
UCLA
UCLA Electronic Theses and Dissertations

Title
Catalytic Terpene Polycyclization Reactions and Structural Determination of Small Molecules
by MicroED

Permalink
https://escholarship.org/uc/item/07583915

Author
Burch, Jessica Elizabeth

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/07583915
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Catalytic Terpene Polycyclization Reactions and Structural

Determination of Small Molecules by MicroED

A dissertation submitted in partial satisfaction of the

Requirements for the degree Doctor of Philosophy

in Chemistry

by

Jessica Elizabeth Burch

2021

© Copyright by

Jessica Elizabeth Burch

2021

 ii

ABSTRACT OF THE DISSERTATION

Catalytic Terpene Polycyclization Reactions and Structural

Determination of Small Molecules by MicroED

by

Jessica Elizabeth Burch

Doctor of Philosophy in Chemistry

University of California, Los Angeles, 2021

Professor Hosea Martin Nelson, Co-Chair

Professor Yi Tang, Co-Chair

 iii

 This dissertation describes the development of Lewis acid-based methodology to

access polycyclized sesquiterpenes and diterpenes through simple catalytic methods. This

challenging biomimetic reaction is difficult to replicate in synthesis and remains

understudied. In addition, this dissertation explores the application and development of an

electron diffraction technique for the elucidation of small molecules in an efficient manner.

Overall, this work seeks to push the boundaries of synthesis and analysis of complex

structures through development of synthetic and analytical methods described herein.

 Chapter One is a brief overview of the current state of research on biomimetic

terpene cyclization reactions and history of transmission electron microscopy techniques

leading up to the development of microcrystal electron diffraction. This chapter serves as

a prelude to the remaining chapters and will be referenced throughout this dissertation.

 Chapter Two describes our efforts in the development of a lithium-weakly

coordinating anion-mediated polycyclization reaction to generate polycyclic terpenes from

acyclic fluorides precursors. The analysis of complex mixtures and early efforts to

characterize these species utilizing microcrystal electron diffraction is discussed.

 Chapter Three discusses our investigations into development and application of

microcrystal electron diffraction to solve small molecule structural problems in chemistry.

The analysis of pharmaceuticals and natural products is described, and the application of

an automated data processing procedure is explored.

 Chapter Four highlights an ongoing effort in our research group to create automated

tools to make microcrystal electron diffraction a more practical and efficient tool for the

 iv

elucidation of small molecule structures. The development of Python automation scripts

for data collection and processing is discussed.

 v

The dissertation of Jessica Elizabeth Burch is approved.

Neil Kamal Garg

Patrick G. Harran

Yi Tang, Committee Co-Chair

Hosea Martin Nelson, Committee Co-Chair

University of California, Los Angeles

2021

 vi

This dissertation is dedicated to my mom, who taught me

to love learning from a young age.

 vii

TABLE OF CONTENTS

ABSTRACT OF THE DISSERATION……………………………………..……………ii

COMMITTEE PAGE…………………………………………….……….………………v

DEDICATION PAGE……………………………………………………………………vi

TABLE OF CONTENTS……………………………………………….…………….…vii

LIST OF FIGURES…………………………………………………………..…………xiii

LIST OF TABLES………………………………………………………………...…….xix

LIST OF ABBREVIATIONS…………………….……………………………...………xx

ACKNOWLEDGEMENTS………………………………………………………..…..xxiii

BIOGRAPHICAL SKETCH…………………………………………………...………xxv

CHAPTER ONE: Terpene Tail-to-Head Polycyclization Reactions and Microcrystal

Electron Diffraction of Small Molecules………………..………………………………...1

1.1 Abstract………………………………………………………………………..1

1.2 Introduction……………………………………………………………………1

1.3 Cationic Polycyclization Reactions of Terpene Natural Products….…….…...2

1.4 Microcrystal Electron Diffraction……..………………………………………7

1.5 Conclusion…………………………………………………………………...13

1.6 Notes and References…………………………………………………….......15

CHAPTER TWO: Terpene Tail-to-Head Polycyclization Mediated by Lithium–Weakly

Coordinating Anion Catalysis………………………………………………………....…22

 viii

 2.1 Abstract…………………………………………………………....................22

 2.2 Introduction ………………………………………………………….............23

 2.3 Sesquiterpenes……………………..………………………………………...25

 2.4 Diterpenes…………………………………….……………………………...29

 2.5 Microcrystal Electron Diffraction of Terpene Natural Products………….....31

 2.6 Conclusion …………………………………………………………..............33

 2.7 Notes and References………………………………………………………..35

2.8 Experimental Section…..…………………………………………………….40

2.7.1 Materials and Methods……………………..………………..……..40

2.7.2 Preparation of Allylic and Tertiary Fluoride Substrates……….…..42

2.7.3 Sesquiterpene R3Si+/WCA Tail-to-Head Cyclization Reactions......46

2.7.3.1 Procedure for for R3Si+/WCA Tail-to-Head Cyclizations.46

2.7.3.2 GC-FID and Crude 1H NMR Spectra……………………49

2.7.3.3 Reaction Monitoring……………………………………..50

2.7.4 Sesquiterpene Li+/WCA Sesquiterpene Tail-to-Head Cyclizations..51

2.7.4.1 General Procedure for Li+/WCA Sesquiterpene TH

Cyclization………………………………………………………51

2.7.4.2 Cyclization of 2.5 in Li+/WCA Sesquiterpene TH

Cyclization………………………………………………..….…52

 ix

2.7.4.3 Cyclization of 2.16 in Li+/WCA Sesquiterpene TH

Cyclization……………………………...…………………….….54

2.7.4.4 Cyclization of 2.21 in Li+/WCA Sesquiterpene TH

Cyclization………………………………………………………56

2.7.4.5 GC-FID and Crude 1H NMR Spectra…………………...58

2.7.5 Procedure for Diterpene Tail-to-Head Cyclizations………………61

2.7.5.1 Cyclization of 2.10 in Li+/WCA Diterpene TH

Cyclization…………….…………………………………………62

2.7.5.2 GC-FID and Crude 1H NMR Spectra……………………63

 2.7.6 1H, 13C, 19F NMR Spectral Data…………………………………...64

 2.7.7 Evaluation of Diterpenes by MicroED…….………………………79

 2.7.7.1 MicroED procedure……………………………….……..79

2.7.8 Supplementary Notes and References…………………….……….81

CHAPTER THREE Small Molecule Structural Determination Utilizing Microcrystal

Electron Diffraction …………………………………………………………………….83

 3.1 Abstract………………………………………………………….……….….83

 3.2 Introduction……………………………………………………….…….…..83

3.3 MicroED of Pharmaceutical Compounds…………………………………...85

3.4 Pharmaceutical Atropisomerism……………………………………………97

 x

3.5 MicroED of Natural Products…………….………………………………..100

3.6 Conclusion………………………………………………………………….103

3.7 Notes……………………………………………………………………….104

3.8 Experimental Section…………………………………………………….…110

 3.8.1 Material and Methods…………………………………………….110

 3.8.2 Room Temperature TEM Screening Procedure………………….112

 3.8.3 Room Temperature Screening Crystal Structures………………..115

 3.8.4 Cryogenic TEM Screening Procedure……………………………128

 3.8.5 Crystal Structures of Cryogenically Cooled Samples…………….129

 3.8.6 Additional Screening and Recrystallization of Samples…………144

 3.8.7 Crystal Structures of Additional Samples………………………..145

3.8.8 Transmission Electron Microscope Images of Pharmaceutical

Crystals…………………………………………………………………157

3.8.9 Comparison of MicroED Data to X-ray Structures………………165

3.8.10 Automated Data Processing Procedure……………………….…166

3.8.11 Automated Data Processing Python Code………………….…...167

 3.8.12 Data Collection of Atropisomeric 3.17……………………..…...177

 3.8.13 Crystal Structure of Atropisomer 3.17……………………….....178

 3.8.14 Data Collection of Natural Product Compound…………………180

 xi

3.8.15 Crystal Structure of Natural Product Compound……………….181

3.8.16 Supplementary Notes and References………………………….184

CHAPTER FOUR: Optimization of Microcrystal Electron Diffraction Data Collection

and Processing Routines through Scripted Automation……………………………..…185

 4.1 Abstract……………………………………………………………………..185

 4.2 Introduction..………………………………………………………………..185

 4.3 Automation of Data Processing…………………………………………….186

 4.4 Automation of Data Collection………………………….………………….193

 4.5 Conclusion………………………………………………………………….197

 4.6 Notes and References……………………………………………………....199

 4.7 Experimental Section………………………………………………………202

 4.7.1 Automated MicroED Diffraction Processing Programs…………202

4.7.1.1 Automated MicroED Diffraction Processing Program

Procedure……………………………………………………….202

4.7.1.2 xds_for_me_0302.py …………………………………..203

4.7.1.3 autosetup_0302_new.py………………………………..210

4.7.1.4 merging_all4.py………………………………………...212

4.7.1.5 Lightning_Struc.py……………………………………..215

4.7.1.6 shelxt_library.py………………………………………..237

 xii

 4.7.2 Automated MicroED Data Collection Programs…………………260

 4.7.2.1 Automated Data Collection Procedure…………………260

 4.7.2.2 Lowest_Dose.py………………………………………..260

 4.7.2.3 IncDif_v1.py……………………………………………263

 4.7.2.4 CrystalEyes_v3.py……………………………………...279

 xiii

LIST OF FIGURES

CHAPTER ONE

Figure 1.1 Polycyclization of squalene 1.1 through transition state 1.2 to

 produce hopene 1.3…………………………………………….……..2

 Figure 1.2 Small molecule-mediated HT cyclization reactions…………………..3

 Figure 1.3 Biosynthetic tail-to-head polycyclization cascade of geranylgeranyl

phosphate 1.8 leading to generation of 1.11 through highly acidic

cationic intermediates 1.9 and 1.10…………………………………..2

Figure 1.4 Biosynthetic tail-to-head polycyclization cascade of geranylgeranyl

pyrophosphate 1.12 leading to generation of taxadiene 1.16, the

biosynthetic precursor to taxol 1.17, through cationic intermediates

1.13–1.15…………………………………………………………..…...4

 Figure 1.5 Lewis acid-mediated polycyclization of sesquiterpenoids. ………......5

 Figure 1.6 Supramolecular catalyst-promoted polycyclization of

 sesquiterpenoids …………..……………...6

Figure 1.7 Difference in crystal size and purity for standard X-ray

 crystallography and microcrystal electron diffraction………………...8

Figure 1.8 MicroED worfklow………………………………………………….10

Figure 1.9 Number of electron diffraction structures deposited to CSD per

 year…………………………………………………………………..11

 Figure 1.10 Crystallographic data challenges unique to microED……………..13

 xiv

CHAPTER TWO

Figure 2.1 Summary of biomimetic terpene polycyclizations………………….24

Figure 2.2 Small molecule-catalyzed polycyclization of 2.5……………………26

 Figure 2.3 Investigation of δ-selinene formation………………………………..28

 Figure 2.4 Diterpene polycyclizations………………………..…………………30

 Figure 2.5 Preliminary microED structure of a tetrahedral salt impurity obtained

 from diterpene crude reaction mixture……………………………….32

 Figure 2.6 MicroED TEM diffraction images collected from particles obtained

 through crystallization of α-gersemiene-containing fraction………..33

 Figure 2.7 Crude GC-FID trace of compound 2.5 cyclization…………………..49

 Figure 2.8 Crude 1H NMR (300 MHz, CDCl3) of compound 2.5 cyclization…..49

 Figure 2.9 Crude 1H NMR (300 MHz, CDCl3) of compound 2.5 cyclization

 quenched after 5 minutes of reaction time…………..……………….50

 Figure 2.10 Crude GC-FID trace of compound 2.5 cyclization..……………..…58

 Figure 2.11 Crude 1H NMR (300 MHz, CDCl3) of compound 2.5 cyclization…58

 Figure 2.12 Crude GC-FID trace of compound 2.16 cyclization………………..59

 Figure 2.13 Crude 1H NMR (300 MHz, CDCl3) of compound 2.16 cyclization..59

 Figure 2.14 Crude GC-FID trace of compound 2.21 cyclization……………….60

 Figure 2.15 Crude 1H NMR (300 MHz, CDCl3) of compound 2.21 cyclization..60

 Figure 2.16 Crude GC-FID trace of compound 2.10 cyclization………………..63

 Figure 2.17 Crude 1H NMR (300 MHz, CDCl3) of compound 2.10 cyclization..63

 Figure 2.18 1H NMR (500 MHz, CDCl3) of compound 2.5…………………….64

Figure 2.19 1H NMR (300 MHz, CDCl3) of compound 2.16…………………...65

 Figure 2.20 1H NMR (300 MHz, CDCl3) of compound 2.29…………………...65

 Figure 2.21 1H NMR (300 MHz, CDCl3) of compound 2.30…………………...66

 Figure 2.22 1H NMR (300 MHz, CDCl3) of compound 2.31……………….…..66

 Figure 2.23 1H NMR (300 MHz, CDCl3) of compound 2.32……….…………..67

 Figure 2.24 1H NMR (400 MHz, CDCl3) of compound 2.21……….…………..67

 xv

 Figure 2.25 13C NMR (126 MHz, CDCl3) of compound 2.21……………..……68

 Figure 2.26 19F NMR (282 MHz, CDCl3) of compound 2.21…………………..68

 Figure 2.27 1H NMR (300 MHz, CDCl3) of compound 2.10…………………...69

Figure 2.28 13C NMR (101 MHz, CDCl3) of compound 2.10…………………..69

 Figure 2.29 19F NMR (376 MHz, CDCl3) of compound 2.10……………….….70

 Figure 2.30 1H NMR (400 MHz, CDCl3) of compound 2.6…………………….70

 Figure 2.31 1H NMR (400 MHz, CDCl3) of compound 2.7…………………….71

 Figure 2.32 1H NMR (400 MHz, CDCl3) of compound 2.7/2.8………………...71

 Figure 2.33 13C NMR (126 MHz, CDCl3) of compounds 2.7/2.8………………72

Figure 2.34 1H NMR (500 MHz, CDCl3) of compound 2.9…………...……..…72

 Figure 2.35 1H NMR (500 MHz, CDCl3) of compound 2.4…………………….73

 Figure 2.36 1H NMR (500 MHz, CDCl3) of compound 2.22……………...……73

 Figure 2.37 13C NMR (126 MHz, CDCl3) of compound 2.22…………………..74

 Figure 2.38 COSY NMR (500 MHz, CDCl3) of compound 2.22………….……74

 Figure 2.39 HSQC NMR (500 MHz, CDCl3) of compound 2.22……………….75

 Figure 2.40 HMBC NMR (500 MHz, CDCl3) of compound 2.22…………..…75

 Figure 2.41 1H NMR (500 MHz, CDCl3) of compound 2.11…………………..76

 Figure 2.42 13C NMR (126 MHz, CDCl3) of compound 2.11………………….76

 Figure 2.43 COSY NMR (500 MHz, CDCl3) of compound 2.11………………77

 Figure 2.44 HMBC NMR (500 MHz, CDCl3) of compound 2.11…………...…77

 Figure 2.45 HSQC NMR (500 MHz, CDCl3) of compound 2.11………………78

CHAPTER THREE

Figure 3.1 Molecular complexity score ranking the pipeline of Amgen’s small

 molecule pharmaceutical programs…………………………………84

 Figure 3.2 Representative MicroED data collection workflow…………………86

 Figure 3.3 Structures in which a preliminary microED solution was obtained in

 under one hour each…………………………………………………88

 Figure 3.4 Diffraction resolution loss…………………………………………...90

 xvi

 Figure 3.5 Small molecule structures solved by microED at cryogenic

 temperatures in under three hours each…………..….…..……....…..91

 Figure 3.6 Preliminary solutions of 3.5 from cryogenic collection (left) and room

 temperature collection (right)……………………………………….92

 Figure 3.7 Refined structures of 3.5 from cryogenic collection (left) and room

 temperature collection (right)……………………………………….93

 Figure 3.8 Structures obtained via microED with extensive screening and

 recrystallization………………………………………………….….95

 Figure 3.9 Samples that failed to generate structures…………………………..96

 Figure 3.10 Schematic of atropisomerism………………………………………97

 Figure 3.11 Atropisomers of GS-6207……….…………………………………98

 Figure 3.12 Ab initio microED solution of GS-6207 sodium salt (left),

 confirming atropisomer identity as 3.17 (right)……………………99

 Figure 3.13 Unusual purine nucleoside and gluconucleosides from C. elegans and

 other nematodes…………………………………………………..100

 Figure 3.14 Upregulation of 3.18 and 3.19 in long-lived mutant C. elegans

compared to 3.20 and their proposed structures from MS2

studies……………………………………………………………..101

 Figure 3.15 Synthesis of a mixture of glycosylated uric acid-derivatives en route

 to uglas#1…………………………………………………………102

Figure 3.16 Preliminary solution (left) and refined structure (right) of gluric#1

 3.23……………………………………………………………….102

 Figure 3.17 Proposed and revised structure of 3.19…………………………..103

 Figure 3.18 Representative data collection workflow………………………...113

 Figure 3.19 MicroED crystal structure of 3.1…………………………………115

 Figure 3.20 MicroED crystal structure of 3.2…………………………………118

Figure 3.21 MicroED crystal structure of 3.3…………………………………120

Figure 3.22 MicroED crystal structure of 3.4…………………………………122

 xvii

Figure 3.23 MicroED crystal structure of 3.5…………………………………124

Figure 3.24 MicroED crystal structure of 3.6…………………………………126

Figure 3.25 MicroED crystal structure of 3.5a..………………………………129

Figure 3.26 MicroED crystal structure of 3.7…………………………………132

Figure 3.27 MicroED crystal structure of 3.8…………………………………135

Figure 3.28 MicroED crystal structure of 3.9…………………………………138

Figure 3.29 MicroED crystal structure of 3.10…...……………………………141

Figure 3.30 MicroED crystal structure of 3.11….….….………………………145

Figure 3.31 MicroED crystal structure of 3.12….….….………………………147

Figure 3.32 MicroED crystal structure of 3.13….….….………………………149

Figure 3.33 MicroED crystal structure of 3.14….….….………………………151

Figure 3.34 MicroED crystal structure of 3.15….….….………………………154

Figure 3.35 TEM image of 3.1 crystal at 2600x magnification………….…….157

Figure 3.36 TEM image of 3.2 crystal at 2600x magnification………….…….157

Figure 3.37 TEM image of 3.3 crystal at 2600x magnification………….…….158

Figure 3.38 TEM image of 3.4 crystal at 2600x magnification………….…….158

Figure 3.39 TEM image of 3.5 crystal at 2600x magnification………….…….159

Figure 3.40 TEM image of 3.6 crystal at 2600x magnification………….…….159

Figure 3.41 TEM image of 3.7 crystal at 2600x magnification………….…….160

Figure 3.42 TEM image of 3.8 crystal at 2600x magnification………….…….160

Figure 3.43 TEM image of 3.9 crystal at 2600x magnification………….…….161

Figure 3.44 TEM image of 3.10 crystal at 2600x magnification………...…….161

Figure 3.45 TEM image of 3.11 crystal at 2600x magnification………...…….162

Figure 3.46 TEM image of 3.12 crystal at 2600x magnification………...…….162

Figure 3.47 TEM image of 3.13 crystal at 2600x magnification………...…….163

Figure 3.48 TEM image of 3.14 crystal at 2600x magnification………...…….163

Figure 3.49 TEM image of 3.15 crystal at 2600x magnification………...…….164

Figure 3.50 MicroED and X-ray crystallography data overlay

 xviii

 of 3.7………………………………………………….………..….165

 Figure 3.51 TEM image of 3.17 crystal at 2600x magnification………………177

Figure 3.52 MicroED crystal structure of 3.17….….….………………………178

Figure 3.53 MicroED crystal structure of 3.23….….….………………………178

CHAPTER FOUR

 Figure 4.1 Overview of feedback loop proposed for fully automated microED

 structural solutions…………………………………………………187

Figure 4.2 Manual measurement of beam center for a microED diffraction image

 in adxv……………………………………………………….……..188

Figure 4.3 TEM image of microED diffraction pattern with a region selected and

magnified diffraction spot displaying pixel values in adxv to

determine indexing values…………………………………………190

Figure 4.4 Example of input a, execution b, and output c from Python program

 for automatically processing single datasets………………………..191

 Figure 4.5 Images taken from diffraction movies that failed indexing through

 development of our automated diffraction program………………..192

 Figure 4.6 GUI developed to automate batch indexing and processing of

 microED datasets…………………………………………………..193

Figure 4.7 GUI a developed to automate collection of incident diffraction set-up

 b, recording of diffraction image c, and returning to imaging mode

 utilizing low dose d…………………………………………..……195

 Figure 4.8 Automation workflow for collection and analysis of particles at low

 magnification, realignment at increased magnification, and recording

 and ranking of diffraction patterns from particles………………..196

Figure 4.9 Evaluation of image recognition scripts to manual collection based on

 percentage of particles that provide diffraction…………………...197

 xix

LIST OF TABLES

CHAPTER THREE

 Table 3.1 Source of thirty pharmaceutical compounds analyzed in this

 study.………………………….….….……………………..…..……111

 Table 3.2 RMS of structure overlay comparing one molecule of AGX918A to

 remaining five molecules in AGX918A, AGX918B, and 3.7….…..165

CHAPTER FOUR

 Table 4.1 Optimization of image recognition scripts based on percentage of

 diffracting particles…………………………………………………286

 xx

LIST OF ABBREVIATIONS

 = alpha

 = beta

br = broad

°C = degrees Celsius

cryoEM = cryo-electron microscopy

cryoET = cryo-electron tomography

 = delta

d = doublet

dd = doublet of double

dr = diastereomeric ratio

 = chemical shift

DCM = dichloromethane

 EM = electron microscopy

 ESI = electrospray ionization

 Et = ethyl

equiv = equivalent

 F20 = tetrakis(pentafluorophenyl)borate

 = gamma

 g = gram(s)

 h = hour(s)

 HMDS = hexamethyldisilazane

 HPLC = high performance liquid chromatography

 HRMS = high resolution mass spectroscopy

 HT = head-to-tail

 Hz = Hertz

 IR = infrared spectroscopy

 i-Pr = isopropyl

 xxi

 J = coupling constant

 K = kelvin

 L = liter

 Li = lithium

 LDA = lithium diisopropylamide

 m = multiplet

 m = meta

 M = molar

 m/z = mass to charge ratio

 = micro

 Me = methyl

 MeCN = acetonitrile

 MHz = megahertz

 microED = microcrystal electron diffraction

 min = minutes

 mol = mole(s)

 MOM = methoxymethyl ether

 mp = melting point

 NMR = nuclear magnetic resonance

 o = ortho

 ppm = parts per million

 Pr = propyl

 q = quartet

 rt = room temperature

 s = singlet

 t = triplet

 TEM = transmission electron microscope

 temp = temperature

 xxii

 TES = triethylsilyl

 Tf = trifluoromethanesulfonyl

 TFA = trifluoroacetic acid

 TH = tail-to-head

 TLC = thin layer chromatography

 UV = ultraviolet

 xxiii

ACKNOWLEDGEMENTS

 I’d first like to thank my advisor, Prof. Hosea M. Nelson. Hosea’s excitement for

tackling challenging, interdisciplinary problems had a huge impact on how I view and

perform science. The biggest lesson I learned from my time in the Nelson lab is to be

unafraid of trying difficult experiments or projects, or of learning skillsets outside your

discipline. Also known as “bet on yourself”!

 I would like to thank my committee members, Prof. Yi Tang, Prof. Patrick

Harran, and Prof. Neil Garg, for their support and advice throughout my graduate studies.

Additionally, I would like to thank my undergraduate advisors, Prof. George Negrete and

Prof. Oleg Larionov, as well as Dr. Gail Taylor, for encouraging and preparing me for

graduate school.

 I would like to thank Dr. Alex Bagdasarian, Dr. Brian Shao, Dr. Sydnee Green,

and Dr. Stasik Popov for being great mentors and answering all my annoying questions

when I joined the lab! For the electron microscopy project, I first have to thank Lee Joon

Kim and Duilio Cascio, for their incredible patience and willingness to share their

knowledge. I’d like to thank Prof. Jose A. Rodriguez for sharing his expertise and

excitement for solving interesting structures. I’d also like to thank Dr. Matt Asay for his

help getting started on the project, and Chris Jones for establishing this exciting project in

our lab. I’d also like to thank our collaborators, including the Schroeder lab, Dr. Kyle

Quasdorf, and Dr. Bing Shi, for sending us exciting compounds to study by microED. To

Ben, Chloe, Sepand, Woojin, and Steven, thank you for being awesome labmates and

friends over the past few years. I also couldn’t have made it through grad school without

my friends and wonderful scientists, Dr. Melissa Hardy and Ishika Saha.

 xxiv

Lastly, I’d like to thank my family for their support and words of wisdom. Even

though I can tell they instantly regret asking “what is your research on?”, they still let me

talk for way too long about plant metabolites and tiny crystals.

 xxv

BIOGRAPHICAL SKETCH

Education:

 University of California, Los Angeles, CA

 • Ph.D. Candidate in Organic Chemistry

 • Advanced to Candidacy, September 2019

 • Current GPA: 3.71/4.00

 University of Texas at San Antonio, San Antonio, TX

 • Bachelor of Science in Chemistry, December 2015

 • Undergraduate Researcher February 2015 – December 2016

Professional and Academic Experience:

Graduate Research Assistant: University of California, Los Angeles, CA

 • July 2017 – present; Advisor: Prof. Hosea M. Nelson

 • Advanced small molecule-catalyzed cationic polycyclization reactions

 • Utilized microcrystal electron diffraction (microED) to elucidate natural

 product and pharmaceutical small molecule structures

 • Developed Python automation regime to facilitate automated collection

 and data processing in small molecule microED

• Propelled projects forward by performing reaction and substrate design

Undergraduate Research Assistant: UTSA, San Antonio, TX

• May 2013 – December 2015; Advisors: Prof. Oleg Larionov and Prof.

 George Negrete

 • Synthesized substrates for studies in borylation methodology

 • Performed mechanistic studies on heterocycle dimerization

 • Synthesized perylene dye derivatives for application in biophysical

 studies

 Graduate Teaching Assistant: University of California, Los Angeles, CA

 • Undergraduate organic chemistry labs (Fall 2017 – Spring 2018): Taught

 students organic reactions, mechanisms and laboratory techniques.

 xxvi

Honors and Awards:

• National Science Foundation Graduate Research Fellowship (2016 – 2021)

• NIH RISE Undergraduate Trainee (2014 – 2015)

• Highest Honors Program, UTSA Honors College (2015)

Publications:

1. Burch, J. E.; Wurz, R.; Smith, A.; Caille, S.; Walker, S. D.; Cee, V.; Rodriguez, J. A.;

Gostovic, D.; Quasdorf, K.; Nelson, H. M. Putting MicroED to the test: an unabridged

account of the evaluation of 30 diverse pharma compounds. In Preparation.

2. Curtis, B. J.; Kim, L. J.; Wrobel, C. J. J.; Eagan, J. M.; Smith, R. A.; Burch, J. E.; Le,

H. H.; Artyukhin, A. B.; Nelson, H. M.; Schroeder, F. C. Identification of uric acid

gluconucleosideascaroside conjugates in Caenorhabditis elegans by combining synthesis

and MicroED. Org. Lett. 2020, 22, 6724–6728.

3. Burch, J. E.; Bagdasarian, A. L.; Hooshmand, T.; Nelson, H. M. Terpene tail-to-head

polycyclization mediated by small molecule catalysts: a weakly coordinating anion

approach. ChemRxiv Pre-print 2020, doi.org/10.26434/chemrxiv.12719780.v2.

4. Mfuh, A. M.; Nguyen, V. T.; Chhetri, B.; Burch, J. E.; Doyle, J. D.; Nesterov, V. N.;

Arman, H. D.; Larionov, O. V. Additive- and metal-free, predictably 1,2- and 1,3-

regioselective, photoinduced dual C-H/C-X borylation of haloarenes. J. Am. Chem. Soc.

2016, 138, 8408–8411.

5. Stephens, D. E.; Lakey-Beitia, J.; Burch, J. E.; Arman, H. D.; Larionov, O. V.

Mechanistic insights into the potassium tert-butoxide-mediated synthesis of N-

heterobiaryls. ChemComm 2016, 52, 9945–9948.

6. Farooqi, M. J.; Penick, M. A.; Burch, J. E.; Negrete, G. R.; Brancaleon, L.

Characterization of novel perylene diimides containing aromatic amino acid side chains

Spectrochimica Acta Part B. 2015, 153, 124–131.

1

CHAPTER ONE

Terpene Tail-to-Head Polycyclization Reactions and Microcrystal Electron Diffraction of

Small Molecules

1.1 Abstract

Many discoveries in science have been achieved through study of biochemical

mechanisms and the incredible structural diversity of naturally occurring compounds. This

chapter provides a summary of synthetic efforts towards the generation of terpene natural

products through biomimetic polycyclization reactions, as well as the developments of an

emerging electron microscopy technique, microcrystal electron diffraction (microED), for

elucidation of small molecule structures.

1.2 Introduction

Advancements in fields that study small molecules, including drug discovery,

biochemistry, and more, are dependent upon the strategies chemists have to build molecules and

the analytical tools available to characterize them. Historically, many synthetic advancements

have been realized through development of biomimetic strategies to access naturally occurring

compounds. Terpene natural products have been of particular interest to the synthetic community

given their structural diversity and complexity, as well as their biological activity. The complex

biochemical transformation of acyclic terpene precursors to polycyclic natural products has been

described as one of the most complex reactions in nature, presenting a significant synthetic and

analytical challenge.

2

1.3 Cationic Polycyclization Reactions of Terpene Natural Products

 For nearly 70 years, the study of terpene biosynthesis has inspired scientists across a wide

array of disciplines. From enzymology and biophysics to computational and synthetic chemistry,

many of the fundamental principles driving modern chemical science are rooted in studies of these

remarkable enzymatic processes.1–6 Early investigation of stereoselectivity in cation–π

cyclizations by Stork and Eschenmoser led to the paradigm-shifting hypothesis that cyclase

enzymes use stereoselective, extended cation–π cyclizations to create terpene-like backbones, as

is exemplified in the conversion of squalene (1.1, Figure 1.1) to hopene (1.3) through polydecalin

transition state 1.2.3,7 This groundbreaking hypothesis ultimately inspired the development of

small-molecule

Figure 1.1 Polycyclization of squalene 1.1 through transition state 1.2 to produce hopene 1.3

systems capable of producing polydecalin and steroid-like compounds with high levels of

stereocontrol (1.4 – 1.7, Figure 1.2). Indeed, since the 1960s, Johnson, Corey, Ishihara, Yamamoto,

Overman, and others have demonstrated that employment of a biomimetic head-to-tail (HT)

3

Figure 1.2 Small molecule-mediated HT cyclization reactions.

cation–π cyclization strategy in total synthesis provides a powerful platform to access polydecalin

natural products.8–12

These classic studies highlight the value of using terpene biosynthesis as a sharpening stone

for chemical synthesis and enzymology. However this symbiotic relationship is largely confined

to HT processes that mimic type-II terpene cyclases to produce polydecalin frameworks from

linear isoprenoids. Conversely, polycyclization reaction starting from linear isoprenoids that

mimic Mg2+-dependent type-I terpene cyclases (Figure 1.3) remain understudied in synthetic

Figure 1.3 Biosynthetic tail-to-head polycyclization cascade of geranylgeranyl pyrophosphate 1.8 leading

to generation of 1.11 through highly acidic cationic intermediates 1.9 and 1.10.

4

organic chemistry; this is despite forging a larger and more structurally-diverse subset of

polycyclic terpenes, including medicinally privileged natural products such as taxol (1.12 – 1.17,

Figure 1.4).7 These processes, originally coined tail-to-head (TH) cyclization by Shenvi and

Pronin, proceed enzymatically via Mg2+-mediated ionization of a phosphate head group (1.8,

Figure 1.3 and 1.12, Figure 1.4), followed by attack of an isoprenyl tail (1.9, Figure 1.3 and 1.13,

Figure 1.4) to ultimately form macrocyclic, medium, or small rings (1.11, Figure 1.3 and 1.16,

Figure 1.4).13–15

Figure 1.4 Biosynthetic tail-to-head polycyclization cascade of geranylgeranyl pyrophosphate 1.12 leading to

generation of taxadiene 1.16, the biosynthetic precursor to taxol 1.17, through cationic intermediates 1.13 – 1.15.

One reason for the lack of successful synthetic adaptation of TH polycyclization is that the

savagely acidic and electrophilic carbocation intermediates in these processes (1.10, Figure 1.3)

are prone to rapid E1 elimination or SN1 reactions in bulk solvent, often precluding productive

polycyclization in a synthetic setting. This stands in stark contrast to the well-studied HT processes

where the bond-forming events occur through low-energy polydecalin transition states (1.2, Figure

1.1), allowing for rapid polycyclization that often outcompetes deleterious E1 or SN1 pathways.

Many early efforts to synthesize sesquiterpenes through biomimetic TH polycyclization

have been reported, often resulting in low-yielding complex mixtures largely comprised of

5

monocyclic bisabolenes.16–19 An exception is a report from Hirose and coworkers, where treatment

of farnesol (1.18, Figure 1.5) with BF3-etherate produced a complex mixture containing numerous

interesting polycyclic products with undetermined yields (1.20).17 Shenvi and coworkers

replicated this result and demonstrated that this acid-mediated process yielded 12% combined

yield ofα-cedrene and epi-α-cedrene (1.19) along with a complex mixture of volatile organic

Figure 1.5 Lewis acid-mediated polycyclization of sesquiterpenoids. Bonds in red indicate sites at which multiple

diastereomers were produced.

compounds and non-volatile polymers.13 Shenvi and coworkers further demonstrated that

treatment of farnesene oxide species 1.21 with stoichiometric Lewis acid yields a mixture of

sesquiterpenoids (1.23 – 1.25) through a putative zwitterionic intermediate (1.22).13 This mixture

6

includes both bi- and tricyclic species (1.24 vs. 1.23 and 1.25), a mixture of two oxidation states

(1.23 vs. 1.24 and 1.25), and a mixture of diastereomers. Recently, the first example of non-

enzymatic, catalytic TH cyclization was reported by Tiefenbacher and coworkers, who employed

a supramolecular cluster to engage farnesyl acetate (1.26, Figure 1.6) affording an array of

polycyclic sesquiterpene products (1.19, 1.20, 1.28, 1.29). The product selectivity observed in this

seminal example of catalytic TH cyclization, in particular the formation of δ-selinene (1.20), was

attributed to encapsulation by the supramolecular assembly.14–16

Figure 1.6 Supramolecular catalyst-promoted polycyclization of sesquiterpenoids. Bonds in red indicate sites at

which multiple diastereomers were produced.

While the ability for a single biochemical feedstock to generate a vast number of complex

secondary metabolites is advantageous in biology, in most synthetic adaptations, the generation

of unselective mixtures of structurally complex terpene hydrocarbons presents a significant

analytical challenge. Frequently, these reports identify reaction products from crude mixtures

through comparison to natural product standards, due to purification challenges.15,16–19 This can

be an effective strategy for identification of known, commercially available terpene products, but

the unambiguous identification of novel or uncommon terpene natural products requires isolation

7

of purified material. Development of methods capable of unambiguous structural analysis from

mixtures of complex, unknown natural products would alleviate many of the analytical

challenges associated with the synthetic adaptation of complex biomimetic processes.

1.4 Microcrystal Electron Diffraction

 One possible solution to overcoming the analytical challenges presented in TH cyclization

characterization is microcrystal electron diffraction, an emerging electron crystallography method.

Recent reports have demonstrated the ability for this crystallographic technique to generate

structural solutions from mixtures of pharmaceuticals and natural products. While chemists have

been routinely utilizing X-ray crystallography for decades, the so called “nanocrystallography

revolution” of electron diffraction began roughly one decade ago.20 This is a bit surprising, given

that the first electron spectrometer was built in the 1930’s, only 20 years after the first X-ray

spectrometer.21 The disparity between routine use of these methods for structural solutions is

partially attributable to differences in how X-rays and electrons interact with matter. Electrons

interact very strongly with material relative to X-rays, and a single electron can be scattered

multiple times as it passes through a crystal.22 These dynamical scattering events were long

believed to be too frequent and challenging for practical use of electron diffraction in three-

dimensional structural elucidation.23

While multiple scattering events are rare in X-ray crystallography, the weak scattering of

X-ray radiation by matter means that large (>50 micrometers per dimension, Figure 1.7) crystals

are required to produce suitable data for crystallographic analysis from in-house X-ray sources.24

Generation of these large crystals suitable for single crystal X-ray analysis is considered by many

to be an “art” and is often the bottleneck when it comes to structural analysis by X-ray

crystallography.

8

Figure 1.7 Difference in crystal size and purity for standard X-ray crystallography and microcrystal electron

diffraction.

Although complex scattering events present a challenge, the strong interaction of electrons

with matter has an incredibly useful outcome: crystals under a micron in size can produce

diffraction patterns. These microcrystals, one-billionth the size of those needed for X-ray

crystallography, can be present in mixtures, may be present in samples isolated directly after

purification by rotary evaporation, or from crystallization screens that failed to produce X-ray

quality species.25,26 Additionally, as little as 200 nanograms of material has been reported to

produce crystals suitable for an electron diffraction solution.27 This not only allows chemists to

obtain crystal structures of compounds that may not be able to be analyzed unambiguously by any

other method, but also presents an exciting opportunity in which development of this technique

could lead to crystallography becoming a standard step in a synthetic chemists’ structural analysis

workflow.

1.5 Early three-dimensional structural reconstruction

 Early three-dimensional structure elucidation by electron diffraction required manual data

collection by expert microscopists, who painstakingly aligned crystals to within 0.10 of a

crystalline axis of interest. Manual alignment and collection of these zone axis allowed for

X-ray crystallography

125,000 μm3

Slowly grown from high

purity material

microED

<1 μm3

Can be present in seemingly

amorphous powders and mixtures

9

structural resolution of a few materials, including small molecule organic species, but this

incredibly time-consuming process was impractical for routine structural analyses.28,29 It wasn’t

until 2007, after the development of automated tomography processes from Kolb, Zou, and others,

along with hardware and software improvements in modern TEMs, that electron crystallography

became an increasingly promising technique for obtaining structural solutions.30–32 Since these

advancements, numerous methods for collecting and processing electron diffraction data have

been reported in the literature. Broadly, most techniques can be categorized as convergent beam

electron diffraction (CBED) or selected area electron diffraction (SAED or SAD); within those

categories, collection techniques such as continuous rotation electron diffraction (cRED),

precession electron diffraction tomography (PEDT), and microcrystal electron diffraction

(microED) have been reported for three-dimensional structural analysis.33 There are numerous

books highlighting the differences in collection strategies and processing of the resultant data;

however, this thesis will focus on use of microED, a SAED technique.34,35

The Gonen laboratory was the first to develop these electron crystallographic strategies for

solution of protein structures, coining the name “microED” in 2013.36 Data preparation involved

deposition and vitrification of solvated protein microcrystals on a TEM grid. Once a suitable

microcrystal was identified using TEM imaging and isolated from the background using a selected

area aperture, a diffraction dataset could be collected by continuously rotating the crystal under

the electron beam (Figure 1.8). Initial work studied microcrystals of a known protein species and

10

Figure 1.8 MicroED workflow: a) suspension of crystals is deposited and vitrified onto TEM grid, b) diffraction

data of rotating crystal is obtained, c) molecular replacement is used to phase low resolution data to obtain protein

structure.

produced low resolution (2.9 Å) data that could be solved using standard molecular replacement

techniques, in which a similar structural model is used to phase the diffraction data and obtain a

structural solution. Later work by the Gonen laboratory demonstrated the ability of microED to

obtain high resolution crystal structures of small proteins utilizing ab initio methods.37

Importantly, these ab initio solutions could be obtained using common small molecule X-ray

crystallographic software, XDS and the SHELX suite, making it feasible for crystallographers to

easily process electron diffraction datasets.38–44

In 2018, our laboratory in collaboration with the Gonen lab, as well as Gruene et al.,

published back-to-back papers demonstrating the broad use of microED on small molecule

compounds.25,33 In both reports, commercial small molecule substances could be analyzed as-is,

without any special crystallization attempts and minimal sample preparation. In contrast to

1 μm

a) b) c)

11

microED of proteins, these small molecule microcrystals did not require solvation or vitrification,

and could simply be loaded onto a TEM grid as a dry powder before placing into liquid nitrogen

for cryogenic analysis. Additionally, a mixture of microcrystalline powders could be sampled and

structures of each individual component could be obtained. The refined structures from these

reports were overlayed with previously obtained X-ray structures, demonstrating good agreement

between these two methods, and hydrogen atoms could be resolved from density maps in many

cases.

 Since this initial report, our laboratory and others have solved structures of novel natural

products, organometallic complexes, MOFs, pharmaceuticals, and more, establishing the broad

applicability of microED to a wide range of small molecule species.26,45–51 Unique examples

include compounds that failed to produce X-ray quality crystals despite years of study, revision of

mischaracterized natural products, and elucidation of minor impurities from a mixture of

compounds.26,27,51 The number of small molecule structures solved by electron diffraction is

increasing (Figure 1.9), but the majority of these structures are still coming from a handful of

Figure 1.9 Number of electron diffraction structures deposited to CSD per year.

0

5

10

15

20

25

2013 2014 2015 2016 2017 2018 2019 2020

Small Molecule Electron Diffraction Structures

12

specialists in the field.52 The lack of microED structures relevant to small molecule and drug

discovery chemists until very recently piqued our interest, and we sought to solve complex

chemical problems through application of this technique, as well as make the technique more

accessible through development of automation regimes.

1.6 Efforts towards automation of microED

Automation of transmission electron microscope data collection and processing has been

of significant research interest to the electron microscopy community for some time. In 2017, the

Nobel Prize in Chemistry was awarded to Jacques Dubochet, Joachim Frank, and Richard

Henderson for their work developing the cryo-electron microscopy (cryoEM) imaging technique.53

The development of automation for cryoEM and cryo-electron tomography (cryoET) has been

critical to the popularization of these techniques in biology, in which hundreds of thousands of

images of biomolecules are merged together to produce high resolution images capable of

resolving their structure.54,55

Automation of crystallographic workflows, on the other hand, have traditionally been

focused on high-throughput sample preparation.56 This is because the bottleneck of single crystal

X-ray crystallography lies in the ability to grow large single crystals, typically not in data collection

and processing. MicroED has a crystallographic data challenge more akin to that of cryoEM, where

thousands of microcrystals can produce diffraction datasets from a single grid (Figure 1.10), and

these patterns can be combined to generate a structural solution. This can be a repetitive, time-

consuming process, amenable to automation.

13

Figure 1.10 Crystallographic data challenges unique to microED.

An initial approach by the Gonen lab involved use of the open source TEM software

SerialEM, which was developed for automation of electron tomography.57,58 Users can input

manually identified particle grid coordinates and utilize the electron tomography software to

collect rotation data in diffraction mode.

Xiaodong Zou’s group has developed data collection programs called Instamatic and

InsteaDMatic.59,60 These programs perform image recognition to find isolated particles and

perform fully automated serialEM or microED data acquisition routines. Additionally, the

programs can process the resulting datasets and perform hierarchical clustering to find datasets

that may be suitable for combining to provide a solution.61 The limitations of these programs are

discussed in detail in Chapter 4, which explores alternative automation strategies to rapidly collect

and process microED datasets.

1.5 Conclusion

Similar to NMR, once a niche technique only utilized by expert operators, electron

crystallography has largely remained limited to specialists until recently. Just as NMR

spectroscopy was brought to the forefront of small molecule research through improvements in

theory, hardware, and automated software, we believe that similar improvements can result in

routine use of microED for structural analysis of small molecules. These analytical advancements

Particle

Identification

Diffraction

Screening
Combinatorial

Data Merging

Repeat 10x-1000x

Structural

Solution

Test all combinations

14

increase the rate of discovery in synthetic chemistry, including those outlined in the biomimetic

polycyclization reactions of terpene natural products.

15

1.6 Notes and References

(1) Ruzicka, L.; Eschenmoser, A; Heusser, H. The isoprene rule and the biogenesis of terpenic

compounds. Experientia 1953, 9, 357–367.

(2) Stork, G.; Burgstahler, A. W. The stereochemistry of polyene cyclization. J. Am. Chem. Soc.

1955, 77, 5068–5077.

(3) Eschenmoser, A.; Ruzicka, L.; Jeger, O; Arigoni, D. A stereochemical interpretation of the

biogenetic isoprene rule for the triterpenes. Helv. Chim. Acta 1955, 38, 1890–1904.

(4) Maimone, T. J.; Baran, P. S. Modern synthetic efforts toward biologically active terpenes. Nat.

Chem. Biol. 2007, 3, 396–407.

(5) Alleman, R. K. Chemical wizardry? The generation of diversity in terpenoids biosynthesis.

Pure Appl. Chem. 2008, 80, 1791–1798.

(6) Tantillo, D. J. Biosynthesis via carbocations: theoretical studies on terpene biosynthesis. Nat.

Prod. Rep. 2011, 28, 1035–1053.

(8) (a) Johnson, W. S.; Semmelhack, M. F.; Sultanbawa, M. U. S.; Dolak, L. A. A new approach

to steroid total synthesis. A nonenzymatic biogenetic-like olefinic cyclization involving the

stereospecific formation of five asymmetric centers. J. Am. Chem. Soc. 1968, 90, 2994–2996. (b)

Johnson, W. S; Brinkmeyer, R. S.; Kapoor, V. M.; Yarnell, T. M. Asymmetric total synthesis of

11--hydroxyprogesterone via a biomimetic polyene cyclization. J. Am. Chem. Soc. 1977, 99,

8341 –8343.

(9) (a) Corey, E. J.; Shouzhong, L. A short enantioselective total synthesis of Dammarenediol II.

J. Am Chem. Soc. 1996, 118, 8765–8766. (b) Surendra, K.; Corey, E. J. Highly enantioselective

proton-initiated polycyclization of polyenes. J. Am. Chem. Soc. 2012, 134, 11992–11994.

16

(10) Corey, E. J.; Luo, G.; Lin, L. S. A simple enantioselective synthesis of the biologically active

tetracyclic marine sesterterpene Scalarenedial. J. Am. Chem. Soc. 1997, 119, 9927–9928.

(11) Ishihara, K.; Nakamura, S.; Yamamoto, H. The first enantioselective biomimetic cyclization

of polyprenoids. J. Am. Chem. Soc. 1999, 121, 4906–4907.

(12) Bogenstatter, M.; Limberg, A.; Overman, L. E.; Tomasi, A. L. Enantioselective total synthesis

of the kinesin motor protein inhibitor Adociasulfate 1. J. Am. Chem. Soc. 1999, 121, 12206–12207.

(13) Pronin, S. V.; Shenvi, R. A. Synthesis of highly strained terpenes by non-stop tail-to-head

polycyclization. Nat. Chem. 2012, 4, 915–920.

(14) Zhang, Q.; Tiefenbacher, K. Terpene cyclization catalyzed inside a self-assembled cavity.

Nat. Chem. 2015, 7, 197–202.

(15) (a) Zhang, Q.; Rinkel, J.; Goldfuss, B.; Dickschat, J. S.; Tiefenbacher, K. Sesquiterpene

cyclizations catalysed in-side the resorcinarene capsule and application in the short synthesis of

isolongifolene and isolongifolenone. Nat. Cat. 2018, 1, 609–615.

(b) Zhang Q.; Tiefenbacher, K. Sesquiterpene cyclizations inside the hexameric resorcinarene

capsule: total synthesis of -selinene and mechanistic studies Angew. Chem. Int. Ed. 2019, 131,

12818–12825.

(16) Gutsche, C. D.; Maycock, J. R; Chang, C. T. Acid-catalyzed cyclization of farnesol and

nerolidol. Tetrahedron 1968, 24, 859–876.

(17) Ohta, Y.; Hirose, Y. Electrophile induced cyclization of farnesol. Chem. Lett. 1972, 1, 263–

266.

(18) Polovinka, M. P. et al. Cyclization and rearrangements of farnesol and nerolidol stereoisomers

in superacids. J. Org. Chem. 1994, 59, 1509–1517.

17

(19) Susumu, K.; Mikio, T.; Teruaki, M. Biogenetic-like cyclization of farnesol and nerolidol to

bisabolene by the use of 2-fuorobenzothiazolium salt. Chem. Lett. 1977, 6, 1169–1172.

(20) Gemmi, M.; Mugnaioli, E.; Gorelik, T. E.; Kolb, U.; Palatinus, L.; Boullay, P.; Hovmoller,

S.; Abrahams, J. P. 3D electron diffraction: the nanocrystallography revolution ACS Cent. Sci.

2019, 5, 1315–1329.

(21) Knoll, M.; Ruska, E. The electron microscope. Z. Phys. 1932, 78, 318–339.

(22) Spence, J. On the accurate measurement of structure-factor amplitudes and phases by electron

diffraction. Acta Crystallogr. Sec. A 1993, 49, 231–260.

(23) Cowley, J. Electron Diffraction Techniques, Vol. 1. IUCr, Oxford University Press, 1992.

(24) Dunitz, J. D. X-ray Analysis and the Structure of Organic Molecules. Verlag Helvetica

Chimica Acta: Zürich, 1995.

(25) Jones, C. G.; Martynowycz, M. W.; Hattne, J.; Fulton, T. J.; Stoltz, B. M.; Rodriguez, J. A.;

Nelson, H. M.; Gonen, T. The CryoEM Method MicroED as a Powerful Tool for Small Molecule

Structure Determination. ACS Cent. Sci. 2018, 4, 1587–1592.

(26) Jones, C. G.; Asay, M.; Kim, L. J.; Kleinsasser, J. F.; Saha, A.; Fulton, T. J.; Berkley, K. R.;

Cascio, D.; Malyutin, A. G.; Conley, M. P.; Stoltz, B. M.; Lavallo, V.; Rodríguez, J. A.; Nelson,

H. M. Characterization of Reactive Organometallic Species via MicroED. ACS Centr. Sci. 2019,

5, 1507–1513.

