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Abstract

Equatorial Magnetic Waves
in the Stratified Ocean of Earth’s Core

by

Nicholas R. Knezek

Doctor of Philosophy in Earth and Planetary Science

University of California, Berkeley

Professor Bruce Buffett, Chair

Earth’s global magnetic field envelops us all, protecting us from cosmic
rays, aiding our navigation, and shielding our oxygen-rich atmosphere. Yet
details about its origin, operation, and future remain unknown. Recent
space-based magnetic observatories let us observe the field more precisely
than ever before, and we can use these measurements to study the deep in-
terior of the Earth and illuminate a region of our planet previously observed
mainly by listening to the echoes of earthquakes. In this thesis, I use ob-
servations of changes in Earth’s magnetic field to study the structure and
processes occurring near the top of Earth’s core. In particular, I examine the
long-debated question of whether a stratified layer of fluid, termed by some
as the stratified ocean of the core or SOC (Braginsky, 1998), lies at the top
of Earth’s outer core. I first implement a model to simulate fluid motions in
the SOC, which I describe in chapter two. Then, I derive the properties of
a class of eastward-propagating equatorially trapped magnetic waves I term
eMAC waves in chapter three and develop a statistical threshold to detect
these waves in chapter four. In chapter five, I apply my statistical test to
observations of Earth’s geomagnetic field and find evidence for these waves
in Earth’s core. Finally, in chapter six, I propose a 20-40 km thick SOC with
buoyancy strength of N ≥ 10 Ω to support the observed eMAC wave modes.
I then discuss the implications of this layer, propose a double-layer SOC as
a way to reconcile eMAC signals with previous observations, and enumerate
possible future avenues of investigation.
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Chapter 1

Background

Earth has a global geomagnetic field generated by a dynamo in its liquid
iron outer core. Experimental and observational constraints from materials
science, seismology, fluid dynamics, and many other fields have allowed us
to produce a rough sketch of the properties and dynamics of this region of
the Earth, and large-scale computer simulations reproduce the behavior of
Earth’s geodynamo with remarkable fidelity (Glatzmaier and Roberts, 1995;
Schaeffer et al., 2017). However, many open questions about the geodynamo
and deep interior of the Earth remain unanswered. In particular, one long-
debated question is whether a stratified layer of fluid, termed by some as
the stratified ocean of the core or SOC (Braginsky, 1998), lies at the top of
Earth’s outer core. While the bulk of Earth’s outer core must convect to
power the geodynamo, it is possible that a thin region of fluid near Earth’s
core-mantle boundary (CMB) is buoyantly trapped near the mantle and does
not convect. The existence of the SOC has implications across many domains
of Earth science and could impact our understanding of the operation of
the geodynamo, core dynamics, core-mantle interactions, and geomagnetic
signals from the core.

1.1 The Stratified Ocean of the Core (SOC)

The bulk of Earth’s outer core must convect to power the geodynamo ob-
served at Earth’s surface. However, it is possible that some regions in the
outer core do not convect with the bulk outer core due to density stratifica-
tion. Stratified layers have been proposed to exist at various depths in the
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outer core from the inner core boundary (Wong et al., 2018), to the CMB
(Whaler, 1980) and even at intermediate depths (Gomi et al., 2013). How-
ever, here we discuss only a possible low-density, buoyantly stratified layer
near the CMB, which has been termed the stratified ocean of the core (SOC)
by Braginsky (1998). The existence of the SOC, if confirmed, would impact
our understanding of a wide variety of open geophysical questions.

1.1.1 Implications

Most models of Earth assume that the liquid iron-alloy outer core is con-
vecting and well-mixed throughout (e.g. Olson, 2015). The SOC breaks this
assumption and so segregates the outer core into at least two regions with
potentially different chemical compositions and dynamics. This segregation
impacts many processes in the outer core, including the operation of Earth’s
geodynamo, propagation of geomagnetic signals and seismic waves, core-
mantle interactions, and even Earth’s history and future. Such a stratified
layer in Earth’s core could even be interpreted as an additional layer of the
Earth, a fundamental discovery in and of itself.

1.1.1.1 Fluid Flows

The bulk of the outer core fluid consists of a rapidly rotating (2π/day) spher-
ical shell dominated by magnetic and Coriolis forces, with buoyancy driving
vigorous convection that likely keeps the fluid physically and chemically well-
mixed (e.g. Jones, 2015). Rapid rotation means that the dynamics of the
bulk outer core are dominated by columnar or quasi-geostrophic (QG) flows
(Busse, 1970; Pais and Jault, 2008). In a quasi-geostrophic system, fluid
columns aligned with Earth’s rotation axis largely move coherently and can-
not alter their height, meaning that the geometry of the inner core and CMB
influence dynamics throughout the bulk core fluid.

The SOC, by contrast, is buoyantly stratified and therefore does not par-
ticipate in the same dynamics as the rest of the outer core. Buoyancy breaks
the QG constraint and suppresses convective motions, potentially preventing
fluid motions in the bulk core from penetrating into the SOC. However, the
SOC fluid is far from stagnant, as it supports an array of fluid dynamics
from thermal winds to global wave motions across a wide range of spatial
and time scales (e.g. Braginsky, 1999; Christensen and Wicht, 2008; Helffrich
and Kaneshima, 2013).
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As a layer of conductive fluid, the SOC would act to shield magnetic sig-
nals from deeper in the outer core and attenuate their propagation to Earth’s
surface. Thus, it acts as a filter for small-scale, high-frequency geomagnetic
signals occurring in the bulk, convective outer core. This impacts the ob-
served structure of the geomagnetic field, in particular by enhancing the
relative strength of the dipole to higher-order components of the geodynamo
(Christensen, 2006; Nakagawa, 2011; Sreenivasan and Gubbins, 2008; Yan
and Stanley, 2018). Numerical simulations have also found that the SOC
would influence the equatorial symmetry of the observed geomagnetic field
and the distribution between zonal and non-zonal field components (Chris-
tensen et al., 2010), and may cause intense patches of magnetic flux in the
polar regions of the CMB (Olson et al., 2017).

The SOC would also influence the motion of fluids in the bulk outer core.
In particular, the density perturbation of the SOC modifies the frequency
of both the Chandler wobble (Braginsky, 2000) and inertio-gravity modes
(Seyed-Mahmoud et al., 2015) in the outer core. Vidal and Schaeffer (2015)
find that while the frequencies of QG waves in the bulk core are unaffected by
the SOC, the waves couple with internal wave modes in the SOC, changing
the spatial expression of the waves at the CMB. On the other hand, Takehiro
and Sasaki (2018) find that steady fluid motions in the bulk outer core such
as zonal winds penetrate the SOC easily and are mostly unaffected by its
existence, especially in the presence of large background magnetic fields.

The influence of the SOC on core flows is of particular importance when
using observed geomagnetic secular variation (SV) to study the fluid dynam-
ics of the outer core. Observations of SV do not fully constrain the fluid
motions of the core (Backus and Bullard, 1968) and authors must make as-
sumptions about the forces that dominate the dynamics of the fluid near the
CMB to obtain meaningful results for core flows (e.g. Holme, 2015). Many
authors apply the quasi-geostrophic constraint to inversions of SV for core
flows, essentially assuming that the fluid near the CMB is subject to the
same constraints as the bulk outer core fluid (Pais and Jault, 2008). Indeed,
some authors explicitly downward-continue flows derived from observed SV
to model the dynamics of core fluid throughout the bulk core (Pais and
Jault, 2008; Schaeffer et al., 2017). However, if the SOC exists, the QG as-
sumption may be inappropriate for inverting flows from SV, and core flows
obtained using this method may be inaccurate. Instead, the buoyancy of the
SOC would suppress radial fluid motions, potentially making flow constraints
such as toroidal flow more appropriate for deriving accurate descriptions of
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core fluid dynamics from SV (Amit, 2014; Bloxham, 1990, 1992; Lesur et al.,
2015; Voorhies, 1984; Whaler, 1986). In addition, inversions for core flow
explicitly damp small-scale and short-timescale fluid motions, assuming that
they produce only a relatively small portion of observed SV. However, small-
scale fluid motions could influence the observed SV significantly (Gillet et al.,
2009). In particular, the SOC could support coherent small-scale and short-
period fluid motions such as waves which produce large-scale, long-period
coherent signals in observed SV.

If an SOC exists, it would also impact many of the conclusions drawn
from studies of observed SV. For example, many authors have observed a
large-scale westward drift of magnetic flux patches in Earth’s magnetic field,
and attributed this to fluid motions arising from geodynamo operation in
the bulk outer core (Bullard et al., 1950). However, the westward drift could
instead arise from processes within the SOC such as waves or thermal winds
(Bloxham and Jackson, 1990; Whaler, 1980; Yukutake, 1981).

Geomagnetic jerks are another process observed in SV that is commonly
theorized to originate in the bulk outer core. Jerks are rapid changes in SV
theorized to originate due to hydromagnetic waves such as torsional oscilla-
tions in the bulk other core (Aubert and Finlay, 2019; Bloxham et al., 2002;
Braginsky, 1984; Malin and Hodder, 1982). However, the SOC could impact
our understanding of jerks in two ways. First, the SOC supports a wealth of
additional wave modes, allowing many other possible origins for geomagnetic
jerks. Second, the SOC could modify torsional oscillations by magnetically
shielding their signals or preventing the propagation of their fluid motions to
the CMB.

In fact, torsional oscillations (TO) are important independent of their
relation to geomagnetic jerks, as they have been observed directly in Earth’s
core (Gillet et al., 2010). These waves propagate in the bulk outer core
through an interaction between the QG constraint and the core’s internal
toroidal magnetic field (Braginskiy, 1970; Cox, 2015; Zatman and Bloxham,
1997), and recent studies observe their propagation in the Earth with peri-
ods less than 10 years (Gillet et al., 2010, 2015b). Magnetic signals of this
frequency would be heavily attenuated by the conductive fluid of the SOC,
meaning that to be detected at Earth’s surface, the torsional oscillations
must propagate through the SOC as physical motions of the SOC fluid. In-
deed, studies have found that columnar flows like those involved in torsional
oscillations can penetrate the SOC, especially at high latitudes, making de-
tection of torsional oscillations possible even with a SOC (Christensen and
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Wicht, 2008; Nakagawa, 2011; Vidal and Schaeffer, 2015). However, there
are indications that the structure of the TO at the CMB may be modified
by the presence of the SOC (Vidal and Schaeffer, 2015).

1.1.1.2 Interaction with the Mantle

The SOC will also impact how Earth’s core and mantle interact, as the layer
sits at the core-mantle boundary. Many authors have posited that spatially
heterogeneous mantle heat flow influences the dynamics of the bulk outer
core. In particular, Glatzmaier et al. (1999) hypothesizes that heterogeneous
heat flow at the CMB can influence the reversal rate of the geodynamo, and
Kutzner and Christensen (2004) find evidence that the pattern of heat flow
can influence the path the virtual dipole follows during reversals. Olson et al.
(2010) on the other hand, finds that the reversal frequency is insensitive to the
spatial structure of heat flow at the CMB, and instead depends upon the total
heat flow. However, all of these conclusions may be impacted by the presence
of the SOC. First, lateral flows within the SOC would likely arise to respond
to any CMB heat flow heterogeneity, possibly compensating for heat flow
heterogeneity and shielding the bulk outer core from its effects (Christensen,
2018; Sumita and Olson, 1999). In addition, a thermally stratified layer can
grow or shrink to respond to changes in the total mantle heat flow, reducing
the influence of changes in total CMB heat flow on the dynamo operating in
the bulk outer core (e.g. Buffett, 2015).

Earth’s core and mantle also interact by exchanging momentum between
the core fluid and the solid mantle. This momentum exchange is commonly
used to explain observed changes in Earth’s length of day over decadal
timescales (e.g. Gross, 2015). There are several possible mechanisms pro-
posed by which momentum could be exchanged, including topographic (Hide,
1969; Moffatt, 1977), electromagnetic (Bullard et al., 1950; Rochester, 1962),
and gravitational (Buffett, 1996; Jault et al., 1988) coupling. The SOC poten-
tially impacts the effectiveness of these mechanisms of momentum exchange,
and also enables an additional hybrid mechanism whereby conductive, buoy-
ant fluid is physically trapped by CMB topography and acts to enhance
electromagnetic coupling between core fluid motions and the solid mantle
(Buffett, 2010; Glane and Buffett, 2018).

The SOC may also influence chemical interactions between the core and
mantle. The simplest model of Earth’s core formation and evolution assumes
that the core has been chemically isolated from the mantle since formation
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(e.g. Rubie et al., 2015). However, this assumption may not be valid and
chemical interactions between the core and mantle could continue to the
present day (Jeanloz, 1990; Knittle and Jeanloz, 1989, 1991). Indeed, re-
cent studies indicate that mass exchange between the core and mantle has
occurred (Brandon and Walker, 2005; O’Rourke et al., 2016; Ozawa et al.,
2009; Walker, 2005) and that the bulk outer core may be under-saturated in
mantle minerals (e.g. Asahara et al., 2007; Ozawa et al., 2008, 2009). The
SOC would influence these interactions by acting as a distinct chemical reser-
voir from the rest of the bulk outer core. Because it is buoyant, it resists
mixing with the rest of the outer core, allowing compositional differences
between the bulk core and SOC to arise over time and possibly providing
an explanation for the bulk core’s proposed under-saturation of light ele-
ments. That is, it is possible that the mantle and SOC are in equilibrium,
but that light elements in the SOC do not mix into the bulk core, thus
leaving the majority of the outer core under-saturated (Buffett and Seagle,
2010). Knowledge of the precise structure and properties of the SOC could
thus inform our understanding of the chemical exchange between the core
and mantle, with potentially large implications for other questions such as
chemical energy sources for the geodynamo (e.g. Badro et al., 2016; Hirose
et al., 2017) and the origin of mantle features such as ULVZs (Knittle and
Jeanloz, 1991; Otsuka and Karato, 2012).

Finally, the SOC would also provide information about the thermal state
of Earth’s core and mantle. If the SOC is observed with properties sug-
gesting thermal stratification (see section 1.1.2.1), this would indicate that
the mantle heat flow is less than the core adiabatic gradient at the CMB.
This gives information about the slope of the adiabatic gradient and thus the
physical properties of the core fluid; the style of convection in the outer core;
the rate of mantle convection now and in periods of recent Earth history;
and potentially many other geophysical questions (Buffett, 2015; Lister and
Buffett, 1998; Zhang and Zhong, 2011).

1.1.2 Origin

The SOC has a number of plausible origins. In general, buoyancy in the
outer core fluid arises due to a density deficit caused by either an excess of
light elements such as oxygen or sulfur, or thermal expansion from excess
local heat. Both of these sources of buoyancy drive convection in the outer
core, and they could contribute to the formation of the SOC individually or
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in combination (e.g. Lister and Buffett, 1998). In general, compositional en-
richment is more efficient at producing buoyancy, and the majority of the core
convection at the present day is thought to arise due to compositional buoy-
ancy originating from the growth of the inner-core (Labrosse, 2015; Nimmo,
2015). However, there are good reasons to think that thermal buoyancy may
also contribute to the formation of the SOC (e.g. Buffett, 2014).

Whatever the source of buoyancy, the SOC must resist erosion and mixing
from the convective fluid motions in the bulk outer core. Parcels of fluid
rising through the bulk core could conceivably penetrate into a thin or weakly
stratified SOC, mixing the fluid and eroding the layer away. This process of
erosion is most effective when the layer is thin, so acts mainly as a constraint
on layer formation (e.g. Buffett and Seagle, 2010). However, inertia is thought
to be relatively weak compared to the other dynamic forces in Earth’s core
(Buffett and Knezek, 2018), so the details and effectiveness of SOC erosion
in the outer core is an open question (e.g. Lister and Buffett, 1998; Gubbins
and Davies, 2013). If the SOC is able to maintain its structure against
erosion, thermal and compositional buoyancy can lead to very different layer
properties.

1.1.2.1 Thermal Stratification

Thermal stratification arises from hot core fluid accumulating at the CMB
and building up heat at a rate greater than mantle convection can transport
away. In the bulk convecting core, the temperature profile is maintained very
close to the the adiabatic gradient due to high flow velocities and turbulent
mixing. In this region, heat is both conducted along the adiabatic gradient
and transported by convective fluid motions. If the rate of local heat transfer
falls below the rate at which heat can be conducted down the adiabatic gra-
dient, all of the heat will be transferred through conduction and convection
will cease in the region. In the outer core, the adiabatic gradient is steepest
at the CMB due to the compressibility of liquid iron. This means that the
radial heat flow required to maintain convection is highest near the CMB.
Thus, if the mantle is unable to transfer heat from the core fast enough, a
thermal SOC will form as hot fluid pools under the CMB and the local ther-
mal gradient adjusts to be shallower than required to maintain convection
(e.g. Lister and Buffett, 1998).

The structure of thermal SOCs depend only on the physical properties
of the core fluid and the past and present CMB heat flow. Therefore, their
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buoyancy and thickness can be predicted with a high degree of accuracy.
Thermally stratified layers tend to form thick layers with weak buoyancy, as
the temperature perturbation above the adiabat is likely to be only a few
degrees (Lister and Buffett, 1998). It is possible for a thin, strongly buoyant
SOC to form in response to dramatic shifts in mantle heat flow (e.g. Buffett,
2015), but, in general, thermally stratified layers are predicted to be greater
than ∼ 100 km thick and have buoyancy frequencies on the order of N ∼ 1
/day or less (Buffett, 2014; Lister and Buffett, 1998). Here, N represents the
Brunt–Väisälä frequency (see section A.3).

Thermal evolution models of the Earth have long proposed that at least
some portions of the outer core are thermally stratified (Gubbins et al., 2004).
Recent studies indicate that the thermal conductivity of the outer core fluid
could be much higher than previously thought (de Koker et al., 2012; Gomi
et al., 2013; Ohta et al., 2016; Pozzo et al., 2012a, 2014) which would sub-
stantially increase the likelihood that the outer core is thermally stratified
(Labrosse, 2015). However, it must be noted that these thermal conductivity
measurements are a source of active debate (Konôpková et al., 2016).

1.1.2.2 Compositional Stratification

The second method by which the SOC could form is through a local enrich-
ment of light elements (e.g. Lay and Young, 1990). Unlike thermal SOCs,
compositional SOCs have many possible origin mechanisms, compositions,
and resulting physical properties. A compositional SOC could arise due to lo-
cal enrichment of any siderophile (iron-loving) element that is less dense than
iron. Commonly proposed elements include oxygen, silicon, sulfur, carbon,
helium, and hydrogen. In addition, there are several mechanisms through
which the enrichment could arise.

One mechanism by which a compositional SOC could form is through bar-
odiffusion of light elements along the pressure gradient of the core (Braginsky,
2006, 2007). Barodiffusion is the tendency of light elements to migrate down
a pressure gradient due to molecular motion and interactions. Because the
lowest pressure in the outer core lies at the CMB, light elements would tend
to migrate and accumulate in the region under the CMB, forming the SOC.
This mechanism could occur with any of the light elements in the core, but
authors have proposed O, S, and Si in particular as candidates to form the
SOC (Gubbins and Davies, 2013). One study proposes that a SOC formed
through barodiffusion could have a thickness on the order of 100 km with N
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∼ 20 /day (Gubbins and Davies, 2013).
A second mechanism by which compositional stratification in the core

can arise is by exchange of material with the mantle. Evidence support-
ing this mechanism is given by several studies showing that the bulk outer
core is under-saturated in oxygen and silicon at the present day (Asahara
et al., 2007; Ozawa et al., 2009). If true, these elements would diffuse from
the mantle into the core, enriching the local fluid with light elements and
possibly forming the SOC. Because the elements forming the SOC with this
mechanism originate in the mantle, the most buoyant regions at the CMB
are continuously enhanced, leading to thinner and more strongly buoyant
layers than those produced by other origin mechanisms (Lister and Buffett,
1998). In particular, Buffett and Seagle (2010) estimates the SOCs arising
from this mechanisms to have a thickness of 70 km, with N > 55 /day.

Finally, there are a two less commonly proposed SOC formation mech-
anisms. The SOC could have primordial origins, either through layering of
successive impactor core material during Earth’s formation (Helffrich and
Kaneshima, 2013; Helffrich, 2014) or due to iron diapirs sinking through the
primordial mantle shortly after formation and forming a buoyant layer atop
the ancient core (Wood et al., 2006). However, the dominant theory of the
formation of the moon from a giant impactor raises questions for these theo-
ries (Canup, 2004). Such an impact is likely to mix the core, so there must be
some mechanism to maintain the layering through this extremely energetic
event. Then, these primordial layers must persist to the present day despite
temperature changes, inner-core growth, outer core compositional changes,
and other factors over the 4.5 billion years of Earth history.

Other authors propose that a stratified layer could arise due to immis-
cibility between regions with different iron alloy compositions in the core
(Arveson et al., 2019; Helffrich and Kaneshima, 2004). This theory posits
that the temperature and pressure gradients within the core lead to regions
with specific fluid compositions, which then have distinctive buoyancies and
do not mix. This theory has spurred many authors to study the stability
and miscibility of iron alloys with various light element compositions at core
temperature and pressure ranges, but so far results are inconclusive with re-
spect to Earth’s core due to the difficulty of conducting these experiments
and the unknown composition of the outer core (Corgne et al., 2008; Tsuno
et al., 2007).
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1.1.3 Structure

Many properties of the SOC are predicted to be the same regardless of its ori-
gin. It is typically proposed to be between 10 and 300 km thick (Eaton and
Kendall, 2006; Kaneshima and Helffrich, 2013), with a buoyancy strength
measured using the Brunt–Väisälä frequency ( N ) varying from weak strat-
ification of N < 1 /day to strong stratification of N > 55 /day (Braginsky,
1993; Buffett and Seagle, 2011). The simplest model for a SOC is a global
layer consisting of a single density jump with a constant background mag-
netic field. This model has been used by several authors to study the wave
modes that could propagate in such a system, to great success (Bergman,
1993; Braginsky, 1993). This model could be a fairly accurate representation
for the case where immiscibility of two fluid compositions causes a single
density jump (see section 1.1.2.2). However, it is likely that the structure of
the SOC is more complicated than this simple picture.

Most plausible origin mechanisms of the SOC would lead to a contin-
uously varying density perturbation from the adiabat rather than a single
jump. Authors have modeled this density deficit as a linear function (Knezek
and Buffett, 2015) which leads to a constant N through the layer; or a lin-
early varying N that corresponds to an exponentially varying density deficit
with radius (Buffett, 2014). These approximations are likely more realistic.
However, they probably still fail to capture the full complexity of the buoy-
ancy structure, which most likely does not have a simple constant or linear
relationship with radius (see e.g. Buffett and Seagle, 2010, fig. 6).

Simple models of the SOC have invariant buoyancy and thickness across
latitude and longitude. However, this has long been recognized as a poten-
tially invalid assumption, with Shearer and H. Roberts (1998) noting that
the SOC thickness could even vary over short periods of time due to influence
from dynamics in the bulk outer core. In addition, there may be reasons to
think that the equatorial, polar, and tangent cylinder regions of the CMB are
governed by different dynamics, and so may have different SOC properties.
In addition, lateral flows due to mantle heat-flow heterogeneity have been
proposed by many authors, (e.g. Amit, 2014; Huguet et al., 2018), and these
flows may also cause large-scale lateral heterogeneity in the structure of the
SOC, especially if they interact with topography on the CMB (e.g. Glane
and Buffett, 2018).
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1.2 Evidence for the SOC

Evidence for the SOC has been proposed from a variety of sources, including
theoretical models, seismic observations, and geomagnetic evidence. It has
long been recognized that mantle heat flow may be lower than required to
maintain convection at the top of the outer core (Higgins and Kennedy,
1971; Gubbins et al., 2004). In addition, recent studies suggest that the
electrical and thermal conductivity of the core may be much higher than
previously assumed (de Koker et al., 2012; Gomi et al., 2013; Pozzo et al.,
2012b, 2014). High conductivity would means that a larger amount of heat
could be transported by conduction rather than convection, and therefore
common estimates of mantle heat flow are much more likely to lead to the
formation of a thermal SOC (Labrosse, 2015). While this line of reasoning
provides strong evidence for the existence of the SOC, it is still possible that
mantle heat flow is large enough that a SOC does not form. However, several
other lines of evidence also support the existence of the SOC.

1.2.1 Seismic Evidence

Seismologists have long detected anomalous seismic wave speeds near the
top of Earth’s core and attributed the results to stable stratification (e.g.
Garnero et al., 1993; Helffrich and Kaneshima, 2010; Kaneshima and Mat-
suzawa, 2015; Kaneshima and Helffrich, 2013; Lay and Young, 1990; Tanaka
and Hamaguchi, 1993; Tanaka, 2004, 2007). Estimates for the thickness of
the region in which these seismic anomalies are detected range from 12 km
(Eaton and Kendall, 2006) to 450 km (Kaneshima, 2018), with many inter-
mediate estimates. Although these values vary wildly, the observations are
not necessarily inconsistent, as all results have margins of error and different
seismic studies are sensitive to different regions of the core. In addition, the
results of these studies could be influenced by seismic wave interactions with
the largely unconstrained structure of the lowermost D” mantle layer (e.g.
Souriau and Calvet, 2015).

One interesting point is that several authors detect a region between 50
km thick and 450 km thick with low seismic wave speeds (Garnero et al., 1993;
Kaneshima, 2018; Lay and Young, 1990; Tanaka, 2004), while other authors
detect a thin ∼ 12 km thick region near the CMB with a high seismic wave-
speed (Eaton and Kendall, 2006). These results could hint at the existence of
a SOC with a layered buoyancy structure, perhaps a thick thermally stratified
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layer combined with a thin compositionally stratified layer embedded within.
Conversely, several studies argue that seismic evidence does not sup-

port the existence of the SOC (Alexandrakis and Eaton, 2010; Helffrich and
Kaneshima, 2004). In addition, there are two large open questions about the
seismic results. First, the anomalous wave speeds detected by most authors
are thought to be too large to arise from a purely thermal origin (Kaneshima
and Matsuzawa, 2015), but a compositional SOC several hundred kilometers
thick may have strong buoyancy that is difficult to reconcile with geomag-
netic observations (e.g. Huguet et al., 2018). However, the seismic wave
speeds, geomagnetic observations, and materials science calculations are all
uncertain, so none of the results are necessarily incompatible.

The second main open question about seismic evidence for the SOC arises
from the direction of the seismic wave speed anomaly observed. Theoretical
calculations indicate that compositional enrichment of light elements would
produce high wave speed anomalies (Braginsky, 2000; Buffett and Seagle,
2010), but most seismic studies detect low wave speed anomalies near the
top of the outer core. Helffrich (2012) proposes that non-ideal mixing could
allow a compositional SOC to produce low seismic wave speeds, potentially
resolving this second question. However, there are still many open questions
about the strength and meaning of seismic evidence for a SOC.

1.2.2 Geomagnetic Evidence

Geomagnetic observations provide another source of evidence for the SOC.
Yan and Stanley (2018) use dynamo models to suggest that the high dipole-
octupole ratio observed for Earth’s geodynamo can be explained by an SOC
between 60 and 130 km thick. They argue that the observed ratio cannot be
explained without an SOC and also rule out a SOC with a thickness > 350
km. Olson et al. (2018) uses numerical dynamo simulations with a SOC to
argue that high magnetic field intensity regions and reversed magnetic flux
spots observed in Earth’s geomagnetic field suggest up to 400 km of per-
meable, laterally heterogeneous thermal stratification below the core-mantle
boundary. These result are roughly consistent with several other numerical
dynamo studies which constrain the thickness of a SOC to < 400 km thick
(Christensen, 2018; Gubbins, 2007; Olson et al., 2017). The general inter-
action between dynamo operation and a SOC observed in these studies is
also replicated across many other studies (see 6.2), lending strength to these
conclusions.
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Modern satellite observations have increased the spatial and temporal
resolution of geomagnetic observations by an enormous amount, greatly in-
creasing the amount of information about Earth’s core able to be obtained
from observations of SV. Baerenzung et al. (2016) used Bayesian techniques
to invert recent SV observations for core flows and found that they are in-
compatible with a purely geostrophic state as might be expected if bulk core
dynamics are visible at the CMB due to a lack of the SOC. Bloxham (1990)
found that observed SV is incompatible with a strongly stratified SOC if
Lorentz forces are ignored, but incorporation of some Lorentz forces resolves
the incompatibility. Similarly, several authors find that SV is incompatible
with purely toroidal (horizontal) flow, but introducing small amounts of ra-
dial fluid motion produce flows consistent with observed SV (Amit, 2014;
Huguet et al., 2018; Lesur et al., 2015). Small amounts of radial motions are
consistent with the existence of the SOC, and may even be expected due to
heterogeneous mantle heat flow or wave motions.

