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Is There "Catastrophic Interference"
in Connectionist Networks?

Phil A. Hetherington & Mark S. Seidenberg
Department of Psychology, McGill University

Concern has recently developed regarding the
possibility that parallel distributed processing models
will exhibit massive amounts of retroactive
interference. McCloskey & Cohen (in press) have
suggested that such models exhibit "catastrophic
interference” under realistic training conditions; they
conclude that PDP models may not be able to
simulate basic aspects of human performance. In this
paper we report replications and extensions of
simulations on which these claims were based. The
new simulations suggest that “catastrophic
interference” may be less of a problem than
McCloskey & Cohen suggest; specifically, it is
related to the use of a rigid training scheme that bears
little resemblance to how children actually learn.

Learning in parallel distributed processing models
involves changes to the weights on connections
between units as a consequence of feedback or
"experience.” One of the main properties of these
models is that the effects of learning are superimposed
on one another; a model's performance is determined
by the aggregate effects of the ensemble of training
experiences. This property of PDP models is thought
to be theoretically important; for example, it enables
Seidenberg and McClelland's (in press) model of word
recognition to simulate the effects of inconsistent
spelling-sound correspondences on tasks such as
naming and lexical decision, and Rumelhart and
McClelland (1986) have argued that it is critical to an
account of facts about the child's acquisition of past
tense morphology. Recently, however, it has been
noted that this property of PDP models may have
some negative side effects. Two issues have arisen.
First there is the problem of retroactive interference:
events later in the training regime may result in
poorer performance on previously-learned items. For
example, a word pronunciation model (e.g.,
Sejnowski & Rosenberg, 1986; Seidenberg &
McClelland, in press) might be trained to generate the
correct pronunciation of a word such as GAVE;
subsequent training on a word such as HAVE might
result in changes to the weights that have a negative
impact on performance on GAVE, yielding incorrect
output or "unlearning”.
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A second, related issue concerns the regimes used in
training PDP models. Most training schemes to date
have involved what McCloskey and Cohen (in press;
hereafter MC) have termed "concurrent" schedules:
there is a set of target patterns to be learned, and
training proceeds by sampling from the entire set.
This contrasts with what MC term "sequential"
regimes, in which target patterns are introduced at
different times. Sequential regimes are thought to be
more realistic in terms of peoples' actual experience.
In learning to read, for example, children are exposed
to different words at different times, whereas in the
Sejnowski and Rosenberg (1986) and Seidenberg and
McClelland (in press) models, all words are available
for training at all times.

Given the fact that learning can produce retroactive
interference, it is clear that the performance of PDP
models will be highly dependent on the type of
training scheme that is used. MC have conjectured
that PDP models may be incapable of simulating
human learning under realistic training conditions.
Specifically, their claim is that there is a retroactive
interference problem that can only be overcome by
using concurrent training schemes. When the more
realistic sequential schemes are utilized, such models
exhibit "catastrophic” interference: learning on later
trials results in grossly impaired performance on
previously-learned items. MC illustrated this problem
by analyzing some simulations of the task of learning
simple arithmetic.

The MC paper raises important issues concerning
learning in PDP models; Pinker and Prince (1988)
and Lachter and Bever (1988) present similar
concerns. MC's simulations demonstrate that there are
conditions under which PDP models exhibit behavior
that does not relate well to human performance.
However, the scope of the "catastrophic” interference
problem is unclear; in this paper we report
simulations that examine the issue further. Our main
conclusion is that catastrophic interference is not as
general a problem for PDP models as MC suggest; in
fact, replications of their simulations with slight
changes in the training procedure yield very different
results than they reported. Our simulations provide a
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Figure 1: The Model (Input on Top; Output on Bottom)

broader perspective on the conditions that do and do
not yield excessive retroactive interference, and why.

