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ABSTRACT OF THE DISSERTATION

Radiative Neutrino Mass, Dark Matter, Flavor Symmetry, and Collider Signatures

by

Alexander Natale

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, August 2015

Dr. Ernest Ma, Chairperson

The current understanding of particle physics is condensed into a single model known as the

Standard Model, which has had remarkable success at describing the observed interactions of

fundamental particles. Since the discovery of the 125 GeV Higgs boson at the Large Hadron

Collider in 2012, the Standard Model appears to be complete. However, the astrophysical

observations of dark matter and the existence of neutrino mass are strongly compelling

reasons to think there is physics beyond the Standard Model. In 2006 a proposal was

made that these two phenomena are actually connected, and that the existence of neutrino

mass is tied to neutrino interactions with dark matter and other components of the dark

sector. This original proposal — known as the scotogenic model — has been extended

to include self-interacting dark matter, the generation of lepton and quark mass, various

flavor symmetries, and has also been studied with alternative particle content. In this thesis,

several scotogenic models of neutrino oscillation with various symmetries are studied, and

the predictions for future neutrino oscillation experiments along with potentially interesting

signatures at the 13 TeV LHC run are discussed.
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Chapter 1

Introduction

This Thesis is divided into three parts: (I) a description of relevant background,

descriptions of crucial theory, and a discussion of the scotogenic model of neutrino mass

and basic extensions; (II) a detailed description and discussion of specific models, results,

and methods; (III) conclusions and discussion, the bibliography, and the appendices. A

working knowledge of quantum field theory, the Standard Model (SM), and particle physics

along with basic familiarity with supersymmetry (SUSY) and relevant experiments such as

the Large Hadron Collider has been assumed.

Part I is comprised of two chapters. Chapter 2 contains a brief summary of the

Standard Model (SM), a summary of dark matter (DM) physics, and a description of neu-

trino mass and oscillation. The discussion on neutrino mass and oscillation is further divided

into four parts. Section 2.3.1 contains a discussion of neutrino mass, oscillation, the exper-

imental results and unresolved questions. Section 2.3.2 is a discussion of the motivations

and a brief discussion of the application of flavor symmetries to neutrino oscillation. Section

2.3.3 is an introduction of the scotogenic model of neutrino mass which is the theoretical

framework that acts as the basis of the bulk of the work contained in this thesis. And fi-

nally, Section 2.3.4 is the last section is a discussion of extensions of the minimal scotogenic

model.

Part II is divided into two chapters. Chapter 1 is focused on the analysis of specific
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models of particle physics with an emphasis on explaining various patterns of neutrino

oscillation. Chapter 2 is focused on the analysis of specific models with an emphasis on

making concrete predictions for the Large Hadron Collider (LHC), located at the border of

Switzerland and France.

And finally, part III contains the summary and discussion ,the bibliography, and

the appendices that contain a brief review of relevant group theory and non-Abelian discrete

groups, the details of the minimal scotogenic loop calculation, and the details for the inverse

scotogenic loop calculation respectively.
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Chapter 2

Background

2.1 Standard Model

The Standard Model (SM) of particle physics is remarkably successful at describ-

ing fundamental physical interactions of the known elementary particles. As is well known,

the SM describes physical interactions using a Langrangian density that has a local gauge

invariance under SU(3)C × SU(2)L × U(1)Y , which describes the interactions of fermions

(the quarks and leptons) and a single scalar the Higgs boson via the force carrying gauge

bosons (the photon, gluons, and the W and Z bosons). The Higgs mechanism leads to the

spontaneous symmetry breaking of SU(2)L, and explains the origin of quark and charged

lepton masses, as well as the masses for the W and Z bosons. A fundamental scalar con-

sistent with the properties of the SM Higgs boson has recently been observed at the Large

Hadron Collider (LHC) [7,8], and so in many ways the SM is a complete, fully renormalizable

quantum field theory of fundamental particle physics [9, 10].

Despite its successes, there are challenges and unanswered questions that remain

in the minimal SM. The search for unambiguous evidence of physics beyond the SM is

well underway at the LHC, however nothing beyond a SM-like Higgs boson with a mass

of 125 GeV [7, 8] has been found. Despite the lack of evidence for new physics in particle

colliders, there are large bodies of experimental evidence that imply the existence of physics
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that isn’t explained by the minimal SM. In particular neutrino mass and dark matter

(DM) provide two major examples where observations cannot be accommodated by the

minimal Standard Model. The experimental evidence for neutrino oscillation, and thus the

existence of nonzero neutrino mass, is overwhelming [11–20]. Additionally, many sources

of astrophysical evidence convincingly demonstrate the existence of dark matter [21–31].

It is crucial for any model of particle physics beyond the SM to provide explanations for

both of these phenomenon. A large motivation for the work presented in this thesis is

the suggestion that the phenomenon of dark matter and neutrino mass are, in fact, deeply

related [32]. Dubbed the scotogenic model, from the Greek word ’scotos’ which means

darkness, this 2006 proposal explains the smallness of neutrino mass via a loop-generated

mass where DM plays a central role in completing the loop. This original motivation has

recently been extended to include a scotogenic generation of the lighter lepton and quark

masses [33], extended with discrete flavor symmetries (for an example see Ref. [1]), and

has also been studied with an extended gauge group as discussed in Ref. [34]. Such models

provide very interesting phenomenology in the so-called dark sector as well as providing

potentially interesting collider results.

2.2 Dark Matter

The evidence for Dark Matter comes from a variety of sources which includes

rotation curves of spiral galaxies [23–25], strong and weak gravitational lensing [26–29],

data from the cosmic microwave background (CMB) [21, 22], data from dwarf spheroidal

galaxies [30, 31] and from many other sources of evidence. From these observations, a

few key properties of DM — assuming that the phenomenon is explained by a particle —

requires it to have mass (so that it can interact gravitationally), it cannot interact with

the known particles of the SM too strongly (otherwise it could cool and would no long fit

density profiles seen in observations), and it must be stable or decay with a lifetime greater

than the current age of the universe. There are also additional constraints coming from the
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aforementioned astrophysical observations. For example, ensuring enough DM is left after

the cooling of the early universe in order to explain the observed DM densities, known as

the relic density or relic abundance, is a very basic requirement for any realistic model of

DM. Initially, it seemed that neutrinos might be able to solve the DM problem, but it is

now known that the neutrinos have too large of a free-streaming length in the early universe

and thus they prevent the formation of large scale structure [35,36].

One common model of DM is to have a new particle (often a scalar or a fermion

though possible a vector boson) which is massive, interacts through the weak interaction

or with a strength of interaction at the weak scale, and is stabilized through the addition

of a new discrete symmetry (such as a Z2 or R parity) so that the lightest of these new

particles cannot decay to the SM particles [37]. These so called Weakly Interacting Massive

Particles (WIMPs), can be accommodated in a wide variety of models, and are the typical

example of cold DM (CDM). These WIMPs are appealing because of the so-called ”WIMP

miracle” where a choice in mass and choice of coupling constant for a particle near the

weak scale reproduces the correct relic abundance, however it is also possible to achieve a

”WIMPless miracle” [38]. Additionally, WIMPs are expected to be detectable via nuclei

scattering experiments, making them an appealing candidate for DM [39]. However, there

have been no definitive detection of WIMP DM particles, and experiments such as LUX

have significantly reduced the parameter space for WIMP models [40].

