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TRUNCATED DISTRIBUTIONS IN HYDROLOGIC ANALYSIS!

Hugo A. Loaiciga, Joel Michaelsen, and Paul F. Hudak?2

ABSTRACT: Truncated samples arise in a variety of hydrologic sit-
uations in which certain values of the variables of interest are
unobservable. Remotely sensed data, for example, are truncated
below the resolution level of the sensor: all objects smaller than the
resolution of the instrument are not detected and their characteris-
tics cannot be recorded. Many other situations occur in hydrologic
studies where a sampling procedure or method yields truncated
samples. The main results on this work on truncated samples are:
(1) a general expression for the probability distribution function of
a truncated random variable; (2) a description of the effect of trun-
cation on the distribution function of several important probability
models and on their parameters; and (3) development of a parame-
ter estimation methodology for parameter estimation from truncat-
ed samples.

From the theoretical results of this paper and the analysis of
drought-related data, we have concluded that: (1) truncated sam-
pling can be advantageous, especially when certain ranges of val-
ues are difficult or impossible to observe; (2) the developed method
for truncated sample analysis leads to efficient and accurate
parameter estimation and statistical inference on truncated data;
and (3) the developed method for truncated sample analysis can
also yield the parameters and the distribution of the entire popula-
tion when only a subset of that population is observable.

(KEY TERMS: streamflow; truncation; sampling; water resources
planning.)

INTRODUCTION
Censoring, Truncation, and Partial Series

There are many instances in which hydrologists
work with subsets of complete data sets. When
indexed by time, the complete data set is referred to
as a complete series, whereas any subset of the com-
plete series is called a partial series. Well known
examples of partial series are those obtained from
hydrologic records (rainfall, runoff) whereby only

those values exceeding a certain threshold are kept in
the data set, regardless of their time of occurrence. In
general, however, the use of subsets of data in hydrol-
ogy goes beyond the realm of time series analysis and
includes spatial data or other data generated by a
variety of sampling schemes. Analytical data on water
quality, in which there exist minimum detection levels
below which cannot be recorded, are classical exam-
ples of partial data sets (U.S. EPA, 1989). Remote
sensing data, where the resolution of sampling instru-
ments restricts observable phenomena to have a mini-
mum size (Dubayah et al.,1990), is another example of
an incomplete or partial data set. All of the cited
examples of partial data sets present a common char-
acteristic, namely, there is a censoring mechanism,
intentional or not, by which certain observations are
eliminated from the total sample.

In the statistical literature, partial data sets are
known by different names, including truncated sam-
ples (Rao, 1989), censored samples (David, 1981;
Miller, 1981; Kendall and Stuart, 1979), or incomplete
samples (Rao, 1989). Strictly speaking, censoring pur-
posely restricts data recording to some interval,
whereas truncation is such that if the random vari-
able of interest falls outside some interval, even its
existence is unobserved. For example, if a microscope
cannot detect bacteria below a certain diameter, the
size distribution of the sampled bacteria becomes
truncated due to this sampling limitation. On the
other hand, a study of the lower tail of the distribu-
tion of streamflows might require using only those
order statistics that fall below a certain threshold in a
sample (Loaiciga and Marino, 1988). This would rep-
resent a case of censoring.

1Paper No. 92062 of the Waler Resources Bulletin. Discussions are open until June 1, 1993.

2Respectively, Associate Professor, Department of Geography and Environmental Studies Program, University of California, Santa
Barbara, CA 93106; Associate Professor and Chairman, Department of Geography, University of California, Santa Barbara, California 93106;
and Assistant Professor, Department of Geography, University of North Texas, Denton, Texas 76203.
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Censoring and truncated data have found a large
number of applications across scientific disciplines,
including hydrology. Censored data analysis in hydro-
logic studies has mainly focused on population param-
eter estimation based on a subset of the total data set
(see, e.g., Gilliam and Helsel, 1986; Helsel and Cohn,
1988; Loaiciga and Marino, 1988).

