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Genome Medicine

Structural variants linked to Alzheimer’s 
disease and other common age-related clinical 
and neuropathologic traits
Ricardo A. Vialle1*, Katia de Paiva Lopes1, Yan Li1, Bernard Ng1, Julie A. Schneider1, Aron S. Buchman1, 
Yanling Wang1, Jose M. Farfel1, Lisa L. Barnes1, Aliza P. Wingo2,3, Thomas S. Wingo4, Nicholas T. Seyfried5, 
Philip L. De Jager6, Chris Gaiteri1,7, Shinya Tasaki1 and David A. Bennett1 

Abstract 

Background Alzheimer’s disease (AD) is a complex neurodegenerative disorder with substantial genetic influence. 
While genome-wide association studies (GWAS) have identified numerous risk loci for late-onset AD (LOAD), the func-
tional mechanisms underlying most of these associations remain unresolved. Large genomic rearrangements, known 
as structural variants (SVs), represent a promising avenue for elucidating such mechanisms within some of these loci.

Methods By leveraging data from two ongoing cohort studies of aging and dementia, the Religious Orders Study 
and Rush Memory and Aging Project (ROS/MAP), we performed genome-wide association analysis testing 20,205 
common SVs from 1088 participants with whole genome sequencing (WGS) data. A range of Alzheimer’s disease 
and other common age-related clinical and neuropathologic traits were examined.

Results First, we mapped SVs across 81 AD risk loci and discovered 22 SVs in linkage disequilibrium (LD) with GWAS 
lead variants and directly associated with the phenotypes tested. The strongest association was a deletion of an Alu 
element in the 3′UTR of the TMEM106B gene, in high LD with the respective AD GWAS locus and associated with mul-
tiple AD and AD-related disorders (ADRD) phenotypes, including tangles density, TDP-43, and cognitive resilience. 
The deletion of this element was also linked to lower TMEM106B protein abundance. We also found a 22-kb deletion 
associated with depression in ROS/MAP and bearing similar association patterns as GWAS SNPs at the IQCK locus. In 
addition, we leveraged our catalog of SV-GWAS to replicate and characterize independent findings in SV-based GWAS 
for AD and five other neurodegenerative diseases. Among these findings, we highlight the replication of genome-
wide significant SVs for progressive supranuclear palsy (PSP), including markers for the 17q21.31 MAPT locus inversion 
and a 1483-bp deletion at the CYP2A13 locus, along with other suggestive associations, such as a 994-bp duplica-
tion in the LMNTD1 locus, suggestively linked to AD and a 3958-bp deletion at the DOCK5 locus linked to Lewy body 
disease (LBD) (P = 3.36 ×  10−4).

Conclusions While still limited in sample size, this study highlights the utility of including analysis of SVs for elucidat-
ing mechanisms underlying GWAS loci and provides a valuable resource for the characterization of the effects of SVs 
in neurodegenerative disease pathogenesis.
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Background
Alzheimer’s disease (AD) is a complex neurodegenera-
tive disorder heavily influenced by genetics. While recent 
genome-wide association studies (GWAS) have been suc-
cessful in identifying numerous single-nucleotide poly-
morphisms (SNPs) in risk loci for late-onset AD (LOAD) 
[1–6], the functional mechanisms underlying these 
associations often remain unresolved. Large genomic 
rearrangements, known as structural variants (SVs), rep-
resent an understudied class of genetic variation that is 
often not discoverable using genotyping assays but is 
recently garnering attention with the popularization of 
whole-genome sequencing data, which allows the detec-
tion of such variants at a large scale with considerable 
confidence [7, 8]. SVs can directly disrupt gene function 
or influence regulatory mechanisms, potentially account-
ing for causal relationships at these loci [9, 10].

Although a few SVs have already been linked to AD, 
with the most well-known being rare duplications of the 
APP gene causally linked to the early onset form of the 
disease [11–15], our knowledge of the impact of com-
mon SVs in LOAD is mostly limited to a few copy num-
ber variants (CNVs), usually detected using SNP arrays 
or PCR assays and identified in small sample-size studies 
that have weak replication [16]. A more recent effort led 
by the Alzheimer’s Disease Sequencing Project (ADSP) 
tried to link common frequency SVs to AD but did not 
find genome-wide significant results, even with a sam-
ple size of over 12,000 individuals [17]. For other neuro-
degenerative diseases, the role of SVs is usually clearer. 
For example, in frontotemporal dementia (FTD), repeat 
expansions in C9orf72 and the 17q21.31 MAPT locus 
inversion are linked to disease risk [18–20]. The same 
inversion is also a major genetic risk factor for progres-
sive supranuclear palsy (PSP) [18, 21], and it is associ-
ated with Parkinson’s disease (PD) [22, 23]. Additionally, 
a recent study found a common deletion in the gene 
TPCN1 associated with Lewy body dementia (LBD) in a 
locus also associated with AD GWAS [1, 20]. These find-
ings highlight the fact that mapping SVs across multiple 
diseases and related clinical and neuropathological traits 
can be beneficial to understanding their role in complex 
diseases.

Previously, we reported that SVs have an impact on 
many molecular phenotypes in the human brain, includ-
ing over 300 SVs that were also in LD with GWAS traits 
[24]. Building on this foundation, here we extend our 
findings in many ways by testing almost 20,000 common 
SVs identified through whole-genome sequencing (WGS) 
in 1088 individuals for association with a comprehensive 
set of common age-related clinical and neuropathologic 
traits. We aimed to assess the role of SVs systematically, 
focusing on their potential contribution in relation to 

more powerful GWAS studies. We leveraged data from 
two ongoing cohort studies of aging and dementia: the 
Religious Orders Study and the Rush Memory and Aging 
Project (ROS/MAP). These cohorts benefit from having 
a comprehensive set of harmonized deeply phenotyped 
measures, including clinical diagnoses of Alzheimer’s 
dementia and mild cognitive impairment (MCI); mul-
tiple measurements of cognition (e.g., cognitive decline 
and resilience); diagnosis of major depressive disorder 
(MDD) and depressive symptoms; indices of motor func-
tion; neuropathological evaluations of β-amyloid load, 
neurofibrillary tangles density, Lewy bodies, and TDP-43; 
and indices of cerebrovascular diseases (CVD) such as 
cerebral amyloid angiopathy (CAA), gross and microin-
farcts, atherosclerosis, and arteriolosclerosis.

This study offers a valuable resource for elucidating the 
role of SVs in AD and ADRD, providing insights into the 
functional mechanisms underlying GWAS signals and 
potential novel targets for further investigation. By inte-
grating WGS-derived SV data with richly phenotyped 
cohorts, we aim to bridge the gap between genetic asso-
ciations and their biological impact, highlighting the util-
ity of SVs in unraveling complex disease mechanisms.