Despite the appeal of WIMPs, there are several challenges that make alternative

models of DM compelling. In particular, dwarf galaxies are observed to have a different

density of DM compared to predictions from CDM models [41–44], and also fewer dwarf

galaxies than what is expected from CDM models have been observed — although more

dwarf galaxies have been discovered recently around the Milky Way [45]. If DM interacts

relatively strongly with itself, it is possible to explain these dwarf galaxy observations and

also may be a source of explanation for the Fermi-LAT gamma ray excess [46]. These

observations make it clear that, beyond solving the DM problem, it is also important for

particle physicists to investigate various paradigms of DM beyond WIMPs.
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2.3 Neutrino Mass and Oscillation

2.3.1 Introduction

It has been firmly established that neutrinos undergo flavor oscillation, necessarily

implying that neutrinos have nonzero masses [11, 12, 14–19, 47, 48]. Assuming that the

neutrinos are a Dirac fermion, then this mass term is possible if a right-handed neutrino

is added to the minimal SM particle content. Currently, there is a lack of evidence for the

existence of a right-handed neutrino or a left-handed anti-neutrino. Particularly, from the

invisible Z boson decay width measured at LEP [20] the number of neutrinos that couple

to the Z boson are given by

Nν = 2.9841± 0.0083. (2.1)

If any right-handed neutrinos exist they essentially have to be sterile, that is non-interacting

with the rest of the SM. Instead of being a Dirac fermion, the neutrino could also be what

is called a Majorana fermion. Introduced in 1937 [49], Majorana particles are their own

anti-particles, and could allow the neutrino to acquire a mass using different mechanisms

thatn if it were a Dirac particle. As opposed to the typical Dirac fermion terms of ψ̄LψR the

Marjorana mass terms are of the form ψ̄Lψ
c
L; and so a Majorana mass term could produce

neutrino mass without requiring right-handed neutrinos. In 1979, Weinberg proved that

there is a unique, dimension-five operator that generates a Majorana neutrino mass [50]:

L5 =
−fij
2Λ

(νiφ
0 − liφ+)(νjφ

0 − ljφ+) + h.c. (2.2)

After spontaneous symmetry break the Higgs receives a a nonzero expectation value 〈φ〉 = v,

the neutrinos gain a Majorana mass given by
fijv

2

Λ . Note that as the neutrinos carry a lepton

number of 1, Majorana masses for the neutrino violate lepton number by 2. If the scale of the

new physics, Λ, is large, then the neutrino mass is naturally small in a seesaw mechanism.

As any terms in the Lagrangian with a dimension larger than five are non-renormalizable,

the operator can be treated as an effective operator to some high-energy theory. For this
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particular operator there are several ultraviolet (UV) completions that can be accomplished

at tree-level. These UV completions at tree-level produce three different kinds of seesaw

mechanisms, depending on the additional particles added to the SM:

1. Majorana fermion singlets Ni [51–53]

2. heavy scalar triplet (ξ++, ξ+, ξ0) [54,55]

3. heavy Majorana fermion triplets (Σ+,Σ0,Σ−) [56]

In addition to tree-level realizations, there are also one-loop and two-loop realizations of the

operator. A systematic study in Ref. [57] classifies one-loop neutrino mass mechanisms into

three distinct mechanisms of generating neutrino mass via the five-dimensional operator in

Eq. 2.2. Of particular note among the one-loop models are the Zee model and the scotogenic

model. In the Zee model the Higgs sector is expanded to include two Higgs doublets, as

well as a charged scalar with L = −2 lepton number assignment [58]. In the scotogenic

model, there is also an additional doublet, but instead of a lepton number carrying scalar,

there is a neutral fermion that may or may not carry lepton number [32]. Additionally, it is

possible in the scotogenic model of Ref. [32] that the masses of the new particles allow what

is known as the inverse seesaw [59,60], where the neutrino mass is proportional the masses

of new particles. While there are only a handful of tree, and one-loop level, operators to

generate neutrino mass there are many different specific models that accommodate this new

particle content.

Unlike with the leptons — where the hierarchy and absolute mass scales are well es-

tablished — both the scale, and the ordering of the neutrino mass states are constrained, but

unknown. Astrophysical measurements from WMAP and Planck place strong constraints on

the sum of the neutrino masses —
∑
mν < 0.17 eV (Planck, TT,TE,EE+lowP+BAO [21]).

However, the hierarchy of the neutrino masses is still unknown. If the neutrinos oscil-

late, this indicates that the flavor eigenstates that determine scattering and production of

8



neutrinos can be written as a superposition of the mass eigenstates:

| νl〉 =
∑
j

U∗lj | νj〉, (2.3)

with l = e, µ, τ and U is the neutrino mixing matrix proposed by Pontecorvo, Maki, Nak-

agawa, and Sakata [61, 62] is referred to as the PMNS matrix. The PMNS matrix can be

written in the Particle Data Group (PDG) convention as [10]:


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

× diag(1, ei
α21
2 , ei

α31
2 ), (2.4)

where cij and sij represent cosine and sine of the mixing angle between the i and jth mass

eigenstate respectively. For more information on neutrino oscillation see Ref. [10]. It is

important to note that it is possible to have three complex phases in the neutrino sector

where δ is the Dirac CP violating phase, and α21 and α31 are the Majorana CP violating

phases. These phases would exist in the case where neutrinos are Majorana particles. If the

neutrinos are Majorana in nature, then β decay can occur without the emission of neutrinos,

and this amplitude is proportional to the effective Majorana mass parameter mee, which is

given by [10]

|mee| = |m1U
2
e1 +m2U

2
e2 +m3U

2
e3|. (2.5)

While mass is necessary to produce neutrino oscillations the structure of this oscillations is

not necessarily determined by any seesaw mechanisms. In fact, the observed oscillation in

the lepton sector indicates that the charged leptons essentially do not oscillate, while the

neutrinos have significant oscillations. Understanding the structure of this neutrino oscilla-

tion has opened up many interesting avenues of theoretical and experimental investigation.
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2.3.2 Flavor Symmetry

Before the observation of neutrino oscillation angle θ13 [47,48], the mixing matrix

for neutrinos was consistent with the so-called tribimaximal mixing matrix proposed by

Harrison, Perkins, and Scott [63]:


√

2/3
√

1/3 0√
1/6

√
1/3

√
1/2√

1/6
√

1/3
√

1/2

 (2.6)

Compared to the CKM matrix, which is well described by the Wolfenstein parameterization

where the off-diagonals are small values, the mixing angles in the neutrino sector have two

large angles(12,θ23), and one comparatively smaller angle (13) [10]. Additionally, the mass

splitting between the charged leptons is very large compared to the experimental values

for the neutrino masses. This near degeneracy of neutrino masses, along with the pattern

of two large mixing angles and one smaller mixing angle, indicate either large amounts of

fine-tuning or the existence of some underlying flavor symmetry. However, any such fla-

vor symmetry must be broken by the charged leptons in order to explain the large mass

splitting. A promising area of study has been the use of non-Abelian discrete groups to ex-

plain the lepton sector mixing. These non-Abelian discrete groups have higher dimensional

representations, as well as several distinct one dimensional representations (see Appendix

C for a brief review of group theory and relevant non-Abelian discrete group properties).