There are three main types of censoring methods,
the so-called types I, II, and III (Miller, 1981). In Type
I, right-censoring, the recorded observations are equal
to the variables of interest if the observations are less
than (or equal to) a specified threshold. When the
observations exceed the threshold, their recorded val-
ues are set equal to the threshold. Type I, left-censor-
ing, occurs whenever the censored observations are
those that fall below the threshold (see Equation 7
below). An example of Type I (right-) censoring would
be the measurement of the times that it takes to com-
plete a batch of experiments. If the completion times
are less than a threshold, ¢, then they are recorded as
measured. Otherwise, the times to completion may be
considered too long and censored at the threshold ¢,.
The recorded sample of observed completion times
and censored times (equal to ¢,) represents a right-
censored sample.

In Type II censoring, the censored sample is com-
posed of either the first r order statistics of the total
sample or, alternatively, of the r largest order statis-
tics of the total sample. Loaiciga and Marino (1988)
provided an example of Type II censoring, in which a
set of order statistics was used to characterize the
shape of the lower tail of streamflow distributions.
Type III censoring is characterized by multiple,
random, censoring thresholds. In the case of Type III
right-censoring, the recorded observations are equal
to the variables of interest if the observations are less
than the thresholds. Otherwise, the recorded observa-
tions are set equal to the values taken by the (ran-
dom) thresholds. For Type III left-censoring, the
recorded observations equal the variables of interest
only when they exceed the thresholds.

The methods presented in this work concern data
sets obtained by truncation. In this situation, the
variables of interest are observable, and recorded,
only when their values are within a fixed interval. For
example, if a sensor has a spatial resolution of ten
meters, the distribution of the size of samples objects
becomes truncated below the size of ten meters. If the
distribution of the number of children in families is
ascertained by surveying students in elementary
schools, the distribution of the number of children
becomes truncated below the size of one, since all
families in the sample would have at least one child.
Although the last example might be thought of as

being the result of a faulty sampling plan, it may be
advantageous in some cases to sample subsets of a
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population in consideration to limited time and
resources. Thereafter, one can utilize statistical cor-
rections on the truncated sample to make unbiased
inferences on the sampled population as a whole. In
the remainder of this paper, we will use the term
truncated distributions rather than partial series to
characterize data obtained by a truncation process. It
has been discussed previously that the term partial
series might encompass censored as well as truncated
data sets.

The Distribution of Truncated Random Variables

Let us consider first the case of interval truncation.
Suppose that a random variable X is truncated to the
interval (0,+c). Therefore, values below the trunca-
tion level 6 are not observable. Concentrations of
chemicals restricted by analytical precision to be mea-
surable only above a minimum detection level is an
example of interval truncation. Let us denote the
truncated random variable by X,. Notice then that the
truncated random variable obeys the following proba-
bility law (P denotes probability):

PXr>x)=PXz2x1X20) (1)

where x 2 0 by definition of the truncated random
variable. The conditional probability on the right-
hand side of Equation (1) can be expanded to yield:

P(XTZx)=P(X2x;X20/P(X26) (2)

and, since x > 6, Equation (2) is further simplified:

P(XTZx)=P(X2x)/P(X20) 3

The simplification on the right-hand side of Equation
(3) follows from the fact that the event “X > x” is a
subset of the event “X > 0”. Therefore, by the axioms
of probability theory, the joint probability of these two
events equals the probability of the “smaller” event.
From Equation (3) the probability density function
(pdf) of the truncated random variable becomes (the
prime denotes differentiation with respect to x):

fXT(x)=P (X 2 x)

—P'(XTZ x)
=P’ (X<x)/P(X>0)

=fX(x)/P(X20), x20 (4)
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Equation (4) shows that the pdf of the truncated
random variable is a scaled form of the pdf of the orig-
inal variable, fy. It is straightforward to show that the
pdf of a right-truncated random variable (as opposed
to the left-truncated case of Equation 4) is given by:

fy (D=f L x)/ P(X<0), x50 ®)

From either Equations (4) or (5) it is seen that the
truncated pdf is positive and that

[ fy (x)dx=1 ()
R “r

where R denotes the restricted range of the truncated
random variable. Therefore, the pdf of the truncated
random variable, as expressed in either Equations (4)
or (5), satisfies the conditions of a well-defined proba-
bility density function.