Methods
Study participants
The study uses data from 529 participants from the Reli-
gious Orders Study (ROS) [25, 26] and 559 participants 
from the Rush Memory and Aging Project (MAP) [25, 
27], two longitudinal cohort studies. ROS and MAP 
enroll participants free of known dementia. Participants 
agree to annual clinical evaluations and to donate their 
brains at death. ROS was initiated in 1994 and enrolls 
older Catholic priests, nuns, and brothers from nearly 
40 groups located in 12 US states [25, 28]. By the time 
the samples were sent for sequencing (end of 2017), 1437 
individuals had completed their baseline assessment. The 
MAP was established in 1997 and recruits older men and 
women from retirement communities and individual 
householders in the greater Chicago area [25, 27–29]. 
As of the end of 2017, 1967 participants had completed 
their baseline evaluation. ROS and MAP are studies con-
ducted by the same team of investigators sharing a com-
mon core of measures and procedures, allowing direct 
comparison between variables and efficient data merging 
for combined analyses. The follow-up rate for surviving 
participants surpasses 90%. Both studies were approved 
by a Rush University Medical Center Institutional Review 
Board. Each participant provided written informed con-
sent at enrollment and signed the Uniform Anatomical 
Gift Act. The whole genome sequencing data analyzed in 
this manuscript was limited to subjects with autopsy data 
[30]. Genotyped structural variant calls were available 
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on 1088 non-Latino white subjects from the ROS/MAP 
cohort studies [24]. Detailed characteristics of each 
cohort are presented in Additional file 1: Table S1.

Alzheimer’s dementia and cognitive function
Standardized cognitive and clinical assessments are con-
ducted annually by examiners unaware of previous data. 
The clinical diagnosis for dementia follows the directives 
provided by the joint working group of the National Insti-
tute of Neurological and Communicative Disorders and 
Stroke and the AD and Related Disorders Association, 
as described [31, 32]. Mild cognitive impairment (MCI) 
was defined as individuals assessed by the neuropsychol-
ogist as cognitively impaired but not diagnosed as hav-
ing dementia by the examining physician, as previously 
outlined [33]. Persons without dementia or MCI were 
designated as having no cognitive impairment (NCI) as 
described [33]. A final consensus cognitive diagnosis is 
determined by a neurologist with proficiency in demen-
tia after reviewing select clinical information after death 
without knowledge of any postmortem data [34]. For the 
current association analysis, two binary statuses were 
used: Alzheimer’s dementia vs no dementia (MCI + NCI) 
and with cognitive impairment (AD + MCI) vs no cogni-
tive impairment (NCI).

Quantitative measurements of cognitive function were 
measured yearly. Cognitive evaluations comprise 19 cog-
nitive performance tests that are common to both stud-
ies. A Mini-Mental State Examination is employed for 
descriptive reasons, whereas the Complex Ideational 
Material from the Boston Diagnostic Aphasia Examina-
tion is solely utilized for diagnostic classification. The 
remaining 17 tests are merged into a comprehensive 
metric of global cognition. The scores for each test were 
converted to a composite score [35]. For the association 
analysis, measurements were considered proximal to 
death.

Estimated slopes for global cognition were also 
included as a measure of cognitive decline. The random 
slope of global cognition is calculated to the individual-
ized projected pace of change in the global cognition var-
iable across time. This projection is generated through a 
linear mixed-effects model, with global cognition serving 
as the longitudinal outcome. The model adjusts for age at 
baseline, sex, and years of education [36, 37]. Addition-
ally, as a measure of cognitive resilience, another random 
slope of global cognition is calculated, controlling for 
demographics and neuropathologies. The linear mixed-
effects model generates the projection using global cog-
nition as the outcome while adjusting for age at baseline, 
sex, and years of education as demographics, and global 
AD pathology burden, β-amyloid, PHF tau tangles, gross 
chronic cerebral infarctions, chronic microinfarctions, 

Lewy body disease, TDP-43, hippocampal sclerosis, cer-
ebral amyloid angiopathy, cerebral atherosclerosis, and 
arteriolosclerosis as pathology factors [38].

Parkinsonism, frailty, and motor function
A global Parkinsonian summary score was also tested. 
The global Parkinsonian summary score is a compos-
ite measure of Parkinsonian signs. It is calculated as the 
average of four separate domains based on a 26-item 
modified version of the motor portion of the United 
Parkinson’s Disease Rating Scale (mUPDRS). These 
domains include bradykinesia, gait, rigidity, and tremor, 
and they are administered by a trained nurse clinician. 
These measures are highly reliable and reproducible in 
both men and women across various cohorts and have 
been modified to be more applicable to individuals with-
out Parkinson’s disease and easier for non-physicians to 
administer and score [39].

In addition, a total of two motor-related indices were 
evaluated. A measure of frailty and a composite measure 
of global motor function. Each of the indices is described 
below. Frailty is defined as multiple system weaknesses. 
A continuous composite measure of frailty is based on 
four components: grip strength, timed walking, body 
composition (BMI), and fatigue. The raw scores for each 
component are converted into z-scores using the mean 
and standard deviation values from all participants at 
baseline [40, 41]. The global motor function combines 
multiple motor tests, including the Purdue Pegboard 
Test, finger-tapping test, the time and number of steps to 
cover a distance of 8 feet, the time and number of steps 
for 360-degree turn, leg and toe stand, grip strength, 
and pinch strength. Each test’s performance score is 
converted to a score based on the mean score of all par-
ticipants at baseline, and then the scores are averaged 
together to create the composite measure. This measure 
provides a comprehensive assessment of motor and gait 
function in individuals [42].

Depression and depressive symptoms
Two measures of depression were evaluated: a binary 
status of clinical diagnosis of major depressive disorder 
(MDD) and a quantitative score of depressive symptoms. 
The clinical diagnosis of major depressive disorder was 
made by an examining physician at each evaluation. Diag-
nosis was based on criteria of the Diagnostic and Statis-
tical Manual of Mental Disorders (DSM-III-R), a clinical 
interview with the participant, and a review of responses 
to questions adapted from the Diagnostic Interview 
Schedule [43]. A binary variable was tested classifying 
probably or highly probable vs. possible or not present 
MDD into the presence or absence of MDD. Depres-
sive symptoms were assessed using a modified 10-item 
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version of the Center for Epidemiologic Studies Depres-
sion Scale (CES-D) [44–46]. Participants were asked 
whether they experienced each of the ten symptoms fre-
quently in the past week. An overall score was obtained 
by aggregating the number of symptoms reported.