By organizing the left-handed leptons into non-trivial representations of the discrete group,

and the right-handed charged leptons into the various one-dimensional representations, it is

possible to form invariants under the non-Abelian flavor symmetry that allow for the mis-

match between charged and neutral leptons as well as fixing the form of the neutrino mixing

matrix to be either exactly tribimaximal or approximately tribimaximal [3, 6, 64–68]. This

has been studied in many contexts, and with many different discrete groups, but perhaps

the simplest example utilizes the tetrahedral group also known as A4. The A4 group has
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4 irreducible representations: 1, 1′, 1′′, and 3. These representations obey the following

multiplication rules

3× 3 = 1 + 1 + 1 + 3 + 3, (2.7)

1× 1′ = 1′′, (2.8)

1′ × 1′′ = 1, (2.9)

which can be explicitly written out as seen in Appendix C. By assigning the charged, right-

handed, leptons 1, 1′, and 1′′ under A4 and assigning (νi, li) ∼ 3 with the addition of two

Higgs doublets so that Φi ∼ 3 it is then possible to generate a charged lepton mass matrix

of the form [64]

Ml =


h1v1 h2v2 h3v1

h1v2 h2ωv2 h3ω
2v2

h1v3 h2ω
2v3 h3ωv3,

 (2.10)

where his are the Yukawa coupling constants, and vis are the nonzero vacuum expectation

value (VEV) of the Higgs doublets Φis after spontaneous symmetry breaking. If v1 = v2 =

v3 = v, then this mass matrix is diagonalized by [64]

U †LMlUR =


√

3h1v 0 0

0
√

3h2v 0

0 0
√

3h3v

 , (2.11)

where

UL =
1√
3


1 1 1

1 ω ω2

1 ω2 ω

 , UR =


1 0 0

0 1 0

0 0 1

 . (2.12)

The neutrino mass is then generated by another mechanism — namely one of the three

tree-level seesaws or any number of radiative mechanisms — where the additional particles

are assigned various representations under A4. If the neutrino mass matrixMν isn’t exactly
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diagonalized by the tribimaximal matrix, and if these deviations away from tribimaximal

are relatively small, then the mass matrix in the tribimaximal basis can be diagonalized

using [69]

Uε ≈


1 ε12 ε13

−ε∗12 1 ε23

−ε∗13 −ε∗23 1,

 (2.13)

where the full neutrino mass matrix is given by

U ′ = UTBU
T
ε , (2.14)

where U ′ is in the tribimaximal basis and must have its phases rotated to be in the PDG

convention. Given the relationship in Eq. 2.14, the physical neutrino mixing angles can be

extracted [69] (in the PDG convention) via

tan2 θ12 = |U ′e1/U ′e2|2, tan2 θ23 = |U ′µ3/U
′
τ3|2, | sin θ13| = |U ′e3|, (2.15)

where the Dirac CP violating phase δ can be extracted using the Jarlskog invariant [10], or

with careful rotation of the Majorana phases of U ′. This generic framework is only appli-

cable when the off-diagonal elements of Mν in the tribimaximal basis are small, however

depending on the flavor structure of the mechanism generating neutrino mass these elements

may be sizeable compared to one, or alternatively the matrix can be block-diagonal and a

simple 2x2 rotation matrix can be used. It important to note that, while the tribimaximal

matrix is not exactly correct, the mixing angle between the m1 and m3 mass states means

the electron flavored neutrino is predominantly a combination of the m1 and m2 masses.

The hierarchy of these masses is still not known, but it is still possible the neutrinos obey the

inverted hierarchy where m2 > m1 > m3 which make the electron neutrino the heaviest in

direct contradistinction to the charged lepton sector where the electron is the lightest of the

leptons. Determining the hierarchy of the neutrino mass, determining whether or not θ23
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is maximal, determining the nature of neutrino mass (Majorana, Dirac, or pseudo-Dirac),

measuring the value of the CP violation in the neutrino sector, and determining the abso-

lute neutrino mass scale are all open experimental and theoretical problems of significant

interest.

2.3.3 The Scotogenic Model of Neutrino Mass

The scotogenic model, is a one-loop model of neutrino mass first proposed in [32]

that utilizes the interactions between the dark sector and neutrinos to create small neutrino

masses. The model is a minimal extension of the Standard Model and only adds three

neutral fermions (N1,2,3), and a single SU(2) doublet (η), both of which are odd under an

additional Z2 symmetry (while the SM particles are even). The additional Z2 symmetry

prevents η from receiving a nonzero vacuum expectation value and allows Ni or η to act as

a DM candidate particle. As a result, the tree-level neutrino masses are not possible, but a

loop-level Majorana mass can still occur. The relevant additional terms to the Lagrangian

for neutrino mass are given by [32]:

LY = fij(φ
−νi + φ̄0li)l

c
j + hij(νiη

0 − ljη+)Nj + h.c. (2.16)

LV = λ3(Φ†Φ)(η†η) + λ4(Φ†η)(η†Φ) +
1

2
λ5((Φ†η)2 + (η†Φ)2) (2.17)

The above terms allow the radiative generation of neutrino mass, as seen in Fig. 2.1. After
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νi νjNk

η0 η0

〈φ0〉 〈φ0〉

×

Figure 2.1: The minimal scotogenic mechanism of radiative neutrino mass.

φ0 acquires a nonzero VEV (v) and using η0 = ηR + iηI , then the λ5 term can be written

as (dropping terms involving the electrically charged η components):

1

2
λ5v

2(η2
R − η2

I ) (2.18)

This term leads to an overall mass splitting between the real and imaginary components of

the dark scalar doublet. Using the appropriate Feynman rules, then the scotogenic mass

term is written as:

± hijhjkλ5

∫
d4k

(2π)4

(/k +mNj )

(k2 −m±)(k2 −mNj )
(2.19)

Where m± is the mass eigenstate of ηR and ηI respectively. Note the relative minus sign

coming from the mass splitting between the real and imaginary components. As the tree-

level mass is prevented, the loop generating the mass is guaranteed to be finite. The details

of this integral can be found in Appendix A, but the resulting mass matrix is given by:

Mij =
∑
k

hikhjk
16π2

[
m2
R

m2
R −M2

k

log
m2
R

M2
k

− m2
I

m2
I −M2

k

log
m2
I

M2
k

]
(2.20)

Taking different mass limits for mR, mI , and Mk this formula can produce both a seesaw

and inverse seesaw like relation between the mass of Mk and that of the neutrino masses.

