UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Integrating Feature Extraction and Memory Search

Permalink
https://escholarship.org/uc/item/074745vx

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 11(0)

Author
Owens, Christopher

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/074745vx
https://escholarship.org
http://www.cdlib.org/

Integrating Feature Extraction and Memory Search

Christopher Owens
Department of Computer Science
Yale University

Reasoning from prior experience depends upon having a large memory of prior
cases and a system for retrieving them when they are relevant. Often, relevance means
similarity to the current situation on the basis of abstract or thematic features other
than the features used to initially describe the current situation. To retrieve cases
relevant to some new situation, a system must be able to describe the new situation in
abstract terms and use that description as a search key or as a means to judge the
appropriateness of prior cases. Typically, the abstract description process has been
considered as separate from the memory search process. This paper presents a scheme
for integrating the feature extraction and memory search processes and argues in favor
of such an approach on methodological and efficiency grounds. It presents a program
that exploits parallelism to control some of the high processing costs associated with
feature extraction and memory search.

RETRIEVAL AND ABSTRACT FEATURES

Recent work has suggested that a good approach to planning and problem—-solving situations is
for a system to get reminded of specific prior experiences and to reason based upon the
similarities and differences between that prior experience and the current problem. For example,
case-based reasoners such as those described by [Simpson, 85], [Hammond, 86], [Sycara, 87],
[Kolodner, 87] and [Ashley and Rissland, 87] and analogical reasoners such as those described by
[Carbonell and Veloso, 88], [Winston, 80] and elsewhere fundamentally rely upon a large and
richly-indexed memory of experiences coupled with some mechanism for recalling the right
memory at the right time.

For analogical reasoning or case-based reasoning systems to work well, they must be able to
retrieve memories of prior experiences that bear some interesting similarity to a given new
problem or situation. The key lere is interesting similarity: recalling a prior case only helps a
reasoner to the degree to which that prior case shares some important functional or causal
characteristics with the current problem. If, for example, a shop scheduler is trying to expedite
the production of a particular part by having two machines work on it at the same time, prior
cases in which it successfully or unsuccessfully tried to speed up production might be useful.as
might prior cases in which it tried to use those two machines together. But prior cases involving
the manufacture of class 7B flanges at 3:30 on Tuesday afternoons while it was 78 degrees in the
shop and while machine 4 was working on a type 2C bracket assembly, although they have all
these facts in common with the current situation, are likely to shed little light on the current
problem. Although the similarities between those cases and the current one are numerous, they
simply don’t bear upon the problem that the scheduler is trying to solve.

163



OWENS

How to characterize

The problem is describing or characterizing the current problem. Once a system is able to
describe the situation presented above, for example, as “trying to speed up production by
scheduling multiple agents to work on the same job at the same time,” it might be reminded of
some cases where this plan worked and some where it did not, perhaps because two machines
were trying to perform incompatible tasks, or perhaps because they got in each others’ way.
Analyzing the differences between these past cases and the current situation might indicate
whether or not the plan was a good idea; it might also suggest additional planning steps that
might be necessary to anticipate and avoid failures. The machines’ actions might be coordinated,
for example, to prevent some bad interaction.

But how can a svstem derive that kind of description? Not only was this characterization of the
situation not present in the original or “perceptual” description, but it is also impossible to derive
from any boolean combination or weighting of raw perceptual features. If the features available to
the shop scheduler consisted of a set of readings from instruments and sensors around the shop
plus a list of what machine was working on what part, no weighting or boolean combination of
these features would get us the remindings we wanted in the prior example. “Machine 4 and
Machine 8 both working on the same part” is a description that cannot be so derived. “Two
machines working on the same part” even more so.

So an effective case retriever must not only face the problem of choosing which features of a given
situation description are relevant retrieval cues in the context of this situation, it also must
extract or derive some abstract features that are not initially present in that description, so that
those abstract features can be used as search keys or as part of similarity metrics. The task of
extracting those features, or of characterizing the current situation, is an inseparable part of the
task of memory search and should be so considered theoretically. Memory is not just the process
of starting from some description of the input and using it to search. A theory of memory must
include a theory of how that description is derived.