1.2.3 Geomagnetic Waves

A final source of evidence comes from searching for signals of geomagnetic
waves that can only exist in the SOC. The SOC supports wave modes not
present in the bulk outer core due to buoyancy acting as a strong radial
restoring force in the region. Detection of these waves thus provides strong
evidence for the existence of the SOC and could even allow for precise deter-
mination of its strength of buoyancy or thickness as well as the strength and
structure of the background magnetic field at the CMB. Braginsky (1993)
derived equations for zonal MAC waves in the SOC and argued that their
effects could be seen in variations of Earth’s length of day (LOD) on decadal
timescales. He finds that a SOC with a thickness of 80 km and N ∼ 2 / day
can roughly explain observations. Buffett (2014) extended the study of these
zonal MAC waves by using their flows to simultaneously explain decadal vari-
ations in both Earth’s dipole strength and LOD. Buffett finds that a layer
140 km thick with a buoyancy of N ∼ 1 / day can explain these observations,
very similar to Braginsky’s previous results.

Waves in the SOC have also been proposed to explain rapidly-varying SV
observed in the equatorial region of many core-surface magnetic field models
(e.g. Finlay et al., 2016; Kloss and Finlay, 2019). These sub-decadal equato-
rial signals are of particular interest as evidence for a SOC. In a fully mixed
outer core with no SOC, two types of waves are thought to occur on sub-
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decadal timescales: torsional oscillations and magneto-Coriolis waves (Finlay
et al., 2010). However, torsional oscillations are incompatible with the sec-
ond time derivative of the geomagnetic field, termed secular acceleration
(SA) (Chulliat and Maus, 2014), and sub-decadal magneto-Coriolis waves
with the appropriate wave numbers would require a magnetic field strength
of about 1 T within the core (Finlay et al., 2010). This field strength is
several orders of magnitude larger than estimates derived from geodynamo
simulations (Christensen, 2011) and analysis of 6 year torsional oscillations
(Gillet et al., 2010), making both these wave modes unlikely candidates to
explain the rapid equatorial variations in SA.

Chulliat et al. (2015) examines these equatorial SA variations and finds
signals consistent with waves traveling both east and west with periods be-
tween six and ten years. He appeals to equatorial magnetic-Rossby waves
propagating in a SOC to explain these observations, citing wave descriptions
derived by Bergman (1993). He argues that a SOC with thickness 140 km
and buoyancy N ∼ 1 /day could support these wave motions, but admits
that these results are not well constrained.

1.3 Modeling Waves in the SOC

Sub-decadal oscillations observed in the geomagnetic field are of particular
interest as they may be evidence for waves in the SOC. However, to fully
understand these geomagnetic signals, we must first understand how sub-
decadal waves propagate within the SOC. In particular, we must understand
the wave dependence on the thickness, buoyancy structure, and background
magnetic field of the SOC. Authors use two main methods to study wave
behavior. First, analytical models can be used to derive wave equations
and dispersion relations. Analytical solutions are powerful, as closed-form
solutions can fully describe the wave behavior in a range of situations and il-
lustrate the relationship between parameters and wave properties. However,
this approach often requires extensive simplifying assumptions to obtain so-
lutions. Therefore, numerical methods can also be used to study waves in
the SOC with more realistic properties and magnetic field structures. These
solutions can give more accurate results, but are often computationally ex-
pensive to run. In practice, both approaches have strengths and weaknesses
and are often combined to study particular classes of waves.
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1.3.1 Analytical Methods

Analytical models of waves in the SOC combine decades of research on hydro-
dynamic and magnetohydrodynamic waves. Because the SOC is a buoyantly
stratified thin layer on a rotating sphere, it is subject to many of the same
dynamic constraints as Earth’s oceans and atmospheres. In fact, this is the
reason that it is termed the “Stratified Ocean of the Core.” It has long
been known that global waves such as Kelvin, Rossby, and inertio-gravity
waves propagate in Earth’s oceans and atmospheres, and detailed analytical
solutions and wave dispersion relations for these waves have been derived
(see e.g. Gill, 1982; Longuet-Higgins, 1965; Pedlosky, 1987; Platzman et al.,
1968). These analytical solutions typically use shallow-water approximations
of hydrodynamic equations to account for the layer thickness and Boussinesq
approximations to incorporate buoyancy into the equations. Local wave so-
lutions can be computed by ignoring the spherical geometry and using a
Cartesian plane. For waves where rotation plays a role, the Coriolis force
can be incorporated using a beta-plane approximation. Finally, for truly
global waves the full spherical geometry can be incorporated by using spher-
ical harmonics to decompose the wave mode solutions.

The addition of a magnetic field and a fluid conductivity adds additional
complexity, but many authors have successfully utilized analytical methods to
derive solutions for magnetohydrodynamic waves. Alfvén (1943) first united
hydrodynamics and electromagnetism, describing waves that propagate using
magnetic tension as their restoring force. Lehnert (1954) then found waves
that propagate under the influence of both magnetic and Coriolis forces (MC
waves). A decade later, (Braginsky, 1964) described waves that propagate
under magnetic, Coriolis, and buoyancy forces, now known as MAC waves
(with A for Archimedean buoyancy). Hide (1966) then used the beta-plane
approximation to find magnetic wave solutions propagating in a spherical
shell which he termed MC-Rossby waves. Further advances in magnetohy-
drodynamics were achieved by Roberts and Stewartson (1974) examining
excitation mechanisms and Soward (1979) and Fearn and Proctor (1983) de-
riving waves in realistic geometries for Earth’s bulk outer core. For a more
detailed summary and brief sketch of the derivation of these waves, see sec-
tion A.6.

Analytic solutions for magnetohydrodynamic waves in the SOC are de-
rived by combining the approximations used for waves in Earth’s oceans and
atmospheres and those used to study magnetohydrodynamic waves. How-
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ever, significant simplifying assumptions often need to be made to make
analytical derivations of thin-layer MHD waves tractable. Braginsky de-
rives solutions for waves the SOC, but states “Very strong simplifications are
made in order to obtain simple analytical solutions that shed some light on
the overall picture”. In particular, his SOC boundary conditions assume no
magnetic or fluid interactions with the bulk outer core, and he prescribes
the structure and many properties of the wave modes a-priori (Braginsky,
1993, 1998). Similarly, Bergman (1993) employs a thin-layer beta-plane ap-
proximation to derive solutions for equatorial magnetic-Rossby waves in the
SOC, but treats the magnetic interactions in such a way that the resulting
solutions for MHD waves are purely dispersive.

Analytical solutions of magnetohydrodynamic waves in a thin stratified
layer have also been studied with application towards the solar tachycline.
(Gilman, 2000) derived magnetohydrodynamic shallow-water equations with
a free-surface approximation appropriate for use in the solar tachycline.
These solutions were then used by many other authors to study various wave
modes (Schecter et al., 2001; Zaqarashvili et al., 2007, 2009). However, the
solar tachycline is dominated by a toroidal background magnetic field, un-
like the SOC, for which the radial magnetic field likely acts as the largest
magnetic restoring force. As the toroidal magnetic field is purely horizon-
tal, it is assumed not to interact with adjacent layers and therefore avoids
complications of boundary conditions with conductive regions. In addition,
radial and toroidal magnetic fields act as a restoring force on different com-
ponents of wave motion, potentially leading to very different wave structures
and properties. Because of these fundamental differences, the applicability
of these MHD equations for the solar tachycline to the SOC in the Earth is
unclear.

More recently, Buffett and Matsui (2019) use an extended beta-plane
method which includes higher-order terms to derive an analytical solution
and dispersion relation for MAC waves in a SOC. Their method also includes
a magnetic field that varies with latitude, again incorporated into the model
with a beta-plane like method. They find that these higher-order terms
influence the waves to become trapped near the equator, producing the eMAC
waves first described in this thesis using numerical methods.
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1.3.2 Numerical Methods

While analytical solutions are useful, they often require extensive simplify-
ing assumptions or a priori knowledge of the wave structures or properties
to obtain solutions. Numerical methods can be used to overcome these limi-
tations, as they often require fewer simplifying assumptions and can be used
to search for wave modes without a priori knowledge of the wave structures
or properties.

Numerical methods are often employed in conjunction with analytical
methods when studying waves in the SOC. Often, analytical methods are
used to derive a system of differential equations that govern a particular
magnetic wave mode of interest. These systems of equations are sometimes
too complex to solve in closed-form, so a numerical solver can be applied
to obtain solutions. This approach is used by Bergman (1993), Hori et al.
(2015), and Márquez-Artavia et al. (2017) to obtain solutions for magnetic-
Rossby waves and several other magnetic wave modes in stratified layers.

Another approach is to simulate the full magnetohydrodynamic system
with a numerical MHD code. This approach is commonly employed to sim-
ulate the dynamics of the bulk core and geodynamo (e.g. Hollerbach, 1996;
Roberts, 2007) to great success. These codes often employ vector spherical
harmonics to model variations in latitude and longitude and either finite-
difference, spectral, or finite-element techniques to capture variations in ra-
dius. These models are easily adapted to study the dynamics of the SOC,
with only small changes required. Because dynamos are turbulent systems
that evolve in time with no natural periodicity, dynamo-simulation codes
typically employ time-stepping techniques to track the state of a system as it
evolves forward in time. While time-stepping codes are sometimes employed
to study wave motions among the turbulent background dynamo flow (e.g.
Schaeffer et al., 2017), it is computationally inefficient for detailed study of
the wave modes. Instead, the time-stepping portion of these codes is typically
translated into an eigenvalue problem. Eigenvalue methods do not directly
simulate the system’s evolution in time, and instead only examine flow com-
ponents that are periodic in time. This is a particularly powerful technique
to study wave motions, and if dissipation is included in the model it can
describe the wave damping timescale in addition to the wave frequency.

Adapting geodynamo codes to study waves in the SOC has the advantage
of being able to relatively efficiently simulate the entire core, and so can
study waves that propagate both in the bulk core and the SOC (e.g. Vidal
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and Schaeffer, 2015). However, adapted geodynamo codes have also been
used to study waves that propagate entirely in the SOC (Buffett, 2014).

A different approach employed in this thesis uses a finite-volume method
in latitude and radius with Fourier decomposition in longitude to simulate
wave modes in the SOC (Knezek and Buffett, 2018). This approach has
several advantages over spherical-harmonic methods, including greater flexi-
bility in the background magnetic field and layer structures while maintain-
ing efficient numerical computation times due to the sparse structure of the
simulation matrices. This method is described in detail in chapter 2.

1.4 Wave Modes in the SOC

Studies employing analytical and numerical methods have described a num-
ber of wave modes that could propagate in the SOC across a range of
timescales. There are also a number of wave modes that propagate in the
bulk core that have been shown to at least partially penetrate and propa-
gate within the SOC as well (see section 1.1.1.1). However, in this thesis we
are interested in waves that propagate mainly in the SOC and either cannot
exist without stable stratification or are heavily modified by the existence
of the SOC. We focus on these wave modes, as if detected and described,
they provide strong evidence for the existence of the SOC and potentially
constrain its properties.

1.4.1 MAC Waves

The first wave mode discovered to propagate in the SOC is termed the MAC
wave, named for the three forces that govern its propagation: Magnetic
forces, Archimedean buoyancy, and Coriolis forces. Braginsky (1993) de-
rived solutions for global zonal MAC waves in a SOC in Earth’s core and
showed that a weakly buoyant layer with a thickness near 80 km would pro-
duce zonal MAC waves with a fundamental period of approximately 65 years
and a first harmonic period of ∼ 30 years. These waves arise due to an inter-
action between pressure gradients, the Coriolis force, and Lorentz forces from
a radial background magnetic field. Pressure gradients between the equator
and pole drive meridional flows, which are then converted into zonal longi-
tudinal flows by the Coriolis force. Both of these flows are then opposed by
the radial magnetic field, which provides the restoring force to these waves.
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Buffett (2014) extended the study of these waves to show that different back-
ground magnetic field structures can change their flow structures and in turn
affect the geomagnetic dipole strength over time by concentrating magnetic
field near the poles through advection.

Zonal MAC wave solutions exist with higher wavenumbers in radius and
latitude. Zonal MAC waves with higher order in radius are rapidly damped
due to the relative thinness of the SOC. However, it is possible that several
MAC waves with higher latitudinal wave numbers could propagate within
the SOC. There are also non-zonal MAC waves with nonzero longitudi-
nal wavenumbers. Moving from a longitudinal wavenumber of zero to any
nonzero value changes the behavior of MAC waves, as they now propagate
around the sphere with a particular phase speed. In this thesis, we find
solutions for non-zonal MAC waves that propagate both eastward and west-
ward and have substantially different properties from zonal MAC waves (see
chapter 3). The westward solutions in general propagate at mid- to high-
latitudes, while eastward propagating waves span from the equatorial region
to mid-latitudes. Both waves have periods ranging from years to centuries,
depending on the particular wave mode and SOC or background magnetic
field properties. Of note for this thesis, CMB magnetic field morphology
can trap the eastward propagating non-zonal MAC waves near the equator,
effectively turning them into narrow equatorial waves, which we refer to as
eMAC waves.

1.4.2 Equatorial Waves

Equatorial magnetic waves in Earth’s core are of particular interest for a vari-
ety of reasons. First, rapidly-varying geomagnetic signals have been observed
in the equatorial region of the Earth (e.g. Finlay et al., 2016) with timescales
too short to be produced by steady flow advecting magnetic fluxes. Thus,
equatorial wave motions could be one possible origin (Chulliat et al., 2015).

Second, many propagating waves are observed in the equatorial region
of Earth’s atmosphere due to the Coriolis force acting as a waveguide (e.g.
Longuet-Higgins, 1965; Platzman et al., 1968). Because similar forces govern
the SOC, there may be a range of propagating equatorial MHD waves in
Earth’s core as well.

Finally, the equatorial region of the core near the CMB is governed by
different forces and has a different magnetic field morphology than the rest
of the core, so this is a region of particular interest. The bulk of the outer
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core fluid is quasi-geostrophic such that the fluid moves in columns. Thus,
the majority of the fluid near the CMB or beneath the SOC is connected to
the bulk outer core through these axially-aligned fluid columns. However,
this is not true in the equatorial region, as the fluid columns are parallel to
the SOC or CMB surface. In addition, the equatorial region is where the
dominantly negative radial magnetic flux in the northern hemisphere meets
dominantly positive radial magnetic flux in the southern hemisphere. This
indicates that the CMB radial magnetic field in equatorial region is likely
a complex mixture of positive and negative patches of magnetic flux. This
conclusion is supported by the latest dynamo models (Schaeffer et al., 2017),
but the exact structure of the magnetic field in this region is still unknown.
All of these facts indicate that the equatorial region near the CMB has largely
unknown and possibly quite complex dynamics.

The first solutions derived for magnetic equatorial waves in the SOC
extended the analytical methods used for equatorial hydrodynamic waves.
They found that magnetic fields modify Rossby waves into magnetic-Rossby
waves and can potentially break their equatorial trapping (Bergman, 1993).
However, approximations Bergman uses in his derivation of analytical solu-
tions lead to purely damped perturbations (see eq. 3.16 in that study), so
these solutions may not propagate as waves in the SOC. Braginsky (1998)
on the other hand derives mid-latitude magnetic-Rossby waves also using
a beta-plane approximation and finds two solutions. The first is strongly
damped, which he terms the magnetic diffusion mode, and the second are
magnetic-Rossby waves that propagate to the west with a period of ∼ 30
yrs for the fundamental and first harmonic longitudinal mode. These waves
are analogous to mid-latitude hydrodynamic Rossby waves. Thus, although
they do not propagate at the equator, they suggest that magnetic equatorial
Rossby waves might exist in a similar analogy with equatorial hydrodynamic
Rossby waves.

Magnetohydrodynamic waves have also been found to propagate in the
solar tachycline. This layer is a thin, conductive layer governed by simi-
lar forces to the SOC, with the notable exception that the magnetic field
is thought to be dominantly toroidal rather than radial. Zaqarashvili et al.
(2007) show that Rossby waves split into two westward propagating modes
in the solar tachycline, a “fast” mode which is largely similar to the non-
magnetic form, and a ”slow” mode which is heavily influenced by the pres-
ence of the magnetic field, but has frequencies significantly smaller than those
of either pure Rossby or Alfvén waves. Márquez-Artavia et al. (2017) then
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derived dispersion relationships for several types of waves in a shallow mag-
netohydrodynamic spherical layer with toroidal background magnetic field.
These included magneto-inertial gravity waves propagating to the east and
west, magneto-Kelvin waves propagating to the east with a weak field, and a
magneto-Kelvin wave propagating to the west with a strong background field.
In addition, they study the behavior of magnetic-Rossby waves extensively,
finding that the fast magnetic-Rossby waves propagate to the west similar to
their non-magnetic counterparts, while slow magnetic-Rossby waves gener-
ally propagate to the east except for some m=1 modes at high field strengths.
Finally, they find that as the field strength increases, the magnetic-Rossby
waves move away from the equator and become trapped near the poles. Some
of these conclusions likely also apply to waves in the SOC, for example, that
strong magnetic fields can break equatorial trapping (see e.g. Bergman, 1993).
However, as noted in section 1.3.1, the solar tachycline is governed by very
different dynamics than the SOC, so it is unclear which of these wave modes
have analogues in the SOC.

Another wave mode that may propagate strongly in the equatorial region
of the SOC is described by Vidal and Schaeffer (2015). They find that quasi-
geostrophic modes propagating in the bulk of Earth’s core with periods of
1-2 months can penetrate into the SOC and concentrate its wave motions in
the equatorial region, potentially producing observable signals in SV. These
waves propagate in the bulk core as well as the SOC, and if observed, could
potentially provide information on the structure or other properties of the
SOC. However, their periods are too short to be relevant for the decadal
oscillations observed in SA and examined in this thesis.

In this thesis, we find solutions for eastward propagating non-zonal MAC
waves near the equator, which we term eMAC waves. The wave periods
and propagation strength can vary enormously depending on the properties
of the SOC and background magnetic field, but can potentially explain the
decadal oscillations in SA observed in geomagnetic models. Because the
period and structure of these waves vary so widely, they can potentially
provide detailed information about the structure of both the SOC and Earth’s
unobserved CMB geomagnetic field. Examining these eMAC waves and their
relationships to SOC layer properties and background magnetic fields is the
key focus of chapter 3 of this thesis.
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1.5 Detecting Waves in Geomagnetic Obser-

vations

Many authors have attempted to detect waves in observations of Earth’s geo-
magnetic field for many decades (Whaler, 1980). We have records of Earth’s
magnetic field going back to Earth’s early history from paleomagnetic records
(Constable and Korte, 2015; Tarduno et al., 2015), and are able to recon-
struct the structure of Earth’s global field going back several centuries from
direct measurements (Jackson et al., 2000). However, data before the advent
of continuous high-resolution satellite missions were insufficiently detailed to
observe the sub-decadal equatorial oscillations of interest in this thesis. In
the past two decades, satellite missions have improved the fidelity of obser-
vations enormously such that small-scale, rapidly-varying signals in the core
field are able to be measured that hint at previously unobservable phenom-
ena (e.g. Finlay et al., 2016). With these data, direct observation of wave
modes such as eMAC waves are possible for the first time.

1.5.1 Modern Geomagnetic Observation

It has long been recognized that satellites offer unique advantages to ob-
serve Earth’s magnetic field. In fact, the very first satellite the United
States launched, Explorer 1, included an instrument designed to measure
regions of Earth’s magnetosphere in 1958. Soon after, in 1964, Cosmos 49
was launched by the USSR and was the first satellite to return data rele-
vant for studying geomagnetic secular variation (Jackson and Finlay, 2015).
However, it was not until the launch of the Ørsted mission in 1999 that con-
tinuous high-resolution observations became available to model the evolution
of Earth’s core field (Olsen et al., 2000). Several other satellite missions have
been launched since then, including the CHAMP mission, SAC-C/Ørsted-
2 mission, and Swarm mission (Friis-Christensen et al., 2006; Maus, 2007;
Sabaka et al., 2015). Together, these missions provide near-continuous high-
resolution magnetic field observations from 1999 through the present day
(Hulot et al., 2015). These satellites provide a wealth of data, which must
then be filtered and synthesized into global field models (see e.g. Finlay et al.,
2016). This thesis is interested only in the internal geomagnetic field that
originates from the core. However, satellite missions record magnetic signals
that originate from many other sources, including the lithosphere, ionosphere,
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magnetosphere, and solar winds. Authors employ various methods to sep-
arate signals arising from each of these sources from the internal field (see
e.g. Kono, 2015). Global magnetic field models generally report a separate
model for each source, with the internal core field often reported as a set of
spherical harmonic coefficients, potentially varying over time using B-Spline
functions (see appendix A for details).

Several global magnetic field models have been produced utilizing the
high-resolution satellite magnetic field data. The Ørsted Initial Field Model
(OIFM) was one of the first global magnetic field models to be published
and gave a field description up to degree 19 (Olsen et al., 2000). However,
the model only reported the constant geomagnetic field and core secular
variation at snapshots in time. Several other authors soon improved upon
this work both by incorporating more observations as they were recorded
and through improved data assimilation and modeling techniques. Resulting
models included the MEME08 model which was one of the first to report
the full time-evolution of Earth’s field (Thomson et al., 2010); the POMME
model series which introduced advanced methods of filtering magnetospheric
and lithospheric contributions (Maus et al., 2005, 2010); and the CM series
of field models which involve simultaneous fitting of many additional sources
of noise such as the ionospheric currents (Sabaka et al., 2004, 2015).

Three other models deserve special attention. The GRIMM model series
is of interest to this work, as it attempts to model core flows as part of
the inversion process directly from magnetic observations (Lesur et al., 2008,
2010, 2015). However, the modeled flows are constrained to be slow-moving
so are inappropriate for searching for waves. Second, the IGRF series of
models are notable for their widespread use and application. However, they
represent an ensemble estimate of Earth’s global field which averages out
many of the small-scale details necessary to observe eMAC waves (Macmillan
and Finlay, 2011).

Finally, the CHAOS series of models provide some of the highest-resolution
models spanning the longest time periods, and are the most appropriate for
searching for signals of eMAC waves. The CHAOS-6 model represents the
latest release of this model, and is continuously updated as new satellite ob-
servations are recorded. The CHAOS-6 field model incorporates both ground
station data and satellite data to create a continuous model of Earth’s main
core field up to degree 14 from 1997 through 2019 as of this writing. It utilizes
the B-splines to capture field variations in time, producing smoothly-varying
records of both the first time derivative (secular variation or SV) and second
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time derivative (secular acceleration or SA) of the field. Because it is easier
to distinguish variations in the core field from the constant lithospheric field,
SV is reliable to degree 16 and SA up to degree 9. Good fidelity in obser-
vations of SA is especially important for this work, as wave motions should
produce relatively large amounts of SA when compared to steady flows (see
chapter 4).

1.5.2 Wave Detection Methods

Each of the geomagnetic models described above separates the signal of
Earth’s core field from the noise of all other observational sources to pro-
duce a geomagnetic model of Earth’s internal core field over time. However,
we must then distinguish the signal of eMAC waves from the noise of all other
core dynamics and processes that contribute to the observed internal geomag-
netic field. Previous authors have used many different approaches to search
for wave signals from noisy observations, and a few common approaches are
described below.

First, there is a long history of attempting to observe wave motions sim-
ply by visually inspecting signals on a chart. For global waves, this typically
takes the form of time-longitude plots, where the intensity of a particular
observation is recorded as color or darkness, with time and longitude (or an-
other distance metric) as the two axes. On these plots, wave motions show up
as diagonal lines, and the wave propagation speed can be recovered from the
line slope. This technique has been used extensively to examine oceanic and
atmospheric waves (e.g. Platzman et al., 1968), and is also commonly used
to study waves in geomagnetic fields (e.g. Cox, 2015). However, this method
offers no objective metric to distinguish signals of waves from background
noise, and detection must be judged “by eye”. In addition, this method can
typically only be used to examine aggregate group velocities, as it does not
separate individual wave phase components.

Another method of detecting global waves and examining their properties
utilizes the fast Fourier transformation (FFT). The 2D FFT can be used to
transform recordings across space and time to obtain information about both
the temporal and spatial patterns of individual wave phases. This technique
is commonly used to study global waves by taking observations at multiple
longitudinal locations over time. Then, a 2D FFT is used to transform
the data to obtain the intensity of oscillation across a range of longitudinal
wavenumbers and oscillation frequencies (e.g. Chulliat et al., 2015; Cox, 2015;
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Gillet et al., 2010; Platzman et al., 1968). The 2D FFT has the advantage
of being able to separate multiple wave modes for individual examination
and recover the properties quite precisely, including information about the
longitudinal wave numbers, frequencies, amplitudes, and phases.

However, FFT methods suffer from three large limitations. First, there is
no standard threshold for detecting wave motions above ambient noise, so the
existence of waves are typically judged “by eye”, similar to time-longitude
plots. Second, FFT-based methods work by computing correlations against
sinusoidal signals in both time and space. Thus, they are less effective at
resolving waves with more complicated spatial structures. There is a related
method termed empirical orthogonal functions (EOF) that overcomes this
sinusoidal limitation by allowing oscillations to have any spatial structure. It
has been applied to study geomagnetic phenomena (Shore et al., 2016, 2018),
but suffers from the same third flaw as FFT based methods which severely
limits its usefulness in applications to Earth’s core.

This third and fatal flaw is that all FFT-based and related methods have
a fundamental trade-off between the timescale of data available and the res-
olution of the results. Typically, FFT methods are used to study oscillations
with very short periods compared to the duration of the dataset, and cannot
reliably be used to examine waves with periods on the order of the timescale
of observations. This is a problem for the eMAC waves we hope to examine
in this thesis. These waves have periods between a few years and a decade,
yet there exist only around two decades of satellite observations with the
required resolution to detect them (Finlay et al., 2016). The relatively short
duration of geomagnetic observations available with which study wave mo-
tions (e.g. Jackson et al., 2000) is a barrier encountered by many authors (e.g.
Buffett, 2014) and has led many authors to seek other methods to confirm
the existence of waves in Earth’s core.

One common method to improve the confidence in detection of waves
is to find independent evidence of the waves in other datasets. Several au-
thors have attempted to use variations in Earth’s length of day in addition
to geomagnetic observations to support the existence of waves such as tor-
sional oscillations (Gillet et al., 2010; Pais and Hulot, 2000) and MAC waves
(Braginsky, 1999; Buffett, 2014; Buffett et al., 2016) in Earth’s core. Other
authors have used multiple global geomagnetic field models obtained by dif-
ferent authors using different data, assimilation methods, and assumptions,
and searched for waves that are common across several of these models (e.g.
Chulliat et al., 2015).
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The methods described above are difficult to apply to the study of eMAC
waves in Earth’s core. Because eMAC waves only extend over a small portion
of Earth’s core and are relatively short-period, they are unlikely to cause
detectable signals in Earth’s length of day or other examined datasets beyond
geomagnetic observations. In addition, they are proposed to have periods of
around 5 to 10 years, which is on the order of the duration of the geomagnetic
observations available with required resolution, so FFT-based methods are
of limited use to detect and study these waves.