BACKGROUND: MODEL AND TASK

MC report several simulations using a two-layer
model (i.e., a model with two layers of connections),
trained using the backpropagation algorithm
(Rumelhart, Hinton, & Williams, 1986). The model
consisted of 28 input units, 50 hidden or association
(Rosenblatt, 1962) units, and 24 output units (Figure
1), with full connectivity between adjacent layers.
The model was trained to perform simple addition and
multiplication problems; for example, given the
input [3+2], the model was to produce the output [5].
Each of the two digits in an equation was encoded by
12 input units. The remaining four input units
encoded which operation was to be performed (+, -, X,
+). The first 12 output units represented the tens
column of the answer; the second 12 coded the digits
column. Figure 1 illustrates the problem [1 + 3 =
04]. The input and output representations were
distributed; each of the numbers from 0 to 9 was
encoded by three units. This method is similar to the
thermometer coding scheme used by Anderson (1983)
and by Viscuso, Anderson, and Spoehr (in press) to
code continuous values in qualitative physics and
mathematics. This distributed representation can
represent any pair of operands and their sums or
products, yet the individual units and connections do

not represent the numbers themselves. !

1. The scheme used to encode digils was not entirely
arbitrary. Each digit was encoded by 3 consecutive input
units. The first 3 units were used to encode 0, the second

27

MC's simulations were concerned with the task of
learning simple arithmetic problems. Consider, for
example, the set of simple addition problems
involving the digits 1-9. MC show that the model is
able to learn the target set of patterns when it is
trained using a concurrent method. During the
training phase, the model was presented with
problems from the target set. Problems were
randomly sampled from the set; all problems were
available to be sampled at all times. Thus, the model
might be trained on [1+3], then [2+9], then [8+7],
etc. Under these conditions, the network learned to
successfully map all pairs of operands to their
respective sums; it also learned the mapping from the
operands to their products.

Very different results were obtained using a sequential
training method, however. The model was initially
trained on addition problems involving 1's (see
"Simulation 1: Replication" below); training
continued until the model performed without error on
these items. The model was then trained on problems
involving 2's. The primary motivation for this
training scheme was the intuition that it more closely
resembles the experience of children learning
arithmetic. Children are not exposed to all problems
in a random order; they learn the simpler problems
and then move to more complex ones. With the
sequential method, the model learned to compute the
2's problems; however, performance on the 1's

3 units encoded 1, the third 3 units, 2. Thus, digits that
differ by one shared 2 encoding units; digits that differ
by 2 shared 1 encoding unit, and digits that differ by
more than 2 shared no units in common.

... (50)
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problems greatly deteriorated. For example,
performance on the 1's decreased from 100% to 57%
correct after a single run through the 2's, and to 30%
correct after two such runs. "Catastrophic
interference” refers to this decrement in performance
on earlier-trained items.

SIMULATION 1: REPLICATION

Our first step was to replicate MC's basic findings.
We constructed a network exactly like theirs, using
the same parameter settings.2 The simulation was
run 5 times, and the data that we report are averaged
over these runs (MC reported data averaged over 2
runs). The model was trained on the 1's and 2's
problems in sequence. The 1's set included 16
problems: 141, 142, 143, ... 1+9; 3+1, 441, ...
9+1. There were no problems containing 0's (as in
the MC simulations), and the 2+1 problem was
excluded because it occurred in the 2's set. Similarly,
the 2's set included 16 problems; 1+2 was excluded
because it occurred in the 1's set. Hence the two
problem sets were mutually exclusive.

Training involved a series of epochs, where each
epoch refers to the presentation of all problems
within a set in random order. For example, 40 epochs
of training on the 1's set involved presenting 40 sets
of the 16 1's problems, each in a different random
order. Performance was evaluated in two ways. First,
for each problem we calculated an error sum of
squares (E); this was the sum of the squared
differences between computed and target values over

all output units:
2
E=)(0-0)
|

This score provides a general quantitative measure of
performance. Below we report the error scores for the

2. The simulations were implemented using the
McClelland and Rumelhart (1988) software running on
an IBM PS/2 Model 80 computer. Except where noted in
the text, the simulations followed MC's procedure
exactly. The learning rate was set to .25. MC consider
this to be a conservative rate although McClelland &
Rumelhart's (1988, p. 107) recommendation lo use a rate
equal to the inverse of the number of input units would
result in a much smaller value (.036). Weights on
connections between units were assigned initial random
values between +/- .3. Target activation valucs were sct
to .9 for units that should be on, and .l for units that
should be off. Finally, all hidden and output units were
given a random bias.
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correct answers averaged across all problems within a
set and across all § runs. However, it is also
necessary to determine how often the correct answer
to a given problem provided the best fit to the
computed output. That is, the error score indicates
how closely the computed output matched the pattern
for the correct answer; we also need to know how
often the correct answer produced the lowest error
score (what MC term the "best match" criterion). For
a given problem, we calculated a set of error scores by
comparing the computed pattern of activation to the
patterns corresponding to all possible answers. We
then determined how often the best fit (lowest error
score) was provided by the correct answer.