It is now possible to elucidate the fundamental dif-
ference between a censored variable, X, and a trun-
cated variable. In the left-censoring, Type I, case, the
censored variable is defined as follows:

_ [XifX20

. )
0if X<0

The censored random variable is characterized by the
following probability distributions:

P(Xch)=FX(x), x>0 ®
P(X <x)=0, x<0 @

where
(10)

Fx(x) = P(X<x)

is the cumulative distribution function of the original
random variable X. Equations (8) and (9) indicate
that the left-censored random variable in Equation (7)
has a discontinuous distribution function with a dis-
continuity equal to Fx(0) at x = 0. This is illustrated in
Figure 1. The cumulative distribution function of the
left-truncated variable follows immediately from
Equation (4), and is shown in Figure 2. It is seen in
Figure 2 that the distribution function of the (left-)
truncated variable is continuous everywhere and is a
scaled form of the cumulative distribution function of
the random variable X. Incidentally, the expected val-
ues of the left-censored and left-truncated random
variables can be shown to be:

855

E(X )= [xf (x)dx + OF (0)
0

= [1-F_(x)ldx +0

(11)
0
E(X,) = [2f, (x)dx
1) T
=fu-F (01dx/P(X20)+0  (12)

]

Equations (11) and (12) show the effect of censoring
and truncation on the first moment of a probability
distribution, respectively. For example, considering
the exponential distribution (to be discussed in detail
below), the truncated expected value is (1/A)+0, com-
pared with the unrestricted expected value of 1/A,
where A is the parameter of the exponential distribu-
tion. The censored expected value, on the other hand,
is given by (e-*/1)+0. It is seen then, that although
somewhat similar insofar as restricting the range of
recorded observations, censoring and truncation are
fundamentally different statistically, and they pro-
duce distinct derived distributions.

F (x
x() /N
C 4o
\F(x)
) X
X !
0 —O >
0 e /x

Figure 1. Distribution Function of a Left-Censored
Random Variable.
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Figure 2. Distribution Function of a Left-Truncated
Random Variable.

The distribution functions and expected values of
left-censored and left-truncated random variables can
be modified to describe the case of right-censoring or
right-truncation without difficulty. In fact, the proba-
bility density function of a truncated random variable
in the arbitrary set R (i.e., X1€R) is given by:

fXT( x)= fX( x)/ P(XeR), xeR (13)

Equation (13) indicates that truncation results in a
scaling of the probability density function of the origi-
nal random variable, and the scaling factor is equal to
the inverse of the probability that the original vari-
able is in the set R. Equation (13) is a generalization
of the results previously obtained for interval-truncat-
ed random variables in Equations (4) and (5).

PARAMETER ESTIMATION AND DISTRIBUTION
FITTING FOR TRUNCATED RANDOM VARIABLES

Truncated samples in hydrologic studies include
partial series where only data that exceed certain
threshold are recorded, or where the resolution of a
sampling instrument restricts the range of the record-
ed observations. In some instances, limitations on
budget, time, and geographic accessibility force a
sampling scheme to truncate the random variable of
interest. There is, therefore, fertile ground in hydrolo-
gy for the application of the statistical methods for
truncated sample analysis presented in this section.
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Suppose that there are n observations of a truncat-
ed random variable, x;, x9, . . . , x,. TWo questions
arise: (1) is it possible to ascertain that these vari-
ables are indeed generated by a truncation process,
and (2) can we infer the parameters of the parent pop-
ulation (i.e., described by an unrestricted random
variable) from the truncated sample? The first ques-
tion is of practical interest since, in many cases,
either by experimental design or some other (acciden-
tal or intentional) mechanism, a sample may be trun-
cated and it is necessary to answer statistical
questions about the truncated random variable. Such
questions could include quantile and moment estima-
tion, or hypothesis testing on the truncated variable,
amongst others. The issue of parameter estimation is
also relevant. Recovering the parameters of the par-
ent population from a truncated sample can lead to a
full characterization of the parent population when it
is only possible to observe the truncated random vari-
able.