Finally, there is another large complication for detecting eMAC waves
in Earth’s core. As the wave motions propagate, they produce geomagnetic
signals by advecting the complex background magnetic field. Observations
and numerical dynamo simulations indicate that the equatorial region of
Earth’s core likely has an extremely complex structure of positive and nega-
tive magnetic flux patches (Finlay et al., 2016; Schaeffer et al., 2017). Even
if the equatorial waves in Earth’s core have a relatively simple structure,
they likely produce spatially-complex signals with a large amount of short-
wavelength power by interacting with the background magnetic field. Indeed,
this advection of background magnetic field even mixes the signals of equa-
torial waves which are symmetric and asymmetric across the equator. In
fact, we show in chapter 4 that symmetric and asymmetric equatorial waves
produce geomagnetic signals that are indistinguishable with simple examina-
tion techniques. This presents an enormous hurdle to the use of FFT-based
methods to study these waves, as the inversions will not reliably recover wave
properties. Instead, the frequencies and wavenumbers recovered by an FFT
analysis will largely reflect the structure of the background magnetic field in
the equatorial region of the CMB.

To overcome the limitations of the duration of our dataset and the com-
plexity introduced by the advection of background magnetic field, we use a
method similar to seismic waveform modeling to model and detect eMAC
waves (e.g. Tromp, 2015; Woodhouse and Dziewonski, 1984). To do this, we
simulate synthetic eMAC waves with various properties, then allow them to
advect the observed magnetic field in the core and record the SV and SA
signals produced. By computing the correlation of these synthetic SV and
SA signals to observed SV and SA, we are able to determine which waves are
likely to have produced the observations. With this method, we can then in-
fer properties of the eMAC waves that exist in Earth’s core, and thus recover
information about the SOC.

To determine an objective threshold for detecting waves in SV using this
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method, we derive a noise model for geomagnetic observations and compare
the strength of correlation with only noise to those obtained from real obser-
vations. In addition, we provide an additional constraint by examining wave
correlations in both SA and SV and verify that the observations are best
explained by waves of similar phase in both datasets. For a full description
of these methods, see chapter 4.

1.6 Thesis Layout

This thesis is laid out in six chapters. Chapter 2 summarizes the numerical
modeling framework used to simulate waves in the SOC and study eMAC
waves. Chapter 3 provides a full description of eMAC wave properties across
a wide variety of SOC, core fluid, and background magnetic field parameters.
Then, Chapter 4 describes the correlation methods and noise model used to
detect eMAC waves in geomagnetic observations, and determines their sensi-
tivity using synthetic waves. Finally, Chapters 5 and 6 apply these methods
to observations of Earth’s geomagnetic field and discuss the implications.
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Chapter 2

Numerical Modeling

In order to understand the influence of background magnetic field configura-
tion and layer buoyancy on waves in stratified layers, we develop a flexible
numerical model that utilizes a hybrid finite-volume and Fourier method. A
finite-volume formulation allows us to efficiently study wave dynamics with
complex background magnetic fields while using only sparse matrices. Finite
volume methods also avoid numerical singularities at the north and south
poles that arise with finite difference methods and may also simplify cou-
pling the spherical shell layer presented in this work to the non-spherical
structure of geostrophic motion in the bulk core in future work. We choose
not to adopt a finite-element approach because our domain is regular and so
we can avoid the extra numerical overhead required to track connectivity of
elements. A linearized description of the waves allows for Fourier decompo-
sition of the problem into individual azimuthal wave modes, as modes do not
couple to each other when the background magnetic field and layer buoy-
ancy are axially-symmetric. We combine these ingredients to formulate an
eigenvalue problem for the wave motion and obtain solutions for the wave
structures, periods, and quality factors.

2.1 Model Formulation

We compute the velocity (~V ), magnetic field ( ~B), pressure (P), and radial
displacement (Ur) for waves within a stratified layer in Earth’s core. The
evolution of these variables is determined by a set of governing equations
derived from the Navier-Stokes equations for velocity, the induction equation

28



for the magnetic field, and mass continuity equations for pressure and radial
displacement. These equations are discretized using a hybrid finite volume
and Fourier (FVF) method. Finally, the equations are linearized and wave
solutions are obtained by using a sparse-matrix eigenvalue solver.

2.1.1 Governing Equations

We adopt the Boussinesq approximation to describe the motion of a viscous
and incompressible fluid (see e.g. Jones, 2011). Gravity ~g and the initial
density stratification ρ0(r) of the core fluid are both radial, so the buoyancy
force has only a radial component −(ρgr̂), where ρ is the fluid density at
any subsequent time (see eq. 2.6). The centrifugal force that arises in the
rotating frame is incorporated in the pressure term ∇P , but the magnetic
force is expressed in terms of the Maxwell magnetic stress tensor T without
absorbing the magnetic pressure into P:

Tij =

(
BiBj −

1

2
B2δij

)
. (2.1)

With these simplifications, the momentum equation becomes

ρ
D~V

Dt
= −∇P +

1

µ0

∇ · T + ρν∇2~V − 2ρΩ× ~V − ρgr̂. (2.2)

As we retain pressure as a variable, we must explicitly enforce the continuity
equation

∇ · ~V = 0. (2.3)

We use the magnetohydrodynamic approximation (e.g. Roberts and King,
2013) to describe the evolution of the magnetic field

∂ ~B

∂t
= ∇× (~V × ~B) + η∇2 ~B (2.4)

where η = 1/(σµ0) is the magnetic diffusivity and σ is the electrical conduc-
tivity. The magnetic field is also subject to the condition

∇ · ~B = 0 . (2.5)
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Table 2.1: Physical constants used for model
Symbol Constant Value
Ω Rotation Rate of Earth 7.3×10−5 /s
Rc Radius of Outer Core 3480 km
ν Momentum Diffusivity 10−2 m2/s
η Magnetic Diffusivity 0.8 m2/s
ρ0 Density 104 kg/m3

µ0 Vacuum Permeability 1.26× 10−6 m kg/s2A2

N Brunt-V‘̀aisäĺ’a Frequency O(1Ω)

2.1.2 Thin-Layer Approximation

The governing equations are linearized by assuming that the waves are small
perturbations of a background state

~V = ~V0+~v, Ur = Ur0+ur, ~B = ~B0+~b, P = P0+p, ρ = ρ0+∆ρ
(2.6)

In a thin layer, radial velocities are relatively small, so the radial force
balance is nearly hydrostatic. We also adopt a hydrostatic background state

~V0 = 0, Ur0 = 0 (2.7)

where P0 and ρ0 are the hydrostatic pressure and initial density profile.
For the radial buoyancy force, the local density of the fluid ρ is disturbed

by radial motion through the (radial) background density gradient ∂ρ0/∂r.
Assuming the displacement of the parcel (ur) is small, the density perturba-
tion can be written as ∆ρ = −ur∂ρ0/∂r. The buoyancy force can therefore
be written

− ρg r̂ = −(ρ0g − ρ0
g

ρ0

∂ρ0

∂r
ur) r̂ = −(ρ0g + ρ0N

2ur) r̂ (2.8)

where

N =

√
− g

ρ0

∂ρ0

∂r
(2.9)

is the Brunt-Và‘isá’illa frequency, which defines the strength of stratification
(see section A.3). In this model, we allow both N and B0 to vary with radius
r and colatitude θ through the layer

N = N(r, θ), ~B0 = ~B0(r, θ)
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The radial component of the momentum equation (2.2) is nearly hydro-
static, so the radial gradient in the pressure perturbation balances the buoy-
ancy force

0 = −(∇p)r −N2ur (2.10)

where the subscript r is used to denote the radial component of a vector
quantity.

Pressure perturbations induced by radial motion drive a horizontal flow.
We make the usual assumption of retaining only the radial component of
the rotation vector in the governing equations (i.e. Ωr = Ω cos θ) because
the horizontal component contributes to the Coriolis force only through the
(small) radial velocity. Therefore, subtracting the hydrostatic state (2.7) and
eliminating small terms, the horizontal momentum equations (2.2) become

∂~vθ,φ
∂t

= − 1
ρ0

(∇p)θ,φ +
1

ρ0µ0

(∇ · Tl)θ,φ + ν(∇2~v)θ,φ − 2(Ωcosθ r̂)× ~v (2.11)

where Tl is a linearized version of the Maxwell stress tensor T retaining only
terms involving interactions between B0 and b. Note that we retain the
viscous force to promote numerical stability, although this term is typically
quite small.

Small radial velocities relative to horizontal velocities (vr << vθ,φ) are
expected when the characteristic radial length scale is small compared with
the horizontal length scale. The corresponding radial magnetic perturbations
are also very small (br << bθ,φ) as they are related through the induction
equation (2.4). Consequently, we solve for the horizontal perturbations in
the magnetic field using the induction equation

∂bθ,φ
∂t

= (∇× ~v × ~B0)θ,φ + (η∇2~b)θ,φ (2.12)

and evaluate the radial component (if needed) using the solenoidal condition

∇ ·~b = 0.

2.1.3 Non-Dimensional Equations

The equations are cast into a non-dimensional form using the core radius
Rc as the characteristic length scale and the reciprocal rotation rate of the
Earth 1/Ω for the characteristic time scale (see Table 1). This results in two
dimensionless constants – the Ekman number E and the magnetic Prandtl
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Table 2.2: Non-dimensional parameters with representative values
Parameter Definition Value in Core Value in Model

E ν
R2

cΩ
10−15 – 10−14 10−11

Pm
ν
η

10−6 – 10−5 10−2

NΩ
1
Ω

√
−g
ρ0

∂ρ0
∂r

0− 101 0− 101

Br
~B0 · r̂/

√
ρηµ0Ω 0.1 – 1.0 0.0 – 1.0

number Pm – and two dimensionless parameters that can vary through the
layer – buoyancy frequency NΩ and a dimensionless radial magnetic field
Br (see table 2.2). Here, the characteristic magnetic field B′ =

√
ρηµ0Ω

is 0.86 mT for η = 0.8 m2/s, but can vary with different choices for core
conductivities. Collecting terms, the governing equations (2.11) and (2.12)
become

∂vθ,φ
∂t

= −∇p+
E

Pm
(∇ · Tl)θ,φ + E∇2~v − 2(cos θr̂)× ~v −N2

Ωur r̂ (2.13)

and
∂bθ,φ
∂t

= (∇× ~v ×Br)θ,φ +
E

Pm
(∇2~b)θ,φ. (2.14)

where variables now represent their non-dimensional forms. The equations
are supplemented by the incompressibility condition

∇ · ~v = 0 (2.15)

and a linearized relationship between ur and vr

∂ur
∂t

= vr . (2.16)

2.1.4 Hybrid Finite Volume - Fourier Method

The governing equations are discretized using a combination of finite volume
(e.g. Ferziger and Peric, 2002) and Fourier methods, jointly abbreviated as
FVF. The domain is split into cells with a regular spacing in radius and
colatitude. Each term in the governing equations is integrated over the cell
volume then converted into a surface integral using Gauss’ theorem. We then
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ˆ

θ̂(l,k)

Figure 2.1: Finite-volume cell geometry. Dimensions exaggerated for illus-
tration purposes.

divide this quantity by the cell volume to obtain operators that look similar
to those used in finite difference methods. Each cell is indexed by the letter
k in the radial direction and l in the latitudinal direction, while the letter m
denotes the longitudinal wave number of the Fourier mode. Radial positions
r, r+, and r−, respectively, denote the location of the center, top, and bottom
faces of the cell in question, and ∆r denotes the radial thickness of the cell.
An analogous notation is used for the meridional position (i.e. θ, θ+, θ−). An
example of a cell is shown in Figure 2.1. We demonstrate the approach by
deriving the (discrete) operator for the radial pressure gradient.

For the radial pressure gradient,

(∇p)r =

(
1

∆V

∫
S

p ~dS

)
· r̂ (2.17)

where ∆V = r2 sin θ∆r∆θ∆φ represents the volume of the cell and the inte-
gral is taken over the total surface S (e.g. Aris, 1962). The surface integral is
subdivided into individual faces, where Ar+ and Ar− denote the area of the
top and bottom radial faces and n̂r+ and n̂r− represent the vectors normal
to those faces (see figure 2.1). A similar notation is used for the other faces.
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Summing the contributions from all six faces gives

(∇p)r =
1

∆V

{
pr+Ar+(r̂ · n̂r+) + pr−Ar−(r̂ · n̂r−)

+pθ+Aθ+(r̂ · n̂θ+) + pθ−Aθ−(r̂ · n̂θ−)

+pφ+Aφ+(r̂ · n̂φ+) + pφ−Aφ−(r̂ · n̂φ−)
}
.

(2.18)

Interpolating the surface values of p using the values at the centers of adjacent
cells, we obtain

(∇p)(k,l)
r =

r2
+

2r2∆r
p(k+1,l) − r2

−

2r2∆r
p(k−1,l) − sin θ+

4r sin θ
p(k,l+1)

− sin θ−
4r sin θ

p(k,l−1) − sin θ+ + sin θ−
4r sin θ

p(k,l).

(2.19)

This expression appears similar to a finite difference operator, but correctly
accounts for the spherical geometry of the domain and does not introduce
coordinate singularities at the north and south poles. The θ̂ component of
the pressure gradient is derived in a similar manner and results in a similar
expression. The φ̂ component is somewhat simpler because we use the Fourier
series to interpolate values onto the φ-faces of the cell. Adopting the small
angle approximation sin ∆φ/2 ≈ ∆φ/2, the expression for (∇p)φ simplifies
into

(∇p)(k,l)
φ =

(
im

rsinθ

)
p(k,l) (2.20)

where m represents the Fourier mode.
Expressions for all other terms in the governing equations are derived in a

similar manner. We introduce short-hand notation for the derived numerical
operators to simplify notation. For example, the divergence operator can be
represented as

∇ · ~v = ∇rvr +∇θvθ +∇φvφ (2.21)

where ∇r,∇θ,∇φ represent numerical operators that include terms due to
the spherical geometry of the problem (e.g. ∇r 6= ∂r). Details of these
derivations and the resulting operators can be found in the supplement.
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2.1.5 Eigenvalue Formulation

Perturbations in the fields are constrained to vary periodically in time and
longitude with complex time frequency ω and longitudinal wavenumber m:

~v(r, θ, φ, t)
bθ,φ(r, θ, φ, t)
p(r, θ, φ, t)
ur(r, θ, φ, t)

 =


~v(r, θ)
bθ,φ(r, θ)
p(r, θ)
ur(r, θ)

 ei(ωt+mφ). (2.22)

Applying this constraint and introducing the notation from section 2.1.4,
the final governing equations for the model are

0 = −(∇p)r −N2
Ωur (2.23a)

iωvθ = −(∇p)θ +
E

Pm
(∇ · Tl)θ + E(∇2~v)θ + 2 cos θ vφ (2.23b)

iωvφ = −(∇p)φ +
E

Pm
(∇ · Tl)φ + E(∇2~v)φ − 2 cos θ vθ (2.23c)

iωbθ = (∇× ~v ×Brr̂)θ +
E

Pm
(∇2~b)θ (2.23d)

iωbφ = (∇× ~v ×Brr̂)φ +
E

Pm
(∇2~b)φ (2.23e)

0 = ∇rvr +∇θvθ +∇φvφ (2.23f)

iωur = vr. (2.23g)

Note that we do not explicitly solve for br because its effect on the dy-
namics of the fluid is very small. However, the magnetic induction equations
(2.23d)-(2.23e) in combination with mass continuity (2.23f) enforce the con-

dition ∇ · ~b = 0 when the initial field is solenoidal, and br can always be
recovered from the solution using the solenoidal condition.

2.1.6 Boundary Conditions

Boundary conditions are needed at the top and bottom radial surfaces of the
layer to close the equations. However, we do not need conditions at θ = 0 and
θ = π in the FVF method because the area of the face of the cell adjoining
the north and south pole vanishes and thus does not contribute to the surface
integral.
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At the CMB we impose no radial motion and adopt (viscous) stress-free
boundary conditions because viscous boundary layers are not expected to
play a large role in the dynamics of the waves when the Ekman number (E)
is small. Consequently, the boundary conditions on velocity at the CMB are

vr = 0,
∂vθ
∂r

= 0,
∂vφ
∂r

= 0. (2.24)

The conditions at the bottom boundary of the layer are more complex.
Viscous stress-free conditions are reasonable when E is small, but it is not
obvious that the radial motion should vanish. Numerical calculations show
that the radial motion is indeed small for zonal MAC waves when the un-
derlying region is geostrophic (Buffett, 2014). Braginsky also argued for no
radial motion at the bottom boundary for non-zonal waves by introducing
a density jump at the base of the layer (Braginsky, 1998). When the den-
sity jump is large enough the associated buoyancy suppresses radial motion
at the boundary. Gravity waves can propagate along the interface, but the
periods are short compared with the period of non-zonal MAC waves, so the
motion is effectively decoupled. As long as the timescale of dynamics in the
interior is different enough from the period of waves in the layer, then it
seems reasonable to decouple the motion in these two regions. We do this by
adopting (2.24) as boundary conditions on the base of the layer.

These conditions are incorporated directly into FVF discretization for
cells adjoining the top and bottom boundaries, with details found in the
supplement.

The appropriate conditions on pressure follow directly from (2.23a). When
either the radial motion or the stratification (N) vanishes, we require

∂p

∂r
= 0 (2.25)

at the top and bottom boundary of the layer. These are again implemented
directly into the FVF operators, with details in the supplement.

A natural choice of boundary conditions for the magnetic field at the
CMB is to match the numerical solution to a potential field outside the core.
These boundary conditions are not easily implemented in a finite volume
formulation, but fortunately the pseudo-vacuum boundary conditions

bφ,θ|CMB = 0 (2.26)
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are a good approximation. Braginsky (1998) offers a detailed discussion
of these boundary conditions for waves in a thin layer, but they can be
justified with a simple physical argument. In the mantle, horizontal and
radial components of a potential magnetic field perturbation are of the same
order bθ,φ|mantle ∼ br|mantle. However, in a thin layer, horizontal perturbations
to the magnetic field are much larger than the radial perturbations due to
large horizontal fluid motions, bθ,φ|layer >> br|layer. The magnetic field must
be continuous, so at the CMB, bθ,φ must be similar in magnitude to br. Thus,
br|CMB ∼ bθ,φ|CMB << bθ,φ|layer. Therefore, the horizontal perturbation of the
magnetic field is much smaller at the CMB than within the layer so we can
adopt the conditions shown in (2.26) without significantly affecting the wave
dynamics.

At the bottom of the layer, the boundary conditions for the magnetic field
must match the solution for a perturbation in the conductive fluid deeper
inside the core. The waves we wish to study require buoyant stratification
to propagate and thus decay in the region below where there is no buoyant
restoring force. However, these waves do interact with the convective fluid in
the bulk of the core through magnetic induction and pressure and potentially
couple to modes of oscillations in the bulk of the core. To fully treat this
problem would require a description of motion through the whole core, which
is beyond the scope of this work. Instead, we choose to simulate only the
stratified layer region and approximate the bulk of the core fluid as stationary,
allowing the magnetic perturbation to propagate into the core with a skin
depth dependent on the period of oscillation.

To implement this boundary condition in our model, we require the mag-
netic field to be continuous across the bottom boundary and integrate the
induction equation across the interface, assuming that horizontal gradients in
the magnetic field are negligible compared to radial gradients. The continuity
condition becomes

Br[vθ,φ]+− +
E

Pm
[∂rbθ,φ]+− = 0 (2.27)

where [ ]+− denotes the discontinuity in quantities above (+) and below (−)
the bottom layer boundary. The velocity above the boundary does not vanish
because we impose viscous stress free conditions. Below the boundary, v−θ,φ =
0 and the magnetic perturbation inside the core obeys a diffusion equation.
The solution below the layer is

b−θ,φ(r − rb) = b+
θ,φ(rb)e

[(1+i)(r−rb)/δ]ei(ωt+mφ) (2.28)
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where rb denotes the radial location of the bottom layer boundary and δ
denotes the dimensionless magnetic skin depth

δ =

√
2E

ωPm
. (2.29)

Note that all values are dimensionless, but a typical eMAC wave with a
period of 8 years gives a magnetic skin depth of ∼ 8 km.

Using (2.28) to evaluate the boundary condition in (2.27) gives

Brv
+
θ,φ +

E

Pm
∂rb

+
θ,φ −

(1 + i)

δ
b+
θ,φ = 0 . (2.30)

When the magnetic perturbation at r = rb is mainly due to the velocity dis-
continuity at the base of the layer, it is reasonable to approximate ∂rb

+
θ,φ using

the diffusive solution complementary to (2.28). In this case, the boundary
condition reduces to

b+
θ,φ =

δB0rPm
2(1 + i)E

v+
θ,φ (2.31)

with further details found in the supplement.
As the magnetic skin depth depends upon the period of the wave, these

boundary conditions require knowledge of the period of the waves prior to
solving the eigenvalue problem. Thus, we use an iterative approach: an esti-
mate of the wave period is used for the initial calculation, then the solution is
recomputed using the updated wave period. Typically, convergence requires
only a few iterations.

2.1.7 Solving the Eigenvalue Problem

Incorporating boundary conditions into the discrete operators, the governing
equations (2.23) are cast into the form of a generalized eigenvalue problem
ωBx = Ax where A and B are sparse matrices, ω is the eigenvalue, and x
is the eigenvector containing the wave structure for each variable. We let

xT = [vr, vθ, vφ, bθ, bφ, p, ur] . (2.32)

where each variable is indexed first by cell radial coordinate k, then cell
latitudinal coordinate l. In other words, the first two elements of vr are
vr(k = 0, l = 0) and vr(k = 1, l = 0). Thus, x is a vector with 7 × Nr × Nθ
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components, where Nr and Nθ are the number of radial and latitudinal cells
in the model, respectively. With this formulation, B is a singular semi-
positive definite mass matrix consisting only of ones and zeros on the diagonal
representing time derivatives and A is a sparse block matrix containing the
rest of equation dynamics and boundary conditions.

Typical model runs have Nr ∼ 40 and Nθ ∼ 200, so that x has ∼ 56, 000
components. The matrices are extremely sparse; most sub-matrices only
require storing a few terms near the diagonal. Although A is a (7NrNθ ×
7NrNθ) matrix with (7NrNθ)

2 ∼ O(109) possible components, it only requires
the storage of O(100 × 7NrNθ) ∼ O(106) terms due to the sparsity of the
discretized FVF operators.

Matrices are assembled in the Python language using the sparse matrix
toolkits included in the SciPy and NumPy packages (Van Der Walt et al.,
2011; Jones et al., 2001). After the matrices are assembled in Python, the
eigenproblem is solved using the Scalable Library for Eigenvalue Problem
Computations (SLEPc) (Hernandez et al., 2005). A desired wave frequency
ω0 is targeted using the shift-invert technique. The shifted eigenproblem is
then solved using an iterative Krylov-Schur method, finding the requested
number of solutions with frequencies closest to the desired wave frequency ω0.
The Krylov-Schur method normalizes the eigenvector each iteration, mini-
mizing the pressure term and removing its extra degree of freedom (recall that
the boundary conditions on p leave the average amplitude unconstrained).
The eigenvector contains information about the structure of the wave, and
the eigenvalue specifies the wave period and decay rate. Since the eigenvec-
tor is unconstrained up to a constant factor, the amplitude of the wave is
determined by defining an excitation or by comparison to observed secular
variation and inferred core fluid velocities.

2.2 Validation

Using the FVF method, we are able to examine the effect of different mag-
netic field configurations on magnetohydrodynamic waves in Earth’s core.
We first verify the technique by deriving global waves with a reduced subset
of the equations. We choose global barotropic Rossby waves because they
have an exact analytical solution to compare against and they demonstrate
that our formulation allows flow directly across the north and south poles.
Next, we examine the effect of non-dipolar fields on the structure of zonal
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MAC waves and compare to the results of Braginsky (1993) and Buffett
(2014). Finally, we study the effects of varying magnetic field strength and
structures on the spatial extent and characteristics of non-zonal MAC waves,
with relevance to recent observations by Chulliat (2015).

2.2.1 Global Barotropic Rossby Waves

Barotropic Rossby waves arise in a thin spherical shell of fluid due to inter-
actions between inertia, pressure, and the Coriolis force:

∂~v

∂t
= −1

ρ
∇p− 2Ω× ~v. (2.33)

Solutions for Rossby waves are well studied (e.g. Platzman et al., 1968) and
can be expressed in terms of a stream-function formulation for the velocity
field

~v = ∇×Ψr̂. (2.34)

The radial component of the curl of the governing equation (2.33) can be
written in terms of the stream-function as

∂∇2Ψ

∂t
= −2Ω

r2
∂φΨ (2.35)

which for vertically invariant fluid motions admits solutions of

Ψ = CPm
` (cos θ)ei(mφ+ωt) (2.36)

where Pm
` (x) are the associated Legendre polynomials and C is an arbitrary

constant. Note that degree ` is distinct from index l, which is used previously
to denote latitudinal grid cell in the FVF method. Substituting (2.36) into
(2.35) gives an expression for the wave frequency

ωRossby =
2m

`(`+ 1)
Ω. (2.37)

Rossby waves emerge from our numerical model by removing the influence
of magnetic field and fluid stratification. Figure 2.2 shows numerical solutions
for two wave modes: one specified by ` = 1, m = 1 and the other by ` = 3,
m = 2. Numerical and analytical solutions were found to agree precisely
with a grid size of 20 radial and 120 latitudinal cells, with a maximum root
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Figure 2.2: Longitudinal slices of velocity fields for Rossby wave modes with
peak velocity normalized to 1. (a) ` = 1,m = 1 and (b) ` = 3,m = 2. Note
that (a) includes non-zero flow at the poles – no modifications to the method
are required to handle this case.

mean squared error between normalized velocity fields of 1.6×10−4 and wave
periods in agreement to four significant digits. Note that the FVF model
correctly computes the Rossby wave with ` = 1, m = 1 which represents a
solid-body rotation around an equatorial axis and includes flow across the
north and south poles.

2.2.2 Zonal Magnetic Archimedes Coriolis (MAC) Waves

Analytical solutions for zonal MAC waves were given by Braginsky (1993).
He adopted a constant buoyancy frequency through the layer and used the
radial component of a dipole as the background magnetic field. He proposed
the same boundary conditions as those assumed in our FVF model, although
he relaxes the bottom boundary conditions to pseudo-vacuum conditions to
derive the leading-order analytical solution. His lowest frequency wave (at
latitudinal degree ` = 2) is compared with the results of our FVF model
in figure 2.3. Wave structures are nearly identical, with very small (< 2%)
differences in the amplitudes of the flow components. Braginsky’s expression
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Figure 2.3: Comparison of Braginsky analytical (left) and FVF numerical
(right) solutions for zonal MAC waves with Braginksy’s preferred parame-
ters H=80 km, N=2Ω, η = 2m2/s, Bd = 0.5mT . Longitudinal (a), lati-
tudinal (b), and radial (c) components of flow are shown for a meridional
slice through the stable layer, with (a) offset 90◦ in phase. The relative am-
plitudes of the flow are fixed in the solution, but the overall magnitude is
unconstrained. A representative estimate for vφ is chosen for comparison to
waves in Earth’s core.
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for the wave period gives 63.42 years with his preferred layer parameters
(see figure 2.3 caption), while the FVF model gives 72.8 years. Most of this
discrepancy arises because Braginsky discards diffusion when deriving his
expression for the wave period. When we reduce the magnetic diffusivity
in our model by a factor of four the wave period becomes 63.34 years, a
difference of only ∼ 0.1%.

Our FVF model is also able to reproduce numerical MAC wave results
from a previous spectral model (Buffett, 2014). The two lowest-order MAC
waves for the case of constant buoyancy and constant radial magnetic field
were compared for two different values of NΩ. Wave structures and periods
converged to a stable solution with a resolution of 20 radial by 120 latitudinal
cells, with RMS error of the wave structures within 1% and wave periods and
quality factors (Q = <(ω)/2=(ω)) within 2% for both modes.

