutset bound can be upper-bounded as

∆
up ≤ max

S1⊆[K]
S1 6= /0

[
maxΓ1,...,ΓK minS2 fout(S1,S2,Γ1, . . . ,ΓK)

|S1|

− maxΓ1,...,ΓK minS2 fin(S1,S2,Γ1, . . . ,ΓK)

|S1|

]

≤ max
S1⊆[K]
S1 6= /0

max
Γ1,...,ΓK

max
S2

1
2|S1|

log

∣∣∣∑k∈S1 GSc
2 ,kΓkGT

Sc
2 ,k

+ I
∣∣∣∣∣∣∑k∈S1

GSc
2 ,k

ΓkGT
Sc

2 ,k

σ2+1 + I
∣∣∣ +

Nr|S2|
2

log
(

1+
1

σ2

)
(a)
≤ max

k∈[K]
l∈{0,...,l}

[
min{Nr(L− l),Nuk}

2k
log(1+σ

2)+
Nrl
2

log
(

1+
1

σ2

)]
,

where in (a), we set |S1|= k, |S2|= l, and upper-bound rank
(

∑k∈S1 GSc
2 ,kΓkGT

Sc
2 ,k

)
by

min{Nr(L− l),Nuk}. The maximization yields

∆
up ≤



Nu
2 log(1+σ2)+ NrL−Nu

2 log(1+ 1
σ2 ), σ2 ≥ 1,NrL≥ Nu,

NrL
2 log(1+σ2), σ2 ≥ 1,NrL < Nu,

NrL
2 log(1+ 1

σ2 ), σ2 ≤ 1.

Since this holds for every σ2 > 0, we set

σ
2 =

NrL
Nu
−1
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for L≥ 2Nu/Nr to obtain

∆
up ≤ Nu

2
log

NrL
Nu

+
NrL−Nu

2
log
(

1+
Nu

NrL−Nu

)
(a)
≤ Nu

2
log

eNrL
Nu

. (4.5)

Here, (a) follows since from elementary calculus, we know that for x > 0, log(1+ x)≤ x loge.

For L < 2Nu/Nr, we can choose σ2 = 1 to obtain

∆
up ≤ NrL

2

(a)
≤ Nu

2
log

eLNr

Nu
,

where (a) follows from the inequality x≤ log(ex) for x < 1/2. This, together with (4.5), estab-

lishes the per-user rate gap for the uplink MIMO C-RAN. For the sum-rate gap, we consider

∆
up
sum ≤ max

S1,S2,Γ1,...,ΓK
( fout(S1,S2,Γ1, . . . ,ΓK)− fin(S1,S2,Γ1, . . . ,ΓK))

≤ max
k∈[K]

l∈{0,...,L}

[min{Nr(L− l),Nuk}
2

log(1+σ
2)+

Nrl
2

log
(

1+
1

σ2

)]
. (4.6)

Maximization of (4.6) over l and k yields, for σ2 ≥ 1,

∆
up
sum ≤


NuK

2 log(1+σ2)+ NrL−NuK
2 log(1+ 1

σ2 ), NrL≥ NuK,

NrL
2 log(1+σ2), NrL < NuK.

For NrL ≤ 2NuK, we can then choose σ2 = 1 to obtain an upper bound ∆
up
sum ≤ NrL/2. For

NrL > 2NuK, we can choose σ2 = NrL/NuK−1≥ 1 to obtain

∆
up
sum ≤

NuK
2

log
(

NrL
NuK

)
+

NrL−NuK
2

log
(

1+
NuK

NrL−NuK

)
(4.7)

=
NrL

2
H(NuK/NrL).
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For the downlink MIMO C-RAN with channel gain matrix H ∈ RNuK×NrL, the per-user

rate gap from the cutset bound can be upper-bounded, similar to Section 2.3.2, as

∆
down ≤ max

S2([K]

[
1
|Sc

2|

(
max

Γ̃

min
S1

Fout(S1,S2, Γ̃)

− max
Γ1,...,ΓL

min
S1

min
T2⊆S2

Fin(S1,T2,Γ1, . . . ,ΓL)

)]

≤ max
S1,S2,T2⊆S2

max
Γ̃

min
Γ1,...,ΓL

Fout(S1,S2, Γ̃)−Fin(S1,T2,Γ1, . . . ,ΓL)

|Sc
2|

≤ max
S1,S2,T2⊆S2

max
Γ̃

min
Γ1,...,ΓL

1
2|Sc

2|

[
log

∣∣∣HSc
2 ,S1Γ̃S1HT

Sc
2 ,S1

+ I
∣∣∣∣∣∣∑l∈S1

HSc
2 ,l

ΓlHT
Sc

2 ,l

σ2 + I
∣∣∣

+Nu |T c
2 | log

(
1+

1
σ2

)]
. (4.8)

Writing Γ̃S1 =UΛUT where U is orthogonal and Λ is diagonal, letting

HSc
2 ,S1U =: [B1 B2 · · · B|S1|], where B1, . . . ,B|S1| are Nu|Sc

2|×Nr matrices satisfying

∑
|S1|
l=1 tr(BT

l Bl) =
∥∥∥HSc

2 ,S1

∥∥∥2

F
, and taking Γl = (P/Nr)I for each l, we have

log

∣∣∣HSc
2 ,S1Γ̃S1HT

Sc
2 ,S1

+ I
∣∣∣∣∣∣∑l∈S1

HSc
2 ,l

ΓlHT
Sc

2 ,l

σ2 + I
∣∣∣ = log

∣∣∣I +∑
|S1|
l=1 BlΛlBT

l

∣∣∣∣∣∣I + P
Nrσ2 ∑

|S1|
l=1 BlBT

l

∣∣∣
(a)
≤ log

∣∣∣I +P|S1|∑|S1|
l=1 BlBT

l

∣∣∣∣∣∣I + P
Nrσ2 ∑

|S1|
l=1 BlBT

l

∣∣∣
≤min{Nu |Sc

2 |,Nr |S1 |} log
(
σ

2Nr |S1 |
)
,

provided σ2 ≥ 1
Nr|S1| . Here, (a) follows since the trace of Γ̃S1 is upper bounded by P|S1|.
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Continuing from (4.8), we thus have