(27) Kim, L. J.; Xue, M.; Li, X.; Xu, Z.; Paulson, E.; Mercado, B. Q.; Nelson, H. M.; Herzon, S.

Structural Revision of the Lomaiviticins J. Am. Chem. Soc. 2021, 143, 6578–6585.

(28) Kolb, U.; Matveeva, G. N. Electron crystallography on polymorphic organics. Z. Kristallogr.

2003, 218, 259–268.

18

(29) Zou, X. D.; Mo, Z. M.; Hovmoller, S.; Li, X. Z.; Kuo, K. H. Three-dimensional reconstruction

of v-AlCrFe Acta Cryst. A 2003, 59, 526–539.

(30) Kolb, U.; Gorelik, T.; Kübel, C.; Otten, M. T.; Hubert, D. Towards automated diffraction

tomography: Part I—Data acquisition. Ultramicroscopy 2007, 107, 507–513.

(31) Zhang, D.; Oleynikov, P.; Hovmöller, S.; Zou, X. Collecting 3D electron diffraction data by

the rotation method. Z. Kristallogr. 2010, 225, 94–102.

(32) Franken, L. E.; Grunewald, K.; Boekema, E. J.; Stuart, M. C. A. A technical introduction to

transmission electron microscopy for soft-matter: imaging, possibilities, choices, and technical

developments Small 2020, 16, 1906198.

(33) Gruene, T.; Wennmacher, J. T. C.; Zaubitzer, C.; Holstein, J. J.; Heidler, J.; Fecteau-Lefebvre,

A.; De Carlo, S.; Muller, E.; Goldie, K. N.; Regeni, I.; Li, T.; Santiso-Quinones, G.; Steinfeld, G.;

Handschin, S.; van Genderen, E.; van Bokhoven, J. A.; Clever, G. H.; Pantelic, R. Rapid structure

determination of microcrystalline molecular compounds using electron diffraction. Angew. Chem.

Int. Ed. 2018, 57, 16313–16317.

(34) Gruene, T.; Holstein, J. J.; Clever, G. H.; Keppler, B. Establishing electron diffraction in

chemical crystallography Nat. Rev. Chem. 2021. https://doi.org/10.1038/s41570-021-00302-4.

(35) (a) Zuo, J. M.; Spence, J. C. H. Advanced Transmission Electron Microscopy. Springer, 2016.

(b) Carter, C. B. & Williams, D. B. Transmission Electron Microscopy Springer, 2016.

(36) Shi, D.; Nannenga, B. L.; Iadanza, M. G.; Gonen, T. Three-dimensional electron

crystallography of protein microcrystals. eLife 2013, 2, e01345.

(37) Sawaya, M. R.; Rodriguez, J.; Cascio, D.; Collazo, M. J.; Shi, D.; Reyes, F. E.; Hattne, J.;

Gonen, T.; Eisenberg, D. S. Ab initio structure determination from prion nanocrystals at atomic

resolution by MicroED PNAS 2016, 113, 11232–11236.

19

(38) Hattne, J.; Reyes, F. E.; Nannenga, B. L.; Shi, D.; de la Cruz, M. J.; Leslie, A. G. W.; Gonen,

T. MicroED data collection and processing. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71,

353−360.

(39) Kabsch, W. Xds. Acta Crystallogr. 2010, D66, 125–132.

(40) Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta

Crystallogr. 2010, D66, 133–144.

(41) Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122.

(42) Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta

Cryst. 2015 A71, 3–8.

(43) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

(44) Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. ShelXle: A Qt graphical user interface for

SHELXL. J. Appl. Cryst. 2011, 44, 1281–1284.

(45) Mugnaioli, E.; Lanza, A. E.; Bortolozzi, G.; Righi, L.; Merlini, M.; Cappello, V.; Marini, L.;

Athanassiou, A.; Gemmi, M. Electron Diffraction on Flash-Frozen Cowlesite Reveals the

Structure of the First Two-Dimensional Natural Zeolite. ACS Cent. Sci. 2020, 6, 1578–1586.

(46) Clabbers, M. T. B.; Hongyi, X. Microcrystal electron diffraction in macromolecular and

pharmaceutical structure determination. Drug Discovery Today: Technologies. 2020, In Press.

(47) Das, P. P.; Perez, A. G.; Galanis, A. S.; Nicolopoulos, S. Structural Characterization of Beam

Sensitive Pharmaceutical Compounds Using 3D Electron Diffraction-Micro-ED at Low Dose with

Pixelated Detectors. Microscopy and Microanalysis. 2020, 26, 1522–1522.

(48) Wang, Y. et al Elucidation of the elusive structure and formula of the active pharmaceutical

ingredient bismuth subgallate by continuous rotation electron diffraction Chem. Commun. 2017,

53, 7018–7021.

20

(49) Samkian, A.; Kiel, G. R.; Jones, C. G.; Bergman, H.; Oktawiec, J.; Nelson, H. M.; Tilley, T.

D. Elucidation of Diverse Solid-State Packing in a Family of Electron-Deficient Expanded

Helicenes via Microcrystal Electron Diffraction (MicroED) Angew. Chem. Int. Ed. 2020, 5, 2493–

2499.

(50) Curtis, B. J.; Kim, L. J.; Wrobel, C. J. J.; Eagen, J. M.; Smith, R. A.; Burch, J. E.; Le, H. H.;

Artyukhin, A. B.; Nelson, H. M.; Schroeder, F. C. Identification of Uric Acid Gluconucleoside–

Ascaroside Conjugates in Caenorhabditis elegans by Combining Synthesis and MicroED Org.

Lett. 2020, 22, 6724–6728.

(51) Kim, L. J.; Ohashi, M.; Zhang, Z.; Tan, D.; Asay, M.; Cascio, D.; Rodriguez, J. A.; Tang, Y.;

Nelson, H. M. Prospecting for natural products by genome mining and microcrystal electron

diffraction. Nat. Chem. Biol. 2021, 17, 872−877.

(52) Bruhn, J. F. et al Small molecule microcrystal electron diffraction for the pharmaceutical

industry – lessons learned from examining over fifty samples. Front. Mol. Biosci. 2021, 8, 354.

(53) Shen, P. S. The 2017 nobel prize in chemistry: cryo-EM comes of age. Anal. Bioanal. Chem.

2018, 410, 2053–2057.

(54) Schorb, M.; Haberbosch, I.; Hagen, W. J. H.; Schwab, Y.; Mastronarde, D. N. Software tools

for automated transmission electron microscopy Nat. Methods 2019, 16, 471–477.

(55) Tan, Y. Z.; Cheng, A.; Potter, C. S.; Carragher, B. Automated data collection in single particle

electron microscopy. Microscopy 2016, 65, 43–56.

(56) Pusey, M. L.; Liu, Z.-J.; Tempel, W.; Praissman, J.; Lin, D.; Wang, B.-C.; Gavira, J. A.; Ng,

J. D. Life in the fast lane for protein crystallization and X-ray crystallography. Prog. Biophys. Mol.

Biol. 2005, 88, 359–386.

21

(57) Mastronarde, D. N. Automated electron microscope tomography using robust prediction of

specimen movements. J. Struct. Biol. 2005, 152, 36–51.

(58) de la Cruz, J. M.; Martynowycz, M.; Hattne, J.; Gonen, T. MicroED data collection with

SerialEM Ultramicroscopy 2019, 201, 77–80.

(59) Smeets, S.; Zou, X.; Wan, W. Serial electron crystallography for structure determination and

phase analysis of nanocrystalline materials. J. Appl. Crystallogr. 2018, 51, 1262–1273.

(60) Roslova, M.; Smeets, S.; Wing, B.; Thersleff, T.; Xu, H.; Zou, X. InsteaDMatic: towards

cross-platform automated continuous rotation electron diffraction J. Appl. Crystallogr. 2020, 53,

1217–1224.

(61) Wang, B.; Zou, X.; Smeets, S. Automated serial rotation electron diffraction combined with

cluster analysis: an efficient multi-crystal workflow for structure determination IUCrJ. 2019, 6,

854–867.

22

CHAPTER TWO

Terpene Tail-to-Head Polycyclization Mediated by Lithium–Weakly Coordinating

Anion Catalysis

Jessica E. Burch, Alex L. Bagdasarian, Tanin Hooshmand, Hosea M. Nelson ChemRxiv Preprint

2020, DOI: 10.26434/chemrxiv.12719780.v2.

2.1 Abstract

Biomimetic total synthesis has played a pivotal role in the development of synthetic

organic chemistry. In particular, efforts aimed at mimicking the head-to-tail (HT) cation–π

cyclization cascades invoked in terpene biosynthesis, such as those catalyzed by type-II cyclases,

have led to a multitude of new synthetic methods, chemical concepts, and total syntheses over

the past century. Conversely, synthetic methodology that mimics tail-to-head (TH) cation–π

cyclization cascades, mediated by Mg2+ type-I terpene cyclases, remains elusive in organic

synthesis, despite key roles in the biosynthesis of privileged therapeutic molecules such as taxol

and artemesinin. Here we report that Li+/weakly-coordinating anion (WCA) salts catalyze the

TH polycyclization of linaloyl fluoride, leading to high-yielding mixtures of polycyclic terpene

natural products including cedrenes, cadinadiene, epizonarene, and δ-selinene. This report

represents a seminal example of a small molecule-catalyzed TH polycyclization. Moreover we

apply this strategy to geranyllinaloyl fluoride, demonstrating the application of small molecule-

catalyzed TH polycyclization leading to mixtures of polycyclic diterpenes including the tricyclic

23

core of the gersemiols (named here as α-gersemiene), a recently discovered class of marine

diterpenoid natural products.

2.2 Introduction

In contrast to head-to-tail (HT) cationic cyclizations (Figure 2.1a),1–6 many early efforts

to synthesize sesquiterpenes through biomimetic tail-to-head (TH) polycyclization reactions

(Figure 2.1b) often resulted in low-yielding complex mixtures largely comprised of

monocyclized compounds.7–10 Modern examples, such as the stoichiometric Lewis acid-

mediated polycyclization of farnesyl derivative 2.1 (Figure 2.1c) reported by Shenvi and

coworkers, yields a mixture of bi- and tricyclic sesquiterpenoids of differing oxidation states,

through a putative zwitterionic intermediate (2.2).11 The seminal example of non-enzymatic,

catalytic TH cyclization was reported by Tiefenbacher and coworkers, who engaged in

supramolecular catalysis to encapsulate farnesyl acetate (2.3, Figure 2.1d) and generate an array

of polycyclic sesquiterpene products.12,13 The product selectivity was attributed to encapsulation

by the supramolecular assembly, particularly in the case of δ-selinene (2.4, Figure 2.1e), which is

biochemically proposed to originate from the formation of a 10-membered ring that then

performs intramolecular cyclization.14

Here we diverge in approach from these seminal reports and describe the utilization of

weakly-coordinating anion (WCA) catalysis to achieve the biomimetic conversion of

sesquiterpene fluoride 2.5 (Figure 2.1e) to high yielding mixtures of polycyclic sesquiterpene

natural products, including δ-selinene similarly observed in the supramolecular catalysis reaction

(2.4, 2.6–2.9).12,13 Notably, cadinadiene (2.6), the trans-decalin variant of amorphadiene and a

reported biosynthetic precursor of artemisinin, is formed in this reaction. Importantly,

cadinadiene (2.6) was previously advanced in a 7-step synthetic sequence to racemic artemisinin

24

by Yadav and coworkers.15 Moreover, we report proof-of-principle that this strategy is amenable

to diterpene polycyclization, as we demonstrate that geranyllinaloyl fluoride (2.10, Figure 2.1f)

Figure 2.1. Summary of biomimetic terpene polycyclizations. a) Example of isoprenoid head-to-tail

cyclization. b) Example of tail-to-head cationic cyclization with bisabolyl cationic intermediate. PP =

pyrophosphate. c) Stoichiometric Lewis acid-promoted cationic cyclization of sesquiterpenoids. d)

Supramolecular cluster-catalyzed cyclization of farnesyl acetate. e/f) This work: small molecule-catalyzed

polycyclization of acyclic isoprenyl fluorides. Yields determined by NMR using dimethyl sulfone

as internal standard.

25

can be converted to the tricyclic diterpene, α-gersemiene (2.11) using this simple catalytic

system. This species is the proposed bionsynthetic precursor to the recently isolated

sesquiterpenoid products, gersemiol B (2.12) and gersemiol C (2.13).16

At the outset of our efforts, we hypothesized that the use of WCAs would allow for the

generation of persistent carbocations with sufficient lifetimes to partake in polycyclization events

before fast, counteranion-mediated E1 elimination or trapping by solvent.17–19 Previous reports

from our lab have demonstrated the competency of R3Si+/WCA-derived catalysts in generating

long-lived carbocationic species that engage in intermolecular C–H insertion reactions.20 Hence,

we hypothesized that allylic fluoride 2.5 (Figure 2.1e) could be readily ionized under analogous

R3Si+/WCA conditions to generate an allylic carbocation (2.14, Figure 1b) poised to undergo

rapid 1,6-cyclization to generate the bisabolyl cation (2.15). Despite having a Hammett acidity of

ca. ≤ –17, we posited that this carbocation would have sufficient lifetime, when paired with a

WCA, to undergo subsequent polycyclization without the formation of bisabolenes through E1

elimination as observed in previous literature reports. 7–10,21

2.3 Sesquiterpenes

To validate our hypothesis, (E)-nerolidyl fluoride (2.5, Figure 2.2) was chosen as the

model substrate due to the known fluorophilicity of R3Si+/WCA catalysts. Exposing fluoride 2.5

to triethylsilane and a catalytic amount of commercially available trityl

tetrakis(pentafluorophenyl)borate, we observed low-yielding formation of α-cedrene (2.7), epi-α-

cedrene (2.8), and cadinadiene (2.6) in addition to an intractable mixture of hydrocarbon

products (Figure 2.2, entry 1). Gratifyingly, these polycyclic sesquiterpenes arise from multiple

hydride shifts and cyclization events subsequent to the formation of the bisabolyl cation,

supporting our mechanistic hypothesis.22,23 Discouraged by the lack of selectivity and poor

26

efficiency, we posited that the incompatibility of R3Si+/WCA catalysts with dichloromethane and

olefinic substrates was responsible for the poor reaction outcome.24 These findings led us to

explore the use of Li+/WCA catalysts with (E)-nerolidyl fluoride (2.5) to attenuate this

unproductive reaction outcome. Unfortunately, use of our reported Li+/WCA catalytic

conditions, featuring the in situ generation of [Li]+[B(C6F5)4]
– through combination of LiHMDS

and [Ph3C]+[B(C6F5)4]
–, resulted in premature deprotonation of the intermediate carbocation,

yielding a mixture of linear and monocyclic elimination products (entry 2).25 However, we were

gratified to find that pairing mild inorganic bases with metal/WCA salts yielded polycyclic

products, albeit in low yields (entries 3–5). Utilization of stoichiometric LiClO4 was found to

Figure 2.2 Small molecule-catalyzed polycyclization of 2.5. a Two diastereomers estimated

from crude 1H NMR (1:1 d.r.). b Reaction performed at –40 °C. c Reaction performed at 40

°C. dYields determined by NMR using dimethyl sulfone as internal standard. e
Utilizing bisabolyl fluoride 2.16 as starting material.

27

produce the cyclized terpene products in reduced yield, presumably due to promiscuous

oxidative reactivity, as aromatic species such as cadalene were observed in the reaction mixture

(entry 6, see Experimental Section). It was ultimately discovered that pre-formed

[Li]+[B(C6F5)4]
– (1 mol %) used in combination with stoichiometric LiCl (1 equivalent) provided

a remarkable 85% combined yield of five known sesquiterpene natural products: cadinadiene

(2.6), α-cedrene (2.7), epi-α-cedrene (2.8), epizonarene (2.9), and δ-selinene (2.4) (entry 7).26

Control reactions were performed without stoichiometric LiCl resulting in reduced yields (entry

8). Use of LiCl in the absence of catalyst resulted in no reaction (entry 9). Performing the

reaction at reduced temperature failed to ionize the substrate, while elevated temperatures

resulted in formation of bisabolenes (entries 10–11). Interestingly, careful monitoring of the

reaction by NMR and GC-FID revealed that bisabolyl fluoride (2.16) is an intermediate in this

transformation. The origin of the fluorine atom in bisabolyl fluoride (2.16) is undetermined;

however, reactive carbocations are known to undergo exchange reactions with typically inert

molecules.27

The biosynthetic pathway for δ-selinene (2.4) is proposed to proceed via an initial 1,10-

cyclization of (E,E)-farnesyl pyrophosphate (2.17 – 2.18, Figure 2.3a) to generate germacrene A

(2.19) which subsequently undergoes ring-closing to forge the selinene core (2.20 and 2.14).14

Despite the detection of δ-selinene in Hirose’s early work, the direct generation of a 10-

membered carbocycle in our small molecule-catalyzed system seemed unlikely, given the

potential for competitive formation of a 6-membered ring (i.e. 2.14 – 2.15, Figure 2.1b, vs. 2.18

– 2.19, Figure 2.3a).8,11 Interestingly, upon subjection of bisabolyl fluoride (2.16) to the

28

optimized reaction conditions, we found high conversion (84%) to cadinadiene (2.6), α-cedrenes

(2.7/2.8), and epizonarene (2.9), however no δ-selinene (2.4) was detected (entry 12, Figure 2.2).

The lack of formation of δ-selinene (2.4) from bisabolyl fluoride (2.6) supports the hypothesis

that a biomimetic 1,10-cyclization could be occurring in our system. To probe this hypothesis

further, 6,7-dihydronerolidyl fluoride (2.21, Figure 2.3b), lacking the central olefin required to

undergo a 1,6-cyclization, was subjected to the optimized reaction conditions. In the event, the

10-membered carbocyclic product 2.22 was formed in 57% yield by NMR. Taken together, these

experiments support biomimetic formation of δ-selinene (2.4) through a 1,10-cyclization process

without preorganization within an enzyme active site or supramolecular capsule.14 While

enzyme-mediated medium size ring formation from linear precursors is commonly invoked in

biosynthesis, analogous catalytic transformations remain rare in synthetic chemistry.28–30

Figure 2.3 Investigation of δ-selinene formation. a) Biosynthetic cyclization to generate δ-selinene 2.4 through

formation of a medium-sized ring 2.19. PP = pyrophosphate. Anions excluded for clarity. b, Cyclization of

prepared bisabolyl fluoride 2.16 to optimized Li+/WCA reaction conditions. c,Generation of 10-membered

carbocyclic product through WCA-catalyzed polycyclization. Yields determined by NMR using dimethyl sulfone

as internal standard.

29

2.4 Diterpenes

Intrigued by this enzyme-free, medium-sized ring forming reaction, we wondered

whether this catalytic strategy could be utilized in the biomimetic syntheses of more complex

polycyclic diterpenes, which often proceed through medium- or macro-sized rings in nature. For

example, taxadiene (2.23, Figure 2.4a), the oxidative precursor of taxol (2.24), originates from a

tail-to-head cyclization of geranylgeranyl pyrophosphate (2.25) to forge 14-membered

carbocation (2.26).31 To the best of our knowledge, biomimetic approaches to taxadiene (2.23)

have not been reported, presumably due in part to the high entropic cost of forging such rings

outside the confines of an enzyme.32 Interestingly, we found that treatment of geranyllinaloyl

fluoride (2.10, Figure 2.4b) with stoichiometric LiBF4 and catalytic Li+/WCA led to formation of

a complex mixture including α-gersemiene (2.11) in 8% yield by NMR. It is worthy to note that

this putative natural product has also been observed in the acid-promoted cyclization of

isocembrene (2.27), suggesting that the cembrenyl carbocation (2.26) is an intermediate in this

process as well.33 α-Gersemiene (2.11) is posited to be the biosynthetic precursor of the

gersemiols, a class of recently isolated natural products from the soft coral species Gersemia

fruiticosa (2.12 and 2.13 Figure 2.1f).16

30

Figure 2.4 Diterpene polycyclizations. a) Biosynthetic cyclization to generate taxadiene 2.23 through formation of a

large-sized ring 2.26. PPi = pyrophosphate. Anions excluded for clarity. b) Extension of methodology to generate

tricyclic diterpene product 2.11 through putative intermediate 2.26. Yields determined by NMR using dimethyl

sulfone as internal standard. c) Acid-mediated cyclization of cembrene to generate tricyclic diterpenes

2.11 and 2.28.

31

2.5 Microcrystal Electron Diffraction of Terpene Natural Products

 Given the significant challenges associated with isolating and identifying terpene

products, particularly in the diterpene study, we sought to explore analytical techniques to solve

this problem. A thorough understanding of the diterpene polycyclization reaction outcome would

allow for development of strategies to optimize this complex transformation. While many of the

sesquiterpene products are oils under ambient conditions, cyclic di- and triterpene hydrocarbons

are often reported as solids.33 We hypothesized that crude or fractionated mixtures from

diterpene polycyclization reactions could be amenable to study by the recently developed solid

state structural analysis technique, microcrystal electron diffraction (microED).34 At the time, our

laboratory had reported the use of microcrystal electron diffraction (microED) for the elucidation

of commercial and synthetic small molecule compounds, but its application to solving complex

structural problems was limited.35

Initial attempts to evaluate diterpenes obtained from polycyclization were undertaken by

performing slow evaporation from the crude reaction mixture or flash column chromatography

fractions to generate microcrystals. Upon evaluation in the TEM, we were surprised to solve

structures of minor impurities, including the generation of a preliminary structure proposed to be

LiBF4. Microcrystalline silicates, presumably from contamination after column chromatography,

also presented a challenge.

32

Figure 2.5 Preliminary microED structure of a tetrahedral salt impurity obtained from diterpene crude reaction

mixture.

This is both a strength and weakness of microED: microcrystals not representative of the bulk

sample can produce structural solutions.36 Careful preparation by filtration of solvated mixtures

in hydrocarbon solvent through 0.45 μm syringe filters reduced the presence of these impurities.

Most crystallization attempts from the mixture of terpene hydrocarbons produced oils, or

oil-coated particles that diffracted to very low resolution or produced no diffraction. The X-ray

structure of an isomer of α-gersemiene (2.28) has been reported from the acid-mediated

cyclization of macrocyclic cembrene (2.27), so we sought to take HPLC fractionated α-

gersemiene (2.11) and attempt to study it by electron diffraction.33

Slow evaporation from ethanol produced microcrystals that visibly decomposed under the

electron beam but produced indexable movies with a unit cell similar to that of the X-ray

structure of the gersemiene isomer (2.28, Figure 2.4 and Figure 2.5).37 Evaluation of this sample,

even under solvated cryogenic conditions, failed to produce a structure in our hands. Although

these attempts proved unsuccessful, given the tremendous promise of this method and the lack of

literature evaluating complex small molecule samples, we sought to apply and optimize this

33

method to make it a more practical tool for organic chemists to routinely utilize, as is discussed

in Chapters 3 and 4.

Figure 2.6 MicroED TEM diffraction images collected from particles obtained through crystallization of α-

gersemiene-containing fraction.

2.6 Conclusion

In summary, we report Li+/WCA-catalyzed tail-to-head, biomimetic cation-π cyclization

reactions of sesquiterpenes and diterpenes. To the best of our knowledge, these are some of the

first small molecule-catalyzed TH polycyclizations reported. We demonstrate that simple acyclic

polyisoprenes can be converted to a mixture of naturally occurring polycyclic terpenes in high

yield using a Li+/WCA approach. We also report the first small molecule-catalyzed, biomimetic

TH cyclization to forge a mixture of polycyclic diterpenes, including α-gersemiene (2.11). In the

polycyclization of sesquiterpenes, we observe competitive formation of a 10-membered terpene

intermediate despite the availability of a more facile pathway leading to a 6-membered ring.

While terpene polycyclizations have been described as some of the most complex biosynthetic

34

reactions known, it is remarkable that we can achieve analogous transformations with simple

lithium salts. We also explore use and limitations of the emerging electron microscopy

technique, microED, for evaluation of diterpene reaction mixtures.

35

2.6 Notes and References

(1) Ruzicka, L.; Eschenmoser, A; Heusser, H. The isoprene rule and the biogenesis of terpenic

compounds. Experientia 1953, 9, 357–367.

(2) Stork, G.; Burgstahler, A. W. The stereochemistry of polyene cyclization. J. Am. Chem. Soc.

1955, 77, 5068–5077.

(3) Eschenmoser, A.; Ruzicka, L.; Jeger, O; Arigoni, D. A stereochemical interpretation of the

biogenetic isoprene rule for the triterpenes. Helv. Chim. Acta 1955, 38, 1890–1904.

(4) Maimone, T. J.; Baran, P. S. Modern synthetic efforts toward biologically active terpenes.

Nat. Chem. Biol. 2007, 3, 396–407.

(5) Alleman, R. K. Chemical wizardry? The generation of diversity in terpenoids biosynthesis.

Pure Appl. Chem. 2008, 80, 1791–1798.

(6) Tantillo, D. J. Biosynthesis via carbocations: theoretical studies on terpene biosynthesis. Nat.

Prod. Rep. 2011, 28, 1035–1053.

(7) Gutsche, C. D.; Maycock, J. R; Chang, C. T. Acid-catalyzed cyclization of farnesol and

nerolidol. Tetrahedron 1968, 24, 859–876.

(8) Ohta, Y.; Hirose, Y. Electrophile induced cyclization of farnesol. Chem. Lett. 1972, 1, 263–

266.

(9) Polovinka, M. P. et al. Cyclization and rearrangements of farnesol and nerolidol

stereoisomers in superacids. J. Org. Chem. 1994, 59, 1509–1517.

(10) Susumu, K.; Mikio, T.; Teruaki, M. Biogenetic-like cyclization of farnesol and nerolidol to

bisabolene by the use of 2-fuorobenzothiazolium salt. Chem. Lett. 1977, 6, 1169–1172.

36

(11) 13. Pronin, S. V.; Shenvi, R. A. Synthesis of highly strained terpenes by non-stop tail-to-

head polycyclization. Nat. Chem. 2012, 4, 915–920.

(12) Zhang, Q.; Tiefenbacher, K. Terpene cyclization catalyzed inside a self-assembled cavity.

Nat. Chem. 2015, 7, 197–202.

(13) (a) Zhang, Q.; Rinkel, J.; Goldfuss, B.; Dickschat, J. S.; Tiefenbacher, K. Sesquiterpene

cyclizations catalysed in-side the resorcinarene capsule and application in the short synthesis of

isolongifolene and isolongifolenone. Nat. Cat. 2018, 1, 609–615.

(b) Zhang Q.; Tiefenbacher, K. Sesquiterpene cyclizations inside the hexameric resorcinarene

capsule: total synthesis of -selinene and mechanistic studies Angew. Chem. Int. Ed. 2019, 131,

12818–12825.

(14) Wu, Q. X.; Shi, Y. P.; Jia, Z. J. Eudesmane sesquiterpenoids from the asteraceae family.

Nat. Prod. Rep. 2006, 23, 699–734.

(15) Yadav, J. S.; Thirupathaiah, B.; Srihari, P. A concise stereoselective total synthesis of (+)-

artemisinin. Tetrahedron 2010, 66, 2005–2009.

(16) Preckler-Angulo, C.; Genta-Jouve, G.; Mahajan, N.; de la Cruz, M.; de Pedro, N.; Reyes, F.;

Iken, K.; Avila, C.; Thomas, O. P. Gersemiols A–C and eunicellol A, diterpenoids from the

arctic soft coral Gersemia fruticosa. J. Nat. Prod. 2016, 79, 1132–1136.

(17) Olah, G. A.; Lukas, J. Stable carbonium ions. XXXIX. Formation of alkylcarbonium ions

via hydride ion abstraction from alkanes in fluorosulfonic acid-antimony pentafluoride solution.

Isolation of some crystalline alkylcarbonium ion salts. J. Am. Chem. Soc. 1967, 89, 2227–2228.

(18) Duttwyler, S.; Douvris, C.; Fackler, N. L. P.; Tham, F. S.; Reed, C. A.; Baldridge, K. K.;

Siegel, J. S. C–F activation of fluorobenzene by silylium carboranes: Evidence for incipient

phenyl cation reactivity. Angew. Chem. Int. Ed. 2010, 210, 7681–7684.

37

(19) Reed, C. A. H+, CH3
+, R3Si+ carborane reagents: when triflates fail. Acc. Chem. Res. 2010,

43, 121–128.

(20) Shao, B.‡; Bagdasarian, A. L.‡; Popov, S.; Nelson, H. M. Arylation of hydrocarbons

enabled by organosilicon reagents and weakly coordinating anions. Science 2017, 355, 1403–

1407.

(21) Reed, C. A. Carborane acids. New ‘strong yet gentle’ acids for organic and inorganic

chemistry. Chem. Commun. 2005, 13, 1669–1677.

(22) Hong, Y. J.; Tantillo, D. J. Consequences of conformational preorganization in

sesquiterpene biosynthesis. Theoretical studies on the formation of the bisabolene, curcumene,

acoradiene, zizaene, cedrene, duprezianene, and sesquithuriferol sesquiterpenes. J. Am. Chem.

Soc. 2009, 131, 7999–8015.

(23) Hong, Y. J.; Tantillo, D. J. Branching out from the bisabolyl cation. Unifying mechanistic

pathways to barbatene, bazzanene, chamigrene, chamipinene, cumacrene, cuprenene, dunniene,

isobazzanene, iso-γ-bisabolene, isochamigrene, laurene, microbiotene, sesquithujene,

sesquisabinene, thujopsene, trichodiene, and widdradiene sesquiterpenes. J. Am. Chem. Soc.

2014, 136, 2450–2463.

(24) Kira, M.; Hino, T.; Sakurai, H. An NMR study of the formation of silyloxonium ions by

using tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as counteranion. J. Am. Chem. Soc. 1992,

114, 6697–6700.

(25) Wigman, B.; Popov, S.; Bagdasarian, A. L.; Shao, B.; Benton, T. R.; Williams, C. G.;

Fisher, S. P.; Lavallo, V.; Houk, K. N.; Nelson, H. M. Strong bases and weak anions in catalytic

C–H insertion reactions of vinyl carbocations. J. Am. Chem. Soc. 2019, 141, 9410–9144.

38

(26) Kuprat, M.; Lehmann, M.; Shulz, A.; Villinger, A. Synthesis of pentafluorophenyl silver by

means of Lewis acid catalysis: Structure of silver solvent complexes. Organometallics 2010, 29,

1421–1427.

(27) Olah, G.A.; Molnár A. Hydrocarbon Chemistry, 2nd revised ed. 2003, Wiley Interscience,

New York.

(28) Shippey, M. A.; Dervan, P. B. Synthesis of cycloalkanes by intramolecular titanium-induced

dicarbonyl coupling. J. Org. Chem. 1977, 42, 2655–2656.

(29) Winkler, J. D.; Sridar, V.; Siegel, M. G. Ten-membered ring templates for stereoselective

radical cyclizations. Tet. Lett. 1989, 30, 4943–4946.

(30) Nevalainen, M.; Koskinen, A. M. P. Synthesis of a 10-membered carbocycle by olefin

metathesis. Angew. Chem. Int. Ed. 2001, 40, 4060–4062.

(31) Hong, Y. J.; Tantillo, D. J. The taxadiene-forming carbocation cascade. J. Am. Chem. Soc.

2011, 133, 18249–18256.

(32) (a) Christianson, D. W. Structural biology and chemistry of the terpenoid cyclases. Chem.

Rev. 2006, 106, 3412–3442.

(b) Christianson, D. W. Structural and chemical biology of terpenoid cyclases Chem. Rev. 2017,

117, 11570–11648.

(33) Dauben, W. G.; Hubbell, J. P.; Oberhansli, P.; Thiessen, W. E. Acid-catalyzed cyclization

of cembrene and isocembrol. J. Org. Chem. 1979, 44, 669–673.

(34) Gemmi, M.; Mugnaioli, E.; Gorelik, T. E.; Kolb, U.; Palatinus, L.; Boullay, P.; Hovmöller,

S.; Abrahams, J. P. 3D Electron Diffraction: The Nanocrystallography Revolution. ACS Cent.

Sci. 2019, 5, 1315–1329.

39

(35) Jones, C. G.; Martynowycz, M. W.; Hattne, J.; Fulton, T. J.; Stoltz, B. M.; Rodriguez, J. A.;

Nelson, H. M.; Gonen, T. The CryoEM Method MicroED as a Powerful Tool for Small Molecule

Structure Determination. ACS Cent. Sci. 2018, 4, 1587–1592.

(36) Kim, L. J.; Ohashi, M.; Zhang, Z.; Tan, D.; Asay, M.; Cascio, D.; Rodriguez, J. A.; Tang, Y.;

Nelson, H. M. Prospecting for natural products by genome mining and microcrystal electron

diffraction. Nat. Chem. Biol. 2021, 17, 872−877.

(37) Hattne, J.; Shi, D.; Glynn, C.; Zee, C.-T.; Gallagher-Jones, M.; Martynowycz, M. W.;

Rodriguez, J. A.; Gonen, T. Analysis of Global and Site-Specific Radiation Damage in Cryo-EM

Structure 2018, 5, 759–766.

40

2.7 Experimental Section

2.7.1 Materials and Methods

Unless otherwise stated, all reactions were performed in an MBraun glovebox under

nitrogen atmosphere with ≤ 0.5 ppm O2 levels. All glassware and stir-bars were dried in a 160 °C

oven for at least 12 hours and dried in vacuo before use. All substrates were dried over P2O5. All

solvents were rigorously dried before use. Dichloromethane was degassed and dried in a JC

Meyer solvent system and stored inside a glovebox. Triethylsilane was dried over sodium and

stored inside a glovebox. [Li]+[B(C6F5)4]
– salt was synthesized according to literature

procedure.1 XtalFluor-E was prepared according to literature procedure.2 Preparatory thin layer

chromatography (TLC) was performed using Millipore silica gel 60 F254 pre-coated plates (0.25

mm) and visualized by UV fluorescence quenching. SiliaFlash P60 silica gel (230–400 mesh)

was used for flash chromatography. AgNO3-impregnated silica gel was prepared by mixing with

a solution of AgNO3 (150% v/w of 10% w/v solution in acetonitrile), removing solvent under

reduced pressure, and drying at 120 °C. NMR spectra were recorded on a Bruker AV-300 (1H,

19F), Bruker AV-400 (1H, 13C, 19F), Bruker DRX-500 (1H), and Bruker AV-500 (1H, 13C). 1H

NMR spectra are reported relative to CDCl3 (7.26 ppm) unless noted otherwise. Data for 1H

NMR spectra are as follows: chemical shift (ppm), multiplicity, coupling constant (Hz),

integration. Multiplicities are as follows: s = singlet, bs = broad singlet d = doublet, t = triplet, dd

= doublet of doublet, dt = doublet of triplet, ddd = doublet of doublet of doublet, td = triplet of

doublet, m = multiplet. 13C NMR spectra are reported relative to CDCl3 (77.0 ppm) unless noted

otherwise. GC spectra were recorded on an Agilent 6850 series GC using an Agilent HP-1 (50 m,

0.32 mm ID, 0.25 mm DF) column. GCMS spectra were recorded on a Shimadzu GCMS-

QP2010 using a Restek XTI-5 (50m, 0.25 mm ID, 0.25 mm DF) column interface at room

41

temperature. IR spectra were record on a Perkin Elmer 100 spectrometer and are reported in

terms of frequency absorption (cm-1). High resolution mass spectra (HR-MS) were recorded on

an Agilent GC EI-MS, and are reported as m/z (% relative intensity). Purification by preparative

HPLC was done on an Agilent 1200 series instrument with a reverse phase Alltima C18 (5m, 25

cm length, 1 cm internal diameter) column.

42

2.7.2 Preparation of Allylic and Tertiary Fluoride Substrates

(E)-3-fluoro-3,7,11-trimethyldodeca-1,6,10-triene (2.5). Synthesized using (2E,6E)-farnesol

according to a modified literature method.2 A flame-dried round bottom flask under nitrogen

atmosphere was charged with triethylamine (1.2 mL, 9.0 mmol, 1.0 equiv), triethylamine

trihydrofluoride (2.9 mL, 18 mmol, 2.0 equiv), and dichloromethane (20 mL). After cooling to 0

C, XtalFluor-E (3.1 g, 13 mmol, 1.5 equiv) and (2E,6E)-farnesol were added successively. The

reaction was stirred at 0 C for 30 minutes and allowed to warm to room temperature. Upon

warming, reaction was quenched with saturated aqueous bicarbonate solution until a neutral pH

was reached. Aqueous layer was extracted with DCM 3x, combined, and washed with sat.

sodium bicarbonate solution, brine, dried over Na2SO4, filtered, and concentrated under reduced

pressure. The resulting crude oil was purified via flash chromatography (1% Et2O/hexanes) to

afford 2.5 as a colorless oil. Compound was stored in plastic vial to avoid decomposition.

Spectral data match those reported in the literature.3

43

4-(2-fluoro-6-methylhept-5-en-2-yl)-1-methylcyclohex-1-ene (2.16). Synthesized using -(–)-

bisabolol according to a modified literature method.2 A flame-dried round bottom flask under

nitrogen atmosphere was charged with triethylamine (1.2 mL, 9.0 mmol, 1.0 equiv),

triethylamine trihydrofluoride (2.9 mL, 18 mmol, 2.0 equiv), and dichloromethane (20 mL).

After cooling to 0 C, XtalFluor-E (3.1 g, 13 mmol, 1.5 equiv) and -(–)-bisabolol were added

successively. The reaction was stirred at 0 C for 30 minutes and allowed to warm to room

temperature. Reaction was allowed to stir overnight. Upon completion, reaction was quenched

with saturated aqueous bicarbonate solution until a neutral pH was reached. Aqueous was

extracted with DCM 3x, combined, and washed with sat. sodium bicarbonate solution, brine,

dried over Na2SO4, filtered, and concentrated under reduced pressure. The resulting crude oil

was purified via flash chromatography (1% Et2O/hexanes) to afford 2.16 as a colorless oil.

Spectral data match those reported in the literature.42

8-bromo-2,6-dimethyloct-2-ene (2.29). Synthesized

according to known procedures. Spectral data match those reported in the literature.5

44

5,9-dimethyldec-8-en-2-one (2.30). Synthesized

according to known procedures. Spectral data match those reported in the literature.5

methyl-3,6,10-trimethylundeca-2,9-dienoate (2.31). Synthesized

according to known procedures. Obtained as mixture of diastereomers and utilized in next

reaction without purification. Spectral data match those reported in the literature.6

3,6,10-trimethylundeca-2,9-dien-1-ol (2.32). Synthesized

according to known procedures and isolated as a mixture of diastereomers. Spectral data match

those reported in the literature.6

3-fluoro-3,7,11-trimethyldodeca-1,10-diene (2.21). Synthesized from 2.32 (mixture of isomers)

according to a modified literature method outlined in 2.5 on a 1 mmol scale. The resulting crude

45

oil was purified via flash chromatography (1% Et2O/hexanes) to afford 140 mg (58%) of 2.21 as

a colorless oil, mixture of diastereomers.

1H NMR (500 MHz, CDCl3) δ 5.88 (td, J = 17.8, 11.3 Hz, 1H), 5.24, (dt, 17.4, 1.3 Hz, 1H), 5.12

- 5.04 (m, 2 H), 1.95 (m, 2H), 1.68 (s, 3H), 1.60 (s, 3H), 1.40 (d, J = 21.8 Hz, 3H), 1.41 - 1.23

(m, 6H), 1.19 - 1.04 (m, 3H) 0.86 (d, J = 6.5 Hz, 3H).

13C NMR (125 MHz, CDCl3) δ 135.12, 135.05, 134.91, 134.59, 131.27, 124.65, 124.41, 124.34,

124.29, 124.27, 96.45, 95.11, 41.02, 40.84, 39.79, 39.76, 39.73, 28.28, 26.77, 26.67, 26.62,

26.57, 25.71, 22.24, 22.20, 17.69, 16.05, 16.04, 16.01, 15.79.

19F NMR (282 MHz, CDCl3) δ -147.31, -147.35.

FTIR (Neat Film NaCl): 2914, 2870, 1458, 1410, 1376, 1187, 989, 925, 902, 882, 747, 685 cm-1.

HRMS (EI-MS): Calculated for C15H27F: 226.2097; Measured: 226.2099.

3-fluoro-3,7,11,15-tetramethylhexadeca-1,6,10,14-tetraene (2.10). Synthesized from

geranyllinalool (mixture of isomers) according to a modified literature method outlined in 2.5 on

a 5 mmol scale.2 The resulting crude oil was purified via flash chromatography (1% Et-

2O/hexanes) to afford 640 mg (42%) of 2.10 as a colorless oil, mixture of diastereomers.

1H NMR (500 MHz, CDCl3) δ 5.89 (td, J = 17.7, 11.1 Hz, 1H), 5.30 – 5.21 (m, 1H), 5.14 – 5.06

(m, 4H), 2.10 – 1.96 (m, 10H), 1.68 (s, 3H), 1.59 (bs, 9H), 1.41 (dd, J = 21.7, 1.1 Hz, 3H), 1.30 –

1.22 (m, 2H).

46

13C NMR (101 MHz, CDCl3) δ 140.91, 140.88, 140.65, 135.72, 135.52, 135.40, 135.27, 135.16,

131.54, 131.34, 124.99, 124.54, 124.45, 124.39, 124.37, 124.16, 124.05, 123.69, 113.35, 113.24,

113.21, 40.48, 40.21, 39.97, 39.76, 32.01, 31.87, 26.73, 26.65, 26.56, 26.48, 25.74, 25.71, 25.40,

25.15, 23.43, 23.40, 22.24, 22.19, 17.70, 17.65, 15.95.

19F NMR (282 MHz, CDCl3) δ -148.14, -148.20, -148.28, -148.32, -150.52, -150.58, -150.61, -

150.69

FTIR (Neat Film NaCl): 3090, 2965, 2925, 2855, 1712, 1647, 1595, 1448, 1375, 1152, 1108,

989, 926, 897, 832, 741, 507 cm-1.

HRMS (EI-MS): Calculated for C20H33F: 292.2566; Measured: 292.2572.

2.7.3 Sesquiterpene R3Si+/WCA Tail-to-Head Cyclization Reactions

2.7.3.1 Procedure for for R3Si+/WCA Tail-to-Head Cyclizations

In a well-kept glovebox, H2O, O2 0.5 ppm, a scintillation vial was charged with

dichloromethane (0.064 mM, 20 mL) and [Ph3C]+[B(C6F5)4]
- (0.01 equiv, 0.6 mg) by adding 60

uL of a freshly prepared 10.8 mM stock solution in dichloromethane. To this clear yellow

solution, triethylsilane (2.0 equiv, 15 mg) was added at room temperature and stirred until

solution turned colorless. Fluoride substrate 2.5 (0.064 mmol, 14 mg) was added and reaction

was stirred at 30 C for 1–2 hours. Reactions were monitored by GC-FID spectra. Upon

completion, reactions were brought out of the glovebox, diluted with DCM, washed with water,

dried over Na2SO4, and concentrated under reduced pressure. Yields were estimated by use of

dimethylsulfone internal standard and integration of olefinic proton from crude reaction mixture.

All yields are reported from triplicate data. Products isolated by use of AgNO3-impregnated

47

silica through flash column chromatography to provide fractionated mixtures. These are

additionally fractionated by reverse phase HPLC using an Alltima C18 (5m, 25 cm length, 1 cm

internal diameter) column, 98% MeCN/H2O for 60 minutes at 3mL/min. Impure products re-

subjected to reverse phase HPLC (98% MeCN/H2O) at 1 mL/min 1 – 3 times until sufficiently

purified as determined by 1H NMR. Solutions dried over MgSO4 and concentrated to produce

purified products.

amorpha-4,11-diene (2.6). Yield calculated based on crude 1H NMR estimate utilizing

dimethylsulfone as an external standard (4% yield). A small amount of purified sample was

obtained by fractionating the crude reaction mixture utilizing AgNO3 impregnated silica gel

(100% hexanes). These fractions were subjected to reverse phase HPLC chromatography (98%

MeCN/H2O) multiple times. Spectral data match those reported in the literature.8

48

()--cedrene (2.7). Yield calculated as mixture with the 2-methyl epimer (2.8) based on crude

1H NMR estimate utilizing dimethylsulfone as an external standard (8% yield of two

diastereomers). Spectral data match those reported in the literature and matches natural -

cedrene standard.9

2-epi--cedrene (2.8). Yield calculated as mixture with the 2-methyl epimer (2.7) based on

crude 1H NMR estimate utilizing dimethylsulfone as an external standard (8% yield of two

diastereomers). Spectral data match those reported in the literature.9

49

2.7.3.2 GC-FID and Crude 1H NMR Spectra

Figure 2.8 Crude 1H NMR (300 MHz, CDCl3) of compound 2.5

cyclization.

 Figure 2.7 Crude GC-FID trace of compound 2.5 cyclization.

50

2.7.3.3 Reaction Monitoring

Figure 2.9 Crude 1H NMR (300 MHz, CDCl3) of compound 2.5

cyclization quenched after 5 minutes of reaction time.

51

2.7.4 Sesquiterpene Li+/WCA Sesquiterpene Tail-to-Head Cyclizations

2.7.4.1 General Procedure for Li+/WCA Sesquiterpene TH Cyclization

In a well-kept glovebox, H2O, O2 0.5 ppm, a scintillation vial was charged with

[Li]+[B(C6F5)4]
- (0.01 equiv, 0.4 mg) and lithium chloride (1.0 equiv, 1.7 mg). Dichloromethane

was added (0.064 mM, 20 mL) and heterogeneous solution was stirred for one minute before

addition of fluoride substrate (0.064 mmol). Reactions were stirred at 30 C for 1–2 hours.

Reactions were monitored by GC-FID spectra unless noted otherwise. Upon completion,

reactions were brought out of the glovebox, diluted with DCM, washed with water, dried over

Na2SO4, and concentrated under reduced pressure. Yields were estimated by use of

dimethylsulfone internal standard and integration of olefinic proton from crude reaction mixture.

All yields are reported from triplicate data. Products isolated by use of AgNO3-impregnated

silica through flash column chromatography and/or HPLC.

52

2.7.4.2 Cyclization of 2.5 in Li+/WCA Sesquiterpene TH Cyclization.

Synthesized according to general procedure 2.7.4.1. In a well-kept glovebox, H2O, O2

0.5 ppm, a scintillation vial was charged with [Li]+[B(C6F5)4]
- (0.01 equiv, 0.4 mg) and lithium

chloride (1.0 equiv, 1.7 mg). Dichloromethane was added (0.064 mM, 20 mL) and

heterogeneous solution was stirred for one minute before addition of fluoride substrate 2.5 (0.064

mmol, 14 mg). Reactions were stirred at 30 C for 1–2 hours until complete by GC-FID reaction

monitoring. Upon completion, reactions were brought out of the glovebox, diluted with DCM,

washed with water, dried over Na2SO4, and concentrated under reduced pressure. Yields were

estimated by use of dimethylsulfone internal standard and integration of olefinic proton from

crude reaction mixture. All yields are reported from triplicate data. Products isolated by use of

AgNO3-impregnated silica through flash column chromatography to provide fractionated

mixtures. These are additionally fractionated by reverse phase HPLC using an Alltima C18 (5m,

25 cm length, 1 cm internal diameter) column, 98% MeCN/H2O for 60 minutes at 3mL/min.

Impure products re-subjected to reverse phase HPLC at 98% MeCN/H2O and 1 mL/min 1 – 3

times until sufficiently purified as determined by 1H NMR. Solutions dried over MgSO4 and

concentrated to produce purified products.

amorpha-4,11-diene (2.6). Yield calculated based on crude 1H NMR estimate utilizing

dimethylsulfone as an external standard (7% yield). Spectral data match those reported in the

literature.8

53

()--cedrene (2.7). Yield calculated as mixture with the 2-methyl epimer (2.8) based on crude

1H NMR estimate utilizing dimethylsulfone as an external standard (27% yield of two

diastereomers). Spectral data match those reported in the literature and matches natural -

cedrene standard.9

2-epi--cedrene (2.8). Yield calculated as mixture with the 2-methyl epimer (2.7) based on

crude 1H NMR estimate utilizing dimethylsulfone as an external standard (27% yield of two

diastereomers). Spectral data match those reported in the literature.9

epizonarene (2.9). Yield calculated based on crude 1H NMR estimate utilizing dimethylsulfone

as an external standard (30% yield). Spectral data match those reported in the literature.10

54

-selinene (2.4). Yield calculated based on crude 1H NMR estimate utilizing dimethylsulfone as

an external standard (21% yield). Spectral data match those reported in the literature from crude

reaction mixture.11

2.7.4.3 Cyclization of 2.16 in Li+/WCA Sesquiterpene TH Cyclization.

Synthesized according to general procedure 2.7.4.1. In a well-kept glovebox, H2O, O2 0.5 ppm,

a scintillation vial was charged with [Li]+[B(C6F5)4]
- (0.01 equiv, 0.4 mg) and lithium chloride

(1.0 equiv, 1.7 mg). Dichloromethane was added (0.064 mM, 20 mL) and heterogeneous solution

was stirred for one minute before addition of fluoride substrate 2.16 (0.064 mmol, 14 mg).

Reactions were stirred at 30 C for 1–2 hours until complete by GC-FID reaction monitoring.