EXTRACTION AND SEARCH

Much work in Al memory has either explicitly or implicitly separated the task of deriving
abstract descriptions from the task of actually searching memory for objects that match those
abstract descriptions, and have focused on the latter. For example, much progress has been made
in the memory-based reasoning paradigm (see [Stanfill and Waltz, 88]). Connectionist
approaches, too, are very good at deciding how to weight features to measure case similarity, but
they do not deal with the problem of how raw data gets turned into sets of features in the first
place. nor do they deal with how new features can be learned. Some systems are built on the
assumption that input cases come already described in the same representational language as was
used to describe the cases already in memory, so that syntactic means can be used to measure
similarity. This has been a necessary assumption to allow work to proceed on the mechanics of
memory organization and search, but it begs a question that full-fledged memory-based systems
will have to face: llow are features extracted from raw input?

Given that mechanisms are available to do retrieval and matching based on weighted vectors of
features, it is tempting to say that some kind of parsing or feature extraction process should be

164



OWENS

run over the data to extract the abstract features and weight them, and that then the original
and derived features should subsequently be used as input to the retrieval process. But this
approach is problematic for several reasons.

Complexity of “parsing”

One problem with this approach is that “parsing” or abstract feature extraction, can be arbitrarily
complex when attempted bottom-up. Although features like “multiple machines working on the
same part” as described above are quickly and easily calculable from input, others may be much
less so. There may be an arbitrarily large number or abstract features that one might potentially
want to derive from input, any of them potentially arbitrarily costly to infer. Since the feature
extraction process does not know what is in memory and how memory is organized and searched,
it might expend inferential cost on extracting features from the input that do not turn out to be
particularly useful indices. It is clear that we don’t want to extract all possible abstract features
before searching memory, we just want to get some reasonable set of them.

Unfortunately, deciding what constitutes a reasonable set of abstract features from a particular
episode requires having an abstract thematic understanding of that episode, which is the very
problem we were trying to solve in the first place. There is a methodological circularity to this
approach. What process can provide this abstract thematic understanding? One that relies on
retrieving relevant cases?

Features not static

A second problem is that the set of abstract features that one might need to extract is not static,
but depends upon the set of cases in memory. The features that one needs are the ones that
describe the similarities and differences between the various cases in memory. As the set of cases
changes, so must the set of abstract features. When new cases are added to memory, separate
steps must be performed to select indexing features for discriminating among those new objects
and to develop procedures for extracting those features from input. When a new indexing feature
is learned, all objects in memory must be reexamined to determine whether or not they embody
that feature; those that do must be appropriately re-indexed.

Expressing retrieval goals

A third important design consideration for case memories is that there is no one correct or closest
match in memory to a given new experience. What constitutes a good match depends upon the
goals of the system processing the new event. Different retrieval goals will yield different
remindings, and it is important that a retrieval scheme be able to take into account the system’s
retrieval goals.

An example of this can be found in the discussion of the SWALE case-based explainer system
([Schank, 86], [Kass and Owens, 88], [Leake, 88]). One of the examples the system was called
upon to explain was the death of Swale, a three-year-old race horse who died mysteriously, one
week after winning the prestigious Belmont Stakes race.

What constitutes a satisfactory explanation of this kind of example depends upon the goals of the
explainer. Therefore, the kind of reminding (and therefore the abstract description of Swale’s

165



OWENS

death) that is appropriate depends on the goals of the explainer as well. An insurance examiner,
for example, might be reminded of the case of a valuable painting that mysteriously disappeared a
year earlier, in what turned out to be a fake burglary staged by the owner to collect the insurance
money. A veterinarian might be reminded of the cow that mysteriously died the previous week
and begin investigation to see if the medical causes were the same. A racing examiner might be
reminded of other cases of one competitor trying to disable another and might suspect the owners
of Swale’s competitors. A gambler might be reminded of other examples of an odds-on favorite
suddenly being disabled or otherwise removed from competition. Each of these individuals will
retrieve different remindings from memory because each has described Swale’s death in different
terms. Each description is equally correct, but each leads to a different path of explanatory
reasoning.

It is difficult to account for these differences in retrieval with a system that separates feature
extraction from the rest of memory. It is unreasonable to assume that veterinarians, insurance
adjusters and gamblers have totally different processes for extracting features from situations. It
is possible that the differences could be accounted for by some process that maps retrieval goals
to predictive features, as discussed by [Stepp and Michalski, 86] or [Scifert, 88]. This could be
used to weight the importance of features depending upon how relevant they were to the current
set of retrieval goals. But this approach leaves unanswered the question of how retrieval goals and
predictive features are linked together.

