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ABSTRACT: 

To model the diverse patterns of species richness patterns on mountainsides, we 

conjectured that a unimodal gradient of environmental favorability— spanning the 

elevational domain but not necessarily centered on it— may interact with geometric 

constraints imposed by sea level and the mountaintop to produce taxon-specific patterns 

of species richness.. We developed a Bayesian simulation model to estimate the location 

and strength of such a midpoint attractor.. We also constructed midpoint predictor models

to test whether environmental variables could directly account for the observed patterns 

of species range midpoints...We challenged these models with 16 elevational datasets, 

comprising 4500 species of insects, vertebrates, and plants. Whereas the midpoint 

predictor models generally failed to match the pattern of species midpoints, the midpoint 

attractor model closely reproduced empirical spatial patterns of species richness and 

range midpoints.. Gradients of environmental favorability, subject to geometric 

constraints, may parsimoniously account for elevational patterns of species richness.

Keywords: biogeography | elevational gradients | geometric constraints | mid-domain 

effect | stochastic model | Bayesian model | truncated niche
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INTRODUCTION  

Along any continental latitudinal transect, species richness for most higher taxa peaks in 

the tropics, where mean annual temperature is the highest and annual variability in 

temperature is lowest (Wright et al. 2009). Regardless of latitude, temperature on most 

mountainsides declines steadily with elevation, driven by adiabatic cooling, so that the 

warmest temperatures usually prevail at the bottom of elevational gradients (Ahrens 

2006; Fan & van den Dool 2008). Net primary productivity (NPP), although crucially 

dependent on precipitation, is strongly driven by temperature. Thus, if radiant energy or 

NPP are fundamentally responsible for the latitudinal richness pattern, as many ecologists

believe (Currie et al. 2004; Allen et al. 2007), species richness for higher taxa along 

elevational transects in humid climates should be expected to peak at the lowest 

elevations. 

However, in a review of hundreds of published examples, Rahbek (1995, 2005) 

showed that species richness usually does not peak at the bottom of elevational gradients.

For the preponderance (70%) of studies that encompassed complete elevational gradients 

and accounted for sampling effects, species richness peaked, instead, at intermediate 

elevations. Declining richness with elevation was the second most-common pattern, but 

was found in less than 20% of studies (Rahbek 2005). Among other things, these meta-

analyses imply that, for most terrestrial taxa, local species richness peaks at intermediate 

tropical elevations, rather than in the tropical lowlands

Many explanations have been proposed for mid-elevation richness peaks, and 

surely no single factor is responsible. For some clades, intermediate climatic conditions at
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these elevations may be more suitable for survival and reproduction: lower elevations 

may be too hot or too dry (McCain 2007) and higher elevations too cold, too wet, or too 

cloudy (Longino et al. 2014). A history of net diversification, together with climatic niche

conservatism, can lead to a buildup of species at intermediate elevations (Graham et al. 

2014; Wu et al. 2014). In the tropics, a history of mountaintop extinctions during glacial 

minima and sea-level extinctions during glacial maxima could also produce or enhance 

mid-elevation richness peaks (Colwell & Rangel 2010). Spatially structured dispersal 

within an elevational domain, such as source-sink dynamics (Grytnes 2003; Grytnes et 

al. 2008) or ecotonal mixing (Lomolino 2001), could also lead to peaks of species 

richness at intermediate elevations. 

Geometric constraints. In addition to these ecological and historical explanations, 

Colwell and Hurtt (1994) showed, with a simple stochastic model, that a mid-elevation 

richness peak might be expected even in the absence of climatic drivers or historical 

forces. In their model, a mid-elevation richness peak arises from the tendency of larger 

species ranges to overlap more at mid-elevations than at high or low elevations, when 

they are geometrically constrained by the hard boundaries (sea level and the 

mountaintop) of an elevational domain. Fig. 1A offers a physical analogy (a pencil-box) 

for this phenomenon, which later became known as the mid-domain effect (Colwell & 

Lees 2000) or MDE, because, in a simple 1-dimensional domain, the expected 

distribution of species richness in this model is exactly symmetrical about the center of 

the domain. Geometric constraints have been generalized to other bounded spatial (Storch

et al. 2006) and non-spatial (Letten et al. 2013) domains at the assemblage level, as well 
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as to studies of home ranges (Prevedello et al. 2013) and even the movement of 

individuals within a population (Tiwari et al. 2005).

Early studies treated geometric constraints as a stand-alone hypothesis, subject to 

falsification if it failed to fully explain patterns of richness (Colwell et al. 2004, 2005), or

strictly as an alternative hypothesis to environmental explanations (Currie & Kerr 2008). 

But this either/or perspective misses the point that constraints and drivers do not operate 

independently, but instead interact. It has proven challenging to integrate geometric 

constraints with environmental and historical explanations for patterns of species 

richness. We review the history of these efforts in Appendix 1, Supplemental Introduction.

A Bayesian midpoint attractor model. Here, we take a novel approach to integrating 

environment with geometric constraints over elevational gradients. Inspired by Wang and 

Fang’s (2012) evidence that large- and small-ranged species respond similarly to 

environmental drivers and by Rangel and Diniz-Filho’s (2005) mechanistic model, we 

postulated the presence of an underlying unimodal “favorability” gradient, specific to 

each elevational transect and to each taxon or functional group. 

We modeled the simplest possible pattern of environmental favorability—a 

unimodal peak—on the simplest possible domain—the unit line. The model is general, 

but in this study, we assume that the one-dimensional unit domain represents an 

elevational transect from low elevation (sea level, for all our datasets) to the highest 

habitable point on a mountain massif. Somewhere along this elevational domain lies a 

unimodal midpoint attractor, specific to the locality and taxon, representing a gradient of 

attraction for species’ range midpoints, a continuous function describing the relative 

strength of the attractor at every point within the domain (Fig. 1C).
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We model the midpoint attractor as a normal (Gaussian) probability density 

function N(A, B) with two parameters: its mean location A (0 < A < 1) on the unit-line 

domain, and its standard deviation B (0 < B < 1) around the attractor, an inverse measure 

of attractor strength (Fig. 1C). Because the unit domain is bounded at 0 and 1, A and B 

determine not only the location and shape of the attractor, but also jointly determine 

where the attractor distribution is truncated by the domain limits. To simulate a bounded 

elevational richness pattern driven by the midpoint attractor, we place the empirical 

elevational ranges (transformed to unit-line equivalents) on the domain stochastically, 

drawing their midpoints from the modeled attractor distribution. Fig. 1B updates the 

pencil-box analogy for the classic MDE by adding an off-center attractor for pencil 

midpoints.

We developed a Bayesian model to estimate the optimum shape and position of 

the midpoint attractor for a particular taxon on a particular elevational gradient.. The 

model aims to explain the empirical location of species elevational ranges (as indexed by 

their elevational midpoints), and thus to account for empirical patterns of richness on 

mountainsides, under geometric constraints. With a centered Gaussian distribution as the 

starting point (a conjugate prior), the model employs a simple Gibbs sampler to find the 

parameter values for the attractor (its location, A, and strength, B), that are most probable 

(P(model | data)), given the observed elevational pattern of species richness and the 

empirical range-size frequency distribution (RSFD) (Gelman et al. 2013).

The midpoint attractor model does not incorporate any environmental data into 

the estimation of these parameters. It makes no assumptions or a priori hypotheses about 

which environmental or biotic factors might be driving the attractor and the favorability 
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gradient it represents. Instead, once a well-fitting attractor model has been identified 

using this approach, we subsequently attempt to interpret the attractor statistically in 

terms of empirically-measured environmental variables. 

Whereas the midpoint attractor model maximizes P(model | data), most previous 

attempts to interpret richness patterns have, instead, been conducted in a traditional, 

frequentist framework, estimating the probability of the data (observed richness), given a 

specified multivariate statistical model (P(data | model)). The statistical model usually 

takes the form of a regression of species richness on environmental variables, with

(Longino & Colwell 2011) or without (Hawkins et al. 2003) a predictor variable for 

geometric constraints. To compare the results from our Bayesian analyses with this 

traditional, correlative approach to identifying environmental drivers, we carried out 

multiple regressions of species richness over elevational gradients, as a function of the 

same environmental variables that we used to interpret the attractors.

Midpoint predictor models. In addition to the Bayesian midpoint attractor model, we 

built two alternative, stochastic, midpoint predictor models—one with and one without 

geometric constraints—that directly assessed environmental variables as predictors of 

midpoint density (not species richness) over the elevational gradient. In these models, as 

in the midpoint attractor model, each empirical range midpoint is placed on the domain 

(the unit line) stochastically. However, range placement is not driven by a hypothetical 

attractor, as it is in the Bayesian model. Instead, at each point in the domain, the 

probability of midpoint placement is directly and linearly proportional to the value of a 

single, measured, environmental variable, such as temperature or precipitation. Whereas 

the midpoint attractor model seeks an optimal location and optimal strength for a 
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hypothetical attractor, the midpoint predictor model assesses the fit of the empirical 

midpoint data to a probability distribution directly defined by a measured environmental 

variable. This approach is somewhat akin to the models of Storch et al. (Storch et al. 

2006).and Rahbek et al. (Rahbek et al. 2007), but contrasts with the traditional MDE 

model, in which the probability of midpoint occurrence is constant across the domain. 

Application of the models. We applied the midpoint attractor model and the two 

midpoint predictor models to 16 high-quality datasets that recorded the elevational 

distribution of more than 4500 species of ferns, insects, mammals, or birds in globally 

distributed localities, mostly in the tropics (Table S1, Appendix 2). As we will 

demonstrate, with or without geometric constraints, the midpoint predictor models 

generally provide a poor fit to the observed pattern of range midpoints. In contrast, the 

Bayesian midpoint attractor model simulations consistently produce a good fit to both 

species richness and midpoint distributions of empirical datasets.