Upon completion, reactions were brought out of the glovebox, diluted with DCM, washed with

water, dried over Na2SO4, and concentrated under reduced pressure. Yields were estimated by

use of dimethylsulfone internal standard and integration of olefinic proton from crude reaction

mixture. All yields are reported from triplicate data. Products isolated by use of AgNO3-

55

impregnated silica through flash column chromatography to provide fractionated mixtures. These

are additionally fractionated by reverse phase HPLC using an Alltima C18 (5m, 25 cm length, 1

cm internal diameter) column, 98% MeCN/H2O for 60 minutes at 3mL/min. Impure products re-

subjected to reverse phase HPLC at 98% MeCN/H2O and 1 mL/min 1 – 3 times until sufficiently

purified. Solutions dried over MgSO4 and concentrated to produce purified products.

amorpha-4,11-diene (2.6). Yield calculated based on crude 1H NMR estimate utilizing

dimethylsulfone as an external standard (9% yield). Spectral data match those reported in the

literature.8

()--cedrene (2.7). Yield calculated as mixture with the 2-methyl epimer (2.8) based on crude

1H NMR estimate utilizing dimethylsulfone as an external standard (31% yield of two

diastereomers). Spectral data match those reported in the literature and matches natural -

cedrene standard.9

56

2-epi--cedrene (2.8). Yield calculated as mixture with the 2-methyl epimer (2.7) based on

crude 1H NMR estimate utilizing dimethylsulfone as an external standard (31% yield of two

diastereomers). Spectral data match those reported in the literature.9

epizonarene (2.9). Yield calculated based on crude 1H NMR estimate utilizing dimethylsulfone

as an external standard (44% yield). Spectral data match those reported in the literature.10

2.7.4.4 Cyclization of 2.21 in Li+/WCA Sesquiterpene TH Cyclization.

In a well-kept glovebox, H2O, O2 0.5 ppm, a scintillation vial was charged with

[Li]+[B(C6F5)4]
- (0.01 equiv, 0.4 mg) and lithium chloride (1.0 equiv, 1.7 mg). Dichloromethane

was added (0.064 mM, 20 mL) and heterogeneous solution was stirred for one minute before

addition of fluoride substrate 2.21 (0.064 mmol, 14 mg). Reaction stirred at 30 C for 1 hour

until complete by GC-FID reaction monitoring. Upon completion, reaction was brought out of

57

the glovebox, diluted with DCM, washed with water, dried over Na2SO4, and concentrated under

reduced pressure. Yield is estimated by use of dimethylsulfone internal standard and integration

of olefinic proton from crude reaction mixture. All yields are reported from triplicate data.

Product isolated by use of silica flash column chromatography to provide impure product. This

was subjected to reverse phase HPLC using an Alltima C18 (5m, 25 cm length, 1 cm internal

diameter) column, 98% MeCN/H2O for 60 minutes at 2mL/min. Solution dried over MgSO4 and

concentrated to produce purified product.

(1E,3E)-4-isopropyl-1,7-dimethylcyclodeca-1,3-diene (2.22). Yield calculated based on crude

1H NMR estimate utilizing dimethylsulfone as an external standard (57% yield). A small amount

of purified compound was obtained by silica flash column chromatography (1% Et2O/Hexanes)

and reverse phase HPLC (98% MeCN/H2O) to afford a colorless oil.

1H NMR (500 MHz, CDCl3) δ 5.66 (bs, 2H), 2.58-2.40 (m, 2H), 2.22 (m, 1H), 1.85 (m, 2H),

1.65 (s, 3H), 1.52 - 1.23 (m, 7H), 1.07 (d, J = 6.7 Hz, 3H) 1.02 (d, J = 6.7 Hz, 3H) 0.83 (d, J =

6.7 Hz, 3H).

13C NMR (125 MHz, CDCl3) δ 148.35, 137.75, 124.26, 120.57, 33.61, 31.26, 30.04, 29.71,

29.63, 27.42, 23.08, 22.49, 22.32, 21.66, 21.60.

FTIR (Neat Film NaCl): 2952, 2922, 2867, 1456, 1375, 814, 649 cm-1.

HRMS (EI-MS): Calculated for C15H26: 206.2035; Measured: 206.2045.

58

2.7.4.5 GC-FID and Crude 1H NMR Spectra

Figure 2.11 Crude 1H NMR (300 MHz, CDCl3) of compound 2.5

cyclization.

 Figure 2.10 Crude GC-FID trace of compound 2.5 cyclization.

59

 Figure 2.13 Crude 1H NMR (300 MHz, CDCl3) of compound 2.16

cyclization.

Figure 2.12 Crude GC-FID trace of compound 2.16 cyclization.

60

 Figure 2.15 Crude 1H NMR (300 MHz, CDCl3) of compound 2.21

cyclization.

 Figure 2.14 Crude GC-FID trace of compound 2.21 cyclization.

61

2.7.5 Procedure for Diterpene Tail-to-Head Cyclizations

In a well-kept glovebox, H2O, O2 0.5 ppm, a scintillation vial was charged with

[Li]+[B(C6F5)4]
- (0.05 equiv, 2.2 mg) and lithium tetrafluoroborate (1.0 equiv, 6.0 mg).

Dichloromethane was added (0.064 mM, 20 mL) and heterogeneous solution was stirred for one

minute before addition of fluoride substrate 2.10 (0.064 mmol, 19 mg). Reactions were stirred at

30 C for 1–2 hours. Reactions were monitored by GC-FID spectra unless noted otherwise. Upon

completion, reactions were brought out of the glovebox, diluted with DCM, washed with water,

dried over Na2SO4, and concentrated under reduced pressure. Yields were estimated by use of

dimethylsulfone internal standard and integration of olefinic proton from crude reaction mixture.

Yields are reported from triplicate data. Product isolated by use of AgNO3-impregnated silica

through flash column chromatography to provide fractionated mixtures. These are additionally

fractionated by reverse phase HPLC using an Alltima C18 (5m, 25 cm length, 1 cm internal

diameter) column, 98% MeCN/H2O for 60 minutes at 3mL/min. Impure product re-subjected to

reverse phase HPLC at 98% MeCN/H2O and 1 mL/min 3 times until sufficiently purified.

Solution dried over MgSO4 and concentrated to produce purified product.

62

2.7.5.1 Cyclization of 2.10 in Li+/WCA Diterpene TH Cyclization.

(4aS,4bS,5R,10aR)-5-isopropyl-4,8,10a-trimethyl-1,2,4a,4b,5,6,7,9,10,10a-

decahydrophenanthrene (2.11). Yield calculated based on crude 1H NMR estimate utilizing

1,2-dimethoxybenzene as an external standard (8%). Spectral data match those reported in the

literature.12

63

2.7.5.2 GC-FID and Crude 1H NMR Spectra

Figure 2.17 Crude 1H NMR (300 MHz, CDCl3) of compound 2.10

cyclization.

 Figure 2.16 Crude GC-FID trace of compound 2.10 cyclization.

64

2.7.6 1H, 13C, 19F NMR Spectral Data

 Figure 2.18 1H NMR (500 MHz, CDCl3) of compound 2.5.

65

 Figure 2.19 1H NMR (300 MHz, CDCl3) of compound 2.16.

Figure 2.20 1H NMR (300 MHz, CDCl3) of compound 2.29.

66

 Figure 2.21 1H NMR (300 MHz, CDCl3) of compound 2.30.

 Figure 2.22 1H NMR (300 MHz, CDCl3) of compound 2.31.

67

 Figure 2.23 1H NMR (300 MHz, CDCl3) of compound 2.32.

Figure 2.24 1H NMR (400 MHz, CDCl3) of compound 2.21.

68

Figure 2.25 13C NMR (126 MHz, CDCl3) of compound 2.21.

Figure 2.26 19F NMR (282 MHz, CDCl3) of compound 2.21.

69

Figure 2.27 1H NMR (300 MHz, CDCl3) of compound 2.10.

Figure 2.28 13C NMR (101 MHz, CDCl3) of compound 2.10.

70

Figure 2.30 1H NMR (400 MHz, CDCl3) of compound 2.6.

Figure 2.29 19F NMR (376 MHz, CDCl3) of compound 2.10.

71

Figure 2.31 1H NMR (400 MHz, CDCl3) of compound 2.7.

Figure 2.32 1H NMR (400 MHz, CDCl3) of compound 2.7/2.8.

72

Figure 2.33 13C NMR (126 MHz, CDCl3) of compounds 2.7/2.8.

Figure 2.34 1H NMR (500 MHz, CDCl3) of compound 2.9.

73

Figure 2.36 1H NMR (500 MHz, CDCl3) of compound 2.22.

Figure 2.35 1H NMR (500 MHz, CDCl3) of compound 2.4.

74

 Figure 2.37 13C NMR (126 MHz, CDCl3) of compound 2.22.

Figure 2.38 COSY NMR (500 MHz, CDCl3) of compound 2.22.

75

Figure 2.40 HMBC NMR (500 MHz, CDCl3) of compound 2.22.

 Figure 2.39 HSQC NMR (500 MHz, CDCl3) of compound 2.22.

76

Figure 2.42 13C NMR (126 MHz, CDCl3) of compound 2.11.

Figure 2.41 1H NMR (500 MHz, CDCl3) of compound 2.11.

77

 Figure 2.44 HMBC NMR (500 MHz, CDCl3) of compound 2.11.

Figure 2.43 COSY NMR (500 MHz, CDCl3) of compound 2.11.

78

 Figure 2.45 HSQC NMR (500 MHz, CDCl3) of compound 2.11.

79

2.7.7 Evaluation of Diterpenes by MicroED

2.7.7.1 MicroED procedure

 Crude sample extract from cyclization of 2.10 were prepared by working up reaction

according to procedure outlined in section 2.7.5 but before purification. The salt contaminant

was found after dissolving the concentrated mixture in EtOH and gently heating with a heat gun

until homogeneous. This mixture was allowed to evaporate over a period of days until particles

were observed. Using a micropipette, 2 μL of suspension onto a pure carbon 200 mesh Cu grid

and blotted with a kimwipe. This process was repeated twice and the TEM grid was inserted at

room temperature.

 Silicate particles were found after working up and performing AgNO3 silica gel

fractionation according to procedure found in section 2.7.5. The concentrated mixture was

dissolved in EtOH and heated gently with a heat gun until homogeneous and allowed to slowly

evaporate over a period of days. Using a micropipette, 2 μL of suspension onto a pure carbon

200 mesh Cu grid and blotted with a kimwipe. This process was repeated twice and the TEM

grid was inserted at room temperature.

 HPLC purified sample 2.11 was evaluated by crystallization from CDCl3 solvent in an

NMR tube over a period of days. A pure carbon 200 mesh Cu grid was dropped into the NMR

tube and shaken together with the sample. The grid was removed and gently tapped while held

with tweezers to remove excess powder. The sample was initially evaluated at room temperature

and found to be beam sensitive, so additional collection took place under cryogenic conditions.

Data was collected on a Thermo Fisher Talos F200C transmission electron microscope

operating with an accelerating voltage of 200keV, corresponding to an electron wavelength of

0.0251 Å. Electron diffraction data was collected using a Thermo Fisher CetaD camera.

80

Screening the TEM grid for microcrystals was performed at 2600x magnification in imaging

mode. Crystals selected for data collection were isolated by a selected area aperture. Data was

collected by taking images of the diffraction patterns generated by a continuously rotating crystal

integrated continuously at a rate of 3 seconds per frame. This rotation was performed at a rate of

0.3° per second with a minimum and maximum tilt range of −65° to +65°. Crystals selected for

data collection were isolated by a selected area aperture to reduce the background noise

contributions and calibrated to eucentric height to stay in the aperture over the entire tilt range.

Samples collected at cryogenic conditions were placed onto a Gatan 626 cryo holder. Slow

cooling the sample includes inserting room temperature Gatan 626 cryo holder and cooling to

cryogenic temperatures after insertion into the TEM. Plunge frozen samples were frozen in liquid

nitrogen, placed onto a liquid nitrogen cooled Gatan 626 cryo holder, and inserted and

maintained at cryogenic temperature for the duration of data collection on the electron

microscope. All diffraction data was processed using the XDS suite of programs.13–15 Structure

were solved ab initio by direct methods in SHELXT or SHELXD. 16–7

81

2.7.8 Supplementary Notes & References

(1) Kuprat, M.; Lehmann, M.; Shulz, A; Villinger, A. Synthesis of pentafluorophenyl silver by

means of Lewis acid catalysis: Structure of silver solvent complexes. Organometallics 2010, 29,

1421–1427.

(2) L’Heureux, A.; Beaulieu, F.; Bennetti, C.; Bill, D. R.; Clayton, S.; LaFlamme, F.;

Mirmehrabi, M.; Tadayon, S.; Tovell D; Couturier, M. Aminodifluorosulfinium salts: selective

fluorination reagents with enhanced thermal stability and ease of handling. J. Org. Chem. 2010,

75, 3401–3411.

(3) Sladojevich, F.; Arlow, S. I.; Tang, P.; Ritter, T. Late-stage deoxyfluorination of alcohols

with PhenoFluor. J. Am. Chem. Soc. 2013, 135, 2470–2473.

(4) Dryzhakov, M.; Richmond, E.; Li, G.; Moran, J. Catalytic B(C6F5)3•H2O-promoted

defluorinative functionalization of tertiary aliphatic fluorides J. Fluorine Chem. 2017, 193, 45–

51.

(5) Kim, J.; Matsuyama, S.; Suzuki, T. Deuterated analogues of 4,8-dimethyldecanal, the

aggregation pheromone of Tribolium castaneum: synthesis and pheromonal activity J. Label

Compd. Radiopharm. 2004, 47, 921–934.

(6) Kaihara, K.; Toyomi, K.; Numata, H.; Ohfune, Y.; Shinada, T. Structure–activity relationship

of novel juvenile hormone, JHSB3, isolated from the stink bug, Plautia stali Tetrahedron 2012,

68, 106–113.

(7) Su, C.; Hopson, R.; Williard, P. G. Isotopically enriched 13C diffusion-ordered NMR

spectroscopy: analysis of methyllithium J. Org. Chem. 2013, 78, 11733–11746.

(8) Yadav, J. S.; Thirupathaiah, B.; Srihari, P. A concise stereoselective total synthesis of (+)-

Artemisinin Tetrahedron 2010, 66, 2005–2009.

82

(9) Horton, M.; Pattenden, G. Bicyclo[3.3.0]octenones in synthesis. A new synthesis of ()-

cedrene using sequential inter- and intra-molecular Michael reactions J. Chem. Soc. Perkin

Trans. 1 1984, 0, 811–817.

(10) Ngo, K.; Brown, G. D. Synthesis of sesquiterpene allylic alcohols and sesquiterpene dienes

from Cupressus bakeri and Chamaecyparis obtusa J. Chem. Soc. Perkin Trans. 1 2000, 0, 189–

194.

(11) Fukuzawa, A.; Aye, M.; Takaya, Y.; Masamune, T.; Murai, A. A sesquiterpene alcohol

from the red alga Laurencia nipponica Phytochemistry 1990, 7, 2337–2339.

(12) Dauben, W. G.; Hubbell, J. P.; Oberhansli, P. & Thiessen, W. E. Acid-catalyzed cyclization

of cembrene and isocembrol. J. Org. Chem. 1979, 44, 669–673.

(13) Kabsch, W. Acta Cryst. 2010, D66, 125–132.

(14) Kabsch, W. Acta Cryst. 2010, D66, 133–144.

(15) Hattne, J., et al. Acta Cryst. 2015, 71, 353–360.

(16) Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122.

(17) Sheldrick, G. M. Acta Cryst. 2015 A71, 3–8.

(18) Sheldrick, G. M. Acta Cryst. 2015, C71, 3–8.

(19) Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. J. Appl. Cryst. 2011, 44, 1281–1284.

83

CHAPTER THREE

Small Molecule Structural Determination Utilizing Microcrystal Electron Diffraction

Jessica E. Burch, Austin Smith, Seb Caille, Shawn D. Walker, Ryan Wurz, Victor Cee, Jose

Rodriguez, D. Gostovic, Kyle Quasdorf, Hosea M. Nelson In Preparation.

Brian J. Curtis, Lee Joon Kim, Chester J. J. Wrobel, James M. Eagan, Rubin A. Smith, Jessica E.

Burch, Henry H. Le, Alexander B. Artyukhin, Hosea M. Nelson, Frank C. Schroeder Org. Lett.

2020, 22, 6724–6728.

3.1 Abstract

The examples and work outlined in this chapter showcase the application of microcrystal

electron diffraction (microED) towards pharmaceutical and natural product compounds,

demonstrating its potential as a routine technique for structural analysis of small molecules.

Fifteen small molecule structures were solved from compounds within active pharmaceutical

pipelines, often without the need for cryogenic data collection or crystallization attempts. In

addition, the structure of secondary metabolites from Caenorhabditis elegans nematodes were

determined utilizing a combination of microED and synthesis.

3.2 Introduction

Structural analysis is a fundamental part of rationalizing chemical behavior and

developing hypotheses that fuel innovation in the chemical sciences. Many of the commonly

employed methods to elucidate the structure of small molecules, such as infrared spectroscopy,

UV-vis, and NMR spectroscopy, rely on inference.1 While a combination of these spectroscopic

techniques can be sufficient to confidently assign structure, there are cases in the literature of

well-studied natural products, and even pharmaceutical compounds in clinical trials, that were

84

initially misassigned.2,3 This can lead to challenges with intellectual property and years of

research effort spent synthesizing a different compound than intended.

Methods to provide unambiguous structural solutions are limited. X-ray crystallography

has long been regarded as the gold standard for structural elucidation but is limited in practice by

stringent crystal quality and size requirements, as described in detail in Chapter 1.4 For samples

that fail to produce crystals of sufficient quality for single crystal X-ray analysis, X-ray powder

diffraction and NMR crystallography have been developed as alternative analytical techniques.

These techniques may remain ineffective at providing assignments in the case of highly complex

compounds.5–10 X-ray free-electron laser (XFEL) crystallography can resolve complex species,

but with only a handful of XFEL facilities in existence, its use for routine data analysis is

impractical.11 The complexity of chemical pipelines from modern pharmaceutical programs are

increasing (Figure 3.1), making the development of novel analytical methods suitable for

Figure 3.1 Molecular complexity score ranking the pipeline of Amgen’s small molecule pharmaceutical programs.

AMG 510

AMG 176

Complexity Score
molecular weight
number of synthetic steps
number of stereogenic centers
number of rings

85

providing routine, unambiguous structural assignment from challenging molecules critical for the

future of drug development.12

Microcrystal electron diffraction (microED) has recently increased in popularity as a

crystallographic technique capable of structural determination utilizing microcrystals that may be

present in even seemingly amorphous powders.13 A number of reports have compared structural

solutions of identical species obtained by both single crystal X-ray crystallography and microED,

demonstrating the ability for microED to provide data equivalent in accuracy to the current gold

standard in solid state structural assignment.13 MicroED has been used to elucidate structures

spanning a wide range of chemical space, from proteins, materials, and MOFs, to small organic

molecules, complex natural products, and organometallic species.14–20 Furthermore, recent work

determining the absolute configuration of a nanocrystalline pharmaceutical compound suggests a

promising future in which microED can be utilized to determine absolute stereochemistry.21 In

addition to its promise as a novel, routine crystallographic technique, microED is capable of

detecting polymorphology and crystalline impurities on the nanomolar scale.22 This sensitivity is

particularly attractive for industrial applications, where detection of minor impurities and crystal

polymorphology could offer commercial value.23

3.3 MicroED of Pharmaceutical Compounds

The purpose of this study was to evaluate the practicality of using microED as a tool to

routinely determine chemical structures of pharmaceutically relevant compounds. Thirty

pharmaceutical samples were selected for evaluation by microED, spanning a range of chemical

complexity from both medicinal and process pharmaceutical sectors. A subset of samples were

isolated directly following routine chromatographic purification with no attempts to promote

crystallinity, while another subset were isolated through purification by recrystallization.

86

Initial efforts began by rapidly screening all thirty samples at room temperature to evaluate

crystallinity and collect diffraction datasets during the initial screening, if possible. Samples were

prepared by transferring milligram quantities of dry powder as received into a dram vial and

manually grinding with a glass pipette (Figure 3.2). A pure carbon 200 mesh Cu grid was dropped

into the vial and shaken together with the sample. The grid was removed and gently tapped while

held with tweezers to remove excess powder. The sample was placed onto a single tilt holder and

inserted into a Thermo Fisher Scientific Talos F200C transmission electron microscope equipped

with a Ceta-D detector operating at an accelerating voltage of 200 keV.

During this initial screening period, active microscope time was limited to one hour or less

per sample. To screen for crystallinity, particles were located on the grid in imaging mode at 2600x

Figure 3.2 Representative MicroED data collection workflow.

87

magnification. After identifying a particle of interest, a diffraction pattern was recorded by

isolating a region of the particle using a selected area aperture and entering parallel-illuminated

diffraction mode utilizing the low dose software on the Thermo Fisher microscope user interface.

A single image of the diffraction pattern was taken on a Thermo Fisher Scientific Ceta-D

camera. If user inspection of the diffraction pattern suggested that the particle was mono-

crystalline and provided <1.2 Å resolution diffraction, the microscope was returned to imaging

mode. The eucentric height, defined to be the point at which the sample does not move laterally as

the crystal is rotated, is achieved through finely adjusting the stage height to ensure the crystal

would remain within the selected area aperture throughout a tilt series. The maximum tilt range is

± 65°, but neighboring crystals and grid bars might prevent collection of a full 130° dataset. After

making these adjustments and returning to diffraction mode, a continuously rotating electron

diffraction movie was collected by rotating the stage at a rate of 0.3° s-1. The Ceta-D CMOS 4k x

4k camera was operated using rolling shutter mode and continuously integrated at a rate of 3

seconds per frame with data binning by 2 to produce 2k x 2k images. Diffraction movies were

saved as SER files.

Given the ability to collect multiple movies in a matter of minutes, we wanted the ability

for a single user to simultaneously collect and process data. To facilitate this, we developed a

Python script that interacts with existing programs utilized for processing microED data to allow

for automated conversion and indexing, inspired by similar automation developed for serial

rotation electron diffraction.24–27 Every movie collected for this study was successfully indexed

and scaled using this strategy, taking approximately 1-2 minutes to process each dataset. The

development and use of automated data processing pipelines for microED is discussed in detail in

Chapter 4.

88

Once one or more processed movies are obtained, a user can either directly solve the data

by using the SHELX software suite, or quickly merge multiple pre-processed datasets using

XSCALE before submitting to SHELX. 28–30 By following this screening method, six of the thirty

compounds produced ab initio preliminary solutions in an hour or less per sample (Figure 3.3).

After obtaining these preliminary solutions from SHELXT or SHELXD, the data was refined using

SHELXL within ShelXle.31

Figure 3.3 Structures in which a preliminary microED solution was obtained in under one hour each. Structures 3.1

and 3.3 have two molecules within their asymmetric unit. Hydrogens omitted for clarity.

Nine datasets were recorded for enantiomeric pair 3.1 and 3.3 (Figure 3.3), and for each

compound two to three of these datasets were merged to provide the structural solutions. Both

isomers crystallized in the monoclinic space group P21 with similar unit cell parameters. The

3.1 3.2

3.3 3.4

3.5 3.6

89

asymmetric unit of each enantiomer contained two molecules, and overlaying these molecules

using PyMol software demonstrated conformational differences that break their crystallographic

equivalency.32 Enantiomeric pair 3.2 and 3.4 were also obtained during the rapid screening stage,

crystallizing in orthorhombic space group P21212 with nearly identical unit cell parameters. Three

to four datasets were collected for each enantiomer, but the structure of each enantiomer was

resolved using a single dataset. It is not trivial to assign relative stereochemistry by 2D NMR for

many of the compounds in Figure 3.3, in which stereogenic centers residing on acyclic portions of

the molecule can be difficult to assign due to free rotation.

Co-crystallized species 3.5 was obtained in space group P21 after collecting five datasets

and merging four for the final solution. For this analyte, considerable rotational disorder was

observed at room temperature for the camphor sulfonic acid (CSA) moiety. This structure assigns

connectivity of the spirocyclic compound, but the CSA rotational disorder prevents unambiguous

assignment of stereochemistry. Interestingly, the enantiomer of this compound was also studied,

but required cryogenic data collection due to its beam sensitivity.33 Compound 3.6 was analyzed

after purification by crystallization, while its enantiomer, (3.12, Figure 3.8), was studied as a

powder isolated without any crystallization attempts. Only one dataset was collected to generate a

single movie solution of crystallized enantiomer 3.6 (Figure 3.3) in P212121. In contrast, non-

crystallized enantiomer 3.12 (Figure 3.8) required multiple hours of screening to locate

monocrystalline domains.

A subset of samples subjected to the initial screening at room temperature provided high

resolution incident diffraction, but rapid truncation of diffraction resolution was observed over the

duration of the continuous rotation movie, presumably due to radiation damage (Figure 3.4).

Depending on the severity of the beam sensitivity, high quality diffraction data can often still be

90

obtained, but may require extensive data collection and trial-and-error merging of datasets until an

optimal combination is achieved. This can be a time- and labor-intensive process. As an alternative

strategy, samples can be cooled to cryogenic temperatures within the microscope to reduce beam

sensitivity (Figure 3.4a–3.4b vs. 3.4c–3.4d). Cryogenic screening was avoided except in the case

of these highly beam sensitive samples due to the time required to cool and subsequently warm

the cryogenic specimen holder between samples.

Figure 3.4 Diffraction resolution loss. Room temperature TEM diffraction movie frame 1 (a) and frame 50 (b) of

3.9 vs. cryogenic diffraction movie frame 1 (c) and frame 50 (d) of 3.9, highlighting attenuation of resolution loss

with reduced temperature.

To prepare the next batch of samples, new dry powder grids were prepared as described

previously. These grids were placed onto a 626 Gatan cryo holder and inserted into a Talos F200C

TEM at room temperature. After insertion but before opening the column valves, the cryo holder

a b

c d

91

was cooled with liquid nitrogen to -177 °C. The temperature was monitored using a Gatan 1905

Temperature Controller. After stabilizing at cryogenic temperatures, particles were again screened

using selected area diffraction. An additional four compounds (3.7–3.10, Figure 3.5) were solved

by this method, with a maximum time of three hours from powder to preliminary structure per

sample. It is important to note that these cryogenically cooled samples did not require time-

intensive vitrification and cryo transfer processes, still making this strategy a convenient method

for rapid structural elucidation.

Figure 3.5 Small molecule structures solved by microED at cryogenic temperatures in under three hours each.

Hydrogens omitted for clarity. Crystals of species 3.7 had two molecules in their asymmetric unit.

Samples that initially looked promising by incident diffraction, but were unable to provide

sufficient data at room temperature, had a marked improvement in diffraction resolution at

cryogenic temperatures. Minor variations in the unit cell axes could be observed between room

temperature data and cryogenic data, but no phase transitions were observed. Remarkably, the

structure of compound 3.7 (Figure 3.5) containing a 16-membered ring, was able to be solved by

SHELXD in P1 after merging three out of four generated datasets. While salt species 3.8 did not

3.7 3.8

3.9 3.10

92

provide a solution at room temperature, collection of four datasets (and merging of three) at

cryogenic temperatures provided a solution in P21 with less rotational disorder at the camphor

sulfonic acid molecule than its enantiomeric counterpart, 3.5 (Figure 3.3). To resolve ambiguity

of the disordered CSA, 3.5 was subjected to additional cryogenic screening. Collection of four and

merging of two datasets provided a solution with reduced disorder. It is critical to note that the

cryogenic structure of 3.5 led to unambiguous assignment of the stereochemistry at the CSA,

producing the expected enantiomeric structure to 3.8; in contrast, relying upon the disordered CSA

in the room temperature structure would lead to misassignment of stereochemistry of the

spirocycle. The error values for these two structures are similar, with R = 0.1198, GooF = 1.239

for the room temperature structure, and R = 0.1127, GooF = 1.143 for the cryogenic structure. The

primary differences between these structures are seen in the preliminary solution, obtained with

no human input other than molecular formula (Figure 3.6). In the preliminary structures, the

cryogenic structure is missing two atoms in the CSA; the room temperature preliminary solution

is missing five. Importantly, the missing atoms in the room temperature structure include those

relevant to assigning stereochemistry.

Figure 3.6 Preliminary solutions of 3.5 from cryogenic collection (left) and room temperature collection (right).

93

The other difference between these structures is seen in the thermal ellipsoid

representations (Figure 3.7). While the spirocycle is well-resolved in both structures, the thermal

ellipsoids of the CSA are drastically reduced with the cryogenic temperatures. We believe this

serves as an excellent example as to why it is critical for microED reports to not only include

standard crystallographic statistics, but preliminary structural solutions and refined structure files.

Figure 3.7 Refined structures of 3.5 from cryogenic collection (left) and room temperature collection (right).

Thermal ellipsoids shown at 30% probability.

Diene 3.9 (Figure 3.5) yielded a preliminary solution in P212121 after generating and

merging of three datasets. Amine salt 3.10 required collection of seven and merging of three

movies to generate a solution in space group P212121. Each of these samples produced a

preliminary structure in three hours or less.

The remaining eighteen samples (3.11–3.15 Figure 3.8, and Figure 3.9) were either too

polycrystalline to easily obtain a structure, had poor diffraction resolution, or provided no

diffraction at room temperature. In the case of polycrystalline compound 3.12 (Figure 3.8),

additional hours spent carefully locating monocrystalline domains within a largely polycrystalline

R = 0.1198, GooF = 1.239 R = 0.1127, GooF = 1.143

94

sample ultimately provided the structure at room temperature. From eight datasets collected, two

were merged to provide a solution in space group C2. Other low resolution and polycrystalline

samples were subjected to additional screening, but ultimately crystallization attempts were

required to provide their solutions.

To crystallize, ~1 mg of powder was placed into 6 x 50 mm borosilicate culture tubes

purchased from VWR. Samples were dissolved in approximately 500 uL of solvent and allowed

to slowly evaporate at room temperature. Higher boiling solvents were evaporated from open

containers, while low boiling solvents required placing the culture tube inside an empty dram vial

with a slightly loosened cap. If the initial solvent failed to produce crystals after fully evaporating,

the amorphous samples were re-dissolved in the same culture tube with a new solvent mixture.

Evaporation occurred until precipitation was observed. Sample crystallization time spanned from

overnight to 3 days. Compound 3.14 was crystallized from diethyl ether. The crystals were placed

onto a grid as a dry powder, plunge frozen in liquid nitrogen, and transferred into the TEM while

the holder was maintained at cryogenic temperatures due to the presumed volatility of the sample.

Microcrystals of enantiomeric pair 3.11 and 3.13 were obtained from slow evaporation from a

50/50 mixture of MeCN and H2O and dried under reduced pressure. Microcrystals of sample 3.15

were generated by slow evaporation from a mixture of H2O and DMSO (10% v/v). The crystals

were blotted with a kimwipe and dried under reduced pressure to remove excess solvent before

being inserted into the TEM.

95

Figure 3.8 Structures obtained via microED with extensive screening and recrystallization. 3.12 Obtained by

locating monocrystalline species on a largely polycrystalline grid. 3.11, 3.13–3.15 Samples recrystallized to obtain

structure. 3.11 and 3.13 contain four molecules within their asymmetric unit. 3.15 partial view of asymmetric unit.

Hydrogens omitted for clarity.

Eleven structures were obtained directly from the samples as received, four of those

compounds having been isolated without any attempts to crystallize during purification. The

structural elucidation of four additional compounds were achieved through recrystallization

screening. For example, sulfonamide pair 3.11 and 3.13 (Figure 3.8) were re-crystallized from

MeCN/H2O and provided solutions in P21212. While screening recrystallized 3.13, multiple

similar unit cells were encountered, suggesting polymorphism. The structure of the presumed

polymorph was not able to be determined and was not detected in the original powder sample.

3.11

3.13

3.15

3.14

3.12

96

Structure 3.15 is another example of a process sample that provided structural elucidation

but was not necessarily representative of the original sample composition. While the presence of

piperazine is maintained at levels lower than 5000 ppm, this impurity was found in significant

amounts in the structure obtained from recrystallization. This highlights a limitation in gaining

information about the bulk sample from recrystallized samples analyzed by microED.

Figure 3.9 Samples that failed to generate structures. (a) Enantiomeric pairs (only one enantiomer drawn)

(b) PROTAC, n = 0–4

The remaining fifteen compounds failed to produce structures in our hands in a timely

manner. These samples are comprised of three small molecule enantiomeric pairs (Figure 3.9a)

and nine proteolysis targeting chimera (PROTAC) compounds (Figure 3.9b). While most

medicinal and process small molecule samples can be evaluated as dry powders, complex species

97

like PROTACs are assumed to benefit from evaluation in the frozen hydrated state, as is described

in more detail in Chapter 1. Extensive crystallization and vitrification screening is a potential

avenue for producing microcrystals from these highly complex species, but was beyond the scope

of this rapid-timeline study in which fifteen of thirty compounds were solved using approximately

forty hours of TEM time and seventy hours of automated and user-driven data processing.

3.4 Pharmaceutical Atropisomerism

 Atropisomerism is a type of axial chirality that arises from hindered rotation about a single

bond (Figure 3.10). If the barrier to rotation is sufficiently high, typically above 20 kcal/mol, these

conformers can be isolated separately.34 There are examples of FDA-approved drugs and

Figure 3.10 Schematic of atropisomerism.

experimental compounds that possess atropisomerism, and the differing conformations of these

species have been shown to play an important role in their biological activity.34,35

One of these experimental atropisomeric compounds is GS-6207 (Figure 3.11) developed

by Gilead Sciences. This compound is a potent, long-acting HIV-1 capsid inhibitor that possesses

antiviral activity against both wild-type and multidrug-resistant HIV variants.36,37 GS-6207 is

currently undergoing clinical trials evaluating its use in combination with other antiretroviral

agents for treatment of HIV.38 Interestingly, this compound possesses two atropisomers, 3.16 and

98

3.17 that can readily interconvert in solution at room temperature; however, as a crystalline sodium

salt, these species do not interconvert under ambient conditions.36

Figure 3.11 Atropisomers of GS-6207.

In this study, we sought to unambiguously confirm the identity of a single atropisomer of

GS-6207 isolated as a sodium salt. Efforts to obtain a structure via single crystal X-ray

crystallography were undertaken, but proved to be unsuccessful. MicroED has been demonstrated

to be a powerful alternative to X-ray crystallography, particularly in cases where crystal size or

morphology prevent structural elucidation by X-ray crystallography. Analysis of GS-6207

microcrystals utilizing microED led to unambiguous determination of atropisomer identity.

The sodium salt of GS-6207 was analyzed by loading dry powder onto TEM grid and

plunging into liquid nitrogen. A preliminary solution was obtained by merging three datasets from

three separate crystals with no user input other than molecular formula utilizing SHELXD.24–26,28–

31 This high resolution (0.95 Å) and high completeness (95.7%) structure in P212121

unambiguously confirms the identity of the isolated atropisomer as the sodium salt of 3.17 (Figure

3.12). To confirm that this structure is representative of the bulk material, a simulated powder X-

ray diffraction pattern was generated from the refined microED structure and overlayed with the

99

experimental XPRD of the bulk material.39 The agreement between these PXRD patterns confirms

identification of the bulk sample as sodium salt of 3.17.

Figure 3.12 Ab initio microED solution of GS-6207 sodium salt (left), confirming atropisomer identity as 3.17

(right).

100

3.5 MicroED of Natural Products

The nematodes Caenorhabditis elegans and Pristionchus pacificus are simple but powerful

model systems for human physiology and biochemistry.40–43 Studies of these organisms have led

to the discovery of an extensive network of small molecules that play a central role in the regulation

of aging, behavior, and development.44,45 These signaling molecules are biochemically derived

from assembly of simple building blocks from all major primary metabolic pathways, including

nucleoside metabolism, demonstrating a broad biological importance.

During metabolomic studies of mutant C. elegans and P. pacificus, the Schroeder group

and others identified a series of unusual purine nucleoside and gluconucleosides metabolites

(Figure 3.13).40,44,45 Further studies revealed the presence of related gluconucleoside natural

products

Figure 3.13 Unusual purine nucleoside and gluconucleosides from C. elegans and other nematodes.

that incorporate a uric acid moiety. This is notable due to the known biosynthetic generation of

uric acid from purine degradation, while there is an underrepresentation of this motif in reported

natural products isolated from animals.46–50 Interestingly, uric acid supplementation was shown to

increase the life span in C. elegans, and these long-lived mutants showed an increase in receptors

related to insulin signaling and production of uric acid-derived gluconucleosides uglas#1 (3.18,

Figure 3.14) and uglas#11 (3.19) relative to ascaroside ascr#1 (3.20).51–53

101

Figure 3.14 Upregulation of 3.18 and 3.19 in long-lived mutant C. elegans compared to 3.20 and their proposed

structures from MS2 studies.

 The proposed structure of uglas#1 (3.18) from mass spectrometry studies includes uric

acid, glucose, and an ascaroside moiety, but the connectivity of these components was unable to

be determined due to insufficient quantities of isolable metabolite for studies by NMR.54 To

determine the connectivity of these species, the synthesis of uglas#1 was undertaken by our

collaborators in the Schroeder laboratory. Glycosylation of uric acid (3.21, Figure 3.15) with

protected glucose 3.22 produced a mixture of three constitutional isomers, 3.23, 3.24, and 3.25.

Deprotection and comparison of these products to C. elegans extract confirmed that the major

synthetic glycosylation product, gluric#1 (3.23), was present as a metabolite in C. elegans.

Unfortunately, 2D NMR was unable to assign N-linkage due to broadening of important HMBC

correlations. To confirm the identity of this metabolite, we performed microED studies. MicroED

has recently been demonstrated to be a powerful tool for small molecule structure elucidation, but

had remained largely unproven in natural product applications. Synthetic gluric#1 (3.23), isolated

102

Figure 3.15 Synthesis of a mixture of glycosylated uric acid-derivatives en route to uglas#1.

by reversed-phase flash chromatography as a white powder, was deposited on a Quantifoil holey-

carbon TEM grid. Initial electron micrographs of the samples showed numerous microcrystalline

domains, including prisms 1−3 μm long. Continuous rotation selected area diffraction data were

collected from 104 crystals. Merging of four data sets provided a direct methods solution from

high resolution (1.0 Å), high-completeness (87%) data in P1.

Figure 3.16 Preliminary solution (left) and refined structure (right) of gluric#1 3.23.

Importantly, without refinement or any user input besides molecular formula, the initial

structural solution obtained from SHELXD confirms glycosylation regioselectivity, despite

lacking some atoms on the sugar fragment (Figure 3.16).28–31 Refinement of this structure

1.0 Å resolution, R = 0.14, GooF = 1.223

103

allowed for placement of all atoms of gluric#1 (3.23), providing for unambiguous confirmation

of the structure.

Figure 3.17 Proposed and revised structure of 3.19.

Having resolved this structural ambiguity, the Schroeder group continued their synthetic

effort and ultimately confirmed the revised structure of the uric acid-derived gluconucleoside

uglas#11 (Figure 3.17), as is described in detail in our published work.20

3.6 Conclusion

 In conclusion, the studies described in this chapter highlight the emerging technique of

microED as a promising tool capable of routine unambiguous structural elucidation of small

molecules comprising a range of chemical complexity. While study of biological samples via

microED typically require time-consuming vitrification and cryo transfer processes, we

demonstrated that many small molecule compounds provided diffraction data sufficient for

obtaining preliminary solutions within minutes to a few hours from room temperature or non-

solvated cryogenic conditions. Additionally, microED addresses challenges relevant to natural

products isolation and total synthesis, in which complex molecules may not be able to be resolved

confidently using NMR studies, and it is often not feasible to grow crystals large enough for single

crystal X-ray crystallography.

104

3.7 Notes and References

(1) Günther, H. NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry;

John Wiley & Sons: New York, 2013.

(2) Chhetri, B. K.; Lavoie, S.; Sweeney-Jones, A. M.; Kubanek, J. Recent trends in the structural

revision of natural products. Nat. Prod. Rep. 2018, 35 514−531.

(3) Jacob, N. T.; Lockner, J. W.; Kravchenko, V. V.; Janda, K. D. Pharmacophore reassignment

for induction of the immunosurveillance cytokine TRAIL. Angew. Chem. Int. Ed. 2014, 53,

6628−6631.

(4) Dunitz, J. D. X-ray Analysis and the Structure of Organic Molecules; Verlag: Zürich, 1995.

(5) Florence, A.; Johnston, A.; Fernandes, P.; Shankland, K.; Stevens, H. N. E.; Osmundsen, S.;

Mullen, A. B. Powder study of hydrochlorothiazide form II. Acta Cryst., Sect. E: Struct. Rep.

Online. 2005, 61, 2798−2800.

(6) Harris, K. D. M. Structure solution from powder X-ray diffraction data by genetic algorithm

techniques, applied to organic materials generated as polycrystalline products from solid state

processes. Mat. Man. Proc. 2009, 24, 293−302.

(7) Miclaus, M.; Grosu, I. G.; Filip, X.; Tripon, C.; Filip, C. Optimizing structure determination

from powders of crystalline organic solids with high molecular flexibility: the case of lisinopril

dehydrate. CrystEngComm. 2014, 16, 299−303.

(8) Luedeker, D.; Gossmann, R.; Langer, K.; Brunklaus, G. Crystal Engineering of Pharmaceutical

Co-crystals: “NMR Crystallography” of Niclosamide Co-crystals. Cryst. Growth Des. 2016, 16,

3087−3100.

(9) Hope, M. A.; Nakamura, T.; Ahlawat, P.; Mishra, A.; Cordova, M.; Jahanbakhshi, F.;

Mladenović, M.; Runjhun, R.; Merten, L.; Hinderhofer, A.; Carlsen, B. I.; Kubicki, D. J.;

105

Gershoni-Poranne, R.; Schneeberger, T.; Carbone, L. C.; Liu, Y.; Zakeeruddin, S. M.; Lewinski,

J.; Hagfeldt, A.; Schreiber, F.; Rothlisberger, U.; Grätzel, M.; Milić, J. V.; Emsley, L. Nanoscale

phase segregation in supramolecular p-templating for hyrbide perovskite photovoltaics from NMR

crystallography. J. Am. Chem. Soc. 2021, 143, 1529−1538.

(10) David, W. I. F.; Shankland, K. Structure determination from powder diffraction data. Acta

Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 52−64.

(11) Kao, C.-C. Challenges and opportunities for the next decade of XFELs. Nat. Rev. Phys. 2020,

2, 340−341.

(12) Caille, S.; Cui, S.; Faul, M. M.; Mennen, S. M.; Tedrow, J. S.; Walker, S. D. Molecular

complexity as a driver for chemical process innovation in the pharmaceutical industry. J. Org.

Chem. 2019, 84, 4583–4603.

(13) (a) Gemmi, M.; Mugnaioli, E.; Gorelik, T. E.; Kolb, U.; Palatinus, L.; Boullay, P.; Hovmöller,

S.; Abrahams, J. P. 3D Electron Diffraction: The Nanocrystallography Revolution. ACS Cent. Sci.

2019, 5, 1315–1329. (b) Jones, C. G.; Martynowycz, M. W.; Hattne, J.; Fulton, T. J.; Stoltz, B.

M.; Rodriguez, J. A.; Nelson, H. M.; Gonen, T. The CryoEM Method MicroED as a Powerful

Tool for Small Molecule Structure Determination. ACS Cent. Sci. 2018, 4, 1587–1592.

(14) Mugnaioli, E.; Lanza, A. E.; Bortolozzi, G.; Righi, L.; Merlini, M.; Cappello, V.; Marini, L.;

Athanassiou, A.; Gemmi, M. Electron Diffraction on Flash-Frozen Cowlesite Reveals the

Structure of the First Two-Dimensional Natural Zeolite. ACS Cent. Sci. 2020, 6, 1578–1586.

(15) Clabbers, M. T. B.; Hongyi, X. Microcrystal electron diffraction in macromolecular and

pharmaceutical structure determination. Drug Discovery Today: Technologies. 2020, In Press.

(16) Jones, C. G.; Asay, M.; Kim, L. J.; Kleinsasser, J. F.; Saha, A.; Fulton, T. J.; Berkley, K. R.;

Cascio, D.; Malyutin, A. G.; Conley, M. P.; Stoltz, B. M.; Lavallo, V.; Rodríguez, J. A.; Nelson,

106

H. M. Characterization of Reactive Organometallic Species via MicroED. ACS Centr. Sci. 2019,

5, 1507–1513.

(17) Das, P. P.; Perez, A. G.; Galanis, A. S.; Nicolopoulos, S. Structural Characterization of Beam

Sensitive Pharmaceutical Compounds Using 3D Electron Diffraction-Micro-ED at Low Dose with

Pixelated Detectors. Microscopy and Microanalysis. 2020, 26, 1522–1522.

(18) Kim, L. J.; Xue, M.; Li, X.; Xu, Z.; Paulson, E.; Mercado, B. Q.; Nelson, H. M.; Herzon, S.

Structural Revision of the Lomaiviticins J. Am. Chem. Soc. 2021, 143, 6578–6585.

(19) Samkian, A.; Kiel, G. R.; Jones, C. G.; Bergman, H.; Oktawiec, J.; Nelson, H. M.; Tilley, T.

D. Elucidation of Diverse Solid-State Packing in a Family of Electron-Deficient Expanded

Helicenes via Microcrystal Electron Diffraction (MicroED) Angew. Chem. Int. Ed. 2020, 5, 2493–

2499.

(20) Curtis, B. J.; Kim, L. J.; Wrobel, C. J. J.; Eagen, J. M.; Smith, R. A.; Burch, J. E.; Le, H. H.;

Artyukhin, A. B.; Nelson, H. M.; Schroeder, F. C. Identification of Uric Acid Gluconucleoside–

Ascaroside Conjugates in Caenorhabditis elegans by Combining Synthesis and MicroED Org.

Lett. 2020, 22, 6724–6728.

(21) Brázda, P.; Palatinus, L.; Babor, M. Electron diffraction determines molecular absolute

configuration in a pharmaceutical nanocrystal. Science. 2019, 364, 667–669.

(22) Kim, L. J.; Ohashi, M.; Zhang, Z.; Tan, D.; Asay, M.; Cascio, D.; Rodriguez, J. A.; Tang, Y.;

Nelson, H. M. Prospecting for natural products by genome mining and microcrystal electron

diffraction. Nat. Chem. Biol. 2021, 17, 872−877.

(23) Lee, A. Y.; Erdemir, D.; Myerson, A. S. Crystal polymorphism in chemical process

development. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 259−280.

(24) Kabsch, W. Xds. Acta Crystallogr. 2010, D66, 125–132.

107

(25) Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta

Crystallogr. 2010, D66, 133–144.

(26) Hattne, J.; Reyes, F. E.; Nannenga, B. L.; Shi, D.; de la Cruz, M. J.; Leslie, A. G. W.; Gonen,

T. MicroED data collection and processing. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71,

353−360.

(27) Wang, B.; Zou, X.; Smeets, S. Automated serial rotation electron diffraction combined with

cluster analysis: an efficient multi-crystal workflow for structure determination IUCrJ. 2019, 6,

854–867.

(28) Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122.

(29) Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta

Cryst. 2015 A71, 3–8.

(30) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

(31) Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. ShelXle: A Qt graphical user interface for

SHELXL. J. Appl. Cryst. 2011, 44, 1281–1284.

(32) Delano, W. The PyMOL Molecular Graphics System (Schrodinger LLC).

http://www.pymol.org.

(33) Hattne, J.; Shi, D.; Glynn, C.; Zee, C.-T.; Gallagher-Jones, M.; Martynowycz, M. W.;

Rodriguez, J. A.; Gonen, T. Analysis of Global and Site-Specific Radiation Damage in Cryo-EM

Structure 2018, 5, 759–766.

(34) Toenjes, S. T.; Gustafson, J. L. Atropisomerism in medicinal chemistry: challenges and

opportunities Future Med. Chem. 2018, 10, 409–422.

(35) Zask, A.; Murphy, J.; Ellestad, G. A. Biological stereoselectivity of atropisomeric natural

products and drugs Chirality 2013, 25, 265–274.

http://www.pymol.org/

108

(36) Bester, S. M. et al. Structural and mechanistic bases for a potent HIV-1 capsid inhibitor

Science 2020, 370, 360–364.

(37) Link, J. O. et al Clinical targeting of HIV capsid protein with a long-acting small molecule

Nature 2020, 584, 614–618.

(38) Gilead Sciences, Study to evaluate the safety and efficacy of lenacapavir in combination with

an optimized background regimen in heavily treatment experienced participants living with HIV-

1 infection with multidrug resistance (CAPELLA). Identifier: NCT04150068.

https://clinicaltrials.gov/ct2/show/NCT04150068.

(39) Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings,

M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. Mercury 4.0: from visualization to

analysis, design, and production. J. Appl. Cryst. 2020, 53, 226–235.

(40) Bose, N.; Ogawa, A.; von Reuss, S. H.; Yim, J. J.; Ragsdale, E. J.; Sommer, R. J.; Schroeder,

F. C. Complex small-molecule architectures regulate phenotypic plasticity in a nematode Angew.

Chem. 2012, 124, 12606−12611.

(41) Kaletta, T.; Hengartner, M. O. Finding function in novel targets: C. elegans as a model

organism. Nat. Rev. Drug Discovery 2006, 5, 387−399.

(42) Bumbarger, D. J.; Riebesell, M.; Rödelsperger, C.; Sommer, R. J. System-wide rewiring

underlies behavioral differences in predatory and bacterial-feeding nematodes. Cell 2013, 152,

109−119.

(43) Bento, G.; Ogawa, A.; Sommer, R. J. Co-option of the hormone-signalling module

dafachronic acid–DAF-12 in nematode evolution. Nature 2010, 466, 494−497.

(44) Von Reuss, S. H.; Schroeder, F. C. Combinatorial chemistry in nematodes: modular assembly

of primary metabolism-derived building blocks. Nat. Prod. Rep. 2015, 32, 994−1006.

109

(45) Butcher, R. A. Natural products as chemical tools to dissect complex biology in C. elegans.

Curr. Opin. Chem. Biol. 2019, 50, 138−144.

(46) Hatfield, D.; Rinehart, R. R.; Forrest, H. S. 166. 3-Ribosyluric acid. Part II. Isolation of the

corresponding nucleotide from beef blood. J. Chem. Soc. 1963, 899−902.

(47) Forrest, H. S.; Hatfield, D.; Lagowski, J. M. 199. Uric acid riboside. Part I. Isolation and

reinvestigation of the structure. J. Chem. Soc. 1961, 963−968.

(48) Hatfield, D.; Forrest, H. S. Biosynthesis of 3-ribosyluric acid (uric acid riboside). Biochim.

Biophys. Acta 1962, 62, 185−187.

(49) Lohrmann, R.; Lagowski, J. M.; Forrest, H. S. 81. 3-Ribosyluric acid. Part III. Unambiguous

syntheses of 3-ribosyluric acid and related compounds. J. Chem. Soc. 1964, 451−459.

(50) Balaban, R. S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging. Cell 2005, 120,

483−495.