A more satisfying explanation of the differences in how the individuals above explained the same
event is that abstract feature extraction is driven by the case libraries of each of these individuals.
The veterinarian has a large case library of animal diseases and consequently describe the event in
terms of features that can discriminate among these cases. Likewise an insurance examiner is
discriminating among a second, different library of cases, and a gambler among a third. Each of
these individuals extracts, from the story, the features necessary to discriminate among the cases
in his own memory. Each individual can be using the same kind of mechanism to extract abstract
features from concrete descriptions of situations, but that mechanism is being driven by a
different case library in each case, and so results in a different set of features being extracted, a
different case retrieved, and a different explanation generated.

INTEGRATING EXTRACTION WITH RETRIEVAL

Some of these issues can be addressed by integrating feature extraction and case retrieval as much
as possible. Instead of trying to extract all possible abstract features from input and then using
that set of features as a retrieval cue, a system can allow feature extraction and memory search to
proceed incrementally. Each time a new feature is extracted from the input it changes the pool of
candidate cases that might apply to the current situation; each time the pool of candidates
changes it suggests different features that should be extracted from input to try to discriminate
among the candidates,

Playing “20 questions”

The model for this approach is that, rather than the front-end or feature extraction portion of the
system telling memory what the input case looks like and then memory coming up with a match,

166



OWENS

memory is now playing a game of “20 questions” with the feature extraction process, asking for
features as it needs them to discriminate among its known cases. Since feature extraction is
expensive, memory is trying to ask as few “questions” as possible; seeking maximum payoff for its
inferential cost with each question. The issue to resolve is how memory should decide what
question to ask next.

The simplest and least interesting way to play “20 questions” is via a discrimination tree. the tree
is balanced, the program can choose the correct match from among n cases by asking about
log(n) features. But the problem with using this approach as a model for case retrieval is that a
discrimination tree is a static object. It must be set up at the time the system is built, and,
although it can be modified by adding cases and new discriminating features, it is
computationally expensive to reorganize. Reorganizing a tree dynamically for each query is
prohibitively expensive, so taking into account changeable items like retrieval goals is difficult.
Furthermore, a tree-based retrieval algorithm will have difficulty if it asks the feature extraction
process for a particular feature and receives the answer “I don’t know” or “That’s too expensive
to calculate.” What an integrated approach to fecature extraction and memory search needs is a
more flexible and dynamic way of playing “20 questions”.

The object is to ask about the feature that offers the most information content for the least
inferential cost, subject to the current retrieval goals of the system. Part of this problem is
difficult: there is no good way of calculating a priori the difficulty of inferring any given feature.
The best one can do is to remember how difficult it has been in the past to determine the
presence or absence of that feature and use that cost as an estimate. Barring any other
information, one can make the erroneous but necessary simplifying assumption that all abstract
features are equally difficult to extract.

Fortunately, the likely utility of a feature as a retrieval cue is more easily estimable. The simplest
basis is that of information content. A feature that is present in or absent from all of a given set
of candidates is not worth extracting from new input, because it does not narrow down the space
of candidate matches. On the other hand, a feature that is present in about half of the candidate
cases is worth examining because knowing whether or not it is present in the new input case cuts
the pool of remaining candidate matches in half. Accordingly, an important part of an
incremental retrieval algorithm is a scheme for suggesting, given a set of cases, features that, if
known to be present or absent in the input case, would discriminate among them. These are the
features that the system should try to extract from input. Each time a feature is extracted it can
be used to change the members of the current candidate set of cases; each time the set of
candidate cases changes it would suggest a new set of discriminating features.

Parallel implementation

The ANON program is an attempt to integrate feature extraction and memory search. It plays
the role of a memory in service of an overarching case-based planning or explanation system. Its
behavior is to suggest features to an (external) feature extraction process, and, based upon
whether each suggested feature is found to be present, absent or too expensive to infer, to
continually narrow a set of candidate cases until either it finds either one case or a group of cases
that do not differ in their causal implications a propos the current problem. Its case library is a
set of abstract knowledge structures characterizing stereotypical plan failure situations. These

167



OWENS

cases correspond to common advice-giving proverbs like too many cooks spoil the broth. (Sce
[Dyer, 82] for a discussion of the relationship of proverbs to stercotypical situations.)