If the η masses are greater than the neutral fermion masses then the following decays are
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generically predicted [32]:

η± → l±N1,2,3 (2.21)

N2,3 → l±l∓N1,2 (2.22)

This can lead to opposite-flavor opposite-sign dileptons plus missing energy, or even four

lepton final states. And if the Mk are all greater than the η masses then the generic signature

becomes:

N1,2,3 → l±η∓ (2.23)

where the η can decay to the neutral scalar with a virtual W bosons. This can result in a

variety of final states in a particle detector.

2.3.4 Extensions of Simplest Scotogenic Model

The minimal scotogenic model has been extended in many ways, and the con-

cept of the scotogenic mechanism has been implemented in distinct one-loop mechanisms

as well. With the additional of a discrete flavor symmetry, such as A4, the model not only

predicts the smallness of neutrino masses but also the nearly tribimaximal nature of neu-

trino oscillation [1]. The scotogenic model can also be extended for cases where the DM

symmetry is a U(1) gauge symmetry [4], or has its origin in lepton number [70]. The sco-

togenic mechanism has also been been studied with SU(5) gauge interactions [5] and SU(5)

unification [71]. Alternative particle content in a scotogenic mechanism can also yield an

inverse seesaw mechanism naturally [72].

Since the discovery of the 125 GeV Higgs Boson, and the lack of discovery of any

other new physics at the 7 TeV and 8 TeV LHC runs, it has now become crucial to have

models of new physics that can easily accommodate, or require, a Higgs boson that is very

similar to the SM Higgs boson. Because the scotogenic model allows neutrino masses to

gain a mass without directly coupling to the Higgs, it is an appealing framework to develop
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rich phenomenology of new physics while utilizing a single SM-like Higgs Boson. In this

vein, the model has also been extended to explain the lighter generations of lepton and

quark masses. In order to extend the scotogenic mechanism to quark and lepton masses,

it is necessary to have N added as a Dirac singlet fermion, with several additional charged

scalars [73]:

1. A charged singlet χ+

2. A color-triplet, SU(2) doublet (ξ2/3, ξ−1/3)

3. A color-triplet, up-like, singlet ζ2/3

4. A color-triplet, down-like, singlet ζ−1/3.

All of the additional particles are part of the ’dark’ sector, and can can carry ’dark’ charge in

a model with a U(1)D gauge symmetry. With suitible assignment under a flavor symmetry

(for an example see Ref. [73]), then the lepton and quark masses are generated via the

diagrams in Fig. 2.2 seen below. One intriguing aspect of the SM is that, because of the

structure of weak interactions, there is a chiral anomaly in the quark and lepton sectors.

However, this anomaly is neatly canceled as the quark sector anomaly cancels the lepton

sector anomaly. This is suggestive that the quarks and leptons may unify at some high

energy into a single irreducible representation of a unified gauge group. Particularly, it

is well known that the SM quarks and leptons can be organized into the following SU(5)

multiplets [10,74]:

5∗ = dc(3∗, 1, 1/3) + (ν, e)(1, 2,−1/2) (2.24)

10 = (u, d)(3, 2, 1/6) + uc(3∗, 1,−2/3) + ec(1, 1, 1). (2.25)

By embedding the SM gauge group into a the Georgi-Glasho SU(5) representations [74],

then at some very high energy there is a single unified gauge coupling. A theory that ac-

complishes this unification of gauge couplings is known as a Grand Unified Theory (GUT)

(see Ref. [10] for a brief review on GUTs). In order to produce the proper spontaneous
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×
lL lRNR NL

η+ χ+

φ0

×
uL uRNR NL

ξ2/3 ζ2/3

φ0

×
dL dRNR NL

ξ−1/3 ζ−1/3

φ0

Figure 2.2: Unified scotogenic mechanism for quarks and leptons.

symmetry breaking at the weak scale, Higgs doublets are needed in either the 5 or irre-

ducible representations of SU(5), with 3 additional states that are color triplet scalars [74].

These new particles are able to violate baryon and lepton number, and lead to very fast

decay of stable matter (like protons) which pushes the mass of these new states to the 1011

GeV range [10]. Additionally, the simplest SU(5) GUT is ruled out from measurements

of sin θW and αs, whereas supersymmetric SU(5) GUTs are potentially still viable [10].

It is also possible for an SU(5) theory to be embedded in a larger gauge group, such as

SO(10), or the exception group E(6), and such more complicated non-SUSY GUTs are able

to avoid problems with proton decay [75, 76]. With non-minimal GUTs that add addi-

tional scalars as 15 or 45 under SU(5) it is possible to avoid the constraints on non-SUSY

GUTs [77]. These non-minimal theories generically predict light leptoquarks which may be

found at the LHC [77,78], however in order to reproduce the SM like Higgs the fine tuning
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between light and massive particles organized into SU(5) multiplets is hard to avoid [78].

It is important to note that the unification of gauge couplings is not changed by adding

or subtracting complete SU(5) multiplets. It is therefore possible to extend the scoto-

genic model of quark and lepton masses into an SU(5) theory [73], where η,−1/3∼ 5 and

(ξ2/3, ξ−1/3), (ζ2/3)∗, χ+ ∼ 10, but gauge unification is achieved only if additional particles

are added either in a non-minimal way [77,78], or in a supersymmetric context [71]. In this

context, the fields are odd under an additional Z2 that gives the DM candidates stability,

in an analogy to R-parity in SUSY [73].
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Part II

Flavor Symmetry, Neutrino

Oscillation, and Collider Signatures
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Chapter 3

Neutrino Oscillation Models

3.1 Heptagonic Flavor Symmetry for Quarks and Leptons

In the simplest implementations of neutrino oscillation — those arising in non-

scotogenic models — the quark sector mixing isn’t predicted by the flavor symmetry in

the lepton sector. In fact, the mixing angles in the quark sector are predicted to be zero

in strong conflict with experiment. It has been shown that the dihedral group of seven

elements (D7) can be utilized to produce both neutrino and quark oscillation data [2, 79].