(51) Wan, Q. L.; Fu, X.; Dai, W.; Yang, J.; Luo, Z.; Meng, X.; Liu, X.; Zhong, R.; Yang, H.; Zhou,

Q. Uric acid induces stress resistance and extends the life span through activating the stress

response factor DAF-16/FOXO and SKN-1/NRF2. Aging 2020, 12, 2840−2856.

(52) Kenyon, C. J. The genetics of ageing. Nature 2010, 464, 504−512.

(53) Patel, D. S.; Garza-Garcia, A.; Nanji, M.; McElwee, J. J.; Ackerman, D.; Driscoll, P. C.;

Gems, D. Clustering of genetically defined allele classes in the Caenorhabditis elegans DAF-2

insulin/IGF-1 receptor. Genetics 2008, 178, 931−946.

(54) Artyukhin, A. B.; Zhang, Y. K.; Akagi, A. E.; Panda, O.; Sternberg, P. W.; Schroeder, F. C.

Metabolomic “dark matter” dependent on peroxisomal β-oxidation in Caenorhabditis elegans. J.

Am. Chem. Soc. 2018, 140, 2841− 2852.

110

3.8 Experimental Section

3.8.1 Materials and Methods

Samples prepared according to previously disclosed procedures outlined in Table 3.1

below. Data was collected on a Thermo Fisher Talos F200C transmission electron microscope

operating with an accelerating voltage of 200keV, corresponding to an electron wavelength of

0.0251 Å. Electron diffraction data was collected using a Thermo Fisher CetaD camera.

Screening the TEM grid for microcrystals was performed at 2600x magnification in imaging

mode. Crystals selected for data collection were isolated by a selected area aperture. Data was

collected by taking images of the diffraction patterns generated by a continuously rotating crystal

integrated continuously at a rate of 3 seconds per frame. This rotation was performed at a rate of

0.3° per second with a minimum and maximum tilt range of −65° to +65°. Crystals selected for

data collection were isolated by a selected area aperture to reduce the background noise

contributions and calibrated to eucentric height to stay in the aperture over the entire tilt range.

Samples collected at cryogenic conditions were placed onto a Gatan 626 cryo holder. Slow

cooling the sample includes inserting room temperature Gatan 626 cryo holder and cooling to

cryogenic temperatures after insertion into the TEM. Plunge frozen samples were frozen in liquid

nitrogen, placed onto a liquid nitrogen cooled Gatan 626 cryo holder, and inserted and

maintained at cryogenic temperature for the duration of data collection on the electron

microscope. All diffraction data was processed using the XDS suite of programs as controlled by

a custom Python automation script.1–3 Structure were solved ab initio by direct methods in

SHELXT or SHELXD and refined with SHELXL using ShelXle.4–7 Thermal parameters were

refined anisotropically for all non-hydrogen atoms. Hydrogen atoms were assigned using the

riding model.

111

Compound

Purification by

Crystallization

Compound Source and

References

3.1 Yes Medicinal Chemistry8

3.2 No Medicinal Chemistry8,9

3.3 Yes Medicinal Chemistry8

3.4 No Medicinal Chemistry8,9

3.5 Yes Process Chemistry10

3.6 Yes Medicinal Chemistry8,9,11–15

3.7 Yes Process Chemistry10

3.8 Yes Process Chemistry10

3.9 No Process Chemistry10

3.10 Yes Process Chemistry10

3.11 No* Medicinal Chemistry11,13

3.12 No Medicinal Chemistry8,9,11–15

3.13 No* Medicinal Chemistry11,14

3.14 Yes* Process Chemistry3

3.15 Yes* Process Chemistry16

Figure 5a No Medicinal Chemistry17–19

Figure 5b No PROTACs20

Table 3.1 Source of thirty pharmaceutical compounds analyzed in this study. * = samples were

recrystallized for the purpose of obtaining a crystal structure.

112

3.8.2 Room Temperature TEM Screening Procedure

 Milligram to sub-milligram quantities of dry powder were placed into a dram vial as

received and manually ground with a glass pipette. A pure carbon 200 mesh Cu grid or lacey

carbon Cu grid was placed inside of the vial and gently shaken together with the powder to “dry

load” the grid (Figure 3.19). The grid was removed with Dumont straight self-closing tweezers

and the tweezers were gently tapped against a lab bench while holding the grid to shake off

excess powder. This sample was clipped into a single tilt holder and inserted into a well-aligned

Thermo Fisher Scientific Talos F200C transmission electron microscopy operating at an

accelerating voltage of 200keV.

 After achieving suitable pressure, the column valves were opened and the grid was

manually scanned at 2600x magnification in imaging mode. To screen for crystallinity, an

incident diffraction pattern was recorded by isolating a region of the particle using a selected

area aperture and entering parallel-illuminated diffraction mode utilizing the low dose software

on the Thermo Fisher microscope user interface.

113

A single image of the diffraction pattern was taken on a Thermo Fisher Scientific Ceta-D

camera. If user inspection of the diffraction pattern suggested that the particle was monocrystalline

and provided <1.2 Å resolution diffraction, the eucentric height of the sample was finely adjusted

in imaging mode to ensure the crystal would remain within the selected area aperture throughout

a tilt series with a maximum tilt range of ± 65°. Upon returning to diffraction mode at eucentric

height, a continuously rotating electron diffraction movie was collected. The stage was rotated at

a rate of 0.3° s-1 and a detector distance of 960mm. The Ceta-D CMOS 4k x 4k camera was

operated using rolling shutter mode and continuously integrated at a rate of 3 seconds per frame

with binning by 2 to produce 2k x 2k images. Diffraction movies were saved as SER files. Movies

were saved with a standardized naming format and processed using the automated data workflow

Figure 3.18 Representative data collection workflow.

114

described herein while additional movies were collected. These processed movies were manually

re-indexed to different space groups and/or merged with other datasets as needed until preliminary

solutions were obtained.

Screening was halted if no diffraction was observed after 30 minutes, the sample visibly

lost resolution over the course of a single movie, or a preliminary solution with >90% of expected

atoms was obtained.

115

3.8.3 Room Temperature Screening Crystal Structures

3.8.3.1 (2R,3S)-N-(4-(2,6-dimethoxyphenyl)-5-(5-methylpyridin-3-yl)-4H-1,2,4-triazol-

3-yl)-3-(5-methylpyrimidin-2-yl)butane-2-sulfonamide (3.1).

Figure 3.19 MicroED crystal structure of 3.1. Initial direct methods solution of 3.1 (top) with

electron density map (Fobs) contoured at 1.41 e Å-3 and ORTEP diagram of refined 3.1 (bottom).

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.1.

Empirical formula C25H29N7O4S

116

Formula weight 523.61

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature 294(2) K

Unit cell dimensions a = 9.3100(10)

 b = 20.490(2)

 c = 12.650(4)

 = 108.42

Volume 2289.5(8)

Z 2

Crystal system Monoclinic

Space group P21

Density (calculated) 1.515 Mg/m3

F(000) 100

Measured reflections 6341

Reflections with I > 2(I) 3849

Resolution 0.90 Å

Completeness 81.4%

Index ranges 10 ≤ h ≤ -10, 23 ≤ k ≤

-24, 13 ≤ l ≤ -13

Structure Solution and Refinement

Structure solution program SHELXT (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 6341 / 1069 / 668

117

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.243

Final R indices [I>2s(I), 975 reflections] R1 = 0.1228, wR2 = 0.2924

R indices (all data) R1 = 0.1678, wR2 = 0.3187

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.044

Average shift/error 0.000

Largest diff. peak and hole 0.19 and -0.12 e.Å-3

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

118

3.8.3.2 (2R,3S)-3-(5-methoxypyridin-2-yl)butane-2-sulfonamide (3.2).

Figure 3.20 MicroED crystal structure of 3.2. Initial direct methods solution of 3.2 (left) with

electron density map (Fobs) contoured at 1.03 e Å-3 and ORTEP diagram of refined 3.2 (right).

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.2.

Empirical formula C25H29N7O4S

Formula weight 523.61

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature 294(2) K

Unit cell dimensions a = 22.830(4)

 b = 6.810(10)

 c = 6.980(2)

Volume 1085.2(4)

Z 1

Crystal system Orthorhombic

Space group P21212

Density (calculated) 1.495 Mg/m3

F(000) 103

Measured reflections 3816

119

Reflections with I > 2(I) 870

Resolution 0.95 Å

Completeness 82.9%

Index ranges 7 ≤ h ≤ -7, 25 ≤ k ≤

-25, 7 ≤ l ≤ -7

Structure Solution and Refinement

Structure solution program SHELXT (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 1360 / 135 / 146

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.480

Final R indices [I>2s(I), 975 reflections] R1 = 0.1347, wR2 = 0.3138

R indices (all data) R1 = 0.1779, wR2 = 0.3349

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.051

Average shift/error 0.009

Largest diff. peak and hole 0.20 and -0.18 e.Å-3

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

120

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

3.8.3.3 (2S,3R)-N-(4-(2,6-dimethoxyphenyl)-5-(5-methylpyridin-3-yl)-4H-1,2,4-triazol-3-yl)-

3-(5-methylpyrimidin-2-yl)butane-2-sulfonamide (3.3).

Figure 3.21 MicroED crystal structure of 3.3. Initial direct methods solution of 3.3 (left) with

electron density map (Fobs) contoured at 1.03 e Å-3 and ORTEP diagram of refined 3.3 (right).

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.3.

Empirical formula C25H29N7O4S

Formula weight 523.61

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature 294(2) K

Unit cell dimensions a = 9.3100(10)

 b = 20.450(2)

 c = 12.680(4)

 = 108.40

Volume 2290.7(8)

Z 2

121

Crystal system Monoclinic

Space group P21

Density (calculated) 1.518 Mg/m3

F(000) 100

Measured reflections 5615

Reflections with I > 2(I) 3218

Resolution 0.90 Å

Completeness 85.5%

Index ranges 10 ≤ h ≤ -10, 21 ≤ k ≤

-21, 14 ≤ l ≤ -14

Structure Solution and Refinement

Structure solution program SHELXT (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 5615 / 677 / 668

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.226

Final R indices [I>2s(I), 975 reflections] R1 = 0.1294, wR2 = 0.3063

R indices (all data) R1 = 0.1777, wR2 = 0.3408

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.016

Average shift/error 0.000

Largest diff. peak and hole 0.20 and -0.14 e.Å-3

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

122

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

3.8.3.4 (2S,3R)-3-(5-methoxypyridin-2-yl)butane-2-sulfonamide (3.4)

Figure 3.22 MicroED crystal structure of 3.4. Initial direct methods solution of 3.4 (left) with

electron density map (Fobs) contoured at 1.03 e Å-3 and ORTEP diagram of refined 3.4 (right).

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.4.

Empirical formula C10H16N2O3S

Formula weight 244.31

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature 294(2) K

Unit cell dimensions a = 6.840(2)

 b = 22.820(4)

123

 c = 6.9800(10)

Volume 1089.5(4)

Z 4

Crystal system Orthorhombic

Space group P21212

Density (calculated) 1.489 Mg/m3

F(000) 103

Measured reflections 1212

Reflections with I > 2(I) 649

Resolution 0.95 Å

Completeness 89.4%

Index ranges 24 ≤ h ≤ -24, 7 ≤ k ≤

-7, 7 ≤ l ≤ -7

Structure Solution and Refinement

Structure solution program SHELXT (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 1212 / 136 / 134

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.414

Final R indices [I>2s(I), 975 reflections] R1 = 0.1706, wR2 = 0.3583

R indices (all data) R1 = 0.2370, wR2 = 0.3910

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.030

Average shift/error 0.000

Largest diff. peak and hole 0.18 and -0.18 e.Å-3

124

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

3.8.3.5 (R)-6'-chloro-3',4,4',5-tetrahydro-2H,2'H-spiro[benzo[b][1,4]oxazepine-3,1'-

naphthalene]-7-carboxylic acid ((1R,4S)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-

yl)methansulfonate (3.5)

Figure 3.23 MicroED crystal structure of 3.5. Initial direct methods solution of 3.5 (left) with

electron density map (Fobs) contoured at 1.03 e Å-3 and ORTEP diagram of refined 3.5 (right).

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.5.

Empirical formula C29H34NO7SCl

Formula weight 574.07

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature 294(2) K

Unit cell dimensions a = 10.5200(10)

125

 b = 10.220(2)

 c = 12.660(4)

 = 110.33

Volume 1276.4(5)

Z 2

Crystal system Monoclinic

Space group P21

Density (calculated) 1.494 Mg/m3

F(000) 99

Measured reflections 2438

Reflections with I > 2(I) 1379

Resolution 1.0 Å

Completeness 95.7%

Index ranges 9 ≤ h ≤ -9, 10 ≤ k ≤

-10, 12 ≤ l ≤ -12

Structure Solution and Refinement

Structure solution program SHELXT (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 2438 / 612 / 357

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.239

Final R indices [I>2s(I), 975 reflections] R1 = 0.1198, wR2 = 0.2721

R indices (all data) R1 = 0.1823, wR2 = 0.3103

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.061

126

Average shift/error 0.001

Largest diff. peak and hole 0.13 and -0.13 e.Å-3

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

Significant disorder of the CSA moiety prevents assignment of absolute stereochemistry.

3.8.3.6 (2S,3R)-3-(5-methylpyrazin-2-yl)butane-2-sulfonamide (3.6)

Figure 3.24 MicroED crystal structure of 3.6. Initial direct methods solution of 3.6 (left) with

electron density map (Fobs) contoured at 1.41 e Å-3 and ORTEP diagram of refined 3.6 (right).

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.6.

Empirical formula C9H15N3O2S

Formula weight 229.30

127

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature 294(2) K

Unit cell dimensions a = 7.4500(10)

 b = 8.130(2)

 c = 16.240(4)

Volume 983.6(4)

Z 4

Crystal system Orthorhombic

Space group P212121

Density (calculated) 1.548 Mg/m3

F(000) 46

Measured reflections 1652

Reflections with I > 2(I) 975

Resolution 0.80 Å

Completeness 82.6%

Index ranges 8 ≤ h ≤ -8, 9 ≤ k ≤

-9, 19 ≤ l ≤ -19

Structure Solution and Refinement

Structure solution program SHELXT (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 1652 / 127 / 137

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.267

128

Final R indices [I>2s(I), 975 reflections] R1 = 0.1808, wR2 = 0.4048

R indices (all data) R1 = 0.2167, wR2 = 0.4398

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.079

Average shift/error 0.001

Largest diff. peak and hole 0.21 and -0.38 e.Å-3

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

3.8.4 Cryogenic TEM Screening Procedure

 Milligram to sub-milligram quantities of dry powder were placed into a dram vial as

received and manually ground with a glass pipette. A pure carbon 200 mesh Cu grid or lacey

carbon Cu grid was placed inside of the vial and gently shaken together with the powder to “dry

load” the grid. The grid was removed with Dumont straight self-closing tweezers and the

tweezers were gently tapped against a lab bench while holding the grid to shake off excess

powder. This sample was clipped into a Gatan 626 cryo holder at room temperature and inserted

into a well-aligned Thermo Fisher Scientific Talos F200C transmission electron microscopy

operating at an accelerating voltage of 200keV. After successful insertion, the cryo holder was

cooled with liquid nitrogen until reaching a stable temperature of ~–177 °C. After achieving

129

stable temperature and low vacuum pressure, incident diffraction screening and movie collection

were performed as described in Supporting Information Section 2. Screening was halted after

3 hours, or if a preliminary solution with >90% of expected atoms was obtained.

3.8.5 Crystal Structures of Cryogenically Cooled Samples

3.8.5.1 (R)-6'-chloro-3',4,4',5-tetrahydro-2H,2'H-spiro[benzo[b][1,4]oxazepine-3,1'-

naphthalene]-7-carboxylic acid ((1R,4S)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-

yl)methansulfonate (3.5a)

Figure 3.25 MicroED crystal structure of 3.5a. Initial direct methods solution of 3.5a (left) with

electron density map (Fobs) contoured at 1.03 e Å-3 and ORTEP diagram of refined 3.5a (right).

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.5a.

Empirical formula C29H34NO7SCl

Formula weight 574.07

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature 294(2) K

Unit cell dimensions a = 10.4700(10)

 b = 10.260(2)

 c = 12.440(4)

 = 109.92

130

Volume 1256.4(5)

Z 2

Crystal system Monoclinic

Space group P21

Density (calculated) 1.523 Mg/m3

F(000) 99

Measured reflections 2474

Reflections with I > 2(I) 1787

Resolution 1.0 Å

Completeness 92.6%

Index ranges 10 ≤ h ≤ -10, 10 ≤ k ≤

-10, 12 ≤ l ≤ -12

Structure Solution and Refinement

Structure solution program SHELXD (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 2474 / 703 / 354

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.143

Final R indices [I>2s(I), 975 reflections] R1 = 0.1127, wR2 = 0.2643

R indices (all data) R1 = 0.1456, wR2 = 0.2863

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.000

Average shift/error 0.000

Largest diff. peak and hole 0.17 and -0.16 e.Å-3

131

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

132

3.8.5.2 (1S,3'R,6'R,7'S,8'E,11'S,12'R)-6-chloro-7'-hydroxy-11',12'-dimethyl-3,4-dihydro-

2H,15'H-spiro[naphthalene-1,22'-[20]oxa[13]thia[1,14]diazatetracyclo

[14.7.2.03,6.019,24]pentacosa[8,16,18,24]tetraen]-15'-one 13',13'-dioxide (3.7)

Figure 3.26 MicroED crystal structure of 3.7. Initial direct methods solution of 3.7 (top) with

electron density map (Fobs) contoured at 1.01 e Å-3 and ORTEP diagram of refined 3.7 (bottom).

Thermal ellipsoids shown as shaded octants at 30% probability.

133

Crystal data and structure refinement for 3.7.

Empirical formula C32H39N2O5SCl

Formula weight 599.16

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature 96(4) K

Unit cell dimensions a = 11.3400(10)

 b = 11.340(2)

 c = 12.500(4)

 = 73.74

 = 69.36

 = 71.13

Volume 1398.2(5)

Z 2

Crystal system Monoclinic

Space group P1

Density (calculated) 1.423 Mg/m3

F(000) 243

Measured reflections 6522

Reflections with I > 2(I) 3782

Resolution 0.90 Å

Completeness 82.5%

Index ranges 12 ≤ h ≤ -12, 12 ≤ k ≤

-12, 13 ≤ l ≤ -13

Structure Solution and Refinement

Structure solution program SHELXD (Uson & Sheldrick, 1999)

134

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 6522 / 1253 / 740

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.242

Final R indices [I>2s(I), 975 reflections] R1 = 0.1465, wR2 = 0.3107

R indices (all data) R1 = 0.1954, wR2 = 0.3439

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.083

Average shift/error 0.000

Largest diff. peak and hole 0.25 and -0.26 e.Å-3

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

135

3.8.5.3 (S)-6'-chloro-3',4,4',5-tetrahydro-2H,2'H-spiro[benzo[b][1,4]oxazepine-3,1'-

naphthalene]-7-carboxylic acid ((1S,4R)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-

yl)methansulfonate (3.8)

Figure 3.27 MicroED crystal structure of 3.8. Initial direct methods solution of 3.8 (top) with

electron density map (Fobs) contoured at 1.03 e Å-3 and ORTEP diagram of refined 3.8 (bottom).

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.8.

Empirical formula C29H34NO7SCl

Formula weight 576.08

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature 96(4) K

Unit cell dimensions a = 10.6900(10)

 b = 10.220(2)

136

 c = 12.680(4)

 = 111.22

Volume 1291.4(5)

Z 2

Crystal system Monoclinic

Space group P21

Density (calculated) 1.482 Mg/m3

F(000) 99

Measured reflections 3824

Reflections with I > 2(I) 2409

Resolution 0.85 Å

Completeness 85.2%

Index ranges 12 ≤ h ≤ -12, 11 ≤ k ≤

-11, 14 ≤ l ≤ -14

Structure Solution and Refinement

Structure solution program SHELXT (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 3824 / 377 / 354

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.244

Final R indices [I>2s(I), 975 reflections] R1 = 0.1415, wR2 = 0.3278

R indices (all data) R1 = 0.1794, wR2 = 0.3523

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.044

Average shift/error 0.002

137

Largest diff. peak and hole 0.15 and -0.16 e.Å-3

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

138

3.8.5.4 (S)-6'-chloro-5-(((1R,2R)-2-((S)-1-hydroxyallyl)cyclobutyl)methyl)-N-(((2R,3S)-3-

methylhex-5-en-2-yl)sulfonyl)-3',4,4',5-tetrahydro-2H,2'H-spiro[benzo[B][1,4]

oxazepine-3,1'-naphthalene]-7-carboxamide (3.9)

Figure 3.28 MicroED crystal structure of 3.9. Initial direct methods solution of 3.9 (top) with

electron density map (Fobs) contoured at 1.03 e Å-3 and ORTEP diagram of refined 3.9 (bottom).

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.9.

Empirical formula C34H43N2O5SCl

Formula weight 626.26

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature 96(4) K

Unit cell dimensions a = 10.5200(10)

 b = 15.050(2)

139

 c = 17.020(4)

Volume 2694.7(8)

Z 4

Crystal system Orthorhombic

Space group P212121

Density (calculated) 1.546 Mg/m3

F(000) 105

Measured reflections 2393

Reflections with I > 2(I) 1774

Resolution 1.0 Å

Completeness 83.1%

Index ranges 10 ≤ h ≤ -10, 15 ≤ k ≤

-15, 15 ≤ l ≤ -14

Structure Solution and Refinement

Structure solution program SHELXD (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 2393 / 748 / 390

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.399

Final R indices [I>2s(I), 975 reflections] R1 = 0.1111, wR2 = 0.2457

R indices (all data) R1 = 0.1460, wR2 = 0.2596

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.045

Average shift/error 0.000

Largest diff. peak and hole 0.15 and -0.13 e.Å-3

140

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

141

3.8.5.5 (R)-1-phenylethan-1-aminium (S)-6'-chloro-5-(((1R,2R)-2-((S)-1-hydroxyallyl)

cyclobutyl)methyl)-3',4,4',5-tetrahydro-2H,2'H-spiro[benzo[b][1,4]oxazepine-3,1'-

naphthalene]-7-carboxylate (3.10)

Figure 3.29 MicroED crystal structure of 3.10. Initial direct methods solution of 3.10 (top) with

electron density map (Fobs) contoured at 1.41 e Å-3 and ORTEP diagram of refined 3.10 (bottom).

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.10.

Empirical formula C35H36N2O4Cl

Formula weight 584.11

142

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature 96(4) K

Unit cell dimensions a = 7.9800(10)

 b = 11.730(2)

 c = 28.850(4)

Volume 2700.5(7)

Z 4

Crystal system Orthorhombic

Space group P212121

Density (calculated) 1.437 Mg/m3

F(000) 103

Measured reflections 3263

Reflections with I > 2(I) 2351

Resolution 0.85 Å

Completeness 68.6%

Index ranges 9 ≤ h ≤ -9, 13 ≤ k ≤

-13, 25 ≤ l ≤ -25

Structure Solution and Refinement

Structure solution program SHELXD (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 3263 / 390 / 380

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.469

143

Final R indices [I>2s(I), 975 reflections] R1 = 0.1206, wR2 = 0.2740

R indices (all data) R1 = 0.1536, wR2 = 0.2834

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.026

Average shift/error 0.000

Largest diff. peak and hole 0.17 and -0.13 e.Å-3

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

144

3.8.6 Additional Screening and Recrystallization of Samples

 Sample 3.12 was screened in the same manner as described in Supporting Information

Section 2 for ~4 additional hours at room temperature to locate monocrystalline domains in a

largely polycrystalline sample.

 Crystallization of 3.11, 3.13, 3.14, and 3.15 was performed by placing ~1 mg of powder

as received into 6 x 50 mm borosilicate culture tubes purchased from VWR. Samples were

dissolved in approximately 500 uL of solvent and allowed to slowly evaporate at room

temperature. Higher boiling solvents were evaporated from open containers, while low boiling

solvents required placing the culture tube inside an empty dram vial with a slightly loosened cap.

If the initial solvent failed to produce a solid after fully evaporating based on visual inspection,

the amorphous samples were re-dissolved in the same culture tube with a new solvent mixture.

Evaporation occurred until precipitation was observed. Sample crystallization time spanned from

overnight to 3 days. 3.11 and 3.13 were obtained from slow evaporation from a 50/50 mixture of

MeCN and H2O. The crystals were dried under reduced pressure and screened at cryogenic

temperatures as outlined in Supporting Information Section 4.

 3.15 was generated from slow evaporation from H2O with a small amount of DMSO. The

crystals were blotted with a kimwipe and dried under reduced pressure to remove excess solvent

before being brought into the TEM as described in Supporting Information Section 4.

 3.14 was crystallized from slow evaporation of diethyl ether. The crystals were placed

onto a grid as a dry powder, and screened by a modified procedure of Supporting Information

Section 4. Before typical screening, the prepared grid was plunge frozen in liquid nitrogen and

transferred into the TEM while the holder was maintained at cryogenic temperatures.

145

3.8.7 Crystal Structures of Additional Samples

3.8.7.1 (S)-1-(5-fluoropyrimidin-2-yl)piperidine-3-sulfonamide (3.11).

Figure 3.30 MicroED crystal structure of 3.11. Initial direct methods solution of 3.11 (left) with

electron density map (Fobs) contoured at 1.41 e Å-3 and ORTEP diagram of refined 3.11 (right).

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.11.

Empirical formula C9H13N4O2SF

Formula weight 260.29

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature 96(4) K

Unit cell dimensions a = 22.990(2)

 b = 37.240(4)

 c = 4.6400(10)

Volume 3972.5(10)

146

Z 16

Crystal system Orthorhombic

Space group P21212

Density (calculated) 1.741 Mg/m3

F(000) 43

Measured reflections 4964

Reflections with I > 2(I) 3031

Resolution 0.90 Å

Completeness 83.1%

Index ranges 25 ≤ h ≤ -25, 37 ≤ k ≤

-36, 5 ≤ l ≤ -5

Structure Solution and Refinement

Structure solution program SHELXT (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 4964 / 608 / 614

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.373

Final R indices [I>2s(I), 975 reflections] R1 = 0.1254, wR2 = 0.2743

R indices (all data) R1 = 0.1848, wR2 = 0.2955

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.000

Average shift/error 0.000

Largest diff. peak and hole 0.20 and -0.16 e.Å-3

Special Refinement Details

147

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

3.8.7.2 (2R,3S)-3-(5-methylpyrazin-2-yl)butane-2-sulfonamide (3.12).

Figure 3.31 MicroED crystal structure of 3.12. Initial direct methods solution of 3.12 (left) with

electron density map (Fobs) contoured at 1.41 e Å-3 and ORTEP diagram of refined 3.12 (right).

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.12.

Empirical formula C9H15N3O2S

Formula weight 229.30

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature 294(4) K

Unit cell dimensions a = 22.0000(10)

 b = 6.410(2)

148

 c = 7.060(4)

 = 91.18

Volume 995.4(4)

Z 4

Crystal system Monoclinic

Space group C2

Density (calculated) 1.530 Mg/m3

F(000) 49

Measured reflections 1265

Reflections with I > 2(I) 789

Resolution 0.90 Å

Completeness 86.5%

Index ranges 24 ≤ h ≤ -24, 7 ≤ k ≤

-7, 7 ≤ l ≤ -7

Structure Solution and Refinement

Structure solution program SHELXT (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 1265 / 239 / 137

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.372

Final R indices [I>2s(I), 975 reflections] R1 = 0.1348, wR2 = 0.3273

R indices (all data) R1 = 0.1786, wR2 = 0.3500

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.034

Average shift/error 0.000

149

Largest diff. peak and hole 0.14 and -0.18 e.Å-3

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

3.8.7.3 (R)-1-(5-fluoropyrimidin-2-yl)piperidine-3-sulfonamide (3.13).

Figure 3.32 MicroED crystal structure of 3.13. Initial direct methods solution of 3.13 (left) with

electron density map (Fobs) contoured at 1.41 e Å-3 and ORTEP diagram of refined 3.13 (right).

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.13.

Empirical formula C9H13N4O2SF

Formula weight 260.29

150

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature 96(4) K

Unit cell dimensions a = 23.000(2)

 b = 38.090(4)

 c = 4.6000(10)

Volume 4029.9(10)

Z 16

Crystal system Orthorhombic

Space group P21212

Density (calculated) 1.716 Mg/m3

F(000) 170

Measured reflections 4939

Reflections with I > 2(I) 3181

Resolution 0.90 Å

Completeness 82.6%

Index ranges 25 ≤ h ≤ -25, 38 ≤ k ≤

-38, 5 ≤ l ≤ -5

Structure Solution and Refinement

Structure solution program SHELXD (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 4939 / 608 / 614

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.323

151

Final R indices [I>2s(I), 975 reflections] R1 = 0.1373, wR2 = 0.3069

R indices (all data) R1 = 0.1752, wR2 = 0.3300

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.095

Average shift/error 0.000

Largest diff. peak and hole 0.18 and -0.13 e.Å-3

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

3.8.7.4 (2R,3S)-3-methylhex-5-ene-2-sulfonamide (3.14).

Figure 3.33 MicroED crystal structure of 3.14. Initial direct methods solution of 3.14 (left) with

electron density map (Fobs) contoured at 1.41 e Å-3 and ORTEP diagram of refined 3.14 (right).

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.14.

152

Empirical formula C7H15NO2S

Formula weight 177.26

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature 96(4) K

Unit cell dimensions a = 7.4100(10)

 b = 9.270(2)

 c = 12.490(4)

Volume 857.9(4)

Z 4

Crystal system Orthorhombic

Space group P212121

Density (calculated) 1.372 Mg/m3

F(000) 29

Measured reflections 1002

Reflections with I > 2(I) 461

Resolution 0.90 Å

Completeness 80.3%

Index ranges 8 ≤ h ≤ -8, 9 ≤ k ≤

-9, 12 ≤ l ≤ -12

Structure Solution and Refinement

Structure solution program SHELXT (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 1002 / 84 / 101

153

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.326

Final R indices [I>2s(I), 975 reflections] R1 = 0.1396, wR2 = 0.3178

R indices (all data) R1 = 0.2144, wR2 = 0.3575

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.099

Average shift/error 0.002

Largest diff. peak and hole 0.12 and -0.12 e.Å-3

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

154

3.8.7.5 methyl piperazine-1-carboxylate phosphate hydrate (3.15)

Figure 3.34 MicroED crystal structure of 3.15. Initial direct methods solution of 3.15 (left) with

electron density map (Fobs) contoured at 1.41 e Å-3 and ORTEP diagram of refined 3.15 (right).

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.15.

Empirical formula C28H66N10O23P3

Formula weight 1003.82

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

155

Data collection temperature 96(4) K

Unit cell dimensions a = 66.2000(10)

 b = 6.220(2)

 c = 9.940(4)

 = 92.14

Volume 4090(2)

Z 4

Crystal system Monoclinic

Space group Cc

Density (calculated) 1.630 Mg/m3

F(000) 169

Measured reflections 5976

Reflections with I > 2(I) 3714

Resolution 0.85 Å

Completeness 84.6%

Index ranges 70 ≤ h ≤ -71, 7 ≤ k ≤

-7, 11 ≤ l ≤ -11

Structure Solution and Refinement

Structure solution program SHELXT (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 5976 / 873 / 581

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.345

Final R indices [I>2s(I), 975 reflections] R1 = 0.1383, wR2 = 0.2795

R indices (all data) R1 = 0.1901, wR2 = 0.2995

Type of weighting scheme used Sigma

156

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.001

Average shift/error 0.000

Largest diff. peak and hole 0.29 and -0.28 e.Å-3

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

157

3.8.8 Transmission Electron Microscope Images of Pharmaceutical Crystals

Figure 3.35 TEM image of 3.1 crystal at 2600x magnification

Figure 3.36 TEM image of 3.2 crystal at 2600x magnification

158

Figure 3.37 TEM image of 3.3 crystal at 2600x magnification

Figure 3.38 TEM image of 3.4 crystal at 2600x magnification

159

Figure 3.39 TEM image of 3.5 crystal at 2600x magnification

Figure 3.40 TEM image of 3.6 crystal at 2600x magnification.

160

Figure 3.41TEM image of 3.7 crystal at 2600x magnification.

Figure 3.42 TEM image of 3.8 crystal at 2600x magnification.

161

Figure 3.43 TEM image of 3.9 crystal at 2600x magnification.

Figure 3.44 TEM image of 3.10 crystal at 2600x magnification.

162

Figure 3.45 TEM image of 3.11 crystal at 2600x magnification.

Figure 3.46 TEM image of 3.12 crystal at 2600x magnification.

163

Figure 3.47 TEM image of 3.13 crystal at 2600x magnification.

Figure 3.48 TEM image of 3.14 crystal at 2600x magnification.

164

Figure 3.49 TEM image of 3.15 crystal at 2600x magnification.

165

3.8.9 Comparison of MicroED Data to X-ray Structures

 Each 3.7 molecule from the asymmetric unit of two previously solved single crystal X-

ray structures AGX918A and AGX918B, corresponding to solvated structures of 3.7 containing

two molecules in the asymmetric unit with differing solvation states, were overlayed with the

microED structure of 3.7.

Figure 3.50 MicroED (green) and X-ray (red) crystallography data overlay of 3.7. Any solvent

molecules observed in the crystal structure were removed for this analysis.

Structure Name Source RMS Maximum Difference

AGX918A_1 X-ray 0.0 0.0

AGX918A_2 X-ray 0.5645 2.5284

AGX918C_1 X-ray 0.1869 0.5034

AGX918C_2 X-ray 0.2704 0.8914

3.7_1 Electron 0.6067 2.6340

3.7_2 Electron 0.2539 0.4747

Table 3.2 RMS of structure overlay comparing one molecule of AGX918A to remaining five

molecules in AGX918A, AGX918B, and 3.7.

166

3.8.10 Automated Data Processing Procedure

 Movie files were saved in a standardized format separated by underscores to allow for

automated data processing. An example format is provided below:

samplename-mov1_960_0.3_3_cryo.ser

samplename-mov1 can be any name not including an underscore or special character. This will

become the name of the folder containing processed data.

960 is the detector distance used in mm. This can be set to any value.

0.3 is the rotation speed of the stage, in °/s.

3 is the image integration time.

cryo can be any additional notes about the sample and can include underscores.

 On a computer running Ubuntu Windows Subsystem for Linux with properly installed

XDS suite and free ser2smv21 data conversion file, “python3 auto_indexing.py” is called to run

Python3.8 in a folder containing an executable copy of ser2smv, the python scripts, and the .ser

movie files to be processed. Merging and solutions obtained subsequent to autoprocessing were

done by the user.

167

3.8.11 Automated Data Processing Python Code

auto_indexing.py

"""

Written by Jessica Burch, jessburch@g.ucla.edu

This is a script to batch process individual MicroED datasets using XDS.

version: 03/01/2021

"""

import os

import shutil

def main():

 stats = open("stats.LP","w")

 stats.write("Data summary: ")

 files = os.listdir(".")

 if os.path.isfile("ser2smv") == True:

 for name in files:

 if name.endswith(".ser"):

 newname = name.split("_")

 path = os.getcwd()

 os.mkdir(path + "/" + str(newname[0]))

 os.mkdir(path + "/" + str(newname[0]) + "/images")

 os.mkdir(path + "/" + str(newname[0]) + "/auto_process")

 shutil.move(name,str(path + "/" + newname[0] + "/" + name))

 shutil.copyfile('xds_for_me.py', str(path + "/" + newname[0]

 + "/xds_for_me.py"))

 print("Setting up files for " + newname[0] + ".")

 os.chdir(path + "/" + str(newname[0]))

 os.system("python3 xds_for_me.py")

 os.system("rm xds_for_me.py")

 with open('auto_process/XSCALE.LP', 'r') as f:

 lines = f.readlines()

 for index, line in enumerate(lines):

 if " ========== STATISTICS OF INPUT DATA SET ==========" in line:

 t = lines[index-3]

 t1 = t.split()

 completeness = t1[4]

 Roverall = t1[5]

 l = lines[index-13]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','w') as f1:

168

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-12]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-11]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if 1 < float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-10]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-9]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-8]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-7]

 l1 = l.split()

 t = l1[5]

169

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-6]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-5]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-4]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 else:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n ! low resolution data")

 with open('xscale_report.LP','r') as f2:

 xsc = f2.read()

 with open('auto_process/stats.LP','r') as f3:

 ind = f3.read()

 os.chdir("..")

 stats = open("stats.LP","a")

 stats.write("\n==========\n" + newname[0] + "\n" + ind + "\nXSCALE stats")

 stats.write("\n" + str(t1[4]) + " " + str(t1[5]) + "\n" + xsc)

 if os.path.isfile("ser2smv") == False:

 print("Please add an executable copy of ser2smv to this folder!\n" +

 "Download from https://cryoem.ucla.edu/downloads/snapshots")

170

if __name__== "__main__":

 main()

xds_for_me.py

"""

Written by Jessica Burch, jessburch@g.ucla.edu

This is a script to automate indexing of MicroED data using XDS.

version: 03/01/2021

"""

import os

from subprocess import run

import random

"""

This portion reads your file name and converts .ser files to images.

Must have ser2smv program in the folder containing these scripts

This can be downloaded from https://cryoem.ucla.edu/downloads/snapshots

"""

def main():

 files = os.listdir(".")

 for name in files:

 if name.endswith(".ser"):

 newname = name.split("_")

 path = os.getcwd()

 newpath = str(path + "/images")

 os.chdir(newpath)

 #This is where data collection information such as

 conversion = str(path + "/../ser2smv -P 0.014 -B 2 -r " + newname[2]

 + " -w 0.0251 -d " + newname[1] + " -E " + newname[3] +

 " -M 200 -v -o " + newname[0] + "_###.img " + path

 + "/" + name)

 print("Converting your .ser file to .img frames.")

 os.system(conversion + ' > summary.LP')

 global movname

 movname = newname[0]

 with open('summary.LP') as f1:

 lines = f1.readlines()

 with open('summary.LP', 'w') as f2:

 f2.writelines(lines[-15:])

 with open('summary.LP', 'r') as f:

 line = f.readline()

 for line in f:

 if "+++" in line:

 element = str.split(line)

171

 frame = str(element[2])

 print("You have " + frame + " images.")

 path = os.getcwd()

 newpath = str(path + "/../auto_process")

 os.chdir(newpath)

 f = open("XDS.INP","w+")

 if os.path.isfile("*.LP") == True:

 os.remove("*.LP")

 if os.path.isfile("*.XDS") == True:

 os.remove("*.XDS")

 if os.path.isfile("*.HKL") == True:

 os.remove("*.HKL")

 f.write("JOB= XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT" +

 "\n!JOB=DEFPIX INTEGRATE CORRECT")

 #These are estimates for our beam center. The beam may be slightly off in

 #actuality, but XDS does a good job of refining the beam center if the

 #values are close.

 x = str("1018")

 y = str("1000")

 osc = str(float(newname[3]) * float(newname[2]))

 #This corrected distance value arises from indexing diffraction data of

 #standard samples on our TEM and adjusting the detector distance value

 #until these standards agree with the X-ray unit cell.

 corrected_distance = float(newname[1]) * 0.943

 data_path = str(path + "/" + newname[0])

 f.write("\nORGX= " + x + " ORGY= " + y + " ! check these using adxv" +

 "\nDETECTOR_DISTANCE= " + str(corrected_distance) +

 "\nOSCILLATION_RANGE= " + osc + "\nX-RAY_WAVELENGTH= 0.0251000002")

 f.write("\nNAME_TEMPLATE_OF_DATA_FRAMES=" + data_path + "_???.img" +

 "\nBACKGROUND_RANGE=1 10\n!DELPHI=15\n!SPACE_GROUP_NUMBER=0"

 + "\n!UNIT_CELL_CONSTANTS= 1 1 1 90 90 90")

 #"res" is the high resolution cutoff based on our detector distance.

 if newname[1] == str("1050"):

 res = str("0.8")

 elif newname[1] == str("1100"):

 res = str("0.9")

 elif newname[1] == str("960"):

 res = str("0.8")

 elif newname[1] == str("850"):

 res = str("0.65")

 elif newname[1] == str("1350"):

 res = str("1.1")

 elif newname[1] == str("670"):

 res = str("0.45")

172

 elif newname[1] == str("420"):

 res = str("0.25")

 elif newname[1] == str("2200"):

 res = str("1.7")

 elif newname[1] == str("330"):

 res = str("0.15")

 #An important value to change based on your microscope is "ROTATION_AXIS"

 f.write("\nINCLUDE_RESOLUTION_RANGE= 40 " + res +

 "\nTEST_RESOLUTION_RANGE= 40 " + res + "\nTRUSTED_REGION=0.0 1.2"+

 "\nVALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS=6000. 30000." +

 "! parameters for detector and beamline:" +

 "\nDETECTOR= ADSC MINIMUM_VALID_PIXEL_VALUE= 1 OVERLOAD=

65000" +

 "\nSENSOR_THICKNESS= 0.01" + "\nNX= 2048 NY= 2048 QX= 0.0280000009"

 + " QY= 0.0280000009" + "\nROTATION_AXIS=0 -1 0" +

 "\nDIRECTION_OF_DETECTOR_X-AXIS=1 0 0" +

 "\nDIRECTION_OF_DETECTOR_Y-AXIS=0 1 0" +

 "\nINCIDENT_BEAM_DIRECTION=0 0 1\nFRACTION_OF_POLARIZATION=0.98"

 + "\nPOLARIZATION_PLANE_NORMAL=0 1 0" +

 "\nREFINE(IDXREF)=CELL BEAM ORIENTATION AXIS ! DISTANCE" +

 "\nREFINE(INTEGRATE)= DISTANCE BEAM ORIENTATION ! AXIS CELL" +

 "\nREFINE(CORRECT)=CELL BEAM ORIENTATION AXIS ! DISTANCE !" +

 "\n\nDATA_RANGE= 1 " + str(element[2]) + "\nSPOT_RANGE= 1 "

 + str(element[2]))

 sp = "4"

 minpix = "7"

 f.write("\nSTRONG_PIXEL= " + sp +

"\nMINIMUM_NUMBER_OF_PIXELS_IN_A_SPOT= "

 + minpix + "\n!\n!")

 f.close()

 xds_out = open("XDS.LP", "w+")

 print("XDS is running...")

 run("xds", stdout= xds_out)

def autoprocessing():

 if os.path.isfile('X-CORRECTIONS.cbf') == False:

 xds_out = open("XDS.LP", "w+")

 print("XDS is running...")

 run("xds", stdout= xds_out)

 if os.path.isfile('XPARM.XDS') == False:

 for i in range(10):

 with open('XDS.INP') as f1:

 lines = f1.readlines()

173

 with open('XDS.INP', 'w') as f2:

 strong = random.randrange(3,9,1)

 mpix = random.randrange(4,9,1)

 f2.writelines(lines[:-4])

 f2.write("STRONG_PIXEL= " + str(strong) +

 "\nMINIMUM_NUMBER_OF_PIXELS_IN_A_SPOT= " + str(mpix) +

 "\n!\n!")

 f2.close()

 print("Screening new indexing values.")

 xds_out = open("XDS.LP", "w+")

 run("xds",stdout= xds_out)

 if os.path.isfile('XPARM.XDS') == True:

 if os.path.isfile('DEFPIX.LP') == False:

 with open('XDS.INP') as f1:

 lines = f1.readlines()

 with open('XDS.INP', 'w') as f2:

 f2.write("!JOB=XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE

CORRECT"

 + "\nJOB=DEFPIX INTEGRATE CORRECT\n")

 f2.writelines(lines[2:])

 f2.close()

 print("Less than 70% of spots went through. Running with JOB= DEFPIX "

 + "INTEGRATE CORRECT.")

 xds_out = open("XDS.LP", "w+")

 run("xds",stdout= xds_out)

 if os.path.isfile('XPARM.XDS') == False:

 print("Unable to autoprocess " + movname + "!")

 exit()

 else:

 return autoprocessing()

 else:

 return autoprocessing()

 else:

 print("Unable to autoprocess " + movname + "!")

 f2.close()

 exit()

 if os.path.isfile('DEFPIX.LP') == False:

 with open('XDS.INP') as f1:

 lines = f1.readlines()

 with open('XDS.INP', 'w') as f2:

 f2.write("!JOB=XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE

CORRECT"

 + "\nJOB=DEFPIX INTEGRATE CORRECT\n")

 f2.writelines(lines[2:])

174

 f2.close()

 print("Less than 70% of spots went through. Running with JOB= DEFPIX "

 + "INTEGRATE CORRECT.")

 xds_out = open("XDS.LP", "w+")

 run("xds",stdout= xds_out)

 return autoprocessing()

 if os.path.isfile("INTEGRATE.HKL") == False:

 with open('XDS.INP') as f1:

 lines = f1.readlines()

 with open('XDS.INP', 'w') as f2:

 f2.writelines(lines)

 f2.write("\nBEAM_DIVERGENCE= 0.03 BEAM_DIVERGENCE_E.S.D.= 0.003" +

 "\nREFLECTING_RANGE=1.0 REFLECTING_RANGE_E.S.D.= 0.2")

 f2.close()

 print("Adding beam divergence values to correct a common error.")

 xds_out = open("XDS.LP", "w+")

 run("xds",stdout= xds_out)

 return autoprocessing()

 if os.path.isfile("CORRECT.LP") == True:

 print ("Successful indexing!")

 return mosaicity()

def mosaicity():

 with open('XDS.INP') as f1:

 lines = f1.readlines()

 with open('XDS.INP', 'w') as f2:

 f2.write("!JOB=XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT"

 + "\nJOB=DEFPIX INTEGRATE CORRECT\n")

 f2.writelines(lines[2:-2])

 with open('INTEGRATE.LP', 'r') as l1:

 f2 = open('XDS.INP', 'a')

 line = l1.readline()

 for line in l1:

 if "BEAM_DIVERGENCE= " in line:

 f2.write(line)

 if "REFLECTING_RANGE=" in line:

 f2.write(line)

 f2.close()

 return iterate_opt()

def iterate_opt():

 with open('XDS.LP') as f1:

 lines = f1.readlines()

 with open('XDS.LP', 'w') as f2:

 f2.writelines(lines[-26:])

175

 with open('XDS.LP', 'r') as f:

 line = f.readline()

 for line in f:

 if " a b ISa" in line:

 next_line = f.readline()

 stats = str.split(next_line)

 Isa1 = float(stats[2])

 print("Isa: " + str(Isa1) + ". Testing new values now.")

 xds_out = open("XDS.LP", "w+")

 run("xds",stdout= xds_out)

 with open('XDS.LP') as f1:

 lines = f1.readlines()

 with open('XDS.LP', 'w') as f2:

 f2.writelines(lines[-26:])

 with open('XDS.LP', 'r') as f:

 line = f.readline()

 for line in f:

 if " a b ISa" in line:

 new_next_line = f.readline()

 new_stats = str.split(new_next_line)

 Isa2 = float(new_stats[2])

 print("Isa: " + str(Isa2))

 if "SPACE_GROUP_NUMBER=" in line:

 number = str.split(line)

 space_group = number[1]

 if "UNIT_CELL_CONSTANTS=" in line:

 cell = str.split(line)

 temp = cell[-6:]

 temp_str = str(temp).strip("]['")

 temp_str2 = temp_str.replace(",","")

 unit_cell = temp_str2.replace("'","")

 Isa_change = abs(Isa2 - Isa1)

 if Isa_change > 0.5:

 print("Optimizing beam divergence values.")

 return iterate_opt()

 else:

 print("Optimized beam divergence values.")

 f = open('stats.LP','w')

 f.write(str(space_group) + "\n" + unit_cell)

 f.close

 print("Autoprocessing found space group " + str(space_group) + " and a unit cell of "

 + "\n" + unit_cell)

176

def scale_conv():

 xscale = open('XSCALE.INP','w')

 xscale_out = open("xscale.LP","w+")

 m = movname

 xscale.write("OUTPUT_FILE= " + m +".ahkl"+"\nINPUT_FILE= XDS_ASCII.HKL"

 + "\nRESOLUTION_SHELLS= 10 8 5 3 2.3 2.0 1.7 1.5 1.3 " +

 "1.2 1.1 1.0 0.90 0.80")

 xscale.close()

 run("xscale", stdout= xscale_out)

 print("Data scaled with XSCALE.")

 xdsconv_out = open("xdsconv.LP", "w+")

 xdsconv = open('XDSCONV.INP','w')

 xdsconv.write("INPUT_FILE= " + m + ".ahkl" + "\nOUTPUT_FILE= " +

 m + ".hkl" + " SHELX" +

 "\nGENERATE_FRACTION_OF_TEST_REFLECTIONS=0.10"

 + "\nFRIEDEL'S_LAW=FALSE")

 xdsconv.close()

 run("xdsconv",stdout= xdsconv_out)

 print("Data converted for use in shelx!")

if __name__== "__main__":

 main()

 autoprocessing()

 scale_conv()

"""

"""

177

3.8.12 Data Collection of Atropisomeric 3.17

Dry powder sample analyzed as received at room temperature (see 3.8.1 for general room

temperature microED procedure) and diffracted to sufficient resolution (< 1.2 Å) to provide a

direct methods solution. Preliminary solution obtained from merging three datasets from three

separate crystals with no user input other than molecular formula.

Figure 3.51 TEM image of 3.17 crystal at 2600x magnification.

178

3.8.13 Crystal Structure of Atropisomer 3.17

3.8.13.1 N-(1-(3-(4-chloro-3-(methylsulfonamido)-1-(2,2,2-trifluoroethyl)-1H-indazol-7-yl)-

6-(3-methyl-3-(methylsulfonyl)but-1-yn-1-yl)pyridin-2-yl)-2-(3,5-difluorophenyl)ethyl)-2-

((3bS,4aR)-5,5-difluoro-3-(trifluoromethyl)-3b,4,4a,5-tetrahydro-1H-

cyclopropa[3,4]cyclopenta[1,2-c]pyrazol-1-yl)acetamide (3.17)

Figure 3.52 MicroED crystal structure of 3.17. ORTEP diagram for the asymmetric unit of 3.17.

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.17.