Neuropathological evaluations
Systematic assessment of various neurodegenerative and 
cerebrovascular conditions, including pathological diag-
nosis of Alzheimer’s disease, Lewy bodies, LATE, hip-
pocampal sclerosis, chronic macroscopic infarcts and 
microinfarcts, cerebral amyloid angiopathy, atheroscle-
rosis, and arteriolosclerosis were performed as previ-
ously reported [38, 47]. The assessments were conducted 
by examiners who were blinded to all clinical data. A 
summary of each variable used in the current study is 
described below:

NIA-Reagan diagnosis of AD: The NIA-Reagan diag-
nosis of Alzheimer’s disease was measured based on 
a set of consensus recommendations for diagnos-
ing the disease after death, taking into account the 
presence of both neurofibrillary tangles (Braak) and 
neuritic plaques (CERAD). This criteria was modi-
fied because the neuropathological evaluation is car-
ried out without knowledge of the patient’s clinical 
information, including a dementia diagnosis. Thus, 
the level of Alzheimer’s disease pathology is deter-
mined by a neuropathologist [28]. In our association 
analysis, we utilized a dichotomized variable where 
individuals with an intermediate or high likelihood 
fulfill the criteria for a pathological diagnosis of Alz-
heimer’s disease.
Burden of neuritic and diffuse plaques and neurofi-
brillary tangles: Neuritic and diffuse plaques were 
identified through microscopic examination of silver-
stained slides from five specific brain regions. The 
index count in each region is scaled by dividing it 
by its corresponding standard deviation. The scaled 
regional measures are then averaged to obtain a sum-
mary measure for the plaque burden. The five regions 
examined are the mid-frontal cortex, mid-temporal 
cortex, inferior parietal cortex, entorhinal cortex, and 
mid-hippocampus CA1. In addition, a global score of 
AD pathology was also tested as a quantitative meas-
ure derived from the counts of three silver-stained 
measures of AD pathologies: neuritic plaques, diffuse 
plaques, and neurofibrillary tangles. Measures were 
made in the same five regions, and each regional 
count was scaled by dividing by the corresponding 
standard deviation. The average of the three meas-
ured was used [48, 49].

β-amyloid load: β-amyloid protein is identified by 
molecularly specific immunohistochemistry and 
quantified by image analysis in 8 brain regions. The 
percent area of the cortex occupied by β-amyloid is 
calculated, and a mean score is determined from 4 or 
more regions [50].
PHFtau tangles density: Neuronal tangles are iden-
tified with phosphorylated Tau protein antibodies 
(AT8, Innogenetics, San Ramon, CA, USA; 1:1000) 
[50] and quantified in 8 brain regions using system-
atic sampling by stereology to determine cortical 
density. A mean tangles score is then calculated from 
4 or more regions [50].
TDP-43: TDP-43 cytoplasmic inclusions in neu-
rons and glia are assessed for each of the eight brain 
regions and scored based on four stages of TDP-43 
distribution (ranging from none to involvement of all 
eight regions). A dichotomized presence or absence 
is used in these analyses [51].
Lewy body disease: A pathologic diagnosis of Lewy 
body (LB) disease is determined based on four stages 
of distribution of α-synuclein in the brain. Brain tis-
sue samples from multiple regions are evaluated with 
α-synuclein immunostaining [52]. The McKeith cri-
teria were modified to assess the presence of LB in 
different categories: not present, nigral-predominant, 
limbic-type, and neocortical-type. A dichotomized 
version of this variable is used, referring to Lewy 
bodies present or absent [52].
Arteriolosclerosis: Arteriolosclerosis refers to histo-
logical changes observed in small brain vessels dur-
ing aging, including intimal deterioration, smooth 
muscle degeneration, and fibrohyalinotic thickening 
that narrows the vascular lumen. The severity of arte-
riolosclerosis is evaluated as none, mild, moderate, or 
severe [53].
Cerebral atherosclerosis: The severity of large vessel 
cerebral atherosclerosis is visually assessed by exam-
ining several arteries and their proximal branches 
in the circle of Willis. The rating was based on the 
extent of involvement, including the number of arter-
ies affected and the degree of occlusion. A semiquan-
titative scale is used: none or possible, mild, moder-
ate, and severe [54].
Cerebral amyloid angiopathy: A semiquantitative 
summary of cerebral amyloid angiopathy (CAA) 
pathology in 4 neocortical regions is calculated 
using paraffin-embedded sections that were immu-
nostained for β-amyloid using one of three mono-
clonal anti-human antibodies: 4G8 (1:9000; Covance 
Labs, Madison, WI), 6F/3D (1:50; Dako North Amer-
ica Inc., Carpinteria, CA), and 10D5 (1:600; Elan 
Pharmaceuticals, San Francisco, CA) [55]. Meningeal 
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and parenchymal vessels are assessed for β-amyloid 
deposition and scored from 0 to 4 based on the 
extent of circumferential deposition for each region. 
The CAA score for each region is the maximum of 
the meningeal and parenchymal CAA scores, which 
are then averaged across regions to summarize as a 
continuous measure of CAA pathology [55].
Cerebral infarctions—gross-chronic: Neuropathologic 
evaluations are performed to determine the pres-
ence of one or more gross chronic cerebral infarc-
tions. The evaluations are blinded to clinical data 
and reviewed by a board-certified neuropathologist. 
The examination documents the age (acute/suba-
cute/chronic), size, and location (side and region) of 
infarcts visible to the naked eye on fixed slabs. All 
visible and suspected macroscopic infarcts are dis-
sected for histologic confirmation. A value is one or 
more gross chronic infarctions vs none [56, 57].
Cerebral infarctions—micro-chronic: Neuropatho-
logic evaluations are performed to determine the 
presence of one or more chronic microinfarcts, 
which are chronic microscopic infarctions. The 
evaluations are blinded to clinical data and reviewed 
by a board-certified neuropathologist. At least nine 
regions in one hemisphere are examined for micro-
infarcts on 6 µm paraffin-embedded sections stained 
with hematoxylin/eosin. The examination includes 
six cortical regions (mid-frontal, middle tempo-
ral, entorhinal, hippocampal, inferior parietal, and 
anterior cingulate cortices), two subcortical regions 
(anterior basal ganglia, thalamus), and midbrain. 
Age (acute/subacute/chronic) and location (side and 
region) of microinfarcts are recorded. A value of 0 
indicates no chronic microinfarcts, while a value of 1 
indicates the presence of one or more chronic micro-
infarcts [56].