MATERIALS AND METHODS

Empirical Datasets and Data Representation. We applied the midpoint attractor model 

and the two midpoint predictor models to the 16 datasets detailed in Table S1 (Appendix 

2). Three groups of datasets included multiple taxa studied on the same gradients: 

northern Costa Rica, Mt. Wilhelm in Papua New Guinea, and the Border Ranges in 

Australia. To label the individual datasets, we preface the name of the taxonomic group 

with the name of the geographic location of the gradient (e.g. “New Guinean ants,” 

“Costa Rican ferns,” etc.). The biogeographical data from these studies consist of species 

occurrences recorded at a variable number of sampling elevations (5 to 70 elevations, 
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median = 8) along each gradient. Each dataset also included measurements for two or 

more environmental factors along the gradient (Table S1, Appendix 2). To facilitate the 

comparison of results among studies, we rescaled each elevational domain to the [0,1] 

unit line. Within this domain, we standardized sampling points and converted species 

occurrence records into an estimated elevational range and midpoint for each species 

following data preparation protocols detailed in the Appendix 1, Supplemental Materials 

and Methods. Each dataset was represented in two ways: A midpoint-range plot (Colwell 

& Hurtt 1994), with range size as the ordinate and range midpoint as the abscissa for 

each range in a dataset (Fig. 2, right panel, grey-scale dots and horizontal line segments), 

and a species richness plot, showing the number of overlapping ranges at each of a 

sequence of sampling locations (elevations) spanning the domain (Fig. 2, left panel, black

dots). 

The Bayesian midpoint attractor model. As outlined in the Introduction, we modeled 

the midpoint attractor as a Guassian probability density function N(A, B) with two 

parameters: its mean location A (0 < A < 1) on the unit-line domain, and its standard 

deviation B (0 < B < 1) around the attractor (Fig. 1C). Because a Guassian distribution 

extends from negative to positive infinity, the attractor distribution is truncated at the 

lower (0) and upper (1) bounds of the domain. 

The choice of a unimodal midpoint attractor distribution for an informed Bayesian

conjugate prior was based on the empirical prevalence in the published literature of 

unimodal peaks of species richness (Rahbek 2005), which in turn suggest unimodal 

midpoint patterns. Our choice of a doubly-truncated Gaussian prior, rather than a prior 

distribution (e.g. the beta distribution) that declines to zero at the domain limits,, was 
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based on biological grounds: many species are regularly present at either sea level or 

mountaintop, their realized distributions directly abutting a domain limit. Such 

distributions suggest that the fundamental environmental niche is often not fully 

expressed on a particular elevational gradient.

To model the expected pattern of species richness under the influence of the 

attractor, each of the empirical ranges in a dataset is placed on the domain stochastically, 

without replacement, with its midpoint drawn at random from a proposed attractor 

distribution N(A, B). To enforce the geometric constraint (Fig. 2, right panel) and 

maintain the empirical RSFD, the midpoint is sampled from this distribution only over 

the interval of feasible midpoints, given the size of each range, such that the range does 

not extend beyond either the lower or upper domain limit (Colwell and Lees 2000). For a 

range of length R, this means that the midpoint must lie in the interval [R/2, 1-R/2]. We 

explored two alternative algorithms for placing ranges within the domain in these 

stochastic range simulations. The two algorithms differ only in how this placement 

constraint is achieved. 

In Algorithm 1, for a species with an empirical range of length R, a midpoint is 

simply drawn from N(A, B) on the interval [R/2, 1-R/2] and assigned to the species. 

Biologically, this algorithm assumes that the elevational distribution of a typical species 

fully expresses its environmental niche within the scope of the gradient, because neither 

its upper nor its lower range limit is likely to reach a domain limit. This algorithm is the 

equivalent, for the midpoint attractor model, of the classic MDE model of Colwell & 

Hurtt (Colwell & Hurtt 1994) (their Model 2). 
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In Algorithm 2,, a candidate midpoint is drawn from N(A, B) on the full domain 

interval [0, 1]. If the candidate midpoint lies within the interval [R/2, 1-R/2], it is assigned

to the species and the next species is considered. If it lies to the left of the interval [R/2, 

1-R/2], then R/2 is assigned as the midpoint, whereas if the midpoint lies to the right of 

the interval [R/2, 1-R/2], then 1-R/2 is assigned. The result is that each such shifted range 

exactly abuts a domain limit. This algorithm is the equivalent, for a one-dimensional 

domain, of the classic two-dimensional spreading dye model of Jetz & Rahbek (Jetz & 

Rahbek 2001). Biologically, it captures the idea that the environmental niches of species 

on ecological gradients are often not fully expressed, so that observed distributions are 

based on truncated niches (Colwell & Rangel 2009; Feeley & Silman 2010). Hence, a 

better fit to Algorithm 2 than to Algorithm 1 would support the existence of truncated 

niches. 

By design, these stochastic placement algorithms preserve the empirical RSFD, 

while empirical midpoints are completely ignored. Thus, the correspondence between 

modeled and empirical patterns of richness, and between empirical and modeled patterns 

of midpoints, is driven by the location and strength of the attractor. 

Just as for empirical richness patterns, the modeled richness at sampling points on

the domain is simply the number of stochastically placed ranges that overlap at each 

sampling point. Because range midpoints are assigned from a statistical distribution (the 

midpoint attractor), however, each run (realization) of the midpoint attractor simulation 

yields a somewhat different pattern of richness over the domain. As illustrated in Fig. 2 

(left panel), over many runs (e.g. 100), a mean result (dark blue line) and a 95% 

confidence interval (light blue band) can be defined and plotted to compare with 
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empirical richness (black dots). One simple criterion for evaluating the success of the 

midpoint attractor model is the proportion of empirical richness values that lie within the 

95% confidence interval of modeled richness.

In an approximate Bayesian computational framework (Marjoram et al. 2003; 

Hartig et al. 2011)), we used a custom Monte Carlo Markov Chain (MCMC) Gibbs 

sampler to seek the posterior distribution of model parameters A and B (and thus the 

posterior distribution of the location, shape, and truncation points of the Gaussian 

attractor) that maximized the probability of the model, given the empirical species 

richness pattern and the empirical RSFD for each dataset. In other words, this procedure 

finds the location and shape of the midpoint attractor that provides the best fit between 

modeled richness and empirical richness. The details of the ABC and MCMC procedures 

appear in the Appendix 1, Supplemental Materials and Methods. 

In summary, the midpoint attractor model simulates the interaction between a 

simple, unimodal environmental gradient (the attractor) and the geometric constraints 

imposed by domain limits. As in the pencil-box analogy (Fig. 1B), because of the 

constraint, the distribution of predicted midpoints in the model will not always center on 

the attractor. Thus, we predicted that the closer the modeled attractor lies to one of the 

two domain limits, the greater would be the expected discrepancy between the location of

the attractor and the mean location of range midpoints on the domain. Because of this 

discordance, if the model fitting procedure is successful, we expected that empirical 

species richness should correlate more strongly with modeled species richness, as 

simulated by the midpoint attractor model, than with the attractor itself. 
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Statistical comparison between modeled and empirical midpoint densities. It is 

conceivable that the midpoint attractor model could provide a good fit to the empirical 

species richness pattern, but fail to produce a pattern of range midpoints within the 

domain that resembles the corresponding empirical pattern of midpoints: the right answer

for the wrong reasons. As an independent statistical test of the fit between the modeled 

and empirical patterns of midpoints and ranges, we divided the constraint triangle of the 

midpoint-range plot evenly into 16 smaller triangles (Fig. 2, right panel and Fig. S4, 

Appendix 2) (Laurie & Silander 2002) and examined the correspondence between 

modeled and empirical midpoint densities in these triangles with a bootstrap procedure. 

To assess the prediction that species with small ranges and species with large ranges 

respond to the same attractor, we repeated the bootstrap procedure separately for larger-

ranged species (range size > 0.25 of the domain) and for smaller-ranged species (range 

size ≤  0.25 of the domain). See Appendix 1, Supplemental Materials and Methods for 

details.

Mapping midpoint attractors onto environmental variables. The Bayesian model 

optimizes the location and shape of a simple midpoint attractor, without reference to 

environmental variables measured along each of the gradients. In fact, we know from 

many sources of evidence that species and species groups respond in complex and often 

idiosyncratic ways to environmental and elevational gradients (Gotelli et al. 2009; 

Newbery & Lingenfelder 2009; Albert et al. 2010; McCain & Grytnes 2010; Presley et 

al. 2011; Sundqvist et al. 2011). As is typical for most field studies, only limited 

environmental data were available for the elevational transects in our datasets, and data 

for different sets of environmental variables were available for different transects. 
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In an attempt to characterize attractors statistically in terms of underlying 

available environmental variables, we carried out (linear) multiple regressions, with AIC-

based model selection, for each dataset on each gradient. We treated the attractor as the 

continuous response variable and the smoothed, interpolated environmental variables as 

candidate predictor variables. The multiple regression models were fit  using the 

application Spatial Analysis in Macroecology (SAM), version 4.0 (Rangel et al. 2010). 

The data points (elevations) for regression were the same, evenly-spaced points across 

the unit-line domain that were used to fit each midpoint attractor (see Appendix 1, 

Supplemental Materials and Methods.). 

For comparison with approaches traditionally applied to explain species richness 

patterns, we carried out additional multiple regressions, in a model-selection framework, 

with (1) empirical richness as the response variable and environmental variables as 

candidate predictor variables; and (2) empirical richness as the response variable and the 

modeled attractor as the only predictor variable.

Midpoint predictor models. The midpoint attractor model is, by design, an indirect 

approach to understanding the drivers of species richness over elevational gradients. As 

an alternative, direct approach, we designed two explicit midpoint predictor models, one 

with and one without geometric constraints, for the placement of empirical species range 

midpoints within a domain. Like the midpoint attractor model, these models have two 

free parameters. For each of these midpoint predictor models and each of the 16 

elevational datasets, we assessed the degree to which the empirical distribution of range 

midpoints within a domain matched that predicted by a stochastic simulation. In contrast 

with most other studies, including our midpoint attractor model, the midpoint predictor 
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models consider only the frequency distribution of species midpoints along the 

elevational gradient, and not the resulting species richness arising from the overlap of 

species ranges. Details of the two midpoint predictor models and our approach to model 

evaluation appear in Appendix 1, Supplemental Materials and Methods.