2.3 Summary

In this chapter, we have developed a numerical model to calculate the struc-
ture and period of waves in a stratified layer at the top of the core. The
method of solution is a hybrid of finite-volume and Fourier methods and
is constructed as an eigenvalue problem. The formulation allows general
descriptions of the stratification structure of the layer and for radial and lati-
tudinal variation in magnetic field strength. In the following sections, we use
this method to study the properties of these waves and to search for evidence
of their existence in geomagnetic observations.
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Chapter 3

eMAC Waves

The FVF model reveals a class of equatorially-trapped MAC waves that prop-
agate to the east with sub-decadal periods. We refer to these waves as eMAC
waves, and investigate them as a potential source of strong, short-period os-
cillations in secular acceleration observed in near Earth’s equator (Chulliat
et al., 2015). These waves bear a resemblance to equatorially-trapped Rossby
waves and inertio-gravity waves that propagate in Earth’s oceans and atmo-
spheres, but have substantially different behavior due to the inclusion of
magnetic forces. Bergman (1993) derived solutions for equatorially-trapped
waves in a stratified layer in Earth’s core, but our solutions differ substan-
tially from his. Notably, Bergman’s solutions propagate only to the west, not
east, and his dispersion relationship is different from the behavior we observe
in our eMAC waves. In addition, we are unable to find waves that match the
properties derived by Bergman after an extensive numerical search. There
are several possible reasons for this discrepancy. Approximations used by
Bergman to derive analytical solutions lead to purely damped perturbations
(see eq. 3.16 in that study). Bergman also performs numerical computations
(figures 2 and 3 in that study), but only finds propagating waves with periods
of several moths or less using unrealistically strong stratification and weak
magnetic fields. Bergman recognizes this when he states “...we do not know
the relevance of the solutions to the H layer” (Bergman, 1993).
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3.1 Wave Structure

The eMAC waves derived in this work arise due to interactions between
buoyancy, Lorentz forces, and Coriolis forces. Convection in the outer core
causes buoyant fluid parcels to rise and impact the bottom of the stably-
stratified layer. These motions cause pressure gradients that drive meridional
flow across the equator, as can be seen in in the r-displacement and θ-velocity
subplots of figure 3.1. Off the equator, these pressure gradients drive cyclonic
flows due to the Coriolis force, as seen in the φ-velocity subplot. Both of these
flows are opposed by the radial magnetic field, which provides the restoring
force through field gradients (bθ and bφ) and by its interaction with the bulk
conductive core.

We describe the wave shown in figure 3.1 as having a radial wavenumber
of k=1, as the wave components have one zero-crossing in the radial direction.
Likewise, we describe this wave as having a latitudinal wavenumber of l=0,
as this is the simplest latitudinal wave structure observed and vθ and bθ
have no zero-crossings in the latitudinal direction. Note that for this wave,
the radial displacement, bφ, and vφ have one latitudinal zero-crossing. In
general, these variables have l+1 latitudinal zero-crossings, and so have the
opposite equatorial symmetry to vθ and bθ. This wave has a longitudinal
wavenumber of m=6, which is prescribed in the FVF calculation. Note that
the amplitude of the wave is undetermined due to the construction of the
FVF model as a eigenvalue problem. Unless otherwise specified, amplitudes
of the waves shown in figures are set to a typical value so that the eMAC
fluid motions acting on Earth’s observed field produce SA of approximately
the same magnitude as that observed in Earth’s equatorial region.

We describe the l=0 wave mode as a “symmetric” eMAC wave due to
the equatorial symmetry of SV and SA signals that the wave produces when
advecting a dipole background magnetic field. In general, all eMAC waves
with even l produce equatorially symmetric signals when advecting a dipole
magnetic field, while all odd l produce asymmetric signals. We show in
figure 3.2 the CMB surface flows for the fundamental symmetric (l=0) and
asymmetric (l=1) eMAC waves. These waves are computed with k=1 and
m=6. Note that the waves include both surface advection shown by arrows
and horizontal divergence, shown by the red and blue colors on the plot.
Both of these terms act to advect background magnetic field and produce
observable SV and SV (see section 4.1.1). We show the full solutions for all
variables in the FVF model for these two modes in figures 3.3 and 3.4.
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Mantle

Core

Figure 3.1: Representation of typical eMAC wave, including stratified layer
location with Earth. This wave is computed with a constant radial magnetic
field and constant layer stratification. However, the general structure of the
eMAC waves remains the same if layer stratification is allowed to vary with
radius or the radial magnetic field strength is allowed to vary with latitude.
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Figure 3.2: Horizontal wave structures for two equatorial wave modes using
Hermite fits derived from our FVF numerical model solutions. Structures
shown have δθ = 30◦. Colors represent divergence (red) and convergence
(blue), and arrows show horizontal flow structure. Waves are denoted “sym-
metric” (a) and ”asymmetric” (b) in reference to the SV and SA they pro-
duce when advecting a pure dipole magnetic field.
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Figure 3.3: Symmetric eMAC Wave showing all variables in model. Wave
has radial wavenumber k=1, latitudinal wavenumber l=1, and longitudinal
wavenumber m=6, computed with H=40 km, a constant N=10Ω, with a
dipole field with Bd = 0.6 mT, Bnoise = 0.3 mT.
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Figure 3.4: Asymmetric eMAC Wave showing all variables in model. Wave
has radial wavenumber k=1, latitudinal wavenumber l=1, and longitudinal
wavenumber m=6, computed with H=40 km, a constant N=10Ω, with a
dipole field with Bd = 0.6 mT, Bnoise = 0.3 mT.
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3.2 Period and Quality Factor of Waves

We wish to examine the general behavior of eMAC wave periods and quality
factors. We perform a numerical search of the relevant parameter space
which allows us to examine the wave dependence on several relevant variables.
Notably, an analytical solution for the dispersion relationship for these waves
has recently been found which largely matches the results obtained in this
section (Buffett and Matsui, 2019). However, the full dispersion relation was
derived after this work was performed, so is not utilized. We use a simplified
model with pseudo-vacuum boundary conditions (PVBC) on both the top
and bottom boundary of the layer to improve our ability to resolve waves
and reduce computation time for this parameter space search. This change
in boundary conditions only has a small effect on the structure of the waves
near the bottom layer boundary. Results for the the standard EM boundary
conditions are shown in 3.3 and 3.4 for a symmetric and asymmetric wave,
while introducing PVBC produces results shown in 3.5 and 3.6. Comparing
these results, we see that the choice of EM boundary conditions has a minimal
effect on the period of the waves, but does affect the quality factor. This will
be examined in more detail in section 3.2.9.

We use a default set of parameters specified in table 3.1, with a constant
radial magnetic field B and constant buoyancy frequency, N, through the
layer.

3.2.1 Layer Thickness ( H )

We vary the layer thickness H from 20 km to 180 km in figure 3.7. We find
that eMAC wave periods increase with layer thickness, such that

ω ∝ H−2 .

Parameter Description Value
H layer thickness 40 km
B radial magnetic field strength 0.6 mT
N buoyancy frequency 10 Ω
η magnetic diffusivity 0.8 m2/s
ν momentum diffusivity 0.8 m2/s
m longitudinal wavenumber 6

Table 3.1: Default layer parameters for eMAC wave parameter space search
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Figure 3.5: Symmetric eMAC wave computed using PVBC showing all vari-
ables in model. Wave has radial wavenumber k=1, latitudinal wavenumber
l=1, and longitudinal wavenumber m=6, computed with H=40 km, a con-
stant N=10Ω, with a dipole field with Bd = 0.6 mT, Bnoise = 0.3 mT.
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Figure 3.6: Asymmetric eMAC wave computed using PVBC showing all
variables in model. Wave has radial wavenumber k=1, latitudinal wavenum-
ber l=1, and longitudinal wavenumber m=6, computed with H=40 km, a
constant N=10Ω, with a dipole field with Bd = 0.6 mT, Bnoise = 0.3 mT.
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Quality factors are not influenced by the layer thickness

Q 6∝ H .

3.2.2 Buoyancy Frequency ( N )

We examine the effect of strength of layer stratification on eMAC waves by
varying the radially-constant buoyancy frequency, N, from 0.5 Ω to 20 Ω in
figure 3.8. We find that eMAC wave periods and quality factors exhibit a
transition in behavior around a threshold value of N which depends on lati-
tudinal wavenumber l. Above the threshold, eMAC waves take on the typical
structure shown in figure 3.1 and their period and quality factor are insensi-
tive to variations in N. Below the threshold N, eMAC wave periods begin to
have a strong dependence on N, with their period increasing with smaller N
and their quality factor decreasing. As the the layer stratification becomes
weaker, the eMAC waves also have an increasing amount of their power at
higher latitudes and eventually escape their equatorial trapping and have the
majority of their power and high latitudes for very weak stratification. The
transition point between large-N and small-N eMAC regimes seems to occur
near N∼1 for l=0 and increase to N∼3 for l=3.

Compositionally stratified layers in Earth’s core have proposed buoyancy
frequencies N>10, putting these layers firmly in the large-N regime of eMAC
wave behavior. On the other hand, thermally stratified layers have proposed
buoyancy frequencies near N=1, making this these small-N waves and the
transition between regimes an important subject to examine. However, be-
cause small-N waves are no longer equatorially-trapped, they cannot explain
the strong observed SA near the equator and so we do not address them in
detail in this study. Thus, for equatorially-trapped eMAC waves,

ω 6∝ N ,

Q 6∝ N .

3.2.3 Magnetic Field Strength ( B )

We vary the constant radial magnetic field strength from 0.1 mT to 0.9
mT while keeping the other default values constant and plot the period and
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quality factor in figure 3.9. We find that the wave period varies with the
inverse square of the magnetic field strength, which means that frequency

ω ∝ B2 .

Quality factor also varies as
Q ∝ B2 .

3.2.4 Radial Wavenumber ( k )

We are able to find eMAC waves with various radial wave-numbers, which
we denote k. We find that increasing radial structure decreases the wave
period and increases the quality factor of the waves, as shown in figure 3.10.
Between k=1 and 3, the period decreases with k such that

ω ∝ k2

for small k. For k = 1,2,3, the quality factor Q does not change with radial
wavenumber

Q 6∝ k .

For higher values of k, the waves begin to have more of their power at
higher latitudes and are no longer equatorially trapped. They also diverge
from the ω and Q relationships established at lower values of k. Both of
these indicate that the waves are then transitioning into a different, non-
eMAC wave mode in the layer for higher k.

3.2.5 Latitudinal Wavenumber ( l )

We examine waves with various latitudinal wave-numbers in the same de-
fault layer in figure 3.11. We find that the period decreases as latitudinal
wavenumber increases. However, the precise behavior depends on the partic-
ular longitudinal wavenumber examined. For m=1,2 the decrease in period
and increase in quality factor with l is faster than for m=3,6,9. In addition,
the trends with m=3,6,9 seem to converge for higher values of l, while m=1,2
show distinct behavior even at higher values of l.

The quality factor of the eMAC waves depends on latitudinal wavenumber
in a similar but opposite manner to the period. The quality factor generally
increases with latitudinal wavenumber, but the increase is faster for smaller
m and more gradual for larger m.
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Figure 3.9: eMAC wave period (a) and quality factor (b) dependence on
radial magnetic field strength ( B ).
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Figure 3.11: eMAC wave period (a) and quality factor (b) dependence on
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3.2.6 Longitudinal Wavenumber ( m )

We examine waves with various longitudinal wave-numbers in the same de-
fault layer in figure 3.12. We find that the period generally decreases for
waves with low latitudinal wave-numbers (l = 0, 1). However, the depen-
dence is not a constant power, and higher latitudinal wavenumber waves
have periods that increase from m=1 to m=3 before beginning to decrease
with larger m. All values of l seem to be converging to an inverse relationship
between period and wavenumber, resulting in

ω ∼ m

for large values of m.
The quality factor of the eMAC waves depends on longitudinal wavenum-

ber in a similar but opposite manner. The quality factor generally increases
with m for waves with low latitudinal wave-numbers (l = 0, 1). However,
the dependence is not a constant power, and higher latitudinal wavenumber
(l = 2, 3) show a decrease in quality factor from m=1 to m=3 before begin-
ning to increase with larger m. All values of l seem to be converging to an
direct relationship between quality factor and wavenumber, resulting in

Q ∼ m

for large values of m.

3.2.7 Magnetic Diffusivity ( η )

There is currently considerable debate about the correct value for magnetic
diffusivity in the core (see section 1.1.2). We vary the magnetic diffusivity
used in our model from η = 0.2m2/s to 1.62/s and show the results in figure
3.13. We find that the period does not change with magnetic diffusivity in
this range

ω 6∝ η

but that η does have an inverse relationship with the quality factor

Q ∼ η−1 .
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Figure 3.12: eMAC wave period (a) and quality factor (b) dependence on
longitudinal wavenumber ( m ).
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Figure 3.13: eMAC wave period (a) and quality factor (b) dependence on
the magnetic diffusivity ( η ) of the core fluid.
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3.2.8 Momentum Diffusivity ( ν )

Although the momentum diffusivity ( ν ) of the core is unknown to within
several orders of magnitude, we find that the effect of this variable is insignif-
icant for the structure, frequency, or quality of eMAC waves.

ω 6∝ ν ,

Q 6∝ ν .

3.2.9 Magnetic Coupling to the Bulk Core Fluid

We examine the effect of changing boundary conditions on eMAC waves,
including pseudo vacuum boundary conditions (PVBC) vs electromagnetic
coupling (EMBC) at the bottom boundary of the stratified layer, as well as
the influence of the period used to compute the EMBC (see chapter 2). We
compute eMAC waves using PVBC, as well as EMBC using periods ranging
from 3 years to 24 years. We plot the periods for eMAC waves with m=6, and
l ranging from 0 to 5 in figure 3.15 using default parameters listed in table
3.1. We find that wave periods obtained for a particular eMAC mode can
differ by up to 25% depending upon the choice of period used to compute the
EM coupling with the bulk core fluid. This is a relatively small error, even
when using EM coupling periods very far from the wave period. Even using
PVBC gives fairly accurate results for the wave period for low latitudinal
wave-numbers. For l=0 the eMAC wave period with EMBC is ∼21 years
while using PVBC gives a period of 23.5 years, an error of only 12%. For
l=1 the EMBC period is ∼14.5 years while PVBC gives 17.75 years, an error
of 22%.

We also examine the effect of boundary conditions on eMAC quality fac-
tors. We plot the quality factor of eMAC waves for m=6, l=0 to 5 in figure
3.16, again using default parameters listed in table 3.1. We find that the
quality factor of eMAC waves is relatively insensitive to the choice of period
used for computing the EMBC, with differences typically under 25% between
the EMBC value and the most extreme errors. However, we find a large dif-
ference between the quality factors obtained using PVBC and quality factors
obtained using EMBC. For l=0, the EMBC gives Q∼0.5, while PVBC gives
Q=0.9, a difference of 80%. For l=1, EMBC gives Q∼0.6 and PVBC gives
Q=1.14, a 90% difference. The error increases with l, such that for l=5,
EMBC gives Q∼1.0 while PVBC gives Q=2.68, a difference of 168%.
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Figure 3.14: eMAC wave period (a) and quality factor (b) dependence on
the momentum diffusivity ( ν ) of the core fluid.
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The large differences in quality factor obtained using PVBC likely arise
due to the extremely thin layer in which eMAC waves propagate in this study
(∼40 km). Because electromagnetic forces couple wave motions near the
bottom of the stratified layer to the quasi-stationary bulk core fluid, EMBC
applies a strong damping force to the wave motions. Assuming PVBC at the
bottom boundary of the layer allows for the fluid at the base of the stratified
layer to move freely without experiencing the damping from electromagnetic
coupling with the bulk fluid layer. This allows the waves to obtain much
higher quality factors.

There are a variety of mechanisms that could allow eMAC waves to prop-
agate in the core with sub-decadal periods despite the low quality factors
obtained using EMBC. First, higher radial wavenumbers ( k ) can decrease
the eMAC wave period while maintaining their quality factor (see section
3.2.4). Thus, a thicker layer could allow for sub-decadal waves with k>1
to propagate with quality factors substantially larger than 1. On the other
hand, energy could be continuously pumped into the system due to the vigor-
ous dynamo convection beneath the stratified layer, which could continuously
excite eMAC waves despite their low quality factors. The question of excita-
tion and propagation of eMAC waves is complicated by the results in section
3.3.2 using varying layer stratification, as it shows a mixing of modes much
more complex behaviors of eMAC waves. The implications of the low eMAC
quality factors obtained are discussed further in section 6.3.
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Figure 3.15: eMAC wave period vs period used for EM coupling at base of
stratified layer for l = 0 to l = 5, using default parameters listed in table
3.1. Solid lines represent results obtained using EM coupling at the base of
the stratified layer, as detailed in chapter 2. Colored dotted lines represent
periods obtained using pseudo-vacuum boundary conditions (PVBC) on both
the top and bottom boundary. The diagonal black dotted line represents the
physically relevant case when the wave period matches the period used to
compute the EMBC exactly.
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Figure 3.16: eMAC wave quality factor ( Q ), plotted versus the mismatch
between the wave period and the period used for EM coupling at base of
stratified layer. Waves shown for latitudinal wave-numbers l = 0 to l = 5, with
parameters listed in table 3.1 used for all other values. Solid lines represent
results obtained using EM coupling at the base of the stratified layer, as
detailed in chapter 2. Dotted lines represent quality factors obtained using
pseudo-vacuum boundary conditions (PVBC) on both the top and bottom
boundary.
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3.3 Wave Structure Variation

The CMB magnetic field and layer properties influence the structure of eMAC
waves in addition to their period and quality factor. In particular, the dis-
tribution of magnetic field strength at the CMB has a large influence on the
degree to which eMAC waves are equatorially trapped. In addition, while we
find that the magnitude of the layer buoyancy does not influence the struc-
ture of eMAC waves, any deviation from a constant layer stratification does
have a strong influence on the radial structure of eMAC waves.

3.3.1 Magnetic Field Distributions

The FVF model permits the study of more general background magnetic
field configurations than just constant or dipole fields. Earth’s observed field
is neither constant nor a perfect dipole, but instead has a dominant dipole
structure with a significant amount of higher-order structure overlaid. As
the Lorentz force takes the form ~B · ∇( ~B) in the magnetohydrodynamic
approximation, it is insensitive to the polarity of the field. Then, as waves in
a thin layer are mainly sensitive to the radial magnetic field, it is appropriate
to examine the root-mean-square (RMS) radial magnetic field strength as a
function of latitude. It can be seen in figure 3.17a that historical observations
of the average magnetic field strength by latitude at the CMB show a RMS
field strength of ∼0.5 mT at high latitudes and ∼0.3 mT near the equator
(Jackson et al., 2000). This represents a lower bound on the total field at
the CMB, as unobserved small-scale features likely contribute to the total
RMS field at the CMB. To approximate the structure of the total field at the
CMB, we add white noise to a dipole field and take the root-mean-square of
the distribution, giving

Brms
r (θ) =

√
B2
d cos2 θ + σ2. (3.1)

Values of Bd = 0.5 mT and σ = 0.3 mT are chosen to approximate Earth’s
observed CMB field with a small amount of unobserved noise (figure 3.17a).
Braginsky (1998) used the same value for his dipole but did not include
noise, resulting in zero field strength at the equator. The core’s internal
radial magnetic field is also likely to vary with radius. While our model
can accommodate radial variations, the details of these variations are un-
known and likely to be small in a thin layer, so we simply use the CMB field
throughout the layer depth.

68



3.3.1.1 Zonal MAC Waves

First, we examine the influence of magnetic field structure on the global zonal
MAC waves described in section 2.2.2. The dipole with noise approximation
of the total field produces zonal MAC waves with peak zonal flows at mid-
latitudes and no flow at the equator, in stark contrast to MAC waves derived
using a dipole, which have peak flow on the equator. A dipole permits flow
at the equator because the force balance between the Lorentz and Coriolis
forces are perfectly maintained as they become weaker near the equator.
However, non-zero field strength at the equator alters the force balance in
the φ-component of the momentum equation. To a first approximation, we
have a balance between the Coriolis force 2Ω cos θ uθ and the Lorentz force
Br∂rbφ. When Br is dipolar, we can achieve a balance between the Coriolis
and Lorentz forces with a non-zero ∂rbφ at the equator. Otherwise, if Br is
finite at the equator, ∂rbφ must vanish at the equator to maintain the force
balance, which precludes any source of generation due to uφ. Consequently,
uφ must be zero at the equator for these wave motions.

This result demonstrates the importance of magnetic field configurations
when studying waves in Earth’s core. Braginsky’s MAC wave solution is only
valid due to the precise balance between Coriolis and Lorentz forces near the
equator resulting from a perfect dipole field, and even small perturbations to
Br alter the basic structure of the solution significantly. Because Earth’s field
includes significant power near the equator, a constant radial field seems to
be a better approximation than a dipole field for MAC waves, as it produces
a similar basic wave structure. However, both the dipole and constant field
approximations give very different wave structures and properties to those
derived using a more realistic magnetic field configuration with our FVF
method.

3.3.1.2 eMAC Waves

We next examine how the distribution of magnetic field strength near Earth’s
equator influences the structure of eMAC waves. As shown in section 3.2.3,
the period of eMAC waves is influenced by the strength of the radial magnetic
field at the CMB, with stronger fields producing shorter periods. Notably,
the spatial structure of the waves is largely insensitive to changes in the total
RMS field. Instead, the spatial distribution of background magnetic field
has a large influence on the latitudinal extent of the waves. We compute
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Figure 3.17: Comparison of MAC wave zonal flow velocities (vφ) for three
choices of radial magnetic field. We include a dipole field (Braginsky, 1993),
a constant field, and a dipole plus noise (see text), which is intended to
approximate gufm1 at 1990 (Jackson et al. 2000). All runs use H=80 km,
N=2 Ω. Note that a finite magnetic field strength at the equator causes vφ
to vanish.
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Figure 3.18: Magnetic field distributions used for MAC wave solutions in
figure 3.17 and figure 3.19. Note that small noise values have relatively
high (low) field strength at high (low) latitudes, while large noise values
results in field structures more evenly distributed across latitude. Included
for comparison is the observed zonal-averaged RMS radial core field in 2010
from the CHAOS-6 field model (Finlay et al., 2016).

several wave solutions using (3.1) to construct a range of simple models for
the radial magnetic field, including a dipole with several different amounts of
noise and a constant radial field (see figure 3.18). We then compute the wave
structures for the same wave mode using a 40 km thick layer with a constant
N=10 Ω, and show the eastward fluid velocity structure by latitude in figure
3.19. A nearly dipolar field with only 0.1mT noise produces strong equatorial
trapping, with peak flow near the equator. Larger amounts of noise result in
stronger relative field strengths in the equatorial region and produce waves
that are less confined to the equator. In the limit of a constant radial field, the
peak flow velocities occur at mid-latitudes. Because the spatial distribution
of magnetic field strength is important in determining the spatial structure of
the waves, the spatial extent of oscillations in observed secular acceleration
could provide a constraint on distribution of total magnetic field strength at
the CMB, including small scale structures unable to be observed directly.
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Figure 3.19: Comparison of wave structures of four non-zonal eMAC waves
computed using four different magnetic field distributions (shown in figure
3.18). Note that as the field structure changes between a dipole field and a
constant field, flow moves to progressively higher latitudes.

3.3.2 Layer Stratification Structure

The majority of eMAC waves shown in this section have been computed us-
ing a constant layer buoyancy, which represents a linear decrease with radius
in the density perturbation below the adiabat. However, a perfect linear
density increase is unlikely to arise in the physical core. Instead, diffusive
processes may produce an approximately exponentially decaying density con-
trast from the CMB to the base of the stratified layer (Buffett and Seagle,
2010; Buffett, 2014). To approximate this, we can use a buoyancy frequency
that varies with radius instead of a constant buoyancy frequency through
the layer. The simplest form we can use is to vary N linearly with radius,
which approximates an exponential density increase with radius. We use a
buoyancy frequency that varies from N=0 Ω at the base of the layer to N=10
Ω at the CMB to compute eMAC waves. We are able to find results that
closely match those derived using constant buoyancy, and show the (k=1,
l=0, m=6) eMAC wave in figure 3.20. The changing stratification changes
the functional form of the radial fluid motion vr, but does not significantly
affect the period, quality factor, or functional form of the other components
of the wave structure.

However, a radially-varying N does admit many further solutions that
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Figure 3.20: eMAC wave propagating in a layer with a linearly-varying buoy-
ancy from N=0 at the base of the layer to N=10Ω at the CMB. eMAC wave
has wave-numbers k=1, l=0, m=6, and uses the default parameters listed in
table 3.1 for all values except N, with EMBC at the bottom boundary. This
wave has a period of 22.34 years and a quality factor of 0.65.
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Figure 3.21: eMAC wave propagating in a layer with a linearly-varying buoy-
ancy from N=0 at the base of the layer to N=10Ω at the CMB. This eMAC
mode is asymmetric (see e.g. the bθ term), and has a longitudinal wavenum-
ber of m=6, but an appropriate radial or latitudinal wavenumber cannot be
readily identified. This wave has a period of 7.01 years and a quality factor
of 0.62.

take the general form of eMAC waves but are not readily classified with
particular wave-numbers. One example is shown in figure 3.21. This wave
is again computed using the default values listed in table 3.1 except for
N, with EMBC. The structure of this wave is asymmetric with respect to
the equator, but an appropriate radial or latitudinal wavenumber cannot be
readily identified. An effective categorization or parameterization scheme
has eluded identification for these modes, despite extensive examination and
search of the parameter space. Thus, the remainder of this study will focus
on the simple form of eMAC waves identified using constant N.
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Figure 3.22: MAC wave propagating to the west at high latitudes with wave-
numbers of k=1, l=0, m=6. This waves has a high quality factor of Q ∼ 15
and short period of only ∼ 1 year. Layer properties are the defaults listed in
table 3.1 except for the layer thickness which has been reduced to 20 km.

3.4 Other Observed Wave Modes

During the investigation of eMAC wave modes, other wave modes are found
to propagate in the layer. Notably, there are waves that propagate to the
west in the mid- and high- latitudes with very high quality factors. We show
two examples of the first two modes in figures 3.22 and 3.23. These waves will
not be the focus of this thesis, but could warrant further study, as discussed
in chapter 6. In addition, numerical results for the dependence of these waves
on layer structures can be found in appendix D.
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Figure 3.23: MAC wave propagating to the west at high latitudes with wave-
numbers of k=1, l=1, m=6. This wave has a high quality factor of Q ∼ 15
and short period of only ∼ 1 years. Layer properties are the defaults listed
in table 3.1 except for the layer thickness which has been reduced to 20 km.
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Chapter 4

Methods to Detect Waves

To quantitatively assess the limits of our ability to observe eMAC waves in
Earth’s magnetic field, we use the eMAC waves produced by our numerical
model to create synthetic SA and SV signals (section 4.1.1). We then use
these signals with known origins to assess the effectiveness of various methods
used to study waves in Earth’s core (section 4.2.1). We focus on eMAC
waves with periods and spatial structures relevant to observed oscillatory
signals in equatorial SA and SV (e.g. Finlay et al., 2016; Chulliat et al.,
2015). We propose an improved technique for detecting waves in geomagnetic
observations of SV as well as SA (section 4.2.2 and 4.3.1). We also construct a
noise model to demonstrate that the technique is robust to data uncertainties
and other sources of error in SV (section 4.3.2) and SA.

4.1 eMAC Wave Parameterization

We use the hybrid finite-volume and Fourier (FVF) model described in chap-
ter 2 to study equatorial waves in Earth’s core with various magnetic fields
and stratification structures. We find the eMAC waves described in chapter
3 have consistent patterns of wave motion for a variety of layer properties
and magnetic fields. However, details like the period, latitudinal extent, and
quality factor do change with the properties of the layer and field.