WGS data and variant calling
Whole-genome sequencing (WGS) data were previously 
generated from DNA samples from blood or cortex tis-
sues [30]. Briefly, libraries were sequenced on an Illumina 
HiSeq X sequencer using 2 × 150 bp cycles. Single nucle-
otide variant and small indel discovery and genotyping 
were performed utilizing an NYGC automated pipeline, 
which included alignment to the GRCh37 human refer-
ence using the Burrows-Wheeler Aligner and processing 
using the GATK best-practices workflow. The workflow 
included marking duplicate reads, local realignment 
around indels, and using Genome Analysis Toolkit 
(GATK) base quality score recalibration.

Structural variant discovery and genotyping were also 
previously described. A combination of seven different 

software tools, including DELLY [58], LUMPY [59], 
Manta [60], BreakDancer [61], CNVnator [62], BreakSeq 
[63], and MELT [64], was applied to identify SVs in each 
sample. The variants were then merged at the individual 
level using SURVIVOR [65] using the following crite-
ria for each SV type: DEL, all Manta calls plus any SVs 
with support of other 2 different tools; INS all Manta and 
BreakSeq calls; DUP/INV/TRA any SVs with support of 2 
different tools. Merging of SVs was performed requiring 
1000 bp maximum distance between breakpoints. Geno-
typing was performed for each SV type separately using 
smoove [66]. Mobile elements were genotyped separately 
via specific designed functions in the MELT pipeline. For 
harmonization, we used a 70% reciprocal overlap criteria 
(considering their breakpoint positions and lengths) to 
convert insertions into MEIs. ROS and MAP were jointly 
genotyped, resulting in a final set of 72,348 SVs mapped 
in 1,106 individuals after quality control. Details about 
the specific SV pipeline steps are described in the origi-
nal publication [24]. A further level of QC was used to 
remove any related individuals with kinship scores higher 
than 0.0442 using KING [67], resulting in a final data set 
of 1,088 individuals.

Linkage disequilibrium with GWAS variants
Linkage disequilibrium between SNPs and SVs was also 
previously generated [24]. A joint call set with 8,566,510 
SNPs and 72,348 SVs was used to calculate LD in terms 
of R2 for all SVs using PLINK and considering a window 
of 5 Mb.

Single variant association analysis of SVs and AD/ADRD 
traits
For the association analysis, the initial 72,348 SVs 
mapped were filtered with a Hardy–Weinberg equilib-
rium (HWE) P-value lower than  10−6 and minor allele 
counts (MAC) greater than 10 in each cohort. Resulting 
in 20,022 SVs in ROS and 20,078 SVs in MAP. We per-
formed genome-wide association analysis testing for each 
common SV with 16 quantitative and eight binary AD/
ADRD phenotypes. The variables measuring β-amyloid 
tangles density, neurofibrillary tangles burden, and neu-
ritic and diffuse plaque burden were squared root trans-
formed before the association analysis.

Analysis was performed using SAIGEgds (Scalable and 
Accurate Implementation of GEneralized mixed model) 
[68, 69]. The method uses the saddlepoint approxima-
tion to calibrate the distribution of score test statistics 
and state-of-the-art optimization strategies to reduce 
computational costs. SAIGE can analyze large-scale data 
while controlling for unbalanced case–control ratios 
and sample relatedness, making it applicable to GWAS 
for thousands of phenotypes by large biobanks. The 



Page 6 of 16Vialle et al. Genome Medicine           (2025) 17:20 

method was tested on UK Biobank data and demon-
strated its efficiency in analyzing extensive sample data. 
The SAIGE method involves two main steps: (1) fitting 
the null logistic (for binary traits) or linear (for quanti-
tative traits) mixed model to estimate model parameters 
using the average information restricted maximum likeli-
hood algorithm, and (2) testing for associations between 
each genetic variant and phenotype using the saddlepoint 
approximation method on score test statistics. Several 
optimization strategies have been applied to make fit-
ting the null logistic mixed model practical for large data 
sets, such as using the raw genotypes as input and the 
preconditioned conjugate gradient method to solve lin-
ear systems iteratively. These optimizations make SAIGE 
computationally efficient and applicable to GWAS for 
thousands of phenotypes by large biobanks.

Here, we performed separate genome-wide scans using 
529 participants from ROS and 559 participants from 
MAP. All tests were controlled by age at death, sex, years 
of education, five genetic principal components, and the 
genetic correlation matrix (modeled as a random effect). 
To combine consistent genetic effects across both stud-
ies, a meta-analysis was conducted using METASOFT 
v.2.0.1 [70]. Effect sizes and standard errors of each SV-
trait pair were used as input. We carried out a random-
effects meta-analysis using the RE2 model, optimized to 
detect associations under heterogeneity.

Proteomics data
In our analysis, we utilized ROS/MAP proteomics data 
to link the impact of SVs with protein abundances. The 
methods for data generation were previously published 
in detail [71–74]. Briefly, frozen DLPFC tissue samples 
underwent homogenization, followed by the quantifica-
tion of protein concentrations. Isobaric TMT peptide 
labels were subsequently introduced and fractionated by 
high pH. These fractions were then subjected to liquid 
chromatography-mass spectrometry, and the resulting 
spectra were cross-referenced with the UniProt database. 
After quality control to eliminate technical confounders, 
10,030 proteins from 971 individuals were available for 
downstream analysis [71].

Comparison with SV‑GWAS studies
We obtained full summary stats for SV-GWAS per-
formed for Alzheimer’s disease (AD) [17], Parkinson’s 
disease (PD) [23], progressive supranuclear palsy (PSP) 
[21], Lewy body dementia (LBD) [20], and frontotempo-
ral dementia/amyotrophic lateral sclerosis (FTD/ALS) 
[20]. All these studies had their SV calls mapped to the 
GRCh38 reference genome. Therefore, we lifted genomic 
coordinates from GRCh38 to GRCh37 using the “liftO-
ver” function from the R package “rtracklayer” [75] and 

the corresponding chain file (hg38ToHg19). To match 
SVs across studies, we considered SVs with a recipro-
cal overlap of 80% using “bedtools intersect” [76] and 
removed overlapping SVs with discordant SV types (i.e., 
DELs vs INSs). Specifically for GWAS for AD and PSP, 
insertion lengths were not reported in the respective final 
reported results. For these cases (INS only), we matched 
SVs by their breakpoint position using “bedtools closest” 
while considering a threshold of 100 bp. The resulting 
matched SVs were further compared in terms of MAF, 
showing high concordance (Additional file 1: Fig. S1). For 
replication, we considered only matching SVs that were 
tested with ROS/MAP phenotypes and reached a thresh-
old of nominal P ≤ 0.05 in at least one of the phenotypes 
tested.