RESULTS

Midpoint attractors and geometric constraints. Fig. 2 shows the empirical data and the

fitted midpoint attractor model for the Costa Rican arctiine moth dataset. The 

corresponding graphical results for the other 15 datasets appear in Figs. 3 and 4, 

organized by locality and arranged to facilitate comparisons between taxonomically and 

geographically related datasets. We emphasize that each of these results represents a 

single, illustrative example from the Bayesian posterior distribution of the midpoint 

attractor, as specified by optimized parameters A and B, for the corresponding dataset. 

For each dataset, nearby values of these parameters produce similar graphs. The 

spreading dye algorithm (Algorithm 2) consistently yielded a fit between modeled and 

empirical richness that was at least as good, and often better, than the classic approach 

(Algorithm 1). Consequently, we used the spreading dye algorithm for all datasets in the 

final models (Table S2).

Table S2 (Appendix 2) displays the quantitative results for midpoint attractor 

parameters, and for each, the results for the independent statistical comparisons between 

modeled and empirical midpoint density patterns within the geometric constraint triangle 

(right panel for each dataset in Figs. 2, 3, and 4). For 14 of the 16 datasets, the test 

affirms a highly significant (mean P < 0.002) correspondence between empirical and 
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modeled midpoint density patterns. The two exceptions (Costa Rican ferns and North 

American butterflies), instructive in their own right, are discussed in Appendix 1, 

Supplemental Discussion. The comparison of modeled and empirical midpoint densities 

for large-ranged vs. small-ranged species confirmed the expectation that both large and 

small ranges are equally well fit by the same midpoint attractor model for most datasets 

(11 of 16). 

The quantitative results in Table S2 (Appendix 1) offer strong evidence of a key 

role for geometric constraints in the modeled patterns of richness. As predicted 

(Materials and Methods), the closer the modeled attractor is to a domain limit, the greater

the discrepancy between the location of the attractor and the mean location of range 

midpoints on the domain (Fig. 5). In terms of the pencil-box analogy (Fig. 1B), the closer

the magnet is set to one end of the box, the further the average pencil midpoint is forced 

away from the box end. 

The fitted standard deviation of the midpoint attractor (parameter B in the 

simulations), an inverse measure of the strength of the attractor, varied from 0.023 for 

Costa Rican ants to 0.476 for North American butterflies (Table S2, Appendix 2), The 

location of the midpoint attractor (parameter A) on the unit-line domain ranged from 

0.065 for Costa Rican ants, with nearly monotonically declining richness with elevation, 

to several datasets with A near 0.5 (Costa Rican ferns and geometrid moths, North 

American butterflies, and Australian moths and their parasitoids) to 0.742 (Australian 

leaf-miners, on a short, 1100 m gradient). When translated to absolute elevation, A and B 

vary even more strikingly, because the datasets vary from 1100 m to 4095 m in 

elevational scope (Table S1, Appendix 1). When the best-fit attractor lies near the center 
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of the domain, as it does for the Costa Rican ferns (Fig. 2) or North American butterflies 

(Fig. 4), the modeled pattern of richness may be quite symmetrical—but so is the 

expected pattern from a simpler MDE model of geometric constraints with no 

environmental drivers. We discuss this issue in detail in Appendix 1, Supplemental 

Discussion.

How well did the model perform in simulating empirical richness? The first two 

graphs for each dataset in Fig. S1 (Appendix 2) show: (1) the regression of empirical 

richness on the modeled midpoint attractor, and (2) the regression of empirical richness 

on modeled richness. Table S3 (Appendix 2) provides the corresponding statistical results.

From these results, we can assess the expectation (Materials and Methods) that empirical 

species richness should correlate more strongly with modeled species richness, as 

simulated by the midpoint attractor model, than with the attractor itself. This expectation 

was borne out in 12 of the 16 datasets. The four exceptions, which demonstrate that this 

pattern is not an inevitable result of the fitting method, are detailed in Appendix 1, 

Supplemental Results.

Mapping midpoint attractors onto environmental variables. Using the results from 

the midpoint attractor model, the third and fourth graph for each dataset in Fig. S1 

(Appendix 2), illustrate results for all 16 datasets from the AIC-guided analyses of (1) the 

regression of modeled midpoint attractors on environmental variables, and (2) the 

regression of empirical richness on environmental variables. Table S3 (Appendix 2) 

provides the corresponding statistical results and comparisons. 

The environmental variables that best explained the modeled midpoint attractor 

often differed from the environmental variables that best predicted observed species 
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richness. Only two of the 16 datasets yielded an identical environmental predictor model 

(or model group, when ΔAIC was < 3 between alternatives), in terms of predictor 

variables included, for attractor and for species richness. However, the model with the 

lowest absolute AIC matched in 9 of the 16 datasets if AIC-grouped models were ignored

(illustrated in Fig. S1, Appendix 2,). 

Midpoint predictor models. For each dataset, the same environmental variables 

assessed in interpreting midpoint attractors (Table S3 and Fig. S1, Appendix 2) were 

tested for the two midpoint predictor models (direct environmental predictors, with and 

without geometric constraints). Across all data sets, 98 of 112 statistical tests strongly 

rejected the null hypothesis that modeled midpoints resemble the empirical ones, with P 

< 0.001 in nearly every case (Table S4, Appendix 2). Only four of the 16 data sets showed

an acceptable fit (P > 0.05) to either of the midpoint predictor models. But these datasets 

were, not coincidentally, the four smallest, in terms of number of species (Australian leaf-

miners and parasitoids, Costa Rican and North American mammals), and thus had the 

weakest statistical power to reject the null hypothesis.

DISCUSSION

Although the elevational richness patterns successfully modeled in this study 

varied widely in shape and location on the domain, the midpoint attractor model 

successfully reproduced not only taxon-specific peaks of species richness, but also their 

underlying empirical midpoint distributions (Figs. 2, 3, and 4). The strong signature of 

geometric constraints in these results (Fig. 5) shows that the midpoint attractor, alone, is 

not responsible for the excellent fit of model to data. Instead, the seamless integration of 
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attractor and constraints allows the model to generate patterns ranging from nearly 

monotonic declines of species richness to perfectly symmetric mid-elevation humps. 

Because the specific environmental and historical factors underlying the notion of

“favorability” are not explicitly incorporated in our model, it might be tempting to 

dismiss these results as purely descriptive curve-fitting. On the contrary, by revealing an 

underlying gradient of favorability, we argue that our Bayesian midpoint attractor model 

offers a unifying approach to elevational richness gradients that has not been achieved by 

traditional, ad hoc statistical analyses of richness gradients, based on correlations with 

environmental drivers (Gotelli et al. 2009).  

Constructing the midpoint attractor model in a Bayesian framework was not a 

matter of convenience, interpretation, or fashion, but rather a logical necessity. Given the 

conjecture that a taxon-specific, location-specific, underlying gradient of favorability, 

interacting with geometric constraints, could explain elevational richness patterns, the 

appropriate way forward was to maximize the probability of a general, underlying model,

challenged with a plethora of contrasting datasets, a fundamentally Bayesian approach.

Datasets with many ranges abutting the low-elevation domain limit (e.g. Costa 

Rican ants, Fig. 2, and Bornean geometrid and sphingid moths, Fig. 4) or the high-

elevation domain limit (Australian leaf-miner parasitoids and North American butterflies,

Fig. 4) strongly suggest an unexpressed potential for some species to prosper in 

environmental conditions more extreme than those at the lower or upper domain limit. In 

other words, range limits in geographical space, forced by the domain boundaries (e.g. 

sea level or mountaintop), may not coincide with niche limits in niche space for such 

species (Colwell & Rangel 2010). The excellent performance of the doubly-truncated 
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Gaussian attractor, chosen as an informed prior, and our finding that Algorithm 2 

(spreading dye) provided a better fit than Algorithm 1 (classic) together offer strong 

support for the inference that ranges that abut domain boundaries represent truncated 

niches at the extremes of elevational gradients. 

With or without geometric constraints, the midpoint predictor models, which 

assessed empirical environmental factors as candidate midpoint predictors, fit observed 

elevational midpoint distributions very poorly (Table S4, Appendix 2), despite 

incorporating the empirical RSFD and having the same number of free parameters as the 

midpoint attractor model. Although the familiar correlations, in the literature, between 

species richness and temperature, precipitation, and other environmental variables are 

often interpreted as evidence for causal relationships, these statistical correlations do not 

represent actual models of cause-and-effect. For the datasets in this study, the seemingly 

intuitive hypothesis that environmental conditions should predict the location of species’ 

range midpoints failed to account for most observed patterns. How can we reconcile this 

failure of the midpoint predictor model with the success of the midpoint attractor model? 

At least three, non-exclusive explanations are possible: (1) We might have used the 

“wrong” environmental variables; (2) we might have analyzed the right variables, but we 

had the wrong functional form; or (3) lineage diversification with strong niche 

conservatism may have produced spatial concentrations of range midpoints in narrowly-

defined environments (see Appendix 1, Supplemental Discussion). 

The environmental and historical factors that underlie midpoint attractors in 

nature are likely to be complex, presenting a challenge for future research. But we 

conjecture that our approach, in which a modeled midpoint attractor drives the location of
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species ranges placed stochastically within a bounded domain, may prove more fruitful 

than further attempts to directly link patterns of species richness along bounded gradients 

with environmental factors. 
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FIGURE CAPTIONS (MAIN TEXT)

(Note: In the all-in-one pdf prepared for peer review, each caption appears in context 

with the corresponding figure at the end of the file.)
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Midpoint attractors and species richness: Modeling the interaction between 

environmental drivers and geometric constraints
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APPENDIX 1: SUPPLEMENTAL TEXT

SUPPLEMENTAL INTRODUCTION

Integrating geometric constraints with environmental and historical explanations 

for patterns of species richness

Beginning with Lees et al. (1999) and Jetz and Rahbek (2001), many authors have taken 

a statistical approach, treating “pure” MDE model predictions as candidate predictor 

variables. In most of these studies, the observed range-size frequency distribution 

(RSDF) was sampled without replacement to generate the MDE model predictions of 

expected species richness at each location in the domain (Colwell et al. 2004, 2005). The 
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MDE predictions and standard environmental variables were then used together in 

traditional correlative modeling of species richness patterns. Increasingly rigorous 

versions of this statistical approach have incorporated formal model selection, spatial 

statistics, and assessment of multicollinearity (Bellwood et al. 2005; Davies et al. 2007; 

Wu et al. 2012). 