It has been shown in the previous section that
truncation shifts and scales the truncated distribution
function only, without altering its overall shape (see
Figure 2). Therefore a truncated, skewed, lognormal
distribution will remain skewed and retain the overall
shape of the original distribution except for some scal-
ing and shifting, Similarly, a truncated exponential
distribution will retain its exponential decay, albeit
with a different rate and a translation of its mean.
This same pattern of shape preservation holds true
for symmetric distributions such as in the normal (or
Gaussian) case. Shape preservation is helpful in iden-
tifying the proper distribution model for a truncated
random variable. By the simple plotting of data and
basic descriptive analysis (e.g., histogram analysis)
one can postulate a distribution model, fit it and then
conduct a goodness-of-fit test for model verification.
The preservation of the shape of the distribution func-
tion under truncation can be disadvantageous, howev-
er. When the existence of truncation is unknown to
the data analyst, it can lead to fitting the wrong (i.e.,
unrestricted) probability model to the data, failing to
recognize the underlying mechanism that generates
them.

Besides the difficulties brought about by the speci-
fication of a suitable probability model when analyz-
ing truncated data, truncation can introduce changes
in the parameters that govern the truncated distribu-
tion relative to those parameters in the original dis-
tribution. Several probability models will be
examined below to illustrate the effects of truncation
on the resulting (truncated) distribution, and to show
the modification of distribution parameters under
truncation. The distribution models discussed below
find frequent application in hydrologic and water
resources planning studies.
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The Uniform Distribution

This is one of the fundamental distributions in
statistics (see Loaiciga, 1988, for an application in
hydrological studies). Suppose that X is a random
variable uniformly distributed in the interval (a,b). Its
probability density function is:

(14)

f (210, b)= bl . xe(a, b)

- a

If observations of X are restricted to the interval x<0.
then the truncated probability density function
becomes:

=1
fXT(xl a,0)= 5" xe(a, 6) (15)

Equation (15) shows that the uniform distribution is
preserved under (right) truncation, although one of its
parameters, the upper bound of the distribution, is
modified by truncation.

The Pareto Distribution

This distribution is useful in economic modeling,
and, in particular, in water-resources economics
(James and Lee, 1971). Assume that the random vari-
able X is Pareto distributed with parameters o and .
Its probability is given by the following expression:

Yy -(y+1)

fX(xla’Y)=Ya X ’ (16)

xZ2Q

Suppose that the random variable X is truncated to
the interval X>0. Then, the probability density func-
tion of the truncated random variable X7 becomes:

-(y+1)

fX(xI9,7)=yeyx £20 (7

Therefore, the Pareto density function is preserved
under (left) truncation. The parameter o is modified
by the truncation process.

The Exponential Distribution

This distribution appears naturally in the study of
waiting times and recurrent phenomena. The study of
the inter-arrival time between such phenomena
as floods or droughts relies in many cases on exponen-
tial models (Loaiciga et al., 1992). Let X be an

857

exponentially distributed random variable with the
following probability density function (A is the densi-
ty’s parameter):

fX(xlk)=le')‘x, x>0 (18)

If the random variable X is truncated to the interval
X>9, its truncated probability density becomes:

a(x-0)

fx(xlx,e)=xe“ x20 (19)

The exponential density is preserved, along with its
parameter A, although the argument in the exponen-
tial is decreased by an amount equal to the truncation
threshold.

The Geometric Distribution

This is the analog of the exponential distribution
for discrete random variables. The geometric distribu-
tion is better known in hydrology by its role in model-
ing the recurrence of annual events, such as
streamflows (Loaiciga and Marino, 1991). Suppose
that the random variable X has a geometric distribu-
tion with parameter p:

1

P(X=xlp)=(1-p)p*~ ", (20)

x=12,..

then, its left-truncated probability distribution (X>8)
is given by the following expression:

P(X =xlp, 0)=1-p)p %1,

x=0+10+2,. 2D

The truncated random variable still has a geometric
distribution. Its range, however, is restricted, and the
exponent in the distribution function is decreased by
the amount 6.

The Gumbel Distribution

Introduced by Gumbel (1958), this distribution can
be used to model extreme events, such as rainfall or
floods. If X denotes a Gumbel-distributed random
variable with parameters ¢ and d, its density function
is given by:

fX( xl ¢, d) = cd exp( — dx)expl — ¢ exp( - dx)],
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then its right-truncated probability density function
becomes (where X<0),

fX (xlec d,0)=cdexp(- dx)

exp{~ clexp(— dx) - exp(- d6)])
—0<x <0 (23)

Unlike the previous distributions, a truncated
Gumbel random variable does not have an exact
Gumbel probability density function as shown in
Equation (23).