The training procedure followed MC's sequential
method. The model was trained on the 1's problems
for 40 epochs. (MC trained their network until all of
the output units had activations within .1 of the
target activation levels, which took approximately 35
epochs.) The model was then trained on the 2's
problems for 40 epochs. We tested the model's
performance on the 1's during the training on the 2's.
These test trials did not involve additional learning on
the 1's; thus, we could examine how training on the
2's affected performance on the 1's. The 1's were
tested after each of the first 5 epochs of training on
the 2's; thereafter they were tested after every 5 epochs
of training until the 40th epoch. Starting at epoch 40,
the 1's were tested after each of 5 additional epochs,
and then at 5 epoch intervals until the 80th epoch.
All that changed across simulations was the order in
which the problems were presented within an epoch
and the initial random values assigned to the weights.

Results and Discussion

The model learned the 1's set very quickly. After 15
epochs of training, the average error score was .144,
and no errors were made (i.e., for all problems, the
correct answer provided the best fit to the computed
output). Error scores continued to decrease with
additional training. However, performance on the 1's
decreased drastically once training on the 2's began. In
only one epoch, the mean error for the 1's increased
from ,038 to .734, more than an order of magnitude.
After five epochs, the mean error reached 1.41. The
best match criterion yielded similar results: the mean
number of correct responses fell from 16 to 8.6 in
one epoch. By five epochs, the mean number of
correct responses was a catastrophic 2.8. Thus,
learning the 2's problems interfered with performance
on the 1's.
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On the basis of similar results, MC concluded, "to
the extent that one is interested in using connectionist
networks to model human learning and memory, this
sort of disruption would appear to be a significant
problem” (p. 14). The question to be addressed is this:
how serious is the "catastrophic interference"
problem? In particular, how closely is it related to the
particular conditions studied by MC, and how do
these conditions relate to the ones experienced by
children in learning arithmetic and other skills?

SIMULATION 2: SAVINGS

Under the sequential training procedure studied by MC
and in Simulation 1, performance on the 1's
deteriorates drastically during the learning of the 2's.
The decrement in performance is seen in the
increasing error scores for the 1's, and the decrease in
the proportion of correct answers. Hence it appears
that the solutions to the 1's problems were unleamed.
If this is correct, the model's performance differs
greatly from that of humans; as MC note, unlearning
(e.g., in verbal learning experiments) is virtually
never complete (see, e.g., Postman & Underwood,
1973). It is possible, however, that the solutions to
the 1's problems were not completely unlearned; the
weights on connections between units could still have
encoded information relevant to these problems
despite the seemingly poor level of performance. This
issue can be examined by determining whether there
is any savings (Ebbinghaus, 1885) when the 1's
problems are relearned. Consider the following
procedure: we train the model as in Simulation 1,
producing poor performance on the 1's once the 2's
are introduced. We then retrain the model on the 1's,
and introduce a new set of problems, the 3's. If the 1's
have been completely unlearned due to "catastrophic
interference," they should be relearned at the same rate
as the entirely new problem set. Faster relearning on
the 1's would indicate memory savings, because the
1's problems had not been completely unlearned.
Savings would indicate that the network had retained
information relevant to computing the correct
answers, facilitating relearning.

In the second simulation, we examined whether
savings would occur. We first replicated Simulation
1. The 1's were trained for 40 epochs, followed by the
2's for 40 epochs. This procedure results in poor
performance on the 1's. We then trained the model on
a set of problems involving 1's and 3's. This set of
30 problems contained all of the unique 1's and 3's
problems (i.e., the 3+1 problem was excluded from

29

Mean Error

the 1's set, and the 1+3 and 2+3 problems were
excluded from the 3's set). The model was trained for
40 epochs on this larger set. This period, epochs 80-
120, will be termed the retraining phase. The model's
performance on the 1's and 3's problems was tested
after each of the first 5 retraining epochs, and every 5
epochs thereafter. The data we report are averaged over
the 10 independent simulation runs.