Several studies have integrated constraints and drivers directly, incorporating the 

interacting effects of geometric constraints and environmental drivers on species richness

(Gotelli et al. 2009) by using environmental variables to condition probabilities of range 

placement and expansion within a spatially bounded domain (Storch et al. 2006; Rahbek 

et al. 2007), thus relaxing the assumption of a pure MDE model that parts of the domain 

are environmentally identical. These models were also conditioned on the empirical range

size frequency distribution (RSFD). In contrast, Grytnes et al. (Grytnes et al. 2008) 

modeled plant richness on a bounded elevational gradient by drawing range sizes from 

theoretical distributions and range midpoints from a probability distribution fitted directly

to the observed richness gradient.

Rangel and Diniz-Filho (2005) built a stochastic, mechanistic model that 

integrates speciation, range expansion, and extinction on a bounded, monotonic 

environmental “favorability” gradient, without reference to empirical data. The model is 

effectively a spatially explicit version of the neutral model (Hubbell 2001) in a one-

dimensional bounded domain, but with an underlying environmental gradient. The 

Rangel and Diniz-Filho (2005) model generated off-center species richness peaks that 

emerged from the interaction between the gradient and the geometric constraints (Colwell

& Rangel 2009). Without the environmental gradient— or with a very weak gradient—
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Rangel and Diniz-Filho’s model generated a peak of species richness in the center of the 

domain that was qualitatively similar to the predictions of the simple MDE model. 

Wang and Fang (Wang & Fang 2012) developed a third approach. They fitted a 

multiple regression model of species richness as a response to environmental variables, 

but they used only the subset of species with the smallest geographic ranges to 

parameterize the model. They reasoned that the placement of small-ranged species within

a bounded domain is little affected by the location of range boundaries, so that, for this 

subset of taxa, correlations of species richness and environmental variables will not be 

distorted by geometric constraints. They then used the resulting model coefficients, 

together with the empirical RSFD, to simulate the placement of range midpoints of the 

larger-ranged species within the bounded domain. They showed that a single 

environmental model, combined with strong geometric constraints, best explains the 

species richness of both small- and large-ranged plant species along elevational gradients 

in China. 

SUPPLEMENTAL MATERIALS AND METHODS

Dataset selection and preparation

As a criterion for inclusion in this study, we applied the rule (McCain 2007; McCain 

2009) that at least 70% of the physical gradient between sea level and mountaintop must 

have been sampled and at least four environmental variables had been reported for the 

gradient. 

Each of the 16 datasets (Table S1) was prepared in the same way. Domain limits 

were defined as sea level and the highest elevation on the mountain massif upon which 
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the gradient was located. This domain was converted to the unit line, and all empirical 

sampling elevations were proportionally scaled within this [0,1] domain. Environmental 

variables (Table S1) were resampled, as necessary, after smoothing with cubic spline 

interpolation, using the splinefun function in R, version 3.1.1 (Team 2014). 

If the highest elevation at which a species was recorded was not at the highest 

sampling location, the upper boundary for that species’ range was estimated to occur 

halfway between the highest elevation of recorded occurrence and the next higher 

sampling elevation. If the highest elevation at which a species was recorded at was the 

highest sampling elevation, the upper boundary of that species’ range was estimated to 

occur half-way between that sampling elevation and the upper limit of the domain. The 

lower boundary for each range was treated analogously, being extended halfway to the 

next lower sampling elevation or halfway to the lower domain limit (sea level), if a 

species was recorded at the lowest sampling elevation, but that elevation was not the 

domain limit. The ranges of each species found at only one sampling elevation were 

treated similarly. Otherwise, these point ranges would have had a zero range, and would 

have been lost from the model. We assumed that the occurrence of each species was 

continuous between its estimated upper and lower recorded range boundaries. These 

range-adjustment procedures and assumptions have been widely used in previous studies

(Cardelús et al. 2006; Longino et al. 2014)

The protocol for range adjustment, described above, leaves most datasets without 

any empirical ranges that actually reach the domain boundaries, resulting in zero 

estimated empirical richness at one or both limits of the domain. A few zeroes are real 

(e.g., ants do not occur at very high elevations in the Costa Rica and New Guinea 
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gradients), but most others are artifacts of the location of original sampling elevations and

the range estimation protocol. Data providers (Table S1) were asked in each case whether

such zeroes in their data sets were real or artifactual. If real, zero richness at the domain 

endpoint (and in some cases adjacent sampling points) was plotted and included in 

analyses; if artifactual, we proportionally adjusted all empirical range midpoints so that 

ranges nearest to the domain limit exactly reached it. The shifts needed to achieve this 

adjustment, which effectively shifts the domain boundary slightly, were consistently very 

small (0.002 to 0.02 on the unit line). 

To cope with the wide variation among datasets in number and spacing (often not 

uniform) of empirical sampling points, we took a mixed approach. For fitting the attractor

(see below), we used a series of 11 evenly spaced sampling locations across the entire 

unit line (domain), including both ends of the domain (0 and 1), for all datasets except the

New Guinea group. The New Guinea transect was sampled in the field at 8 evenly-spaced

elevations, so with the domain ends added, we used 10 sampling points for fitting the 

attractor in those datasets. For plotting model results (main text Figs. 2, 3, and 4), we 

used the original sampling points for datasets with fewer than 11 original points (eight 

points for the four Papua New Guinea datasets, five for the three Australia datasets, and 

six for North American butterflies), and 11 points for all other datasets.

The Bayesian Midpoint Attractor model

The MCMC sampler and richness pattern simulation. We designed a simple MCMC 

Gibbs sampler (Gelman et al. 2013) to select (A, B) pairs for the mean (A) and standard 

deviation (B), the parameters of the Gausian midpoint attractor, with the objective of 

simulating the richness pattern over the domain for a particular empirical dataset, using 
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only the range-size frequency distribution (RSFD) as input. Empirical midpoints were 

completely ignored for the simulations. The goodness of fit between modeled and 

empirical richness was then assessed for each simulation, as detailed below.

Running the simulation. For each candidate (A, B) pair, each empirical range was 

placed stochastically on the domain, without replacement, using either Algorithm 1 or 2 

(Main text, Materials and Methods). The modeled richness was recorded for L (10 or 11, 

see above) evenly spaced sampling locations across the domain, always including both 

ends of the domain (0 and 1). The process was repeated M (= 100) times, for the same (A,

B) pair. The mean richness for each of the L sampling points on the domain was then 

computed, among the M runs, to estimate the expected richness pattern, given the (A, B) 

pair and the empirical RSFD.

Measuring goodness-of-fit. The next step in the MCMC assessed the goodness-of-fit 

(GOF) between the empirical richness pattern and the mean modeled pattern, for a given 

candidate (A, B) pair, at the L sampling points. We applied three alternative GOF 

measures: (1) r, the Pearson product-moment correlation coefficient (but only when 

positive), squared; (2) the chi-squared statistic computed on standardized richness (the 

richness at each sampling point, divided by total richness at all L points), treating the 

empirical richness as “expected” and the modeled richness as “observed” (as is 

customary in Bayesian modeling); and (3) the two-sample Kolmogorov-Smirnov (K-S) 

statistic. Note that none of these measures can be used in this way to yield a probability 

test of significance; they are simply mathematically suitable measures of GOF for 

richness patterns. The protocol for choosing the best GOF for each dataset is described, in

context, in the next section.
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Sampling the parameter space. Using the procedure just described, the MCMC sampler

tested a series of (A, B) pairs. At each step in this process, a candidate (A, B) pair was 

proposed by drawing a new value for A and a new value for B from uniform distributions 

[0 < A < 1] and [0 < B < 1]. In Bayesian terms, A was an uninformative hyperprior, with 

the full [0,1] domain sampled uniformly for the location of the mean (A). For the standard

deviation (B), we also set the upper limit at 1 because this value produces a spatial pattern

of richness broader and flatter than any empirical richness pattern we have seen; thus the 

distribution of hyperprior B incorporated this prior information. (An even higher limit for 

B could have been used, but the results would not have changed.) 

The candidate (A, B) pair was evaluated by running the simulation (M times) and 

assessing goodness-of-fit (GOF) between the mean modeled richness (averaged among 

M runs) and empirical richness (as described above). If the GOF for the candidate (A, B) 

pair was better, or not much worse, than the GOF for the previous pair, the new pair was 

added to the chain and the process repeated. The criterion for “not much worse” is 

important. If only parameter sets (A, B pairs) that yield a better fit than the previous step 

were to have been kept, the chain might have become stuck on a local GOF “peak” in the 

parameter space, and failed to detect a higher peak nearby.

The criterion for accepting a candidate (A, B) pair in our model was the threshold-

for-acceptance ratio T, between the GOF of the candidate (A, B) pair and the GOF of the 

previous (A, B) pair in the chain. The ratio T was compared to a uniform random number 

on the interval [0,1] (Gelman et al. 2013). If T was greater than this number, the 

candidate (A, B) pair was accepted and the chain continued; if T was smaller than this 

number, the candidate pair was rejected, and a new candidate pair was proposed. In this 
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way, better pairs (T > 1) were always accepted, and some not-as-good pairs (T < 1) were 

also accepted, ensuring a better sampling of the parameter space. 

For each dataset, C = 200 to 500 candidate pairs were tried, and the accepted (A, 

B) pairs (the chain) were tabulated, each with its GOF and step number in the chain. 

When the process was complete, the accepted (A, B) pairs were plotted (Fig. S3), and 

ranked by their GOF (largest to smallest for Pearson and Kolmogorov-Smirnov GOFs, 

smallest to largest for the chi-squared GOF). 