Empirical formula C39H32ClF10N7O5S2Na

Formula weight 991.27

Crystal Habit acicular

Crystal size 50 – 90 m

179

Sample Lot Number 6207-02-AC-1P

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature –178(4) °C

Unit cell dimensions a = 8.6500(10)

 b = 19.580(2)

 c = 26.050(4)

Volume 4,412.0(10)

Z 4

Crystal system Orthorhombic

Space group P212121

Density (calculated) 1.492 Mg/m3

F(000) 178

Measured reflections 26556

Reflections with I > 2(I) 5213

Resolution 0.95 Å

Completeness 95.7%

Index ranges 9 ≤ h ≤ -9, 19 ≤ k ≤

-19, 26 ≤ l ≤ -26

Structure solution and Refinement

Structure solution program SHELXD (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 5213 / 989 / 586

180

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.662

Final R indices [I>2s(I), 3563 reflections] R1 = 0.1502, wR2 = 0.3357

R indices (all data) R1 = 0.1928, wR2 = 0.3510

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.034

Average shift/error 0.004

Largest diff. peak and hole 0.15 and -0.19 e.Å-3

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2 , conventional R-factors (R) are based on F, with F set to zero for negative

F2 . The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and

is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

3.8.14 Data Collection of Natural Product Compound

Quantifoil holey-carbon EM grids were placed in a dram vial with purified 3.23 and

shaken lightly. Residual compound was removed by tapping lightly against the surface of a filter

paper. All diffraction data was collected on FEI Tecnai F200C electron microscope with an

operating voltage of 200 keV, corresponding to a wavelength of 0.025 Å, using Gatan 626 cryo-

holder under cryogenic temperature (100 K). During data acquisition, the crystal of interest was

isolated using a selected area aperture and continuously rotated at a rate of -0.3º/s over a tilt

range of 50–100º. Continuous rotation diffraction data was recorded using rolling shutter mode

with a Ceta-D CMOS 4k x 4k camera, integrating at a rate of 3 s per frame and binning by 2 to

181

produce final images of 2k x 2k. Diffraction movies saved as SER files were converted to SMV

format using ser2smv software as described previously.3,21 Frames were indexed and integrated

in XDS.1 Data from four crystals were scaled and merged together using XSCALE to produce

the final data set.2 Finally, intensities were converted to SHELX format using XDSCONV. The

structure of 3.23 was solved ab initio using direct methods in SHELXD and refined with

SHELXL in ShelXle.4–7 All non-hydrogen atoms were refined anisotropically, and hydrogen

atoms were placed using the riding model. Crystallographic information files (CIF) for

compound 3.23 have been deposited at the Cambridge Crystallographic Data Center (Deposition

Number: 2020283).

3.8.15 Crystal Structure of Natural Product Compound

3.8.15.1 (2R,3R,4S,5R,6R)-2-((benzoyloxy)methyl)-6-(2,6,8-trioxo-1,2,6,7,8,9-hexahydro-

3H-purin-3-yl)tetrahydro-2H-pyran-3,4,5-triyl tribenzoate (3.23)

182

Figure 3.53 MicroED crystal structure of 3.23. Initial direct methods solution of 3.23 (left) with

electron density map (Fobs) contoured at 1.41 e Å-3 and ORTEP diagram of refined 3.23 (right).

Thermal ellipsoids shown as shaded octants at 30% probability.

Crystal data and structure refinement for 3.23.

Empirical formula C11H14N4O8

Formula weight 330.25

Data Collection

Type of instrument Talos F200C

Wavelength 0.0215 Å

Data collection temperature 96(4) K

Unit cell dimensions a = 8.990(9)

 b = 9.730(2)

 c = 14.16(3)

 = 93.05(9)

 = 94.62(5)

 = 108.54(5)

Volume 1166.5(4)

Z 4

Crystal system Triclinic

Space group P1

Density (calculated) 1.881 Mg/m3

F(000) 239

Measured reflections 8144

Reflections with I > 2(I) 2122

Resolution 1.0 Å

Completeness 87.1%

Index ranges 8 ≤ h ≤ -8, 9 ≤ k ≤

-9, 11 ≤ l ≤ -11

Structure Solution and Refinement

183

Structure solution program SHELXD (Uson & Sheldrick, 1999)

Primary solution method Direct methods

Secondary solution method Difference Fourier map

Hydrogen placement Geometric positions

Structure refinement program SHELXL-2018/3 (Sheldrick, 2018)

Refinement method Full matrix least-squares on F2

Data / restraints / parameters 4210 / 914 / 798

Treatment of hydrogen atoms Riding

Goodness-of-fit on F2 1.300

Final R indices [I>2s(I), 975 reflections] R1 = 0.1299, wR2 = 0.2990

R indices (all data) R1 = 0.1586, wR2 = 0.3223

Type of weighting scheme used Sigma

Weighting scheme used w=1/s2(Fo2)

Max shift/error 0.163

Average shift/error 0.001

Largest diff. peak and hole 0.15 and -0.15 e.Å-3

Special Refinement Details

Refinement of F2 against ALL reflections. The weighted R-factor (wR) and goodness of

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative

F2. The threshold expression of F2 > 2s(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically

about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using

the full covariance matrix. The cell esds are taken into account individually in the estimation of

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell

esds is used for estimating esds involving l.s. planes.

184

3.8.14 Supplementary Notes & References

(1) Kabsch, W. Acta Cryst. 2010, D66, 125–132.

(2) Kabsch, W. Acta Cryst. 2010, D66, 133–144.

(3) Hattne, J., et al. Acta Cryst. 2015, 71, 353–360.

(4) Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122.

(5) Sheldrick, G. M. Acta Cryst. 2015 A71, 3–8.

(6) Sheldrick, G. M. Acta Cryst. 2015, C71, 3–8.

(7) Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. J. Appl. Cryst. 2011, 44, 1281–1284.

(8) PCT Int. Appl. 2016, WO 2016187308 A1 20161124.

(9) PCT Int. Appl. 2018, WO 2018097945 A1 20180531.

(10) PCT/US2015/047472, WO 2016033486 A1.

(11) PCT Int. Appl. 2018, WO 2018093576 A1 20180524.

(12) PCT Int. Appl. 2018, WO 2018093577 A1 20180524.

(13) PCT Int. Appl. 2018, WO 2018093579 A1 20180524.

(14) PCT Int. Appl. 2018, WO 2018097944 A1 20180531.

(15) PCT Int. Appl. 2018, WO 2018097945 A1 20180531.

(16) PCT Int. Appl. 2019, WO 2019006231 A1 20190103.

(17) PCT Int. Appl. 2016, WO 2016141035 A1.

(18) J. Org. Chem. 2014, 79, 3684–3687.

(19) J. Med. Chem. 2014, 57, 9796–9810.

(20) J. Med. Chem. 2018, 61, 453–461.

185

(21) Program ser2smv obtained from https://cryoem.ucla.edu/downloads/snapshots.

185

CHAPTER FOUR

Optimization of Microcrystal Electron Diffraction Data Collection and Processing Routines

through Scripted Automation

4.1 Abstract

The work detailed in this chapter focuses on the automation of data processing and collection

for microcrystal electron diffraction (microED), in an effort to make the technique more

accessible and practical for routine structure elucidation of small molecules. The development of

Python scripts to adapt XDS, a diffraction indexing program designed for X-ray crystallography,

for automated microED data is described. Additionally, automated data collection routines for

incident diffraction screening of microcrystalline particles through an efficient, automated

process utilizing image recognition is described.

4.2 Introduction

Using the popularization of NMR spectroscopy and cryoEM as examples, it is clear that

advancement of reliable, automated tools is critical to the wide-spread use of emerging analytical

techniques.1–3 Despite the increasing number of unique reported small molecule compounds, only

~50,000 crystal structures per year have been deposited into the Cambridge Structural Database

over the past decade.4,5 The incorporation of more straightforward operation and automated data

processing into the microED workflow would lower the barrier for non-specialists to utilize the

technique. These developments would not only allow chemists to obtain crystal structures of a

subset of compounds unable to be solved by X-ray crystallography, but also render the study of

microcrystalline compounds a routine part of organic synthesis.

186

At present, microED faces a number of unique challenges for routine implementation.

Manual data collection and processing can be repetitive, time-consuming, and hit-or-miss; that is

to say while some compounds can provide data capable of structural solution within minutes,

others require collection of hundreds of datasets and exhaustive crystallization attempts (See

Chapter 3). There exists a handful of programs that automate portions of the collection and

processing of microED data, as is briefly described in Chapter 1; however, these programs treat

data processing and collection separately and these two separate stages have not yet been fully

integrated into a single, complete workflow.6–9 Given the variability between samples, we propose

that a dynamic process, in which processed data enters a feedback loop to inform active data

collection, is critical for efficient sample analysis. This is particularly important when automating

data collection of crystals that display preferred orientation or have low symmetry.

4.3 Automation of Data Processing

Small molecule samples most commonly crystallize in low symmetry space groups

belonging to triclinic, monoclinic, and orthorhombic Laue groups.10 Samples that produce crystals

in these lower symmetry crystal systems require wide sampling of reciprocal space for a complete

dataset. This presents a challenge for studies by microED: while an X-ray diffractometer can

collect 360° of data in ideal cases, physical limitations of transmission electron microscopes

(TEMs) typically allow for a maximum tilt range of ~130°. This means that multiple datasets often

must be combined to reach high enough dataset completeness to obtain an ab initio solution, which

is not typically encountered in X-ray crystallographic studies.11 Additionally, microcrystals may

lie on a TEM grid with a preferred orientation due to its physical dimensions, or rapidly degrade

under the electron beam, further hindering collection of a full dataset.12,13 Much of this non-ideal

187

diffraction behavior cannot be reliably determined by automated procedures until after the data

has gone through indexing and merging.

In our ideal scenario, a user will insert their prepared TEM grid into the microscope and

incident diffraction screening will begin (Figure 4.1). If the incident diffraction data is determined

to be promising, a continuous rotation dataset would be collected and processed. A feedback loop

Figure 4.1 Overview of feedback loop proposed for fully automated microED structural solutions.

would then be generated, in which data will be collected and combined until a solution is obtained.

Inserting and removing a sample into the TEM, particularly at cryogenic temperatures, can be a

time-consuming operation, taking over an hour per sample. It is therefore critical to have reliable

automation of both data collection and data processing to ensure sufficient data has been collected

before a sample is removed. The data collection would then be halted after a structure has been

obtained.

 There are multiple reports outlining settings that can be modified from the X-ray

crystallographic program, XDS, to manually process electron diffraction data. After conversion of

continuous rotation diffraction movies into individual images, the XDS program performs

indexing and data reduction through a series of simple commands.9,14–16 The status of the

188

processing can easily be monitored through generation, or lack thereof, of a series of data files and

error messages. Applying our experience from manually processing hundreds of datasets, we

developed an automation regime capable of catching and correcting common errors in data

processing to ultimately return crystallographic statistics from raw diffraction datasets.

 To remove the need for human input in the data processing pipeline, we needed to make a

series of assumptions about values a user would insert after careful evaluation of the diffraction

images; one of these values is the location of the beam center. Typically, users visualize diffraction

images and utilize diagonally-related diffraction spots to measure the beam center using a

visualization program such as adxv (Figure 4.2).17

Figure 4.2 Manual measurement of beam center (red crosshairs) using the line tool (dashed line) for a microED

diffraction image in adxv.

As long as this value is relatively close to the true beam center, XDS can automatically refine this

value in the “IDXREF” step while determining symmetry of indexed diffraction spots.14 Utilizing

a Thermo Fisher Talos F200C with a beam stop designed for use in electron diffraction, paired

189

with a Ceta-D detector, the beam center can only deviate approximately ± 25 pixels (for a 2k x 2k

image) in each direction while remaining behind the beam stop. We have found that inputting the

center of the beam stop as the beam center is sufficient for XDS to then perform fine refinement

of the beam position, providing a simple workaround for the previous need to visualize and

measure the diffraction pattern prior to processing.

 Another approximation made is for “STRONG_PIXEL” and

“NUMBER_OF_PIXELS_IN_A_SPOT”. The ideal values are sample- and dose-dependent: they

relate to how “bright” the diffraction is relative to background noise (“STRONG_PIXEL”) and the

minimum number of bright pixels needed to be considered a diffraction spot

(“NUMBER_OF_PIXELS_IN_A_SPOT”). An underestimation of these values can lead to

indexing of background noise, and an overestimation may lead to few or no diffraction spots being

detected. Manual determination of these values is done by directly reading the pixel values from

diffraction spots and may be necessary if standard values do not work, typically due to poor data

quality. This can be done visually, using a program such as adxv to magnify a diffraction spot of

190

interest, as shown in Figure 4.3.17 To avoid this visual estimation, the automated program inputs

an initial guess for the “STRONG_PIXEL” and

Figure 4.3 TEM image of microED diffraction pattern with a region selected (left) and magnified diffraction spot

displaying pixel values in adxv to determine indexing values (right).

“MINIMUM_NUMBER_OF_PIXELS_IN_A_SPOT”, with values of 4 and 7 respectively, based

on the typical values that lead to successful indexing of our datasets. If XDS fails to index the

dataset using these values, the automation script will loop through random attempts of changing

these parameters until successful indexing occurs. In our experience, if a diffraction dataset is too

poor in quality to be indexed by XDS, it will fail in this step; therefore, the program will terminate

processing if ten failed indexing attempts have been completed at this step.

 Resolving these roadblocks to automation and translating our knowledge solving microED

datasets into Python code led to development of two scripts able to be launched using a single,

simple command in conjunction with a freely available data conversion program.18 This can be

utilized from a Mac terminal, Linux system, or Windows Subsystem for Linux to convert, index,

and scale batches of raw diffraction datasets. The program returns statistics of the dataset and

191

generates files needed for submission to SHELX for structural solution in organized subfolders

(Figure 4.4).19–21 Every microED dataset generated from compounds resolved in Chapter 3, 161

datasets in total, were successfully indexed using this automated program. The average time for

indexing on a 64-core server is ~1 minute per dataset. Examples of diffraction datasets from our

data library that failed analysis are outlined in Figure 4.5. It is worth nothing that manual re-

processing of these datasets, typically by removing portions of the full dataset, could lead to

successful indexing; however, the crystallographic statistics remained very poor, as indicated by

low resolution and high error values.

Figure 4.4 Example of input a, execution b, and output c from Python program for automatically processing single

datasets.

192

Figure 4.5 Images taken from diffraction movies that failed indexing through development of our automated

diffraction program.

 After successfully developing a program to process individual datasets, we turned our

attention to automating the combination of multiple processed datasets utilizing XSCALE to

generate structural solutions.15 This process, which is often referred to as dataset merging, involves

scaling of multiple datasets together for solution as if it were one complete dataset. In manual

microED structural solutions, a user will typically test many dataset permutations by trial-and-

error in XSCALE, and submit promising merged sets to SHELX for an attempt at a solution:

typically those with < 1.2 Å resolution, above 80% completeness, and the lowest merged error

statistics possible.

 At first, we sought to replicate this process by developing a Python code to generate each

possible permutation. This is effective for a small number of datasets: for example, five movies

would have 325 unique combinations, and all can be screened in under three minutes. This quickly

becomes impractical for evaluating large numbers of individual movies, where 10 movies would

have almost 10 million possible permutations and would require months to screen exhaustively. A

recent microED report from our laboratory describes a scenario in which over 200 individual

diffraction movies were collected for the eventual solution of a complex natural product.22 While

this presents an astonishingly large number of permutations to explore, the final resolved structure

193

came from merging only four datasets. This is broadly seen to be true from reported microED

structures: most structural solutions originate from combination of four or fewer individual

diffraction datasets. Knowing this information, we wrote a program to evaluate all permutations

of four movies or less, improving the speed at which merges can be tested. We then developed

additional programs to subject each of these merges to SHELXT and to sort the resultant data.

Finally, we wrapped these individual components into a user-friendly graphical user interface

(GUI, Figure 4.6). In straightforward cases, a user inputs diffraction files and molecular formula,

and a structural solution will be produced.

Figure 4.6 GUI developed to automate batch indexing and processing of microED datasets.

4.4 Automation of Data Collection

 After developing this simple, standalone programs to process microED data, we turned to

development of automated data collection tools with the eventual goal of combining these efforts

into a single, comprehensive microED solution platform. The open-source program currently

closest to achieving this for continuous rotation electron diffraction is Instamatic/InsteaDMatic

194

developed by the Zou group; however, these programs are developed to operate through the Gatan

DigitalMicrograph software suite and cannot directly communicate with ThermoFisher Scientific

camera software, TIA.7–9,23 The ThermoFisher Scientific Ceta-D camera is sufficient for small

molecule diffraction studies and its affordable price point makes it an attractive option for

widespread adoption of microED. With this in mind, we begam development of automation

compatible with this platform.

 Our software relies upon communication with the ThermoFisher Scientific (TFS) Talos

F200C microscope server through TEMScripting and Advanced Scripting features. We first sought

to develop a simple tool to automate Low Dose, the TFS tool commonly utilized in microED to

rapidly switch between imaging and diffraction modes. Quickly, we ran into difficulties: the beam

stop, critical to protecting the Ceta-D detector from the condensed incident electron beam, was not

accessible through TEMScripting or AdvancedScripting. To circumvent this, we employed a

Python library called PyAutoGUI to map the microscope user interface (MUI) and identify

coordinate values that correspond to desired commands (ex: inserting the beam stop, removing the

beam stop, switching between Low Dose modes).24 Simply creating a map of the MUI and

incorporating PyAutoGUI commands into our workflow allowed us to develop a tool to reliably

collect selected area incident diffraction patterns through our standard Low Dose methods using

three clicks of a GUI (Figure 4.7). After development of this screening tool, we incorporated it

into a script that can perform particle recognition, similar to Instamatic, for a comprehensive

incident diffraction screening program.

195

Figure 4.7 GUI a developed to automate collection of incident diffraction set-up b, recording of diffraction image c,

and returning to imaging mode utilizing low dose d.

 During incident diffraction screening, a user identifies particles of interest in imaging mode

and quickly collects a single diffraction image to evaluate its crystallinity and likelihood of

providing a useful microED dataset. Particularly when loading solvated suspensions of crystals

onto a grid, the distribution of particles is often not uniform, and it is therefore important to image

the entire grid. Currently available automated diffraction programs perform this imaging at a

magnification of around 2600-3400x, but fully imaging a grid at this magnification is impractical.

This is because the field of view at this magnification is 0.04% of the viewable grid area. Obtaining

an image overview of the entire grid at low magnification (380x) is more routinely employed as

“maps” or “montages” in TEM techniques such as cryoEM and cryoET, through use of programs

like TFS Maps or SerialEM.25,26 While it is relatively straightforward for a microscope operator to

a) b)

c) d)

196

identify promising particles at low magnification and collect data from them at higher

magnification, we needed to develop an efficient strategy to perform this using automation.

 We developed a technique to perform image recognition using the Python library OpenCV

at low magnification (380x), giving us coordinates to regions of the grid that contain particles

(Figure 4.8).27 We found that, due to TEM hardware limitations, these coordinates do not

 Figure 4.8 Automation workflow for collection and analysis of particles at low magnification, realignment at

increased magnification, and recording and ranking of diffraction patterns from particles.

consistently correspond to the same values at higher magnification (2600x). This held true even

when they were carefully recorded manually to exclude errors from the image recognition process.

The values were deviated from the true center an average of 7.3 μm as determined manually from

20 datapoints from differing crystals, with poor consistency in which direction they were offset.

This variability was overcome in our automation program by quickly taking a second image at

197

2600x magnification and readjusting to accurately center the crystal for selected area diffraction

(Figure 4.8).

Multiple particle recognition strategies developed from the OpenCV library were evaluated

by analyzing a standard grid containing 50% sodium chloride and 50% carbamazepine. The rate

of successful diffraction was compared to manual incident diffraction screening of the same

standard sample and found success rates approaching that of an experienced TEM user (Figure

4.9).

Figure 4.9 Evaluation of image recognition scripts to manual collection based on percentage of particles that

provide diffraction.

4.5 Conclusion

In summary, this chapter explored the development of microED data processing and data

collection automation regimes to ultimately increase accessibility and allow for routine structural

elucidation of small molecules. We have developed a series of processing scripts can transform

most microED datasets into indexed files ready for merging and structural solution. Through use

of a GUI, in straightforward cases, a user can obtain a structural solution in a matter of minutes by

inputting the appropriate files and estimated molecular formula. We also developed tools to

0%

20%

40%

60%

80%

100%

CrystalEyesA_v1 CrystalEyesA_v2 CrystalEyesA_v3 Manual Collection

Percentage of Particles Providing Diffraction from
Standard Sample

198

improve the tedious process of screening an entire grid for incident diffraction through use of

image recognition and TEMScripting. We expect this work will lay the groundwork for future

efforts combining these tools into a fully automated microED pipeline, lowering the barrier to

entry for chemists to perform such analyses. Much in the same way that NMR came to the forefront

of structural characterization through a combination of fundamental and applied methods

development, we expect that microED will similarly become a commonplace method for

unambiguous structural assignment of small molecules.

199

4.6 Notes and References

(1) Gunther, H. NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry.

John Wiley & Sons: New York, 2013.

(2) Shen, P. S. The 2017 nobel prize in chemistry: cryo-EM comes of age. Anal. Bioanal. Chem.

2018, 410, 2053–2057.

(3) Schorb, M.; Haberbosch, I.; Hagen, W. J. H.; Schwab, Y.; Mastronarde, D. N. Software tools

for automated transmission electron microscopy Nat. Methods 2019, 16, 471–477.

(4) Cambridge Structural Database. CSD Entries: Summary Statistics, 2021.

https://www.ccdc.cam.ac.uk/CCDCStats/Stats.

(5) Lipkus, A. H.; Watkins, S. P.; Gengras, K.; McBride, M. J.; Wills, T. J. Recent changes in the

scaffold diversity of organic chemistry as seen in the CAS registry. J. Org. Chem. 2019, 84, 13948–

13956.

(6) de la Cruz, J. M.; Martynowycz, M.; Hattne, J.; Gonen, T. MicroED data collection with

SerialEM Ultramicroscopy 2019, 201, 77–80.

(7) Smeets, S.; Zou, X.; Wan, W. Serial electron crystallography for structure determination and

phase analysis of nanocrystalline materials. J. Appl. Crystallogr. 2018, 51, 1262–1273.

(8) Roslova, M.; Smeets, S.; Wing, B.; Thersleff, T.; Xu, H.; Zou, X. InsteaDMatic: towards cross-

platform automated continuous rotation electron diffraction J. Appl. Crystallogr. 2020, 53, 1217–

1224.

(9) Wang, B.; Zou, X.; Smeets, S. Automated serial rotation electron diffraction combined with

cluster analysis: an efficient multi-crystal workflow for structure determination IUCrJ. 2019, 6,

854–867.

200

(10) Cambridge Structural Database. CSD Crystal System Statistics, 2021.

https://www.ccdc.cam.ac.uk/CCDCStats/Stats.

(11) Dauter, Z. Collection of X-ray diffraction data from macromolecular crystals. Methods Mol

Biol. 2017, 1607, 165–184.

(12) (a) Barth, M. et al. Estimation of missing cone data in three-dimensional electron microscopy.

Scanning Microsc. Suppl. 1988, 2, 277–284. (b) Glaeser, R. M. et al. Three-dimensional

reconstructions from incomplete data: interpretability of density maps at ‘atomic’ resolution.

Ultramicroscopy 1989, 27, 307–318. (c) Ford, R. C.; Holzenburg, A. Electron crystallography of

biomolecules: mysterious membranes and missing cones. Trends Biochem. Sci. 2008, 1, 38–43.

(13) Hattne, J.; Shi, D.; Glynn, C.; Zee, C.-T.; Gallagher-Jones, M.; Martynowycz, M. W.;

Rodriguez, J. A.; Gonen, T. Analysis of Global and Site-Specific Radiation Damage in Cryo-EM

Structure 2018, 5, 759–766.

(14) Kabsch, W. Xds. Acta Crystallogr. 2010, D66, 125–132.

(15) Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta

Crystallogr. 2010, D66, 133–144.

(16) Hattne, J.; Reyes, F. E.; Nannenga, B. L.; Shi, D.; de la Cruz, M. J.; Leslie, A. G. W.; Gonen,

T. MicroED data collection and processing. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71,

353−360.

(17) Arvai, A. J. Adxv – a program to display x-ray diffraction images. 1994,

https://www.scripps.edu/tainer/arvai/adxv.html.

(18) Program ser2smv obtained from https://cryoem.ucla.edu/downloads/snapshots.

201

(19) (a) Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122.(b) Sheldrick,

G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta Cryst. 2015

A71, 3–8.

(20) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

(21) Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. ShelXle: A Qt graphical user interface for

SHELXL. J. Appl. Cryst. 2011, 44, 1281–1284.

(22) Kim, L. J.; Ohashi, M.; Zhang, Z.; Tan, D.; Asay, M.; Cascio, D.; Rodriguez, J. A.; Tang, Y.;

Nelson, H. M. Prospecting for natural products by genome mining and microcrystal electron

diffraction. Nat. Chem. Biol. 2021, 17, 872−877.

(23) Gatan DigitalMicrograph can be accessed from: https://www.gatan.com/products/tem-

analysis/gatan-microscopy-suite-software

(24) Bradski G. The OpenCV Library. Dr Dobb’s Journal of Software Tools, 2000.

(25) ThermoFisher Scientific Maps can be accessed from:

https://www.thermofisher.com/us/en/home/electron-microscopy/products/software-em-3d-

vis/maps-software.html.

(26) Mastronarde, D. N. Automated electron microscope tomography using robust prediction of

specimen movements. J. Struct. Biol. 2005, 152, 36–51.

(27) Sweigart, A. PyAutoGUI, 2019. https://github.com/asweigart/pyautogui.

(28) Evans, P. Scaling and assessment of data quality. Acta Cryst. 2006, D62, 72–82.

(29) Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta. Cryst. 2011,

D67, 235–242.

202

4.7 Experimental Section

4.7.1 Automated MicroED Diffraction Processing Programs

4.7.1.1 Automated MicroED Diffraction Processing Program Procedure

Movie files were saved in a standardized format separated by underscores to allow for automated

data processing. An example format is provided below:

samplename-mov1_960_0.3_3_cryo.ser

samplename-mov1 can be any name not including an underscore or special character. This will

become the name of the folder containing processed data.

960 is the detector distance used in mm. This can be set to any value.

0.3 is the rotation speed of the stage, in °/s.

3 is the image integration time.

cryo can be any additional notes about the sample and can include underscores.

 On a computer running Ubuntu Windows Subsystem for Linux with properly installed

XDS suite, free ser2smv18 data conversion file, and pointless program as part of the CCP4 data

suite28,29, “python3 auto_indexing.py” is called to run Python3.8 in a folder containing an

executable copy of ser2smv, the python scripts, and the .ser movie files to be processed.

203

4.7.1.2 xds_for_me_0302.py

"""

Jessica Burch

script for microED data processing using XDS

version: 03/02/2020

"""

import os

from subprocess import run

import random

import string

This portion reads your file name and converts .ser files to images.

def main():

 files = os.listdir(".")

 for name in files:

 if name.endswith(".ser"):

 newname = name.split("_")

 path = os.getcwd()

 newpath = str(path + "/images")

 os.chdir(newpath)

 conversion = str(path + "/../ser2smv -P 0.014 -B 2 -r " + newname[2]

 + " -w 0.0251 -d " + newname[1] + " -E " + newname[3] +

 " -M 200 -v -o " + newname[0] + "_###.img " + path

 + "/" + name)

 print("Converting your .ser file to .img frames. Hold on!")

 os.system(conversion + ' > summary.LP')

 global movname

 movname = newname[0]

 with open('summary.LP') as f1:

 lines = f1.readlines()

 with open('summary.LP', 'w') as f2:

 f2.writelines(lines[-15:])

 with open('summary.LP', 'r') as f:

 line = f.readline()

 for line in f:

 if "+++" in line:

 element = str.split(line)

 frame = str(element[2])

 print("You have " + frame + " images.")

 path = os.getcwd()

 newpath = str(path + "/../auto_process")

 os.chdir(newpath)

 f = open("XDS.INP","w+")

204

 if os.path.isfile("*.LP") == True:

 os.remove("*.LP")

 if os.path.isfile("*.XDS") == True:

 os.remove("*.XDS")

 if os.path.isfile("*.HKL") == True:

 os.remove("*.HKL")

 f.write("JOB= XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT" +

 "\n!JOB=DEFPIX INTEGRATE CORRECT")

 x = str("1018")

 y = str("1000")

 osc = str(float(newname[3]) * float(newname[2]))

 corrected_distance = float(newname[1]) * 0.943

 data_path = str(path + "/" + newname[0])

 f.write("\nORGX= " + x + " ORGY= " + y + " ! check these using adxv" +

 "\nDETECTOR_DISTANCE= " + str(corrected_distance) +

 "\nOSCILLATION_RANGE= " + osc + "\nX-RAY_WAVELENGTH= 0.0251000002")

 f.write("\nNAME_TEMPLATE_OF_DATA_FRAMES=" + data_path + "_???.img" +

 "\nBACKGROUND_RANGE=1 10\n!DELPHI=15\n!SPACE_GROUP_NUMBER=0"

 + "\n!UNIT_CELL_CONSTANTS= 1 1 1 90 90 90")

 if newname[1] == str("1050"):

 res = str("0.8")

 elif newname[1] == str("1100"):

 res = str("0.9")

 elif newname[1] == str("960"):

 res = str("0.85")

 elif newname[1] == str("850"):

 res = str("0.65")

 elif newname[1] == str("1350"):

 res = str("1.1")

 elif newname[1] == str("670"):

 res = str("0.45")

 elif newname[1] == str("420"):

 res = str("0.25")

 elif newname[1] == str("2200"):

 res = str("1.7")

 elif newname[1] == str("330"):

 res = str("0.15")

 f.write("\nINCLUDE_RESOLUTION_RANGE= 40 " + res +

 "\nTEST_RESOLUTION_RANGE= 40 " + res + "\nTRUSTED_REGION=0.0 1.2"+

 "\nVALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS=6000. 30000." +

 "! parameters for detector and beamline:" +

 "\nDETECTOR= ADSC MINIMUM_VALID_PIXEL_VALUE= 1 OVERLOAD=

65000" +

 "\nSENSOR_THICKNESS= 0.01" + "\nNX= 2048 NY= 2048 QX= 0.0280000009"

205

 + " QY= 0.0280000009" + "\nROTATION_AXIS=0 -1 0" +

 "\nDIRECTION_OF_DETECTOR_X-AXIS=1 0 0" +

 "\nDIRECTION_OF_DETECTOR_Y-AXIS=0 1 0" +

 "\nINCIDENT_BEAM_DIRECTION=0 0 1\nFRACTION_OF_POLARIZATION=0.98"

 + "\nPOLARIZATION_PLANE_NORMAL=0 1 0" +

 "\nREFINE(IDXREF)=CELL BEAM ORIENTATION AXIS ! DISTANCE" +

 "\nREFINE(INTEGRATE)= DISTANCE BEAM ORIENTATION ! AXIS CELL" +

 "\nREFINE(CORRECT)=CELL BEAM ORIENTATION AXIS ! DISTANCE !" +

 "\n\nDATA_RANGE= 1 " + str(element[2]) + "\nSPOT_RANGE= 1 "

 + str(element[2]))

 sp = "4"

 minpix = "7"

 f.write("\nSTRONG_PIXEL= " + sp +

"\nMINIMUM_NUMBER_OF_PIXELS_IN_A_SPOT= "

 + minpix + "\n!\n!")

 f.close()

 xds_out = open("XDS.LP", "w+")

 print("XDS is running...")

 run("xds", stdout= xds_out)

def autoprocessing():

 if os.path.isfile('X-CORRECTIONS.cbf') == False:

 xds_out = open("XDS.LP", "w+")

 print("XDS is running...")

 run("xds", stdout= xds_out)

 if os.path.isfile('XPARM.XDS') == False:

 for i in range(10):

 with open('XDS.INP') as f1:

 lines = f1.readlines()

 with open('XDS.INP', 'w') as f2:

 strong = random.randrange(3,9,1)

 mpix = random.randrange(4,9,1)

 f2.writelines(lines[:-4])

 f2.write("STRONG_PIXEL= " + str(strong) +

 "\nMINIMUM_NUMBER_OF_PIXELS_IN_A_SPOT= " + str(mpix) +

 "\n!\n!")

 f2.close()

 print("Screening new indexing values for you.")

 xds_out = open("XDS.LP", "w+")

 run("xds",stdout= xds_out)

 if os.path.isfile('XPARM.XDS') == True:

 if os.path.isfile('DEFPIX.LP') == False:

 with open('XDS.INP') as f1:

 lines = f1.readlines()

 with open('XDS.INP', 'w') as f2:

206

 f2.write("!JOB=XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE

CORRECT"

 + "\nJOB=DEFPIX INTEGRATE CORRECT\n")

 f2.writelines(lines[2:])

 f2.close()

 print("Less than 70% of spots went through. Running with JOB= DEFPIX "

 + "INTEGRATE CORRECT.")

 xds_out = open("XDS.LP", "w+")

 run("xds",stdout= xds_out)

 if os.path.isfile('XPARM.XDS') == False:

 print("Unable to autoprocess " + movname + "!")

 exit()

 else:

 return autoprocessing()

 else:

 return autoprocessing()

 else:

 print("Unable to autoprocess " + movname + "!")

 f2.close()

 exit()

 if os.path.isfile('DEFPIX.LP') == False:

 with open('XDS.INP') as f1:

 lines = f1.readlines()

 with open('XDS.INP', 'w') as f2:

 f2.write("!JOB=XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE

CORRECT"

 + "\nJOB=DEFPIX INTEGRATE CORRECT\n")

 f2.writelines(lines[2:])

 f2.close()

 print("Less than 70% of spots went through. Running with JOB= DEFPIX "

 + "INTEGRATE CORRECT.")

 xds_out = open("XDS.LP", "w+")

 run("xds",stdout= xds_out)

 return autoprocessing()

 if os.path.isfile("INTEGRATE.HKL") == False:

 with open('XDS.INP') as f1:

 lines = f1.readlines()

 with open('XDS.INP', 'w') as f2:

 f2.writelines(lines)

 f2.write("\nBEAM_DIVERGENCE= 0.03 BEAM_DIVERGENCE_E.S.D.= 0.003" +

 "\nREFLECTING_RANGE=1.0 REFLECTING_RANGE_E.S.D.= 0.2")

 f2.close()

 print("Adding beam divergence values to correct a common error.")

 xds_out = open("XDS.LP", "w+")

207

 run("xds",stdout= xds_out)

 return autoprocessing()

 if os.path.isfile("CORRECT.LP") == True:

 print ("Successful indexing!")

 return mosaicity()

def mosaicity():

 with open('XDS.INP') as f1:

 lines = f1.readlines()

 with open('XDS.INP', 'w') as f2:

 f2.write("!JOB=XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT"

 + "\nJOB=DEFPIX INTEGRATE CORRECT\n")

 f2.writelines(lines[2:-2])

 with open('INTEGRATE.LP', 'r') as l1:

 f2 = open('XDS.INP', 'a')

 line = l1.readline()

 for line in l1:

 if "BEAM_DIVERGENCE= " in line:

 f2.write(line)

 if "REFLECTING_RANGE=" in line:

 f2.write(line)

 f2.close()

 return iterate_opt()

def iterate_opt():

 with open('XDS.LP') as f1:

 lines = f1.readlines()

 with open('XDS.LP', 'w') as f2:

 f2.writelines(lines[-26:])

 with open('XDS.LP', 'r') as f:

 line = f.readline()

 for line in f:

 if " a b ISa" in line:

 next_line = f.readline()

 stats = str.split(next_line)

 Isa1 = float(stats[2])

 print("Isa: " + str(Isa1) + ". Testing new values now.")

 xds_out = open("XDS.LP", "w+")

 run("xds",stdout= xds_out)

 with open('XDS.LP') as f1:

 lines = f1.readlines()

 with open('XDS.LP', 'w') as f2:

 f2.writelines(lines[-26:])

 with open('XDS.LP', 'r') as f:

 line = f.readline()

 for line in f:

 if " a b ISa" in line:

208

 new_next_line = f.readline()

 new_stats = str.split(new_next_line)

 Isa2 = float(new_stats[2])

 print("Isa: " + str(Isa2))

 if "SPACE_GROUP_NUMBER=" in line:

 number = str.split(line)

 space_group = number[1]

 if "UNIT_CELL_CONSTANTS=" in line:

 cell = str.split(line)

 temp = cell[-6:]

 temp_str = str(temp).strip("]['")

 temp_str2 = temp_str.replace(",","")

 unit_cell = temp_str2.replace("'","")

 Isa_change = abs(Isa2 - Isa1)

 if Isa_change > 0.5:

 print("I'm trying to optimize beam divergence values.")

 return iterate_opt()

 else:

 print("Optimized beam divergence values.")

 f = open('stats.LP','w')

 f.write(str(space_group) + "\n" + unit_cell)

 f.close

 print("I found space group " + str(space_group) + " and a unit cell of "

 + "\n" + unit_cell)

def scale_conv():

 xscale = open('XSCALE.INP','w')

 xscale_out = open("xscale.LP","w+")

 m = movname

 xscale.write("OUTPUT_FILE= " + m +".ahkl"+"\nINPUT_FILE= XDS_ASCII.HKL"

 + "\nRESOLUTION_SHELLS= 10 8 5 3 2.3 2.0 1.7 1.5 1.3 " +

 "1.2 1.1 1.0 0.90 0.80")

 xscale.close()

 run("xscale", stdout= xscale_out)

 print("I scaled the data in XSCALE.")

 xdsconv_out = open("xdsconv.LP", "w+")

 xdsconv = open('XDSCONV.INP','w')

 xdsconv.write("INPUT_FILE= " + m + ".ahkl" + "\nOUTPUT_FILE= " +

 m + ".hkl" + " SHELX" +

 "\nGENERATE_FRACTION_OF_TEST_REFLECTIONS=0.10"

 + "\nFRIEDEL'S_LAW=FALSE")

 xdsconv.close()

 run("xdsconv",stdout= xdsconv_out)

 print("I converted it for use in shelx!")

209

 os.system("echo CHIRALITY NONCHIRAL | pointless xdsin XDS_ASCII.HKL >

pointless.LP")

 with open('pointless.LP','r') as p1:

 lines = p1.readlines()

 for index, line in enumerate(lines):

 if " Spacegroup TotProb SysAbsProb Reindex Conditions" in line:

 os.mknod("pointless_group.LP")

 sp1 = lines[index+2]

 sp1_1 = sp1.split()

 for item in sp1_1:

 if item.endswith(")") == True:

 sp1_2 = str(item).strip(')(')

 with open('pointless_group.LP','a') as pg:

 pg.write(str(sp1_2) + "\n")

 sp2 = lines[index+3]

 sp2_1 = sp2.split()

 for item in sp2_1:

 if item.endswith(")") == True:

 sp2_2 = str(item).strip(')(')

 with open('pointless_group.LP','a') as pg:

 pg.write(str(sp2_2) + "\n")

 sp3 = lines[index+4]

 sp3_1 = sp3.split()

 for item in sp3_1:

 if item.endswith(")"):

 sp3_2 = str(item).strip(')(')

 with open('pointless_group.LP','a') as pg:

 pg.write(str(sp3_2) + "\n")

 sp4 = lines[index+5]

 sp4_1 = sp4.split()

 for item in sp4_1:

 if item.endswith(")"):

 sp4_2 = str(item).strip(')(')

 with open('pointless_group.LP','a') as pg:

 pg.write(str(sp4_2) + "\n")

 sp5 = lines[index+6]

 sp5_1 = sp5.split()

 for item in sp5_1:

 if item.endswith(")"):

 sp5_2 = str(item).strip(')(')

 with open('pointless_group.LP','a') as pg:

 pg.write(str(sp5_2) + "\n")

210

if __name__== "__main__":

 main()

 autoprocessing()

 scale_conv()

4.7.1.3 autosetup_0302_new.py

"""

Jessica Burch

"""

import os

import shutil

def main():

 stats = open("stats.LP","w")

 stats.write("Data summary: ")

 files = os.listdir(".")

 for name in files:

 if name.endswith(".ser"):

 newname = name.split("_")

 path = os.getcwd()

 os.mkdir(path + "/" + str(newname[0]))

 os.mkdir(path + "/" + str(newname[0]) + "/images")

 os.mkdir(path + "/" + str(newname[0]) + "/auto_process")

 shutil.move(name,str(path + "/" + newname[0] + "/" + name))

 shutil.copyfile('xds_for_me_0302_new.py', str(path + "/" + newname[0]

 + "/xds_for_me_0302_new.py"))

 print("Setting up files for " + newname[0] + ".")

 os.chdir(path + "/" + str(newname[0]))

 os.system("python3 xds_for_me_0302_new.py")

 os.system("rm xds_for_me_0302_new.py")

 with open('auto_process/XSCALE.LP', 'r') as f:

 lines = f.readlines()

 for index, line in enumerate(lines):

 if " ========== STATISTICS OF INPUT DATA SET ==========" in line:

 t = lines[index-3]

 t1 = t.split()

 completeness = t1[4]

 Roverall = t1[5]

 l = lines[index-13]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

211

 with open('xscale_report.LP','w') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-12]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-11]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if 1 < float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-10]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-9]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-8]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-7]

 l1 = l.split()

 t = l1[5]

212

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-6]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-5]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 l = lines[index-4]

 l1 = l.split()

 t = l1[5]

 t2 = t[:-1]

 if float(t2) < 100 and float(t2) > 0:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n" + str(l1[0]) + " " + str(l1[4])

 + " " + str(l1[5]))

 else:

 with open('xscale_report.LP','a') as f1:

 f1.write("\n ! low resolution data")

 with open('xscale_report.LP','r') as f2:

 xsc = f2.read()

 with open('auto_process/stats.LP','r') as f3:

 ind = f3.read()

 with open('auto_process/pointless_group.LP','r') as f4:

 pg = f4.read()

 os.chdir("..")

 stats = open("stats.LP","a")

 stats.write("\n==========\n" + newname[0] + "\n" + ind + "\nXSCALE stats")

 stats.write("\n" + str(t1[4]) + " " + str(t1[5]) + "\n" + xsc)

 stats.write("\npointless\n" + str(pg))

if __name__== "__main__":

213

 main()

4.7.1.4 merging_all4.py

"""

This script will generate every combination possible for XSCALE merges based

on 4 movies. Written by Jessica Burch

"""

import os

import sys

from itertools import *

from subprocess import run

import itertools

import re

def main():

 successful_files = []

 path = os.getcwd()

 files = os.listdir(".")

 if os.path.isdir(path + "/every_merge") == False:

 os.mkdir(path + "/every_merge")

 #checks for files that successfully processed and adds to a list

 for file in files:

 if os.path.isfile(file + "/auto_process/XSCALE.LP") == True:

 successful_files.append(str(file))

 #makes all possible combinations of files

 for group in power_set(successful_files):

 if len(group) <= 1:

 pass

 if len(group) >= 5:

 pass

 else:

 for item in group:

 r = len(group)

 successful_files.extend(list(permutations(group,r)))

 new_list = list(set(successful_files))

 for entry in new_list:

 if isinstance(entry,str) == True:

 if os.path.isdir(path + "/every_merge/" + entry) == False:

 os.mkdir(path + "/every_merge/" + entry)

 os.chdir(path + "/every_merge/" + entry)

 f = open("XSCALE.INP","w+")

214

 f.write("!automatically generated XSCALE file\nOUTPUT_FILE=" +

 entry + ".ahkl\nINPUT_FILE=../../" + entry

 + "/auto_process/XDS_ASCII.HKL")

 f.close()

 xscale_out = open("xscale.LP","w")

 run("xscale", stdout=xscale_out)

 os.chdir("../../")

 else:

 title = str(entry)

 name = re.sub("\ |\'|\(|\)|","",title)

 file_name = re.sub(",","_",name)

 if os.path.isdir(path + "/every_merge/" + file_name) == False:

 os.mkdir(path + "/every_merge/" + file_name)

 os.chdir(path + "/every_merge/" + file_name)

 f = open ("XSCALE.INP","w")

 f.write("!automatically generated XSCALE file\nOUTPUT_FILE=" +

 file_name + ".ahkl\n")

 for item in entry:

 f.write("INPUT_FILE=../../" + item + "/auto_process/"

 + "XDS_ASCII.HKL\n")

 f.close()

 xscale_out = open("xscale.LP","w")

 run("xscale", stdout=xscale_out)

 os.chdir("../../")

def power_set(iterable):

 s = list(iterable)

 return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

def combinations(iterable, r):

 pool = tuple(iterable)

 n = len(pool)

 if r > n:

 return

 indices = list(range(r))

 yield tuple(pool[i] for i in indices)

 while True:

 for i in reversed(range(r)):

 if indices[i] != i + n - r:

 break

 else:

 return

 indices[i] += 1

 for j in range(i+1, r):

 indices[j] = indices[j-1] + 1

215

 yield tuple(pool[i] for i in indices)

if __name__== "__main__":

 main()

4.7.1.5 Lightning_Struc.py

"""

Movie to structure with GUI

"""

import os

import sys

from tkinter import *

import tkinter as tk

from tkinter import ttk

from subprocess import run

import random

from tkinter import filedialog

from itertools import *

import re

import shutil

from time import time

from shelxt_library import library

global mol

global rein

global reind

global reindex

global sfac

global filePaths

216

global destPath

global indexedFiles

global masterindexedFiles

global mergedFiles

rein = []

reind = []

destPath = []

filePaths = []

indexedFiles = []

masterindexedFiles = []

mergedFiles = []

def processing():

 if int(rein[-1])==0:

 destination = str(destPath[-1]).strip("'")

 reindex.set("original")

 if int(rein[-1])==1:

 indexedFiles.clear()

 d = str(destPath[-1]).strip("'")

 num = str(re_spa_gr.get()).strip("'")

 if os.path.isdir(d + "/" + num) == True:

 for i in range(1,99):

 if os.path.isdir(d + "/" + str(num) + "_" + str(i)) == False:

 destination = str(d + "/" + str(num) + "_" + str(i))

 n = str(num + "_" + i)

 reind.append(n)

 reindex.set(n)

 break

 if os.path.isdir(d + "/" + str(num)) == False:

 destination = str(d + "/" + str(num))

 reind.append(num)

 reindex.set(num)

 os.mkdir(destination)

 os.chdir(d)

 filez = os.listdir(".")

 for file in filez:

 f = str(file).strip("'")

 if os.path.isdir(d + "/" + f + "/auto_process") == True:

 os.mkdir(destination + "/" + f)

 os.mkdir(destination +"/" + f + "/auto_process")

 thething = str("cp -r " + d + "/" + f + "/auto_process/*" + " "

 + destination + "/" + f + "/auto_process/.")

 os.system(thething)

 stats = open("stats.LP","w")

 stats.write("Data summary: ")

217

 os.chdir(destination)

 os.listdir(".")

 for file in filePaths:

 newfile = str(file).strip("'")

 if newfile.endswith(".ser"):

 filename = newfile.split("/")

 movname = str(filename[-1]).strip("'")

 newname = movname.split("_")

 n = str(newname[0])

 if os.path.isdir(destination + "/" + n) == True:

 if os.path.isdir(str(destPath[-1]).strip("'") + "/" + n + "/images") == True:

 os.chdir(str(destPath[-1]).strip("'") + "/" + n + "/images")

 images = os.listdir(".")

 frames = str(len(images))

 if os.path.isdir(destination + "/" + n + "/auto_process") == True:

 os.chdir(destination + "/" + n + "/auto_process")

 os.system("rm *")

 if os.path.isdir(str(destPath[-1]).strip("'") + "/" + n + "/images") == False:

 os.mkdir(destination + "/" + n + "/images")

 conversion = str("/mnt/c/Users/jessi/Desktop/Test_Dataset/" +

 "LightningStruc_Testing/ser2smv -P 0.014 -B 2 -r "

 + newname[2] + " -w 0.0251 -d " + newname[1] +

 " -E " + newname[3] + " -M 200 -v -o " +

 n + "_###.img " + newfile)

 os.system(conversion + ' > summary.LP')

 with open('summary.LP') as f1:

 lines = f1.readlines()

 with open('summary.LP', 'w') as f2:

 f2.writelines(lines[-15:])

 with open('summary.LP', 'r') as f:

 line = f.readline()

 for line in f:

 if "+++" in line:

 element = str.split(line)

 frames = str(element[2])

 os.system("rm summary.LP")

 if os.path.isdir(destination +"/"+ n +"/auto_process") == False:

 os.mkdir(destination + "/" + n + "/auto_process")

 if os.path.isdir(destination + "/" + n) == False:

 os.mkdir(destination + "/" + n)

 os.mkdir(destination + "/" + n + "/images")

 os.mkdir(destination + "/" + n + "/auto_process")

 os.chdir(destination + "/" + n + "/images")

 conversion = str("/mnt/c/Users/jessi/Desktop/Test_Dataset/" +

 "LightningStruc_Testing/ser2smv -P 0.014 -B 2 -r "

 + newname[2] + " -w 0.0251 -d " + newname[1] +

218

 " -E " + newname[3] + " -M 200 -v -o " +

 n + "_###.img " + newfile)

 os.system(conversion + ' > summary.LP')

 with open('summary.LP') as f1:

 lines = f1.readlines()

 with open('summary.LP', 'w') as f2:

 f2.writelines(lines[-15:])

 with open('summary.LP', 'r') as f:

 line = f.readline()

 for line in f:

 if "+++" in line:

 element = str.split(line)

 frames = str(element[2])

 os.system("rm summary.LP")

 os.chdir(destination + "/" + n + "/auto_process")

 f = open("XDS.INP","w+")

 f.write("JOB= XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT"