This model requires several additional Z2 symmetries, in addition to the extended particle

content summarized below in Table 3.1. The up-like quark masses have Yukawa terms

uucφ0
7 + cccφ0

8, while the down-like quark masses have the Yukawa terms (dsc + sdc)φ̄0
2,

bbcφ̄0
2, b(dcφ̄0

4 +scφ̄0
3), and(dφ̄0

4 +sφ̄0
3)bc. These Yukawa couplings produce a down-like quark

mass matrix of the form

Md =


0 a ξb

a 0 b

ξc c d

 , (3.1)

where ξ = 〈φ̄0
4〉/〈φ̄0

3〉 [2,79]. Following Ref. [79] the phases ofMd can be redefined such that

a,b,c, and d are real but ξ is left as complex. The physical quark mixing matrix is found by
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Particle D7 Zd2 Zu2 Particle D7 Zd2 Zu2
(u,d) 21 + + Φ2 1 - +
(c,s) 21 + + Φ3,4 21 - +
(t,b) 1 + + Φ5,6 22 + +

(dc,sc) 21 - + Φ7,8 23 + -
bc 1 - + (νe,e) 1 + +

(uc, cc) 22 + - (νµ,µ), (ντ ,τ) 21 + +
(µc, τ c) 23 + + ec 1 + +
tc 1 + + ζ1 1 + +
Φ1 1 + + ζ2,3 21 + +

Table 3.1: D7 Model Particle Content

V †LMdM†dVL =


m2
d 0 0

0 m2
s 0

0 0 m2
b

 . (3.2)

Assuming that a2 � b2 and |ξ|2 � 1 along with the form ofMd in Eq. 3.1 gives the following

approximate expressions for the bottom quark mass and the Vcb, and Vub components of

the CKM matrix:

mb ≈
√
c2 + d2, (3.3)

Vcb ≈
bd+ ξ∗ac

(1 + |ξ|2)c2 + d2
, (3.4)

Vub ≈
ac+ ξbd

c2 + d2
. (3.5)

Using these expressions, Md can be transformed to be block-diagonal using

V3 =


1 0 Vub

0 1 Vcb

−V ∗ub −V ∗cb 1

 , (3.6)
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yielding the following 2x2 matrix

M2M†2

 A C

C∗ B

 , (3.7)

where

A = a2 + |ξ|2b2 − |Vub|2m2
b (3.8)

B = a2 + b2 − |Vcb|2m2
b (3.9)

C = ξb2 − VubV ∗cbm2
b . (3.10)

Thus the remaining down-like masses and CKM parameter can be extracted:

m2
s =

1

2
(A+B) +

1

2

√
(A−B)2 + 4|C|2 (3.11)

md =
|2abcξ − a2b|

msmb
(3.12)

|Vus|2 =
1

2

(
1−

√
1− 4|C|2

(A−B)2 + 4|C|2

)
, (3.13)

where the phase of Vus is the same phase as the parameter C. Starting with |Vus| = 0.22534,

then one immediately finds |C|2
(A−B)2

= 0.05971. Given that, physically, m2
s � m2

d then

A ≈ 0.05351B and thus m2
s ≈ 1.05359B. By using this approximation it is possible to

determine values of a, b, c, d, Re(ξ), and Im(ξ) that fit within the 2012 experimental

limits of the CKM matrix elements, and the quark masses [2]. For the numerical analysis

in Ref. [2], the approximation was used as a starting place for a full numerical scan of the

allowed parameter space, but the final numerical solutions that diagonalize the mass matrix

Md did not depend on the approximate solutions. The parameters a,b, c, d Re(ξ), and

Im(ξ) are varied until the 3 down-like quark masses and 3 mixing angles fit within one

standard deviation of the 2012 PDG best-fit values for the CKM and the 2008 values of the

down-like quark masses evaluated at MW found in Ref. [80]. These values from the 2012
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PDG are

|Vus| = 0.22535± 0.00065, (3.14)

|Vcb| = 0.0412
+0.0011

−0.0005
, (3.15)

|Vub| = 0.00351
+0.00015

−0.00014
, (3.16)

and the down-like quark masses evaluated at MW are

md(MW ) = 2.93
+1.25

−1.21
MeV , (3.17)

ms(MW ) = 56± 16 MeV, (3.18)

mb(MW ) = 2.92± 0.09 GeV. (3.19)

The PDG also lists a condition that the ratio of the strange quark to down quark masses is

in the range 17 < ms
md

< 22 [81], and also limits the CP violating phase in the quark sector

using the Jarlskog Invariant (J) [81,82]

J = Im(VusVcbV
∗
ubV

∗
cs) = 2.96

+0.20

−0.16
× 10−5. (3.20)

The result of this numerical analysis is a prediction of the CP violating parameter J along
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Figure 3.1: The CP violating parameter J versus ms/md. The solid (dashed) lines indicate
the one (two) standard deviation bounds of J.

Solution md ms mb | Vus | | Vub | | Vcb | J ms/md

I 3.89 66.2 292 0.22535 0.00355 0.0420 2.95 ×10−5 17.00
II 3.91 67.4 293 0.22532 0.00358 0.0420 2.89 ×10−5 17.25
III 3.96 69.2 296 0.22519 0.00363 0.0409 2.76 ×10−5 17.50
IV 3.94 69.9 291 0.22501 0.00359 0.0415 2.70×10−5 17.75

Table 3.2: D7 resulting quark masses, mixing elements, and CP violating parameter J for
four representative D7 parameter solutions. Quark masses are in MeV.

Solution a (GeV) b (GeV) c (GeV) d (GeV) Re(ξ) Im(ξ)

I 0.0125 0.138 1.32 -2.60 0.053 -0.084
II 0.0124 0.139 1.34 -2.60 0.058 -0.084
III 0.0123 0.138 1.40 -2.60 0.064 -0.087
IV 0.0122 0.138 1.39 -2.55 0.068 -0.084

Table 3.3: D7 representative parameter fits for quark masses and mixing.

with the ratio of ms/md, as shown in Fig. 3.1. Several representative solutions of the

physical quark masses, CKM matrix elements, along with the Jarlskog Invariant and the

ratio of ms/md are shown in Table 3.2, while the parameters a, b, c, d, Re(ξ), and Im(ξ)

that produce these values are listed in Table 3.3. In addition to the predictions for the

quark sector, the D7 model detailed in Ref. [2] also has predictions for the neutrino sector

which will not be detailed here.
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As is immediately obvious from the listed particle content: this model of quark

and lepton masses requires a very large number of Higgses that receive nonzero VEVs. The

125 GeV Higgs boson that was recently observed at the LHC [7, 8] appears to be mostly

like the SM Higgs with no hints of exotic scalars at the electroweak scale. A model with so

many Higgses is not guaranteed to produce an SM-like Higgs and is highly unlikely to be

realized in nature. The structure provided by the flavor symmetry isn’t enough to justify

the large amount of fine-tuning that would be necessary to even determine if the model is

consistent with a 125 GeV Higgs without taking into account the non-observation of novel

physics at 7 TeV and 8 TeV LHC runs. In order for future models of flavor symmetry to

be successful, it is necessary to naturally accommodate only a single, SM-like, Higgs boson

with other exotic scalars being found only at higher energies such as the 13 TeV LHC or

beyond.

3.2 Scotogenic Model with A4 Flavor Symmetry

As discussed previously in Section 2.3.3 — as well as in Appendix A — if the

splitting between the real and imaginary scalars in the minimal scotogenic mechanism is

small compared to their masses, and if this is small compared to the masses of the neutral

fermions Nk, then a radiative seesaw is achieved. However, this only explains the smallness

of neutrino mass and doesn’t explain the observed structure of the neutrino oscillations

or the mismatch between the charged and neutral leptons. One of the well known solu-

tions is the use of the discrete, non-Abelian, flavor symmetries such as A4 as discussed in

Section 2.3.2. Since the scotogenic mechanism connects the mass matrix of N to the neu-

trino mass matrix, then the implementation of a discrete flavor symmetry has two, generic,

consequences:

1. The Yukawa coupling constants hij — from the allowed interaction term ηνiNj — are

restricted depending on the flavor symmetry assignment of η, ν, and N .