For each dataset, when results differed substantially between the two stochastic 

range placement algorithms in the Bayesian attractor model (Main text, Materials and 

Methods), GOF measures were used to choose the better of the two algorithms. When 

results differed substantially among GOF measures for the same algorithm for a 

particular dataset, the best result was chosen based on overall deviation of empirical 

points from the 95% confidence intervals of the model. Based on this procedure, Pearson 

correlation emerged as the most successful GOF (13 of 16 datasets), with chi-squared 

providing a better result in two cases (Australian leaf-miners and Bornean geometrid 

moths), and Kolmogorov-Smirnov in one case (North American mammals). 

Using the approximate best fit (A, B) pair from the Bayesian posterior distribution

arising from MCMC sampling, the model was run once to generate species richness and 

midpoint density values for analysis and illustration, with 100 replications. For a given 

(A, B) pair, the resulting pattern was highly repeatable, and nearby (A, B) pairs from the 

posterior distribution gave similar results. We also visualized the fit by plotting modeled 

richness as a function of empirical richness, for the evenly-spaced sampling points used 

in the Bayesian parameter search (or for the empirical sampling sites for the New 
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Guinean, Australian, and North American butterfly datasets), and measured the fit by 

computing ordinary least squares (OLS) R2 for this relationship (Fig. S1 and Table S2, 

Appendix 2). Because the number of sampling points is somewhat arbitrary and 

successive points are not independent, no P-value can be assigned to this measure of fit.

Statistical comparison between modeled and empirical midpoint densities

As explained in the main text (Materials and Methods), the empirical midpoints and 

ranges were plotted in a midpoint-range plot, with the classic constraint triangle 

subdivided into 16 similar isosceles sub-triangles (Fig. S4, Appendix 2; main text Figs. 2, 

3, and 4, right panel for each dataset). As a statistic of correspondence between empirical

and modeled midpoint density distributions in the 16 sub-triangles, we used the rank of 

the observed OLS R2, computed for the 16 sub-triangles, among 999 values from a 

bootstrap resampling procedure. Raw R2 is inflated by the fact that the total number of 

points within each of the four rows of smaller triangles (triangle 1, triangles 2-4, 5-9, and 

10-16 in Fig. S4) is identical for modeled and empirical distributions. These numbers are 

identical because the empirical RSFD is used, for each dataset, to construct the modeled 

distribution. 

To establish an unbiased sampling distribution, the midpoints within each of the 

lower three rows of triangles were shuffled at random among the triangles in each row 

(e.g. among triangles 5-9) and R2 computed between the empirical counts and the 

shuffled counts for all 16 triangles, 999 times. (Triangle 1 is constrained to have exactly 

the same number of points for modeled and empirical data, so no shuffling can be done.) 

The ordinal P-value for the modeled vs. empirical R2 was then based on its rank among 

the 999 bootstrapped values of R2. 
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We repeated the bootstrap procedure outlined above, separately for larger-ranged 

species (sub-triangles 1 through 9 in Fig. S4, range size > 0.25 of the unit domain) and 

for smaller-ranged species (sub-triangles 10 through 16, range size ≤  0.25 of the unit 

domain). 

Midpoint predictor models

Midpoint predictor Model 1 does not constrain where range midpoints can occur within 

the domain, based on range size, but some locations are more probable than others based 

on measured environmental variables such as temperature or precipitation. Midpoint 

predictor Model 2 is the same as Model 1, except that it imposes geometric constraints, 

restricting the placement of the midpoint of each species (drawn from the empirical 

RSFD, without replacement) so that its range limits lie within the domain. 

For both models, we assessed each of the same environmental variables used to 

interpret modeled attractors in the Bayesian model (Table S1), one variable at a time. The

[0,1] domain was divided into 1000 bins, and we used a linear interpolation of 

environmental variables measured at different transect locations to fill each bin with an 

approximate value for the variable. Next, probabilities for each bin were assigned 

proportional to these measured values. Finally, a range midpoint representing each 

empirical species was placed stochastically in the domain in proportion to these values.

Midpoint predictor model evaluation. For each midpoint predictor model, we 

calculated the cumulative distribution function (cdf) of species range midpoints across 

the domain, averaged over 1000 simulations. Steeply rising sections of this cdf indicate 

elevations with a high concentration of species range midpoints, whereas flatter sections 
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of the cdf indicate elevations where few or no species range midpoints occur. We refer to 

this averaged cdf as the model reference cdf.

We next constructed the cdf for the empirical midpoint data and calculated the 

maximum difference between this curve and the model reference cdf. This difference is 

the traditional Kolmogorov-Smirnov test statistic. To generate a null distribution and 

estimate the tail probability for the empirical data, we generated 1000 additional midpoint

distributions with the midpoint predictor model, and for each of these we calculated the 

K-S test statistic between the cdf of the single simulated midpoint distribution and the 

model reference cdf.

We then compared the histogram of the 1000 simulated K-S differences with the 

observed K-S difference between the empirical data and the model reference cdf. A non-

significant one-tailed value (P > 0.05) indicates an adequate fit with the data. In contrast, 

unusually large K-S values for the observed data would suggest that the midpoint 

predictor model does not successfully reproduce the pattern of midpoints in the data. 

Software

The midpoint predictor models were programmed in R version 3.1.1 (Team 2014), with 

base functions from the EcoSimR development package 

(https://github.com/GotelliLab/EcoSimR), which is available now as an R package. R 

scripts for the midpoint predictor model analyses and for plotting the graphics in Figs. 2, 

3, and 4) are available from the authors. The midpoint attractor simulator and the MCMC

sampler were implemented in 4th Dimension, in an extension of the RangeModel 

application (Colwell 2008) that is available from the authors.
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SUPPLEMENTAL RESULTS

Midpoint attractors and geometric constraints

We expected (see Main Text, Materials and Methods) that empirical species richness 

would correlate more strongly with modeled species richness, as simulated by the 

midpoint attractor model, than with the attractor itself. This expectation was borne out in 

12 of the 16 datasets (Table S3 and Fig. S1, first and second panels for each dataset). 

Among the four exceptions, in three cases (Costa Rican mammals, Australian moths, and 

Bornean geometrid moths) the fit of empirical richness to modeled richness does not 

differ, by AIC, from the fit of empirical richness to the attractor, and in three cases (Costa 

Rican mammals, Australian moths, and Australian parasitoids) the empirical richness 

pattern and modeled attractor were both centered near the middle of the elevational 

domain. As we discuss later (see Supplemental Discussion), with a centered attractor, we 

should not expect a consistent difference between modeled richness and the attractor in 

explaining empirical richness.

SUPPLEMENTAL DISCUSSION

The success of the simple, two-parameter Bayesian midpoint attractor model varied 

among datasets (Figs. 2, 3, and 4; Tables S2 and S3). Overall, however, the simulated 

richness patterns provided a good fit to the empirical data, regardless of the location of 

the attractor or the characteristics of the RSFD. Results of independent tests of modeled 

versus empirical midpoint density suggested that both small-ranged and large-ranged 

species respond to the same environmental gradients. Moreover, the mid-domain shift of 

mean midpoint locations for ranges on gradients with off-center attractors (Fig. 5) 

perhaps reconciles our results with the finding of some previous studies that species 
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richness for small- and large-ranged species is correlated with different environmental 

factors (Dunn et al. 2006). With off-center attractors, the increasing discordance between 

attractor and range midpoint for larger ranges (e.g. Bornean geometrid moths, Fig. 4) 

suggests that peaks of population density or other indicators of performance or fitness 

may lie closer to the attractor than to geometric range midpoints—a promising avenue for

future research. 

For nearly all datasets (14 of 16; all except Costa Rican ferns and N. American 

butterflies), even those that had several empirical richness points outside the 95% 

confidence interval envelope for the modeled data (Figs. 2, 3, and 4), the model produced

a highly significant fit (median P < 0.0001) between the midpoint density of the empirical

and modeled data, as assessed for the 16 smaller triangles within the constraint triangle 

(right panels in Figs. 2, 3, and 4). For a few datasets, a single attractor may not be an 

appropriate model. Bornean geometrid moths and perhaps North American mammals 

(Fig. 4) show signs of multimodal attractors, although the fit for a simple, unimodal 

attractor is nonetheless significant.

We emphasize that the P-values for correspondence between modeled and 

empirical point densities in the constraint triangle (Table S2) (including the large- vs. 

small-range analyses) represent an independent statistical assessment of the midpoint 

attractor simulations; they were not used in any way to select the best parameters for the 

midpoint attractor. Although a particular pattern of midpoint-range points in such a plot 

fully determines a corresponding pattern of species richness, the reverse is not true: 

similar richness patterns can arise from alternative placement of ranges within the 
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domain. However, there are constraints on the ways that a given set of ranges can be 

shuffled to approximate a given pattern of richness.

The case of centered midpoint attractors. When the best-fit attractor lies near the 

center of the domain, as it does for the Costa Rican ferns (Fig. 2) or North American 

butterflies (Fig. 4, Table S2), the modeled pattern of richness may be quite symmetrical—

but so is the expected pattern from a simple MDE model of geometric constraints with no

environmental drivers. For Costa Rican ferns, for example, the prediction of the MDE 

model differs little from the corresponding plot with an optimized midpoint attractor (Fig.

S2). The sub-triangle statistical test for the Costa Rican ferns and North American 

butterfly datasets yields no evidence of an attractor (P > 0.994) (Table S2), nor do the 

tests for large and small ranges for these two datasets (P > 0.983). Although the modeled 

and empirical midpoint densities correspond closely in these two datasets, neither differs 

from a random distribution of midpoints (given the empirical RSFD), which is 

necessarily the baseline for judging significance (SI Materials and Methods). Costa Rican

geometrid moths show this same result for small-ranged species.

In such cases, the most conservative conclusion is that we cannot distinguish 

between pure geometric constraints or a broad (but not too broad) environmental attractor

with a peak near the center of the domain. Although the pure geometric constraints model

has two fewer parameters and would thus be favored in a strict model selection approach,

it seems more parsimonious, overall, to adopt a single model of interaction between 

attractor and constraints for all datasets. Other datasets with attractors closely centered on

the domain (e.g. Costa Rican geometrid moths, for large ranges, Fig. 2, or Australian 
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moths or leaf-miner parasitoids, Fig. 4) differ from random midpoint locations enough 

that the test picks up the close correspondence between model and data (Table S2).