Results and Discussion

The primary results are presented in Figure 2. Over
the first 5 epochs of the retraining phase, the model
performed similarly on the 1's and 3's. However,
looking at the longer trend over the first 25 epochs of
retraining, learning of the 3's was slower than
relearning of the 1's. Using the mean error scores as
the dependent measure in an analysis of variance,
there was a main effect of problem set, F(1,18) =
4342, p<.001. The same effect was found using the
best match criterion: the 1's produced significantly
fewer errors over the first 25 epochs of training,
F(1,18) = 46.77, p<.001. Hence there was savings in
the relearning of the 1's, indicating that they had not
been completely unlearned.

Since the 1's and 3's problems were similar in terms
of complexity, they should have been equally easy to
learn. Hence, the improved performance on the 1's
appears to have been due to savings—prior experience
with the 1's that was not completely erased by
exposure to the 2's. To be certain that both problem
sets were equally easy to learn, we ran a control

1.0+

0.8

0-6 - —y——— 3's
—_ 1

0.4 +

0.2-]

0.0 T T T T T

85 90 a5 100 105
Epoch

Figure 2: Learning 3's vs Relearning 1's
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simulation in which the model was trained from the
first epoch on the 1's-and-3's set. The model was then
tested on both the 1's and 3's problems at 5 epoch
intervals; there were no statistically significant
differences between the two problem sets, in terms of
either error scores or percentage of correct responses.

This simulation demonstrates that under the
"catastrophic” interference conditions studied by MC,
the 1's are not entirely unlearned. Because the network
retains information relevant to these problems, they
are relearned more quickly than a novel set of
problems. The simulation illustrates that global
measures such as mean squared error or number of
correct answers may not fully capture all that a model
has learned. The existence of savings is especially
important because it bears on the scope of the
"catastrophic interference" problem. If there is
significant savings, then the “catastrophic”
performance of the 1's might be dramatically
improved by a small number of relearning trials. That
is, catastrophic interference may critically depend on
the blocking of training trials. When the model is
trained on a block of 1's problems, and then on a
block of 2's problems, performance on the 1's
declines. If, instead of following this strict blocking
scheme, there is some minimal retraining on the 1's,
performance will rapidly improve due to savings. In
the present case, we retrained the model on the 1's
after exposure to the 2's (starting at epoch 80). After
only 3 epochs of retraining, performance improved
from a mean error of 1.73 and 12.5% correct to a
mean error of 0.23 and 86.3% correct. After 5 epochs,
the error was .11 and 97.5% were correct.

Rapid relearning can also be illustrated in the context
of Seidenberg and McClelland's (in press) model of
word naming. The model was trained on a set of 2897
monosyllabic words. The model takes a spelling
pattern as input and produces a phonological code as
output. After 250 epochs of training, the model
performs this task with a high degree of accuracy. For
a word such as TINT, for example, the best fit to the
computed output is provided by the correct
phonological code /tint/. Consider now what would
happen if we trained the model on a block of trials
involving the word PINT, which is spelled like TINT
but pronounced differently. Training on PINT will
affect the weights in a way that has a negative impact
on TINT, producing retroactive interference. Figure 3
illustrates this effect. After 250 epochs of training,
TINT produced an error score of 8.92. The model was
then trained on 20 PINT trials, with TINT retested
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Error Score for TINT

after each trial. As the figure illustrates, training on
PINT increases the error score for TINT, indicating
poorer performance or "unlearning." However, the
figure also shows the effects of additional learning
trials on TINT. With only 2 additional trials, the error
score falls below the level that had been achieved
prior to training on PINT. In sum, a small number of
retraining or "reminding” trials is sufficient to
overcome the interfering effects of prior learning.

It is clear, then, that retroactive interference in simple
PDP nets depends on the properties of the
training regime. MC's main point is that the
concurrent regime used in most simulations is
unrealistic. However, the scheme they introduced is
equally unrealistic. Their scheme is not merely
sequential; it involves strictly blocking trials by type.
Consider how this blocking scheme relates to the
child's experience in learning arithmetic. It can be
seen from any arithmetic primer that children are not
taught 1's problems, then 2's, then others in strict
blocks. In fact, children's problems are typically
ordered in terms of the magnitudes of sums, not
operands, with considerable overlap across problem
sets. In learning multiplication tables, new problems
are typically embedded in written practice sheets along
with problems introduced earlier (e.g., Campbell &
Graham, 1985). The problem sets are indeed ordered—
small-number problems are usually taught earlier—
but these problems are also drilled and practiced when
new ones are introduced.