∆
down ≤ max

S1,S2,T2⊆S2

[
Nu|T c

2 | log
(

1+ 1
σ2

)
2|Sc

2|
+

min{Nu|Sc
2|,Nr|S1|}

2|Sc
2|

log
(
σ

2Nr |S1 |
)]

=
NuK

2
log
(

1+
1

σ2

)
+

min{Nu,NrL}
2

log(σ2NrL). (4.9)

This holds for every σ2 ≥ 1, so we set σ2 = K−1 for K ≥ 2 and NrL≥ Nu to obtain

∆
down ≤ Nu

2
logL+

Nu

2
(logNr +K logK− (K−1) log(K−1))

≤ Nu

2
log(eNrLK). (4.10)

For K = 1 and NrL≥ Nu, we can set σ2 = 1 in (4.9) to obtain

∆
down ≤ Nu

2
log(2NrL)≤

Nu

2
log(eNrL). (4.11)

For NrL < Nu and NuK ≥ 2NrL, set

σ
2 =

NuK
NrL
−1

to obtain

∆
down ≤ NuK

2
log(NuK)− NuK−NrL

2
log(NuK−NrL)≤

NrL
2

log(eNuK), (4.12)

and for NrL < Nu < 2NrL and K = 1, set σ2 = 1 to obtain

∆
down ≤ Nu

2
+

NrL
2

log(NrL)

≤ Nu

2
log(eNrL). (4.13)
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The results (4.10)–(4.13) establish the per-user gap results for the downlink MIMO C-RAN.

For the sum-rate gap, we similarly obtain

∆
down
sum ≤ max

S1,S2
max

Γ̃

min
Γ1,...,ΓL

(
Fout(S1,S2, Γ̃)−Fin(S1,S2,Γ1, . . . ,ΓL)

)
≤ max

S1,S2

[
min{Nu|Sc

2|,Nr|S1|}
2

log(σ2Nr |S1 |)+
Nu|Sc

2|
2

log
(

1+
1

σ2

)]
(4.14)

if σ2 ≥ 1/Nr|S1| for each S1 6= /0. Maximization of (4.14) over |S1| and |Sc
2| yields, for σ2 ≥ 1,

∆
down
sum ≤

min{NrL,NuK}
2

log(NrLσ
2)+

NuK
2

log
(

1+
1

σ2

)
. (4.15)

We can then choose σ2 = 1 in (4.15) to obtain

∆
down
sum ≤

min{NrL,NuK}
2

log(NrL)+
NuK

2
,

completing the proof.

4.3 Fronthaul Requirement and Capacity Scaling

In this section, we quantify the fronthaul requirements for the uplink and downlink

MIMO C-RAN sum-capacities to approximate the fronthaul-unlimited capacities. To this end,

we first note that similar to Sections 2.2.2 and 2.3.2, one can characterize the achievable sum-rates
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RNCF
sum (σ2,Γ1, . . . ,ΓK) and RDDF

sum (σ2,Γ1, . . . ,ΓL) as

RNCF
sum (σ2,Γ1, . . . ,ΓK)

= min
S2⊆[L]

(
1
2

log
∣∣∣ 1
σ2 +1 ∑

k∈[K]

GSc
2 ,kΓkGT

Sc
2 ,k

+ I
∣∣∣+ ∑

l∈S2

Cl−
Nr|S2|

2
log
(

1+
1

σ2

))

= max
yL

{
∑

l∈[L]
yl : yl ≤Cl−

Nr

2
log
(

1+
1

σ2

)
, l ∈ [L],

∑
l∈S2

yl ≤ log
∣∣∣ 1
σ2 +1 ∑

k∈[K]

GSc
2 ,kΓkGT

Sc
2 ,k

+ I
∣∣∣,S2 ⊆ [L]

}

and

RDDF
sum (σ2,Γ1, . . . ,ΓL)+

NuK
2

log
(

1+
1

σ2

)
= min

S1⊆[L]

(
1
2

log
∣∣∣ 1
σ2 ∑

l∈S1

H[K],lΓlHT
[K],l + I

∣∣∣+ ∑
l∈Sc

1

Cl

)

= max
yL

{
∑

l∈[L]
yl : yl ≤Cl, l ∈ [L], ∑

l∈S1

yl ≤
1
2

log
∣∣∣ 1
σ2 ∑

l∈S1

H[K],lΓlHT
[K],l + I

∣∣∣,S1 ⊆ [L]

}
,

leading to the following extension of Theorems 3.3.1 and 3.4.1.