The failure of the midpoint predictor models. How can we reconcile failure of the 

midpoint predictor models with the success of the Bayesian midpoint attractor models? 

At least three, non-exclusive explanations are possible. First, we might have used the 

“wrong” environmental variables. Whereas the midpoint attractors, together with 

geometric constraints, produced a good fit to empirical species richness, the fit of the 

attractors themselves to environmental variables was often rather poor (Table S3; third 

and fourth panel in each graph in Fig. S1). The original investigators for our datasets 

measured important aspects of temperature, precipitation, and other variables (such as 

plant cover) that are thought to affect species richness on elevational gradients. Primary 

productivity is thought to be a key correlate of species richness for many groups (Storch 

et al. 2006). However, primary productivity is difficult to measure directly, it cannot 

currently be estimated accurately on small spatial scales from remotely sensed data, and  

is missing from all our datasets. 

Second, we might have analyzed the right variables, but we had the wrong 

functional form (linear) for a more complex relationship between the probability of 

midpoint occurrence and measured conditions. In preliminary analyses, however, 

alternative functional forms (e.g., logarithmic, exponential) did not improve the fit. For 

many of our datasets, such as Bornean geometrid moths and New Guinean butterflies, the

high concentration of species range midpoints in the lower elevations of the domain 

cannot be accounted for by any univariate or multivariate transformation of the available 

environmental variables. 
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A third possibility is a history of strong niche conservatism (Graham et al. 2014; 

Wu et al. 2014), in which large clades evolved and diversified within a climatic zone 

(around a midpoint attractor) but did not diverge, among themselves, in relation to 

environmental gradients within that zone. Concentrations of elevational range midpoints 

may arise from rapid, clade-based "colonization" of new midpoint attractors (e.g., 

transitions from lowland to montane specialists) followed by net diversification. A search 

for multimodal attractors and alignment with phylogenetic structure would be a fruitful 

area of future research. 
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APPENDIX 2: SUPPLEMENTAL TABLES AND FIGURES

SUPPLEMENTAL TABLES

Table S1. The datasets and their characteristics. Sampling limits represent the lowest and highest occurrence on a unit-line transect, 

after range adjustments described in the Suplemental Materials and Methods (Dataset Selection and Preparation). Sampling scope is 

the difference between the sampling limits.
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Sampling 
method

S
pe

ci
es

Environmental 
variables and 
their units

Data 
provider

C
ol

le
ct

io
n

 d
at

es

Published 
references 
to the 
dataset

Costa Rica Datasets

Ants Barva 
Transect 
(Prov. 
Heredia)

10°08'N–
10°26'N, 
84°00'W– 
84°07'W

7 0.004, 
0.705

0.701 0, 
2900

Miniwinkler 
extractors

332 MAT (°C), Mean 
RH (%), MAP 
(mm), Area (% of 
total per 100m 
band)

John T. 
Longino

2001-
2007

(Longino 
& Colwell 
2011; 
Longino et
al. 2014) 

Arctiine moths
Barva 
Transect 
(Prov. 
Heredia)

10°08'N–
10°26'N, 
84°00'W– 
84°07'W

12 0.013, 
0.940

0.927 0, 
2900

Light traps, 
manual 
collection

222 MAT (°C), Mean 
RH (%), MAP 
(mm), Area (% of 
total per 100m 
band)

Gunnar 
Brehm

2003–
2004

None
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Dataset Locality
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Sampling 
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S
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es

Environmental 
variables and 
their units

Data 
provider

C
ol

le
ct

io
n

 d
at

es

Published 
references 
to the 
dataset

Geometrid 
moths

Barva 
Transect 
(Prov. 
Heredia)

10°08'N–
10°26'N, 
84°00'W– 
84°07'W

12 0.013, 
0.940

0.927 0, 
2900

Light traps, 
manual 
collection

739 MAT (°C), Mean 
RH (%), MAP 
(mm), Area (% of 
total per 100m 
band)

Gunnar 
Brehm

2003–
2004

(Brehm et 

al. 2007)

Ferns
Barva 
Transect 
(Prov. 
Heredia)

10°08'N–
10°26'N, 
84°00'W– 
84°07'W

29 0.011, 
0.986

0.975 0, 
2900

Plot-based 
(20x20m²)

434 MAT (°C), Mean 
RH (%), MAP 
(mm), Area (% of 
total per 100m 
band)

Jürgen 
Kluge

2002-
2003

(Kluge et 

al. 2006)

Mammals Tilarán 
Mt. 
Range

10°23'N–
10°17'N, 
84°47'W–
84°26'W

18 0.000, 
0.998

0.989 0, 
1840

Live traps, 
kill traps, 
and pitfall 
traps

18 Average 
Temperature (°C),
Annual 
Precipitation 
(mm) 
[worldclim], 
elevational area 
(km2 per 100m 
elevational band) 
[DEM, ArcGIS]

Christy 
McCain

2000-
2002

(McCain 
2004; 
McCain 
2005)

Papua New Guinea Datasets

Ants
Mt. 
Wilhelm 
Transect

5°44'S–
5°47'S, 
145°03'E–
145°20'E

8 0.007, 
0.822

0.815 0, 
4509

Pitfall 
trapping and 
hand-
collecting 
Yusah et al.
(2012))

118 MAT (°C), Mean 
RH (%), MAP 
(mm), Area (% of 
total per 100m 
band)

Jimmy 
Moses, 
Tom M. 
Fayle, 
Petr 
Klimes

2012 (Moses 

2015)
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Dataset Locality
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Sampling 
method

S
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Environmental 
variables and 
their units

Data 
provider

C
ol

le
ct

io
n

 d
at

es

Published 
references 
to the 
dataset

Butterflies
Mt. 
Wilhelm 
Transect

5°44'S–
5°47'S, 
145°03'E–
145°20'E

8 0.022, 
0.876

0.854 0, 
4509

Modified 
Pollard 
transects 
(Caldas & 
Robbins 
2003)

26
4

MAT (°C), Mean 
RH (%), MAP 
(mm), Area (% of 
total per 100m 
band)

Legi Sam
2009 

(Sam 

2011)

Birds
Mt. 
Wilhelm 
Transect

5°44'S–
5°47'S, 
145°03'E–
145°20'E

8 0.022, 
0.876

0.854 0, 
4509

Point-counts,
mist-netting

245 MAT (°C), Mean 
RH (%), Mean 
Tree Height (m), 
Mean Tree Basal 
Area (cm2)

Katerina 
Sam 

2010-
2012

(Tvardikov
a 2013; 
Sam & 
Koane 
2014)

Ferns
Mt. 
Wilhelm 
Transect

5°44'S–
5°47vS, 
145°03'E–
145°20'E

8 0.022, 
0.876

0.854 0, 
4509

Plot-based 
(20x20m²)

359 MAT (°C), Mean 
RH (%), MAP 
(mm), Area (% of 
total per 100m 
band)

D.N. 
Karger, S.
Noben, 
M. 
Lehnert, 
M.S. 
Sundue

 2014  None

Australia Datasets

Moths 
(macromoths + 
Pyraloidea)

Border 
Ranges 
(NSW)

28°24'S–
28°22'S, 
153°1'E–
153°5'E

5 0.220, 
0.959

0.739 0, 1100 Light traps 612 °C min, max 
median, average 
plant richness

Louise  
Ashton, 
Roger  
Kitching

2009-
2010

(Ashton et 
al. In 
press.)
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Sampling 
method

S
pe
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es

Environmental 
variables and 
their units

Data 
provider

C
ol

le
ct

io
n

 d
at

es

Published 
references 
to the 
dataset

Leaf miners 
(Lepidoptera, 
Coleoptera, 
Diptera, 
Hymenoptera)

Border 
Ranges 
(NSW)

28°24'S–
28°22'S, 
153°1'E–
153°5'E

5 0.183, 
0.981

0.798 0, 1100 Hand 
collecting 
and rearing 

34 Average 
Temperature (°C),
Annual 
Precipitation 
(mm), Vegetation 
cover (log of cm's 
intercepted)

Sarah 
Maunsell

2011 -
2012

(Maunsell 
et al. In 
press.)

Leaf miner 
parasitoids 
(Hymenoptera)

Border 
Ranges 
(NSW)

28°24'S–
28°22'S, 
153°1'E–
153°5'E

5 0.183, 
0.981

0.798 0, 1100 Hand 
collecting 
and rearing 

14 Average 
Temperature (°C),
Annual 
Precipitation 
(mm), Vegetation 
cover (log of cm's 
intercepted)

Sarah 
Maunsell

2011 -
2012

(Maunsell 

et al. 2015)

Borneo Datasets

Geometrid 
moths

NE 
Borneo

1°28'N-
6°16'N, 
112°06'E-
117°53'E

70 0.000, 
0.958

0.958 0, 
4095

Light traps 775 Average 
Temperature (°C),
Annual 
Precipitation 
(mm) 
[worldclim], 
forest stratum, 
vegetation type 
[field 
descriptions]

Jan Beck,
Jeremy 
Hollo-
way, 
Chey Vun
Khen

1965-
2003

(Beck et 

al. 2012) 
(undis-
turbed 
habitats 
only)

Sphingid moths NE
Borneo

0°05'S-
6°18'N, 
109°43'E-
118°10'E

19 0.000, 
0.958 0.958

0, 
4095

Light traps 102 Average 
Temperature (°C),
Annual 
Precipitation 

Jan Beck,
Ian 
Kitching 
et al.

1965-
2005

(Beck & 
Kitching 
2009)
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Dataset Locality
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Sampling 
method
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Environmental 
variables and 
their units

Data 
provider

C
ol

le
ct

io
n

 d
at

es

Published 
references 
to the 
dataset

(mm) 
[worldclim], area 
[of 200m bands], 
vegetation type 
[globcov]

North America Datasets
 

Butterflies
Califor-
nia

38°34'N-
39°20'N, 
120°20'-
121°25'W

6 0.001, 
0.966

0.965 0, 
2775

Pollard 
walk, 
presence/
absence

129 Average Max 
Daily 
Temperature (°C),
Average Min 
Daily 
Temperature (°C),
Annual 
Precipitation 
(mm)

Arthur 
Shapiro

1973-
2014

(Forister et

al. 2010). 