Results
Characteristics of the samples
Genotyped structural variant calls were obtained on 1088 
non-Latino white subjects from the ROS/MAP cohort 
studies [25]. In both studies, participants underwent 
annual clinical evaluations and donated their brains at 
death. The mean (SD) age at enrollment and age at death 
across the participants used in this study was 80.9 (6.8) 
and 89.0 (6.4) years, respectively, with an average (SD) 
follow-up period of 7.2 (4.9) years. Of all participants, 
43.7% had a diagnosis of Alzheimer’s dementia at death, 
and nearly two-thirds had pathologic AD confirmed 
post-mortem. A decline in cognition was observed, 
with the Mini-Mental State Examination (MMSE) score 
decreasing from 28 (IQR 26–29) at baseline to 25 (IQR 
15–28) proximate to death. TDP-43 pathology extending 
beyond the amygdala was observed in just over a third 
of brains, and 13% presented Lewy bodies in nigra and/
or cortex regions. Cerebrovascular diseases, including 
macroscopic infarcts and microinfarcts, were observed in 
more than a third and a quarter, respectively, and mod-
erate to severe amyloid angiopathy, atherosclerosis, and 
arteriolosclerosis were observed in about a third of the 
brains.

Genome‑wide SV association scans with clinical 
and neuropathologic phenotypes
Genome-wide association scans of structural vari-
ants were performed on a range of clinical and neu-
ropathologic phenotypes covering multiple clinical 
and pathologic variables related to aging and demen-
tia. Twenty-four phenotypes were analyzed, including 
clinical diagnosis of AD, MCI, and MDD; depressive 
symptomatology; measurements of cognitive function, 
motor function, frailty, and parkinsonian scores; and 
neuropathologies, such as β-amyloid, tangles, TDP-43, 
Lewy bodies, and multiple cerebrovascular diseases 
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indices. SV discovering and genotyping pipelines were 
obtained from combined ROS/MAP samples as previ-
ously described [24]. SVs were classified into different 
classes of variation, including deletions (DEL), inser-
tions (INS), duplications (DUP), inversions (INV), 
complex rearrangements (CPX), and three classes 
of mobile element insertions (MEI), Alu, SVA, and 
LINE1. A total of 72,348 SVs were initially mapped. For 
the association analysis, variants with Hardy–Wein-
berg equilibrium (HWE) P-value lower than  10−6 were 
removed. Single variant association tests were applied 
across 16 quantitative and eight binary traits (Addi-
tional file 1: Table S2) for 20,022 SVs in ROS and 20,078 
SVs in MAP with minor allele count (MAC) greater 
than 10 in each cohort. Scans were performed using the 
tool SAIGEgds (Scalable and Accurate Implementation 
of GEneralized mixed model) [68, 69]. All tests were 
controlled by age at death, sex, years of education, five 
genetic principal components, and the genetic correla-
tion matrix (modeled as a random effect). A meta-anal-
ysis was performed combining results from both ROS 
and MAP cohorts. No SV reached genome-wide signifi-
cance (P < 5 ×  10−8) for any of the phenotypes tested at 
the current sample size. Complete summary stats for 
each phenotype are provided in Additional files 2–5.

SVs in AD 

SVs in AD GWAS loci
To investigate the impact of SVs in known AD GWAS 
loci, we examined 81 genome-wide significant loci col-
lectively identified in six previous studies that did not 
examine SVs [77]. We first mapped the presence of SVs 
(discovered in ROS/MAP) in each locus. On average, 10 
SVs were identified by locus across all 81 loci (Additional 
file  1: Fig. S2). As expected, complex genomic regions, 
such as the HLA locus, harbored a considerably higher 
number of SVs [75], followed by the ABCA7 [47], the 
TMEM121 [35], and IDUA [32] loci. 36 SVs were in LD 
with the lead variant in 10 of the 81 loci, with R2 rang-
ing from 0.217 to 0.964. Among these, 22 SVs were nomi-
nally associated (P ≤ 0.05) with at least one of the 24 AD/
ADRD phenotypes tested (Fig.  1 and Additional file  1: 
Table S3).

The SV with the strongest results (P = 7.72 ×  10−4) 
was a 343-bp deletion (Fig.  2C), which deletes an Alu 
element at the 3′UTR of TMEM106B [78] and was in 
high LD with the lead variant at the TMEM106B locus 
(rs5011436; R2 = 0.96) (Fig.  2A). In ROS/MAP partici-
pants, this SV was associated with multiple AD/ADRD 
phenotypes, including tangles density, cognitive resil-
ience, TDP-43, and others, illustrating the pleiotropy 
among SVs (Fig. 2B). We further collected information on 

SV-xQTL and found that the deletion was also associated 
with lower protein abundance of TMEM106B (Fig. 2D).

Another four associations were found with a relaxed 
P < 0.01. That included a 22,029-bp-long deletion 
(Fig.  3A) associated with diagnosis of MDD in ROS/
MAP (P = 0.0025) and in LD (R2 = 0.44) with the lead 
variant in the IQCK locus (chr16:19,308,163–20,308,163) 
(Fig. 3B). Two SVs at the HLA locus, an 86,768 bp dele-
tion (R2 = 0.27) and a 43,223-bp duplication (R2 = 0.39) 
associated with cognitive resilience (P = 0.002) and 
MDD (P = 0.003), respectively. And one 1505 bp dele-
tion at the MYO15A locus (R2 = 0.37), associated with 
TDP-43 (P = 0.007). Although the AD association at the 
IQCK locus was identified only in one paper [2], nomi-
nally significant associations were also found in more 
powered AD GWAS [1] (Fig.  3C). In ROS/MAP, apart 
from depression status, cognitive resilience and cogni-
tive decline also reached a nominal significant thresh-
old (Fig. 3D). Depression is a well-known risk factor for 
AD, associated with an increased likelihood of develop-
ing dementia [79–82]. Although we did not find associa-
tions at the locus in GWAS studies for general depression 
[83–87], this association could represent a genetic link 
between late-life depression and AD. The SVs at the HLA 
locus overlap the genes HLA-DRB1, HLA-DRB5, and 
HLA-DRB6, characterizing the class II sub-region hap-
lotypes. However, their association and LD patterns are 
overly complex to disentangle the causal variants from 
the haplotypes.

Replication and characterization of SVs previously linked 
with AD and other neurodegenerative diseases
To highlight another potential use of our catalog of SV-
GWAS, we evaluated the replication of structural vari-
ants (SVs) identified in prior neurodegenerative disease 
GWAS. We collected results from five studies across dif-
ferent diseases, including Alzheimer’s disease (AD) [17], 
Parkinson’s disease (PD) [23], progressive supranuclear 
palsy (PSP) [21], Lewy body dementia (LBD) [20], and 
a combination of frontotemporal dementia and amyo-
trophic lateral sclerosis (FTD/ALS) [20]. The number of 
SVs tested in each study varied due to differing inclusion 
criteria for association testing, running from 19,248 SVs 
in AD to 3156 SVs tested in the PD GWAS (Fig. 4A). The 
PSP study reported 7 SVs reaching genome-wide signifi-
cance (P ≤ 5 ×  10−8), followed by PD with 6, FTD/ALS 
with 2, LBD with 1. The AD GWAS performed by the 
ADSP consortium (n = 12,908) did not find SVs reaching 
genome-wide significance. Instead, they reported a list of 
SVs suggestively associated with AD (FDR < 0.20) [17].