ANON’s memory contains about 1000 of these proverbial cases. In a full planning system they
would be represented in much more causal detail than has been done to date, but the purpose of
this system is to explore retrieval strategies in a large case library. A form for deeper causal
representation for these proverbial knowledge structures is similar to the Explanation Patterns
(XPs) described by [Schank, 86] or [Kass and Owens, 88].

Each case is represented on one processor of a Connection Machine parallel processor as is each
known indexing feature. The system operates in two alternating modes: retrieval and feature
suggestion.

Retrieval mode consists of moving from a set of features to a set of cases that embody those
features. This is done by instructing the desired features to broadcast to the cases that embody
them, the cases can then be ordered according to how many of the desired features they embody.
The mechanism is in place here to assign weights to the features based on any of the criteria
discussed above; the program currently assumes equal weights. This kind of retrieval is discussed
in more detail by [Stanfill and Kahle, 86].

Feature suggestion mode is the more important mode; it is the means whereby the system picks
the next feature to try to extract from input. The key to being able to suggest features is to be
able to examine any group of cases and to suggest a feature that will discriminate among them.
This can be done with any two cases just by comparing the features that participate in their
causal structure. If the cases suggest different causal conclusions then there must be a feature in
their causal structure that discriminates between them.

With larger groups of cases that cannot be compared individually with each other, the parallel
implementation approximates this feature suggestion beliavior by means of calculating
representativeness. To find out how representative a given feature is of the currently active
candidate pool, each processor corresponding to a currently active candidate case is instructed to
send a message to each processor corresponding to a feature that is represented in that case.
Features can thus be ordered on the basis of how well each represents the common qualities of all
the cases in the candidate pool.

Features that are highly representative or not at all representative of a given pool are not likely to
be good discriminators: they are not worth extracting from the new input case because they
cannot be used to reduce the number of candidates in the pool. Features that are representative
of about half the candidates in a pool, on the other hand, are very good discriminators. These are
the features that the system suggests trying to infer next.

Of course simply counting the number of cases that each feature would index is only the crudest
possible use of this calculation strategy. Just as features can be weighted in retrieval mode, cases
can be weighted in feature suggestion mode. Representativeness does not have to be determined
on the basis of numerical case counts; it can be determined on the basis of weighted case counts.
The algorithm can be used to select features that divide the pool of cases not in half, but in half
on a weight-adjusted basis. The source of these weights can be, for example, based upon features
correlated with the retrieval goals discussed previously.

168



OWENS

Features of this algorithm

Since this approach uses the contents of cases for organizing memory and requires no separate
indexing knowledge, it makes it easy for the system to accept new cases. Since the cases
themselves suggest the indexing features that would discriminate between themselves and other
cases in memory, the new cases are included in the next memory retrieval cycle without the need
to perform any explicit recorganization or re-indexing.

Adding new indexing knowledge to existing cases, on the other hand, is slightly more
complicated. When the retrieval process encounters two cases that cannot be discriminated from
each other, that indicates that one or both of the cases are not represented in enough detail.
Currently the system is only able to indicate cases that need their degree of detail enhanced; it is
not able to add detail to a case representation. The intention is to add detail whenever the
system is unable to discriminate between two cases in memory; the mechanism for doing so is to
build a causal explanation of the difference between the cases and use the features that
participate in that explanation as new discriminating features.

CONCLUSIONS

No matter what kind of architecture one uses to accomplish the actual details of memory search,
one must make a strong commitment to the idea of abstract features. The cases of which one
wants to be reminded are often those that share abstract, rather than concrete or surface-level
similarity to the current problem situation. Often these abstract features cannot be calculated by
boolean combination or weightings of the concrete perceptual features and must therefore be
derived from complicated and difficult-to-calculate relationships between perceptual features.

But, just because one is committed to the idea of abstract features does not mean that
implementations must have a feature extraction or parsing process separate from the memory
search process. There is no reason why all possible abstract features must be extracted from the
input before the search of memory can begin. In fact, the approach of extracting a vector of
abstract features and then using that whole vector as a search key is too costly in terms of
processing resources. Instead, a more incremental approach that lets the contents of memory
determine what features need to be extracted from input makes much better utilization of a
system’s inferencing power. This approach controls the complexity of inference, expresses retrieval
goals as a function of the cases already in memory, and has desirable properties with regard to
the reorganization of memory to take into account new experiences and new indexing features.