Mammals
Yosemite 
NP 
(Califor-
nia)

 37°30'N–
37°59'N, 
118°56'–
120°28'W

40 0.000, 
0.990

0.990 0, 
3997

Live traps, 
kill traps, 
hunting, 
visual 
observations

46 Average 
Temperature (°C),
Annual 
Precipitation 
(mm) 
[worldclim], 
elevational area 
(km per 100m 
elevational band) 
[DEM, ArcGIS]

Joseph 
Grinnell 
& Tracy 
Storer

1914-
1916, 
1919.

(Grinnell 
& Storer 
1924; 
McCain 
2005)
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Table S2. Midpoint attractors. The correspondence between midpoint density arising from the midpoint attractor model and the 

corresponding observed midpoint density was tested for significance for all ranges, for large ranges ( ≥  0.25 of the unit domain), 

and for small ranges (< 0.25 of the unit domain). Insignificant tests are reported in boldfaced italics.

Attractor
Mean

Attractor
SD

Mean
midpoint

Mean
range

R2 all
ranges

P all
ranges

R2 large
ranges

P large
ranges

R2 small
ranges

P small
ranges

Costa Rica Datasets

Ants 0.065 0.023 0.196 0.181 0.949 0.001 0.968 0.001 0.955 0.001

Arctiine moths 0.378 0.294 0.332 0.228 0.770 0.001 0.747 0.001 0.768 0.001

Geometrid moths 0.527 0.327 0.492 0.306 0.650 0.002 0.762 0.001 0.155 0.999

Ferns 0.473 0.331 0.479 0.303 0.466 0.999 0.617 0.997 0.368 0.999

Mammals 0.604 0.401 0.521 0.425 0.675 0.001 0.744 0.001 0.007 0.001

Papua New Guinea Datasets

Ants 0.153 0.123 0.199 0.156 0.867 0.001 0.995 0.001 0.832 0.001

Butterflies 0.098 0.239 0.205 0.180 0.954 0.001 0.998 0.001 0.941 0.001

Birds 0.243 0.411 0.330 0.285 0.918 0.001 0.899 0.001 0.968 0.001

Ferns 0.440 0.222 0.447 0.156 0.801 0.001 0.548 0.001 0.246 0.001

Australia Border Ranges Datasets 

Moths 0.555 0.291 0.583 0.419 0.912 0.001 0.939 0.001 0.831 0.001

Leaf miners 0.742 0.418 0.630 0.426 0.555 0.015 0.542 0.013 0.569 0.999

Leaf-miner parasitoids 0.492 0.219 0.534 0.493 0.551 0.003 0.553 0.003 0.436 0.758

Borneo Datasets 

Geometrid moths 0.151 0.181 0.226 0.173 0.840 0.001 0.626 0.001 0.868 0.001

Sphingid moths 0.104 0.120 0.214 0.342 0.993 0.001 1.000 0.001 0.966 0.001

North America Datasets 
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Butterflies 0.532 0.476 0.502 0.486 0.632 0.996 0.635 0.997 0.448 0.983

Mammals 0.435 0.282 0.381 0.353 0.435 0.001 0.371 0.009 0.724 0.001
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Table S3. Midpoint attractors in relation to environmental variables and observed species richness, analyzed by multiple regression 

with AIC-based model selection. Values of R2 < 0.5 are set in italics. Values of delta AIC > 3 are boldfaced. The corresponding 

scatterplots appear in Fig. S1. Because the attractor is a continuous function (a doubly-truncated Gaussian distribution) and the other 

variables are spatially autocorrelated, significance probabilities cannot be assigned to R2 values, which are thus best viewed as 

comparative.

Dataset Response Variable Predictor Variables n R2 Condition
Number

Delta
AIC

Costa Rica Datasets  
Ants Empirical richness Temperature 10 0.856 1.000 0.000
 Attractor Temperature & Relative humidity 10 0.971 2.354 0.000
  Temperature & Area 10 0.971 4.625 1.332
  Temperature & Precipitation 10 0.972 2.548 1.857
 Empirical richness Modeled richness 10 0.942 1.000 0.000
 Attractor 10 0.845 1.000 9.563
Arctiine moths Empirical richness Temperature & Area 10 0.927 4.625 0.000
  Precipitation 10 0.839 1.000 1.896
 Attractor Precipitation & Area 10 0.852 1.616 0.000
  Relative humidity & Precipitation 10 0.833 1.040 1.217
  Temperature & Precipitation 10 0.825 2.548 1.712
  Precipitation 10 0.678 1.000 1.793
 Empirical richness Modeled richness 10 0.879 1.000 0.000
  Attractor 10 0.762 1.000 6.770
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Dataset Response Variable Predictor Variables n R2 Condition
Number

Delta
AIC

Geometrid moths Empirical Area 10 0.647 1.000 0.000
  Temperature & Area 10 0.788 4.625 0.899
  Relative humidity 10 0.608 1.000 1.037
  Precipitation & Area 10 0.744 1.616 2.377
 Attractor Relative humidity 0.623 1.000 0.000
 Empirical richness Modeled richness 10 0.898 1.000 0.000
  Attractor 10 0.869 1.000 2.448
Ferns Empirical richness Precipitation & Area 10 0.785 1.616 0.000
  Temperature & Area 10 0.770 4.625 0.690
  Relative humidity 10 0.560 1.000 1.165
 Attractor Relative humidity 10 0.666 1.000 0.000
 Empirical richness Modeled richness 10 0.898 1.000 0.000
  Attractor 10 0.883 1.000 1.312
Mammals Empirical richness Area 10 0.043 1.000 0.000
  Precipitation 10 0.020 1.000 0.267
  Temperature 10 0.013 1.000 0.348
 Attractor Area 10 0.483 1.000 0.000
 Empirical richness Attractor 10 0.630 1.000 0.000
  Modeled richness 10 0.611 1.000 0.538
Papua New Guinea 
Datasets
Ants Empirical richness Temperature 8 0.867 1.000 0.000
 Attractor Temperature 8 0.586 1.000 0.000
  Tree height 8 0.539 1.000 0.859
 Empirical richness Modeled richness 8 0.894 1.000 0.000
  Attractor 8 0.861 1.000 2.142
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Dataset Response Variable Predictor Variables n R2 Condition
Number

Delta
AIC

Butterflies Empirical richness Temperature 8 0.842 1.000 0.000
 Attractor Temperature 8 0.925 1.000 0.000
  Temperature & Relative humidity 8 0.968 1.812 2.486
 Empirical richness Modeled richness 8 0.975 1.000 0.000
  Attractor 8 0.950 1.000 5.461
Birds Empirical richness Temperature 8 0.958 1.000 0.000
  Temperature & Basal area 8 0.985 1.360 1.299
 Attractor Temperature 8 0.804 1.000 0.000
  Tree height 8 0.731 1.000 2.530
 Empirical richness Modeled richness 8 0.935 1.000 0.000
  Attractor 8 0.876 1.000 5.222
Ferns Empirical richness Basal area 8 0.442 1.000 0.000
  Humidity 8 0.236 1.000 2.518
 Attractor Basal area 8 0.447 1.000 0.000
  Humidity 8 0.272 1.000 2.207
 Empirical richness Modeled richness 8 0.813 1.000 0.000
  Attractor 8 0.810 1.000 0.137
Australia Datasets
Moths* Empirical richness Temperature-Precipitation PCA 10 0.123 1.000 0.000
  Tree Richness 10 0.122 1.000 0.007
 Attractor Temperature-Precipitation PCA 10 0.139 1.000 0.000
  Tree Richness 10 0.078 1.000 0.625
 Empirical richness Attractor 10 0.926 1.000 0.000
  Modeled richness 10 0.907 1.000 1.966

Leaf-miners Empirical richness
Temperature-Precipitation PCA &
Tree richness

10 0.704 1.357 0.000
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Dataset Response Variable Predictor Variables n R2 Condition
Number

Delta
AIC

  Tree Richness 10 0.338 1.000 0.032
  Temperature-Precipitation PCA 10 0.164 1.000 2.131
 Attractor Temperature-Precipitation PCA 10 0.560 1.000 0.000
 Empirical richness Modeled richness 10 0.342 1.000 1.000
  Attractor 10 0.163 1.000 2.162
Leaf-miner parasitoids Empirical richness Temperature-Precipitation PCA 10 0.476 1.000 0.000
 Attractor Temperature-Precipitation PCA 10 0.442 0.939 0.000
 Empirical richness Attractor 10 0.939 1.000 0.000
  Modeled richness 10 0.770 1.000 11.878
 
Borneo Datasets
Geometrid Moths Empirical richness Temperature 10 0.188 1.000 0.000
  Precipitation 10 0.068 1.000 1.337
 Attractor Temperature 10 0.680 1.000 0.000
 Empirical richness Attractor 10 0.469 1.000 0.000
  Modeled richness 10 0.461 1.000 0.152
Sphingid moths Empirical richness Temperature & Area 10 0.944 2.034 0.000
 Attractor Temperature 10 0.702 1.000 0.000
  Cover Classes 10 0.683 1.000 0.614
 Empirical richness Modeled richness 10 0.994 1.000 0.000
  Attractor 10 0.713 1.000 38.012
North American Datasets
Butterflies Empirical richness Precipitation 11 0.533 1.000 0.000
 Attractor Precipitation 11 0.404 1.000 0.000

  
Precipitation & Minimum 
temperature

11 0.624 2.324 0.170
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Dataset Response Variable Predictor Variables n R2 Condition
Number

Delta
AIC

  
Precipitation & Maximum 
temperature

11 0.590 2.265 1.120

 Empirical richness Modeled richness 11 0.968 1.000 0.000
  Attractor 11 0.936 1.000 7.506
Mammals Empirical richness Precipitation 10 0.154 1.000 0.000
  Area 10 0.140 1.000 0.163
  Temperature 10 0.034 1.000 1.327
 Attractor Precipitation 10 0.429 1.000 0.000
 Empirical richness Modeled richness 10 0.725 1.000 0.000
  Attractor 10 0.697 1.000 4.655

*Temperature and precipitation were highly (inversely) correlated for the Australian moths dataset (Condition Number = 21.696). PCA
was extracted to reduce the effects of collinearity.
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Table S4. Analysis of midpoint predictor models for range midpoint locations. Each row 

represents a different environmental variable that was used to model probabilities of 

midpoint occurrence along the domain. A plus sign (+) indicates P < 0.05, meaning that 

the results were improbable relative to a particular model (P(data|model)). Numerical 

entries indicate one-tailed P values, based on 1000 simulations, for which P > 0.05 

indicates that the data were not improbable, given the model. See Supplemental 

Materials and Methods for the algorithms of the two midpoint predictor models.