To access the replication of associations, first, we 
matched SVs between each study and the ROS/MAP 
cohort using a reciprocal overlap criterion of 80%. On 
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average, 59.16% of SVs were matched between ROS/
MAP and the external studies, with overlaps ranging 
from 47.9% in AD to 69.4% in PD. After restricting to SVs 
that were tested for association in ROS/MAP, the final 
overlap included 5966 SVs for AD, 5704 for PSP, 3051 for 
LBD, 2805 for FTD/ALS, and 1815 for PD (Fig.  4B–F). 
The MAF correlations ranged from 0.59 in AD to 0.97 in 
LBD (Additional file  1: Fig S1). Among shared SVs that 
reached nominal significance (P ≤ 0.05) for their respec-
tive traits and at least one of the 24 phenotypes tested in 
ROS/MAP, we found 223 ROS/MAP SVs matching with 
AD GWAS and mapping to 464 SV-trait associations 
(Fig.  4B), 107 SV-trait associations for 59 matching SVs 

with PD GWAS (Fig.  4C), 603 SV-trait associations for 
305 SVs matching PSP SVs (Fig. 4D); 175 SV-trait asso-
ciations for 87 SVs matching LBD SVs (Fig. 4E), and 187 
SV-trait associations for 99 SVs matching FTD/ALS SVs 
(Fig. 4F).

Among the 16 SVs that reached genome-wide signifi-
cance, 7 had matched SVs in ROS/MAP (6 from PSP and 
1 from PD). Therefore, we also included SVs with a sug-
gestive threshold of P ≤ 5 ×  10−4 for all studies, except 
for PSP, where we used P ≤ 5 ×  10−8, to compare with our 
results. This resulted in 59 candidate SVs (13 in AD, 15 in 
PD, 7 in PSP, 7 in LBD, and 17 in FTD/ALS), of which 24 
had matched SVs tested in ROS/MAP (4 in AD, 4 in PD, 

Fig. 1 Structural variants in LD with AD GWAS variants. Heatmap shows 36 SVs in LD (R2 > 0.2) with 10 AD GWAS loci lead SNPs. The best association 
of each SV with ROS/MAP AD/ADRD phenotypes is highlighted in the blue colored column (shown as −  log10(nominal P); *P ≤ 0.05, **P ≤ 0.01, 
***P ≤ 0.001)
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6 in PSP, 2 in LBD, and 8 in FTD/ALS). Among these, 16 
SVs reached a nominal significance of P ≤ 0.05 in at least 
one ROS/MAP phenotype (Table 1 and Additional file 1: 
Table  S4). Notably, considering findings in ROS/MAP 
(P ≤ 5 ×  10−4) as discovery and SV GWAS studies as repli-
cation (P ≤ 0.05), we found 15 SVs meeting the respective 
thresholds (Additional file 1: Table S5)

Several notable findings emerged from this analy-
sis. For instance, a 1483-bp deletion at the CYP2A13 
locus (chr19:4,110,280—GRCh38) significantly associ-
ated in the PSP GWAS (P = 7.46 ×  10−9), showed associa-
tions with cognitive decline (P = 1.9 ×  10−4) and another 4 

phenotypes in ROS/MAP. Also, the top PSP associations in 
the MAPT locus (tagging the 1 Mb long inversion haplo-
type at 17q21.31), showed nominal association with motor 
function phenotypes (P ≤ 0.05) in ROS/MAP. The MAPT 
inversion is also linked to multiple xQTLs, as we reported 
in our previous study [24]. Among other studies, we found 
a 994 bp duplication (chr12:25,590,144—GRCh38) in the 
LMNTD1 locus, suggestively linked to AD and replicated 
with an association (P = 3.3 ×  10−5) for neurofibrillary tan-
gle density in ROS/MAP and another 5 phenotypes with 
P ≤ 0.05. Similarly, a 3,958 bp deletion at the DOCK5 locus 
linked to LBD (P = 3.36 ×  10−4), was found to be associated 

Fig. 2 Deletion associated with tangles density at TMEM106B locus. A Locus zoom plot for the TMEM106B locus (chr7:11,768,758–12,769,593) 
showing a 200-Kbp window around a 343-bp deletion with high LD with the lead SNP rs5011436. On the top, the y-axis shows the nominal P 
values (as −  log10) for the association tests with tangles density in ROS/MAP participants. On the bottom, the y-axis shows the AD GWAS results 
from Bellenguez et al. [1]. The SV is plotted in a diamond shape, while SNPs are plotted in circles. Points are colored by the LD (R2) to the SV. The 
dashed line represents nominal P = 0.05. B shows the nominal P values (as −  log10) for the association of the SV with all AD/ADRD traits tested. Dots 
are colored by phenotype category. The dashed line represents nominal P = 0.05. C Boxplots showing the tangles density by the deletion alleles 
(ROS, MAP, ROS/MAP). D Boxplot shows the SV-pQTL between the deletion and protein expression levels of TMEM106B measured from DLPFC brain 
tissues of ROS/MAP participants
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with motor function (P = 0.008) and another 2 pheno-
types. With these results, we demonstrate that leveraging 
our SV-GWAS catalogs not only enables the replication 
of SV associations with neurodegenerative diseases but 
also allows deeper insights into their potential roles across 
diverse phenotypes, while highlighting shared genetic 
architecture and candidate loci for further investigation.

Discussion
GWAS have enabled the identification of dozens of com-
mon SNVs and small indels (insertion-deletions) contrib-
uting to AD/ADRD traits [1, 87–93]. The contribution of 

SVs, by contrast, lags. Previous studies were restricted 
mainly to either CNVs, as in autism [94]; rare SVs, as in 
schizophrenia [95–97]; or repeat expansions, as in amyo-
trophic lateral sclerosis (ALS), FTD, and Huntington’s 
disease. Here, by leveraging the deep ROS/MAP phe-
notypic data, we performed for the first time a compre-
hensive analysis of the role of SVs in AD/ADRD traits by 
linking common SV alleles to multiple clinical and neuro-
pathological traits.