+

 "\n!JOB=DEFPIX INTEGRATE CORRECT")

 if int(auto_o.get())==0:

 x = str("1018")

 y = str("1000")

 if int(auto_o.get())==1:

 x1 = str(ORGX.get(1.0,END)).strip("'")

 x = x1.strip("\n")

 y1 = str(ORGY.get(1.0,END)).strip("'")

 y = y1.strip("\n")

 osc = str(float(newname[3]) * float(newname[2]))

 adj = float(corrf.get())

 corrected_distance = str(float(newname[1]) * adj)

 if int(rein[-1])==0:

 data_path = str(destination + "/" + n + "/images/" + n)

 if int(rein[-1])==1:

 data_path = str(str(destPath[-1]).strip("'") + "/" + n +

 "/images/" + n)

 e = str(elec.get())

 f.write("\nORGX= " + x + " ORGY= " + y +

 "\nDETECTOR_DISTANCE= " + corrected_distance +

 "\nOSCILLATION_RANGE= " + osc + "\nX-RAY_WAVELENGTH= " + e)

 f.write("\nNAME_TEMPLATE_OF_DATA_FRAMES=" + data_path + "_???.img" +

 "\nBACKGROUND_RANGE=1 10\n!DELPHI=15\n")

 if int(rein[-1])==0:

 if int(auto_uc.get())==0:

 f.write("!SPACE_GROUP_NUMBER=0" +

 "\n!UNIT_CELL_CONSTANTS= 1 1 1 90 90 90")

 if int(auto_uc.get())==1:

219

 man_sp1 = str(spa_gr.get(1.0,END)).strip("'")

 man_sp = man_sp1.strip("\n")

 man_uc1 = str(uni_c.get(1.0,END)).strip("'")

 man_uc = man_uc1.strip("\n")

 f.write("SPACE_GROUP_NUMBER=" + man_sp +

 "\nUNIT_CELL_CONSTANTS= " + man_uc)

 if int(rein[-1])==1:

 man_sp = str(re_spa_gr.get()).strip("'")

 man_uc = str(re_uni_c.get()).strip("'")

 f.write("SPACE_GROUP_NUMBER=" + man_sp +

 "\nUNIT_CELL_CONSTANTS= " + man_uc)

 if int(auto_r.get())==0:

 res1 = float(newname[1]) * 0.0007

 res = str(round(res1, 2))

 if int(auto_r.get())==1:

 r = str(reso.get(1.0,END)).strip("'")

 res = r.strip("\n")

 rota = str(rotaxis.get())

 f.write("\nINCLUDE_RESOLUTION_RANGE= 40 " + res +

 "\nTEST_RESOLUTION_RANGE= 40 " + res + "\nTRUSTED_REGION=0.0 1.2"

+

 "\nVALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS=6000. 30000." +

 "! parameters for detector and beamline:" +

 "\nDETECTOR= ADSC MINIMUM_VALID_PIXEL_VALUE= 1 OVERLOAD=

65000" +

 "\nSENSOR_THICKNESS= 0.01" + "\nNX= 2048 NY= 2048 QX= 0.0280000009"

 + " QY= 0.0280000009" + "\nROTATION_AXIS=" + rota +

 "\nDIRECTION_OF_DETECTOR_X-AXIS=1 0 0" +

 "\nDIRECTION_OF_DETECTOR_Y-AXIS=0 1 0" +

 "\nINCIDENT_BEAM_DIRECTION=0 0

1\nFRACTION_OF_POLARIZATION=0.98"

 + "\nPOLARIZATION_PLANE_NORMAL=0 1 0" +

 "\nREFINE(IDXREF)=CELL BEAM ORIENTATION AXIS ! DISTANCE" +

 "\nREFINE(INTEGRATE)= DISTANCE BEAM ORIENTATION ! AXIS CELL" +

 "\nREFINE(CORRECT)=CELL BEAM ORIENTATION AXIS ! DISTANCE !" +

 "\n\nDATA_RANGE= 1 " + frames + "\nSPOT_RANGE= 1 "

 + frames)

 sp = "4"

 minpix = "7"

 f.write("\nSTRONG_PIXEL= " + sp +

"\nMINIMUM_NUMBER_OF_PIXELS_IN_A_SPOT= "

 + minpix + "\n!\n!")

 f.close()

 xds_out = open("XDS.LP", "w+")

 run("xds", stdout= xds_out)

 autoprocessing()

220

 os.listdir(".")

 if os.path.isfile("CORRECT.LP") == True:

 scale_conv()

 r = ("\n".join(indexedFiles))

 masterindexedFiles.append(r)

 option_changed2()

def autoprocessing():

 if os.path.isfile('X-CORRECTIONS.cbf') == False:

 xds_out = open("XDS.LP", "w+")

 run("xds", stdout= xds_out)

 if os.path.isfile('XPARM.XDS') == False:

 for i in range(10):

 with open('XDS.INP') as f1:

 lines = f1.readlines()

 with open('XDS.INP', 'w') as f2:

 strong = random.randrange(3,9,1)

 mpix = random.randrange(4,9,1)

 f2.writelines(lines[:-4])

 f2.write("STRONG_PIXEL= " + str(strong) +

 "\nMINIMUM_NUMBER_OF_PIXELS_IN_A_SPOT= " + str(mpix) +

 "\n!\n!")

 f2.close()

 xds_out = open("XDS.LP", "w+")

 run("xds",stdout= xds_out)

 if os.path.isfile('XPARM.XDS') == True:

 if os.path.isfile('DEFPIX.LP') == False:

 with open('XDS.INP') as f1:

 lines = f1.readlines()

 with open('XDS.INP', 'w') as f2:

 f2.write("!JOB=XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE

CORRECT"

 + "\nJOB=DEFPIX INTEGRATE CORRECT\n")

 f2.writelines(lines[2:])

 f2.close()

 print("Less than 70% of spots went through. Running with JOB= DEFPIX "

 + "INTEGRATE CORRECT.")

 xds_out = open("XDS.LP", "w+")

 run("xds",stdout= xds_out)

 if os.path.isfile('XPARM.XDS') == False:

 newname = str(os.getcwd()).split("/")

 m = str(newname[-2]).strip("'")

 result = str(m + ", Failed to index")

 indexedFiles.append(result)

221

 else:

 return autoprocessing()

 else:

 return autoprocessing()

 else:

 newname = str(os.getcwd()).split("/")

 m = str(newname[-2]).strip("'")

 result = str(m + ", Failed to index")

 indexedFiles.append(result)

 f2.close()

 if os.path.isfile('DEFPIX.LP') == False:

 with open('XDS.INP') as f1:

 lines = f1.readlines()

 with open('XDS.INP', 'w') as f2:

 f2.write("!JOB=XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE

CORRECT"

 + "\nJOB=DEFPIX INTEGRATE CORRECT\n")

 f2.writelines(lines[2:])

 f2.close()

 print("Less than 70% of spots went through. Running with JOB= DEFPIX "

 + "INTEGRATE CORRECT.")

 xds_out = open("XDS.LP", "w+")

 run("xds",stdout= xds_out)

 return autoprocessing()

 if os.path.isfile("INTEGRATE.HKL") == False:

 with open('XDS.INP') as f1:

 lines = f1.readlines()

 with open('XDS.INP', 'w') as f2:

 f2.writelines(lines)

 f2.write("\nBEAM_DIVERGENCE= 0.03 BEAM_DIVERGENCE_E.S.D.= 0.003" +

 "\nREFLECTING_RANGE=1.0 REFLECTING_RANGE_E.S.D.= 0.2")

 f2.close()

 print("Adding beam divergence values to correct a common error.")

 xds_out = open("XDS.LP", "w+")

 run("xds",stdout= xds_out)

 return autoprocessing()

 if os.path.isfile("CORRECT.LP") == True:

 print ("Successful indexing!")

 return mosaicity()

def mosaicity():

 with open('XDS.INP') as f1:

 lines = f1.readlines()

 with open('XDS.INP', 'w') as f2:

222

 f2.write("!JOB=XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT"

 + "\nJOB=DEFPIX INTEGRATE CORRECT\n")

 f2.writelines(lines[2:-2])

 with open('INTEGRATE.LP', 'r') as l1:

 f2 = open('XDS.INP', 'a')

 line = l1.readline()

 for line in l1:

 if "BEAM_DIVERGENCE= " in line:

 f2.write(line)

 if "REFLECTING_RANGE=" in line:

 f2.write(line)

 f2.close()

 return iterate_opt()

def iterate_opt():

 with open('XDS.LP') as f1:

 lines = f1.readlines()

 with open('XDS.LP', 'w') as f2:

 f2.writelines(lines[-26:])

 with open('XDS.LP', 'r') as f:

 line = f.readline()

 for line in f:

 if " a b ISa" in line:

 next_line = f.readline()

 stats = str.split(next_line)

 Isa1 = float(stats[2])

 print("Isa: " + str(Isa1) + ". Testing new values now.")

 xds_out = open("XDS.LP", "w+")

 run("xds",stdout= xds_out)

 with open('XDS.LP') as f1:

 lines = f1.readlines()

 with open('XDS.LP', 'w') as f2:

 f2.writelines(lines[-26:])

 with open('XDS.LP', 'r') as f:

 line = f.readline()

 for line in f:

 if " a b ISa" in line:

 new_next_line = f.readline()

 new_stats = str.split(new_next_line)

 Isa2 = float(new_stats[2])

 print("Isa: " + str(Isa2))

 if "SPACE_GROUP_NUMBER=" in line:

 number = str.split(line)

 space_group = number[1]

 if "UNIT_CELL_CONSTANTS=" in line:

 cell = str.split(line)

223

 temp = cell[-6:]

 temp_str = str(temp).strip("]['")

 temp_str2 = temp_str.replace(",","")

 unit_cell = temp_str2.replace("'","")

 Isa_change = abs(Isa2 - Isa1)

 if Isa_change > 0.5:

 print("I'm trying to optimize beam divergence values.")

 return iterate_opt()

 else:

 print("Optimized beam divergence values.")

 f = open('stats.LP','w')

 f.write(str(space_group) + ", " + unit_cell)

 f.close

 print("I found space group " + str(space_group) + " and a unit cell of "

 + "\n" + unit_cell)

def scale_conv():

 newname = str(os.getcwd()).split("/")

 xscale = open('XSCALE.INP','w')

 xscale_out = open("xscale.LP","w+")

 m = newname[-2]

 xscale.write("OUTPUT_FILE= " + m +".ahkl"+"\nINPUT_FILE= XDS_ASCII.HKL"

 + "\nRESOLUTION_SHELLS= 10 8 5 3 2.3 2.0 1.7 1.5 1.3 " +

 "1.2 1.1 1.0 0.90 0.80")

 xscale.close()

 run("xscale", stdout= xscale_out)

 with open('XSCALE.LP', 'r') as f:

 line = f.readline()

 for line in f:

 if " total" in line:

 if len(str.split(line)) >= 10:

 stats = str.split(line)

 I_sig = str(stats[8])

 complet = str(stats[4]).strip("%")

 R_fac = str(stats[5]).strip("%")

 CC_half = str(stats[10]).strip("*")

 with open('stats.LP','r') as f3:

 ind = f3.read()

 if os.path.isfile("pointless_group.LP") == True:

 with open('pointless_group.LP','r') as f4:

 pg = f4.read()

 os.chdir("../../")

 stats = open("stats.LP","a")

 stats.write("\n==========\n" + newname[-2] + "\n" + ind + "\nXSCALE stats")

 stats.write("\n" + complet + " " + R_fac + "\n" + CC_half)

224

 if os.path.isfile(newname[-2] + "/auto_process/pointless_group.LP") == True:

 stats.write("\npointless\n" + str(pg))

 result = str(m + ", " + ind + "\n" + complet + "% completeness, " +

 R_fac + "% R1, " + CC_half + " CC_half")

 indexedFiles.append(result)

def redo():

 rein.clear()

 rein.append("1")

 processing()

def processing_call():

 rein.clear()

 rein.append("0")

 processing()

def merge():

 m = str(merge1.get()).strip("'")

 path = str(destPath[-1]).strip("'")

 os.chdir(path)

 if m != "original":

 os.chdir(path + "/" + m)

 files = os.listdir(".")

 if os.path.isdir(path + "/every_merge_" + m) == False:

 os.mkdir(path + "/every_merge_" + m)

 #checks for files that successfully processed and adds to a list

 successful_files = []

 for file in files:

 if os.path.isfile(file + "/auto_process/XSCALE.LP") == True:

 successful_files.append(str(file))

 #makes all possible combinations of files

 for group in power_set(successful_files):

 if len(group) <= 1:

 pass

 if len(group) >= 4:

 pass

 else:

 for item in group:

 r = len(group)

 successful_files.extend(list(permutations(group,r)))

 new_list = list(set(successful_files))

 for entry in new_list:

225

 if isinstance(entry,str) == True:

 if os.path.isdir(path + "/every_merge_" + m + "/" + entry) == False:

 os.mkdir(path + "/every_merge_" + m + "/" + entry)

 os.chdir(path + "/every_merge_" + m + "/" + entry)

 f = open("XSCALE.INP","w+")

 f.write("!automatically generated XSCALE file\nOUTPUT_FILE=" +

 entry + ".ahkl\nINPUT_FILE=../../" + entry

 + "/auto_process/XDS_ASCII.HKL")

 f.close()

 xscale_out = open("xscale.LP","w")

 run("xscale", stdout=xscale_out)

 os.chdir("../../")

 else:

 title = str(entry)

 name = re.sub("\ |\'|\(|\)|","",title)

 file_name = re.sub(",","_",name)

 if os.path.isdir(path + "/every_merge_" + m + "/" + file_name) == False:

 os.mkdir(path + "/every_merge_" + m + "/" + file_name)

 os.chdir(path + "/every_merge_" + m + "/" + file_name)

 f = open ("XSCALE.INP","w")

 f.write("!automatically generated XSCALE file\nOUTPUT_FILE=" +

 file_name + ".ahkl\n")

 for item in entry:

 f.write("INPUT_FILE=../../" + item + "/auto_process/"

 + "XDS_ASCII.HKL\n")

 f.close()

 xscale_out = open("xscale.LP","w")

 run("xscale", stdout=xscale_out)

 os.chdir("../../")

 os.chdir(path + "/every_merge_" + m + "/")

 files = os.listdir(".")

 for file in files:

 if str(file).endswith("_"):

 shutil.rmtree(file)

 files = os.listdir(".")

 for file in files:

 with open(file + '/XSCALE.LP', 'r') as f:

 line = f.readline()

 for line in f:

 if " total" in line:

 if len(str.split(line)) >= 10:

 stats = str.split(line)

 I_sig = str(stats[8])

 complet = str(stats[4]).strip("%")

 R_fac = str(stats[5]).strip("%")

226

 CC_half = str(stats[10]).strip("*")

 formatted = str(CC_half + " CC half," +

 complet + "%completeness,"

 + R_fac + "% R," + file +

 "\n")

 mergedFiles.append(formatted)

 mergedFiles.sort(reverse= True)

 separator = ' '

 m = str(separator.join(mergedFiles)).strip("'")

 merge_update.configure(state='normal')

 merge_update.insert('end',m)

 merge_update.configure(state='disabled')

def power_set(iterable):

 s = list(iterable)

 return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

def combinations(iterable, r):

 pool = tuple(iterable)

 n = len(pool)

 if r > n:

 return

 indices = list(range(r))

 yield tuple(pool[i] for i in indices)

 while True:

 for i in reversed(range(r)):

 if indices[i] != i + n - r:

 break

 else:

 return

 indices[i] += 1

 for j in range(i+1, r):

 indices[j] = indices[j-1] + 1

 yield tuple(pool[i] for i in indices)

def solve():

 s = solv.get()

 path = str(destPath[-1]).strip("'")

 if os.path.isdir(path + "/" + "every_merge_" + s) == True:

 os.chdir(path + "/" + "every_merge_" + s)

 temp_ins = open('temp.ins','w')

 temp_ins.write("entry from widget\n" + str(atom_entry.get()) + "\n" +

 str(SFAC_entry.get()))

 temp_ins.close()

 if os.path.isdir(path + "/solutions") == True:

227

 os.mkdir(path + "/solutions/" + s)

 os.mkdir(path + "/solutions/" + s + "/no_res")

 os.mkdir(path + "/solutions/" + s + "/yes_res")

 os.mkdir(path + "/solutions/" + s + "/best_solutions")

 files = os.listdir(".")

 filecount = len(files)

 path2 = os.getcwd()

 completed_files = []

 times = []

 merged_data = open("merged_stats.csv","w+")

 merged_data.write("CC_half,I_sig,completeness,R_factor,file_name")

 with open('temp.ins', 'r') as f1:

 lines = f1.readline()

 l1 = []

 for lines in f1:

 l1.append(lines)

 print(str(l1))

 for file in files:

 completed_files.append(file)

 t1 = time()

 name = str(file)

 if os.path.isfile(path2 + "/" + file + "/" + name + ".ahkl") == True:

 os.chdir(path2 + "/" + file)

 if os.path.isfile(path2 + "/" + file + "/" + name + ".hkl") == False:

 xdsconv_out = open("xdsconv.LP", "w+")

 xdsconv = open('XDSCONV.INP','w')

 xdsconv.write("INPUT_FILE= " + name + ".ahkl" + "\nOUTPUT_FILE= "

 + name + ".hkl" + " SHELX" +

 "\nGENERATE_FRACTION_OF_TEST_REFLECTIONS=0.10"

 + "\nFRIEDEL'S_LAW=FALSE")

 xdsconv.close()

 run("xdsconv",stdout= xdsconv_out)

 if os.path.isfile(path2 + "/" + file + "/" + name + ".hkl") == True:

 with open('xdsconv.LP', 'r') as f:

 line = f.readline()

 for line in f:

 if "SPACE_GROUP_NUMBER=" in line:

 element = str.split(line)

 sp_grp = str(element[1])

 if "UNIT_CELL_CONSTANTS=" in line:

 element = str.split(line)

 uc = str(element[1:])

 for ch in ["]","[",",","'"]:

 if ch in uc:

 uc2 = uc.replace(ch," ")

228

 uc3= uc2.strip("][,")

 unit_cell = uc3.replace(",", " ")

 library(sp_grp)

 atoms = str(l1[0]).strip("\n")

 unit = l1[1]

 insfile = open(name + '.ins', "w+")

 insfile.write("TITL automerge " + name + " in spgrp " + sp_grp

 + "\nCELL 0.0251000002 " + unit_cell +

 "ZERR 4.00 0.0010 0.0020 0.0041 0 0 0\n\n"

 + ins_sym + "\nSFAC " + atoms + "\nUNIT "

 + unit +

 "\nREM NTRY 50000\nFIND 6\nPLOP 9 6 6 7 7 8 8 9"

 + "\nHKLF 4\nEND")

 insfile.close()

 shelxt_out = open("shelxtout.LP","w+")

 com = str("shelxt " + g + " " + name)

 os.system(com)

 os.listdir(".")

 if os.path.isfile(path + "/" + file + "/" + name + ".hkl") == True:

 if os.path.isfile(path + "/" + file + "/" + name + "_a.res") == True:

 with open(name + "_a.res") as f2:

 line2 = f2.readline()

 for line2 in f2:

 if "REM SHELXT solution" in line2:

 s_stat = str.split(line2)

 R1 = s_stat[6]

 if "REM Formula found by SHELXT:" in line2:

 sp_stat = str(line2).split(":")

 formula = sp_stat[-1]

 stats = str(R1 + " R1, " + formula +

 + " formula found for " +

 name)

 solve_update.configure(state='normal')

 solve_update.insert('end',stats)

 solve_update.configure(state='disabled')

 os.chdir("..")

 os.rename(path + "/solutions/" + s + "/yes_res/" + file)

 elif os.path.isfile(path + "/" + file + "/" + name + "_a.res") == False:

 os.chdir("..")

 os.rename(path + "/solutions/" + s + "/no_res/" + file)

 t2 = time()

 elapsed = t2 - t1

 times.append(elapsed)

 files_compl = len(completed_files)

 files_remaining = (filecount - files_compl)

229

 if files_remaining % 10 == 0:

 avg_time = (sum(times)/float(len(times)))

 time_remain = (avg_time * float(files_remaining)) / 60.0

 print(str(files_compl) + "/" + str(filecount) + " files completed. Estimated time

remaining: "

 + str(time_remain))

def fileadd():

 files = filedialog.askopenfilename(title="Select data files",filetypes =

 (("ser files","*.ser"),

 ("all files","*.*")),multiple=True)

 var = root.tk.splitlist(files)

 for f in var:

 f_a = str(f).strip(")(")

 f_b = f_a.strip(",")

 if f_b in filePaths:

 process_update.configure(state='normal')

 process_update.configure(state='disabled')

 else:

 filePaths.append(f_b)

 f1 = f.split("/")

 f2 = f1[-1]

 process_update.configure(state='normal')

 process_update.insert('end',str(f2 + "\n"))

 process_update.configure(state='disabled')

def fileclear():

 process_update.configure(state='normal')

 process_update.delete("1.0", END)

 process_update.configure(state='disabled')

 filePaths.clear()

def workdir():

 destPath.clear()

 workdir = filedialog.askdirectory()

 v = root.tk.splitlist(workdir)

 v1 = str(v).strip(")(")

 v2 = v1.strip(",")

 v3 = v2.strip("'")

 destPath.append(v2)

 process3_update.configure(state='normal')

 process_update.delete("1.0", END)

 process3_update.insert('end',v3)

 process3_update.configure(state='disabled')

def option_changed():

 s = scope.get()

230

 if str(s) == "F200C":

 elec.set("0.0251000002")

 corrf.set("0.943")

 rotaxis.set("0 -1 0")

 if str(s) == "F200C old":

 elec.set("0.0251000002")

 corrf.set("0.943")

 rotaxis.set("-1 0 0")

 if str(s) == "F30":

 elec.set("0.019687")

 corrf.set("1.76")

 rotaxis.set("-0.829 -0.559 0")

 if str(s) == "other":

 elec.set("")

 corrf.set("1")

 rotaxis.set("")

def option_changed2():

 if len(masterindexedFiles) >= 1:

 for item in reind:

 obj = str(item).strip("'")

 if str(reindex.get()) == obj:

 numero = int(reind.index(item))

 if len(masterindexedFiles) >= (numero + 1):

 summary_text = str(masterindexedFiles[numero])

 process2_update.configure(state='normal')

 process2_update.delete("1.0", END)

 f2 = summary_text.strip("'")

 process2_update.insert('end',str(f2 + "\n"))

 process2_update.configure(state='disabled')

 combobox1.configure(values=reind)

def selected():

 auto_r.get()

 if int(auto_r.get())==0:

 reso.configure(state='normal')

 reso.delete("1.0", END)

 reso.configure(state='disabled')

 if int(auto_r.get())==1:

 reso.configure(state='normal')

def selected2():

 auto_o.get()

 if int(auto_o.get())==0:

 ORGX.configure(state='normal')

 ORGX.delete("1.0", END)

 ORGX.configure(state='disabled')

231

 ORGY.configure(state='normal')

 ORGY.delete("1.0", END)

 ORGY.configure(state='disabled')

 if int(auto_o.get())==1:

 ORGX.configure(state='normal')

 ORGY.configure(state='normal')

def s3():

 auto_uc.get()

 if int(auto_uc.get())==0:

 spa_gr.configure(state='normal')

 spa_gr.delete("1.0", END)

 spa_gr.configure(state='disabled')

 uni_c.configure(state='normal')

 uni_c.delete("1.0", END)

 uni_c.configure(state='disabled')

 if int(auto_uc.get())==1:

 spa_gr.configure(state='normal')

 uni_c.configure(state='normal')

def s4():

 shelxd.get()

 if int(shelxd.get())==0:

 print("yay")

 if int(shelxd.get())==1:

 print("boo")

def main():

 print("howdy ho")

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Start of

GUI~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

root = Tk()

photo = PhotoImage(file = "icon.gif")

root.title("LightningStruc")

root.iconphoto(False,photo)

root.columnconfigure(0,weight=1)

root.rowconfigure(0,weight=1)

n = ttk.Notebook(root)

n.grid(column=0,row=0)

ttk.Label(root, text="Status:",justify=LEFT).grid(column=0,row=1,sticky=W,pady=5)

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~First

page~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

f1 = ttk.Frame(n, padding="12 12 12 12")

f1.grid(column=2, row=1, sticky=(N, W, E, S))

f1.columnconfigure(0, weight=1)

f1.rowconfigure(0, weight=1)

sf1 = ttk.Frame(f1, borderwidth=5, relief=GROOVE)

sf1.grid(column=1,row=0,sticky=(N, W, E, S),pady=3)

sf1.columnconfigure(0, weight=1)

232

sf1.columnconfigure(0, weight=1)

s1f1 = ttk.Frame(f1, borderwidth=5, relief=GROOVE)

s1f1.grid(column=2,row=0,sticky=(N, W, E, S),pady=3)

s1f1.columnconfigure(0, weight=1)

s1f1.columnconfigure(0, weight=1)

s4f1 = ttk.Frame(f1, borderwidth=5, relief=GROOVE)

s4f1.grid(column=1,row=1,columnspan=2,sticky=W,pady=3)

s4f1.columnconfigure(0, weight=1)

s4f1.columnconfigure(0, weight=1)

s2f1= ttk.Frame(f1)

s2f1.grid(column=1,row=2,pady=3)

s3f1= ttk.Frame(f1)

s3f1.grid(column=1,row=3,columnspan=2)

elec = StringVar()

corrf = StringVar()

scope = StringVar()

rotaxis = StringVar()

elec.set("0.0251000002")

corrf.set("0.943")

rotaxis.set("0 -1 0")

scope.set("F200C")

scope.trace("w",lambda a,b,c: option_changed())

sc = tk.OptionMenu(sf1, scope, "F200C", "F200C old", "F30", "other").grid(

 column=1,row=0)

kEv = ttk.Entry(sf1, width=6, textvariable=elec).grid(column=1, row=1)

SFAC_entry = ttk.Entry(sf1, width=6, textvariable=corrf).grid(column=1, row=2)

rot = ttk.Entry(sf1, width =6, textvariable=rotaxis).grid(column=1, row=3)

ttk.Label(sf1, text="TEM Settings").grid(column=0,row=0)

ttk.Label(sf1, text="Electron wavelength:", justify=LEFT).grid(column=0, row=1,sticky=W)

ttk.Label(sf1, text="Å",justify=LEFT).grid(column=2,row=1,sticky=W)

ttk.Label(sf1, text="Distance correction:", justify=LEFT).grid(column=0, row=2,sticky=W)

ttk.Label(sf1, text="Rotation axis: ", justify=LEFT).grid(column=0,row=3,sticky=W)

ttk.Button(f1, text="Start Processing",command=processing_call).grid(

 column=2, row=5,sticky=E,pady=5)

ttk.Button(s2f1, text='Add files', command=fileadd).grid(column=1, row=1,

 sticky=E)

ttk.Button(s2f1, text='Clear files', command=fileclear).grid(column=2,row=1,

 sticky=E)

ttk.Button(s2f1, text='Destination folder', command=workdir).grid(

 column=3, row=1, sticky=E)

ttk.Label(s3f1, text="Data files:",justify=LEFT).grid(column=1,row=1,sticky=W)

process_txt = StringVar()

process_update = tk.Text(s3f1,height=10, width=70)

process_update.grid(column=1,row=2, columnspan=3)

process_update.configure(state='disabled')

233

ttk.Label(s3f1, text="Output location:",justify=LEFT).grid(column=1,row=3,sticky=W)

process3_txt = StringVar()

process3_update = tk.Text(s3f1,height=2, width=70)

process3_update.grid(column=1,row=4, columnspan=3)

process3_update.configure(state='disabled')

reso = StringVar()

reso = tk.Text(s1f1, height=1, width=4)

reso.grid(column=1, row=2)

ttk.Label(s1f1, text="Collection Settings").grid(column=0,row=0,pady=4)

ttk.Label(s1f1, text="Auto resolution cutoff:",justify=LEFT).grid(column=0,

 row=1,sticky=W)

auto_r = StringVar()

auto_r.set("0")

reso.configure(state='disabled')

rb1 = ttk.Radiobutton(s1f1, text='on', variable=auto_r, value=0,command=selected)

rb2 = ttk.Radiobutton(s1f1, text='off', variable=auto_r, value=1,command=selected)

rb1.grid(column=1,row=1)

rb2.grid(column=2,row=1)

ttk.Label(s1f1, text="Maximum resolution:",justify=LEFT).grid(column=0, row=2,

 sticky=W)

ttk.Label(s1f1, text="Å",justify=LEFT).grid(column=2,row=2,sticky=W)

ttk.Label(s1f1, text="Auto origin assignment:",justify=LEFT).grid(column=0,

 row=4,sticky=W)

auto_o = StringVar()

auto_o.set("0")

rb1 = ttk.Radiobutton(s1f1, text='on', variable=auto_o, value=0,command=selected2)

rb2 = ttk.Radiobutton(s1f1, text='off', variable=auto_o, value=1,command=selected2)

rb1.grid(column=1,row=4)

rb2.grid(column=2,row=4)

ttk.Label(s1f1, text="Origin coordinates X,Y:",justify=LEFT).grid(column=0,

 row=5,sticky=W)

ORGX = StringVar()

ORGY = StringVar()

ORGX = tk.Text(s1f1,height=1,width=4)

ORGX.grid(column=1,row=5)

ORGY = tk.Text(s1f1,height=1,width=4)

ORGY.grid(column=2,row=5)

ORGX.configure(state='disabled')

ORGY.configure(state='disabled')

ttk.Label(s4f1, text="Force unit

cell?",justify=LEFT).grid(column=0,row=0,sticky=W,padx=10,pady=5)

auto_uc = StringVar()

auto_uc.set("0")

radb1 = ttk.Radiobutton(s4f1, text="no",variable=auto_uc, value=0,command=s3)

234

radb2 = ttk.Radiobutton(s4f1, text="yes",variable=auto_uc, value=1, command=s3)

radb1.grid(column=1,row=0,sticky=W)

radb2.grid(column=1,row=1,sticky=W)

ttk.Label(s4f1, text="Space group:").grid(column=0,row=2)

ttk.Label(s4f1, text="Unit cell:",justify=LEFT).grid(column=1,row=2,sticky=W)

spa_gr = StringVar()

uni_c = StringVar()

spa_gr = tk.Text(s4f1,width=5,height=1)

spa_gr.grid(column=0,row=3)

uni_c = tk.Text(s4f1,width=55,height=1)

uni_c.grid(column=1,row=3,sticky=W,columnspan=3)

spa_gr.configure(state='disabled')

uni_c.configure(state='disabled')

#end of first page ~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~Second

page~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

f2 = ttk.Frame(n, padding="12 12 12 12") # second page

f2.grid(column=0, row=0, sticky=(N, W, E, S))

f2.columnconfigure(0, weight=1)

f2.rowconfigure(0, weight=1)

sf2 = ttk.Frame(f2, borderwidth=5, relief=GROOVE)

sf2.grid(column=0,row=0,sticky=(N, W, E, S),pady=3)

sf2.columnconfigure(0, weight=1)

sf2.rowconfigure(0, weight=1)

s1f2 = ttk.Frame(f2, borderwidth=5, relief=GROOVE)

s1f2.grid(column=0,row=1,sticky=(N, W, E, S),pady=3)

s1f2.columnconfigure(0, weight=1)

s1f2.rowconfigure(0, weight=1)

s2f2 = ttk.Frame(f2, borderwidth=5, relief=GROOVE)

s2f2.grid(column=0,row=2,sticky=(N,W,E,S),pady=3)

s2f2.columnconfigure(0, weight=1)

s2f2.rowconfigure(0, weight=1)

ttk.Label(sf2, text="Indexing results:",justify=LEFT).grid(column=0,

 row=0,sticky=W)

process2_update = tk.Text(sf2,height=10, width=70)

process2_update.grid(column=0,row=1, columnspan=3)

process2_update.configure(state='disabled')

reindex = StringVar()

reind.append("original")

reindex.set("original")

combobox1 = ttk.Combobox(sf2,textvariable=reindex,state='readonly',values=reind)

235

combobox1.grid(column=2,row=0,sticky=E)

reindex.trace("w",lambda a,b,c: option_changed2())

ttk.Label(s1f2, text="Re-indexing:", justify=LEFT).grid(column=0,row=0,

 sticky=W,pady=4)

ttk.Label(s1f2, text="Space group:").grid(column=0,row=1)

ttk.Label(s1f2, text="Unit cell:",justify=LEFT).grid(column=1,row=1,sticky=W)

re_spa_gr = StringVar()

re_uni_c = StringVar()

r_spa_gr = ttk.Entry(s1f2,width=5,textvariable=re_spa_gr).grid(column=0,row=2)

r_uni_c = ttk.Entry(s1f2,width=55,textvariable=re_uni_c).grid(column=1,row=2,

 sticky=W,columnspan=3)

ttk.Button(s1f2, text='Start Re-indexing', command=redo).grid(

 column=3, row=0, sticky=E,pady=4)

ttk.Label(s2f2, text="Merge screening:",justify=LEFT).grid(column=0,row=0,

 sticky=W,pady=4)

merge_update = tk.Text(s2f2,height=10, width=70)

merge_update.grid(column=0,row=1, columnspan=3)

merge_update.configure(state='disabled')

ttk.Button(s2f2, text='Start Merging',command=merge).grid(column=2,row=2,

 sticky=E,pady=4)

merge1 = StringVar()

merge1.set("original")

combobox2 = ttk.Combobox(s2f2,textvariable=merge1,state='readonly',values=reind)

combobox2.grid(column=2,row=0,sticky=E)

#end of second page ~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~Third

page~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

f3 = ttk.Frame(n, padding="12 12 12 12") # third page

f3.grid(column=0, row=0, sticky=(N, W, E, S))

f3.columnconfigure(0, weight=1)

f3.rowconfigure(0, weight=1)

sf3 = ttk.Frame(f3, borderwidth=5, relief=GROOVE)

sf3.grid(column=0,row=0,sticky=(N, W, E, S),pady=3)

sf3.columnconfigure(0, weight=1)

sf3.rowconfigure(0, weight=1)

s1f3 = ttk.Frame(f3, borderwidth=5, relief=GROOVE)

s1f3.grid(column=0,row=1,sticky=(N, W, E, S),pady=3)

s1f3.columnconfigure(0, weight=1)

s1f3.rowconfigure(0, weight=1)

236

mol = StringVar()

sfac = StringVar()

atom_entry = ttk.Entry(sf3, width=20, textvariable=mol)

atom_entry.grid(column=1, row=2,columnspan=2,sticky=W)

SFAC_entry = ttk.Entry(sf3, width=20, textvariable=sfac)

SFAC_entry.grid(column=1, row=3,columnspan=2,sticky=W)

ttk.Label(sf3, text="Structural information:",justify=LEFT).grid(column=0,

 row=0,columnspan=2,sticky=W,pady=4)

ttk.Label(sf3, text="Merge folder:", justify=LEFT).grid(column=0,row=1, sticky=W)

ttk.Label(sf3, text="Atoms present:", justify=LEFT).grid(column=0, row=2,sticky=W)

ttk.Label(sf3, text="Number of atoms:", justify=LEFT).grid(column=0, row=3,sticky=W)

ttk.Label(sf3, text="Run shelxd?", justify=LEFT).grid(column=0, row=4, sticky=W)

ttk.Label(sf3,text=" ").grid(column=3,row=3,pady=3)

shelxd = StringVar()

shelxd.set("0")

radb1a = ttk.Radiobutton(sf3, text="no",variable=shelxd, value=0,command=s3)

radb2a = ttk.Radiobutton(sf3, text="yes",variable=shelxd, value=1, command=s3)

radb1a.grid(column=1,row=4,sticky=W)

radb2a.grid(column=2,row=4,sticky=W)

solv = StringVar()

combobox3 = ttk.Combobox(sf3,textvariable=solv,state='readonly',values=reind)

combobox3.grid(column=1,row=1,sticky=W,columnspan=2)

ttk.Label(s1f3, text="Solutions obtained:",justify=LEFT).grid(column=0, row=0,

 sticky=W)

solve_update = tk.Text(s1f3,height=22, width=70)

solve_update.grid(column=0,row=1, columnspan=3)

solve_update.configure(state='disabled')

ttk.Button(f3, text='Start', command=solve).grid(

 column=0, row=3, sticky=E)

#end of third page ~~~

n.add(f1, text='Processing')

n.add(f2, text='Merging')

n.add(f3, text='Solving')

n.select(f1)

n.enable_traversal()

root.bind('<Return>', main)

237

root.mainloop()

4.7.1.6 shelxt_library.py

import os

"""

crystallography library

"""

def library(number):

#triclinic

 global g

 global ins_sym

 if int(number) == 1:

 g = str("P1")

 ins_sym = str("LATT -1")

 if int(number) == 2:

 g = str("P-1")

 ins_sym = str("LATT -1")

#monoclinic

 if int(number) == 3:

 g = str("P2")

 ins_sym = str("LATT -1\nSYMM -X,Y,-Z")

 if int(number) == 4:

 g = str("P2/1")

 ins_sym = str("LATT -1\nSYMM -X,Y+1/2,-Z")

 if int(number) == 5:

 g = str("C2")

 ins_sym = str("LATT -7\nSYMM -X,Y,-Z")

 if int(number) == 6:

 g = str("Pm")

 ins_sym = str("LATT -1\nSYMM X,-Y,Z")

 if int(number) == 7:

 g = str("Pc")

 ins_sym = str("LATT -1\nSYMM X,-Y,Z+1/2")

 if int(number) == 8:

 g = str("Cm")

 ins_sym = str("LATT -7\nSYMM X,-Y,Z")

 if int(number) == 9:

 g = str("Cc")

 ins_sym = str("LATT -7\nSYMM X,-Y,Z+1/2")

 if int(number) == 10:

 g = str("P2_m")

 ins_sym = str("LATT -7\nSYMM X,-Y,Z+1/2")

 if int(number) == 11:

 g = str("P2/1_m")

238

 ins_sym = str("LATT 1\nSYMM -X,Y+1/2,-Z")

 if int(number) == 12:

 g = str("C2_m")

 ins_sym = str("LATT 7\nSYMM -X,Y,-Z")

 if int(number) == 13:

 g = str("P2_c")

 ins_sym = str("LATT 1\nSYMM -X,Y,-Z+1/2")

 if int(number) == 14:

 g = str("P2/1_c")

 ins_sym = str("LATT 1\nSYMM -X,Y+1/2,-Z+1/2")

 if int(number) == 15:

 g = str("C2_c")

 ins_sym = str("LATT 7\nSYMM -X,Y,-Z+1/2")

#orthorhombic

 if int(number) == 16:

 g = str("P222")

 ins_sym = str("LATT -1\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z")

 if int(number) == 17:

 g = str("P222/1")

 ins_sym =str("LATT -1\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z+1/2\nSYMM -X,-Y,Z+1/2")

 if int(number) == 18:

 g = str("P2/12/12")

 ins_sym = str("LATT -1\nSYMM X+1/2,-Y+1/2,-Z\nSYMM -X+1/2,Y+1/2,-Z" +

 "\nSYMM -X,-Y,Z")

 if int(number) == 19:

 g = str("P2/12/12/1")

 ins_sym = str("LATT -1\nSYMM X+1/2,-Y+1/2,-Z\nSYMM -X,Y+1/2,-Z+1/2" +

 "\nSYMM -X+1/2,-Y,Z+1/2")

 if int(number) == 20:

 g = str("C222/1")

 ins_sym = str("LATT -7\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z+1/2\nSYMM -X,-Y,Z+1/2")

 if int(number) == 21:

 g = str("C222")

 ins_sym = str("LATT -7\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z")

 if int(number) == 22:

 g = str("F222")

 ins_sym = str("LATT -4\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z")

 if int(number) == 23:

 g = str("I222")

 ins_sym = str("LATT -2\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z")

 if int(number) == 24:

 g = str("I2/12/12/1")

 ins_sym = str("LATT -2\nSYMM X,-Y,-Z+1/2\nSYMM -X+1/2,Y,-Z" +

 "\nSYMM -X,-Y+1/2,Z")

 if int(number) == 25:

 g = str("Pmm2")

239

 ins_sym = str("LATT -1\nSYMM -X,-Y,Z\nSYMM -X,Y,Z\nSYMM X,-Y,Z")

 if int(number) == 26:

 g = str("Pmc2/1")

 ins_sym = str("LATT -1\nSYMM -X,-Y,Z+1/2\nSYMM -X,Y,Z\nSYMM X,-Y,Z+1/2")

 if int(number) == 27:

 g = str("Pcc2")

 ins_sym = str("LATT -1\nSYMM -X,-Y,Z\nSYMM -X,Y,Z+1/2\nSYMM X,-Y,Z+1/2")

 if int(number) == 28:

 g = str("Pma2")

 ins_sym = str("LATT -1\nSYMM -X,-Y,Z\nSYMM -X+1/2,Y,Z\nSYMM X+1/2,-Y,Z")

 if int(number) == 29:

 g = str("Pca2/1")

 ins_sym = str("LATT -1\nSYMM -X,-Y,Z+1/2\nSYMM -X+1/2,Y,Z+1/2\nSYMM X+1/2,-

Y,Z")

 if int(number) == 30:

 g = str("Pnc2")

 ins_sym = str("LATT -1\nSYMM -X,-Y,Z\nSYMM -X,Y+1/2,Z+1/2\nSYMM X,-

Y+1/2,Z+1/2")

 if int(number) == 31:

 g = str("Pmn2/1")

 ins_sym = str("LATT -1\nSYMM -X+1/2,-Y,Z+1/2\nSYMM -X,Y,Z\nSYMM X+1/2,-

Y,Z+1/2")

 if int(number) == 32:

 g = str("Pba2")

 ins_sym = str("LATT -1\nSYMM -X,-Y,Z\nSYMM -X+1/2,Y+1/2,Z\nSYMM X+1/2,-

Y+1/2,Z")

 if int(number) == 33:

 g = str("Pna2/1")

 ins_sym = str("LATT -1\nSYMM -X,-Y,Z+1/2\nSYMM -X+1/2,Y+1/2,Z+1/2\nSYMM

X+1/2,-Y+1/2,Z")

 if int(number) == 34:

 g = str("Pnn2")

 ins_sym = str("LATT -1\nSYMM -X,-Y,Z\nSYMM -X+1/2,Y+1/2,Z+1/2\nSYMM X+1/2,-

Y+1/2,Z+1/2")

 if int(number) == 35:

 g = str("Cmm2")

 ins_sym = str("LATT -7\nSYMM -X,-Y,Z\nSYMM -X,Y,Z\nSYMM X,-Y,Z")

 if int(number) == 36:

 g = str("Cmc2/1")

 ins_sym = str("LATT -7\nSYMM -X,-Y,Z+1/2\nSYMM -X,Y,Z\nSYMM X,-Y,Z+1/2")

 if int(number) == 37:

 g = str("Ccc2")

 ins_sym = str("LATT -7\nSYMM -X,-Y,Z\nSYMM -X,Y,Z+1/2\nSYMM X,-Y,Z+1/2")

 if int(number) == 38:

 g = str("Amm2")

 ins_sym = str("LATT -5\nSYMM -X,-Y,Z\nSYMM -X,Y,Z\nSYMM X,-Y,Z")

240

 if int(number) == 39:

 g = str("Aem2")

 ins_sym = str("LATT -5\nSYMM -X,-Y,Z\nSYMM -X,Y+1/2,Z\nSYMM X,-Y+1/2,Z")

 if int(number) == 40:

 g = str("Ama2")

 ins_sym = str("LATT -5\nSYMM -X,-Y,Z\nSYMM -X+1/2,Y,Z\nSYMM X+1/2,-Y,Z")

 if int(number) == 41:

 g = str("Aea2")

 ins_sym = str("LATT -5\nSYMM -X,-Y,Z\nSYMM -X+1/2,Y+1/2,Z\nSYMM X+1/2,-

Y+1/2,Z")

 if int(number) == 42:

 g = str("Fmm2")

 ins_sym = str("LATT -4\nSYMM -X,-Y,Z\nSYMM -X,Y,Z\nSYMM X,-Y,Z")

 if int(number) == 43:

 g = str("Fdd2")

 ins_sym = str("LATT -4\nSYMM -X,-Y,Z\nSYMM -X+1/4,Y+1/4,Z+1/4" +

 "\nSYMM X+1/4,-Y+1/4,Z+1/4")

 if int(number) == 44:

 g = str("Imm2")

 ins_sym = str("LATT -2\nSYMM -X,-Y,Z\nSYMM -X,Y,Z\nSYMM X,-Y,Z")

 if int(number) == 45:

 g = str("Iba2")

 ins_sym = str("LATT -2\nSYMM -X,-Y,Z\nSYMM -X,Y,Z+1/2\nSYMM X,-Y,Z+1/2")

 if int(number) == 46:

 g = str("Ima2")

 ins_sym = str("LATT -2\nSYMM -X,-Y,Z\nSYMM -X+1/2,Y,Z\nSYMM X+1/2,-Y,Z")

 if int(number) == 47:

 g = str("Pmmm")

 ins_sym = str("LATT 1\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z")

 if int(number) == 48:

 g = str("Pnnn")

 ins_sym = str("LATT 1\nSYMM X,-Y+1/2,-Z+1/2\nSYMM -X+1/2,Y,-Z+1/2" +

 "\nSYMM -X+1/2,-Y+1/2,Z")

 if int(number) == 49:

 g = str("Pccm")

 ins_sym = str("LATT 1\nSYMM X,-Y,-Z+1/2\nSYMM -X,Y,-Z+1/2\nSYMM -X,-Y,Z")

 if int(number) == 50:

 g = str("Pban")

 ins_sym = str("LATT 1\nSYMM X,-Y+1/2,-Z\nSYMM -X+1/2,Y,-Z" +

 "\nSYMM -X+1/2,-Y+1/2,Z")

 if int(number) == 51:

 g = str("Pmma")

 ins_sym = str("LATT 1\nSYMM X+1/2,-Y,-Z\nSYMM -X,Y,-Z\nSYMM -X+1/2,-Y,Z")

 if int(number) == 52:

 g = str("Pnna")

 ins_sym = str("LATT 1\nSYMM X,-Y+1/2,-Z+1/2\nSYMM -X+1/2,Y+1/2,-Z+1/2" +

241

 "\nSYMM -X+1/2,-Y,Z")

 if int(number) == 53:

 g = str("Pmna")

 ins_sym = str("LATT 1\nSYMM X,-Y,-Z\nSYMM -X+1/2,Y,-Z+1/2" +

 "\nSYMM -X+1/2,-Y,Z+1/2")

 if int(number) == 54:

 g = str("Pcca")

 ins_sym = str("LATT 1\nSYMM X+1/2,-Y,-Z+1/2\nSYMM -X,Y,-Z+1/2" +

 "\nSYMM -X+1/2,-Y,Z")

 if int(number) == 55:

 g = str("Pbam")

 ins_sym = str("LATT 1\nSYMM X+1/2,-Y+1/2,-Z\nSYMM -X+1/2,Y+1/2,-Z" +

 "\nSYMM -X,-Y,Z")

 if int(number) == 56:

 g = str("Pccn")

 ins_sym = str("LATT 1\nSYMM X+1/2,-Y,-Z+1/2\nSYMM -X,Y+1/2,-Z+1/2" +

 "\nSYMM -X+1/2,-Y+1/2,Z")

 if int(number) == 57:

 g = str("Pbcm")

 ins_sym = str("LATT 1\nSYMM X,-Y+1/2,-Z\nSYMM -X,Y+1/2,-Z+1/2" +

 "\nSYMM -X,-Y,Z+1/2")

 if int(number) == 58:

 g = str("Pnnm")

 ins_sym = str("LATT 1\nSYMM X+1/2,-Y+1/2,-Z+1/2\nSYMM -X+1/2,Y+1/2,-Z+1/2"

 + "\nSYMM -X,-Y,Z")

 if int(number) == 59:

 g = str("Pmmn")

 ins_sym = str("LATT 1\n X+1/2,-Y,-Z\nSYMM -X,Y+1/2,-Z" +

 "\nSYMM -X+1/2,-Y+1/2,Z")

 if int(number) == 60:

 g = str("Pbcn")

 ins_sym = str("LATT 1\nSYMM X+1/2,-Y+1/2,-Z\nSYMM -X,Y,-Z+1/2" +

 "\nSYMM -X+1/2,-Y+1/2,Z+1/2")

 if int(number) == 61:

 g = str("Pbca")

 ins_sym = str("LATT 1\nSYMM X+1/2,-Y+1/2,-Z\nSYMM -X,Y+1/2,-Z+1/2" +

 "\nSYMM -X+1/2,-Y,Z+1/2")

 if int(number) == 62:

 g = str("Pnma")

 ins_sym = str("LATT 1\nSYMM X+1/2,-Y+1/2,-Z+1/2\nSYMM -X,Y+1/2,-Z" +

 "\nSYMM -X+1/2,-Y,Z+1/2")

 if int(number) == 63:

 g = str("Cmcm")

 ins_sym = str("LATT 7\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z+1/2" +

 "\nSYMM -X,-Y,Z+1/2")

 if int(number) == 64:

242

 g = str("Cmca")

 ins_sym = str("LATT 7\nSYMM X,-Y,-Z\nSYMM -X+1/2,Y,-Z+1/2" +

 "\nSYMM -X+1/2,-Y,Z+1/2")

 if int(number) == 65:

 g = str("Cmmm")

 ins_sym = str("LATT 7\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z")

 if int(number) == 66:

 g = str("Cccm")

 ins_sym = str("LATT 7\nSYMM X,-Y,-Z+1/2\nSYMM -X,Y,-Z+1/2" +

 "\nSYMM -X,-Y,Z")

 if int(number) == 67:

 g = str("Cmma")

 ins_sym = str("LATT 7\nSYMM X,-Y,-Z\nSYMM -X+1/2,Y,-Z" +

 "\nSYMM -X+1/2,-Y,Z")

 if int(number) == 68:

 g = str("Ccca")

 ins_sym = str("LATT 7\nSYMM X+1/2,-Y,-Z+1/2\nSYMM -X,Y,-Z+1/2" +

 "\nSYMM -X+1/2,-Y,Z")

 if int(number) == 69:

 g = str("Fmmm")

 ins_sym = str("LATT 4\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z")

 if int(number) == 70:

 g = str("Fddd")

 ins_sym = str("LATT 4\nSYMM X,-Y+1/4,-Z+1/4\nSYMM -X+1/4,Y,-Z+1/4" +

 "\nSYMM -X+1/4,-Y+1/4,Z")

 if int(number) == 71:

 g = str("Immm")

 ins_sym = str("LATT 2\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z")

 if int(number) == 72:

 g = str("Ibam")

 ins_sym = str("LATT 2\nSYMM X,-Y,-Z+1/2\nSYMM -X,Y,-Z+1/2\nSYMM -X,-Y,Z")

 if int(number) == 73:

 g = str("Ibca")

 ins_sym = str("LATT 2\nSYMM X,-Y,-Z+1/2\nSYMM -X+1/2,Y,-Z\nSYMM -X,-

Y+1/2,Z")

 if int(number) == 74:

 g = str("Imma")

 ins_sym = str("LATT 2\nSYMM X,-Y,-Z\nSYMM -X,Y+1/2,-Z\nSYMM -X,-Y+1/2,Z")