Proposition 4.3.1. If

C∑ ≥
1
2

log

∣∣∣∣∣ 1
σ2 +1 ∑

k∈[K]

G[L],kΓkGT
[L],k + I

∣∣∣∣∣+ NrL
2

log
(

1+
1

σ2

)
=: C∗(σ2,Γ1, . . . ,ΓK)

for some σ2,Γ1, . . . ,ΓK, then there exist fronthaul link capacities C1,C2, . . . ,CL ≥ 0 with

∑l∈[L]Cl =C∑ at which network compress–forward can achieve a sum-rate

RNCF
sum (σ2,Γ1, . . . ,ΓK) =

1
2

log

∣∣∣∣∣ 1
σ2 +1 ∑

k∈[K]

G[L],kΓkGT
[L],k + I

∣∣∣∣∣ .
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If

C∑ ≥
1
2

log

∣∣∣∣∣ 1
σ2 ∑

l∈[L]
H[K],lΓlHT

[K],l + I

∣∣∣∣∣=: C∗(σ2,Γ1, . . . ,ΓL)

for some σ2,Γ1, . . . ,ΓL, then there exist C1,C2, . . . ,CL ≥ 0 with ∑l∈[L]Cl = C∑ at which dis-

tributed decode–forward can achieve a sum-rate

RDDF
sum (σ2,Γ1, . . . ,ΓL) =

1
2

log

∣∣∣∣∣ 1
σ2 ∑

l∈[L]
H[K],lΓlHT

[K],l + I

∣∣∣∣∣− NuK
2

log
(

1+
1

σ2

)
.

Remark 4.3.1. Following a similar line of reasoning as in [67, Section IV-B], one can write

the sum-capacity of the fronthaul-unlimited MIMO downlink with channel gain matrix H ∈

RNuK×NrL as the solution of the optimization problem

min
Q

max
Σ

1
2

log
|HT ΣH +Q|
|Q|

subject to Q non-negative diagonal,

Σ =



Σ1

Σ2

. . .

ΣK


,

submatrix Q([(l−1)Nr +1 : lNr], [(l−1)Nr +1 : lNr])

having equal diagonals for l = 1, . . . ,L,

tr(Q)≤ Nr/P,

tr(Σ)≤ 1.

Here, Σk � 0 is of size Nu×Nu for every k ∈ [K].

Remark 4.3.2. Generalizing Remarks 3.3.2 and 3.4.1, the best sum-rates achievable for a total
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fronthaul capacity C∑ > 0 can be expressed as

Rmax
sum(C∑) = sup

σ2>0
min

{
C∑−

NrL
2

log
(

1+
1

σ2

)
,

max
Γ1,...,ΓK

1
2

log

∣∣∣∣∣ 1
σ2 +1 ∑

k∈[K]

G[L],kΓkGT
[L],k + I

∣∣∣∣∣
}

for the uplink, and

Rmax
sum(C∑) = sup

σ2>0

(
min

{
C∑, max

Γ1,...,ΓL

1
2

log

∣∣∣∣∣ 1
σ2 ∑

l∈[l]
H[K],lΓlHT

[K],l + I

∣∣∣∣∣
}

− NuK
2

log
(

1+
1

σ2

))

for the downlink.

We have the following result on the large-network asymptotics of the MIMO C-RAN.

Proposition 4.3.2. Let the entries of the NrL×NuK channel gain matrix G be distributed as

i.i.d. N(0,1), and let σ2 = σ2(Nr,L,Nu,K) > 0. If NrL→ ∞ such that NrL/NuK→ ρ ∈ (1,∞]

and NrL/σ2→ ∞, and if Nu is kept fixed, then

R∞
sum ∼

NuK
2

log(NrL)

and for every choice of Γ1, . . . ,ΓK,

RNCF
sum =C∗− NrL

2
log
(

1+
1

σ2

)
∼ NuK

2
log(NrL/σ

2),

a.s. in G. Similarly, let the entries of the NuK×NrL channel gain matrix H be distributed as

i.i.d. N(0,1), and let σ2 = σ2(Nr,L,Nu,K)> 0. If L→ ∞ such that NrL/NuK→ ρ ∈ (1,∞] and
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L/(Nuσ2)→ ∞, and if Nr is kept fixed, then for every choice of Γ1, . . . ,ΓL,

RDDF
sum =C∗− NuK

2
log
(

1+
1

σ2

)
∼ NuK

2
log(L/σ

2)− NuK
2

log
(

1+
1

σ2

)
,

a.s. in H.

Remark 4.3.3. Comparing Proposition 4.3.2 with Theorems 3.3.2 and 3.4.2 shows that under

the rich scattering model, the large network asymptotics of the MIMO C-RAN is the same as if

there were NuK users and NrL relays. Thus, Tables 3.3 and 3.4 can be easily generalized to the

MIMO case through appropriate choices of σ2(Nr,L,Nu,K).

Remark 4.3.4. In Proposition 4.3.2, Nu and Nr are held fixed for uplink and downlink, respec-

tively, so that the scaling results remain invariant to the power allocation across the local antennas

at each user and at each relay, respectively.

Similar to Sections 3.3.2 and 3.4.2, Figs. 4.1 and 4.2 plot RNCF
sum , RDDF

sum , C∗, and R∞
sum

under a stochastic geometry model. Both Nr and Nu are kept fixed (Nr = Nu = 4) for these

simulations. For the downlink, as before, we plot an upper bound on R∞
sum, obtained by a grid

search over eligible values of Q in Remark 4.3.1. At each node (user or relay), the shadowing

effect is considered to be the same across all local antennas, while the small-scale fading is taken

as i.i.d.