Obviously this approach does not solve the problem of how to recognize any given feature in
input; that is still an open question. What it does accomplish, however, is to show how a system
can have a great many abstract and difficult-to-infer features as part of its indexing vocabulary
without having to identify the presence or absence of each one of them every time it processes a
new piece of input.

Acknowledgements

This work was supported in part by the Defense Advanced Research Projects Agency, monitored
by the Office of Naval Research under contract N00014-85-K-0108 and by the Air Force Office of

169



OWENS

Scientific Research under contracts AFOSR-85-0343, AFOSR-89-0100 and FF49620-88-C-0058.
Larry Birnbaum and Alex Kass provided helpful comments on this material.

References

[Ashley and Rissland, 87] K. Ashley and E. Rissland. Compare and contrast, a test of expertise. In

Proceedings of the Sizth Annual National Conference on Artificial Intelligence, pages 273-284,
Palo Alto, 1987. AAAI, Morgan Kaufmann, Inc.

[Carbonell and Veloso, 88] J. Carbonell and M. Veloso. Integrating derivational analogy into a general
problem solving architecture. In J. Kolodner, editor, Proceedings of a Workshop on Case-Based
Reasoning, pages 104-124, Palo Alto, 1988. Defense Advanced Research Projects Agency,
Morgan Kaufmann, Inc.

[Dyer, 82] M. Dyer. In-depth understanding: A computer model of integrated processing for narrative
comprehension. Technical Report 219, Yale University Department of Computer Science, May
1982.

[Hammond, 86] K. Hammond. Case-based Planning: An Integrated Theory of Planning, Learning and
Memory. PhD thesis, Yale University, 1986. Technical Report 488.

[Kass and Owens, 88] A. Kass and C. Owens. Learning new explanations by incremental adaptation. In
Proceedings of the 1988 AAAI Spring Symposium on Ezplanation-Based Learning. AAAI, 1988.

[Kolodner, 87] J. Kolodner. Extending problem solver capabilities through case-based inference. In
Proceedings of the Fourth International Workshop on Machine Learning, pages 167-178, Los
Altos, CA, June 1987. University of California, Irvine, Morgan Kaufman Publishers, Inc.

[Leake, 88] D. B. Leake. Using explainer needs to judge operationality. In Proceedings of the 1988 AAAI
Spring Symposium on Erplanation-based Learning. AAAI 1988,

[Schank, 86] R. Schank. Ezrplanation Patterns: Understanding Mechanically and Creatively. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1986.

[Seifert, 88] C. Seifert. A retrieval model for case-based memory. In E. Rissland and J. King, editors,
Proceedings of a Case-Based Reasoning Workshop, pages 120-125. AAAI, 1988,

[Simpson, 85] R. Simpson. A Compuler Model of Case-based Reasoning in Problem-solving: An
Investigation in the Domain of Dispute Mediation. PhD thesis, School of Information and
Computer Science, Georgia Institute of Technology, 1985,

[Stanfill and Kahle, 86] C. Stanfill and B. Kahle. Parallel free-text search on the connection machine
system. Communications of the ACM, 29(12):1213-1228, December 1986.

[Stanfill and Waltz, 88] C. Stanfill and D. Waltz. The memory-based reasoning paradigm. In J. Kolodner,
editor, Proceedings of a Workshop on Case-Based Reasoning, pages 414-424, Palo Alto, 1988.
Defense Advanced Research Projects Agency, Morgan Kaufmann, Inc.

[Stepp and Michalski, 86] R. E. Stepp, III and R. S. Michalski. Conceptual clustering: Inventing
goal-oriented classifications of structured objects. In R. S. Michalski, J. G. Carbonell, and T. M.
Mitchell, editors, Machine Learning, Volume II, chapter 17, pages 471-498. Morgan Kauffmann,
Los Altos, CA, 1986.

[Sycara, 87] E. P. Sycara. Resolving Adversarial Conflicts: An Approach Integrating Case-based and

Analytic Methods. PhD thesis, School of Information and Computer Science, Georgia Institute of
Technology, 1987.

[Winston, 80] P Winston. Learning and reasoning by analogy. Communications of the ACM,
23(12):689-703, 1980.

170



	cogsci_1989_163-170