Dataset Environmental Variable  Model 1  Model 2
Costa Rica Datasets  
Ants Temperature + +
 Precipitation + +
 Relative humidity + +
 Area + +
Arctiine moths Temperature + +
 Precipitation + +
 Relative humidity + +
 Area + +
Geometrid moths Temperature + +
 Precipitation + +
 Relative humidity + +
 Area + +
Ferns Temperature + +
 Precipitation + +
 Relative humidity + +
 Area + +
Mammals Temperature 0.277 0.294
 Precipitation 0.300 0.305
 Area + +
Papua New Guinea Datasets  
Ants Temperature + +
 Relative humidity + +
 Tree height + +
 Basal area + +
Butterflies Temperature + +
 Relative humidity + +
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Dataset Environmental Variable  Model 1  Model 2
 Tree height + +
 Basal area + +
Birds Temperature + +
 Relative humidity + +
 Tree height + +
 Basal area + +
Ferns Temperature + +
 Relative humidity + +
 Tree height + +
 Basal area + +
Australia Datasets  
Moths Temperature + +
 Precipitation + +
 Tree richness + +
Leaf-miners Temperature + +
 Precipitation 0.132 0.083
 Tree richness + +
Leaf-miner parasitoids Temperature + 0.053
 Precipitation + 0.056
 Tree richness 0.074 0.153
Borneo Datasets  
Geometrid moths Temperature + +
 Precipitation + +
Sphingid moths Temperature + +
 Precipitation + +
 Area + +
 Cover classes + +
North American Datasets  
Butterflies Minimum temperature + +
 Maximum temperature + +
 Precipitation + +
Mammals Temperature 0.266 0.069
 Precipitation 0.230 +
 Area 0.154 +
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SUPPLEMENTAL FIGURE CAPTIONS

(Note: In the all-in-one pdf prepared for peer review, each caption appears in context 

with the corresponding figure at the end of the file.)
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Fig. 1. Geometric constraint models. (A) The classic geometric constraint model 

illustrated by a physical analogy: a set of pencils (species), some shorter and some longer 

(narrower and wider elevational ranges), stored in a schoolchild’s old-fashioned pencil-

box (the bounded elevational domain) (Colwell et al. 2004). If the box is shaken end to 

end, horizontally, so that the position of each pencil is randomized, the expected number 

E(n) of pencils that overlap (species richness) near the middle of the box is inevitably 

greater than the number that overlap nearer the ends of the box, a pattern that is 

symmetric around the center of the box. But the constraint does not act uniformly on the 

pencils as the box is shaken: the shorter pencil stubs move more widely and freely than 

the longer pencils. By analogy, the distribution of small-ranged species is less constrained

by geometry than the distribution of large-ranged species (Colwell & Lees 2000; Dunn et

al. 2007). (B) A physical analogy for the midpoint attractor model. Suppose that each 

pencil has a steel ball bearing embedded at its midpoint (blue circles). A magnetic field, 

the attractor, is applied across the pencil box (green). As the box is shaken end to end, the

pencils tend to collect near the attractor, as their midpoint ball bearings are drawn 

towards the magnet. If the attractor is located near one end of the box, as illustrated, the 

expected number of pencils E(n) that stack up at any location along the length of the 

pencil box is asymmetric. However, because the midpoints of the longer pencils cannot 

align with the magnet (instead abutting the end of the box), the peak of E(n) does not 

coincide with the center of the attractor. Thus E(n) is influenced jointly by the attractor 

(the magnet) and the constraint (the limits of the pencil box). The pattern of E(n) is 

narrow when the attractor is strong, broad when the attractor is weak. (C) The midpoint 

attractor modeled with a doubly-truncated Gaussian probability density function with 

mean A and standard deviation B. Parameter A controls the position of the attractor on the
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gradient. Parameter B controls the strength of the attractor (small B = a strong attractor, 

large B = a weak attractor).

Fig. 2. The Bayesian midpoint attractor model applied to the Costa Rican arctiine moth 

dataset (222 species sampled across a 2906m elevational domain, rescaled to a [0,1] unit 

line). Left panel: Mean species richness (dark blue line) and 95% confidence interval 

(light blue band) for 100 simulations. The simulation is driven by a midpoint attractor 

(dark green vertical line) at 0.378, with a standard deviation (light green rectangle) of 

0.294. These parameter values were chosen maximize the fit of modeled species richness 

(blue line) to empirical species richness pattern (black dots), using a simple MCMC 

Gibbs sampler. Empirical range sizes are maintained in the simulation. Right panel: 

Midpoint-range plot for the same data. The x-axis is the location of the range midpoint 

for each species on the elevational domain, and the y-axis plots the elevational span of the

range (range size). The triangle sets the geometrically feasible midpoint limits for ranges 

of a given size. Black and grey points and associated horizontal line segments illustrate 

the empirical midpoint and range values for the 222 species of moths. Because many 

species have identical ranges and midpoints in this dataset, the shading of each point is 

proportional to the number of coincident species midpoints. The white-to-blue color scale

in the 16 small triangles is proportional to the mean number of modeled points falling in 
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each triangle, averaged over the 100 runs of the simulation. The correspondence between 

the number of empirical points (black point density and color saturation) and the average 

number of modeled points (blue saturation) among the 16 small triangles is significant at 

P < 0.001 for this dataset (Appendix 2, Table S2). (See Appendix 1, Supplemental 

Materials and Methods for details of the test.)
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Fig. 3. The Bayesian midpoint attractor model applied to four datasets from the same 

elevational gradient (or, for mammals, a nearby gradient) in Costa Rica (panel columns 1 

and 2) and four datasets from a single elevational gradient in Papua New Guinea (panel 

columns 3 and 4). The number of empirical points (black point density and color 

saturation) and the average number of modeled points (blue saturation) among the 16 

small triangles is significant at P < 0.001 for 7 of the 8 datasets (Costa Rican ferns are the

exception; see Appendix 2, Supplemental Discussion on centered attractors). A fifth 

dataset from the same Costa Rican gradient appears in Fig. 2, and Fig. 3 shows 7 

additional datasets. See Fig. 2 for graphical details, Appendix 2, Table S2 for statistical 

results, and Appendix 2, Table S1 for details of the datasets.
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Fig. 4. The Bayesian midpoint attractor model applied to seven datasets from Borneo, 

Australia, and North America. See Fig. 2 caption for graphical details, Appendix 2 Table 

S2 for statistical results, and Appendix 2 Table S1 for details of the data sets.
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Fig. 5. The signature of geometric constraints in the modeled patterns of species richness.

The closer the modeled attractor lies to a domain limit, the greater the discrepancy 

between the location of the attractor and the mean location of range midpoints on the 

domain. The graph shows the relationship between |(���� ��������−���������)| 

and |(0.5−���������)|. Each point represents a different dataset (n = 16, slope = 0.592, P

< 0002). See Table S2 for data points.
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Appendix 2, Fig. S1, A-D. Relationships between the modeled attractor, simulated 

species richness, empirical species richness, and measured environmental variables for 

each of the 16 datasets (in four geographical groups). Each dataset is represented by the 

four panels in a row. Within a panel, each point represents one of 9 or 10 elevations 

within the (rescaled) domain at which variables were evaluated. First panel: the 

regression of empirical richness vs. the modeled midpoint attractor. Second panel: unity-

line regression (slope = 1, Romdal et al. 2005) of modeled richness vs. empirical 

richness. Third panel: regression of the modeled midpoint attractor vs. the best-fitting (by 

AIC) environmental variables. Fourth panel: the regression of empirical species richness 

vs. the best-fitting (by AIC) environmental variables. See Table S3 for statistical results. 
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Appendix 2, Fig. S2. Costa Rican fern dataset with no attractor (pure geometric 

constraints) (left panel) and with the best-fit midpoint attractor (right panel). The 

modeled curves differ slightly in shape, but the overall fit is quite similar. Empirical 

richness values are the black points, identical in the two plots. 
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Appendix 2, Fig. S3. Sampled (A, B) pairs of midpoint attractor parameters generated by 

the MCMC Gibbs sampler for the Costa Rican arctiine moth dataset. Point width is 

proportional to the coefficient of determination (R2) between modeled and observed 

species richness across the elevational domain. Point color is arbitrary. The green lines 

indicate the optimized pair of parameter values (A = 0.378, B = 0.294) that yielded the 

highest R2, which was used to produce model for the arctiine moth dataset in Fig. 3 (main

text).
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Appendix 2, Fig. S4. The geometric constraint triangle, subdivided into 16 smaller, 

equal-sized triangles.

44226
227

1175

1176

228


	Title: Midpoint attractors and species richness: Modeling the interaction between environmental drivers and geometric constraints
	Short title: Midpoint attractors and species richness
	Abstract:
	Introduction
	Materials and Methods
	Results
	Discussion
	References
	Figure Captions (Main Text)
	Ants
	Arctiine moths
	Geometrid moths
	Ferns
	Mammals
	Tilarán Mt. Range
	Ants
	2012
	�(Moses 2015)�
	Butterflies
	Modified Pollard transects (Caldas & Robbins 2003)
	2009 
	Birds
	Ferns
	Moths (macromoths + Pyraloidea)
	Leaf miners (Lepidoptera, Coleoptera, Diptera, Hymenoptera)
	Leaf miner parasitoids (Hymenoptera)
	Geometrid moths
	NE Borneo
	Sphingid moths
	NE
	0.958
	Butterflies
	Mammals