12
Training on PINT
11+ \A
10
g-
8 - - gt
i Retraining on TINT
7_
G r'l_lril'li_'_'l"l_'lIII'TTIII'IIITT
0 5 10 15 20

Trial Number

Figure 3: Retraining on TINT after Training
on PINT.
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Our main point is thata more realistic training
regime—one that does not involve strict blocking by
type—would take advantage of the savings illustrated
in Simulation 2. As long as the child (or model)
experiences a small number of relearning trials, the
learning of new problems should not result in
massive interference. The next simulation examined
this issue empirically.

SIMULATION 3: A MORE REALISTIC
TRAINING REGIME

As we have noted, addition problems are not taught
using mutually exclusive sets of problems. If the 1's
are taught first, followed by the 2's, the set of 2's
usually contains some of the 1's as reminder or
refresher trials. From the teacher's intuitive
perspective, the purpose of these trials is to
consolidate or reinforce prior learning. The simulation
models provide a computational way to construe this
"consolidation” process: the reminding trials are
necessary in order to reduce the interfering effects of
new learning. We examined this process in a new
simulation involving 5 stages. The main idea was to
use a sequential training regime in which we used
overlapping problem sets. The effect of this regime
was to slowly introduce new problems while slowly
phasing out old ones. Each of the five stages was 10
epochs long. The first stage involved training the
model on two sets of 1's problems. During each
epoch in the second stage, the model was trained on
two sets of 1's and one set of 2's. In the third stage,
the model was trained on one set of 1's, two sets of
2's, and one set of 3's. In the fourth stage, the model
was trained on one set of 1's, two sets of 2's, two sets
of 3's, and one set of 4's. Finally, the fifth stage
included one set of 2's, two sets of 3's, two sets of
4's, and one set of 5's. No 1's were presented in the
final stage.

As can be seen from this description, the training
procedure involved fading in new problems while
fading out old ones. Thus, the training regime was
not strictly concurrent (all problems were not
available for training simultaneously) but it was not
as rigidly sequential as the MC procedure. All sets of
problems were defined as before; they were
constructed so as to contain 13 problems that did not
occur in any other set (e.g., 1+3 occurred in the 1's
set, not the 3's set). The simulation was replicated S
times; the data are averaged across all S runs.

Results and Discussion
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The primary data concern performance on the 1's as a
function of exposure to other problems (Figure 4).
The data in the figure were averaged over two
consecutive epochs. During the first stage, the model
learned the 1's problems. Introduction of the 2's
during stage two initially caused a small decrement in
performance (epochs 12-14), but there was rapid
recovery (epochs 16-18). Similar effects were obtained
at stages three and four, with a notable decrease in
magnitude in stage four. Thus, training on other
problems produced diminishing amounts of
interference on the 1's, Data concerning the average
number of correct responses showed a similar pattern.
During stage 5, when there was no additional training
on the 1's, the error scores for these problems began
to increase again. Note, however, that the increase
was still relatively small, and the model still averaged
less than one error per problem set. After 75
epochs—35 epochs after the network was last trained
on the 1's set and following 2730 trials on other
problems—the mean error score for the 1's was .32
and the mean number of correct responses was
11.8/13 (91%). In sum, the model did not exhibit
catastrophic interference.

GENERAL DISCUSSION

Our findings can be summarized as follows. MC are
correct in observing that there is massive retroactive
interference in a simple PDP model of arithmetic
learning when the problem sets are strictly blocked
(Simulation 1). Earlier problems are not completely
unlearned, however, as evidenced by the savings

14 — Stage 1 Stage 2 E Stage 3 ; Stage 4 i Stages |-1_0
H . ;
g e Number Correct - 0.8
5 10 -
3 L 0.6
g . - 0.4
5
Z 4= - 0.2
2-7TTTT 0.0

Figure 4: Performance on the 1's Problems
During Five Stages of Training

Mean Error
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observed in Simulation 2. Taking advantage of this
savings merely requires relaxing the strict blocking of
training trials by type (Simulation 3). This does not
involve the "concurrent” procedure that MC consider
unrealistic; rather, it involves a training sequence
more like the ones used in the actual teaching of
arithmetic. Thus, in Simulation 3, the model was
able to learn the 1's problems and this knowledge was
not eliminated by a large amount of training on
subsequent problems.