Other important distributions in hydrology, such as
the lognormal distribution, show a pattern similar to
that exhibited by the Gumbe! distribution under trun-
cation: their random variables are restricted in their
ranges and their truncated distributions do not con-
form exactly to the original distribution models.
Except for a few (but important) distributions (e.g.,
the uniform, Pareto, exponential, geometric, and
Gumbel), it is not possible, in general, to derive
explicit, closed form, expressions for truncated distri-
butions in terms of the original parameters and trun-
cation thresholds. Numerical integration is required
in some cases. Equation (13), however, provides a gen-
eral rule for deriving probability density functions of
truncated random variables.

Maximum Likelihood Estimation with Truncated
Samples

For a truncated sample of n observations x;, x,,
. . x, the likelihood function, L, follows from
Equation (13):

n

-n
Lz[ i1=tl fX(in ¢)]P(X8RI ¢) (24)

In Equation (24), ¢ denotes the set of parameters gov-
erning the distribution of the unrestricted random
variable X. It is also assumed in Equation (24) that
the truncated random variable is restricted to the set
R. Equation (24) can be readily modified to account
for the special truncation cases involving left or right
interval truncation (see Equations 4 and 5, respec-
tively). In the method of maximum likelihood, one
must find the parameters (¢) that maximize expres-
sion (24). In general, the maximization of (24) must be
done numerically, although some distribution func-
tions permit analytical, closed-form, solutions for the
maximum likelihood estimators.

It is usually advantageous to work with the log-
likelihood function, obtained by taking the logarithm
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of the likelihood function, when deriving maximum
likelihood estimators. From Equation (24), the log-
likelihood function for the truncated sample is given
by the following expression:

n
InL= Y Inf (x10)~nln P(XeRl¢) (25)
i=1

The parameter set that maximizes the right-hand
side of Equation (25) is the maximum likelihood esti-
mator.

To illustrate the application of Equation (25) let us
use the geometric distribution (see Equations 20 and
21). Given a sample of geometric random variables,
X1, X9 - - -» X, the maximum likelihood estimator of its
parameter p is given by:

-1
p* = x:T (26)
where
n x.
T= ), 27)
i=1

If the n observations represent a left-truncated sam-
ple from a geometric distribution (see Equation 21),
then the maximum likelihood estimator of the param-
eter p is given by:

ET—9-1
pt = — (28)
T xT—e

where %, is the arithmetic mean of the truncated sam-
ple. In the next section the geometric model is used to
illustrate a method for model validation and parame-
ter estimation from truncated samples.

CASE STUDY

Michaelsen et al. (1990), reconstructed total annual
streamflow in the South Coast hydrologic area of
Southern California from 1460 through 1966. (The
South Coast hydrologic area of California comprises
the total flow in all coastal drainages between the
Ventura River and the U.S.-Mexico border.) The
streamflow reconstruction was done by means of tree-
ring analysis. The purpose of that study was to deter-
mine the characteristics of droughts; i.e., their
duration, frequency, and severity, in the South Coast
area using long streamflow series (Loaiciga et al.,
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1990; Loaiciga et al., 1992). Figure 3 shows the recon-
structed streamflow time series (median = 747 KAF;
mean = 902 KAF; standard deviation = 723 KAF; 1
KAF = 1,000 acre-feet; 1 acre-foot =1,233 m3), exhibit-
ing a conspicuously large value occurring in 1568 and
possibly explained by unusually wet conditions creat-
ed by the El Nino anomaly (Philander, 1990). Loaiciga
et al. (1990), showed that, considering time scales of
hundreds of years (i.e., 500 years), the South Coast
hydrologic area’s annual streamflow was stationary
with a skewed, lognormal, distribution typical of
semi-arid climates subject to extreme variability in
annual precipitation. In other words, the distributions
of the frequency, severity, and duration of droughts
were found to be stable when examined statistically
over the time scales considered in the study of
Loaiciga et al. (1992).