We derive a flexible representation of the eMAC wave structure in or-
der to efficiently study the geomagnetic signals produced by eMAC waves
propagating in a wide variety of SOC structures in Earth’s core. Computing
wave solutions for a wide variety of layer parameters using our FVF model
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is computationally expensive, and we wish to be able to have fine control
over the latitudinal extent and longitudinal wavenumber of synthetic eMAC
waves. Therefore, we compute wave structures for a set of layer and field
structures and fit the flow fields to obtain a flexible parametric representa-
tion of eMAC flow structures at the CMB. This essentially translates the
structure of eMAC waves from the discrete representation of the FVF model
to a functional parametric representation. Then, by adjusting the parame-
ters of this representation, we can adjust the flow structure and period of
the waves over a wide range of conditions without having to re-compute the
waves with our FVF model for each specific set of layer parameters.

A natural choice to to capture the functional form of the eMAC waves
are the Hermite basis functions indexed by n,

ψn(x) = (−1)n(2nn!
√
π)−

1
2 e

x2

2
dn

dxn
e−x

2

(4.1)

because they are concentrated near x = 0, corresponding to the equator,
and decay away from the equator. These functions are adapted from Her-
mite polynomials to provide an orthonormal basis over space without any
weighting function.

To use them for waves on a sphere, we choose a parameter δθ such that
x = θ/δθ where θ is latitude. Thus, δθ describes the width of the waves in
degrees latitude.

The FVF model is formulated as an eigenvalue problem, which produces
wave solution vectors that describe the real and imaginary components of
flow velocity v̂θ,φ at each latitude θ on a grid. These are used to compute the
velocity at the core-mantle boundary for particular longitude φ through

vθ,φ(θ, φ) = <
{[
v<θ,φ(θ) + iv=θ,φ(θ)

]
eimφ

}
. (4.2)

We recover a flexible representation of the flow which we denote v̂ using the
Hermite basis functions

v̂=θ (θ) =
∑
n

c=θ,nψn(θ/δθ) (4.3)

v̂<θ (θ) =
∑
n

c<θ,nψn(θ/δθ) (4.4)

v̂=φ (θ) =
∑
n

c=φ,nψn(θ/δθ) (4.5)

v̂<φ (θ) =
∑
n

c<φ,nψn(θ/δθ) (4.6)
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where cij,n and δθ are fit coefficients. These coefficients are found by mini-
mizing ∑

i,j

(vij − v̂ij(cij,n, δθ))2

where i = [<,=], j = [θ, φ], and n is the Hermite basis function degree.
Although these waves have radial variation in their flow, fluid motions

below the CMB do not produce significant observable SA and SV when the
effects of magnetic diffusion are small. Therefore, we only fit flow at the
core-mantle boundary with this representation.

Our FVF model produces two classes of eMAC waves with different equa-
torial symmetries of their flow. We denote these classes “symmetric” and
“asymmetric” waves in reference to the equatorial symmetry of the geomag-
netic signal they produce when advecting a pure dipole field, and examine
the fundamental mode (in radial and latitudinal structure) of each class (see
figure 3.2). Symmetric waves correspond to even latitudinal wave-numbers
(l), while asymmetric waves correspond to odd l.

We fit the CMB flows obtained from the FVF model for these waves to
Hermite basis functions and find that the complex coefficients cij,n are con-
sistent across a range of realistic layer and magnetic field structures. Only
the period, quality factor, and latitudinal extent (δθ) vary significantly as
we change layer and field properties. Thus, we are able to construct a set
of symmetric and asymmetric complex coefficients cij,n that can be used to
describe the complete flow structure of the wave across the CMB. These sym-
metric and asymmetric waves have most of their power in a single Hermite
polynomial, making the flow structure of these two classes nearly orthogonal
to each other. However, for accuracy, we fit each wave using the first seven
Hermite basis functions to guarantee that they are well-described.

These fits can then be used to describe general symmetric and asymmetric
waves by choosing a particular set of parameters including the longitudinal
wavenumber m, period T , and width parameter δθ for the wave. Typical
values of δθ for the waves derived using our FVF model are in the range δθ =
10◦ to 30◦, and this parameter’s influence on a single wave component can
be seen in figure 4.1. The flow velocity of the wave must also be set. Because
the FVF model is constructed as an eigenvalue problem, the amplitude of the
solutions and therefore the wave velocities are unconstrained. We find that
peak flow velocities of 1-2 km/yr produce SA consistent with the magnitude
of observed SA, and therefore use values in this range in our analyses. The
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Figure 4.1: Longitudinal flow (vφ) structure variation for the symmetric wave
with different values of δθ. Peak flow velocity normalized to one.

final parameter we must fix to fully describe these waves is their longitudinal
position or phase φ0 at a particular point in time. A full description of the
wave solution is given by

vθ,φ(θ, φ, t) = <
{[
v<θ,φ(θ) + iv=θ,φ(θ)

]
eim(φ+φ0)+iωt

}
. (4.7)

where t is time and ω = 2π/T is the wave frequency. The representation
in (4.7), based on fits to the numerical model, gives a complete and flexible
description of the CMB fluid flow for eMAC waves, which we use throughout
the remainder of this chapter.

4.1.1 Generation of Secular Variation and Accelera-
tion

Fluid motions at the core-mantle boundary advect the main magnetic field,
contributing to geomagnetic secular variation (SV) and secular acceleration
(SA). Secular variation (i.e. ∂tBr) is governed by the induction equation

∂tBr = −∇H · (~vHBr) +
η

r
∇2rBr (4.8)

where Br is the radial field at the CMB, ~vH is the horizontal fluid velocity,
and η is magnetic diffusivity (Holme, 2015). We ignore radial fluid motions
vr, as they vanish at the CMB and vr � vH within the stratified layer below.
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In a stratified layer the diffusion term is dominated by the radial length scale
Lr. Typical layers examined have Lr ∼ 50 km to 300 km, while typical
horizontal scales are LH ∼ R/m ∼ 300 km for m = 6, where R is the radius
of the core. We obtain a characteristic timescale for magnetic diffusion of
τ ∼ L2

r/η ∼ 80 yrs for the thinnest layers and 316 yrs for the thickest
layers, both much larger than the ∼ 8 yr period of waves examined. This
indicates the error introduced by ignoring magnetic diffusion should be small
for periodic motions like these waves. Barrois et al. (2017) finds that diffusion
contributes up to 20% of SV across all scales, placing an upper bound on the
error introduced by this approximation. Expanding the horizontal divergence
in (4.8),

∂tBr = ~vH · ∇HBr +Br∇H · ~vH (4.9)

explicitly shows the advection and divergence terms.
Secular acceleration is similarly generated by fluid motions and can be

computed by taking the time derivative of secular variation in (4.8). When
the diffusive term is dropped for the reasons outlined above, we obtain

∂2
tBr = ∇H · (~aH Br) +∇H · (~vH ∂tBr) (4.10)

where ~aH = ∂t~vH . With terms expanded we compute secular acceleration
using

∂2
tBr = ~aH · ∇HBr +Br∇H · ~aH + ~vH · ∇H∂tBr + ∂tBr∇H · ~vH (4.11)

One key aspect of these equations is that the SA and SV depends upon
the fluid velocities (~vH) and accelerations (~aH) of the wave as well as the
structure of the background magnetic field Br. When the background Br

has a simple structure such as a pure dipole field, the waves described in
section 4.1 produce signals from which it is easy to determine their longitu-
dinal wavenumber and symmetry across the equator (see figure 4.2a and b).
This allows one to easily assess the structure of these wave directly from the
observed SV and SA. However, when the same waves are produce SV and
SA by advecting the observed Br up to degree 14 from the CHAOS-6 model
(Finlay et al., 2016) they produce complex signals from which neither the
longitudinal wavenumber or equatorial symmetry are readily apparent (see
figure 4.2c,d). This effect is similar to that observed by Cox et al. (2016),
who explore whether global torsional waves can couple with heterogeneous
background magnetic fields to produce localized signals in SV resembling
geomagnetic jerks.
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Figure 4.2: Secular acceleration produced by symmetric (a,c) and asymmet-
ric (b,d) wave mode advecting a pure dipole field (a,b) and the observed
geomagnetic field (c,d) in 2010 (Finlay et al. 2016). Note that the simple
waves couple to small-scale structures in the geomagnetic field to produce
complex signals.

Coupling between flows and the background magnetic field also introduce
errors into these calculations because we only observe the main field up to
degree ∼ 14. Shorter wavelength components of the main field with degree
> 14 will couple to the flow and contribute to observed low-degree SV. The
magnitude of the error introduced from this contribution is unknown, but
expected to be modest compared to other sources of error.

4.2 Wave Detection Using Secular Accelera-

tion

4.2.1 Period-Wavenumber Observations

Previous attempts to overcome the complexities in SV and SA have relied
on a two-dimensional Fourier transform to convert the data from a time-
longitude domain to period-wavenumber (PWN) space. Chulliat et al. (2015)
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used this method to examine signals near the equator by summing (or differ-
encing) time-longitude slices of observed SA at 5, 10, and 15 degrees latitude
above and below the equator to compute the amplitude of symmetric (asym-
metric) waves in PWN space. They then attribute peaks in these symmetric
(asymmetric) SA PWN plots to symmetric (asymmetric) equatorial waves
in Earth’s core. However, the results of the previous section raise questions
about the correspondence between peaks in PWN space and the presence of
waves in the core. We can assess the validity of this approach using known
wave motion.

To compute a PWN plot, the input data must only have dimensions of
time and longitude. Chulliat et al. (2015) select SA data at 0, 5, 10, and
15 degrees latitude and sums and differences the values north and south of
the equator to examine symmetric and asymmetric waves. This approach
discards data from all other latitudes, including those near the equator that
should contain information about wave motions. In order to fully utilize
this information, we generalize this approach by adopting continuous weight
functions over latitude that are either symmetric or asymmetric across the
equator. We use the first (n=0) Hermite basis function (4.1)

ψ0(x) = π−
1
4 e−

1
2
x2 (4.12)

for symmetric waves and the second (n=1) function

ψ1(x) =
√

2π−
1
4xe−

1
2
x2 (4.13)

for asymmetric waves, where x = θ/δθ. With these weight functions, we can
adjust δθ to maximize the amount of data from wave motions included in
our analysis and exclude signals far from the equator unlikely to be due to
waves.

To test whether it is possible to reliably differentiate between symmetric
and asymmetric waves using a PWN transform, we compute the PWN of
the SA for different combinations of wave symmetry and weighting function
symmetry (figure 4.3). For this analysis, all parameters other than symmetry
are held constant between the two waves, including the peak wave velocity
and latitudinal extent.

A symmetric wave examined using a symmetric weight function (4.12)
produces a single strong signal at the correct period and wavenumber (figure
4.3a). Likewise, an asymmetric wave examined using an asymmetric weight
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function (4.13) recovers the correct wave parameters (figure 4.3d). However,
an asymmetric wave also produces significant power in the PWN plot when
using a symmetric weight function, as seen in (figure 4.3c). In fact, there
are multiple peaks of similar magnitude at various wave-numbers, with very
little power at the correct wavenumber. One small piece of good news is
that these spurious peaks are all a factor of five smaller than the true peak
observed from the symmetric wave in using a symmetric weight function.
However, when a symmetric wave is examined using an asymmetric weight
function, it produces multiple spurious peaks in the PWN spectrum (figure
4.3b), many of which have a similar magnitude to the single peak obtained
from an asymmetric wave.

This result illustrates that the PWN transformation cannot reliably dis-
tinguish signals from symmetric and asymmetric equatorial waves, even in
the simplest possible case of only a single wave mode. This result is robust
when using a wide variety of weight-functions, including constant weight with
latitude, square functions, and averaging observations at particular latitudes
north and south of the equator as used in (Chulliat et al., 2015).

The situation is worse when multiple waves are present (as is likely in
Earth’s core), as it becomes impossible to determine if a signal arises from
a single asymmetric wave (fig. 3d) or multiple symmetric waves (fig. 3b).
In addition, the strength of the FFT is directly related to the amplitudes
of the waves, so even the weak signals seen in fig. 3c could be interpreted
as either the result of a single asymmetric wave (as in this case) or multiple
low-amplitude symmetric waves.

4.2.2 Wave Correlations with Observations

Instead of simply transforming observed SA to look for wave signals, we can
utilize our knowledge of the structure of our equatorial waves to look for
correlations between signals produced by our waves and observed SA. First,
we select the wave by specifying a representative value for δθ and choose the
wavenumber (m), period (T ), and phase (φ0). Then we compute the SAwave
for our choice of wave and evaluate the correlation with the observed SAobs..

We evaluate the correlation between SAobs. and the SAwave by first apply-
ing a weight function wθ across latitude to each to obtain X = wθ ·SAobs. and
Y = wθ · SAwave. Then, we compute the correlation between the weighted
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Figure 4.3: Period-wavenumber (PWN) transformations of SA produced by
waves advecting the observed geomagnetic field. Waves were computed with
m=6, period=7.5 yrs, δθ = 14◦; and are either symmetric (a,b) or asymmet-
ric (c,d). PWN transformations were computed using weighting functions
that are symmetric (a,c) or asymmetric (b,d). Note that the symmetric
flow transformed with a symmetric weight function gives a single strong sig-
nal recovering the wave properties, but that the same wave also produces
weaker signal in many wave-numbers when examined with an asymmetric
weighting function. Likewise, the asymmetric wave produces power in many
wave-numbers when examined with a symmetric weight function, and only
produces a weak signal of similar magnitude to the symmetric wave using
asymmetric weights.
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data sets using

ρX,Y =
∑
θ,φ,t

(X − µX)(Y − µY )

σXσY
(4.14)

where µ and σ are the mean and standard deviation of each weighted dataset.
We evaluate this cross-correlation across a range of periods T , wave-numbers
m, and the full range of phases φ0 from 0 to 2π. This allows us to find
the peak correlation across these three parameters in the ranges of interest.
With this method, we can focus on either symmetric or asymmetric waves
by choosing only one type of wave to generate the SAwave.

To demonstrate this method, we create 15 years of synthetic observations
of SA using four waves to simultaneously advect the observed geomagnetic
field. Two waves are symmetric and have periods and wave-numbers of T=7.5
yrs, m=6 and T=8.5 yrs, m=-4, respectively. The other two waves are asym-
metric with T=10.5 yrs, m=6 and T=9.5 yrs, m=-3. All waves have v0 = 1
km/yr, while their δθ are randomly chosen between from 8◦ to 16◦ and phases
distributed uniformly between 0◦ and 360◦. The computed correlations are
shown in figure 4.4 and show clear recovery of all four wave modes. Other
peaks in T and m have much less power.
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Figure 4.4: Correlation of symmetric (a) and asymmetric (b) waves across
different wave-numbers and periods with a single SA signal produced by ad-
vecting the observed field using four different waves (see text). The period
and wavenumber for each wave is marked on the plot with a star. Note that
both plots are produced using the same SA signal, yet symmetric and asym-
metric waves are clearly distinguished with this method, with little spurious
power bleeding between symmetries.
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4.3 Wave Detection Using Secular Variation

4.3.1 Steady Flow Removal

The correlation analysis from section 4.2 can also be applied to SV. There are
several reasons for examining SV in addition to SA. First, we can obtain a
check against random noise producing spurious wave detections as SV is more
well-resolved than SA at smaller length scales and suffers fewer artifacts near
the start and end of the time series in models that regularize their solutions
(Finlay et al., 2016). Second, a simultaneous detection of waves with identical
properties in both SA and SV is much less likely to occur due to chance. To
see why, note that some processes in the core, such as steady fluid motions,
produce power dominantly in SV. Likewise, other processes such as small-
amplitude transient fluid motions produce little SV but significant SA. Each
of these processes might individually produce signals in either SA or SV
that could be interpreted as wave motions. However, simultaneous wave
correlations in both SA and SV must result from a process that has a very
specific relationship between fluid velocity and acceleration (e.g. ∂tv = iωv).

To apply the correlation analysis to SV, we first need to account for the
contribution from large-scale steady fluid motions in the core. While these
fluid motions do not significantly contribute to observed SA, a large fraction
of SV can be explained with a large-scale steady flow (see Section 4.1.1).
These flows have been estimated to have peak velocities on the order of ∼
10-20 km/yr (Holme, 2015). For comparison, equatorial waves with periods
of ∼ 10 years and m=6 require peak flow velocities of only ∼ 1 km/yr to
produce a representative |SA| ∼ 2 µT/yr in the equatorial region of Earth’s
core. As this velocity is an order of magnitude less than estimates for large-
scale steady flows, we might expect steady flow to obscure signals from wave
motions in observed SV.

To examine whether this is true, we first fit a steady flow to the CHAOS-
6 field model (Finlay et al., 2016) using the method described by Holme
(2015). We choose a damping parameter to produce a fairly smooth flow
structure and minimize the residual at the CMB as this is the region we
are interested in studying. The resulting steady flow velocity can be seen in
figure 4.5. Then, we use this steady flow to advect the observed geomagnetic
field to produce SV and SA. Finally, we compare this result to SV and SA
produced by representative equatorial waves. We show in figure 4.6 that
steady flow produces strong SV and little SA, while the opposite is true for
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20.0 km/yr

Steady Flow

Figure 4.5: Steady flow structure fit to explain changes in the observed geo-
magnetic field model CHAOS-6 from 2001 to 2015.

wave motions. In fact, the SA produced by equatorial waves is an order of
magnitude larger than that produced by steady flow, even thought the wave
flow velocity is much smaller. The opposite is true for SV. This is easily
explained by examination of equations (4.9) and (4.11). Steady motions
have large magnitude ~v, compared to waves, so they would produce greater
SV. On the other hand, steady flow by definition has ~a = 0, so they produce
very little SA.

Because only a small portion of total SV originates from wave motions, we
seek to remove the contribution of large-scale steady flow from the total SV
in order to examine wave motions. To do this, we compute the SV produced
by our steady flow fit, then subtract this from the total SV to obtain

SVresidual = SVobserved − SVsteady flow .

This could include SV produced by the wave motions and transient motions
unrelated to waves; it could also reflect the effects of magnetic diffusion
within the core (Barrois et al., 2017). In addition, SVresidual will have errors
introduced due to the small-scale flows and the imperfect steady-flow fit
resulting from the limited temporal and spatial resolution of SV observations
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Figure 4.6: SV and SA produced by steady flow and wave motions (wave
parameters: symmetric, m=6, period=8.5 yrs, peak velocity = 2 km/yr, δθ
= 10o). Note that steady flow produces strong SV and little SA, while wave
motions produce strong SA and little SV.
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(Baerenzung et al., 2016; Pais and Jault, 2008; Gillet et al., 2015a). We group
all of these effects into a noise term SVnoise which gives

SVresidual = SVwave + SVnoise .

The noise can potentially obscure any wave signals that exist in the data
or causing spurious correlations that could be interpreted as waves. Indeed,
applying our wave correlation method to the SVresidual results in strong cor-
relations for a large number of waves across a variety of wave properties. In
order to confidently identify waves, we need to quantify the extent to which
SVnoise contributes to the wave correlation.

4.3.2 Noise Model

We construct a stochastic noise model SV ∗noise to represent non-wave processes
in SVresidual. We aggregate many realizations of this model to determine
the baseline level of wave correlation expected when no waves are present.
Then, correlations above this baseline can be attributed to waves with greater
confidence.

Stochastic methods have been used in the past to study uncertainties
in observations of Earth’s magnetic field (e.g. COV-OBS.x1, Gillet et al.,
2015a) and large-scale flow in the core (Gillet et al., 2015b). These techniques
have been used with great success, but they are not directly applicable to the
question of characterizing SVnoise. Instead, these models are intended to rep-
resent time variations in the total field, including contributions from steady
flow, waves and other non-steady influences. However, we wish to evalu-
ate signals arising in SVresidual with contributions from steady flow removed,
which has not been previously considered in the literature.

Instead, we construct our SV ∗noise model by generating random gauss co-
efficients with an appropriate power spectrum in both space and time. The
spatial power spectrum of total observed SV at the CMB has been well stud-
ied (see e.g. Finlay et al., 2016, fig. 8). However, much of this power can
be explained by large-scale steady flow in the core, which we remove in our
analysis and therefore do not wish to simulate in our noise model. Examining
just the portion of SV unexplained by steady flow (SVresidual), we find that
the power increases with degree l and is fairly constant across order m (see
figure 4.7).

We must then find an appropriate way to treat the temporal variations
of SVnoise. Previous authors have used an AR(1) stochastic process to find
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that the frequency spectrum of the total SV follows a power law distribution
with exponent -2 (Lesur et al., 2018). However, as the authors of that study
point out, AR(1) processes produce significant high-frequency noise which
would need to be filtered to represent realistic observed SV. In addition, the
frequency spectrum of the total observed SV does not necessarily reflect the
frequency spectrum of the SVnoise we wish to model.

We instead adopt an approach based on a Fourier expansion of the gauss
coefficients of SVresidual to examine its temporal variation. This results in
complex Gauss-Fourier coefficients cr(l,m, t) which are related to SVresidual

through

SVresidual(θ, φ, t) =
1

T

Nl∑
l=0

l∑
m=−l

Nk∑
k=0

cr(l,m, k)Y m
l (θ, φ) ei2πk/T (4.15)

where l andm are spherical harmonic degree and order, k is Fourier frequency,
Y m
l (θ, φ) is the complex spherical harmonic function, θ is co-latitude, φ is

longitude, t is time, and T is the duration of the time series. This transfor-
mation allows us to examine the spatial and temporal spectrum of SVresidual

simultaneously.
We find that the magnitude of the coefficients increase linearly with de-

gree l for k = 0, while magnitudes for k 6= 0 increase with l to l ∼ 12 before
beginning to decrease. Magnitudes are fairly evenly distributed across or-
der m, and decrease with temporal frequency k (see figure 4.7). On the
other hand, the phase of coefficients (i.e. the relative magnitude and sign of
gn(l,m, k) and hn(l.m, k)) are uniformly distributed across all possible values
with no clear trends with l, m, or k.

We use the Gauss-Fourier coefficients of SVresidual as the basis for our
SV ∗noise model. This approach might include contributions from waves in the
core, which we would ideally exclude from our noise model. However, their
inclusion would have the effect of raising the threshold for detection and so
would not cause spurious detections. We assume that the Fourier components
of the complex Gauss coefficient are drawn from a normal distribution where
the mean and variance (denoted µfit and σ2

fit) are inferred from the complex
coefficients of SVresidual for the CHAOS-6 model (specific details are given
below). Thus the amplitude of the coefficients of the noise model ( denoted
cn(l,m, k) ) are drawn from a normal distribution

|cn(l,m, k)| ∼ N
(
µfit(l, k) , σ2

fit(l, k)
)
. (4.16)
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Figure 4.7: Spectrum of the SVresidual. Each dot is the magnitude of an
individual cr(l,m, k) (see (4.15)), plotted with respect to degree l and colored
by order m. Subplots show Fourier frequencies k = 0, 1, 2, 3. Clear trends are
seen in l and k, but no trend is seen with m (colors). Solid lines represent the
trend of the mean magnitude of coefficients with l, while dotted lines show
bounds of one standard deviation (see text for details).
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The phase of the coefficients ψ(l,m, k) are then drawn from a uniform dis-
tribution on the interval 0 to 2π

ψ(l,m, k) ∼ Unif [0, 2π) . (4.17)

This allows us to construct our model without knowledge of the temporal
power spectrum of SVresidual a-priori, and does not introduce spurious high-
frequency noise as an AR(1) process would.

There is considerable scatter in the means and variances computed from
the coefficients at fixed l and k and variable m. More importantly, there
are relatively few m values at low degree. Consequently, we adopt simple
functional forms for µfit and σfit that depend on degree l and frequency k.
We compute the mean µ(l, k) of the magnitude of each observed coefficient
across m for each l and k. Then, we fit these means with a linear fit vs l for
the constant Fourier term (k = 0) and a quadratic fit vs l for the time-varying
(k 6= 0) terms, weighted by the number of m coefficients at each degree l.

µfit(l, k) =

{
α0 + α1 l for k = 0

α0 + α1 l + α2 l
2 for k 6= 0

We perform a similar analysis for the standard deviation σ. We compute
the sample standard deviation σ(l, k) around µ(l, k) to provide an estimate
of the coefficient variance across order m. We assume the standard deviation
varies linearly across l to find σfit(l, k), again weighted by the number of m
coefficients at each l.

Using µfit(l, k) and σfit(l, k) in (4.16), we generate a random magnitude
for each complex coefficient of the noise model cn(l,m, k). We combine these
magnitudes with a random phases from (4.17) to obtain a set of coefficients

cn(l,m, k) = |cn(l,m, k)|eiψ(l,m,k)

which are then transformed to physical space and time using (4.15). Finally,
an additional constraint is imposed that the root-mean-square amplitude
of the generated SV ∗noise must match that of the observed SVresidual in the
equatorial region by scaling the coefficients of each realization by a constant
factor.

To determine whether wave signals are visible in SVresidual over this back-
ground noise, we produce 20 realizations of our SV ∗noise model with no syn-
thetic waves added and compute the wave correlation across m and period.
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Then, for each point in (m, T ) space we fit a normal distribution to the
histogram of these computed correlations to estimate the 95% quintile of
correlation when no waves are present, which we plot in figure 4.8. This
represents a floor for detection of wave motions using the wave correlation
analysis for SVresidual. Any correlation below this threshold can likely be at-
tributed to spurious correlations with SVnoise, not the SVwave we wish to find.
The detection threshold varies from around 0.01 for wave periods of 5 years
to 0.1 for wave periods of 12 years.

We use this detection threshold to examine the minimum wave velocity re-
quired for detection in SV by computing the signal-to-noise ratio of SVresidual

correlation to SV ∗noise correlations. Using a peak fluid velocity of 1 km/yr, we
find a signal-to-noise ratio of almost 2 when recovering the synthetic wave
properties. In this analysis, there are only a few places elsewhere on the
plot where the signal to noise ratio barely rises above one due to signals
arising from the SV ∗noise model (see figure 4.9). Repeating this calculation
across a range of velocities, we find that a peak wave flow velocity of approx-
imately 0.3 km/yr is required for a wave with these parameters to appear
above the background 95% noise level. This compares favorably with the
|v| ∼ 1 km/yr needed to explain the magnitude of observed equatorial SA.
We find that the wave velocity needed for detection does not vary with the
longitudinal wavenumber m, but does change with the wave period. We find
that the wave velocity needed to rise above our detection threshold remains
around 0.3 km/yr for wave periods between 3 and 7 years, then increases
approximately linearly with period to ∼ 0.7 km/yr for waves with a 12-year
period.
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Figure 4.8: Period-wavenumber plot showing the threshold at which a corre-
lation with SVresidual is likely to be a wave. Values shown are the 95% quintile
of correlation with the synthetic noise model representing SVresidual. See text
for details.
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Figure 4.9: Period-wavenumber plot showing the signal-to-noise ratio for a
wave with a period of 7.5 years, m=6, peak velocity of 1 km/yr, and includes
one realization of the residual SV ∗noise model. The background correlation
threshold is a smoothed version of that shown in figure 4.8. Note that signal
is nearly twice the background correlation for the wave, with only small
locations elsewhere where the ratio rises above one near the bottom of the
plot.
.
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4.4 Conditions for Wave Detection

The methods described above are shown to be able to recover wave period
(T ), longitudinal wavenumber (m), and equatorial symmetry from both SA
(figure 4.4) and SV (figure 4.9). We show below that this technique can also
accurately recover latitudinal extent (δθ) (section 4.4.1), phase (φ0) (section
4.4.2), and peak flow velocity (v0) (section 4.4.3) for each wave in a set of
waves.