#tetragonal

 if int(number) == 75:

 g = str("P4")

 ins_sym = str("LATT -1\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM -X,-Y,Z")

 if int(number) == 76:

 g = str("P4/1")

 ins_sym = str("LATT -1\nSYMM -Y,X,Z+1/4" +

 "\nSYMM Y,-X,Z+3/4\nSYMM -X,-Y,Z+1/2")

243

 if int(number) == 77:

 g = str("P4/2")

 ins_sym = str("LATT -1\nSYMM -Y,X,Z+1/2\nSYMM Y,-X,Z+1/2" +

 "\nSYMM -X,-Y,Z")

 if int(number) == 78:

 g = str("P4/3")

 ins_sym = str("LATT -1\nSYMM -Y,X,Z+3/4\nSYMM Y,-X,Z+1/4" +

 "\nSYMM -X,-Y,Z+1/2")

 if int(number) == 79:

 g = str("I4")

 ins_sym = str("LATT -2\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM -X,-Y,Z")

 if int(number) == 80:

 g = str("I4/1")

 ins_sym = str("LATT -2\nSYMM -Y+1/2,X,Z+3/4\nSYMM Y+1/2,-X,Z+3/4" +

 "\nSYMM -X,-Y,Z")

 if int(number) == 81:

 g = str("P-4")

 ins_sym = str("LATT -1\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z\nSYMM -X,-Y,Z")

 if int(number) == 82:

 g = str("I-4")

 ins_sym = str("LATT -2\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z\nSYMM -X,-Y,Z")

 if int(number) == 83:

 g = str("P4_m")

 ins_sym = str("LATT 1\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM -X,-Y,Z")

 if int(number) == 84:

 g = str("P4/2_m")

 ins_sym = str("LATT 1\nSYMM -Y,X,Z+1/2\nSYMM Y,-X,Z+1/2" +

 "\nSYMM -X,-Y,Z")

 if int(number) == 85:

 g = str("P4_n")

 ins_sym = str("LATT 1\nSYMM -Y+1/2,X,Z\nSYMM Y,-X+1/2,Z" +

 "\nSYMM -X+1/2,-Y+1/2,Z")

 if int(number) == 86:

 g = str("P4/2_n")

 ins_sym = str("LATT 1\nSYMM -Y,X+1/2,Z+1/2\nSYMM Y+1/2,-X,Z+1/2"

 "\nSYMM -X+1/2,-Y+1/2,Z")

 if int(number) == 87:

 g = str("I4_m")

 ins_sym = str("LATT 2\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM -X,-Y,Z")

 if int(number) == 88:

 g = str("I4/1_a")

 ins_sym = str("LATT 2\nSYMM -Y+1/4,X+3/4,Z+3/4\nSYMM Y+1/4,-X+1/4,Z+1/4" +

 "\nSYMM -X,-Y+1/2,Z")

 if int(number) == 89:

 g = str("P422")

 ins_sym = str("LATT -1\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM X,-Y,-Z" +

244

 "\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z")

 if int(number) == 90:

 g = str("P42(1)2")

 ins_sym = str("LATT -1\nSYMM -Y+1/2,X+1/2,Z\nSYMM Y+1/2,-X+1/2,Z" +

 "\nSYMM X+1/2,-Y+1/2,-Z\nSYMM -X+1/2,Y+1/2,-Z\nSYMM -X,-Y,Z"

 + "\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z")

 if int(number) == 91:

 g = str("P4(1)22")

 ins_sym = str("LATT -1\nSYMM -Y,X,Z+1/4\nSYMM Y,-X,Z+3/4" +

 "\nSYMM X,-Y,-Z+1/2\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z+1/2" +

 "SYMM Y,X,-Z+3/4\nSYMM -Y,-X,-Z+1/4")

 if int(number) == 92:

 g = str("P4(1)2(1)2")

 ins_sym = str("LATT -1\nSYMM -Y+1/2,X+1/2,Z+1/4\nSYMM Y+1/2,-X+1/2,Z+3/4"

 + "\nSYMM X+1/2,-Y+1/2,-Z+3/4\nSYMM -X+1/2,Y+1/2,-Z+1/4" +

 "\nSYMM -X,-Y,Z+1/2\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z+1/2")

 if int(number) == 93:

 g = str("P4(2)22")

 ins_sym = str("LATT -1\nSYMM -Y,X,Z+1/2\nSYMM Y,-X,Z+1/2" +

 "\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z" +

 "\nSYMM Y,X,-Z+1/2\nSYMM -Y,-X,-Z+1/2")

 if int(number) == 94:

 g = str("P4(2)2(1)2")

 ins_sym = str("LATT -1\nSYMM -Y+1/2,X+1/2,Z+1/2\nSYMM Y+1/2,-X+1/2,Z+1/2" +

 "\nSYMM X+1/2,-Y+1/2,-Z+1/2\nSYMM -X+1/2,Y+1/2,-Z+1/2" +

 "\nSYMM -X,-Y,Z\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z")

 if int(number) == 95:

 g = str("P4(3)22")

 ins_sym = str("LATT -1\nSYMM -Y,X,Z+3/4\nSYMM Y,-X,Z+1/4" +

 "\nSYMM X,-Y,-Z+1/2\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z+1/2" +

 "\nSYMM Y,X,-Z+1/4\nSYMM -Y,-X,-Z+3/4")

 if int(number) == 96:

 g = str("P4(3)2(1)2")

 ins_sym = str("LATT -1\nSYMM -Y+1/2,X+1/2,Z+3/4" +

 "\nSYMM Y+1/2,-X+1/2,Z+1/4\nSYMM X+1/2,-Y+1/2,-Z+1/4" +

 "\nSYMM -X+1/2,Y+1/2,-Z+3/4\nSYMM -X,-Y,Z+1/2" +

 "\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z+1/2")

 if int(number) == 97:

 g = str("I422")

 ins_sym = str("LATT -2\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM X,-Y,-Z" +

 "\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z")

 if int(number) == 98:

 g = str("I4(1)22")

 ins_sym = str("LATT -2\nSYMM -Y+1/2,X,Z+3/4\nSYMM Y+1/2,-X,Z+3/4" +

 "\nSYMM X+1/2,-Y,-Z+3/4\nSYMM -X+1/2,Y,-Z+3/4" +

 "\nSYMM -X,-Y,Z\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z")

245

 if int(number) == 99:

 g = str("P4mm")

 ins_sym = str("LATT -1\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM -X,-Y,Z" +

 "\nSYMM -X,Y,Z\nSYMM X,-Y,Z\nSYMM -Y,-X,Z\nSYMM Y,X,Z")

 if int(number) == 100:

 g = str("P4bm")

 ins_sym = str("LATT -1\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM -X,-Y,Z" +

 "\nSYMM -X+1/2,Y+1/2,Z\nSYMM X+1/2,-Y+1/2,Z" +

 "\nSYMM -Y+1/2,-X+1/2,Z\nSYMM Y+1/2,X+1/2,Z")

 if int(number) == 101:

 g = str("P4(2)cm")

 ins_sym = str("LATT -1\nSYMM -Y,X,Z+1/2\nSYMM Y,-X,Z+1/2" +

 "\nSYMM -X,-Y,Z\nSYMM -X,Y,Z+1/2\nSYMM X,-Y,Z+1/2" +

 "\nSYMM -Y,-X,Z\nSYMM Y,X,Z")

 if int(number) == 102:

 g = str("P4(2)nm")

 ins_sym = str("LATT -1\nSYMM -Y+1/2,X+1/2,Z+1/2\nSYMM Y+1/2,-X+1/2,Z+1/2"

 + "\nSYMM -X,-Y,Z\nSYMM -X+1/2,Y+1/2,Z+1/2" +

 "\nSYMM X+1/2,-Y+1/2,Z+1/2\nSYMM -Y,-X,Z\nSYMM Y,X,Z")

 if int(number) == 103:

 g = str("P4cc")

 ins_sym = str("LATT -1\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM -X,-Y,Z" +

 "\nSYMM -X,Y,Z+1/2\nSYMM X,-Y,Z+1/2\nSYMM -Y,-X,Z+1/2" +

 "\nSYMM Y,X,Z+1/2")

 if int(number) == 104:

 g = str("P4nc")

 ins_sym = str("LATT -1\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM -X,-Y,Z" +

 "\nSYMM -X+1/2,Y+1/2,Z+1/2\nSYMM X+1/2,-Y+1/2,Z+1/2" +

 "\nSYMM -Y+1/2,-X+1/2,Z+1/2\nSYMM Y+1/2,X+1/2,Z+1/2")

 if int(number) == 105:

 g = str("P4(2)mc")

 ins_sym = str("LATT -1\nSYMM -Y,X,Z+1/2\nSYMM Y,-X,Z+1/2\nSYMM -X,-Y,Z"

 + "\nSYMM -X,Y,Z\nSYMM X,-Y,Z\nSYMM -Y,-X,Z+1/2" +

 "\nSYMM Y,X,Z+1/2")

 if int(number) == 106:

 g = str("P4(2)bc")

 ins_sym = str("LATT -1\nSYMM -Y,X,Z+1/2\nSYMM Y,-X,Z+1/2" +

 "\nSYMM -X,-Y,Z\nSYMM -X+1/2,Y+1/2,Z\nSYMM X+1/2,-Y+1/2,Z"

 + "\nSYMM -Y+1/2,-X+1/2,Z+1/2\nSYMM Y+1/2,X+1/2,Z+1/2")

 if int(number) == 107:

 g = str("I4mm")

 ins_sym = str("LATT -2\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM -X,-Y,Z" +

 "\nSYMM -X,Y,Z\nSYMM X,-Y,Z\nSYMM -Y,-X,Z\nSYMM Y,X,Z")

 if int(number) == 108:

 g = str("I4cm")

 ins_sym = str("LATT -2\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM -X,-Y,Z" +

246

 "\nSYMM -X,Y,Z+1/2\nSYMM X,-Y,Z+1/2\nSYMM -Y,-X,Z+1/2" +

 "\nSYMM Y,X,Z+1/2")

 if int(number) == 109:

 g = str("I4(1)md")

 ins_sym = str("LATT -2\nSYMM -Y+1/2,X,Z+3/4\nSYMM Y+1/2,-X,Z+3/4" +

 "\nSYMM -X,-Y,Z\nSYMM -X,Y,Z\nSYMM X,-Y,Z" +

 "\nSYMM -Y+1/2,-X,Z+3/4\nSYMM Y+1/2,X,Z+3/4")

 if int(number) == 110:

 g = str("I4(1)cd")

 ins_sym = str("LATT -2\nSYMM -Y+1/2,X,Z+3/4\nSYMM Y+1/2,-X,Z+3/4" +

 "\nSYMM -X,-Y,Z\nSYMM -X,Y,Z+1/2\nSYMM X,-Y,Z+1/2" +

 "\nSYMM -Y+1/2,-X,Z+1/4\nSYMM Y+1/2,X,Z+1/4")

 if int(number) == 111:

 g = str("P-42m")

 ins_sym = str("LATT -1\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z\nSYMM X,-Y,-Z" +

 "\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z\nSYMM -Y,-X,Z\nSYMM Y,X,Z")

 if int(number) == 112:

 g = str("P-42c")

 ins_sym = str("LATT -1\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z\nSYMM X,-Y,-Z+1/2" +

 "\nSYMM -X,Y,-Z+1/2\nSYMM -X,-Y,Z\nSYMM -Y,-X,Z+1/2" +

 "\nSYMM Y,X,Z+1/2")

 if int(number) == 113:

 g = str("P-42(1)m")

 ins_sym = str("LATT -1\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z\nSYMM X+1/2,-Y+1/2,-Z"

 +"\nSYMM -X+1/2,Y+1/2,-Z\nSYMM -X,-Y,Z" +

 "\nSYMM -Y+1/2,-X+1/2,Z\nSYMM Y+1/2,X+1/2,Z")

 if int(number) == 114:

 g = str("P-42(1)c")

 ins_sym = str("LATT -1\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z\nSYMM X+1/2,-Y+1/2,-

Z+1/2"

 + "\nSYMM -X+1/2,Y+1/2,-Z+1/2\nSYMM -X,-Y,Z" +

 "\nSYMM -Y+1/2,-X+1/2,Z+1/2\nSYMM Y+1/2,X+1/2,Z+1/2")

 if int(number) == 115:

 g = str("P-4m2")

 ins_sym = str("LATT -1\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z\nSYMM -X,-Y,Z" +

 "\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z\nSYMM -X,Y,Z\nSYMM X,-Y,Z")

 if int(number) == 116:

 g = str("P-4c2")

 ins_sym = str("LATT -1\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z\nSYMM -X,-Y,Z" +

 "\nSYMM Y,X,-Z+1/2\nSYMM -Y,-X,-Z+1/2\nSYMM -X,Y,Z+1/2"

 + "\nSYMM X,-Y,Z+1/2")

 if int(number) == 117:

 g = str("P-4b2")

 ins_sym = str("LATT -1\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z\nSYMM -X,-Y,Z" +

 "\nSYMM Y+1/2,X+1/2,-Z\nSYMM -Y+1/2,-X+1/2,-Z" +

 "\nSYMM -X+1/2,Y+1/2,Z\nSYMM X+1/2,-Y+1/2,Z")

247

 if int(number) == 118:

 g = str("P-4n2")

 ins_sym = str("LATT -1\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z\nSYMM -X,-Y,Z" +

 "\nSYMM Y+1/2,X+1/2,-Z+1/2\nSYMM -Y+1/2,-X+1/2,-Z+1/2" +

 "\nSYMM -X+1/2,Y+1/2,Z+1/2\nSYMM X+1/2,-Y+1/2,Z+1/2")

 if int(number) == 119:

 g = str("I-4m2")

 ins_sym = str("LATT -2\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z\nSYMM -X,-Y,Z" +

 "\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z\nSYMM -X,Y,Z\nSYMM X,-Y,Z")

 if int(number) == 120:

 g = str("I-4c2")

 ins_sym = str("LATT -2\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z\nSYMM -X,-Y,Z" +

 "\nSYMM Y,X,-Z+1/2\nSYMM -Y,-X,-Z+1/2" +

 "\nSYMM -X,Y,Z+1/2\nSYMM X,-Y,Z+1/2")

 if int(number) == 121:

 g = str("I-42m")

 ins_sym = str("LATT -2\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z\nSYMM X,-Y,-Z" +

 "\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z\nSYMM -Y,-X,Z\nSYMM Y,X,Z")

 if int(number) == 122:

 g = str("I-42d")

 ins_sym = str("LATT -2\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z" +

 "\nSYMM X+1/2,-Y,-Z+3/4\nSYMM -X+1/2,Y,-Z+3/4" +

 "\nSYMM -X,-Y,Z\nSYMM -Y+1/2,-X,Z+3/4\nSYMM Y+1/2,X,Z+3/4")

 if int(number) == 123:

 g = str("P4_mmm")

 ins_sym = str("LATT 1\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM X,-Y,-Z" +

 "\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z")

 if int(number) == 124:

 g = str("P4_mcc")

 ins_sym = str("LATT 1\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM X,-Y,-Z+1/2" +

 "\nSYMM -X,Y,-Z+1/2\nSYMM -X,-Y,Z\nSYMM Y,X,-Z+1/2" +

 "\nSYMM -Y,-X,-Z+1/2")

 if int(number) == 125:

 g = str("P4_nbm")

 ins_sym = str("LATT 1\nSYMM -Y+1/2,X,Z\nSYMM Y,-X+1/2,Z\nSYMM X,-Y+1/2,-Z"

 +"\nSYMM -X+1/2,Y,-Z\nSYMM -X+1/2,-Y+1/2,Z\nSYMM Y,X,-Z"+

 "\nSYMM -Y+1/2,-X+1/2,-Z")

 if int(number) == 126:

 g = str("P4_nnc")

 ins_sym = str("LATT 1\nSYMM -Y+1/2,X,Z\nSYMM Y,-X+1/2,Z" +

 "\nSYMM X,-Y+1/2,-Z+1/2\nSYMM -X+1/2,Y,-Z+1/2" +

 "\nSYMM -X+1/2,-Y+1/2,Z\nSYMM Y,X,-Z+1/2" +

 "\nSYMM -Y+1/2,-X+1/2,-Z+1/2")

 if int(number) == 127:

 g = str("P4_mbm")

 ins_sym = str("LATT 1\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM X+1/2,-Y+1/2,-Z" +

248

 "\nSYMM -X+1/2,Y+1/2,-Z\nSYMM -X,-Y,Z" +

 "\nSYMM Y+1/2,X+1/2,-Z\nSYMM -Y+1/2,-X+1/2,-Z")

 if int(number) == 128:

 g = str("P4_mnc")

 ins_sym = str("LATT 1\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM X+1/2,-Y+1/2,-Z+1/2"

 + "\nSYMM -X+1/2,Y+1/2,-Z+1/2\nSYMM -X,-Y,Z"

 + "\nSYMM Y+1/2,X+1/2,-Z+1/2\nSYMM -Y+1/2,-X+1/2,-Z+1/2")

 if int(number) == 129:

 g = str("P4_nmm")

 ins_sym = str("LATT 1\nSYMM -Y+1/2,X,Z\nSYMM Y,-X+1/2,Z\nSYMM X+1/2,-Y,-Z"

 +"\nSYMM -X,Y+1/2,-Z\nSYMM -X+1/2,-Y+1/2,Z" +

 "\nSYMM Y+1/2,X+1/2,-Z\nSYMM -Y,-X,-Z")

 if int(number) == 130:

 g = str("P4_ncc")

 ins_sym = str("LATT 1\nSYMM -Y+1/2,X,Z\nSYMM Y,-X+1/2,Z" +

 "\nSYMM X+1/2,-Y,-Z+1/2\nSYMM -X,Y+1/2,-Z+1/2" +

 "\nSYMM -X+1/2,-Y+1/2,Z\nSYMM Y+1/2,X+1/2,-Z+1/2" +

 "\nSYMM -Y,-X,-Z+1/2")

 if int(number) == 131:

 g = str("P4(2)_mmc")

 ins_sym = str("LATT 1\nSYMM -Y,X,Z+1/2\nSYMM Y,-X,Z+1/2\nSYMM X,-Y,-Z" +

 "\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z\nSYMM Y,X,-Z+1/2" +

 "\nSYMM -Y,-X,-Z+1/2")

 if int(number) == 132:

 g = str("P4(2)_mcm")

 ins_sym = str("LATT 1\nSYMM -Y,X,Z+1/2\nSYMM Y,-X,Z+1/2" +

 "\nSYMM X,-Y,-Z+1/2\nSYMM -X,Y,-Z+1/2\nSYMM -X,-Y,Z" +

 "\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z")

 if int(number) == 133:

 g = str("P4(2)_nbc")

 ins_sym = str("LATT 1\nSYMM -Y+1/2,X,Z+1/2\nSYMM Y,-X+1/2,Z+1/2" +

 "\nSYMM X,-Y+1/2,-Z\nSYMM -X+1/2,Y,-Z\nSYMM -X+1/2,-Y+1/2,Z"

 "\nSYMM Y,X,-Z+1/2\nSYMM -Y+1/2,-X+1/2,-Z+1/2")

 if int(number) == 134:

 g = str("P4(2)_nnm")

 ins_sym = str("LATT 1\nSYMM -Y+1/2,X,Z+1/2\nSYMM Y,-X+1/2,Z+1/2" +

 "\nSYMM X,-Y+1/2,-Z+1/2\nSYMM -X+1/2,Y,-Z+1/2" +

 "\nSYMM -X+1/2,-Y+1/2,Z\nSYMM Y,X,-Z\nSYMM -Y+1/2,-X+1/2,-Z")

 if int(number) == 135:

 g = str("P4(2)_mbc")

 ins_sym = str("LATT 1\nSYMM -Y,X,Z+1/2\nSYMM Y,-X,Z+1/2\nSYMM X+1/2,-

Y+1/2,-Z"

 + "\nSYMM -X+1/2,Y+1/2,-Z\nSYMM -X,-Y,Z" +

 "\nSYMM Y+1/2,X+1/2,-Z+1/2\nSYMM -Y+1/2,-X+1/2,-Z+1/2")

 if int(number) == 136:

 g = str("P4(2)_mnm")

249

 ins_sym = str("LATT 1\nSYMM -Y+1/2,X+1/2,Z+1/2\nSYMM Y+1/2,-X+1/2,Z+1/2" +

 "\nSYMM X+1/2,-Y+1/2,-Z+1/2\nSYMM -X+1/2,Y+1/2,-Z+1/2" +

 "\nSYMM -X,-Y,Z\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z")

 if int(number) == 137:

 g = str("P4(2)_nmc")

 ins_sym = str("LATT 1\nSYMM -Y+1/2,X,Z+1/2\nSYMM Y,-X+1/2,Z+1/2" +

 "\nSYMM X+1/2,-Y,-Z\nSYMM -X,Y+1/2,-Z\nSYMM -X+1/2,-Y+1/2,Z"

 + "\nSYMM Y+1/2,X+1/2,-Z+1/2\nSYMM -Y,-X,-Z+1/2")

 if int(number) == 138:

 g = str("P4(2)_ncm")

 ins_sym = str("LATT 1\nSYMM -Y+1/2,X,Z+1/2\nSYMM Y,-X+1/2,Z+1/2" +

 "\nSYMM X+1/2,-Y,-Z+1/2\nSYMM -X,Y+1/2,-Z+1/2" +

 "\nSYMM -X+1/2,-Y+1/2,Z\nSYMM Y+1/2,X+1/2,-Z" +

 "\nSYMM -Y,-X,-Z")

 if int(number) == 139:

 g = str("I4_mmm")

 ins_sym = str("LATT 2\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM X,-Y,-Z" +

 "\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z")

 if int(number) == 140:

 g = str("I4_mcm")

 ins_sym = str("LATT 2\nSYMM -Y,X,Z\nSYMM Y,-X,ZSYMM X,-Y,-Z+1/2" +

 "\nSYMM -X,Y,-Z+1/2\nSYMM -X,-Y,Z\nSYMM Y,X,-Z+1/2" +

 "\nSYMM -Y,-X,-Z+1/2")

 if int(number) == 141:

 g = str("I4(1)_amd")

 ins_sym = str("LATT 2\nSYMM -Y+1/4,X+3/4,Z+1/4\nSYMM Y+1/4,-X+1/4,Z+3/4"

 +"\nSYMM X,-Y,-Z\nSYMM -X,Y+1/2,-Z\nSYMM -X,-Y+1/2,Z" +

 "\nSYMM Y+1/4,X+3/4,-Z+1/4\nSYMM -Y+1/4,-X+1/4,-Z+3/4")

 if int(number) == 142:

 g = str("I4(1)/acd")

 ins_sym = str("LATT 2\nSYMM -Y+1/4,X+3/4,Z+1/4\nSYMM Y+1/4,-X+1/4,Z+3/4"

 +"\nSYMM X,-Y,-Z+1/2\nSYMM -X+1/2,Y,-Z\nSYMM -X,-Y+1/2,Z"+

 "\nSYMM Y+1/4,X+3/4,-Z+3/4\nSYMM -Y+1/4,-X+1/4,-Z+1/4")

#trigonal

 if int(number) == 143:

 g = str("P3")

 ins_sym = str("LATT -1\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z")

 if int(number) == 144:

 g = str("P3_1")

 ins_sym = str("LATT -1\nSYMM -Y,X-Y,Z+1/3\nSYMM -X+Y,-X,Z+2/3")

 if int(number) == 145:

 g = str("P3_2")

 ins_sym = str("LATT -1\nSYMM -Y,X-Y,Z+2/3\nSYMM -X+Y,-X,Z+1/3")

 if int(number) == 146:

 g = str("R3")

 ins_sym = str("LATT -3\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z")

250

 if int(number) == 147:

 g = str("P-3")

 ins_sym = str("LATT 1\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z")

 if int(number) == 148:

 g = str("R-4")

 ins_sym = str("LATT 3\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z")

 if int(number) == 149:

 g = str("P312")

 ins_sym = str("LATT -1\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM -Y,-X,-Z" +

 "\nSYMM -X+Y,Y,-Z\nSYMM X,X-Y,-Z")

 if int(number) == 150:

 g = str("P321")

 ins_sym = str("LATT -1\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM X-Y,-Y,-Z"+

 "\nSYMM -X,-X+Y,-Z\nSYMM Y,X,-Z")

 if int(number) == 151:

 g = str("P3(1)12")

 ins_sym = str("LATT -1\nSYMM -Y,X-Y,Z+1/3\nSYMM -X+Y,-X,Z+2/3" +

 "\nSYMM -Y,-X,-Z+2/3\nSYMM -X+Y,Y,-Z+1/3\nSYMM X,X-Y,-Z")

 if int(number) == 152:

 g = str("P3(1)21")

 ins_sym = str("LATT -1\nSYMM -Y,X-Y,Z+1/3\nSYMM -X+Y,-X,Z+2/3" +

 "\nSYMM X-Y,-Y,-Z+2/3\nSYMM -X,-X+Y,-Z+1/3\nSYMM Y,X,-Z")

 if int(number) == 153:

 g = str("P3(2)12")

 ins_sym = str("LATT -1\nSYMM -Y,X-Y,Z+2/3\nSYMM -X+Y,-X,Z+1/3" +

 "\nSYMM -Y,-X,-Z+1/3\nSYMM -X+Y,Y,-Z+2/3" +

 "\nSYMM X,X-Y,-Z")

 if int(number) == 154:

 g = str("P3(2)21")

 ins_sym = str("LATT -1\nSYMM -Y,X-Y,Z+2/3\nSYMM -X+Y,-X,Z+1/3" +

 "\nSYMM X-Y,-Y,-Z+1/3\nSYMM -X,-X+Y,-Z+2/3" +

 "\nSYMM Y,X,-Z")

 if int(number) == 155:

 g = str("R32")

 ins_sym = str("LATT -3\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z" +

 "\nSYMM X-Y,-Y,-Z\nSYMM -X,-X+Y,-Z\nSYMM Y,X,-Z")

 if int(number) == 156:

 g = str("P3m1")

 ins_sym = str("LATT -1\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM -X+Y,Y,Z" +

 "\nSYMM X,X-Y,Z\nSYMM -Y,-X,Z")

 if int(number) == 157:

 g = str("P31m")

 ins_sym = str("LATT -1\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM Y,X,Z" +

 "\nSYMM X-Y,-Y,Z\nSYMM -X,-X+Y,Z")

 if int(number) == 158:

 g = str("P3c1")

251

 ins_sym = str("LATT -1\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z" +

 "\nSYMM -X+Y,Y,Z+1/2\nSYMM X,X-Y,Z+1/2\nSYMM -Y,-X,Z+1/2")

 if int(number) == 159:

 g = str("P31c")

 ins_sym = str("LATT -1\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM Y,X,Z+1/2"+

 "\nSYMM X-Y,-Y,Z+1/2\nSYMM -X,-X+Y,Z+1/2")

 if int(number) == 160:

 g = str("R3m")

 ins_sym = str("LATT -3\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM -X+Y,Y,Z" +

 "\nSYMM X,X-Y,Z\nSYMM -Y,-X,Z")

 if int(number) == 161:

 g = str("R3c")

 ins_sym = str("LATT -3\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM -X+Y,Y,Z+1/2"

 + "\nSYMM X,X-Y,Z+1/2\nSYMM -Y,-X,Z+1/2")

 if int(number) == 162:

 g = str("P-31m")

 ins_sym = str("LATT 1\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM -Y,-X,-Z" +

 "\nSYMM -X+Y,Y,-Z\nSYMM X,X-Y,-Z")

 if int(number) == 163:

 g = str("P-31c")

 ins_sym = str("LATT 1\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM -Y,-X,-Z+1/2"

 + "\nSYMM -X+Y,Y,-Z+1/2\nSYMM X,X-Y,-Z+1/2")

 if int(number) == 164:

 g = str("P-3m1")

 ins_sym = str("LATT 1\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM X-Y,-Y,-Z" +

 "\nSYMM -X,-X+Y,-Z\nSYMM Y,X,-Z")

 if int(number) == 165:

 g = str("P-3c1")

 ins_sym = str("LATT 1\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM X-Y,-Y,-Z+1/2"

 + "\nSYMM -X,-X+Y,-Z+1/2\nSYMM Y,X,-Z+1/2")

 if int(number) == 166:

 g = str("R-3m")

 ins_sym = str("LATT 3\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM X-Y,-Y,-Z" +

 "\nSYMM -X,-X+Y,-Z\nSYMM Y,X,-Z")

 if int(number) == 167:

 g = str("R-3c")

 ins_sym = str("LATT 3\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM X-Y,-Y,-Z+1/2"

 + "\nSYMM -X,-X+Y,-Z+1/2\nSYMM Y,X,-Z+1/2")

#hexagonal

 if int(number) == 168:

 g = str("P6")

 ins_sym = str("LATT -1\nSYMM X-Y,X,Z\nSYMM Y,-X+Y,Z\nSYMM -Y,X-Y,Z" +

 "\nSYMM -X+Y,-X,Z\nSYMM -X,-Y,Z")

 if int(number) == 169:

 g = str("P6(1)")

 ins_sym = str("LATT -1\nSYMM X-Y,X,Z+1/6\nSYMM Y,-X+Y,Z+5/6" +

252

 "\nSYMM -Y,X-Y,Z+1/3\nSYMM -X+Y,-X,Z+2/3" +

 "\nSYMM -X,-Y,Z+1/2")

 if int(number) == 170:

 g = str("P6(5)")

 ins_sym = str("LATT -1\nSYMM X-Y,X,Z+5/6\nSYMM Y,-X+Y,Z+1/6" +

 "\nSYMM -Y,X-Y,Z+2/3\nSYMM -X+Y,-X,Z+1/3" +

 "\nSYMM -X,-Y,Z+1/2")

 if int(number) == 171:

 g = str("P6(2)")

 ins_sym = str("LATT -1\nSYMM X-Y,X,Z+1/3\nSYMM Y,-X+Y,Z+2/3" +

 "\nSYMM -Y,X-Y,Z+2/3\nSYMM -X+Y,-X,Z+1/3\nSYMM -X,-Y,Z")

 if int(number) == 172:

 g = str("P6(4)")

 ins_sym = str("LATT -1\nSYMM X-Y,X,Z+2/3\nSYMM Y,-X+Y,Z+1/3" +

 "\nSYMM -Y,X-Y,Z+1/3\nSYMM -X+Y,-X,Z+2/3\nSYMM -X,-Y,Z")

 if int(number) == 173:

 g = str("P6(3)")

 ins_sym = str("LATT -1\nSYMM X-Y,X,Z+1/2\nSYMM Y,-X+Y,Z+1/2" +

 "\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM -X,-Y,Z+1/2")

 if int(number) == 174:

 g = str("P-6")

 ins_sym = str("LATT -1\nSYMM -X+Y,-X,-Z\nSYMM -Y,X-Y,-Z" +

 "\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM X,Y,-Z")

 if int(number) == 175:

 g = str("P6_m")

 ins_sym = str("LATT 1\nSYMM X-Y,X,Z\nSYMM Y,-X+Y,Z\nSYMM -Y,X-Y,Z" +

 "\nSYMM -X+Y,-X,Z\nSYMM -X,-Y,Z")

 if int(number) == 176:

 g = str("P6(3)_m")

 ins_sym = str("LATT 1\nSYMM X-Y,X,Z+1/2\nSYMM Y,-X+Y,Z+1/2" +

 "\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM -X,-Y,Z+1/2")

 if int(number) == 177:

 g = str("P622")

 ins_sym = str("LATT -1\nSYMM X-Y,X,Z\nSYMM Y,-X+Y,Z\nSYMM -Y,X-Y,Z" +

 "\nSYMM -X+Y,-X,Z\nSYMM X-Y,-Y,-Z\nSYMM -X,-X+Y,-Z" +

 "\nSYMM -X,-Y,Z\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z" +

 "\nSYMM -X+Y,Y,-Z\nSYMM X,X-Y,-Z")

 if int(number) == 178:

 g = str("P6(1)22")

 ins_sym = str("LATT -1\nSYMM X-Y,X,Z+1/6\nSYMM Y,-X+Y,Z+5/6" +

 "\nSYMM -Y,X-Y,Z+1/3\nSYMM -X+Y,-X,Z+2/3" +

 "\nSYMM X-Y,-Y,-Z\nSYMM -X,-X+Y,-Z+2/3\nSYMM -X,-Y,Z+1/2"+

 "\nSYMM Y,X,-Z+1/3\nSYMM -Y,-X,-Z+5/6" +

 "\nSYMM -X+Y,Y,-Z+1/2\nSYMM X,X-Y,-Z+1/6")

 if int(number) == 179:

 g = str("P6(5)22")

253

 ins_sym = str("LATT -1\nSYMM X-Y,X,Z+5/6\nSYMM Y,-X+Y,Z+1/6" +

 "\nSYMM -Y,X-Y,Z+2/3\nSYMM -X+Y,-X,Z+1/3\nSYMM X-Y,-Y,-Z"+

 "\nSYMM -X,-X+Y,-Z+1/3\nSYMM -X,-Y,Z+1/2\nSYMM Y,X,-Z+2/3"+

 "\nSYMM -Y,-X,-Z+1/6\nSYMM -X+Y,Y,-Z+1/2" +

 "\nSYMM X,X-Y,-Z+5/6")

 if int(number) == 180:

 g = str("P6(2)22")

 ins_sym = str("LATT -1\nSYMM X-Y,X,Z+1/3\nSYMM Y,-X+Y,Z+2/3" +

 "\nSYMM -Y,X-Y,Z+2/3\nSYMM -X+Y,-X,Z+1/3\nSYMM X-Y,-Y,-Z"+

 "\nSYMM -X,-X+Y,-Z+1/3\nSYMM -X,-Y,Z\nSYMM Y,X,-Z+2/3" +

 "\nSYMM -Y,-X,-Z+2/3\nSYMM -X+Y,Y,-Z\nSYMM X,X-Y,-Z+1/3")

 if int(number) == 181:

 g = str("P6(4)22")

 ins_sym = str("LATT -1\nSYMM X-Y,X,Z+2/3\nSYMM Y,-X+Y,Z+1/3" +

 "\nSYMM -Y,X-Y,Z+1/3\nSYMM -X+Y,-X,Z+2/3\nSYMM X-Y,-Y,-Z"+

 "\nSYMM -X,-X+Y,-Z+2/3\nSYMM -X,-Y,Z\nSYMM Y,X,-Z+1/3" +

 "\nSYMM -Y,-X,-Z+1/3\nSYMM -X+Y,Y,-Z\nSYMM X,X-Y,-Z+2/3")

 if int(number) == 182:

 g = str("P6(3)22")

 ins_sym = str("LATT -1\nSYMM X-Y,X,Z+1/2\nSYMM Y,-X+Y,Z+1/2" +

 "\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM X-Y,-Y,-Z" +

 "\nSYMM -X,-X+Y,-Z\nSYMM -X,-Y,Z+1/2\nSYMM Y,X,-Z" +

 "\nSYMM -Y,-X,-Z+1/2\nSYMM -X+Y,Y,-Z+1/2\nSYMM X,X-Y,-Z+1/2")

 if int(number) == 183:

 g = str("P6mm")

 ins_sym = str("LATT -1\nSYMM X-Y,X,Z\nSYMM Y,-X+Y,Z\nSYMM -Y,X-Y,Z" +

 "\nSYMM -X+Y,-X,Z\nSYMM -X,-Y,Z\nSYMM -X+Y,Y,Z" +

 "\nSYMM X,X-Y,Z\nSYMM -Y,-X,Z\nSYMM Y,X,Z" +

 "\nSYMM X-Y,-Y,Z\nSYMM -X,-X+Y,Z")

 if int(number) == 184:

 g = str("P6cc")

 ins_sym = str("LATT -1\nSYMM X-Y,X,Z\nSYMM Y,-X+Y,Z\nSYMM -Y,X-Y,Z" +

 "\nSYMM -X+Y,-X,Z\nSYMM -X,-Y,Z\nSYMM -X+Y,Y,Z+1/2" +

 "\nSYMM X,X-Y,Z+1/2\nSYMM -Y,-X,Z+1/2\nSYMM Y,X,Z+1/2" +

 "\nSYMM X-Y,-Y,Z+1/2\nSYMM -X,-X+Y,Z+1/2")

 if int(number) == 185:

 g = str("P6(3)cm")

 ins_sym = str("LATT -1\nSYMM X-Y,X,Z+1/2\nSYMM Y,-X+Y,Z+1/2" +

 "\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM -X,-Y,Z+1/2" +

 "\nSYMM -X+Y,Y,Z+1/2\nSYMM X,X-Y,Z+1/2\nSYMM -Y,-X,Z+1/2"

 +"\nSYMM Y,X,Z\nSYMM X-Y,-Y,Z\nSYMM -X,-X+Y,Z")

 if int(number) == 186:

 g = str("P6(3)mc")

 ins_sym = str("LATT -1\nSYMM X-Y,X,Z+1/2\nSYMM Y,-X+Y,Z+1/2" +

 "\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM -X,-Y,Z+1/2" +

 "\nSYMM -X+Y,Y,Z\nSYMM X,X-Y,Z\nSYMM -Y,-X,Z" +

254

 "\nSYMM Y,X,Z+1/2\nSYMM X-Y,-Y,Z+1/2\nSYMM -X,-X+Y,Z+1/2")

 if int(number) == 187:

 g = str("P-6m2")

 ins_sym = str("LATT -1\nSYMM -X+Y,-X,-Z\nSYMM -Y,X-Y,-Z" +

 "\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM -Y,-X,-Z" +

 "\nSYMM -X+Y,Y,-Z\nSYMM X,X-Y,-Z\nSYMM -X+Y,Y,Z" +

 "\nSYMM X,X-Y,Z\nSYMM X,Y,-Z\nSYMM -Y,-X,Z")

 if int(number) == 188:

 g = str("P-6c2")

 ins_sym = str("LATT -1\nSYMM -X+Y,-X,-Z+1/2\nSYMM -Y,X-Y,-Z+1/2" +

 "\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM -Y,-X,-Z" +

 "\nSYMM -X+Y,Y,-Z\nSYMM X,X-Y,-Z\nSYMM -X+Y,Y,Z+1/2" +

 "\nSYMM X,X-Y,Z+1/2\nSYMM X,Y,-Z+1/2\nSYMM -Y,-X,Z+1/2")

 if int(number) == 189:

 g = str("P-62m")

 ins_sym = str("LATT -1\nSYMM -X+Y,-X,-Z\nSYMM -Y,X-Y,-Z\nSYMM -Y,X-Y,Z"+

 "\nSYMM -X+Y,-X,Z\nSYMM X-Y,-Y,-Z\nSYMM -X,-X+Y,-Z" +

 "\nSYMM Y,X,-Z\nSYMM X,Y,-Z\nSYMM Y,X,Z\nSYMM X-Y,-Y,Z" +

 "\nSYMM -X,-X+Y,Z")

 if int(number) == 190:

 g = str("P-62c")

 ins_sym = str("LATT -1\nSYMM -X+Y,-X,-Z+1/2\nSYMM -Y,X-Y,-Z+1/2" +

 "\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM X-Y,-Y,-Z" +

 "\nSYMM -X,-X+Y,-Z\nSYMM Y,X,-Z\nSYMM X,Y,-Z+1/2" +

 "\nSYMM Y,X,Z+1/2\nSYMM X-Y,-Y,Z+1/2\nSYMM -X,-X+Y,Z+1/2")

 if int(number) == 191:

 g = str("P6_mmm")

 ins_sym = str("LATT 1\nSYMM X-Y,X,Z\nSYMM Y,-X+Y,Z\nSYMM -Y,X-Y,Z" +

 "\nSYMM -X+Y,-X,Z\nSYMM X-Y,-Y,-Z\nSYMM -X,-X+Y,-Z" +

 "\nSYMM -X,-Y,Z\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z" +

 "\nSYMM -X+Y,Y,-Z\nSYMM X,X-Y,-Z")

 if int(number) == 192:

 g = str("P6_mcc")

 ins_sym = str("LATT 1\nSYMM X-Y,X,Z\nSYMM Y,-X+Y,Z\nSYMM -Y,X-Y,Z" +

 "\nSYMM -X+Y,-X,Z\nSYMM X-Y,-Y,-Z+1/2" +

 "\nSYMM -X,-X+Y,-Z+1/2\nSYMM -X,-Y,Z\nSYMM Y,X,-Z+1/2" +

 "\nSYMM -Y,-X,-Z+1/2\nSYMM -X+Y,Y,-Z+1/2\nSYMM X,X-Y,-Z+1/2")

 if int(number) == 193:

 g = str("P6_mcm")

 ins_sym = str("LATT 1\nSYMM X-Y,X,Z+1/2\nSYMM Y,-X+Y,Z+1/2" +

 "\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM X-Y,-Y,-Z+1/2" +

 "\nSYMM -X,-X+Y,-Z+1/2\nSYMM -X,-Y,Z+1/2\nSYMM Y,X,-Z+1/2"+

 "\nSYMM -Y,-X,-Z\nSYMM -X+Y,Y,-Z\nSYMM X,X-Y,-Z")

 if int(number) == 194:

 g = str("P6_mmc")

 ins_sym = str("LATT 1\nSYMM X-Y,X,Z+1/2\nSYMM Y,-X+Y,Z+1/2" +

255

 "\nSYMM -Y,X-Y,Z\nSYMM -X+Y,-X,Z\nSYMM X-Y,-Y,-Z" +

 "\nSYMM -X,-X+Y,-Z\nSYMM -X,-Y,Z+1/2\nSYMM Y,X,-Z" +

 "\nSYMM -Y,-X,-Z+1/2\nSYMM -X+Y,Y,-Z+1/2\nSYMM X,X-Y,-Z+1/2")

#cubic

 if int(number) == 195:

 g = str("P23")

 ins_sym = str("LATT -1\nSYMM Z,X,Y\nSYMM Y,Z,X\nSYMM -Y,-Z,X" +

 "\nSYMM Z,-X,-Y\nSYMM -Y,Z,-X\nSYMM -Z,-X,Y\nSYMM -Z,X,-Y" +

 "\nSYMM Y,-Z,-X\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z")

 if int(number) == 196:

 g = str("F23")

 ins_sym = str("LATT -4\nSYMM Z,X,Y\nSYMM Y,Z,X\nSYMM -Y,-Z,X" +

 "\nSYMM Z,-X,-Y\nSYMM -Y,Z,-X\nSYMM -Z,-X,Y\nSYMM -Z,X,-Y" +

 "\nSYMM Y,-Z,-X\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z")

 if int(number) == 197:

 g = str("I23")

 ins_sym = str("LATT -2\nSYMM Z,X,Y\nSYMM Y,Z,X\nSYMM -Y,-Z,X" +

 "\nSYMM Z,-X,-Y\SYMM -Y,Z,-X\nSYMM -Z,-X,Y\nSYMM -Z,X,-Y" +

 "\nSYMM Y,-Z,-X\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z")

 if int(number) == 198:

 g = str("P2(1)3")

 ins_sym = str("LATT -1\nSYMM Z,X,Y\nSYMM Y,Z,X\nSYMM -Y+1/2,-Z,X+1/2" +

 "\nSYMM Z+1/2,-X+1/2,-Y\nSYMM -Y,Z+1/2,-X+1/2" +

 "\nSYMM -Z+1/2,-X,Y+1/2\nSYMM -Z,X+1/2,-Y+1/2" +

 "\nSYMM Y+1/2,-Z+1/2,-X\nSYMM X+1/2,-Y+1/2,-Z" +

 "\nSYMM -X,Y+1/2,-Z+1/2\nSYMM -X+1/2,-Y,Z+1/2")

 if int(number) == 199:

 g = str("I2(1)3")

 ins_sym = str("LATT -2\nSYMM Z,X,Y\nSYMM Y,Z,X\nSYMM -Y,-Z+1/2,X" +

 "\nSYMM Z,-X,-Y+1/2\nSYMM -Y+1/2,Z,-X\nSYMM -Z,-X+1/2,Y" +

 "\nSYMM -Z+1/2,X,-Y\nSYMM Y,-Z,-X+1/2\nSYMM X,-Y,-Z+1/2" +

 "\nSYMM -X+1/2,Y,-Z\nSYMM -X,-Y+1/2,Z")

 if int(number) == 200:

 g = str("Pm-3")

 ins_sym = str("LATT 1\nSYMM Z,X,Y\nSYMM Y,Z,X\nSYMM -Y,-Z,X\nSYMM Z,-X,-

Y"+

 "\nSYMM -Y,Z,-X\nSYMM -Z,-X,Y\nSYMM -Z,X,-Y\nSYMM Y,-Z,-X" +

 "\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z")

 if int(number) == 201:

 g = str("Pn-3")

 ins_sym = str("LATT 1\nSYMM Z,X,Y\nSYMM Y,Z,X\nSYMM -Y+1/2,-Z+1/2,X" +

 "\nSYMM Z,-X+1/2,-Y+1/2\nSYMM -Y+1/2,Z,-X+1/2" +

 "\nSYMM -Z+1/2,-X+1/2,Y\nSYMM -Z+1/2,X,-Y+1/2" +

 "\nSYMM Y,-Z+1/2,-X+1/2\nSYMM X,-Y+1/2,-Z+1/2" +

 "\nSYMM -X+1/2,Y,-Z+1/2\nSYMM -X+1/2,-Y+1/2,Z")

 if int(number) == 202:

256

 g = str("Fm-3")

 ins_sym = str("LATT 4\nSYMM Z,X,Y\nSYMM Y,Z,X\nSYMM -Y,-Z,X" +

 "\nSYMM Z,-X,-Y\nSYMM -Y,Z,-X\nSYMM -Z,-X,Y" +

 "\nSYMM -Z,X,-Y\nSYMM Y,-Z,-X\nSYMM X,-Y,-Z" +

 "\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z")

 if int(number) == 203:

 g = str("Fd-3")

 ins_sym = str("LATT 4\nSYMM Z,X,Y\nSYMM Y,Z,X\nSYMM -Y+1/4,-Z+1/4,X" +

 "\nSYMM Z,-X+1/4,-Y+1/4\nSYMM -Y+1/4,Z,-X+1/4" +

 "\nSYMM -Z+1/4,-X+1/4,Y\nSYMM -Z+1/4,X,-Y+1/4" +

 "\nSYMM Y,-Z+1/4,-X+1/4\nSYMM X,-Y+1/4,-Z+1/4" +

 "\nSYMM -X+1/4,Y,-Z+1/4\nSYMM -X+1/4,-Y+1/4,Z")

 if int(number) == 204:

 g = str("Im-3")

 ins_sym = str("LATT 2\nSYMM Z,X,Y\nSYMM Y,Z,X\nSYMM -Y,-Z,X" +

 "\nSYMM Z,-X,-Y\nSYMM -Y,Z,-X\nSYMM -Z,-X,Y" +

 "\nSYMM -Z,X,-Y\nSYMM Y,-Z,-X\nSYMM X,-Y,-Z" +

 "\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z")

 if int(number) == 205:

 g = str("Pa-3")

 ins_sym = str("LATT 1\nSYMM Z,X,Y\nSYMM Y,Z,X\nSYMM -Y+1/2,-Z,X+1/2" +

 "\nSYMM Z+1/2,-X+1/2,-Y\nSYMM -Y,Z+1/2,-X+1/2" +

 "\nSYMM -Z+1/2,-X,Y+1/2\nSYMM -Z,X+1/2,-Y+1/2" +

 "\nSYMM Y+1/2,-Z+1/2,-X\nSYMM X+1/2,-Y+1/2,-Z" +

 "\nSYMM -X,Y+1/2,-Z+1/2\nSYMM -X+1/2,-Y,Z+1/2")

 if int(number) == 206:

 g = str("Ia-3")

 ins_sym = str("LATT 2\nSYMM Z,X,Y\nSYMM Y,Z,X\nSYMM -Y,-Z+1/2,X" +

 "\nSYMM Z,-X,-Y+1/2\nSYMM -Y+1/2,Z,-X\nSYMM -Z,-X+1/2,Y" +

 "\nSYMM -Z+1/2,X,-Y\nSYMM Y,-Z,-X+1/2\nSYMM X,-Y,-Z+1/2" +

 "\nSYMM -X+1/2,Y,-Z\nSYMM -X,-Y+1/2,Z")

 if int(number) == 207:

 g = str("P432")

 ins_sym = str("LATT -1\nSYMM X,-Z,Y\nSYMM X,Z,-Y\nSYMM Z,Y,-X" +

 "\nSYMM -Z,Y,X\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM Z,X,Y" +

 "\nSYMM Y,Z,X\nSYMM -Y,-Z,X\nSYMM Z,-X,-Y\nSYMM -Y,Z,-X" +

 "\nSYMM -Z,-X,Y\nSYMM -Z,X,-Y\nSYMM Y,-Z,-X\nSYMM X,-Y,-Z" +

 "\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z" +

 "\nSYMM Z,-Y,X\nSYMM -Z,-Y,-X\nSYMM -X,Z,Y\nSYMM -X,-Z,-Y")

 if int(number) == 208:

 g = str("P4(2)32")

 ins_sym = str("LATT -1\nSYMM X+1/2,-Z+1/2,Y+1/2" +

 "\nSYMM X+1/2,Z+1/2,-Y+1/2\nSYMM Z+1/2,Y+1/2,-X+1/2" +

 "\nSYMM -Z+1/2,Y+1/2,X+1/2\nSYMM -Y+1/2,X+1/2,Z+1/2" +

 "\nSYMM Y+1/2,-X+1/2,Z+1/2\nSYMM Z,X,Y\nSYMM Y,Z,X" +

 "\nSYMM -Y,-Z,X\nSYMM Z,-X,-Y\nSYMM -Y,Z,-X\nSYMM -Z,-X,Y" +

257

 "\nSYMM -Z,X,-Y\nSYMM Y,-Z,-X\nSYMM X,-Y,-Z" +

 "\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z\nSYMM Y+1/2,X+1/2,-Z+1/2" +