Figure 4 shows a histogram of the duration (in
years) of below-median streamflow runs for the South
Coast hydrologic area. It is seen in Figure 4 that the
distribution of the duration of runs of below-median,
annual, streamflow has an exponential decay, sug-
gesting a geometric distribution as a plausible model
for the duration of runs. The geometric distribution
(Equation 20) is applicable to discrete phenomena
such as the duration of below-median streamflow
runs. In the remainder of this section, the data in

Figure 4 will be examined to determine: (1) whether
or not the geometric model is a valid distribution for
the duration of below-median runs; and (2) the effect
of truncation on distribution fitting and population
parameter estimation. The chi-squared test (Pearson,
1914) will be used to test the goodness-of-fit of the
geometric model for unrestricted and truncated sam-
ples. Parameter estimation will be conducted by
means of the maximum likelihood for both types of
samples.

Goodness of Fit Test for the Geometric Model

The chi-squared test (see Rao, 1989) is by far the
most popular goodness-of-fit test for discrete probabil-
ity models. It can be used to test whether a sample is
generated by a theoretical probability model. In this
study we test whether the data in Figure 4 conforms
to a geometric model. We examine two cases: (1) the
distribution’s parameter is known; and (2) the param-
eter is unknown and must be estimated.

The data in Figure 4 relate to below-median flow.
Therefore, the theoretical value of the parameter in
the geometric distribution is p = 0.5, and Equation
(20) yields:

o
O—
o
0
(=]
[= g
o
0

—

g

2 o9
(=]

S 27

w
(=]
Q
[=]
o
o -

T T T
100 200

I T 1
300 400 500

YEAR

SOUTHERN CALIFORNIA, 1460 - 1966

Figure 3. Reconstructed Streamflow Time Series for South Coast.
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P(X=12)=05", x=12,.. (29)
where X represents the duration of below-median
runs. On the other hand, one might consider that the
true value of the median streamflow is unknown, and
that the median streamflow is an estimate from the
reconstructed streamflow time series. Under this sce-
nario, the parameter of the geometric distribution,
that purportedly generates the data in Figure 4, must
be estimated. The maximum likelihood estimate of
the parameter p is given by Equation (26). From the
histogram in Figure 4, the mean duration of below-
median runs is calculated to be x = 2.14 years, and
Equation (26) results in the maximum likelihood esti-
mate of the geometric distribution’s parameter being
p* = 0.53. Therefore, when its parameter 1s estimated,
the geometric model becomes:

-1
P(X=1x)=0.47(a 53)" x=1,23, -

(30)

Table 1 summarizes the results of the chi-squared
test. Notice that at a significance level of 5 percent
the geometric model satisfies the goodness-of-fit test
for both cases of the distribution’s parameter. The
geometric model with the estimated parameter (p* =
0.53) provided the better distribution fit with a P-
value of approximately 0.70, against a P-value of
about 0.57 for the geometric model with parameter
equal to 0.50. Having established a suitable distribu-
tion model for the data in Figure 4, we examine next
the effect of truncation in distribution fitting and
parameter identification.

Model Fitting and Parameter Identification Under
Truncation

Suppose that the data in Figure 4 are truncated in
such a manner that only those runs of a length
exceeding one year are observable, i.e., X > 1. This sit-
uation could arise, for example, if in the record keep-
ing of droughts only those runs of at least a two-year
duration were recorded. A single isolated event of
below-median flow would not be counted as a drought.
With the truncated record, the problem at hand
becomes one of identifying the parameters of the dis-
tribution governing the population of droughts, as
well as identifying the actual distribution governing
the truncated data.
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Figure 4. Histogram of the Duration of Below-Median
Runs for California’s South Coast Hydrologic Area.