4.4.1 Latitudinal Extent of Waves

The latitudinal extent δθ of the equatorial waves can vary greatly depending
upon the layer and magnetic field properties. This means that the reliable
recovery of the latitudinal extent of the waves can provide important insights.
In addition, an accurate estimate is required to obtain useful results from
the wave correlation analysis described in section 4.2.2. To estimate the
latitudinal extent of these waves, we simply find the peak correlation across
an array of values for δθ at the period, wavenumber, and phase corresponding
to a particular wave. We show this technique for two wave-numbers in figure
4.10. These results were obtained using the synthetic SA produced by four
simultaneous waves. All waves have periods around 8 years, amplitudes of 1
km/yr, δθ between 8◦ and 20◦, longitudinal wave-numbers of -6, 3, 2, and 6,
and uniformly random phases. We show the strength of correlation for one
symmetric wave with a true δθ = 8◦ and one asymmetric wave at δθ = 15◦ as
we vary the latitudinal width of waves with the same period, wavenumber,
and symmetry. The latitudinal extent of the symmetric wave is recovered
precisely by the peak correlation, while peak correlation of the asymmetric
wave occurs very close to the actual value of δθ = 14◦. By repeating this
analysis for a large sample of waves with random parameters, we find that
this technique recovers the true δθ within 2◦ for all wave periods, longitudinal
wavenumbers, and equatorial symmetries examined in this study.

Notably, the strength of correlation declines away from the peak value
much more quickly for the asymmetric wave compared to the symmetric
wave. We believe this is because asymmetric waves have more complex flow
structures than symmetric waves – small changes in δθ create larger discrep-
ancies in the direction and magnitude of flow at any particular point, leading
to a faster decline in the correlation with changes in δθ.
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Figure 4.10: Recovery of latitudinal extent (δθ) of a symmetric and asymmet-
ric wave from correlations with synthetic SA. The synthetic SA includes two
symmetric and two asymmetric waves with periods around 8 years, ampli-
tudes 1 km/yr, δθ between 8◦ and 20◦, and various longitudinal wave-numbers
and phases. The symmetric wave examined has a true δθ = 8◦, which is re-
covered precisely by the peak correlation. For the asymmetric wave, peak
correlation occurs for δθ = 15◦, very close to the actual value of δθ = 14◦.
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Figure 4.11: Correlation in SA and SV with one realization of the noise
model, as a function of phase and period. The synthetic SA and SV datasets
are produced using a single symmetric wave with T=7.5 yrs, φ0 = 120◦

(marked on each plot with a star), and v0 = 1 km/yr. The correlation is
computed using a symmetric wave. Note that the peak of the correlation
occurs at the same period and phase in both SA and SV, despite the fact
that the peak correlation in SV is only ∼ 0.25 due to the inclusion of noise.

4.4.2 Phase Determination

Independent estimates of the wave phase can be recovered by applying the
correlation analysis described in section 4.2.2 to both SA and SV. While
the correlation in the SV signal is general lower than with SA due to the
additional sources of noise described in section 4.3.1, the shape of the peak
correlation between SA and SV are remarkably similar. We show the corre-
lation analysis for SA and SV produced by a wave with m=6, period of 7.5
years, and a phase of 120◦ in figure 4.11, demonstrating clear recovery of the
correct wave properties, even with the inclusion of SV noise.

Consistent values for the wave phase between SA and SV are unlikely to
arise by chance, so can be a robust indicator of waves. The observations have
limited resolution in space (l <∼ 14) and time (periods ∼ 3 to 19 years),
so resolution improves at larger time and spatial scales. On the other hand,
detection of oscillations becomes more confident with more observed wave pe-
riods, so short-period waves are able to be detected with greater confidence.
Thus, we might expect to preferentially detect waves with intermediate pe-
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riods T ∼ 10 yrs and low spatial wave-numbers (e.g. m <∼ 6 ). This is
precisely where waves are reported. Transient process in the core produce
both SA and SV, leading to the possibility of non-waves producing signals
that correlate with similar wave-numbers and periods in both SA and SV.
Also, equatorial processes unrelated to waves might give similar estimates
for the latitudinal extent. However, observational constraints do not bias
any particular value of phase, allowing for all phases to appear uniformly
when computing wave correlations with random SA and SV data. Thus, it
is unlikely that the computed phase would match between SA and SV unless
the observations were actually generated by a wave.

To see why, note that general fluid motions in the core create SA and SV
through (4.9) and (4.11), which couple all the Fourier coefficients describing
the flow with all the coefficients of the background magnetic field magnitude
and gradients. Because of this coupling, components across all m and l
values could potentially contribute to a correlation analysis performed at a
single wavenumber m, causing peak correlations at random phases for any
particular set of wave parameters examined. Thus, if the same phase is
obtained for a particular set of wave parameters in both SA and SV, it
provides very strong evidence of wave motion.

4.4.3 Peak Flow Velocity Determination

The last parameter needed to describe a set of observed waves are the am-
plitudes or peak flow velocity of each wave mode. Under the assumptions
made in section 4.1.1, the total SA produced by a set of waves is simply a
linear combination of the SAn produced by each wave mode n. Thus, in
order to find the best-fit amplitudes Cn for a set of N waves, we simply find
the best-fit coefficients to minimize the residual

Err =

〈
SAobs.(θ, φ, t)−

∑
n

CnSAn(θ, φ, t)

〉
rms

(4.18)

where SAobs. is the observed secular acceleration, and SAn is the secular
acceleration produced for each wave, with wavenumber, period, phase, and
latitudinal extent determined using the methods described in previous sec-
tions. Then, it is straightforward to convert from the amplitude Cn to the
peak wave velocity of each mode. Because the computed wave modes each
have most (∼ 85%) of their power in a single Hermite function, they are
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Figure 4.12: Wave velocity fit using SA produced by two waves. The true
amplitudes of the synthetic waves marked by a white star denoting 1.5 and 2.0
km/yr peak flow velocities. The goodness of fit is calculated as the minimum
error divided by the error at a particular point, so that a value of 1.0 denotes
the best-fit, and smaller values have increasing error. Note that because the
system is linear and the waves are mostly orthogonal, the residual is convex
in amplitude space with only one global best fit. Two waves are shown for
visualization purposes, but this fit method can be easily extended to multiple
dimensions to fit several waves.

nearly orthogonal. Therefore, there is very little interaction between wave
modes when fitting their amplitudes, and there exists a global, convex min-
imum for the residual RMS SA or SV. We demonstrate this in figure 4.12,
showing the smoothly concave residual for the amplitudes of two waves, with
the minimum recovering the amplitude of each synthetic wave precisely. This
technique is easily extended to as many wave modes as required, as they are
pairwise orthogonal. The orthogonal structure of the waves also means that
we are unlikely to recover large amplitudes for waves that do not exist using
this method. In fact, if we fit five waves to the same synthetic SA produced
above using four waves, the analysis finds a best fit that precisely recovers
the four nonzero wave amplitudes with zero amplitude for the extraneous
wave.
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Chapter 5

Observed Waves in Earth’s
Core

Several strong patches of secular acceleration near Earth’s equator seem to
drift and fluctuate rapidly in recent observations of Earth’s geomagnetic field.
We wish to examine whether these arise from eMAC waves by applying the
methods described in chapter 4 to the CHAOS-6 geomagnetic field model
(Finlay et al., 2012).

eMAC waves are equatorially trapped, so we isolate the signal near the
equator by excluding SA and SV at mid and high latitudes. To do this, we
apply a window function by latitude to our correlation analysis, shown in fig-
ure 5.1. This window function is simply a zeroth-order Hermite polynomial
with a latitudinal width of δθ = 10◦. This value was chosen to capture the
majority of the oscillatory signal observed near the equator while excluding
SA and SV at mid- and high-latitudes which is unlikely to originate from
eMAC waves. Figure 5.1 shows both the window function as well as the
oscillatory power observed by taking a 2D FFT at each latitude and aver-
aging the magnitude of the FFT over wave periods from 5 to 10 years and
longitudinal wavenumbers from 5 to 7. This attempts to capture the ampli-
tude of oscillator signal by latitude, and is similar to the 2D FFT technique
described in section 4.2.1 as a “Period-Wavenumber” transform. Although
this technique cannot reliably distinguish which wave mode produces the ob-
served FFT power, it does allow us to to determine the latitudinal location
of oscillatory motions. Thus, we choose the window function to capture the
majority of this power.
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Figure 5.1: Latitudinal weight function used to examine global waves, derived
using a Hermite polynomial with a δθ = 10◦. Also plotted is the Period-
wavenumber transform power for eastward traveling waves, averaged over
m=5 to 7 and periods 5 to 10 years. This magnitude is computed at each
latitude, then plotted.
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5.1 Global Waves

We apply our correlation analysis for the l=0 symmetric and l=1 asymmetric
waves modes described in chapter 3. We compute the correlations for periods
between 3 and 15 years, longitudinal wavenumbers ( m ) from -11 to 11, and
phases ( φ0 ) from 0◦ to 360◦ in intervals of 10◦. We also vary the latitudinal
width parameter for the synthetic waves (δθ ) from 5◦ to 20◦. These computed
correlations are then compared to the expected noise level, as described in
section 4.3.2 for SV and using the same method to define a noise threshold
for SA.

We show the results for this correlation analysis in figures 5.2 and 5.3 for
l=0 and l=1 wave modes, respectively. We see in figure 5.2a that correlations
in secular acceleration show evidence for one eastward-traveling wave at l=0,
m=-7, while SV shows one eastward wave with l=0, m=-5. Both SA and
SV indicate a westward traveling wave with l=0, m=7. For the asymmetric
(l=1) mode, correlations show a m=-10 wave in both SA and SV, and a m=-6
wave in SV, with correlation just under significance in SA. The asymmetric
wave also shows correlations for a westward-traveling mode with m=3 for SV
and m=7 for both SA and SV.

In order to determine whether these correlations represent waves, we ex-
amine the phase of the observed waves in SA and SV using the techniques
described in section 4.4.2 and list the results in table 5.1. We list a best
estimate of the wave phase as φ0, which we obtain by averaging the phase
obtained from SA and SV. Then, we also list the difference between the phase
derived from SA and that from SV as ∆φ. Through synthetic SA and SV
experiments, we find that we are able to recover the phase of eMAC waves
advecting Earth’s observed field within an accuracy of ∆φ < 25◦ in both
SA and SV. Thus, the (l=1, m=-6) mode as well as the (l=0, m=5) and
(l=1, m=7) westward traveling modes seem to provide evidence of waves
with phases that are consistent between SA and SV. On the other hand,
the (l=0, m=-7), (l=1, m=-10), and (l=1, m=3) modes give phases that are
inconsistent between SA and SV, indicating that the correlations observed
are not robust indications of the presence of eMAC waves.

We then compute the amplitudes of these waves using the method de-
scribed in section 4.4.3 to obtain the peak flow velocities of these waves. We
find that the (l=1, m=-6) wave produces a peak flow velocity of only 0.09
km/yr, which is quite low and would likely not produce observable SA. On
the other hand, we find that the analysis gives stronger wave amplitudes for
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Figure 5.2: Symmetric (l=0) eMAC Wave correlation above noise for secular
acceleration and secular variation, using global data and a symmetric window
function with δθ = 10◦
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Figure 5.3: Asymmetric (l=1) eMAC Wave correlation above noise for secular
acceleration and secular variation, using global data and a symmetric window
function with δθ = 10◦
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eastward-traveling waves
l m period (yrs) vmax (km/yr) φ0 ∆φ δθ

0 -7 9 0.12 190◦ 4.9◦ 8◦

0 -5 7 0.20 111◦ 41◦ 8◦

1 -6 8 0.09 6.4◦ 5◦ 8◦

1 -10 7 0.08 66.1◦ 35◦ 12◦

westward-traveling waves
l m period (yrs) vmax φ0 ∆φ δθ

0 5 8 0.41 74◦ 18◦ 8◦

1 3 8 0.06 227◦ 34◦ 8◦

1 7 8.5 0.40 222◦ 11◦ 10◦

Table 5.1: eMAC waves proposed in Earth’s core using global equatorial
observations.

the westward-traveling modes of (l=0, m=5) and (l=1, m=7) at around 0.4
km/yr.

Finally, we examine the change in correlation with latitudinal width. We
find that the strength of correlation is highest for most wave modes for a δθ
between 8◦ and 12◦, with a drop-off in correlation strength at δθ = 5◦ and
δθ = 20◦. However, correlations are similar in magnitude across the range
between 8◦ and 12◦, so a precise determination of latitudinal extent is not
possible.

These results seem to provide only weak evidence of the existence of global
eMAC waves. The strongest correlations and most robust observations are for
the hypothetical equatorial waves that propagate to the west and for which
we do not find solutions in our numerical model. While our numerical model
does produce westward traveling modes with reasonable SOC parameters,
they are not equatorially trapped and often have the majority of their power
at mid- and high-latitudes, so they are not considered to be strong candidates
to explain these signals.

A more likely explanation for these weak correlations for eMAC waves
arises from the low quality factors obtained in our numerical simulations. We
commonly find quality factors on the order of 1-4 for many of the eMAC waves
in our numerical simulations. If we assume a localized excitation source, these
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Figure 5.4: Propagation distances for various quality factors of eMAC waves.

eMAC waves would only propagate for a limited distance around the core
before dissipating. This can be seen in figure 5.4, which plots the decay of an
eMAC wave with an instantaneous excitation source over time and longitude
for several representative quality factors. This decay of eMAC waves would
render global correlation studies invalid, as waves excited in separate regions
around the globe would be unlikely to propagate beyond their local region.
Thus, multiple waves around the equator would be unlikely to have matching
phases, and therefore any single global wave would not correlate strongly with
all regions simultaneously.

There are many localized sources that could excite eMAC waves in par-
ticular regions, such as an upwelling parcel of fluid or local CMB topography.
Observations of the SA signals may also offer evidence for local excitation of
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eMAC waves. There are two equatorial regions of strong oscillatory signal
separated by relatively little SA signal across the entire time-series. These
two regions fall generally under the Americas and under south-east Asia. If
these regions have separate excitation sources, they may produce distinct
eMAC wave modes. Thus, we investigate eMAC wave correlations in these
regions individually.

5.2 America

We wish to investigate the presence of eMAC waves under the equatorial
region of the Americas alone. We use the same latitudinal window function
described in the previous section, and apply a window function for longitude
as well to isolate the Americas. We again use the zeroth-order Hermite
function, but this time centered at -35◦ longitude (35◦W), with a width of
δφ = 45◦. This produces the window function shown in figure 5.5.

Applying this window function to the observed SA, we see strong patches
of SA that appear to oscillate in polarity near the equator, as show in figure
5.6. To a first order, this appears as a standing wave, and might be inter-
preted to indicate the presence of both eastward and westward propagating
waves near the equator.

We perform our correlation analysis with eMAC waves using observed
SA and SV data from this region to obtain results for l=0 and l=1 shown
in figures 5.7 and 5.8. We see that the symmetric l=0 mode shows strong
correlations in both the eastward and westward direction, with correlation
power centered at (l=0, m=-6) and (l=0, m=6). For the asymmetric eMAC
waves there are several wave modes with significant correlations, including
(l=1, m=-7), (l=1, m=4), and (l=1, m=7).

The correlation power in these plots is spread into the neighboring longi-
tudinal wavenumbers (m=4 and 6) much more strongly than for the global
analysis, producing diffuse blobs of signal rather than sharp peaks. This is
to be expected, as we have constrained the dataset in longitude, reducing the
angular resolution and allowing a greater range of longitudinal wavenumbers
to produce signals consistent with observations.

In addition, the correlations observed are much stronger in the global wave
modes, with the signal-to-noise ratio rising close to 2 in multiple locations,
rather than hovering closer to 1 as for the global analysis in the previous
section. Because we are using a smaller domain, this would again naturally
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Figure 5.5: Spatial weight function used to examine wave signals under Amer-
ica. δθ = 10◦, δφ = 45◦, centered at -35 degrees longitude.

occur as a our eMAC waves are compared to a smaller amount of data. This
reduces the amount of random noise, therefore enhancing the signal to noise
ratio and producing stronger correlations on average.

We again perform our analysis for the phase of the wave in SA and SV,
as well as fitting amplitudes to the waves. We find that all waves in this
analysis give coherent phase results between SA and SV. Also, all of these
wave modes show significant wave velocities except the (l=1, m=-7) mode.
The two largest amplitude waves are the (l=0, m=-6) and (l=0, m=6), both
with periods of eight years. These waves would set up a standing wave
and produce oscillating patches of SA and SV, which matches our initial
expectations from a visual analysis of the SA signal. However, the westward-
traveling modes are unexplained by eMAC waves, which propagate only to
the east.
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a) SA, America, 2005.3

b) SA, America, 2009.6

c) SA, America, 2013.9

1000 500 0 500 1000
uT/yr^2

Figure 5.6: Secular Acceleration under America over time, selected using
the weight function shown in 5.5. Note the orange and purple patches seem
to oscillate in their locations, but that there is not as clear of a signal for
traveling waves in either direction as under SE Asia.
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Figure 5.7: Symmetric (l=0) eMAC Wave correlation above noise for secular
acceleration and secular variation, using data in the region of America and
a symmetric weight function with δθ = 8◦
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Figure 5.8: Asymmetric (l=1) eMAC Wave correlation above noise for secular
acceleration and secular variation in the region of America, with data and a
symmetric weight function with δθ = 8◦
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eastward-traveling waves
l m period (yrs) vmax φ0 ∆φ δθ

0 -6 8 0.33 334◦ 22◦ 10◦

1 -7 8 0.02 256◦ 16◦ 12◦

westward-traveling waves
l m period (yrs) vmax φ0 ∆φ δθ

0 6 8 0.47 318◦ 13◦ 12◦

1 4 8 0.24 332◦ 18◦ 14◦

1 7 8 0.43 240◦ 18◦ 10◦

Table 5.2: eMAC waves observed in the America region of Earth’s core.

5.3 South-East Asia

The second region in which we see strong oscillating SA patches is under the
equatorial region of south-east Asia. We use a longitudinal window function
centered on 45◦E, with a width of δφ = 55◦. This produces the window
function shown in figure 5.9. Using this window function, we examine the
SA signal in this region and see patches of SA drifting to the east, as shown
in figure 5.10.

To examine whether these patches originate due to the presence of eMAC
waves, we perform our correlation analysis on this region to obtain figures
5.11 and 5.12. We see strong correlation for single eastward-propagating
symmetric wave in the SA and SV with (l=0, m=-6). There is also a weak
correlation for a wave with (l=0, m=-11). For the asymmetric waves, we see
correlations for wave propagating to the east and west, with (l=1, m=-4) and
(l=1, m=4) appearing to have the strongest correlations overlapping between
SA and SV.

We find the peak phase for each of these waves, and find that the (l=0,
m=-11) wave does not have a consistent phase between SA and SV, indi-
cating it is probably a spurious correlation. Indeed, when we compute the
amplitudes, we find that the best fit gives a negligible amplitude to this wave.
However, the other waves observed have both consistent phases between SA
and SV and significant amplitudes. Indeed, the eastward propagating modes
have a significantly stronger amplitude than the westward propagating mode,
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Spatial Weight Function Used For SE Asia
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Figure 5.9: Spatial weight function used to examine wave signals under south-
east Asia. δθ = 10◦, δφ = 55◦, centered at 45 degrees longitude.

which indicates that a large portion of the signal observed in the SE Asian
region can be explained by two eMAC waves modes alone with (l=0, m=-5)
and (l=1, m=-4).

5.3.1 Synthetic eMAC SA

As a rationality check on our analysis, we compute the SA produced by the
(l=0, m=-5) and (l=1, m=-4) waves listed in table 5.3 for comparison to the
observed SA in the S.E. Asian equatorial region. First, we show the signals
produced by these two eMAC waves advecting the observed CMB field for
three snapshots in time in figures 5.13 and 5.14. Although these waves have
opposite equatorial symmetry, they produce both equatorially symmetric
and asymmetric signals due to their interaction with the background CMB
magnetic field gradients.

We then compare the SA produced using both of these waves simultane-
ously to the observed SA for three snapshots in time in figure 5.15. Many
similar features can be observed in these comparisons, such as the location
and shape of negative and positive patches of SA and their motion across
time. However, there are still many differences, and the results do not match
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a) SA, SE Asia, 2004.2

b) SA, SE Asia, 2009.6

c) SA, SE Asia, 2013.9

600 400 200 0 200 400 600
uT/yr^2

Figure 5.10: Secular Acceleration under SE Asia over time, selected using
the weight function shown in 5.9. Note the orange patch that seems to travel
to the East over the roughly ten years spanned by these figures.
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b) SV, SE Asia, l=0, dth=10
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Figure 5.11: Symmetric (l=0) eMAC Wave correlation above noise for secular
acceleration and secular variation, only data under south-east Asia and a
symmetric weight function with δθ = 10◦
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b) SV, SE Asia, l=1, dth=10
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Figure 5.12: Asymmetric (l=1) eMAC Wave correlation above noise for sec-
ular acceleration and secular variation, only data under south-east Asia and
a symmetric weight function with δθ = 10◦
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a) Synthetic eMAC, 2004.1

b) Synthetic eMAC, 2009.6

c) Synthetic eMAC, 2013.7

300 200 100 0 100 200 300
uT/yr^2

Figure 5.13: Synthetic SA produced by l=0, m=-5 eMAC wave with param-
eters listed in table 5.3.
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a) Synthetic eMAC, l=1, 2004.1

b) Synthetic eMAC, l=1, 2009.6

c) Synthetic eMAC, l=1, 2013.7

300 200 100 0 100 200 300
uT/yr^2

Figure 5.14: Synthetic SA produced by l=1, m=-4 eMAC wave with param-
eters listed in table 5.3.
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eastward-traveling waves
l m period (yrs) vmax φ0 ∆φ δθ

0 -5 8 0.85 21◦ 11◦ 14◦

0 -11 8 0.02 212◦ 64◦ 12◦

1 -4 8 0.44 198◦ 14◦ 12◦

westward-traveling waves
l m period (yrs) vmax φ0 ∆φ δθ

1 4 8 0.33 349◦ 11◦ 10◦

Table 5.3: eMAC waves observed in the south-east Asia region of Earth’s
core.

perfectly. This could be due to many factors, including additional eMAC
waves present in the core but not in our analysis; errors introduced by our
imperfect observations of the background magnetic fields at the core; or in-
accuracies in the derived structure of our eMAC waves.

Note that we have used larger peak flow velocities of 1.5 km/yr for (l=0,
m=-5) and 1 km/yr for (l=1, m=-4) to produce this comparison in order
to match the amplitude of observed SA. Because our method for fitting the
wave amplitude uses the absolute RMS difference between SA produced by
the waves and the observed SA, any difference in spatial structure of our simu-
lated waves compared to the observed SA will penalize the best-fit amplitude
of the wave modes. This makes it likely that this method of fitting amplitude
will under-estimate rather than over-estimate the true value. Thus, these in-
creased peak flow velocities used to plot have been chosen to approximately
fit the the RMS power of the observed SA while maintaining the relative
amplitudes of the two eMAC wave modes.

119



a) Observed SA, 2004.1 b) Synthetic eMAC, two waves, 2004.1

c) Observed SA, 2009.6 d) Synthetic eMAC, two waves, 2009.6

e) Observed SA, 2013.7

600 400 200 0 200 400 600
uT/yr^2

f) Synthetic eMAC, two waves, 2013.7

600 400 200 0 200 400 600
uT/yr^2

Figure 5.15: Synthetic SA produced by both l=0, m=-5 and l=1, m=-4
eMAC waves. Parameters used are those listed in table 5.3, except for wave
amplitudes, which have been increased to 1.5 km/yr for l=0, m=-5 and 1
km/yr for l=1, m=-4 to roughly match the magnitude of observed SA.

120



Chapter 6

Discussion

In previous chapters, we derived a numerical model to study magnetic waves
in the stratified ocean of Earth’s core and described a class of waves that
propagate to the east in the equatorial region on decadal timescales, which
we term eMAC waves. We then derived and validated a method for observing
these waves and were able to find evidence for three eMAC waves in Earth’s
core, whose properties are listed in table 6.1. The observed period and struc-
ture of these waves can therefore now be used to constrain the properties of
the SOC, as well as the structure of the radial magnetic field at the CMB.

l m period (yrs) vmax (km/yr) φ0 ∆φ δθ
South-East Asia
0 -5 8 0.84 - 1.5 21◦ 11◦ 14◦

1 -4 8 0.44 - 1 198◦ 14◦ 12◦

America
0 -6 8 0.33 334◦ 22◦ 10◦

Table 6.1: eMAC waves observed in Earth’s core.
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6.1 Comparison to Previous Results

Our observation of equatorial waves with periods of around eight years are
similar to the results obtained by Chulliat et al. (2015). Both studies find
evidence for wave modes both symmetric and asymmetric across the equa-
tor, and that observations support several waves propagating with periods
between five and ten years. In addition, both studies find several modes
propagating to the east with longitudinal wave numbers between m=-3 and
-6. Finally, both studies also find evidence in geomagnetic signals for equa-
torial wave modes propagating to the west with wave numbers between m=3
and 7.

However, there are notable differences between the results obtained by
Chulliat et al. (2015) and the results of this study. First, the longitudinal
wave numbers of observed waves obtained between the two studies do not
match precisely. In particular, Chulliat finds a single strong asymmetric wave
mode propagating to the west with a longitudinal wavenumber of m=2. On
the other hand, we find no evidence of waves with a longitudinal wavenumber
|m| < 3 of any mode. However, Chulliat et al. (2015) admits that precise
values for longitudinal wave numbers are not well-defined.

In addition, Chulliat’s observations are performed using period-wavenumber
transformations which do not take into account the coupling of wave struc-
tures and the background magnetic field, so differences in our results should
be expected. As noted in chapter 4, eMAC wave motions couple with the
complex background magnetic field at the CMB equator and produce com-
plicated signals. These signals can easily be interpreted as evidence for waves
with incorrect wavenumbers, propagation speeds, or even directions of prop-
agation when examined using time-longitude or FFT-methods such as those
employed by Chulliat et al. (2015). On the other hand, our method accounts
for these complications, so differences in results obtained may be expected.

We also find that our magnetic equatorial waves have different behaviors
than derived by previous authors. Our eMAC wave periods do not display
the same dependence on layer thickness, magnetic field strength, or buoy-
ancy frequency as the solutions obtained by Bergman (1993). In addition,
his solutions propagate to the west, while we are only able to find equatorial
waves that propagate to the east after an extensive numerical search of plau-
sible SOC structures and background magnetic fields. These differences are
significant, and may arise due to simplifications Bergman uses in the deriva-
tions of those results which raise questions about their applicability to the
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SOC (see section 1.4.2).
However, our unsuccessful attempt to find solutions for westward prop-

agating equatorial waves is surprising for other reasons. First, westward
propagating equatorial modes are well-studied and widely observed in non-
magnetic thin-layer fluids (e.g. Gill, 1982). By analogy we may then also
expect to find westward-propagating magnetohydrodynamic waves. Second,
both visual inspection of time-longitude plots of the equatorial region (e.g.
Chulliat and Maus, 2014, figs. 3,4), and our correlation results (see chapter
5) seem to show indications of westward propagating waves. These apparent
westward-propagating signals are unexplained by the eMAC waves described
in this thesis, and deserve further study as discussed in section 6.4.1.

6.2 Implications

6.2.1 Stratified Layer

The eMAC waves detected all have wave periods between seven and ten years.
A SOC layer with thickness of ∼20 km can produce waves with these periods
for the observed m=-4,-5,-6 modes. However, SOC thickness is impossible
to precisely constrain due to possible presence of higher radial overtones of
eMAC waves. We can only observe the period and flow of eMAC waves at
the surface of the core, and a thicker SOC could support eMAC waves with a
higher radial wavenumber ( k ) that produce precisely the same spatial wave
structure at the CMB with the same wave period. We show in section 3.2.4
that

ω ∝ k2

so that an eMAC wave with k=1 in a 20 km layer, k=2 in 40 km layer, and
k=3 in 60 km layer would all produce similar CMB flow patterns and periods.

With this caveat in mind, a ∼20 km thick SOC with strong stratifica-
tion is still the most likely explanation for our observations for a variety
of reasons. First, the lowest radial overtone eMAC wave has the simplest
structure, and so in one sense, it is the simplest wave to explain the observa-
tions. In addition, the Brunt-Väisälä frequency is likely to vary with radius
in Earth’s SOC. This variation is more likely to negatively affect the prop-
agation of waves with high radial wavenumbers, as their relatively shorter
radial wavelengths would interact with different local buoyancies and possi-
bly cause the features to decohere (see e.g. figure 3.21). Waves with simpler
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radial structures may be relatively less affected by radial variations in buoy-
ancy and continue to propagate coherently, as their large-scale motions could
more easily overcome small-scale differences in buoyancy. Thus, the simplest
explanation is that the signals observed arise from eMAC waves with funda-
mental radial overtones, and therefore that the SOC supporting these wave
motions has a thickness ∼20 km.