We investigated the impact of SVs in known AD 
GWAS loci. By mapping the presence of SVs in each of 
the 81 loci, we identified 26 SVs in moderate to high LD 

Fig. 3 Twenty-two Kbp deletion associated with major depressive disorder at IQCK locus. A Mapping of sequencing reads at the locus from three 
representative individuals corresponding to the possible genotypes: deletion not present (0/0), heterozygous deletion (0/1), and homozygous 
deletion (1/1). B Mosaic plots showing the proportion of individuals with MDD and respective deletion alleles for ROS, MAP, and ROS/MAP. C, locus 
zoom plot for the AD GWAS IQCK locus (chr16:19,308,163–20,308,163) showing a 200-Kbp window around the deletion in LD with the lead SNP 
rs7185636. The scatter plot on the top shows the nominal P values (as −  log10) for the association tests with MDD status in ROS/MAP participants. 
The scatter plots in the middle and bottom show AD GWAS results from Bellenguez et al. (2022) [1] and Kunkle et al. (2019) [2], respectively. The 
22-Kbp deletion is plotted in a diamond shape, while SNPs are plotted in circles. Points are colored by the LD (R.2) to the SV, as measured in ROS/
MAP. The dashed line represents nominal P = 0.05. D shows the nominal P values (as −  log10) for the association of the 22 Kbp deletion with all AD/
ADRD traits tested. Dots are colored by phenotype category. The dashed line represents nominal P = 0.05
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with GWAS lead SNPs and directly associated (nominal 
P ≤ 0.05) with AD/ADRD phenotypes in ROS/MAP. The 
most significant SV was a 343-bp deletion at the 3′UTR 
of TMEM106B, associated with multiple phenotypes, 
including cognitive resilience, tangles density, and TDP-
43, and in high LD with the lead variant at the locus. This 
SV has already been reported as being the likely causal 
variant at the locus, with reported risks for frontotempo-
ral lobar dementia with TDP-43 inclusions (FTLD-TDP) 
[98] and neurodegeneration [99]. The proposed mecha-
nism involved is via an aging-related negative feedback 
loop mediated by the presence of the AluYb8 that dys-
regulates TDP-43 due to increasing demethylation of 
TMEM160B [99]. TMEM106B variants have also been 
reported to affect cell fraction in brain tissues from ROS/
MAP, specifically for a subpopulation of excitatory neu-
rons [100, 101].

Our analysis demonstrates the utility of the catalog of 
SV-GWAS for replicating and extending findings from 

neurodegenerative disease GWAS. Across five stud-
ies (AD, PD, PSP, LBD, and FTD/ALS), we matched an 
average of 59.16% of SVs with ROS/MAP and identified 
16 SVs showing nominal significance with at least one 
phenotype. Notable findings include the CYP2A13 dele-
tion, a PSP GWAS hit, which was associated with cogni-
tive decline, and other phenotypes in ROS/MAP. Also, 
the MAPT haplotype inversion, the major PSP risk fac-
tor, replicated with motor function phenotypes. In AD, 
a duplication at the LMNTD1 locus was associated with 
neurofibrillary tangle density, while a DOCK5 deletion 
linked to LBD was associated with motor function and 
other traits. These findings highlight the value of deeply 
phenotyped cohorts like ROS/MAP in validating and 
expanding SV associations across neurodegenerative 
diseases. By focusing on SVs shared between studies and 
leveraging the extensive phenotypic data in ROS/MAP, 
we provide further evidence for the contribution of SVs 
to the genetic architecture of neurodegenerative diseases.

Fig. 4 Replication of SV associations with SV-GWAS for neuro diseases. A Total number of SVs tested in each GWAS study and the number 
of matching SVs also mapped in ROS/MAP. B–F Scatter plots showing matching SVs association P values (as −  log10) between ROS/MAP 
SV-phenotypes (y-axis) and respective GWAS case–control studies (x-axis). B AD [17], C PD [23], D PSP [21], E LBD [20], F FTD/ALS [20]. In each 
scatter plot, colors represent the ROS/MAP phenotype category. For each SV, only the ROS/MAP phenotype with the lowest P value is shown, 
the size of the dots represents the number of phenotypes linked to the SV at P ≤ 0.05. SVs also mapped as xQTL are shown as triangles. Dashed lines 
represent nominal P = 0.05
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Table 1 Replication of SV-GWAS studies

SV‑GWAS study Replication in ROS/MAP

SV (GRCh38) P Effect (SE)a ROS/MAP Matching SV Best SV‑trait P and beta 
(SE)

Phenotypes (P ≤ 0.05) Locus

Alzheimer’s disease (Wang et al. 2023) [17]

 DUP chr12:25590144
(len: − 994 bp MAF: 4.2%)

2.16 ×  10−4  − 0.05 (0.01) DUP_950 chr12:25743078
(len: 833 bp MAF: 6.6%)

Neurofibrillary tangle
P = 3.28 ×  10−5

Beta (SE) = − 0.16 (0.04)

Neurofibrillary tangle/tangle 
density/beta-amyloid/global 
AD pathology/NIA-Reagan 
diagnosis of AD/diffuse 
plaques

LMNTD1

 DEL chr5:178679826
(len: − 5012 bp MAF: 5.9%)

4.19 ×  10−4  − 0.03 (0.01) DEL_25213 chr5:178106851
(len: − 5017 bp MAF: 2.8%)

Lewy body disease
P = 3.37 ×  10−2

Beta (SE) = 0.60 (0.68)

Lewy body disease ZNF354A

Parkinson’s disease (Billingsley et al. 2023) [23]

 INS chr3:189440563
(len: 143 bp MAF: 41.7%)

5.94 ×  10−5 0.79 (0.06) INS_3482 chr3:189158352
(len: 145 bp MAF: 27.0%)

Diffuse plaques
P = 2.36 ×  10−2

Beta (SE) = − 0.05 (0.02)

Diffuse plaques/NIA-Reagan 
diagnosis of AD

TPRG1

 INS chr4:827662
(len: 134 bp MAF: 48.9%)

3.08 ×  10−4 0.82 (0.05) INS_3579 chr4:821448
(len: 134 bp MAF: 47.6%)

Major Depressive Disorder
P = 1.57 ×  10−2

Beta (SE) = 0.40 (0.23)

Major depressive disorder CPLX1

Progressive supranuclear palsy (Wang et al. 2024) [21]

 DEL chr17:46009357
(len: 238 bp MAF: 16.2%)

3.14 ×  10−50  − 1.22 (0.08) DEL_11943 chr17:44086723
(len: − 242 bp MAF: 18.0%)

Motor functions
P = 4.61 ×  10−2

Beta (SE) = − 0.03 (0.01)

Motor functions MAPT

 DEL chr17:46146541
(len: 314 bp MAF: 18.8%)