The truncated geometric model of Equation (21),
with threshold 6 = 1, was fitted to the truncated sam-
ple of runs (i.e., runs larger than one year in Fig-
ure 4). The maximum likelihood estimator of the
distribution parameter is p}- = 0.53, with ¥p = 3.14
and 6 = 1 in Equation (28). Notice that the truncated
maximum likelihood estimator of the geometric distri-
bution’s parameter is identical to the maximum likeli-
hood estimator derived with the unrestricted data set
(see Equation 30). Therefore, by accounting for the
truncation of runs of length one, it is possible to esti-
mate the parameter of the unrestricted distribution of
runs having observed the truncated sample only. The
truncated geometric model in Equation (21) becomes:

P(X = x)=0.47(a 53) 2, x22  (31)

If one attempts to fit the unrestricted geometric dis-
tribution in Equation (20) to the truncated sample,
the maximum likelihood estimator of Equation (26)
yields p* = 0.68 (with® = 3.14 in Equation (26)), quite
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Truncated Distributions in Hydrologic Analysis

TABLE 1. Results of Goodness-of-Fit Test for Complete Data in Figure 4.

Model: p=0.50 Model: p*=0.53
Duration of Observed Number (Equation 29) (Equation 30)
Below-Median Runs of Occurrences Expected Number Expected Number
(years) (from Figure 4) of Occurrences* of Occurrences**
1 2) &) 4
1 55 118 (0.500) = 59.0 118 (0.470) = 55.56
2 28 118 (0.250) = 29.56 118 (0.249) = 294
3 19 118 (0.125) = 14.8 118 (0.132) = 15.6
4 8 118 (0.0625) = 7.38 118 (0.070) = 8.26
5 4 118 (0.0313) = 3.69 118 (0.0371) = 4.38
6 0 118 (0.0156) = 1.84 118 (0.0197) = 2.32
7 1 118 (0.00781) = 0.922 118 (0.0104) = 1.23
8 1 4 118 (0.00391) = 0.461 118 (0.00552) = 0.661
9 2 118 (0.00195) = 0.230 118 (0.00293) = 0.346
x=214 118 117.8 117.7

2
*The chi-squared statistic is D = 2(9 .~ E)) / E, where 6; represents the number of observed occurrences within each interval (column

2) and E; is the expected number of occurrences within each interval (column 3). D = 6.65 which is less than the critical chi-squared value
X2 (0.05, 8) = 15.5, and the hypothesis of a geometric model is not rejected at a 5 percent significance level.
**The chi-squared statistic is D = 4.56 which is less than the critical chi-squared value X2 (0.05, 7) = 14.1 and the hypothesis of a geometric

model is not rejected at a 5 percent significance level.
***Values are lumped to improve the chi-squared test.

in contrast with the value of p* = 0.53 derived previ-
ously (see Equation 30) with the whole sample of
runs. The unrestricted geometric model becomes,

-1
P(X=1x)=0.32(068)" x=12,.

(32)

Table 2 shows the results of the goodness-of-fit test
for the models in Equations (31) and (32) using the
truncated sample. The truncated model of Equation
(31) satisfies the goodness-of-fit test at a 5 percent
significance level with a P-value of approximately
0.71, whereas the unrestricted model of Equation (32)
did not pass the goodness-of-fit test at the 5 percent
significance level, with a P-value of less than 1079,
The results of Table 2 demonstrate that the truncated
geometric model is the only feasible model for explain-
ing the truncated data with X > 1. Any prediction or
inference based on the truncated data must, there-
fore, be derived from the truncated model. Another
important point is that we were able to calculate the
parameter of the unrestricted population distribution
based on the truncated sample alone (p} = p* = 0.53),
and, by establishing the suitability of the truncated
geometric model for data in which X > 1, we have also
identified the unrestricted geometric distribution that
generates the entire population of runs. This example
illustrates that the methods for truncated sample
analysis provide a means to recover the parameters
and identify the distribution of the entire population,
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when one has access to only a subset of the population
values.

SUMMARY AND CONCLUSIONS

In this paper we have (1) introduced the concept of
truncated samples; (2) developed maximum likelihood
estimation from truncated samples; and (3) developed
(and applied) a method for probability distribution
identification and population parameter estimation
from truncated samples. Truncated samples have an
apparent similarity to censored samples, the latter
being well-known in hydrology and water resources
applications. It has been demonstrated, however, that
truncated samples are derived from a unique type of
sampling process that leads to a specialized statistical
inference methodology. Truncated samples arise in a
variety of hydrological applications in which certain
values of the variables of interest are unobservable,
This paper also examined the effect of truncation on
several important probability distributions, and, in
particular, on the preservation of distribution under
truncation as well as the modification of population
parameters by that sampling process. Our theoretical
results are general in that: (1) they apply to discrete
and continuous random variables; and (2) they are
applicable to any type of probability distribution. The
most notable results of this research are embodied in:
(1) Equation (13), that expresses the truncated proba-
bility density function; (2) Equations (11) and (12) for