To quantify the advantages of having multiple local antennas at each user and each relay

(i.e., the advantage of “using MIMO”), Figs. 4.3 and 4.4 plot the best sum-rates achievable for a

given C∑ as the number of local antennas grows, in accordance with Remark 4.3.2. For these

simulations, we take K users and L relays distributed uniformly over a 100m×100m area, where

K = 4 and L = 6. We consider the cases C∑ = 20, 40, 60, and 80 bits per transmission. We take

Nu = Nr in all these simulations, for simplicity. The gains from MIMO are more significant at

higher C∑ and under multipath models. Intuitively, a larger fronthaul provides a pipeline for the

flow of the extra information available through the use of a larger number of antennas in the
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Figure 4.1. MIMO uplink capacity scaling under stochastic geometry.

wireless hop of the network, while a smaller fronthaul is a bottleneck to achieving the full MIMO

gains. In addition, for multipath models, i.i.d. small-scale fading across different antennas at the

local nodes leads to MIMO gains at higher C∑, while for the simple LOS models, the channel

gains across different antennas at each node are almost identical and provide little diversity gain.
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Figure 4.2. MIMO downlink capacity scaling under stochastic geometry.
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Figure 4.3. MIMO uplink capacity scaling with antenna number under fixed sum-fronthaul.
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Figure 4.4. MIMO downlink capacity scaling with antenna number under fixed sum-fronthaul.
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Chapter 5

Towards Practical Codes: Lego-brick Ap-
proach

In this chapter, codes are developed for two-user multiple access and broadcast channels

starting from Gelfand–Pinsker codes with known block lengths, rates, and error performances.

Guarantees are provided on the block error rates of the MAC and BC codes in terms of the

parameters of the constituent Gelfand–Pinsker codes. These guarantees hold as long as the

constituent codes satisfy the assumed properties on rate, codeword weights, and performances,

irrespective of the basic structure and other properties.

5.1 Introduction

The channel coding problem has been studied extensively ever since Shannon, in his

seminal 1948 paper [49], modeled a point-to-point communication channel as a collection of

conditional probability distributions. The point-to-point channel coding theorem was established,

among others, by Shannon [49] and Gallager [20]. In a parallel direction of research, the practical

problem of coding for point-to-point channels has seen enormous advances in recent years, as

alluded to in Chapter 1.

This chapter attempts to answer the following question: what happens when a code,

whose performance is known in some setting through simulations or theoretical studies, is used

for a different problem? More specifically, given point-to-point channel codes with certain known
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parameters such as block length n, rate R, and block error probability ε, we attempt to come

up with coding schemes for multi-user channels whose performance can be directly obtained

as a simple function of parameters of the original code, without redoing extensive studies in

the new setting. In essence, we treat encoders and decoders of known codes as “black boxes”

(or “Lego-bricks”) satisfying some primitive properties and assemble them (potentially with

other simple “bricks” such as interleavers or dithers) to build a bigger “box” for a different, and

potentially more complicated, scenario, with performance guarantees. Such a theory enables one

to leverage commercial off-the-shelf codes (such as those studied in [4, 6, 19, 27, 45]) for single

user channels, or even hypothetical codes to be invented in future, to build codes for multi-user

communication.

What are the minimum primitive properties these “Lego-bricks” should satisfy while

being versatile in building various network communication codes? Given such “Lego-bricks”,

how do we assemble them in different network communication scenarios? How does the

performance guarantee translate between different communication settings? These questions

were studied between channel coding and Slepian–Wolf coding first by Wyner for binary

symmetric channels and doubly symmetric binary source [64] and later for general binary-input

channels and general Slepian–Wolf problems [60, 61]. In this chapter, we propose another

“Lego-brick”, which can build Gelfand–Pinsker codes for channels with state, channel codes for

(asymmetric) point-to-point channels, and Marton coding for broadcast channels, among others.

The focus of the chapter is on how the performance of one code in a certain communication

setting can be translated into the performance of another code in a different setting.

We start out with primitive Gelfand–Pinsker (GP) codes [21] for binary-input, binary-state

channels and construct codes for binary-input multiple access channels (MAC) and finite-alphabet

broadcast channels (BC). In addition to primitive GP codes, we use a random interleaver that

applies to a length-n sequence, a permutation chosen uniformly at random from the n! possible

permutations, as well as shared random bits between transmitters and receivers.

The rest of the chapter is organized as follows. Section 5.2.1 introduces the primitive GP
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encoding and decoding blocks we use throughout the paper and establishes the performance of

this code when a random interleaver is used on the output of the encoder and additional random

bits are shared between the encoder and the decoder. Section 5.2.2 shows how to construct

an ordinary point-to-point channel code from the primitive GP code. Section 5.3 develops a

coding scheme for the 2-user binary-input MAC using two channel codes (ultimately derived

from primitive GP codes). Section 5.4 develops a coding scheme for the 2-user BC using a

primitive GP code and a channel code. Throughout the chapter, we follow the notation in [17],

with the exception that for a natural number n, we use [n] to denote the set {1, . . . ,n}. In addition,

|xn| := |{i ∈ [n] : xi = 1}| denotes the Hamming weight of a binary sequence xn ∈ {0,1}n and

for two binary sequences xn,yn, we denote by xn⊕ yn := {zn : zi = xi⊕ yi, i ∈ [n]} the bitwise

XOR operation or equivalently, binary addition without carry.

5.2 Gelfand–Pinsker codes to channel codes

5.2.1 Gelfand–Pinsker coding

A Gelfand–Pinsker problem p(y |u,s)p(s) consists of finite alphabets U = S = {0,1}

and Y, a collection of conditional probability mass functions p(y,s |u) on Y ×S for u ∈ U

(referred to as the “channel” with input u and state s), and a probability mass function p(s) on S.