2.13 ×  10−39  − 1.12 (0.09) DEL_11947 chr17:44223907
(len:−347 bp MAF:19.5%)

Motor functions
P = 4.19 ×  10−2

Beta (SE) = − 0.03 (0.01)

Motor functions KANSL1

 DEL chr17:46099028
(len:323 bp MAF:21.9%)

3.88 ×  10−37  − 1.07 (0.08) DEL_11945 chr17:44176394
(len: − 344 bp MAF: 19.3%)

Motor functions
P = 2.24 ×  10−2

Beta (SE) = − 0.03 (0.01)

Motor functions KANSL1

 DEL chr19:41102802
(len: 1483 bp MAF: 17.1%)

7.46 ×  10−9 0.64 (0.11) DEL_14138 chr19:41608707
(len: − 1486 bp MAF: 12.3%)

Cognitive decline
P = 1.94 ×  10−4

Beta (SE) = − 0.02 (0.01)

Cognitive decline/cognitive 
resilience/global cogni-
tive function/Alzheimer’s 
dementia/mild cognitive 
impairment

CYP2A13

Lewy body dementia (Kaivola et al. 2023) [20]

 DEL chr18:68414892
(len: 52 bp MAF: 4.2%)

1.35 ×  10−5 0.64 (0.10) DEL_13123 chr18:66082127
(len: − 54 bp MAF: 6.7%)

Alzheimer’s dementia
P = 2.71 ×  10−2

Beta (SE) = 0.40 (0.18)

Alzheimer’s dementia TMX3

 DEL chr8:25209169
(len: 3967 bp MAF: 18.3%)

3.36 ×  10−4 0.83 (0.05) DEL_29898 chr8:25066678
(len: − 3985 bp MAF: 18.3%)

Motor functions
P = 7.91 ×  10−3

Beta (SE) = − 0.03 (0.01)

Motor functions/mild cogni-
tive impairment/global 
parkinsonian score

DOCK5

Frontotemporal dementia/amyotrophic lateral sclerosis (Kaivola et al. 2023) [20]

 CPX chr17:45603799
(len: 673211 bp MAF: 18.3%)

3.48 ×  10−6 0.77 (0.06) INV_1434 chr17:43671041
(len: 658522 bp MAF: 5.0%)

Frailty
P = 1.76 ×  10−3

Beta (SE) = 0.14 (0.18)

Frailty/mild cognitive 
impairment

ARL17B

 DEL chr11:82145368
(len: 6935 bp MAF: 9.5%)

3.75 ×  10−5 1.34 (0.07) DEL_4930 chr11:81856411
(len: − 6938 bp MAF: 10.8%)

TDP-43
P = 1.97 ×  10−2

Beta (SE) = −0.38 (0.16)

TDP-43 FAM181B

 DEL chr9:110262382
(len:5230 bp MAF:14.6%)

1.32 ×  10−4 1.26 (0.06) DEL_32128 chr9:113,024,577
(len: − 5342 bp MAF: 20.8%)

NIA-Reagan diagnosis of AD
P = 1.60 ×  10−2

Beta (SE) = − 0.22 (0.31)

NIA-Reagan diagnosis of AD TXN

 DEL chr2:183220800
(len: 5418 bp MAF: 5.1%)

2.33 ×  10−4 1.41 (0.09) DEL_16436 chr2:184085521
(len: − 5428 bp MAF: 4.7%)

Lewy body disease
P = 1.29 ×  10−2

Beta (SE) = 0.55 (0.59)

Lewy body disease/cer-
ebral infarctions (gross)/
beta-amyloid/depressive 
symptoms (CES-D)/frailty/
motor functions

NUP35

 DEL chr4:69257657
(len: 109005 bp MAF: 11.0%)

2.59 ×  10−4 1.28 (0.07) DEL_21919 chr4:70123596
(len: − 108693 bp MAF: 2.8%)

Lewy body disease
P = 4.03 ×  10−2

Beta (SE) = 0.73 (0.40)

Lewy body disease UGT2B28

 DEL chr19:36349389
(len: 6781 bp MAF: 13.8%)

3.03 ×  10−4 1.25 (0.06) DEL_14072 chr19:36840751
(len: − 6334 bp MAF: 19.9%)

Neurofibrillary tangle
P = 1.87 ×  10−2

Beta (SE) = 0.05 (0.02)

Neurofibrillary tangle/tangle 
density

ZFP14

a Effects shown in terms of log(odds ratio) in all studies, with exception of AD and PSP, where values of beta were reported
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While our results represent a step forward in under-
standing the effects of common genetic variation in 
AD/ADRD traits, important limitations must be noted: 
(1) the power for association discovery is constrained 
by the current sample size; (2) the replication of asso-
ciations in independent samples is limited to available 
AD-related phenotypes and might not capture the same 
nuances from ROS/MAP; (3) SV calling is restricted to 
deletions, insertions, inversions, and duplication and is 
still prone to falsely discovered variants and low sensi-
tivity (especially for insertions); (4) tandem repeats are 
not likely to be mapped in our data, since these require 
another specific set of tools for detection; (5) the sug-
gestive associations do not represent suggestive causal 
effects on the traits, especially when LD is present, 
which would require a more precise fine-mapping anal-
ysis; (6) analyses were restricted to germline common 
autosomal structural variation; (7) since the individu-
als in this study have a European genetic background, 
these associations might not transfer to ancestrally 
diverse population-based data. These limitations could 
be overcome with additional sample size and deeper 
sequencing data (e.g., long-reads). Most importantly, 
these results should be interpreted as suggestive asso-
ciations, and a more comprehensive replication in an 
independent sample data set is crucial for the validity 
of the findings.

Conclusions
Here, we performed genome-wide association analy-
ses of SVs with 24 clinical and neuropathological phe-
notypes measured from two ongoing cohort studies of 
aging and dementia that benefit from having a com-
prehensive set of standardized phenotypes measured 
from the same individuals. We mapped the occurrence 
of SVs in 81 known AD GWAS loci and identified SVs 
in LD with respective lead variants in 10 of these loci. 
Among these, we highlighted a deletion of an Alu ele-
ment in the TMEM106B locus, which was associated 
with tangles density, cognitive resilience, TDP-43, 
and also linked to protein abundance level changes in 
human brains (SV-pQTL). We also highlighted a 22-Kb 
deletion at the IQCK locus, associated with major 
depression disorder (a known risk factor for dementia). 
Further, we were able to replicate findings from other 
SV-GWAS studies, showing the capability of our results 
as a catalog for replication and characterization of the 
role of SVs in neurodegenerative diseases. Therefore, 
we believe this work will be of interest to the research 
community, not only for the findings described but also 
as a resource for future studies.
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