 "\nSYMM -Y+1/2,-X+1/2,-Z+1/2\nSYMM Z+1/2,-Y+1/2,X+1/2" +

 "\nSYMM -Z+1/2,-Y+1/2,-X+1/2\nSYMM -X+1/2,Z+1/2,Y+1/2" +

 "\nSYMM -X+1/2,-Z+1/2,-Y+1/2")

 if int(number) == 209:

 g = str("F432")

 ins_sym = str("LATT -4\nSYMM X,-Z,Y\nSYMM X,Z,-Y\nSYMM Z,Y,-X" +

 "\nSYMM -Z,Y,X\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM Z,X,Y" +

 "\nSYMM Y,Z,X\nSYMM -Y,-Z,X\nSYMM Z,-X,-Y\nSYMM -Y,Z,-X" +

 "\nSYMM -Z,-X,Y\nSYMM -Z,X,-Y\nSYMM Y,-Z,-X\nSYMM X,-Y,-Z" +

 "\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z" +

 "\nSYMM Z,-Y,X\nSYMM -Z,-Y,-X\nSYMM -X,Z,Y\nSYMM -X,-Z,-Y")

 if int(number) == 210:

 g = str("F4(1)32")

 ins_sym = str("LATT -4\nSYMM X+1/4,-Z+1/4,Y+1/4" +

 "\nSYMM X+1/4,Z+1/4,-Y+1/4\nSYMM Z+1/4,Y+1/4,-X+1/4" +

 "\nSYMM -Z+1/4,Y+1/4,X+1/4\nSYMM -Y+1/4,X+1/4,Z+1/4" +

 "\nSYMM Y+1/4,-X+1/4,Z+1/4\nSYMM Z,X,Y\nSYMM Y,Z,X" +

 "\nSYMM -Y,-Z,X\nSYMM Z,-X,-Y\nSYMM -Y,Z,-X\nSYMM -Z,-X,Y" +

 "\nSYMM -Z,X,-Y\nSYMM Y,-Z,-X\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z" +

 "\nSYMM -X,-Y,Z\nSYMM Y+1/4,X+1/4,-Z+1/4" +

 "\nSYMM -Y+1/4,-X+1/4,-Z+1/4\nSYMM Z+1/4,-Y+1/4,X+1/4" +

 "\nSYMM -Z+1/4,-Y+1/4,-X+1/4\nSYMM -X+1/4,Z+1/4,Y+1/4" +

 "\nSYMM -X+1/4,-Z+1/4,-Y+1/4")

 if int(number) == 211:

 g = str("I432")

 ins_sym = str("LATT -2\nSYMM X,-Z,Y\nSYMM X,Z,-Y\nSYMM Z,Y,-X\nSYMM -

Z,Y,X" +

 "\nSYMM -Y,X,Z\nSYMM Y,-X,Z\nSYMM Z,X,Y\nSYMM Y,Z,X" +

 "\nSYMM -Y,-Z,X\nSYMM Z,-X,-Y\nSYMM -Y,Z,-X\nSYMM -Z,-X,Y" +

 "\nSYMM -Z,X,-Y\nSYMM Y,-Z,-X\nSYMM X,-Y,-Z\nSYMM -X,Y,-Z" +

 "\nSYMM -X,-Y,Z\nSYMM Y,X,-Z\nSYMM -Y,-X,-Z\nSYMM Z,-Y,X" +

 "\nSYMM -Z,-Y,-X\nSYMM -X,Z,Y\nSYMM -X,-Z,-Y")

 if int(number) == 212:

 g = str("P4(3)32")

 ins_sym = str("LATT -1\nSYMM X+3/4,-Z+3/4,Y+1/4" +

 "\nSYMM X+1/4,Z+3/4,-Y+3/4\nSYMM Z+1/4,Y+3/4,-X+3/4" +

 "\nSYMM -Z+3/4,Y+1/4,X+3/4\nSYMM -Y+3/4,X+1/4,Z+3/4" +

 "\nSYMM Y+3/4,-X+3/4,Z+1/4\nSYMM Z,X,Y\nSYMM Y,Z,X" +

 "\nSYMM -Y+1/2,-Z,X+1/2\nSYMM Z+1/2,-X+1/2,-Y" +

 "\nSYMM -Y,Z+1/2,-X+1/2\nSYMM -Z+1/2,-X,Y+1/2" +

 "\nSYMM -Z,X+1/2,-Y+1/2\nSYMM Y+1/2,-Z+1/2,-X" +

 "\nSYMM X+1/2,-Y+1/2,-Z\nSYMM -X,Y+1/2,-Z+1/2" +

 "\nSYMM -X+1/2,-Y,Z+1/2\nSYMM Y+1/4,X+3/4,-Z+3/4" +

 "\nSYMM -Y+1/4,-X+1/4,-Z+1/4\nSYMM Z+3/4,-Y+3/4,X+1/4" +

258

 "\nSYMM -Z+1/4,-Y+1/4,-X+1/4\nSYMM -X+3/4,Z+1/4,Y+3/4" +

 "\nSYMM -X+1/4,-Z+1/4,-Y+1/4")

 if int(number) == 213:

 g = str("P4(1)32")

 ins_sym = str("LATT -1\nSYMM X+1/4,-Z+1/4,Y+3/4" +

 "\nSYMM X+3/4,Z+1/4,-Y+1/4\nSYMM Z+3/4,Y+1/4,-X+1/4" +

 "\nSYMM -Z+1/4,Y+3/4,X+1/4\nSYMM -Y+1/4,X+3/4,Z+1/4" +

 "\nSYMM Y+1/4,-X+1/4,Z+3/4\nSYMM Z,X,Y\nSYMM Y,Z,X" +

 "\nSYMM -Y+1/2,-Z,X+1/2\nSYMM Z+1/2,-X+1/2,-Y" +

 "\nSYMM -Y,Z+1/2,-X+1/2\nSYMM -Z+1/2,-X,Y+1/2" +

 "\nSYMM -Z,X+1/2,-Y+1/2\nSYMM Y+1/2,-Z+1/2,-X" +

 "\nSYMM X+1/2,-Y+1/2,-Z\nSYMM -X,Y+1/2,-Z+1/2" +

 "\nSYMM -X+1/2,-Y,Z+1/2\nSYMM Y+3/4,X+1/4,-Z+1/4" +

 "\nSYMM -Y+3/4,-X+3/4,-Z+3/4\nSYMM Z+1/4,-Y+1/4,X+3/4" +

 "\nSYMM -Z+3/4,-Y+3/4,-X+3/4\nSYMM -X+1/4,Z+3/4,Y+1/4" +

 "\nSYMM -X+3/4,-Z+3/4,-Y+3/4")

 if int(number) == 214:

 g = str("I4(1)32")

 ins_sym = str("LATT -2\nSYMM X+1/4,-Z+1/4,Y+3/4" +

 "\nSYMM X+1/4,Z+3/4,-Y+3/4\nSYMM Z+1/4,Y+3/4,-X+3/4" +

 "\nSYMM -Z+1/4,Y+3/4,X+1/4\nSYMM -Y+1/4,X+3/4,Z+1/4" +

 "\nSYMM Y+1/4,-X+1/4,Z+3/4\nSYMM Z,X,Y\nSYMM Y,Z,X" +

 "\nSYMM -Y,-Z+1/2,X\nSYMM Z,-X,-Y+1/2\nSYMM -Y+1/2,Z,-X" +

 "\nSYMM -Z,-X+1/2,Y\nSYMM -Z+1/2,X,-Y\nSYMM Y,-Z,-X+1/2" +

 "\nSYMM X,-Y,-Z+1/2\nSYMM -X+1/2,Y,-Z\nSYMM -X,-Y+1/2,Z" +

 "\nSYMM Y+1/4,X+3/4,-Z+3/4\nSYMM -Y+1/4,-X+1/4,-Z+1/4" +

 "\nSYMM Z+1/4,-Y+1/4,X+3/4\nSYMM -Z+1/4,-Y+1/4,-X+1/4" +

 "\nSYMM -X+1/4,Z+3/4,Y+1/4\nSYMM -X+1/4,-Z+1/4,-Y+1/4")

 if int(number) == 215:

 g = str("P-43m")

 ins_sym = str("LATT -1\nSYMM -X,Z,-Y\nSYMM -X,-Z,Y\nSYMM -Z,-Y,X" +

 "\nSYMM Z,-Y,-X\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z\nSYMM Z,X,Y"+

 "\nSYMM Y,Z,X\nSYMM -Y,-Z,X\nSYMM Z,-X,-Y\nSYMM -Y,Z,-X"+

 "\nSYMM -Z,-X,Y\nSYMM -Z,X,-Y\nSYMM Y,-Z,-X\nSYMM X,-Y,-Z"+

 "\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z\nSYMM -Y,-X,Z\nSYMM Y,X,Z"+

 "\nSYMM -Z,Y,-X\nSYMM Z,Y,X\nSYMM X,-Z,-Y\nSYMM X,Z,Y")

 if int(number) == 216:

 g = str("F-43m")

 ins_sym = str("LATT -4\nSYMM -X,Z,-Y\nSYMM -X,-Z,Y\nSYMM -Z,-Y,X" +

 "\nSYMM Z,-Y,-X\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z\nSYMM Z,X,Y" +

 "\nSYMM Y,Z,X\nSYMM -Y,-Z,X\nSYMM Z,-X,-Y\nSYMM -Y,Z,-X" +

 "\nSYMM -Z,-X,Y\nSYMM -Z,X,-Y\nSYMM Y,-Z,-X\nSYMM X,-Y,-Z" +

 "\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z\nSYMM -Y,-X,Z\nSYMM Y,X,Z" +

 "\nSYMM -Z,Y,-X\nSYMM Z,Y,X\nSYMM X,-Z,-Y\nSYMM X,Z,Y")

 if int(number) == 217:

 g = str("I-43m")

259

 ins_sym = str("LATT -2\nSYMM -X,Z,-Y\nSYMM -X,-Z,Y\nSYMM -Z,-Y,X" +

 "\nSYMM Z,-Y,-X\nSYMM Y,-X,-Z\nSYMM -Y,X,-Z\nSYMM Z,X,Y" +

 "\nSYMM Y,Z,X\nSYMM -Y,-Z,X\nSYMM Z,-X,-Y\nSYMM -Y,Z,-X" +

 "\nSYMM -Z,-X,Y\nSYMM -Z,X,-Y\nSYMM Y,-Z,-X\nSYMM X,-Y,-Z" +

 "\nSYMM -X,Y,-Z\nSYMM -X,-Y,Z\nSYMM -Y,-X,Z\nSYMM Y,X,Z" +

 "\nSYMM -Z,Y,-X\nSYMM Z,Y,X\nSYMM X,-Z,-Y\nSYMM X,Z,Y")

if __name__ == "__main__":

 main()

260

4.7.2 Automated MicroED Data Collection Programs

4.7.2.1 Automated Data Collection Procedure

On a ThermoFisher Scientific Talos F200C equipped with a Ceta-D detector,

TEMScripting, and Advanced Scripting, with Python and supporting libraries (can be found in

the script’s “import” text), a properly mapped MUI (utilizing PyAutoGUI) is controlled by

executing the program (Lowest_Dose.py or IncDif_v1.py) in Python. A support computer

simultaneously runs CrystalEyesA_v3.py and monitors data files generated by the microscope

computer.

4.7.2.2 Lowest_Dose.py

"""

Allows for streamlined Low Dose screening

"""

import os

import sys

import time

import pyautogui

from threading import Thread

from tkinter import *

import tkinter as tk

from tkinter import ttk

from win32com import client

global MyTEM

global sp

MyTEM = client.Dispatch("TEMScripting.Instrument")

sp = []

def push_button():

 #check status of beam, blank if not already done

 beam_stat = MyTEM.Illumination

 beam_stat.BeamBlanked = True

 mode = MyTEM.Projection

 #ensure we're in imaging mode before going forward

 if str(mode.SubModeString) == "SA":

261

 original_x, original_y = pyautogui.position()

 pyautogui.click(x=115, y=38) #ensure that camera flap is selected

 doublecheck_1 = beam_stat.BeamBlanked

 pyautogui.click(x=47, y=209)

 doublecheck_2 = beam_stat.Beamblanked

 pyautogui.click(x=577, y=59)

 time.sleep(1)

 if doublecheck_1 != doublecheck_2:

 SA_value2 = SA_value.get()

 if str(SA_value2) == "100":

 pyautogui.click(x=110, y=871) #dropdown SA menu

 pyautogui.click(x=116, y=901) #select 100 SA aperture

 if str(SA_value2) == "40":

 pyautogui.click(x=110, y=871) #dropdown SA menu

 pyautogui.click(x=116, y=916) #select 40 SA aperture

 pyautogui.click(x=193, y=395) #exposure mode

 time.sleep(9) #wait 10 seconds for normalization

 beam_stat.BeamBlanked = False #unblank so you can take a peek

 else:

 print("Make sure you're in SA first!")

 sp.clear()

def push_button_2():

 beam_stat = MyTEM.Illumination

 pyautogui.click(x=115, y=38) #ensure that camera flap is selected

 doublecheck_1 = beam_stat.BeamBlanked

 pyautogui.click(x=47, y=209)

 doublecheck_2 = beam_stat.Beamblanked

 time.sleep(1)

 if doublecheck_1 != doublecheck_2:

 beam_stat.BeamBlanked = False #blank the beam again

 original_x, original_y = pyautogui.position()

 screen_access = MyTEM.Camera

 screen_access.MainScreen = 2 # raise up screen

 time.sleep(1) #wait 2 seconds

 pyautogui.click(x=195, y=237) # acquire image

 time.sleep(9) #wait for image

 beam_stat.BeamBlanked = True #blank the beam again

def push_button_3():

 beam_stat = MyTEM.Illumination

 pyautogui.click(x=115, y=38) #ensure that camera flap is selected

 doublecheck_1 = beam_stat.BeamBlanked

 pyautogui.click(x=47, y=209)

 time.sleep(1)

 doublecheck_2 = beam_stat.Beamblanked

 if doublecheck_1 != doublecheck_2:

 original_x, original_y = pyautogui.position()

262

 cam_access = MyTEM.Camera

 cam_access.MainScreen = 3 # move flu screen down

 pyautogui.click(x=47, y=866) #move SA aperture out

 pyautogui.click(x=623, y=56) #beamstop out

 time.sleep(1)

 pyautogui.click(x=38, y=396) #back to search mode

 time.sleep(9) #wait 10 seconds

 beam_stat.BeamBlanked = False #unblank

root = Tk()

root.title("LowestDose")

root.columnconfigure(0,weight=1)

root.rowconfigure(0,weight=1)

f1 = ttk.Frame(root, padding="12 12 12 12")

f1.grid(column=0, row=0, sticky=(N, W, E, S))

ttk.Button(f1, text="Diffraction\n Mode", command=lambda:

Thread(target=push_button).start()).grid(

 column=0, row=0,sticky=E,pady=5)

ttk.Button(f1, text="Shoot\n It", command=lambda: Thread(target=push_button_2).start()).grid(

 column=1, row=0, sticky=E,pady=5)

ttk.Button(f1, text="Imaging\n Mode", command=lambda:

Thread(target=push_button_3).start()).grid(

 column=2, row=0, sticky=E,pady=5)

SA_value = StringVar()

SA_value.set("100")

ttk.Label(f1, text="SA aperture:",

justify=LEFT).grid(column=0,row=1,columnspan=2,sticky=W)

tk.OptionMenu(f1, SA_value, "100", "40").grid(column=1,row=1,sticky=W)

root.mainloop()

263

4.7.2.3 IncDif_v1.py

"""

Completed Incident Diffraction Program

"""

import os

import sys

import time

import pyautogui

import ctypes

from tkinter import *

import tkinter as tk

from tkinter import ttk

from tkinter import filedialog

from win32com import client

global MyTEM

global coords

MyTEM = client.Dispatch("TEMScripting.Instrument")

coords = []

def grid_map():

 stage = MyTEM.Stage

 map_coords = ["0.1,0.1","0.1,-157","-157,-157","-157,0.1",

 "0.1,157","157,157","157,0.1","314,0.1",

 "0.1,314","0.1,-314","-314,0.1","314,314","-314,-314",

 "-314,314","314,-314"]

 if str(stage.Status) == "0":

 for line in map_coords:

 c = line.split(",")

 x = str(c[0])

 y = str(c[1])

 pyautogui.tripleClick(209,35) #Open "Auto" tab

 pyautogui.click(163,35) #Open "Auto" tab

 pyautogui.doubleClick(447,86) # !!!!! Left arrow button of the stage side flap

 pyautogui.click(426,88) #!!! Click the settings button

 time.sleep(1)

 if x != "0":

 pyautogui.doubleClick(329,140) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

264

 pyautogui.press('delete')

 pyautogui.typewrite(x)

 if y != "0":

 pyautogui.doubleClick(329,164) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(y)

 pyautogui.click(289,302) #click go to

 time.sleep(2)

 while str(stage.Status) == "3":

 print("waiting for stage to stabilize")

 time.sleep(2)

 stage.Status

 if str(stage.Status) == "0":

 print("stop")

 break

 beam_stat = MyTEM.Illumination

 beam_stat.BeamBlanked = True

 mode = MyTEM.Projection

 #ensure we're in imaging mode before going forward

 if str(mode.SubModeString) == "LM":

 pyautogui.click(x=115, y=38) #ensure that camera flap is selected

 doublecheck_1 = beam_stat.BeamBlanked

 pyautogui.click(x=47, y=209)

 doublecheck_2 = beam_stat.BeamBlanked

 if doublecheck_1 != doublecheck_2:

 screen_access = MyTEM.Camera

 screen_access.MainScreen = 2 # raise up screen

 time.sleep(1) #wait 2 seconds

 pyautogui.click(x=195, y=237) # acquire image

 print("pic")

 time.sleep(9) #wait for image

 beam_stat.BeamBlanked = True #blank the beam again

 cam_access = MyTEM.Camera

 cam_access.MainScreen = 3 # move flu screen down

 time.sleep(3) #wait 10 seconds

 beam_stat.BeamBlanked = False #unblank

 ctypes.windll.user32.SetCursorPos(2500,700)

 pyautogui.click()

 pyautogui.keyDown('ctrl')

 pyautogui.press('e')

 pyautogui.keyUp('ctrl')

 pyautogui.typewrite(x + "x_" + y + "y_" + "LM_380")

265

 pyautogui.press('enter')

 time.sleep(2)

destPath = []

#import list of grid coordinates from a csv file

def auto_screen():

 stage = MyTEM.Stage

 coord_file = str(coords).strip("])([,'")

 if os.path.isfile(coord_file) == True:

 pyautogui.tripleClick(209,35) # !!!! Left arrow on the upper GUI

 f = open(coord_file,"r")

 line = f.readline()

 for line in f:

 c = line.split(",")

 if len(c) == 4:

 x = str(c[0]).strip("'")

 y = str(c[1]).strip("'")

 z = str(c[2]).strip("'")

 a = str(c[3]).strip("'")

 pyautogui.click(163,35) #Open "Auto" tab

 pyautogui.doubleClick(447,86) # !!!!! Left arrow button of the stage side flap

 pyautogui.click(426,88) #!!! Click the settings button

 time.sleep(1)

 if x != "0":

 pyautogui.doubleClick(329,140) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(x)

 if y != "0":

 pyautogui.doubleClick(329,164) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(y)

 if z != "0":

266

 pyautogui.doubleClick(329,186) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(z)

 if a != "0":

 pyautogui.doubleClick(329,209) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(a)

 pyautogui.click(289,302) #click go to

 time.sleep(1)

 if str(stage.Status) == "0":

 pyautogui.click(223,82) #Stage side flap button!!

 pyautogui.doubleClick(447,86) # !!!!! Left arrow button of the stage side flap

 pyautogui.click(426,88) #!!! Click the settings button

 time.sleep(1)

 if x != "0":

 pyautogui.doubleClick(329,140) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(x)

 if y != "0":

 pyautogui.doubleClick(329,164) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(y)

 if z != "0":

 pyautogui.doubleClick(329,186) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(z)

267

 if a != "0":

 pyautogui.doubleClick(329,209) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(a)

 pyautogui.click(289,302) #click go to

 time.sleep(1)

 if str(stage.Status) == "0":

 print("Cannot move stage :(")

 break

 elif str(stage.Status) == "3":

 while str(stage.Status) == "3":

 time.sleep(2)

 stage.Status

 if str(stage.Status) == "0":

 break

 #check status of beam, blank if not already done

 beam_stat = MyTEM.Illumination

 beam_stat.BeamBlanked = True

 mode = MyTEM.Projection

 #ensure we're in imaging mode before going forward

 if str(mode.SubModeString) == "SA":

 pyautogui.click(x=115, y=38) #ensure that camera flap is selected

 doublecheck_1 = beam_stat.BeamBlanked

 pyautogui.click(x=47, y=209)

 doublecheck_2 = beam_stat.BeamBlanked

 if doublecheck_1 != doublecheck_2:

 screen_access = MyTEM.Camera

 screen_access.MainScreen = 2 # raise up screen

 time.sleep(1) #wait 2 seconds

 pyautogui.click(x=195, y=237) # acquire image

 print("pic")

 time.sleep(9) #wait for image

 beam_stat.BeamBlanked = True #blank the beam again

 cam_access = MyTEM.Camera

 cam_access.MainScreen = 3 # move flu screen down

 time.sleep(3) #wait 3 seconds

 beam_stat.BeamBlanked = False #unblank

 ctypes.windll.user32.SetCursorPos(2500,700)

 pyautogui.click()

 pyautogui.keyDown('ctrl')

 pyautogui.press('e')

 pyautogui.keyUp('ctrl')

268

 pyautogui.typewrite(x + "x_" + y + "y_" + "hm")

 pyautogui.press('enter')

 time.sleep(6)

 c = coord_file.split("/")

 sep = "\\"

 path = sep.join(c[:-1])

 os.chdir(path)

 os.getcwd()

 adj_file = str(x + "x_" + y + "y.csv")

 if os.path.isfile(adj_file) == True:

 f = open(adj_file,"r")

 line = f.readline()

 for line in f:

 c = line.split(",")

 if len(c) == 4:

 x = str(c[0]).strip("'")

 y = str(c[1]).strip("'")

 z = str(c[2]).strip("'")

 a = str(c[3]).strip("'")

 pyautogui.click(163,35) #Open "Auto" tab

 pyautogui.doubleClick(447,86) # !!!!! Left arrow button of the stage side

flap

 pyautogui.click(426,88) #!!! Click the settings button

 time.sleep(1)

 if x != "0":

 pyautogui.doubleClick(329,140) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(x)

 if y != "0":

 pyautogui.doubleClick(329,164) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(y)

 if z != "0":

 pyautogui.doubleClick(329,186) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

269

 pyautogui.press('delete')

 pyautogui.typewrite(z)

 if a != "0":

 pyautogui.doubleClick(329,209) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(a)

 pyautogui.click(289,302) #click go to

 time.sleep(1)

 if str(stage.Status) == "0":

 pyautogui.click(223,82) #Stage side flap button!!

 pyautogui.doubleClick(447,86) # !!!!! Left arrow button of the stage

side flap

 pyautogui.click(426,88) #!!! Click the settings button

 time.sleep(1)

 if x != "0":

 pyautogui.doubleClick(329,140) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(x)

 if y != "0":

 pyautogui.doubleClick(329,164) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(y)

 if z != "0":

 pyautogui.doubleClick(329,186) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(z)

 if a != "0":

 pyautogui.doubleClick(329,209) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

270

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(a)

 pyautogui.click(289,302) #click go to

 time.sleep(1)

 if str(stage.Status) == "0":

 print("Cannot move stage :(")

 break

 elif str(stage.Status) == "3":

 while str(stage.Status) == "3":

 time.sleep(2)

 stage.Status

 if str(stage.Status) == "0":

 break

 #check status of beam, blank if not already done

 beam_stat = MyTEM.Illumination

 beam_stat.BeamBlanked = True

 mode = MyTEM.Projection

 if str(mode.SubModeString) == "SA":

 original_x, original_y = pyautogui.position()

 pyautogui.click(x=115, y=38) #ensure that camera flap is selected

 doublecheck_1 = beam_stat.BeamBlanked

 pyautogui.click(x=47, y=209)

 doublecheck_2 = beam_stat.BeamBlanked

 pyautogui.click(x=577, y=59) #beamstop in y=59 on scope

 time.sleep(1)

 if doublecheck_1 != doublecheck_2:

 SA_value2 = SA_value.get()

 if str(SA_value2) == "100":

 #print("I would've put in the SA aperture...")

 pyautogui.click(x=110, y=871) #dropdown SA menu

 pyautogui.click(x=116, y=901) #select 100 SA aperture

 if str(SA_value2) == "40":

 #print("I would've put in the SA aperture...")

 pyautogui.click(x=110, y=871) #dropdown SA menu

 pyautogui.click(x=116, y=916) #select 40 SA

 pyautogui.click(x=193, y=395) #exposure mode

 time.sleep(9) #wait 10 seconds for normalization

 beam_stat.BeamBlanked = False #unblank so you can take a peek

 time.sleep(3)

 screen_access = MyTEM.Camera

 screen_access.MainScreen = 2 # raise up screen

 time.sleep(1) #wait 1 seconds

 pyautogui.click(x=195, y=237) # acquire image

271

 time.sleep(9) #wait for image (need a way to check for continuous

diff)

 beam_stat.BeamBlanked = True #blank the beam again

 ctypes.windll.user32.SetCursorPos(2500,700)

 pyautogui.click()

 pyautogui.keyDown('ctrl')

 pyautogui.press('e')

 pyautogui.keyUp('ctrl')

 pyautogui.typewrite(x + "x_" + y + "y_" +

 "incdif")

 pyautogui.press('enter')

 time.sleep(1)

 cam_access = MyTEM.Camera

 cam_access.MainScreen = 3 # move flu screen down

 pyautogui.click(x=47, y=866) #move SA aperture out

 pyautogui.click(x=623, y=56) #beamstop out

 time.sleep(1)

 pyautogui.click(x=38, y=396) #back to search mode

 time.sleep(9) #wait 10 seconds

 beam_stat.BeamBlanked = False #unblank

 #save the image somewhere yay

 else:

 print("Make sure you're in SA imaging mode first!")

 time.sleep(2)

 print("collected at " + x + " " + y + " " + z + " " + a)

 if os.path.isfile(adj_file) == False:

 print(c)

 print(coord_file)

 print(str(os.getcwd()))

 elif str(stage.Status) == "3":

 while str(stage.Status) == "3":

 time.sleep(2)

 stage.Status

 if str(stage.Status) == "0":

 break

 beam_stat = MyTEM.Illumination

 beam_stat.BeamBlanked = True

 mode = MyTEM.Projection

 #ensure we're in imaging mode before going forward

 if str(mode.SubModeString) == "SA":

 pyautogui.click(x=115, y=38) #ensure that camera flap is selected

 doublecheck_1 = beam_stat.BeamBlanked

 pyautogui.click(x=47, y=209)

 doublecheck_2 = beam_stat.BeamBlanked

 if doublecheck_1 != doublecheck_2:

 screen_access = MyTEM.Camera

272

 screen_access.MainScreen = 2 # raise up screen

 time.sleep(1) #wait 2 seconds

 pyautogui.click(x=195, y=237) # acquire image

 print("pic")

 time.sleep(9) #wait for image

 beam_stat.BeamBlanked = True #blank the beam again

 cam_access = MyTEM.Camera

 cam_access.MainScreen = 3 # move flu screen down

 time.sleep(3) #wait 10 seconds

 beam_stat.BeamBlanked = False #unblank

 ctypes.windll.user32.SetCursorPos(2500,700)

 pyautogui.click()

 pyautogui.keyDown('ctrl')

 pyautogui.press('e')

 pyautogui.keyUp('ctrl')

 pyautogui.typewrite(x + "x_" + y + "y_" + "hm")

 pyautogui.press('enter')

 time.sleep(6)

 c = coord_file.split("/")

 sep = "\\"

 path = sep.join(c[:-1])

 os.chdir(path)

 os.getcwd()

 adj_file = str(x + "x_" + y + "y.csv")

 if os.path.isfile(adj_file) == True:

 f = open(adj_file,"r")

 line = f.readline()

 for line in f:

 c = line.split(",")

 if len(c) == 4:

 x = str(c[0]).strip("'")

 y = str(c[1]).strip("'")

 z = str(c[2]).strip("'")

 a = str(c[3]).strip("'")

 pyautogui.click(163,35) #Open "Auto" tab

 pyautogui.doubleClick(447,86) # !!!!! Left arrow button of the stage side

flap

 pyautogui.click(426,88) #!!! Click the settings button

 time.sleep(1)

 if x != "0":

 pyautogui.doubleClick(329,140) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

273

 pyautogui.typewrite(x)

 if y != "0":

 pyautogui.doubleClick(329,164) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(y)

 if z != "0":

 pyautogui.doubleClick(329,186) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(z)

 if a != "0":

 pyautogui.doubleClick(329,209) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(a)

 pyautogui.click(289,302) #click go to

 time.sleep(1)

 if str(stage.Status) == "0":

 pyautogui.click(223,82) #Stage side flap button!!

 pyautogui.doubleClick(447,86) # !!!!! Left arrow button of the stage

side flap

 pyautogui.click(426,88) #!!! Click the settings button

 time.sleep(1)

 if x != "0":

 pyautogui.doubleClick(329,140) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(x)

 if y != "0":

 pyautogui.doubleClick(329,164) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

274

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(y)

 if z != "0":

 pyautogui.doubleClick(329,186) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(z)

 if a != "0":

 pyautogui.doubleClick(329,209) #click X

 pyautogui.press('backspace')

 pyautogui.press('backspace')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.press('delete')

 pyautogui.typewrite(a)

 pyautogui.click(289,302) #click go to

 time.sleep(1)

 if str(stage.Status) == "0":

 print("Cannot move stage :(")

 break

 elif str(stage.Status) == "3":

 while str(stage.Status) == "3":

 time.sleep(2)

 stage.Status

 if str(stage.Status) == "0":

 break

 #check status of beam, blank if not already done

 beam_stat = MyTEM.Illumination

 beam_stat.BeamBlanked = True

 mode = MyTEM.Projection

 if str(mode.SubModeString) == "SA":

 original_x, original_y = pyautogui.position()

 pyautogui.click(x=115, y=38) #ensure that camera flap is selected

 doublecheck_1 = beam_stat.BeamBlanked

 pyautogui.click(x=47, y=209)

 doublecheck_2 = beam_stat.BeamBlanked

 pyautogui.click(x=577, y=59) #beamstop in y=59 on scope

 time.sleep(1)

 if doublecheck_1 != doublecheck_2:

 SA_value2 = SA_value.get()

 if str(SA_value2) == "100":

 #print("I would've put in the SA aperture...")

275

 pyautogui.click(x=110, y=871) #dropdown SA menu scope is

871

 pyautogui.click(x=116, y=901) #select 100 SA aperture scope

is 901

 if str(SA_value2) == "40":

 #print("I would've put in the SA aperture...")

 pyautogui.click(x=110, y=871) #dropdown SA menu

 pyautogui.click(x=116, y=916) #select 40 SA aperture scope

 pyautogui.click(x=193, y=395) #exposure mode

 time.sleep(9) #wait 10 seconds for normalization

 beam_stat.BeamBlanked = False #unblank so you can take a peek

 time.sleep(3)

 screen_access = MyTEM.Camera

 screen_access.MainScreen = 2 # raise up screen

 time.sleep(1) #wait 1 seconds

 pyautogui.click(x=195, y=237) # acquire image

 time.sleep(9) #wait for image

 beam_stat.BeamBlanked = True #blank the beam again

 ctypes.windll.user32.SetCursorPos(2500,700)

 pyautogui.click()

 pyautogui.keyDown('ctrl')

 pyautogui.press('e')

 pyautogui.keyUp('ctrl')

 pyautogui.typewrite(x + "x_" + y + "y_" +

 "incdif")

 pyautogui.press('enter')

 time.sleep(1)

 cam_access = MyTEM.Camera

 cam_access.MainScreen = 3 # move flu screen down

 pyautogui.click(x=47, y=866) #move SA aperture out

 pyautogui.click(x=623, y=56) #beamstop out

 time.sleep(1)

 pyautogui.click(x=38, y=396) #back to search mode

 time.sleep(9) #wait 10 seconds

 beam_stat.BeamBlanked = False #unblank

 #save the image somewhere yay

 else:

 print("Make sure you're in SA imaging mode first!")

 time.sleep(2)

 print("collected at " + x + " " + y + " " + z + " " + a)

 if os.path.isfile(adj_file) == False:

 print(c)

 print(coord_file)

 print(str(os.getcwd()))

 else:

276

 print("Need to import coordinates!")

def fileadd():

 coords.clear()

 files = filedialog.askopenfilename(title="Select data files",filetypes =

 (("ser files","*.csv"),

 ("all files","*.*")),multiple=False)

 var = root.tk.splitlist(files)

 coords.append(var)

#def stop():

print("main")

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Start of

GUI~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

root = Tk()

#photo = PhotoImage(file = "icon.gif")

root.title("CrystalEyesEM")

#root.iconphoto(False,photo)

root.columnconfigure(0,weight=1)

root.rowconfigure(0,weight=1)

n = ttk.Notebook(root)

n.grid(column=0,row=0)

ttk.Label(root, text="Status:",justify=LEFT).grid(column=0,row=1,sticky=W,pady=5)

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~First

page~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

f1 = ttk.Frame(n, padding="12 12 12 12")

f1.grid(column=2, row=1, sticky=(N, W, E, S))

f1.columnconfigure(0, weight=1)

f1.rowconfigure(0, weight=1)

sf1 = ttk.Frame(f1, borderwidth=5, relief=GROOVE)

sf1.grid(column=1,row=0,sticky=(N, W, E, S),pady=3)

sf1.columnconfigure(0, weight=1)

sf1.columnconfigure(0, weight=1)

s1f1 = ttk.Frame(f1, borderwidth=5, relief=GROOVE)

s1f1.grid(column=2,row=0,sticky=(N, W, E, S),pady=3)

s1f1.columnconfigure(0, weight=1)

s1f1.columnconfigure(0, weight=1)

ttk.Label(sf1, text="TEM Settings").grid(column=0,row=1,pady=3)

ttk.Label(sf1, text="Magnification:").grid(column=0,row=2)

mag = StringVar()

mag.set("LM 380x")

sc = tk.OptionMenu(sf1, mag, "LM 380x").grid(column=1,row=2)

mon = StringVar()

mon.set("4x4")

277

mnt = tk.OptionMenu(sf1, mon, "4x4", "4x4").grid(column=1,row=3)

ttk.Label(sf1, text="LM Map Size: ").grid(column=0,row=3)

ttk.Label(sf1, text="Ensure TIA is exporting images\n" +

 "to correct location and camera is\n" +

 "not in continuous collection mode").grid(column=0,row=4,

 columnspan=2)

ttk.Button(sf1, text="Start",command=grid_map).grid(

 column=0, row=5,columnspan=1,sticky=E)

#ttk.Button(sf1, text="Stop",command=stop).grid(

column=1, row=5,columnspan=1,sticky=W)

#ttk.Label(s1f1, text= " to be replaced by images \n\n\n").grid(

column=1,row=1)

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~Second

page~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

f2 = ttk.Frame(n, padding="12 12 12 12") # second page

f2.grid(column=0, row=0, sticky=(N, W, E, S))

f2.columnconfigure(0, weight=1)

f2.rowconfigure(0, weight=1)

sf2 = ttk.Frame(f2, borderwidth=5, relief=GROOVE)

sf2.grid(column=1,row=0,sticky=(N, W, E, S),pady=3)

sf2.columnconfigure(0, weight=1)

sf2.columnconfigure(0, weight=1)

s1f2 = ttk.Frame(f2, borderwidth=5, relief=GROOVE)

s1f2.grid(column=2,row=0,sticky=(N, W, E, S),pady=3)

s1f2.columnconfigure(0, weight=1)

s1f2.columnconfigure(0, weight=1)

ttk.Label(sf2, text="TEM Settings").grid(column=0,row=1,pady=3)

ttk.Label(sf2, text="Magnification:").grid(column=0,row=2)

hmag = StringVar()

hmag.set("SA 2600x")

hmagz = tk.OptionMenu(sf2, hmag, "SA 2600x").grid(column=1,row=2)

isi = StringVar()

isi.set("2k x 2k")

isize = tk.OptionMenu(sf2, isi, "2k x 2k").grid(column=1,row=3)

ttk.Label(sf2, text="Final Image Size: ").grid(column=0,row=3)

SA_value = StringVar()

278

SA_value.set("100")

ttk.Label(sf2, text="SA aperture:",

justify=LEFT).grid(column=0,row=4,columnspan=2,sticky=W)

tk.OptionMenu(sf2, SA_value, "100", "40").grid(column=1,row=4,sticky=W)

ttk.Button(sf2, text=' Import coordinate *.csv file', command=fileadd).grid(column=0, row=5,

 sticky=E,columnspan=2)

ttk.Button(sf2, text="Start",command=auto_screen).grid(

 column=0, row=6,columnspan=1,sticky=E)

#ttk.Button(sf2, text="Stop",command=stop).grid(

column=1, row=6,columnspan=1,sticky=W)

#ttk.Label(s1f2, text= " to be replaced by images \n\n\n").grid(

column=1,row=1)

n.add(f1, text='LM Imaging')

n.add(f2, text='Diffraction Screening')

n.select(f1)

n.enable_traversal()

#root.bind('<Return>', main)

root.mainloop()

279

4.7.2.4 CrystalEyes_v3.py

import os

import cv2 as cv

import imutils

global coordinates

global new_coordinates

import numpy as np

from collections import Counter

from decimal import Decimal

import time

from watchdog.observers import Observer

from watchdog.events import FileSystemEventHandler

import random

coordinates = []

new_coordinates = []

def analyze(file):

 path = os.getcwd()

 name = str(file)

 if name.endswith("_LM_380.tif"):

 img = cv.imread(name)

 img2 = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

 ret3,th3 = cv.threshold(img2,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)

 th3 = cv.erode(th3, None, iterations=2)

 th3 = cv.dilate(th3, None, iterations=4)

 th3 = cv.medianBlur(th3,5)

 edged = cv.Canny(th3, 30, 200)

 contours = cv.findContours(edged, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)

 cnts = imutils.grab_contours(contours)

 fname = str(name + "_collectedpts.tif")

 cv.drawContours(img, cnts, -1, (255,0,0), 3)

 for contour in cnts:

 x, y, w, h = cv.boundingRect(contour)

 if int(x) and int(y) != 0:

 if int(w) and int(h) < 200:

 extLeft = tuple(contour[contour[:, :, 0].argmin()][0])

 x1 = extLeft[0]

 y1 = round(int(extLeft[1])/10)*10

 coo = x1,y1

 if coo not in coordinates:

 coordinates.append(coo)

 cv.circle(img, coo, 8, (0, 255, 0), -1)

280

 label = str(coo)

 cv.putText(img, label, (x1, y1), cv.FONT_HERSHEY_PLAIN, 2, (0,0,255), 2)

 cv.imwrite(fname, img)

 f = open("coord_file.csv","a")

 conv_coord = []

 for x,y in coordinates:

 center = (1024,1024)

 coo = (x,y)

 if x < 1024 and y < 1024:

 ynm = abs(x - 1024) * 0.0766

 xnm = abs(y - 1024) * 0.0766

 if x < 1024 and y > 1024:

 ynm = abs(x - 1024) * 0.0766

 xnm = abs(y - 1024) * -0.0766

 if x > 1024 and y > 1024:

 ynm = abs(x - 1024) * -0.0766

 xnm = abs(y - 1024) * -0.0766

 if x > 1024 and y < 1024:

 ynm = abs(x - 1024) * -0.0766

 xnm = abs(y - 1024) * 0.0766

 origxy = name.split("_")

 x0 = str(origxy[0]).strip("x")

 y0 = str(origxy[1]).strip("y")

 x_coord = float(x0) + xnm

 y_coord = float(y0) + ynm

 nx = Decimal(x_coord).quantize(Decimal("1.00"))

 ny = Decimal(y_coord).quantize(Decimal("1.00"))

 conv_coord.append(str(nx) + "," + str(ny))

 parsed_coord = []

 for i in range(len(conv_coord)):

 x1,y1 = conv_coord[i].split(",")

 if i+1 < len(conv_coord):

 x2,y2 = conv_coord[i+1].split(",")

 if abs(float(x1) - float(x2)) and abs(float(y1) - float(y2)) < 12: #opt this value

 pass

 else:

 parsed_coord.append(str(x1) + "," + str(y1))

 else:

 pass

 for item in parsed_coord:

 f.write(str(item) + ",0,0\n")

 coordinates.clear()

 conv_coord.clear()

 parsed_coord.clear()

 f.close()

281

def incdif(file):

 name = str(file)

 if name.endswith("incdif.tif"):

 #this is the first round of image processing

 img = cv.imread(name)

 img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

 crop_img1 = img[25:1033, 45:2048]

 blur1 = cv.medianBlur(crop_img1,7)

 crop_img2 = img[1033:2041,45:2048]

 fl_crop_img2 = cv.flip(crop_img2, -1)

 blur2 = cv.medianBlur(fl_crop_img2,7)

 dst = cv.addWeighted(blur1, 0.5, blur2, 0.5, 0.0)

 ret3,th3 = cv.threshold(dst,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)

 x,y,w,h = 800,800,450,500

 cv.rectangle(th3, (x, x), (x + w, y + h), (0,0,0), -1)

 th3 = cv.erode(th3, None, iterations=2)

 th3 = cv.dilate(th3, None, iterations=3)

 th3 = cv.medianBlur(th3,3)

 crop_th3 = th3[0:690,0:2003]

 c = crop_th3.flatten().tolist()

 c1 = crop_th3.flatten().tolist()

 x = 255

 d = Counter(c1)

 d2 = Counter(c)

 num = d[x]

 fid = open("inc_dif.csv","a")

 if num == 0:

 fid.write(name + ",0\n")

 if 10000 > num > 0:

 params = cv.SimpleBlobDetector_Params()

 params.blobColor = 255

 params.filterByCircularity = True

 params.minCircularity = 0.7

 params.minDistBetweenBlobs = 10

 detector = cv.SimpleBlobDetector_create(params)

 keypoints = detector.detect(crop_th3)

 kpt_image = cv.drawKeypoints(crop_th3, keypoints, np.array([]),

 (0,0,255),cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

 c = True

 if len(keypoints) > 3:

 pts = [k.pt for k in keypoints]

 center = (1001, 1008) # This should be changed to the center of your image

 distances = []

 for pt in pts:

282

 dis = distance2(center,pt)

 distances.append(int(dis))

 for elem in distances:

 if distances.count(elem) > 2:

 fid.write(name + ",0\n")

 c = False

 break

 if c == True:

 fid.write(name + ",1\n")

 if 40000 >= num >= 10000:

 img = cv.imread(name)

 img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

 crop_img1 = img[25:1033, 44:1046]

 blur1 = cv.medianBlur(crop_img1,7)

 crop_img2 = img[25:1033, 1046:2048]

 fl_crop_img = cv.flip(crop_img2, 1)

 blur2 = cv.medianBlur(fl_crop_img,7)

 crop_img3 = img[1033:2041,44:1046]

 blur3 = cv.medianBlur(crop_img3,5)

 crop_img4 = img[1033:2041,1046:2048]

 blur4 = cv.medianBlur(crop_img4,7)

 fl_crop_img1 = cv.flip(blur3, 0)

 fl_crop_img2 = cv.flip(blur4, -1)

 dst3 = cv.addWeighted(blur1, 0.5, blur2, 0.5, 0.0)

 dst2 = cv.addWeighted(fl_crop_img1, 0.5,

 fl_crop_img2, 0.5, 0.0)

 dst = cv.addWeighted(dst3, 0.5, dst2, 0.5, 0.0)

 blur = cv.medianBlur(dst3,7)

 ret3,th3 = cv.threshold(blur,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)

 crop_th3 = th3[0:690,0:1002] #690

 crop2_th3 = th3[0:400,0:1002]

 c = crop_th3.flatten().tolist()

 c2 = crop2_th3.flatten().tolist()

 x = 255

 d = Counter(c)

 d2 = Counter(c2)

 num = d[x]

 num2 = d2[x]

 if 1000 < num < 10000 and num2 < 50:

 fid.write(name + ",2\n")

 else:

 fid.write(name + ",0\n")

 if num > 40000:

 fid.write(name + ",0\n")

283

 fid.close()

def hmag(file):

 name = str(file)

 if name.endswith("hm.tif"):

 img = cv.imread(name)

 img2 = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

 blur = cv.medianBlur(img2,9)

 th3 = cv.adaptiveThreshold(blur, 255,

 cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 17, 10)

 kernel = np.ones((6,6),np.uint8)

 opening = cv.morphologyEx(th3,cv.MORPH_OPEN,kernel, iterations = 2)

 blur = cv.medianBlur(opening,7)

 contours = cv.findContours(blur, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)

 cnts = imutils.grab_contours(contours)

 for contour in cnts:

 area = cv.contourArea(contour)

 x, y, w, h = cv.boundingRect(contour)

 if x > 20:

 if area > 40.0:

 cv.drawContours(img, contour, -1, (255,0,0), 4)

 extLeft = tuple(contour[contour[:, :, 0].argmin()][0])

 x1 = extLeft[0]

 y1 = round(int(extLeft[1])/10)*10

 coo = x1,y1

 if coo not in new_coordinates:

 new_coordinates.append(coo)

 file2 = name.split("/")

 end = str(file2[-1]).split("_")

 filename = str(end[0].strip("][',") + "_" + end[1].strip("][',"))

 filt_pts = []

 if len(new_coordinates) != 0:

 fname = str(filename + ".csv")

 f = open(fname,"a")

 f.write("x,y,z,a\n")

 for i in range(len(new_coordinates)-1):

 x,y = new_coordinates[i]

 x2,y2 = new_coordinates[i+1]

 if abs(y - y2) > 50 and abs(x - x2) > 50:

 if x < 1024 and y < 1024:

 ynm = abs(x - 1024) * 0.0105

 xnm = abs(y - 1024) * 0.0105

 if x < 1024 and y > 1024:

 ynm = abs(x - 1024) * -0.0105

 xnm = abs(y - 1024) * 0.0105

 if x > 1024 and y > 1024:

284

 ynm = abs(x - 1024) * -0.0105

 xnm = abs(y - 1024) * -0.0105

 if x > 1024 and y < 1024:

 ynm = abs(x - 1024) * 0.0105

 xnm = abs(y - 1024) * -0.0105

 origxy = name.split("_")

 x0 = str(origxy[0]).strip("x")

 y0 = str(origxy[1]).strip("y")

 x_coord = float(x0) + xnm

 y_coord = float(y0) + ynm

 nx = float(Decimal(x_coord).quantize(Decimal("1.00")))

 ny = float(Decimal(y_coord).quantize(Decimal("1.00")))

 nxny = str(nx) + "," + str(ny)

 n = int(x),int(y)

 cv.circle(img, n, 8, (0, 255, 0), -1)

 cv.putText(img, nxny, (n), cv.FONT_HERSHEY_PLAIN, 2, (0,0,255), 2)

 filt_pts.append(nxny)

 if len(filt_pts) != 0 and len(filt_pts) > 3:

 pts = random.sample(filt_pts, 3)

 for point in pts:

 x1,y1 = point.split(",")

 f.write(str(x1) + "," + str(y1) + ",0,0\n")

 if len(filt_pts) != 0 and len(filt_pts) <= 3:

 for point in filt_pts:

 x1,y1 = point.split(",")

 f.write(str(x1) + "," + str(y1) + ",0,0\n")

 nfilename = str(filename + "_collectedpts.tif")

 cv.imwrite(nfilename, img)

 new_coordinates.clear()

 filt_pts.clear()

 f.close()

 cv.namedWindow('image',cv.WINDOW_NORMAL)

 cv.resizeWindow('image',800,800)

 cv.imshow('image',img)

 cv.waitKey(0)

 cv.destroyAllWindows()

def distance(kpt1, kpt2):

 arr = np.array([kpt1.pt, kpt2.pt])

 return np.sqrt(np.sum((arr[0]-arr[1])**2))

def distance2(kpt1, kpt2):

 arr = np.array([kpt1, kpt2])

 return np.sqrt(np.sum((arr[0]-arr[1])**2))

285

class MyHandler(FileSystemEventHandler):

 def on_created(self,event):

 file = str({event.src_path}).strip("}{'").split("/")

 end = str(file[-1])

 end2 = end.split("_")

 filename = str(end2[-1]).strip("]'")

 if filename == "380.tif":

 sep = "/"

 path = sep.join(file[:-1])

 os.chdir(path)

 time.sleep(3)

 analyze(end)

 if filename == "incdif.tif":

 sep = "/"

 path = sep.join(file[:-1])

 os.chdir(path)

 time.sleep(3)

 incdif(end)

 if filename == "hm.tif":

 sep = "/"

 path = sep.join(file[:-1])

 os.chdir(path)

 time.sleep(3)

 hmag(end)

if __name__ == "__main__":

 print("Keep me open for live monitoring of data files!")

 event_handler = MyHandler()

 observer = Observer()

 observer.schedule(event_handler, path='/mnt/c/', recursive=True)

 observer.start()

 try:

 while True:

 time.sleep(1)

 except KeyboardInterrupt:

 observer.stop()

 observer.join()

286

4.7.2.4 Incident Diffraction Screening Table

Particle

Recognition

Method

Particles

found in

LM

380x

Coordinates

driven to

2600x

Diffraction

patterns

collected

No

Diffraction

Percent

Diffracting

Particles

CrystalEyes_v1.py 245 65 66 33 50%

CrystalEyes_v2.py 236 177 141 90 36%

CrystalEyes_v3.py 255 41 86 19 78%

Manually

Determined

n/a n/a 38 3 92%

Table 4.1 Optimization of image recognition scripts based on percentage of diffracting particles.