The SOC must also have relatively strong stratification for these eMAC
waves to propagate. eMAC waves with the periods and structures observed
fail to propagate below a threshold value of N ∼10, as shown in section 3.2.2.
Thus, the SOC supporting these waves must have at least this strength of
buoyancy. However, the buoyancy could be considerably stronger than this
value (e.g. Buffett and Seagle, 2010), as eMAC waves are insensitive to the
precise strength of buoyancy above this threshold value.

Thus, we propose a relatively thin SOC, with a thickness of 20-40 km
and a buoyancy frequency of N≥ 10Ω as our preferred layer to explain the
observed eMAC waves. This result is consistent with some seismic observa-
tions which propose a thin, strongly-stratified layer near the CMB (Eaton
and Kendall, 2006). In addition, this strength of buoyancy can plausibly
arise from compositional stratification, perhaps due to chemical interactions
with the mantle (Buffett and Seagle, 2010).

On the other hand, this thin, strongly stratified SOC is at odds with the
results of many other studies. Many seismic studies detect a much larger
region with anomalous seismic wave speeds, near ∼ 200 km thick (see 1.2.1),
which are proposed to arise due to a SOC of similar thickness. In addition,
Buffett (2014) detects signals of zonal MAC waves that require the SOC to
be ∼140 km thick with a relatively weak buoyancy frequency of N ∼1 Ω.

One possible resolution to these contradictory results would be a thin,
strongly-stratified layer embedded within a thicker weakly-stratified layer. A
representation of this situation can be seen in figure 6.1, showing a 20 km
thick layer with N=10Ω, as well as a 140 km thick layer with a linearly-
varying N from 0 to 1 Ω as proposed by Buffett (2014).

A thin, strongly-stratified layer could plausibly arise within a thicker
weakly-stratified layer by several mechanisms. First, a thick stratified layer
with H ∼ 140 km and N ∼ 0 to 2 Ω could arise through thermal origins
(see section 1.1.2.1 ). Then, an additional layer of enhanced compositional
stratification could arise near the CMB through a local enrichment of light el-
ements. This local enrichment could occur due to chemical interactions with
the mantle or through barodiffusion. The effectiveness of both of these pro-
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cesses to produce thin, strongly buoyant layers may even be enhanced by the
overlying stratified layer. This is because the overlying stratification would
suppress radial fluid motions and prevent turbulent mixing due to convec-
tion. Thus, these processes would tend to produce a region of concentrated
buoyancy near the CMB.

Previous studies have shown that barodiffusion could produce a SOC with
N∼ 20 Ω (Gubbins and Davies, 2013). However, this stratification occurs in a
SOC ∼ 100 km thick, which is much larger than the 20-30 km SOC required
for eMAC waves to propagate. The particular light elements or presence
of an overlying stratified layer may impact the formation of stratification by
barodiffusion, potentially allowing it to produce strong stratification in a thin
layer as required for eMAC waves. On the other hand, chemical interactions
with the mantle have been shown to be able to produce both the strength
of stratification (Buffett and Seagle, 2010) and the thickness (e.g. Helffrich
and Kaneshima, 2013, fig. 3) required to support the observed eMAC waves.
Thus, either of these processes could potentially give rise to a double-layer
SOC structure that could simultaneously explain both the eMAC waves and
many other observed signals.

One question that naturally arises is how the addition of a thin, strongly-
stratified layer affects the propagation and visibility of zonal MAC waves
in the thick, weakly-stratified layer. Numerical experiments using the FVF
model described in chapter 2 with the layer structure shown in figure 6.1 show
that zonal MAC waves in the thick stratified layer easily propagate through
the overlying thin layer with only minor suppression of the latitudinal flows.
Therefore, the conclusions of Buffett (2014) remain largely the same, even
with the addition of a overlying thin, strongly-stratified layer.

This proposed layer structure can also potentially explain contradictory
seismic results from multiple authors. Several authors show seismic results
that indicate a thick layer near the CMB with slow seismic wave-speeds (e.g.
Garnero et al., 1993; Helffrich and Kaneshima, 2010; Lay and Young, 1990;
Tanaka, 2007). However, Eaton and Kendall (2006) detect a thin ∼12 km
thick region near the CMB with fast seismic wave-speeds. These results
could potentially be reconciled by our proposed two-layer SOC. The thick
layer could arise due to thermal buoyancy and/or light element enrichment
and create a roughly 100-200 km thick region with weak stratification and
anomalously slow seismic wave-speeds (e.g. Helffrich, 2012). Then, a thin
region near the CMB roughly 20-30 km thick with strong stratification could
arise through a separate mechanism, perhaps from chemical interactions with
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the mantle. Because it has a distinct origin, it is plausible to expect the
composition of this thin region to be distinct from the overlying thick layer,
potentially creating a region with fast seismic wave-speeds (e.g. Buffett and
Seagle, 2010).

The layered SOC might be expected to require unrealistic density deficits
due to the combination of a thick, weakly buoyant layer in addition to a thin,
strongly buoyant layer near the CMB. However, figure 6.1b shows that the
required buoyancy profile can be produced from an SOC with a total density
deficit of only 0.1% under the adiabatic density profile of the core. This
value is well within those proposed by many previous authors (e.g. Lister
and Buffett, 1998), and is likely consistent with observations of core flows
from geomagnetic evidence (see section 1.2.2).

6.2.2 CMB Magnetic Field

We are also able to use the properties of observed eMAC waves to draw
conclusions about the CMB magnetic field. First, the total RMS strength
of the radial magnetic field near the core has a large influence on both the
period and quality factor of eMAC waves, as shown in section 3.2.3. In
general, stronger fields are associated with shorter wave periods and higher
quality factors, varying according to

ω ∝ B2

and
Q ∝ B2 .

We find that a RMS radial magnetic field near 0.6 mT is sufficient to ex-
plain eMAC wave periods observed. However, we note that with this field
strength, these waves are fairly heavily damped, and thus would require a
strong and consistent excitation mechanism. Stronger RMS radial magnetic
fields alleviate this problem by causing these waves to propagate with higher
quality factors. However, the total RMS radial field near the CMB is likely
<1 mT based on evidence from numerical geodynamo simulations (Chris-
tensen, 2011), observations of the geomagnetic field (Finlay et al., 2016), and
observed periods of torsional oscillations (Gillet et al., 2010). Thus, a slightly
higher field strength may be preferred to allow these waves to propagate, but
plausible field strengths could only increase the quality factor of these waves
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Figure 6.1: Proposed double-layered SOC, showing buoyancy frequency (a)
and density perturbation off of the adiabatic density gradient (b). This plot
shows a thin, 20 km thick, N = 10 Ω layer which would allow eMAC waves to
propagate with values observed in this study. It also shows a thick, thermally
stratified layer 140 km thick with N varying from 0 to 1 Ω as proposed by
Buffett (2014) to explain zonal MAC wave observations.
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by a factor of ∼2 (see chapter 3). This issue is discussed further in section
6.3.

We can also obtain information about distribution of radial magnetic field
at the CMB by latitude as the field structure impacts the eMAC wave struc-
ture (see sections 3.3.1.2 and 4.4.1). The observed eMAC waves have a δθ
somewhere between 10◦ and 15 ◦. Waves of this width require a depression
in the strength of the radial magnetic field near the equator to narrowly con-
strain their flow structure, as detailed in section 3.3.1. The observed radial
magnetic field near the equator has a RMS value ∼0.3 mT. Higher-order
spatial structures can only increase the RMS field value, so this represents
the minimum possible RMS value. Thus, we propose a RMS Br of 0.3 mT at
the equator and a RMS Br ∼ 0.6 mT just off the equator to produce eMAC
waves with the observed latitudinal width, periods, and quality factors. This
additional unobserved radial field strength could be explained by small-scale
field structures which are prominent in many of the latest geodynamo simu-
lations (e.g. Schaeffer et al., 2017).

We compare three proposed Br magnetic field distributions to the ob-
served RMS Br at the CMB in figure 6.2. These field structures are gen-
erated by subtracting a zeroth-order Hermite polynomial from a constant
radial field. This representation is chosen to achieve smooth variation near
the equator so as not to introduce sharp artifacts into the structure of eMAC
waves obtained with the FVF model. These structures produce eMAC waves
with latitudinal widths similar to the δθ the describes the width of the equa-
torial depression in the radial field. Our results in chapter 5 imply that the
observed eMAC waves have a δθ between 10◦ and 15◦ which correspond to
the orange and green distribution in figure 6.2. However, note that it is
impossible to rule out narrower eMAC waves and thus magnetic field struc-
tures due to the limitations of our geomagnetic observations. Observations
of the core field are limited to a spherical harmonic degree of l∼14, so signals
from very narrow eMAC waves would produce signals that appear to have a
wider latitudinal width closer to δθ = 10◦ due limitations of the resolution
of our observations. Note also that the representative field structures shown
in figure 6.2 are only relevant near the equator, as eMAC waves only give
information in this region. Thus, the RMS Br at high latitudes is entirely
unconstrained by this study.
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Figure 6.2: Proposed distribution of total Br RMS at the CMB, including
small-scale unobserved field strength.

6.3 Quality Factor

One major argument against eMAC waves as the origin of the observed equa-
torial SA signals is their relatively low quality factors. For example, the
fundamental symmetric eMAC mode with m=6 has a quality factor <1 for
many of the layer structures examined in chapter 3. Such a low quality factor
would mean that these eMAC waves would decay within around five years
and only propagate across ∼40 degrees of longitude (see figure 5.4). Indeed,
with Q<1, it is perhaps more accurate to refer to these as “decaying fluid
oscillations” rather than “waves”. With this low quality factor, some process
must continually excite these waves to be consistently observed across the
>10 year time period of the CHAOS-6 geomagnetic field model. This excita-
tion could arise from flow over CMB topography, similarly to non-magnetic
Rossby waves in the ocean (e.g. Rhines and Bretherton, 1973). Alternatively,
these waves could be continuously excited by stochastic motions of convec-
tion in the bulk outer core, a similar mechanism to that proposed by Buffett
and Knezek (2018) to generate MAC waves.

On the other hand, the low quality factor of eMAC waves may fit with our
observations of eMAC waves in geographically limited regions. If the quality
factor of eMAC waves were very high they would likely propagate around the
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entire globe, reinforcing themselves and producing high correlations in the
global eMAC analysis performed in section 5.1. Because we observe different
eMAC waves in the regions of America and South East Asia, it is plausible
that eMAC waves do not propagate between these regions. The separation of
these two regions constrains the quality factors of the observed eMAC waves
to around Q<10, and Q∼2 is sufficient for eMAC waves to propagate across
the American and SE Asia regions studied.

Although the fundamental eMAC modes obtained in our model have
Q<2, there are many plausible mechanisms by which eMAC waves could
propagate with Q≥2. First, many eMAC waves with higher latitudinal-
degree have quality factors between 2 to 4 (see figure 3.11), so observed sig-
nals could arise due to wave modes with l>1. In addition, the quality factor
for the fundamental mode l=0 can easily be increased by slightly changing the
parameters used to simulate the eMAC waves. For example, increasing the
radial CMB magnetic field strength in the model to 0.9 mT produces Q∼2
for l=0. In addition, decreasing the magnetic diffusivity from 0.8 m2/s to 0.4
m2/s also improves the quality to Q∼2 for l=0. A combination of smaller
changes to each of these parameters could likewise increase the quality factor
of all eMAC modes enough to explain the observations.

The construction of our model could also bias the quality factors to be
lower than in reality. Waves derived with electromagnetic boundary coupling
to the bulk core fluid are much more heavily damped than those derived with
pseudo-vacuum boundary conditions. This is because we constrain the fluid
beneath the SOC to be stationary and only allow the magnetic perturbation
to propagate into the bulk core. While this simplification is necessary for nu-
merical tractability, in reality some of the fluid motion would also propagate
into the fluid below the layer, resulting in non-zero fluid motions beneath the
boundary and possibly allowing the eMAC waves to propagate more freely
and with higher quality factors. Indeed, even using pseudo-vacuum boundary
conditions at the bottom boundary may underestimate the quality factor of
the derived eMAC waves, as this constrains the magnetic perturbation at the
bottom boundary and therefore increases the radial gradients of the wave.
This increases the magnetic diffusion and therefore potentially increases the
damping of the eMAC waves. With these considerations, it is at least plau-
sible that eMAC waves could propagate with the required quality factors to
fit observations.
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6.4 Future Work

The results presented in this thesis present an enormous amount of additional
information pertinent to studies of the SOC. However, this work represents
just a minute portion of the possible work to be done on this topic.

6.4.1 Westward-Propagating Equatorial Waves

Perhaps the largest question left unanswered by this thesis is the origin of the
apparent westward-propagating signals observed in the equatorial region of
Earth’s geomagnetic field. Results of previous work (Chulliat et al., 2015) and
this thesis (chapter 5) seem to indicate the presence of westward-propagating
equatorial waves with sub-decadal periods in Earth’s core. It is possible that
these observations could arise due to multiple eMAC waves advecting the
complex background magnetic field. However, our correlation analysis seems
to provide strong evidence against this explanation and instead indicate that
these signals arise due to westward-propagating waves of some form.

We were unable to obtain solutions for westward-propagating equatorial
waves with the observed properties after an extensive numerical search with
plausible SOC parameters. However, we did find solutions for westward-
propagating waves with appropriate periods at mid- to high-latitudes (e.g.
figure 3.22). It is possible that more complicated layer buoyancy structures
(e.g. figure 3.21), or influence from the unobserved CMB magnetic field struc-
ture could cause these westward modes to produce signal near the equator
by modifying their propagation structure or by causing them to couple with
other modes near the equator. However, this possibility has not been ex-
plored in-depth. It is also possible that these signals could also arise by
coupling westward-propagating waves in the bulk outer core to flows in the
SOC (e.g. Hori et al., 2015; Takehiro and Sasaki, 2018; Vidal and Schaeffer,
2015). However, known wave modes in the bulk outer core are unlikely to
produce the observed wave periods or structures (see section 1.2.3). Both of
these possible explanations deserve further study, especially as many of our
analyses show stronger evidence for westward-propagating modes than their
eastward-propagating counterparts derived by our FVF model.

131



6.4.2 Further Wave Modes

Other wave modes beyond eMAC waves are observed propagating in the SOC
using our FVF model. These include both very short-period equatorial waves
and long-period mid-latitude waves that propagate to the west (see section
3.4). The long-period mid-latitude waves are of particular interest, as they
have relatively high quality factors and have long enough wave periods that
they may be visible in geomagnetic observations. Not only would detection of
these waves provide additional confirmation of the existence of the SOC, their
periods are also more sensitive to layer stratification and so could provide a
tighter constraint on the layer structure.

Further work is needed to know whether these mid-latitude waves are
observable. Initial studies indicate that they have much shorter wave peri-
ods of about 1 year for the layer structures proposed for eMAC waves (see
appendix D), which would likely mean they are unobservable with current
technology. However, these waves have periods on the order of a decade when
propagating in an SOC with H ∼ 140 km, N ∼ 1 Ω as proposed for zonal
MAC waves. Therefore, if our double-layer SOC proposal is correct, it may
be possible to observe these waves propagating in the thick underlying layer.
In addition, as noted above, these waves are key candidates regarding the
origin of observed westward-propagating equatorial signals.

Indeed, our investigations indicate that there may be a host of other
wave modes that propagate in the SOC. However, the many of these wave
modes would have periods that are either too short or too long to be detected
with current observations. Current geomagnetic observations can potentially
resolve small-scale (m∼6) with a minimum period of perhaps two years, and
this is unlikely to improve much due to physical limitations on observations
(see section 1.5.1 and 1.5). However, as satellite missions continue to collect
data over time, it will allow us to resolve waves with increasingly long periods.
Thus, within the next few decades, it may be possible to observe many
different classes of wave modes in the SOC with periods from years to several
decades, precisely constraining its structure and properties.

6.4.3 Layer Structure and Buoyancy

There is also much work to be done to examine the effect of radially-varying
layer buoyancy on the structure of eMAC waves. We show in section 3.3.2
that eMAC modes can propagate with radial variations in layer buoyancy,
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but that radial variation introduces complex wave modes that are not easily
classified or categorized. These complex modes seem to represent a coupling
of many different types of eMAC waves, perhaps due to local interactions with
varying buoyancy. However, they also seem to vary with latitude, perhaps
due to the spherical geometry of the layer. The behavior or eMAC waves in
SOCs with varying buoyancy is an important area of study, as the buoyancy
in Earth’s SOC is very likely to vary with radius (see section 1.1.3).

In addition, further work is needed to explore the dynamics of a two-layer
SOC composed of a thin, strongly buoyant layer atop a thick, weakly-buoyant
layer. Preliminary studies show that MAC waves propagating in the thick
underlying layer are only slightly modified by the addition of a thin stratified
layer near the CMB. However, our FVF was unable to resolve eMAC waves
propagating in the thin overlying layer when computing waves in a two-layer
SOC. This may be due to the eigenvalue solver used, which prioritizes wave
solutions with the largest amplitudes. Regions with weaker stratification
naturally allow stronger radial wave motions, so the amplitude of the wave
vector in our numerical model is larger. Thus, our solver preferentially finds
wave modes with the majority of their motion in the more weakly-buoyant
region. Further investigation is needed to resolve both MAC and eMAC
waves in a layer with two stratification regimes to verify that both wave
modes can coexist in a single SOC.

6.4.4 Excitation Mechanisms

This study has shown the existence of eMAC waves in Earth’s core, but leaves
open the question of their excitation mechanism. There are several possible
mechanisms through which these waves could be excited. First, the con-
vective fluid motions in the bulk core fluid could excite eMAC waves in the
stratified layer through buoyancy, Lorentz, or magnetic induction forces (Buf-
fett and Knezek, 2018; Jaupart and Buffett, 2017). However, the addition of
an overlying stratified layer complicates this mechanism for eMAC waves in
a double-layered SOC. Further study is needed to investigate whether these
excitation mechanisms could excite eMAC waves despite the thick, weakly-
buoyant layer shielding it from direct interactions with the bulk convecting
core.

On the other hand, it has been shown that some fluid motions in the
bulk core such as torsional oscillations (TO) can relatively easily propagate
through the SOC (see section 1.1.1.1). Torsional oscillations have been pro-
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posed in the bulk outer core with sub-decadal periods (Gillet et al., 2010),
so it is worth investigating whether they could serve to excite eMAC waves.
On the other hand, TO are zonal (m=0), so they would need some way to
transfer energy into m∼6 fluid motions to excite the observed eMAC waves.
This could occur to to heterogeneous radial magnetic field strength with an
m=6 pattern, as this would couple only portions of the TO flow in the bulk
core to the SOC fluid. However, the mechanism by which this field structure
would arise, or its ability to and effectiveness to excite eMAC waves has not
been examined.

Another possibility is that, fluid flows from TO or other sources could
interact with the mantle to excite eMAC waves. Topography or conductivity
heterogeneity at the base of the mantle could induce eMAC waves in a similar
manner to how topographic Rossby waves in Earth’s oceans are excited by
structures on the ocean-bottom (e.g. Rhines and Bretherton, 1973). If this
mechanism operates in Earth’s core, detailed study of eMAC waves could give
information on the scale and location of mantle topography or conductivity
at the CMB. This is a topic of great interest to mantle dynamics, seismology,
and mantle geochemistry, and eMAC waves could represent an entirely new
source of data for its study.

6.4.5 Numerical Model Improvements

The FVF model obtains MAC waves and eMAC waves efficiently and with
a high degree of flexibility and accuracy. However, the model could be im-
proved in many ways. First, there may be a better method of parameterizing
the boundary between the bottom of the stratified layer and the bulk core
fluid. The current electromagnetic coupling and pseudo-vacuum boundary
conditions are both known to be inaccurate representations of the real system
and improved boundary conditions would potentially allow for greater confi-
dence in the results of the model. A more accurate boundary condition might
allow both the magnetic field perturbation and fluid momentum to propagate
downward into the core, instead of prescribing the bulk core fluid to be sta-
tionary. However, an analytical solution for this boundary condition has not
be derived, and allowing both momentum and magnetic field perturbations
may produce propagating fluid motions that would require simulation of the
entire bulk outer core.

Another important improvement would be to allow for variation of the
CMB magnetic field with longitude. We know that the CMB magnetic field

134



includes substantial variation in both longitude and latitude. These vari-
ations would impact both the local visibility of eMAC waves due to fluid
motions advecting the field, as well as their local propagation due to the
field acting as a restoring force. However, our current FVF model only al-
lows background fields and layer structures which are constant around the
rotation axis. Allowing variation with longitude would greatly complicate
the model and analysis, as it would allow for mixing of eMAC modes of dif-
ferent longitudinal wavenumbers and may require a simulation of the full 3D
domain.

Finally, toroidal oscillations are another class of waves of geophysical
interest that we could study by extending the FVF model (Cox, 2015; Cox
et al., 2014). This could be done by simply adding a set of cells representing
axis-aligned cylinders that connect to the bottom of the layer in our FVF
model. These cylinders could then allow 2D toroidal oscillations to propagate
within the core, and their interaction with and visibility through a stratified
layer at the CMB could be studied.

6.5 Final Thoughts

This thesis has advanced the knowledge of equatorial magnetic waves in the
stratified ocean of Earth’s core (SOC). In particular, it has described a class
of equatorial MAC waves (eMAC) waves that propagate to the east and has
shown that they could explain many signals observed in Earth’s geomagnetic
field. These observed eMAC waves give information on the thickness and
buoyancy of the SOC as well as the strength and structure of the radial CMB
magnetic field. Finally, this study points the way towards several avenues of
investigation that could be used to further study the dynamics and structure
of the SOC and Earth’s magnetic field.
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Appendix A

Mathematical Notation

This appendix presents a brief overview of the mathematical notation used
in this thesis.

A.1 Spherical Harmonics

Throughout this thesis, we utilize spherical harmonics to capture spatial
variations in a spherical geometry. In particular, spherical harmonics are used
for the geomagnetic field models such as CHAOS-6, as well as to parameterize
and describe fluid and wave motions in the core.

For the geomagnetic field, the internal core field can be represented as

B(r, θ, φ) = −∇ψ(r, θ, φ) (A.1)

Where r, θ, and φ represent the radial, latitudinal, and longitudinal coordi-
nates, and ψ is a magnetic potential field. This magnetic potential field can
be described in spherical harmonics as

ψ(r, θ, φ) = a
lmax∑
l=1

l∑
m=0

(a
r

)l+1

Pm
l (cos θ)(gml cosmφ+ hml sinmφ) (A.2)

where a is the mean radius of Earth (6371 km), r,θ, and φ are radius, co-
latitude, and longitude, Pm

l is the Schmidt-normalized associated Legendre
polynomial of degree l and order m, and gml and hml are the real Gauss coeffi-
cients describing the field. See (e.g. Langel, 1987), Hulot et al. (2015), section
5.02.3.1, or Finlay et al. (2016) for further details on the use of spherical har-
monics to model the geomagnetic field.
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Spherical harmonic decompositions can also be represented using complex
coefficients. Complex coefficients have some advantages over real coefficients,
as they can be manipulated as a single value for each degree and order. This
representation is used in section 4.3.2 to model SV noise. These complex
spherical harmonics are represented as

f (θ, φ) =
∞∑
l=0

l∑
m=−l

fml Y m
l (θ, φ) , (A.3)

where fml is the complex spherical harmonic coefficient, Y m
l is the correspond-

ing complex spherical harmonic function, θ is co-latitude, φ is longitude, and
l and m are the spherical harmonic degree and order, respectively. The
complex spherical harmonics are defined as

Y m
l (θ, φ) = P̄m

l (cos θ) eimφ, (A.4)

where the normalized associated Legendre functions for use with the complex
4π-normalized spherical harmonic functions are given by

P̄m
l (µ) =

√
(2l + 1)

(l −m)!

(l +m)!
Plm(µ), (A.5)

. The unnormalized associated Legendre functions are derived from the stan-
dard Legendre polynomials using the relations

Plm(µ) =
(
1− µ2

)m/2 dm

dµm
Pl(µ) (A.6)

and

Pl(µ) =
1

2ll!

dl

dµl
(
µ2 − 1

)l
. (A.7)

See Wieczorek and Meschede (2018) for further details and implementation
methods in code.

A.2 B-splines

Earth’s geomagnetic field changes over time, and this variation is modeled
by allowing the Gauss coefficients to vary over time. A common technique
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to capture these changes in a smooth manner is to use B-splines with knots
regularly spaced through time (see e.g. Bloxham and Jackson, 1992; Jackson
et al., 2000). This method allows each field coefficient to vary independently
and smoothly over time and does not impose any functional form on the shape
of the long-term variation. B-splines are also local in time, meaning that
observations from long ago or far in the future do not affect the components
of the present field. Also, B-Splines can be constructed such that as the
field has as many continuous time derivatives as desired. That is, the first,
second, third, etc. time derivatives can be made to be continuous in time
with the proper choice of B-Splines. For example, Finlay et al. (2016) uses
sixth-order B-splines to capture variations in Gauss coefficients of the internal
geomagnetic field

gml (t) =
K∑
k=1

kgml Bk(t) (A.8)

where here K=6, and Bk are spline basis functions. A similar equation is used
for hml (t), and values are recorded at 6-month knot spacings with endpoints
at t=1997.1 and t=2016.6.

With knots locations at t0, t1, ... ti, then B-spline basis functions of order
1 are defined such that

Bi,1(t) =

{
1 if ti ≤ t < ti+1

0 otherwise.
(A.9)

Then, higher-order B-splines are defined recursively from this definition using
the Cox-DeBoor algorithm, such that

Bi,k+1 = x−ti
ti+k−ti

Bi,k(x) + ti+k+1−x
ti+k+1−ti+1

Bi+1,k(x) (A.10)

For further information on B-splines, see De Boor et al. (1978) or Schu-
maker (2007). Commonly, B-splines used for magnetic field models are con-
structed such that the the magnetic field strength and its first two time
derivatives, termed secular variation and secular acceleration, are continuous
and smooth (e.g. their derivative is continuous) in time.

A.3 Brunt–Väisälä frequency

The Brunt–Väisälä frequency is a measure of the stability of a parcel of fluid
to vertical displacements against a background fluid with a defined density
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variation. It is commonly denoted by the value N , with units of radians
per time. If this value is real, it defines the angular frequency at which a
parcel of fluid will oscillate if displaced slightly from its stationary location
and allowed to move freely. However, if N is purely imaginary, then the
parcel is unstable and will not oscillate. N is defined using the gradient of
the background density ρ0 as

N =

√
− g

ρ0

∂ρ0

∂r
(A.11)

where g is the local gravity, and z is the coordinate perpendicular to the
density gradient (typically the vertical or radial direction).

The magnitude of N can be used to determine the strength of convection
or stratification of a particular region of fluid. As the value depends on both
the the local density and density gradient, N is typically not constant, and
can vary over space and time with changes in the background fluid. In this
thesis, N is often quoted in units of cycles per day, with proposed values
of N for the SOC ranging from ∼ 1 / day to ∼ 70 / day (Braginsky, 1993;
Buffett and Seagle, 2011). It should be noted, however, that these frequencies
are a measure of the strength of buoyancy, and do not directly control the
frequencies of waves that propagate in the SOC. Indeed, the eMAC waves
examined in this thesis have frequencies on the order of 1 / decade, not 1 /
day.