2. The form of the mass matrix for N ’s is also fixed by the flavor symmetry assignment
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of N , and the texture of this matrix results in a particular form of the neutrino mass

matrix (in the flavor symmetry basis).

The work in Ref. [1] represents a particular implementation of the scotogenic mechanism,

in the radiative seesaw approximation (see Appendix A), using the non-Abelian discrete

symmetry A4 as a flavor symmetry. Under A4, the η is a trivial singlet (η ∼ 1), while the

N ’s are organized into a triplet (Ni ∼ 3). Under all of the symmetries in the model, the

neutral fermions N can have a Majorana mass term, but because it is a triplet under A4,

the only allowed invariant for such a term is NiNi and thus each N has the same Majorana

mass. In addition to the basic scotogenic particle content several scalar singlets are added

as an A4 triplet σi ∼ 3 and each receives a VEV 〈σi〉. Because these are triplets, the allowed

Yukawa terms are of the form σiNiNk, where no indice is repeated. After the σi receive

VEVs the following mass matrix is produced:


A F E

F A D

E D A

 (3.21)

The neutrino masses are related to the mass matrix of above via the scotogenic mechanism

in the limit where the mass difference between <(η) and =(η) is small relative to the average

of their masses (m0), and m0 � mNk (as explained in Appendix A):

(Mν)ij =
λ5v

2

8π2

∑
k

hijhjk
mNk

[
log

m2
Nk

m2
0

− 1

]
, (3.22)

where
∑
k

hikh
†
jk = |h|2δij . However, the neutrino eigenstates ν1,2,3 are related to N1,2,3

through an identity matrix. As a consequence, the full neutrino oscillation matrix is given by

the matrix that diagonalizes the mass matrix in equation 3.21. If E = F , then 3.21 is exactly

diagonalized by the tribimaximal mixing matrix. However, F = −E can be maintained via

an interchange symmetry [83], resulting in two non-zero off-diagonal elements in 3.21 after
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transforming the matrix to the tribimaximal basis:


A+D 0 0

0 A C

0 C A−D

 , (3.23)

where C = (E − F )/
√

2 =
√

2E. To obtain the masses mNk the matrix in 3.23 must be

diagonalized, but since it only has two non-zero off-diagonals a simple rotation matrix can

be used:

M(1,2,3)
N =


1 0 0

0 cos(θ) sin(θ)eiφ

0 − sin(θ)e−iφ cos(θ)



A+D 0 0

0 A C

0 C A−D




1 0 0

0 cos(θ) − sin(θ)e−iφ

0 sin(θ)eiφ cos(θ)



M1,2,3
Ndiag

=


eiα1M3 0 0

0 eiα2M2 0

0 0 eiα3M3

 (3.24)

Note the presence of three complex phases (αi) which originate in the Majorana nature

of the N mass. Choosing A to be positive and real — to match the PDG convention as

mentioned in Ref. [1] — then C and D may both be complex and expanded as C = CR+iCI

and D = DR + iDI . From the matrix equations above this yields:

tanφ =
CRDI − CIDR

CR(2A−DR)− CIDI
(3.25)

tan 2θ =
2(4A2C2

R − 4ACR(CRDR + CIDI) + (C2
R + C2

I )(D2
R +D2

I ))
1/2

2ADR − (D2
R +D2

I )
(3.26)

eiα2M2 = A cos2 θ + 2C sin θ cos θeiφ + (A−D) sin2 θei2φ (3.27)

eiα3M3 = (A−D) cos2 θ − 2C sin θ cos θe−iφ +A sin2 θe−i2φ (3.28)
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To find the UPMNS matrix, we multiply the tribimaximal matrix by the 3x3 rotation matrix

above which yields:

U ′e1 =

√
2

3
, U ′e2 =

cos θ√
3

, U ′e3 = −sin θ√
3
e−iφ

U ′µ3 = −cos θ√
2
− sin θ√

3
e−iφ, U ′τ3 =

cos θ√
2
− sin θ√

3
e−iφ

Taking these mass matrix elements, it is possible to extract the relationship between θ

and φ and neutrino mixing angles and the Dirac phase through the procedure explained in

Refs. [1, 69] and in Section 2.3.2. The three angles are given by:

tan2 θ12 = |U ′e2/U ′e1|2=
cos2 θ

2
(3.29)

tan2 θ23 = |U ′µ3/U
′
τ3|2=

1/2 + cos θ sin θ cosφ

1/2− cos θ sin θ cosφ
(3.30)

sin θ13e
−iδCP = U ′e3e

−iα3/2 = −sin θ√
3
e−i(φ+α3/2) (3.31)

For the purposes of the analysis the scale-factor λ5v2h2

8π2 is absorbed into the A, C, and D

parameters and the mass m0 so the neutrino masses from Eq. 3.22 is reduced to

m′k =
1

mNk

[
log

m2
Nk

m2
0

− 1

]
. (3.32)

where MNk are given by

MN1 = |A+D| (3.33)

MN2 =
(
A cos2 θ + 2C cos θ sin θeiφ + (A−D) sin2 θei2φ

)
e−iα

′
2 (3.34)

MN3 =
(

(A−D) cos2 θ − 2Cθ sin θe−iφ +A sin2 θe−i2φ
)
e−iα

′
3 (3.35)
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The massm0 is the DM scalar mass and is unknown, so it is fixed by requiringmN1/m0 = 10.

The differences in the neutrino masses were taken to fall in the following ranges:

∆m2
21 = 7.59× 10−5eV2, ∆m2

32 = 2.45× 10−3eV2, (3.36)

and the mixing angle θ13 is varied in the range

sin2 2θ13 = 0.05− 0.15, (3.37)

and, following Ref. [69], sin2 2θ23 is fixed as either 0.92 or 0.96. The texture of the mass
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Figure 3.2: sin2(2θ12) versus sin2(2θ23), shaded area is ruled out at one standard deviation
in 2014 PDG neutrino oscillation data.

matrix MN is the same as that found in Ref. [69], and so the predictions of the mixing

angles in Ref. [1] are the same as in Ref. [69] as illustrated in Fig. 3.2. As a consequence

C must have an imaginary component (otherwise θ23 is too small), and the mixing angle

φ is required to satisfy |tanφ|> 1.2 if sin2(2θ23) > 0.92. It is important to note that the

values used for this analysis are not the current best-fit results found in the PDG review of

neutrino oscillations, but at the time of publication the values used in Ref. [1] were the PDG

best-fit values. To expedite the numerical analysis of the model, the mass hierarchy and
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θ23 are fixed. To fit the neutrino mass differences and the mixing angles it is necessary
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Figure 3.3: Prediction of the Dirac CP phase |tan δCP | versus sin2(2θ13) for inverted (IH),
normal (NH), and quasi-degenerate (QD) neutrino mass hierarchies. Red lines represent
one standard deviation range in 2014 PDG neutrino oscillation data.