A (R,n,α,ε,δ ) code (g,ψ) depicted in Fig. 5.1 for the Gelfand–Pinsker problem

p(y |u,s)p(s) consists of

• an encoder g : [2nR]×Sn→ Un that maps each message m and each state sequence sn to a

codeword un = g(m,sn) such that |g(m,sn)⊕ sn|= nα for every m ∈ [2nR], sn ∈ Sn,

• a decoder ψ : Yn→ [2nR] that assigns a message estimate m̂ = ψ(yn) to each received

sequence yn.
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The average probability of error of the code with a perturbed input is defined as

P(n)
e (zn) := ∑

m
∑
sn

(
2−nR

n

∏
i=1

pS(si)P(M̂ 6= m |Un = g(m,sn)⊕ zn,Sn = sn)

)

for zn ∈ {0,1}n. The maximal average probability of error under sublinear perturbation is

max
zn∈{0,1}n:
|zn|≤n1/2+δ

P(n)
e (zn) = ε. (5.1)

The condition (5.1) states that the message is decoded correctly w.h.p. as long as the Hamming

weight of the perturbation zn is not larger than n1/2+δ . This condition is motivated by the

existence of practical codes with low decoding complexity and large block lengths n, such as

Reed–Muller codes [34, 44] and BCH codes [9], for which the minimum distance can be made

to grow as n1/2+δ or faster by choosing code parameters appropriately.

Remark 5.2.1. For the rest of this chapter, we assume that such a code satisfying (5.1) exists for

every channel p(y |u,s), every α ∈ (0,1), and every ε > 0, however small, for some large-enough

block length n and some δ ∈ (0,1/2).

m

sn

g
un
⊕

Zn

p(y |u,s) Y n
ψ M̂

Figure 5.1. Primitive GP code.

We now adapt the primitive Gelfand–Pinsker code to a form that is more useful in coding

for multi-user channels. Specifically, we add a random dither W n ∼ i.i.d. Bern(1/2) to the

codeword as well as to the observed state sequence, and apply a uniform interleaver Γn (i.e., a
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permutation of n objects chosen uniformly at random) to both of them. To compensate for the

interleaver, we apply the operation Γ−1
n to the channel output Y n and try to decode the message

M assuming W n is also available at the decoder. This arrangement is shown in Fig. 5.2. The

following result connects the probability of error of this scheme to that of a slightly different

Gelfand–Pinsker problem.

Lemma 5.2.1. Consider a Gelfand–Pinsker problem q(y,w |u,s)p(s), where the channel q is

obtained by adding a random dither W n ∼ i.i.d. Bern(1/2) to the input Un as well as the state

Sn of the channel p(y |u,s), and taking (Y n,W n) as the output, as shown in Fig. 5.2. Suppose

that we have a (R,n,α,ε,δ ) code (g,ψ) for the problem q(y,w |u,s)p(s). Then,

∑
m,sn

(
n

∏
i=1

pS(si)2−nR ·P
(

ψ(Γ−1
n (Y n),W n) 6= m

∣∣∣Un = Γn(g(m,sn)),Sn = Γn(sn)
))
≤ ε.

Lemma 5.2.1 illustrates that the arrangement in Fig. 5.2 can achieve the same rate

and probability of error as a usual primitive Gelfand–Pinsker code adapted to the channel

q(y,w |u,s)≡ p(w)pY |U,S(y |u⊕w,s⊕w).

m

sn

g

W n

W n

un ⊕

⊕

Γn

Γn

Ũn

S̃n

p(ỹ | ũ, s̃) Y n
Γ−1

n ψ

W n

M̂

Figure 5.2. GP code with interleavers and dithers.

5.2.2 Point-to-point channel coding

The Gelfand–Pinsker code described in Section 5.2.1 can be easily converted into a

point-to-point channel code, as described in this section. Similar to [61], we define a binary-input

discrete memoryless channel p(y |u) as consisting of an input alphabet U = {0,1}, a finite output
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alphabet Y, and a collection of conditional probability mass functions p(y |u) on Y for u ∈ U . A

(R,n,ε) code ( f ,φ) for the channel p(y |u) consists of

• an encoder f : [2nR]→ Un that maps each message m to a codeword un = f (m),

• a decoder φ : Yn → [2nR] that assigns a message estimate m̂ = φ(yn) to each received

sequence yn.

The average probability of error of this code is

∑
m

2−nR ·P(φ(Y n) 6= m |Un = f (m)) = ε.

Now, suppose we have a (R,n,α,ε,δ ) code (g,ψ) for the Gelfand–Pinsker problem

p(y |u,s)p(s), where p(y |u,s) ≡ p(y |u) (i.e., the channel output is independent of the state

given the channel input) and pS(0) = 1. Define f : [2nR]→ Un by f (m) = g(m,0), where 0 is

the all-zero sequence. Then, ( f ,ψ) forms a code for the channel p(y |u) with length n and rate

R, and has average probability of error

∑
m

2−nR ·P(ψ(Y n) 6= m |Un = f (m)) = ∑
m

2−nR ·P(ψ(Y n) 6= m |Un = g(m,0)).
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We write

P(ψ(Y n) 6= m |Un = g(m,0))

= P(ψ(Y n) 6= m |Un = g(m,0),Sn = 0)
n

∏
i=1

pS(0)

+ ∑
sn 6=0

P(ψ(Y n) 6= m |Un = g(m,0),Sn = sn)
n

∏
i=1

pS(si)

(a)
= P(ψ(Y n) 6= m |Un = g(m,0),Sn = 0)

(b)
= P(ψ(Y n) 6= m |Un = g(m,0),Sn = 0)

n

∏
i=1

pS(0)

+ ∑
sn 6=0

P(ψ(Y n) 6= m |Un = g(m,sn),Sn = sn)
n

∏
i=1

pS(si)

≤ ε,

where (a) and (b) follow since ∏
n
i=1 pS(si) = 0 for sn 6= 0, and the last step follows from

condition (5.1). Thus, we have obtained a (R,n,ε ′) channel code from a (R,n,α,ε,δ ) Gelfand–

Pinsker code, where ε ′ ≤ ε. Similar to Lemma 5.2.1, the following result adapts the Gelfand–

Pinsker code to a channel with dithered and permuted input.