A.4 Quality Factor

The quality factor or Q factor is a dimensionless measure of the rate at which
a wave impulse will decay away. Higher quality factors mean that a wave will
propagate further given a constant initial excitation mechanism, while lower
quality factors mean that the wave will dissipate more quickly. There are
many different ways to define quality factor depending upon the particular
scientific or engineering domain. In this thesis, we define the quality factor
using the complex frequency ω of a particular wave mode as

Q =
|ωr|
2ωi

(A.12)

where ωr and ωi represent that real and imaginary components of the fre-
quency. Thus, if |ωr| >> ωi the wave will propagate for a long period of time
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and Q >> 1. Conversely, if |ωr| << ωi, then Q << 1 and the wave is heavily
damped. Note that for all waves examined in this thesis the imaginary com-
ponent of the frequency is positive, and thus Q is always positive. A negative
ωi would mean that the wave amplitude grows exponentially, which does not
represent a physically realistic solution for linear waves in Earth’s core.

A.5 Magnetic Fields

Magnetic fields have both a direction and magnitude at each point in space,
which we represent as the orientation and magnitude of a vector field ~B.
This field satisfies a set of rules collectively known as Maxwell’s laws, which
govern its properties and behavior.

∇ · E =
ρ

ε0

(A.13)

∇ ·B = 0 (A.14)

∇× E = −∂B

∂t
(A.15)

∇×B = µ0J + µ0ε0
∂E

∂t
(A.16)

(A.17)

In order, these equations are known as Gauss’s laws for electricity and mag-
netism, Faraday’s law, and Ampere’s law. Here, ~E, and ~B are, respectively,
electric and magnetic fields, and ~J is the electric current. The additional
terms here are ε0 electrical permittivity, µ0 magnetic permeability, and ρ
electric charge density.

From these laws, we can see that magnetic fields ~B, are both divergence
free ∇ · ~B = 0 and curl-free ∇× ~B = 0 in the absence of electrical charges.
Thus, in regions with no electrical currents or charges, magnetic fields can
be defined as the gradient of a magnetic potential ~B = ∇ψ where ψ is the
magnetic potential. Because the mantle is largely free of magnetic sources
or significant electrical currents, this fact can be used to uniquely determine
the magnetic potential field from the core through the mantle to the surface
of the Earth. In this way, observations at or above the surface of the Earth
can be used to determine the geomagnetic field at the CMB (e.g. Hulot et al.,
2015).
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A.5.1 Induction Equation

In Earth’s core, Maxwell’s laws can be simplified to be incorporated into
magnetohydrodynamic equations of fluid motions. To do this, we first take
Faraday’s and Ampere’s laws

~∇× ~E = −∂
~B

∂t
, (A.18)

and
~∇× ~B = µ0

~J, (A.19)

where the displacement current µ0ε0
∂E
∂t

has been neglected as it usually has
small effects in Earth’s core. Combining these equations with Ohm’s law and
eliminating ~E and ~J yields the induction equation for an electrically resistive
fluid:

∂ ~B

∂t
= η∇2 ~B + ~∇× (~v × ~B). (A.20)

where η = 1/µ0σ is the magnetic diffusivity.

A.6 Waves

Simple non-magnetic waves can be described by Airy wave theory, also known
as linear wave theory, which describes waves in an ideal fluid that is inviscid,
incompressible, and irrotational. One of the simplest wave modes in this
system is that of a water wave propagating in a horizontal direction across
a free surface with a mean water depth of h. In this case, a solution can be
found with a dispersion relation of the form

ω2 = gk tanh(kh) (A.21)

where g is the local gravity, k is the wavenumber, and ω is the wave frequency
(e.g. Landau and Lifshitz, 1987).

A.6.1 Rotational and Inertial Waves

Within Earth’s core, rotation and inertia acts as additional restoring forces,
enabling more types of waves to propagate. To derive these waves, begin by
taking the momentum equation in a rotating reference frame

∂u

∂t
+ 2(Ω× u) = −1

ρ
∇p (A.22)
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Then, take the curl ∇× and denote the vorticity as ξ = ∇×u and we obtain

∂ξ

∂t
= 2(Ω · ∇)u (A.23)

Then, take a further curl and time derivative and perform some substitutions
to obtain

∂2(∇2u)

∂t2
= −4(Ω · ∇)2u (A.24)

which admit solutions of

ω = ±2(Ω · k)

|k| = ±2Ω cos θ (A.25)

where θ is the angle between Ω and k and ω varies between 0 and 2Ω. This
dispersion relation describes general waves under the influence of rotation and
inertia. Specific wave modes can be found by applying additional constraints
or taking parameters in this equation to its limits. For example hydrody-
namic Rossby waves are a special case of low frequency inertial waves in a
spherical geometry when fluid motions are quasi-geostrophic.

A.6.2 Magnetic (Alfvén) Waves

Earth’s core consists of a conductive fluid, and this gives rise to a class of
waves that rely on the magnetic field as a restoring force. These magnetohy-
drodynamic waves were first derived by Alfvén (1943), and have been shown
to propagate in laboratory experiments as well as Earth’s magnetosphere
and core. The simplest form of these waves can be derived starting from the
momentum equation with only a magnetic field and pressure

∂U

∂t
=

1

ρ
∇P +

1

ρµ
(∇×B)×B. (A.26)

Then, the induction equation with no Ohmic diffusion can be used to relate
fluid velocity and magnetic fields

∂B

∂t
= ∇× (U ×B). (A.27)

We assume a background state with no large-scale velocity field

U = u (A.28)
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and only a uniform, steady background magnetic field with a small pertur-
bation,

B = B0 + b. (A.29)

with some substitution, and assuming that terms including only b and u are
small, we obtain

∂u

∂t
=

1

ρ
∇p+

1

ρµ
(B0 · ∇)b (A.30)

and
∂b

∂t
= (B0 · ∇)u. (A.31)

We then can obtain the wave equation by taking the curl of each equation
(∇×) and defining the fluid vorticity as ξ = ∇ × u. Then, take the time
derivative of the fluid vorticity equation to obtain

∂2ξ

∂t2
=

1

ρµ
(B0 · ∇)2

(
∇× ∂b

∂t

)
(A.32)

∇× ∂b

∂t
= (B0 · ∇)ξ. (A.33)

By substitution, we obtain

∂2ξ

∂t2
=

1

ρµ
(B0 · ∇)2ξ (A.34)

which is recognized as the classical plane wave equation, with solutions of

ω = ±vA(k · B̂0) (A.35)

where vA = B0

(ρµ)1/2
is the Alvén velocity (Alfvén, 1943).

A.6.3 Rotation and Magnetic Fields: MC Waves

Now, if we combine rotation, inertia, and a uniform magnetic field the gov-
erning equations become

∂u

∂t
+ s(Ω× u) = −1

ρ
∇p +

1

ρµ
(B0 · ∇)b (A.36)

and
∂b

∂t
= (B0 · ∇)u. (A.37)
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We then take the curl of each side and the time derivative of the momen-
tum equation. Then, substitute the result from the Ohmic diffusion equation
into the momentum equation we we obtain

∂2(∇× u)

∂t2
− 2(Ω · ∇)

∂u

∂t
=

1

ρµ
(B0 · ∇)2(∇× u) (A.38)

By taking another curl and substituting, we obtain(
∂2

∂t2
− 1

ρµ
(B0 · ∇2)

)2

∇2u = −4(Ω · ∇)2
∂2u

∂t2
(A.39)

which is the wave equation for Alfvén-Inertial or Magnetic-Coriolis (MC)
waves.

This equation admits solutions which have the dispersion relation

ω = ±(Ω · k)

k
±
(

(Ω · k)2

k2
+

(B0 · k)2

ρµ

)1/2

(A.40)

(Lehnert, 1954). When Ω → 0 we recover the Alfvén wave dispersion rela-
tion, while when B0 → 0 we recover the inertial wave dispersion relation.
Hide (1966) applied a similar analysis to derive magnetically-modified Rossby
waves and MC Rossby waves in Earth’s core.

A.6.4 Magnetic Archimedes Coriolis: MAC Waves

Then, we can now include a buoyancy gradient in our system

∇T0 = β′ẑ (A.41)

with a background magnetic field

B0 = B0xx̂ + B0yŷ + B0zẑ. (A.42)

This results in the governing equations

2Ω× u = − 1

ρ0
∇P +

1

µρ0
(B0 · ∇)b + γαΘẑ (A.43)

and
∂b

∂t
= (B0 · ∇)u (A.44)
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where µ is magnetic permeability, ρ is density, γ is the Grüneisen parameter,
and α is the expansivity, respectively. Then, we also have a non-dimensional
buoyancy equation

∂Θ

∂t
= β′(ẑ · u) (A.45)

where Θ is a non-dimensional measure of the vertical displacement through a
background buoyancy gradient and β′ is a measure of the buoyancy gradient.

After a significant amount of algebra, we obtain(
4(Ω · ∇)2

∂2

∂t2
+

[
(B0 · ∇)2

µρ0

]2
∇2 − γαβ′B0 · ∇)2

µρ0
∇2

H

)
uz = 0 (A.46)

which, when using the definitions

ω2
M =

(B0 · k)2

µρ0

ω2
A =

γαβ′(k2
xk

2
y)

k2

ω2
C =

4(Ω · k)2

k2

can be written in the slightly simpler form

ωMAC = ±ω
2
M

ωC

(
1 +

ω2
A

ωM62

)1/2

(A.47)

(Braginsky, 1964). For further details on all of these wave modes and their
derivations, see Finlay (2007).
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Appendix B

FVF Operators

This chapter details the complete set of operators used for the FVF method
of fluid simulation, including their derivation and final form.

B.1 Derivation of Method

The governing equations are discretized using a combination of finite volume
and Fourier (FVF) methods. Each term in the governing equations is in-
tegrated over the cell volume, then the volume integral is converted into a
surface integral using Gauss’ theorem. We index cells by the letter k in the
radial direction and l in the latitudinal direction, while the letter m denotes
the longitudinal wave number of the Fourier mode. Radial positions r, r+,
and r− respectively denote the location of the center, top, and bottom faces
of the cell in question, and ∆r denotes the radial thickness of the cell. Anal-
ogous notations is used for θ values. An example cell can be seen in Figure
B.1.

B.1.1 Pressure Gradient

For the pressure gradient, we sketch out the derivation in the main text, but
for illustration, we show the full derivation below. The pressure gradient is
integrated over the cell volume and divided by the total cell volume to define
the average force density for each cell

∇P =
1

∆V

∫
∆V

(~∇P )dV (B.1)
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(l-1)

(k+1)

(l+1)(k-1)

Δr

rΔθ

nr+
ˆ

nθ+
ˆ

nr-
ˆ

r̂
nθ-
ˆ

θ̂(l,k)

Figure B.1: Finite-volume cell geometry. Dimensions exaggerated for illus-
tration purposes.

where ∆V = r2 sin θ∆r∆θ∆φ represents the volume of the cell and integral
is taken over the total cell volume ∆V . We convert the volume integral into
a surface integral using Gauss’s theorem:

1

∆V

∫
∆V

(~∇P )dV =
1

∆V

∫
S

P ~dS (B.2)

where the integral is now taken over the total surface area of the cell S. The
average pressure gradient in (B.2) is a vector quantity with three components.
We define the vector components using the spherical basis vectors r̂, θ̂, φ̂ at
the center of the cell (Figure 1). For example, the radial component is

(∇P )r =

(
1

∆V

∫
S

P ~dS

)
· r̂. (B.3)

The surface integral split over individual faces, where Ar+ and Ar− denote
the area of the top and bottom radial faces and n̂r+ and n̂r− represent the
vectors normal to those faces (Figure B.1). Using similar notation for other
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faces gives

(∇P )r =
1

∆V

{
Pr+Ar+(r̂ · n̂r+) + Pr−Ar−(r̂ · n̂r−)

+Pθ+Aθ+(r̂ · n̂θ+) + Pθ−Aθ−(r̂ · n̂θ−)

+Pφ+Aφ+(r̂ · n̂φ+) + Pφ−Aφ−(r̂ · n̂φ−)
}
.

(B.4)

The scalar product between the basis vectors and the surface normals ac-
count for the spherical geometry. For example, there is a contribution to the
pressure force due to the influence of pressure on the Aθ+ and Aθ− faces. The
normal vectors nθ+ and nθ− each have a small radial component at the center
of the cell, which depends on the cell width ∆θ, so we quantify r̂ · n̂θ+ to first
order in ∆θ. Similarly, the surface areas and cell volume are calculated to
first order in the cell dimensions. Expanding (B.4) gives

(∇P )r =
1

∆V

{
Pr+r

2
+ sin θ∆θ∆φ(1) + Pr−r

2
− sin θ∆θ∆φ(−1)

+ Pθ+r∆r∆φ sin θ+(− sin ∆θ
2

) + Pθ−r∆r∆φ sin θ−(− sin ∆θ
2

)

+ Pφ+r∆r∆θ(− sin θ sin ∆φ
2

) +Pφ−r∆r∆θ(− sin θ sin ∆φ
2

)
}
.

(B.5)

Using the definition of the infinitesimal volume element ∆V = r2 sin θ∆r∆θ∆φ
and taking the small-angle approximation sin ∆θ

2
≈ ∆θ

2
and sin ∆φ

2
≈ ∆φ

2
, the

resulting equation is

(∇P )r = Pr+
r2

+

r2∆r
− Pr−

r2
−

r2∆r
− Pθ+

sin θ+

2r sin θ

− Pθ−
sin θ−

2r sin θ
− Pφ+

1

2r
− Pφ−

1

2r
.

(B.6)

The final form of the radial component of the pressure gradient is obtained
by approximating the pressure at each face as the average of the pressure in
each adjoining cell e.g. Pr+ = 1

2
(P (k+1,l) + P (k,l)). Here, k, l are cell indices

in the radial and latitudinal coordinate directions (see fig. B.1). Using the
identity r2

+ − r2
− = 2r∆r and recognizing that P (k,l) = 1

2
(Pφ+ + Pφ−), we

obtain

(∇P )(k,l)
r =

r2
+

2r2∆r
P (k+1,l) − r2

−

2r2∆r
P (k−1,l) − sin θ+

4r sin θ
P (k,l+1)

− sin θ−
4r sin θ

P (k,l−1) − sin θ+ + sin θ−
4r sin θ

P (k,l).

(B.7)

167



The θ̂ component of the pressure gradient is derived in a similar manner,
so we simply state the result:

(∇P )
(k,l)
θ =

(
sinθ+

2r sin θ∆θ

)
P (k,l+1) −

(
sinθ−

2r sin θ∆θ

)
P (k,l−1)

+

(
(sinθ+ − sin θ−)

2r sin θ∆θ
− cosθ

rsinθ

)
P (k,l)

(B.8)

The φ̂ component of the pressure gradient, all faces but those in the
φ̂ direction are perpendicular to the φ̂ basis vector and therefore do not
influence (∇P )φ. Then, adopting the small angle approximation sin ∆φ

2
≈

∆φ
2

and following a similar procedure as used in r̂ and θ̂ components, the
expression for (∇P )φ simplifies into

(∇P )
(k,l)
φ =

(
im

rsinθ

)
P (k,l) (B.9)

where m represents the Fourier mode.

B.1.2 Vector-Valued Variables

A similar procedure is used for other terms in the governing equations. One
small difference arises with vector-valued variables because the basis vectors
change across the cell. To illustrate, we derive the numerical expression for
divergence. Integrating over the cell volume gives

∇ · ~v =
1

∆V

∫
∆V

(∇ · ~v) dV =
1

∆V

∫
S

~v · ~dS. (B.10)

The surface integral involves the dot product of the normal vector of each
face and the local vector variable, v̂, giving

∇ · ~v =
1

∆V

{
~v · n̂r+Ar+ + ~v · n̂r−Ar− + ~v · n̂θ+Aθ+

+~v · n̂θ−Aθ− + ~v · n̂φ+Aφ+ + ~v · n̂φ−Aφ−
}
.

(B.11)

As the coordinate vectors are locally orthogonal, only one component of the
vector variable contributes on each face. Hence, the divergence simplifies to

∇ · ~v =
1

∆V

{
vr+Ar+ + vr−Ar− + vθ+Aθ+ + vθ−Aθ− + vφ+Aφ+ + vφ−Aφ−

}
.

(B.12)
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For notational simplicity, we introduce notation for numerical derivative op-
erators

∇rv
(k,l)
i =

(
r2

+

2r2∆r

)
v

(k+1,l)
i −

(
r2
−

2r2∆r

)
v

(k−1,l)
i +

(
1

r

)
v

(k,l)
i (B.13)

∇θv
(k,l)
i =

(
sinθ+

2r sin θ∆θ

)
v

(k,l+1)
i +

( −sinθ−
2r sin θ∆θ

)
v

(k,l−1)
i +

(
sinθ+ − sin θ−

2r sin θ∆θ

)
v

(k,l)
i

(B.14)

∇φv
(k,l)
i =

(
im

rsinθ

)
v

(k,l)
i . (B.15)

where i ∈ {r, θ, φ} as the operators are valid for any component of the veloc-
ity and magnetic fields. Using this notation, the mass continuity equation
simplifies to

∇ · ~v = ∇rvr +∇θvθ +∇φvφ (B.16)

The scalar Laplace operator is derived by the same method and is simply

∇2v
(k,l)
i =

(
r2

+

r2∆r2

)
v

(k+1,l)
i +

(
r2
−

r2∆r2

)
v

(k−1,l)
i +

(
sinθ+

r2 sin θ∆θ2

)
v

(k,l+1)
i

+

(
sinθ−

r2 sin θ∆θ2

)
v

(k,l−1)
i −

(
r2

+ + r2
−

r2∆r2
+
sinθ+ + sinθ−
r2sinθ∆θ2

+
m2

r2sin2θ

)
v

(k,l)
i .

(B.17)

B.1.3 Composite Terms

All other terms in the governing equations can be expressed in terms of
the gradient operators (B.13 - B.15) and scalar Laplacian operator (B.17).
The derivations follow the same method as detailed above but include much
more algebra, so we simply state the results. The components of the vector
Laplacian are

(∇2~v)r = ∇2vr −
1

r
∇θvθ −

1

r
∇φvφ (B.18)

(∇2~v)θ = ∇2vθ +
1

r
∇θvr −

cot θ

r
∇φvφ (B.19)

(∇2~v)φ = ∇2vφ +
1

r
∇φvr +

cot θ

r
∇φvθ. (B.20)
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The components of divergence of magnetic stress are

(∇ · Tl)r = ∇r(B0rbr −B0θbθ −B0φbφ) +∇θ(B0θbr +B0rbθ) +∇φ(B0rbφ +B0φbr)
(B.21)

(∇ · Tl)θ = ∇r(B0rbθ −B0θbr) +∇θ(B0θbθ −B0rbr −B0φbφ) +∇φ(B0θbφ +B0φbθ)
(B.22)

(∇ · Tl)φ = ∇r(B0rbφ −B0φbr) +∇θ(B0θbφ +B0φbθ) +∇φ(B0φbφ −B0rbr −B0θbθ).
(B.23)

And the magnetic advection terms in the Induction equation are

(∇× ~v × ~B)r = ∇θ(B0θvr −B0rvθ) +∇φ(B0φvr −B0rvφ) (B.24)

(∇× ~v × ~B)θ = ∇r(B0rvθ −B0θvr) +∇φ(B0φvθ −B0θvφ) (B.25)

(∇× ~v × ~B)φ = ∇r(B0rvφ −B0φvr) +∇θ(B0θvφ −B0φvθ).. (B.26)

B.2 Boundary Conditions

Boundary conditions are implemented directly into the cells at the top bound-
aries. The top core-mantle boundary is taken at the edge of the uppermost
cell in the domain, with boundary conditions modifying the form of the oper-
ators used for the governing equations in the boundary cell, while the bottom
boundary is more complex due to magnetic coupling.

B.2.1 Core-Mantle Boundary

At the core-mantle boundary, we apply free-slip conditions at the CMB, so
that vr = 0. This modifies the derivation of the operators in a simple way,
so that in (B.12) the term involving vr+ is zero. Then, following the same
derivation as used previously, we obtain

∇rv
(Nk−1,l)
r = −

(
r2
−

2r2∆r

)
v(Nk−2,l)
r −

(
r2
−

2r2∆r

)
v(Nk−1,l)
r (B.27)

to replace (B.13) for cells at the top of the domain (k = Nk − 1).
For horizontal velocities governed by the free-slip conditions at the CMB,

∂vθ,φ/∂r = 0. This causes the stress to disappear on the top face and modifies
the derivation of the radial operator (B.13) in a similar manner, resulting in

∇rv
(Nk−1,l)
θ,φ = −

(
r2
−

2r2∆r

)
v

(Nk−2,l)
θ,φ +

(
2r2

+ − r2
−

2r2∆r

)
v

(Nk−1,l)
θ,φ (B.28)
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for the top cells of the domain.
Pressure, as a scalar variable, requires a bit more consideration. At the

top of the domain ∂P/∂r = 0. Using a first-order interpolation, this implies
that pNk,l = pNk−1,l . Applying this constraint to (B.7), we find

(∇P )(Nk−1,l)
r = −

(
r2
−

2r2∆r

)
P (Nk−2,l) −

(
sin θ+

4r sin θ

)
P (Nk−1,l+1) . (B.29)

Pseudo-vacuum boundary conditions are used for the horizontal magnetic
field at the CMB

bφ,θ|CMB = 0 . (B.30)

This is mathematically identical to the conditions for vr, and results in the
same expression for the operator at the boundary, given in (B.27).

B.2.2 Layer Bottom Boundary

At the base of the layer, wave motion within the layer couples to fluid motion
in the bulk of the core through Lorentz forces and this coupling must be taken
into account in the boundary conditions for the magnetic field. In the main
text, we work through a derivation of the magnetic boundary conditions and
end up with the relation shown in equation (31, main text) and reproduced
here

b+
θ,φ =

δB0rPm
2(1 + i)E

v+
θ,φ (B.31)

where

δ =

√
2E

ωPm
(B.32)

is the non-dimensional magnetic skin depth. This relation relates (dimen-
sionless) magnetic perturbations directly to (dimensionless) velocity pertur-
bations on the bottom layer boundary.

In order to implement this in our numerical model, we choose to place
the bottom boundary of the layer in the center of the lowermost cell in the
domain. With this choice, the variables in the bottom cell are taken to
be identically at the boundary, and are therefore governed purely by their
respective boundary conditions. For horizontal magnetic perturbations bθ,φ,
this means we now use (B.31) instead of the Lorentz equation in the bottom
cell

b
(0,l)
θ,φ −

δB0rPm
2(1 + i)E

v
(0,l)
θ,φ = 0 . (B.33)
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For velocity, we use free-slip conditions and we impose zero radial gradi-
ents in pressure. For a detailed discussion justifying these choices, see section
2.1.6 in the main text. Again, these variables are completely governed by
their respective boundary conditions in the bottom cell, so that radial veloc-
ity and displacement are identically zero

v(0,l)
r = u(0,l)

r = 0 . (B.34)

Then, the boundary condition for horizontal velocities vθ and vφ, are imple-
mented using a first-order numerical approximation

∂vθ,φ
∂r

∣∣∣
bottom

= 0 =⇒ v
(0,l)
θ,φ − v

(1,l)
θ,φ = 0 . (B.35)

For pressure, ∂rP |bottom = 0 and we again use a first-order numerical approx-
imation

∂rP |bottom = 0 =⇒ P (1,l) − P (0,l) = 0 . (B.36)
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Appendix C

eMAC Wave Structures

This chapter details the spatial wave structure of all magnetic field and fluid
variables for a selection of representative eMAC wave modes.

C.1 Fundamental Radial Mode
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Figure C.1: eMAC wave structure, k=1, l=0, m=6, period=19.8 yrs, Q=0.46.
SOC properties of H=40 km , N=10, B=0.6 mT.

174



Figure C.2: eMAC wave structure, k=1, l=1, m=6, period=14.61 yrs,
Q=0.59. SOC properties of H=40 km , N=10, B=0.6 mT.
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Figure C.3: eMAC wave structure, k=1, l=2, m=6, period=9.84 yrs, Q=0.68.
SOC properties of H=40 km , N=10, B=0.6 mT.
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Figure C.4: eMAC wave structure, k=1, l=3, m=6, period=7.70 yrs, Q=0.79.
SOC properties of H=40 km , N=10, B=0.6 mT.

177



C.2 First Radial Overtone

Figure C.5: eMAC wave structure, k=2, l=1, m=6, period=4.13 yrs, Q=0.78.
SOC properties of H=40 km , N=10, B=0.6 mT.
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Figure C.6: eMAC wave structure, k=2, l=2, m=6, period=3.32 yrs, Q=0.98.
SOC properties of H=40 km , N=10, B=0.6 mT.
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Appendix D

SOC Wave Variations

This chapter details the wave periods, quality factors, and latitudinal extent
of SOC waves found across many model runs.

D.1 Westward Modes

D.1.1 Mid-Latitudes

D.1.1.1 Variation with Magnetic Field Strength
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Figure D.1: Wave Dependence on magnetic field strength (B), westward
modes, mid-latitudes, H=20 km, N=10 Ω
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Figure D.2: Wave Dependence on magnetic field strength (B), westward
modes, mid-latitudes, H=140 km, N=1 Ω
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D.1.1.2 Variation with SOC Thickness

Figure D.3: Wave Dependence on SOC thickness (H), westward modes, mid-
latitudes, N=1 Ω
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Figure D.4: Wave Dependence on SOC thickness (H), westward modes, mid-
latitudes, N=10 Ω
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Figure D.5: Wave Dependence on SOC thickness (H), westward modes, mid-
latitudes, N=0.5 Ω
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D.1.1.3 Variation with SOC Buoyancy

Figure D.6: Wave Dependence on SOC buoyancy (N), westward modes, mid-
latitudes, H=20 km
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Figure D.7: Wave Dependence on SOC buoyancy (N), westward modes, mid-
latitudes, H=80 km
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Figure D.8: Wave Dependence on SOC buoyancy (N), westward modes, mid-
latitudes, H=140 km
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D.1.2 Equatorial Region

D.1.2.1 Variation with Magnetic Field Strength

Figure D.9: Wave Dependence on magnetic field strength (B), westward
modes, equatorial region, H=20 km, N=10 Ω
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Figure D.10: Wave Dependence on magnetic field strength (B), westward
modes, equatorial region, H=140 km, N=1 Ω

D.1.2.2 Variation with SOC Thickness
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Figure D.11: Wave Dependence on SOC thickness (H), westward modes,
equatorial region, N=0.5 Ω
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Figure D.12: Wave Dependence on SOC thickness (H), westward modes,
equatorial region, N=1 Ω
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Figure D.13: Wave Dependence on SOC thickness (H), westward modes,
equatorial region, N=10 Ω
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D.1.2.3 Variation with SOC Buoyancy

Figure D.14: Wave Dependence on SOC buoyancy (N), westward modes,
equatorial region, H=20 km
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Figure D.15: Wave Dependence on SOC buoyancy (N), westward modes,
equatorial region, H=80 km
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Figure D.16: Wave Dependence on SOC buoyancy (N), westward modes,
equatorial region, H=140 km
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Figure D.17: Wave Dependence on SOC buoyancy (N), westward modes,
equatorial region, H=200 km
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D.2 Eastward Modes

D.2.1 Equatorial Region

D.2.1.1 Variation with Magnetic Field Strength
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Figure D.18: Wave Dependence on magnetic field strength (B), eastward
traveling modes, equatorial region, H=20 km, N=10 Ω
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Figure D.19: Wave Dependence on magnetic field strength (B), eastward
traveling modes, equatorial region, H=140 km, N=1 Ω
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D.2.1.2 Variation with SOC Thickness

Figure D.20: Wave Dependence on SOC thickness (H), eastward traveling
modes, equatorial region, N=1 Ω
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Figure D.21: Wave Dependence on SOC thickness (H), eastward traveling
modes, equatorial region, N=10 Ω

D.2.1.3 Variation with SOC Buoyancy

202



Figure D.22: Wave Dependence on SOC buoyancy (N), eastward traveling
modes, equatorial region, H=20 km
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Figure D.23: Wave Dependence on SOC buoyancy (N), eastward traveling
modes, equatorial region, H=140 km
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