to solve Eq. 3.32 for the parameters A, B, CR, CI , DR, and DI , however the logarthim

makes this equation very non-trivial. However, this term is expected to be of order unity

and by dropping it the simpler equation can be exactly inverted, and the mass parameters

that produce the correct mixing angles and physical neutrino masses can be found. The

neighborhood around these approximate values are scanned to numerically determine the

full solutions for the physical neutrino masses without using the approximation. After these

solutions are determined the CP violating phases (1 Dirac, 2 Majorana) and the neutrinoless

double-beta decay parameter mee are predicted. To further simplify the parameter space,

the analysis is split into two solutions where the parameter D is purely real and another

where DR = DI 6= 0. For the choice of a pure real D then inverted, normal, and quasi-

degenerate mass hierarchies allowed, while for DR = DI only inverted and quasi-degenerate
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Figure 3.4: MN parameters and the physical neutrino masses versus sin2(2θ13) in the case
of inverted mass hierarchy, DI = 0, and sin2(2θ23) = 0.96. Red lines represent one standard
deviation range in 2014 PDG neutrino oscillation data.
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hierarchies are allowed. The full results of this analysis are seen in Figs. 3.4-3.8 for all three

possible hierarchies, and for the two choices in sin2(2θ23) = 0.92 and 0.96. The correlation

between the Dirac CP violating phase |tan δCP | and sin2(2θ13) is illustrated in Fig. 3.3.

3.3 Scotogenic Model with ∆(27) Flavor Symmetry

In the previous section 3.2, the simplest scotogenic model was studied with the

addition of an A4 flavor symmetry, however there are many other discrete flavor symmetries

that have been studied in the literature [84], and there are interesting extensions to the

simplest scotogenic model as well as discussed in Section 2.3.4. Similar to proposals of

other discrete flavor symmetries, ∆(27) can explain the difference in charged lepton masses

while using an underlying symmetry to explain the mismatch of the charged and neutral

lepton sectors and explain the pattern of neutrino oscillation. In addition, ∆(27) has been

studied in the context of spontaneous CP violation where the theory at high energy is CP-

invariant, but the vacuum obtains a CP violating phase. The use of ∆(27) to spontaneously

break CP was first proposed in Ref. [85]. In this section, two particular implementations of

∆(27) are studied in two different scotogenic contexts — following the work presented in

Ref. [4].
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The non-Abelian discrete group ∆(27) has nine distinct one-dimensional represen-

tations 1i (i = 1, · · · , 9) and two three-dimensional representations 3 and 3∗. For group

theoretic details on ∆(27) see the discussion in Appendix C. The three-dimensional repre-

sentations have the following multiplication rules:

3× 3∗ =

9∑
i=1

1i, 3× 3 = 3∗ + 3∗ + 3∗. (3.38)

As a result, 3× 3× 3 can form a trivial singlet in three distinct invariants:

111 + 222 + 333 (3.39)

123 + 231 + 321 + (132 + 213 + 321) (3.40)

123 + 231 + 321− (132 + 213 + 321) (3.41)

It is important to note that the complex conjugation of one of the three-dimensional repre-

sentations yields the other, just as is the cse in SU(3). Following the discussion in Ref. [4],

it is possible to assign the following representations of ∆(27) to the particle content of the

simplest scotogenic model: Φ, η ∼ 11, ν ∼ 3, N ∼ 3∗. Similar to the model in Ref. [1],

there are additional neutral scalars that receive VEVs ζ; these additional scalars generate

additional mass terms in the 3x3 Majorana mass matrix of the Nis and under ∆(27) are

assigned 3. The Yukawa couplings are given by fijkNiNkζ
∗
k . Using the above invariants in

Eqs. 3.40 - 3.41, and given that each of the three ζ1,2,3 receive VEVs 〈ζi〉 = vζi, we can

re-write the Yukawa terms using the above invariants such that:

f1(11vζ1 + 22vζ2 + 33vζ3) (3.42)

f2[(12vζ3 + 23vζ1 + 31vζ2) + (13vζ2 + 21vζ3 + 32vζ1)] (3.43)
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For simplicity we can re-write the above terms with as f2vζ1,2,3 = a, b, c and f1/f2 = f :

f(11a+ 22b+ 33c) (3.44)

12c+ 23a+ 31b+ 13b+ 21c+ 32a, (3.45)

just as was the case inA4 the invariant terms must share the same Yukawa coupling constant.

These terms can be quickly reorganized into a mass matrix for N, and diagonalizing this

matrix will also diagonalize the neutrino mass matrix. Thus, the neutrino mass matrix with

such a particle assignment under ∆(27) is of the form

Mν =


fa c b

c fb a

b a fc

 (3.46)

Instead of using a scotogenic model where the ’dark’ symmetry is Z2, it is of interest

to consider cases where there is a ’dark’ gauge symmetry U(1)D. This ’dark’ symmetry can

be broken to a residual Z2 or left as an exact symmetry as first discussed in a scotogenic

context in Ref. [86]. Instead of usual scotogenic content, the ’dark’ gauge symmetry requires

the particle content to be modified with two additional scalar doublets (η+
1 , η

0
1) and (η+

2 , η
0
2)

which have +1 and −1 ’dark’ charge respectively. The three neutral fermions Ni have +1

’dark’ charge and are Dirac fermions. For the generation of neutrino mass the relevant

interaction terms are h1N̄RνLη
0
1, h2NLν̄

c
Lη

0
2, and (Φ†η1)(Φ†η2); this last term allows mixing

between the two additional scalars (η0
1 and η̄0

2) which can be related to the mass eigenstates

χ1,2 [86]: η0
1

η̄0
2

 =

 cos θ sin θ

− sin θ cos θ


χ1

χ2

 (3.47)

Using Eq. 3.47 the Yukawa couplings can be re-written in terms of mass states
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Figure 3.9: The scotogenic mechanism with U(1)D dark matter.

h1N̄RνL(cos θχ1 + sin θχ2) (3.48)

h2NLν̄
c
L(− sin θχ̄1 + cos θχ̄2) (3.49)

Despite the neutral fermion N having a Dirac mass, the resulting neutrino mass is still

Majorana, and the calculation of the neutrino mass procedes very similar to the minimal

scotogenic model, however the mass splitting is coming from the relative minus sign between

χ1 and χ2 in Eq. 3.49 as opposed to the relative minus sign between ηR and ηI that occurs in

the minimal model. In addition, η1 and η2 can be permuted yielding two distinct diagrams

that contribute to the physical mass. This permutation is taken into account with the

sum of the permutation of Yukawa couplings seen in Eq. 3.50. This modified Scotogenic

mechanism results in the neutrino mass matrix of the form

(Mν)ij = cos θ sin θ
∑
k

(h1)ki(h2)kj + (h2)ki(h1)kj
8π2

×MNk

[
m2

1

m2
1 −M2

Nk

log
m2

1

M2
Nk

− m2
2

m2
2 −M2

Nk

log
m2

2

M2
Nk

]
,

(3.50)

where m1,2 are the masses of χ1,2. This modification of the scotogenic mechanism can also

yield the neutrino mass matrix in Eq. 3.46 through the Yukawa coupling fijkN̄LiNRjζk

if the following representations in ∆(27) are assigned: Φ, η1,2 ∼ 11, ν ∼ 3, NR ∼ 3, and