Lemma 5.2.2. Consider a Gelfand–Pinsker problem q(y,w |u,s)p(s), where pS(0) = 1 and the

channel q(y,w |u,s)≡ q(y,w |u) is obtained by adding a random dither W n ∼ i.i.d. Bern(1/2) to

the input Un to the channel p(y |u) and taking (Y n,W n) as the output, as shown in Fig. Consider

a (R,n,α,ε,δ ) code (g,ψ) for the problem q(y,w |u,s)p(s). Then,

∑
m

(
2−nR ·P

(
ψ(Γ−1

n (Y n),W n) 6= m
∣∣∣Un = Γn(g(m,0))

))
≤ ε.

Remark 5.2.2. While this approach of coding for a point-to-point channel by using a Gelfand–

Pinsker code may seem redundant since a multitude of good codes already exist for several

different classes of channels, this enables us to code for multi-user channels by using only

Gelfand–Pinsker blocks, rather than adding separate channel coding blocks as and when we need
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⊕

⊕
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1

Y n
⊕

W n
2

ψ2 M̂2

Figure 5.3. Coding for MAC using primitive GP codes.

it. This aligns with the spirit of this work, which aims to eventually code for complex channels,

starting out with a minimal number of elementary blocks.

5.3 Coding for two-user MAC

In this section, we put together two channel codes, derived, as described in Section 5.2.2,

from Gelfand–Pinsker codes, to build a code for a binary-input discrete memoryless multiple-

access channel (DM-MAC) p(y |u1,u2), defined as consisting of input alphabets U1 = U2 =

{0,1}, a finite output alphabet Y, and a collection of conditional probability mass functions

p(y |u1,u2) on Y for (u1,u2) ∈ U1× U2. A (R1,R2,n,ε) code ( f1, f2,φ) for the channel

p(y |u1,u2) consists of

• encoders f j : [2nR j ]→ Un
j for j = 1,2, that map each message m1 ∈ [2nR1] to a codeword

un
1 = f1(m1) and each message m2 ∈ [2nR2] to a codeword un

2 = f2(m2),

• a decoder φ : Yn → [2nR1 ]× [2nR2] that assigns message estimates (m̂1, m̂2) = φ(yn) to

each received sequence yn.

The average probability of error of this code is

2−n(R1+R2) · ∑
m1,m2

(
P
(

φ(Y n) 6= (m1,m2)
∣∣∣(Un

1 ,U
n
2 ) = ( f1(m1), f2(m2))

))
= ε.
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Now, let us add independent dithering sequences W n
1 ,W

n
2 ∼ i.i.d. Bern(1/2) to the codewords

Un
1 and Un

2 and make W n
1 ,W

n
2 available at the decoder. We will construct a code for this modified

MAC

q(y,w1,w2 |u1,u2) := p(w1)p(w2)pY |U1,U2(y |u1⊕w1,u2⊕w2)

using codes for the point-to-point channels

q(y,w1 |u1) = ∑
u2∈U2

q(y,w1 |u1,u2)p(u2)

= ∑
u2∈U2
w2∈W2

(
p(w1)p(w2)p(u2)× pY |U1,U2(y |u1⊕w1,u2⊕w2)

)

and

q(y,u1⊕w1,w2 |u2) = p(w2)p(u1⊕w1)pY |U1,U2(y |u1⊕w1,u2⊕w2).

Suppose that we have a (R1,n,α,ε1,δ ) code (g1,ψ1) for the Gelfand–Pinsker problem

q(y,w1 |u1,s1)p(s1)≡ q(y,w1 |u1)p(s1),

where pS1(0) = 1. Similarly, let us consider a (R2,n,α,ε2,δ ) code (g2,ψ2) for the Gelfand–

Pinsker problem

q(y,u1⊕w1,w2 |u2,s2)p(s2)≡ q(y,u1⊕w1,w2 |u2)p(s2),

where pS2(0) = 1. The following result demonstrates that combining these two codes in the

manner shown in Fig. 5.3 yields a (R1,R2,n,ε ′) code for the MAC p̃(y,w1,w2 |u1,u2), where

ε ′ ≤ ε1 + ε2.

Proposition 5.3.1. Define f1(m1) := g1(m1,0), f2(m2) := g2(m2,0), and

φ(yn,wn
1,w

n
2) := (ψ1(yn,wn

1),ψ2(yn,g1(ψ1((yn,wn
1)))⊕wn

1,w
n
2)),
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i.e., the decoding function φ yields message estimates m̂1 =ψ1(yn,wn
1) and m̂2 =ψ2(yn, f1(m̂1)⊕

wn
1,w

n
2). Then, the average probability of error is bounded as

ε
′ := P((M̂1,M̂2) 6= (M1,M2))

= 2−n(R1+R2) ∑
m1,m2

P
(

φ(Y n,W n
1 ,W

n
2 ) 6= (m1,m2)

∣∣∣Un
1 = f1(m1),Un

2 = f2(m2)
)

≤ ε1 + ε2.