The main point of our simulations has been to
suggest that it would be a mistake to overinterpret
MC's results, since very small changes to their
procedures yield very different results. We should
stress, however, that our simulations by no means
resolve any of the important questions concerning
retroactive interference in PDP models. Our
simulations—as well as MC's—provide empirical
data concerning a relatively small subset of cases.
These simulations represent individual points in a
very large multidimensional space of possible
models. This space of possibilities is defined by the
range of possible architectures (e.g., number of units,
pattemns of connectivity, encoding schemes), learning
procedures, and training regimes. Empirical
demonstrations such as ours and MC's can be useful
in identifying potential problems and solutions.
However, they do not provide a definitive basis for
identifying principled limitations of the PDP
approach.3

It will be important to understand the scope of
retroactive interference problems in PDP networks in
a more rigorous way. There seem to be two fruitful
ways to pursue this issue in future research. One is to
perform more systematic analyses of the propertes of
various PDP models, with the goal of identifying the
principles that govern their behavior. This type of
analysis is difficult to perform, but it is clear that
there is beginning to be significant progress in this
regard (see, e.g., papers in Touretzky, 1989).
Certainly Minsky and Papert's (1969) celebrated
analysis of perceptrons provides a model for this type
of analysis. A second alternative is to develop more

3. We did explore one other faclor, the number of hidden
units, which we thought would be important on the basis
of previous research (e.g., Seidenberg & McClelland, in
press) and a reviewer's comments. However, essentially
similar results were obtained using 13, 25, and 50 hidden
units.
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realistic models that provide a systematic account of a
broad range of behavioral data. The problem with
demonstrations such as MC's (and our own) is that
they do not attempt to simulate a realistic learning
task or account for detailed aspects of human
performance. In the area of arithmetic learning, for
example, there is a large amount of behavioral data,
several accounts of which have already been proposed
(e.g., Groen & Parkman, 1972; Siegler & Shrager,
1984). A reasonable goal would be to attempt to
develop simulation models that address such
nontrivial phenomena in detail. Again, examples of
PDP models with broad scope and coverage of the
data are beginning to appear (e.g., Seidenberg &
McClelland, in press; Dell, 1986).

Ratcliff (1989) presents an impressive example of the
second approach. He explored whether a
connectionist model could simulate an extensive set
of findings concerning recognition memory
performance, and systematically explored several
modelling variables (MC also report simulations of
some of these phenomena). Interestingly, all of
Ratcliff's models produced behaviors unlike humans'.
Analyses such as Ratcliff's contribute to
understanding where there is and is not a good match
between the properties of connectionist models and
those of human behavior. The failure of Ratcliff's
simulation models suggests that this type of
recognition memory performance cannot be construed
in terms of learning in multilayer nets via
backpropagation. Several characteristics of these
recognition memory phenomena appear to be critical
to understanding why the simulations failed. Unlike
most learning, the typical recognition memory
experiment does involve strict sequencing of trials, as
well as rapid stimulus presentation that limits the use
of rehearsal or other learning strategies, and very
simple, unrelated stimuli, such as lists of letters or
words. The question then is whether other types of
learning exhibit the characteristics that apparently
make the connectionist approach so inapplicable in
this case.

Consider in this light the question of retroactive
interference in learning simple arithmetic. Our
simulations suggest that the seriousness of this
problem depends in part on questions concerning the
learning regime: is it strictly concurrent, is it strictly
blocked, or is it neither of these extremes? We
suggest that it is more concurrent than MC recognize,
and less sequential than in the case of recognition
memory experiments. This is simply an empirical
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question, however. With a more realistic
characterization of the task and the learning
environment, it should then be possible to determine
whether, in fact, there is a serious retroactive
interference problem or not. It is doubtful, however,
whether this substantive issue can be decided on the
basis of demonstration programs like MC's. One of
the main lessons of research in traditional, symbol-
processing artificial intelligence was that general
principles cannot be uncovered by studying toy
problems. There is no reason to think that anything
different should obtain in the case of PDP,
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