WATER RESOURCES BULLETIN

85U20| 7 SUOWIWOD BAIER.D) 3|qedl|dde aus Aq peusenob aie Sje YO ‘88N JO S3INI 10} Ariq1T8UIUO AB]1/ UO (SUORIPUCD-PUB-SLLLBIWIOY™AB| 1M ARG 1[BU U0/ SUNY) SUORIPUOD PUe SWie L 8U3 89S *[7202/60/0€] Uo Ariqiauliuo Aojim iuiojieD JO Asienlun Aq x°28TE00YZ66T 889T-2GLT [TTTT OT/I0p/w0d &3] imAReiq1jpuluo//sdny woy papeolumod ‘G ‘Z66T ‘889TZSLT



Loaiciga, Michaelsen, and Hudak

TABLE 2. Results of Goodness-of-Fit Test for Truncated Data.

Model: py=0.53 Model: p*=0.68
Duration of Observed Number (Equation 31) (Equation 32)
Below-Median Runs of Occurrences Expected Number Expected Number
(years) (from Figure 4) of Occurrences* of Occurrences**
4}) 2 3 @
1 0 0 63 (0.320) = 20.2
2 28 63 (0.470) = 29.6 63(0.218) = 13.7
3 19 63 (0.249) = 15.7 63(0.148) = 9.32
4 8 63(0.132) =8.32 63(0.101) = 6.36
b 4 63 (0.0700) = 4.40 63(0.0684) = 4.31
6 0 63 (0.0371) = 2.34 63(0.0465) = 2.93
7 1 63(0.0197) = 1.24 63(0.0316) = 1.99
8 1 4> 63 (0.0104) = 0.655 63 (0.0215) = 1.36
9 2 63 (0.00552) = 0.348 63 (0.0146) = 0.920
Ir=3.14 63 62.6 61.1

2
*The chi-squared statisticis D = Z( 6,-E) / E, where 6; represents the number of observed occurrences within each interval (column

2) and E; is the expected number of occurrences within each interval (column 3). D = 4.65 which is less than the critical chi-squared value
X2(0.05, 7) = 14.1, and the hypothesis of a geometric model is not rejected at a 5 percent significance level.
**The chi-squared statistic is D = 48.6 which is less than the critical chi-squared value X2 (0.05, 7) = 14.1 and the hypothesis of a geometric

model is rejected at a 5 percent significance level.
***Values are lumped to improve the chi-squared test.

the expected values of censored and truncated vari-
ables, respectively; (3) Equations (15), (17), (19), and
(21) that show the effect of truncation on several
important truncated distributions and their parame-
ters; and (4) Equation (25), the log-likelihood function
from a truncated sample.

Based on the theoretical results of this paper and
on a case study involving a long hydrologic time series
we have reached the following conclusions: (1) trun-
cated sampling can be advantageous, especially when
certain ranges of values are difficult or impossible to
observe; (2) the method for truncated-sample analysis
leads to efficient and accurate parameter estimation
and statistical inference on truncated data; and
(3) the method for truncated-sample analysis can also
yield the parameters and the distribution of the entire
population given that only a subset of that population
is observable. These conclusions have significant
value for experimental and sampling plan design.
With the methods of this paper it is possible to access
a portion of the population, possibly considering
issues of cost, time, observability. and the like, and
still be able to recover the parameters and distribu-
tion of the entire population from the restricted set of
observations. The results of this research also
revealed the importance of considering the effect that
a sampling mechanism might have on statistical
inference, and the types of corrections needed to
arrive at a theoretically correct method of analysis.
Possible new areas of related research, beyond the
traditional censored sampling and the truncated sam-
pling scheme developed herein, are situations in

WATER RESOURCES BULLETIN

which, say, the likelihood of observing certain obser-
vations is proportional to the magnitude of the obser-
vations. This type of situation also requires special
statistical methods of analysis for parameter estima-
tion and probability distribution identification.
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