Proof sketch. One can show that addition of the dithering sequences ensures that the channel

Un
1 → (Y n,W n

1 ) obtained by averaging over M2 ∼ Unif([2nR2]) and W n
2 is discrete memoryless

and charaterized by the conditional probability distribution

n

∏
i=1

pW1(w1i)pY |U1(yi |u1i⊕w1i). (5.2)

This implies that the probability of incorrectly decoding the first message is bounded as

P(ψ1(Y n,W n
1 ) 6= M1)≤ ε1 (5.3)

by our assumption on the (R1,n,α,ε1,δ ) Gelfand–Pinsker code. Similarly, the channel Un
2 →

(Y n,Un
1 ⊕W n

1 ,W
n
2 ) is discrete memoryless and therefore, if the first message is decoded correctly,

the probability of incorrectly decoding the second message is bounded as

P(ψ2(Y n,Un
1 ⊕W n

1 ,W
n
2 ) 6= M2)≤ ε2. (5.4)

We can now combine (5.3) and (5.4) to bound the average probability of error ε ′ = P̃((M̂1,M̂2) 6=
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Figure 5.4. Coding for BC using primitive GP codes.

(M1,M2)). We write

P
(
{M̂1 6= M1}∪{M̂2 6= M2}

)
= P

(
{M̂1 6= M1}∪{M̂1 = M1,M̂2 6= M2}

)
≤ P(M̂1 6= M1)+P(M̂1 = M1,M̂2 6= M2)

= P(ψ1(Y n,W n
1 ) 6= M1)+P(ψ1(Y n,W n

1 ) = M1,ψ2(Y n, f1(M1)⊕W n
1 ,W

n
2 ) 6= M2)

≤ P(ψ1(Y n,W n
1 ) 6= M1)+P(ψ2(Y n,Un

1 ⊕W n
1 ,W

n
2 ) 6= M2)

≤ ε1 + ε2.

Remark 5.3.1. The coding scheme used here corresponds to the well-known successive can-

cellation decoding [17, Chapter 4.5.1], where the message of user 1 is decoded first and the

corresponding message estimate is used to decode the message of user 2. One can also implement

the decoding order 2→ 1 to achieve a different rate pair for the same MAC.

5.4 Coding for two-user BC

In this section, we put together a Gelfand–Pinsker code and another channel code derived

from a Gelfand–Pinsker code, to build a code for a discrete memoryless broadcast channel

(DM-BC) p(y1,y2 |x), defined as consisting of a finite input alphabet X , finite output alphabets

Y1, Y2, and a collection of conditional probability mass functions p(y1,y2 |x) on Y1×Y2 for
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x ∈ X . A (R1,R2,n,ε) code ( f ,ξ1,ξ2) for the channel p(y1,y2 |x) consists of

• an encoder f : [2nR1]× [2nR2 ]→X that maps each message pair (m1,m2) to a codeword

xn = f (m1,m2),

• decoders ξ j : Yn
j → [2nR j ] for j = 1,2, that assign message estimates m̂1 = ξ1(yn

1) and

m̂2 = ξ2(yn
2) to received sequences yn

1 and yn
2, respectively.

The average probability of error of this code is

2−n(R1+R2) ∑
m1,m2

P
(
{ξ1(Y n

1 ) 6= m1}∪{ξ2(Y n
2 ) 6= m2})

∣∣∣Xn = f (m1,m2)
)
= ε.

Now, let us implement the Marton coding scheme for the broadcast channel using primitive

GP codes. Take U1 = U2 = {0,1} and fix a mapping h : U1× U2→X . We will use un
1 ∈ Un

1

and un
2 ∈ Un

2 to carry the messages m1 and m2, respectively. We will use a (R2,n,ε2) channel

code ( f2,φ2) for carrying the message m2 and a (R1,n,α,ε1,δ ) Gelfand–Pinsker code (g1,ψ1)

for carrying the message m1, using the codeword carrying m2 as the state sequence known to

the encoder, as in Marton coding [17, Chapter 8.3]. Analogous to Remark 5.3.1, we could also

have flipped the encoding order and used a Gelfand–Pinsker code for m2 and a channel code

for m1. In this section, we will finally add a perturbative noise Zn to the codeword un
1 and make

use of condition (5.1). Zn is generated as follows. Let I0 ⊆ [n] and I1 ⊆ [n] be the indices of

the positions where 0 and 1, respectively, occur in un
1⊕ un

2, i.e., I0 = {i ∈ [n] : u1i⊕ u2i = 0}

and I1 = {i ∈ [n] : u1i⊕ u2i = 1}. Denote the (sorted) indices in I0 by j1, j2, . . . , jn(1−α), and

the sorted indices in I1 by l1, . . . , lnα . Let Q be a Binom(n,α) random variable. If Q = k

for nα < k ≤ n, we choose Zn to have 1s at the positions j1, . . . , jk−nα , and 0s everywhere

else. If Q = k for 0 ≤ k < nα, we choose Zn to have 1s at the positions l1, . . . , lnα−k, and 0s

everywhere else. Finally, if Q = nα, we take Zn = 0. It can be shown that with this choice

of Zn, |Zn⊕un(m, s̃n)⊕ s̃n| is distributed as Binom(n,α). The perturbative noise Zn is crucial

to introducing correlation among the codewords carrying the two messages. We will also add
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the same dithering sequence W n ∼ i.i.d. Bern(1/2) to each of (un
1⊕Zn) and un

2 and make W n

available to both decoders as common randomness. We will then apply a random permutation

Γn(·) on the sequences (un
1⊕Zn⊕W n) and un

2⊕W n, similar to Lemma 5.2.1, and finally, generate

the transmitted codeword Xn as

Xi = h(Γn(u1i⊕Zi⊕Wi),Γn(u2i⊕Wi)), i ∈ [n].

The arrangement is put together as shown in Fig. 5.4. We note here that the Gelfand–Pinsker

code used is for the effective channel q1(y1,w |u1,u2), obtained by adding a random dither

W ∼ Bern(1/2) to the input U1 and state U2 of the channel p(y1 |u1,u2) defined using the

BC p(y1,y2 |x) and the map x = h(u1,u2). Similarly, the channel code used is for the channel

q2(y2,w |u2) obtained by adding W to the input U2 of the channel p(y2 |u2).

Lemma 5.4.1. For the arrangement shown in Fig. 5.4,

(Γn(g1(m1, f2(m2))⊕Zn⊕W n),Γn( f2(m2)⊕W n))∼ i.i.d.DSBS(α)

for every (m1,m2) ∈ [2nR1 ]× [2nR2].

The following result demonstrates that combining the Gelfand–Pinsker code and the point-

to-point channel code as shown in Fig. 5.4 yields a (R1,R2,n,ε ′) code for the BC p(y1,y2,w |x),

where ε ′ ≤ ε1 + ε2 +2e−2n2δ

.

Proposition 5.4.1. For the coding scheme depicted in Fig. 5.4, the average probability of error
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is bounded as

ε
′ := P((M̂1,M̂2) 6= (M1,M2))

= 2−n(R1+R2) ∑
m1,m2

P
(
{ψ1(Γ

−1
n (Y n

1 ),W
n) 6= m1}∪{φ2(Γ

−1
n (Y n

2 ),W
n) 6= m2}

∣∣∣
Un

1 = g1(m1, f2(m2)),Un
2 = f2(m2)

)
≤ ε1 + ε2 +2e−2n2δ

.

Proof sketch. We first note that similar to Section 5.3, the channel Un
2 → (Y n

2 ,W
n) obtained by

averaging over M1 ∼ Unif([2nR1]) and Zn, as well as the channel Un
1 → (Y n

1 ,W
n) obtained by

averaging over Zn, is discrete memoryless. Therefore, we have

P(ψ1(Γ
−1
n (Y n

1 ),W
n) 6= M1)

= ∑
|zn|≤n1/2+δ

p(zn)P
(

ψ1(Γ
−1
n (Y n

1 ),W
n) 6= M1

∣∣∣Zn = zn
)

+ ∑
|zn|>n1/2+δ

p(zn)P
(

ψ1(Γ
−1
n (Y n

1 ),W
n) 6= M1

∣∣∣Zn = zn
)

(a)
≤ ε1P

(
|Zn | ≤ n1/2+δ

)
+P

(
|Zn | > n1/2+δ

)
≤ ε1 +P(|Q−nα | > n ·n−1/2+δ )

(b)
≤ ε1 +2e−2n·(n−1/2+δ )2

= ε1 +2e−2n2δ

,

where in (a), we use the error probability bound (5.1) for the (R1,n,α,ε1,δ ) Gelfand–Pinsker

code and in (b), we use the Hoeffding bound [22] P(|Q− nα| > nβ ) ≤ 2exp(−2nβ 2) for

Q∼Binom(n,α). Similarly, by the memorylessness of Un
2 → (Y n

2 ,W
n) and the assumed property

of the (R2,n,ε2) channel code, we conclude that P(φ2(Γ
−1
n (Y n

2 ),W
n) 6= M2)≤ ε2. The result is

then established by the union bound.
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5.5 Discussions

In this chapter, we have looked at how the performance of a code in a point-to-point setting

translates to other scenarios, and how multiple point-to-point codes with certain performance

guarantees can be combined to code for multi-user problems. The main focus and guiding

principle of this chapter has been the abstraction of complex coding problems into a small

number of basic blocks which can be easily realized and in fact, already exist in coding theory and

communication theory literature. Combining these practical blocks according to our prescriptions

would enable one to code for more complex networks with finite-blocklength performance

guarantees.

The next step in this line of work is to generalize these results to multi-hop scenarios

including C-RANs. The C-RAN model studied in Chapters 2–4 is one of the simplest 2-hop

network models, where the main additional step is compressing the received signals (for uplink)

and conveying the precoded signals to the relays (for downlink). One way to handle this is

by mapping a K-user L-relay C-RAN problem into a (K +L)-user single-hop (MAC or BC)

problem. We are currently exploring this line of research.
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Chapter 6

Concluding Remarks

We conclude this dissertation with comments for future research directions.

In Chapter 2, we developed coding schemes as well as outer bounds for C-RANs and

thereby approximated the capacities of uplink and downlink C-RANs. Chapter 3 looks at C-RAN

capacities from a slightly different direction and examines the large-network asymptotics under

sum-fronthaul constraints, comparing the scaling laws with those of the infinite-fronthaul case.

While these results are interesting in that they address the fundamental limits of information

flow in C-RANs, a more relevant question for practicing engineers is how these limits can be

approached in a real-world communication scenario. To this end, Chapter 5 studies approaches

to combine point-to-point channel codes with other basic blocks and develop finite-blocklength,

low complexity codes for multiuser networks. This is an ongoing process; I wish to take this

forward and come up with tractable codes for C-RANs as well as more complex networks, with

performance guarantees approaching those predicted by information theory.
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