NL ∼ 3∗. A mass matrix of this form arising from a ∆(27) flavor symmetry has already
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been studied in a non-scotogenic context in Refs. [67, 68]. In Ref. [67] the lepton singlet lc

is assigned the 3∗ representation while three additional Higgs doublets (φ1,2,3) are assigned

11,2,3 respectively, yielding a diagonal charged-lepton mass matrix. In [68] lc, φ ∼ 3, and

the charged-lepton sector is not diagonal [68], but is given by

Ml = Uω


me 0 0

0 mµ 0

0 0 mτ

U †ω, (3.51)

where ω = ei2π/3 and Uω is the Cabibbo-Wolfenstein matrix

Uω =
1√
3


1 1 1

1 ω ω2

1 ω2 ω

 . (3.52)

Both the model in Ref. [67] and the model in Ref. [68] are consistent with θ13 6= 0, which was

first determined experimentally in 2012, however of the two solutions presented in Ref. [67]

only the solution where f ≈ −0.5 is able to produce a realistic θ13. To analyze the case with

a diagonal lepton mass matrix in the scotogenic models (either Z2 or U(1)D model), the

parameters in the mass matrix are re-writtne as f = −1
2 + ε, a = b(1 + η), and c = b(1−κ),

then the mass matrix in the tribimaximal basis is

MTB
ν = UT

TBMνUTB =


−3

2 + ε+ 3
4κ −2η+κ

2
√

2

√
3

4 κ

−2η+κ

2
√

2
3
2 + ε+ 1

2η + 1
2κ

√
3

2
√

2
κ

√
3

4 κ
√

3
2
√

2
κ −3

2 + ε− η + 1
4κ

 b, (3.53)

where ε, η, and κ are all assumed to be small compared to one, that is the neutrino mass

matrix is nearly diagonal in the tribimaximal basis. We define a new parameter ζ, such

that ζ = κ+2η, and assume all parameters to be real. Given these assumptions, the mixing
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matrix is nearly tribimaximal and can be diagonalized by

U ′ =


1 θ′12 θ′13

−θ′12 1 θ′23

−θ′13 −θ′23 1

 , (3.54)

where θ′ij =
mij

mii−mjj , and mij are the matrix elements of 3.53, which yields the physical

neutrino masses of the form

∆m2
21 ≈ m2

22 −m2
11 ≈

3

4
(8ε+ ζ)b2 (3.55)

∆m2
32 ≈ m2

33 −m2
11 ≈

3

2
ζb2, (3.56)

and the physical mixing angles are determined by

UTBU
′ =


√

2
3 +

θ′12
3

1√
3
−
√

2
3θ
′
12 −

√
2
3θ
′
13 −

θ′23√
3

− 1√
6

+
θ′12√

3
− θ′13√

2
1√
3

+
θ′12√

6
− θ′23√

2
− 1√

2
+

θ′13√
6
− θ′23√

3

− 1√
6

+
θ′12√

3
+

θ′13√
2

1√
3

+
θ′12√

6
+

θ′23√
2

1√
2

+
θ′13√

6
− θ′23√

3

 , (3.57)

which can be compared to the PDG parameterization by

tan θ12 =

√
1/3−

√
2/3θ′12√

2/3 +
√

1/3θ′12

(3.58)

sin θ13 = ±
(√

2

3
θ′13 +

√
1

3
θ′23

)
(3.59)

tan θ23 =
1/
√

2 + θ′13/
√

6− θ′23/
√

3

−1/
√

2 + θ′13/
√

6− θ′23/
√

3
. (3.60)
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Using the values from Eq. 3.53 and η = ζ−κ
2 , and dropping higher order terms, yields

θ′12 =
m12

m11 −m22
≈ ζ

6
√

2
(3.61)

θ′13 =
m13

m11 −m33
≈
√

3

2

κ

ζ
(3.62)

θ′23 =
m23

m22 −m33
≈ κ

2
√

6
, (3.63)

and using Eqs. 3.59 - 3.60 the physical mixing angles are approximately given by:

sin θ13 ≈ ±
κ√
2ζ

(3.64)

tan θ12 ≈
1√
2

(
1− ζ/6
1 + ζ/12

)
. (3.65)

(3.66)

It is important to note that the neutrino mass matrix in Eq. 3.53 is quasi-degenerate

(m11 ≈ −m22 ≈ m33), and as a result θ′23 is much smaller than θ′13. In the limit that

θ′23 = 0, then

tan θ23 ≈ 1 +
κ

ζ
, (3.67)

which yields

sin2 2θ23 ≈ 1− 2 sin2 θ13, (3.68)

which is consistent with the current experimental neutrino data. However, if θ′23 dominates

then the relationship between θ23 and θ13 would be 1−8 sin2 θ13, which is ruled out by data

as first pointed out by Ref. [69]. By fixing θ12, ∆m2
31, ∆m2

21, and sin θ13 it is thus possible

to find a prediction for θ23 and the neutrinoless double beta decay parameter mee. For

example, a choice of tan2 θ12 = 0.45 results in ζ = 0.209 and a normal mass hierarchy, and

setting ∆m2
21 = 7.50 × 10−5 eV 2, sin θ13 = 0.16 results in b = 0.086 eV, sin2 2θ23 = 0.966,

and mee = |fa| = 0.05 eV. For these representative numerical values ζ is small but not

much smaller than one. Additionally, with these values κ = ±0.047 and so κ/ζ is also on
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the order of ζ and assuming this ratio is neglibile is no longer justifiable. Thus for the full

numerical analysis the approximate solutions are used only as an initial solution for the

mass matrix parameters b, ζ, κ, and ε. These input values are used as a guideline to focus

the range of the parameter space scan, and the mass matrix is numerically diagonalized

without assuming ζ, κ, or ε are much smaller than one. In addition, the case where κ is

purely imaginary is considered in which sin2 2θ23 = 1. This limit is guaranteed due to a

symmetry that is based on a generalized CP transformation as discussed in Ref. [87]. For

the numerical analysis the following values for the neutrino mixing parameters were used

in Ref. [4]:

∆m2
21 = 7.50± 0.20× 10−5eV2, (3.69)

∆m2
32 = 2.32 + 0.12− 0.08× 10−3eV2, (3.70)

sin2 2θ12 = 0.857± 0.025, (3.71)

sin2 2θ23 > 0.95, (3.72)

sin2 2θ13 = 0.095± 0.010. (3.73)

To determine the CP violation in this mass matrix, the Jarlskog Invariant [82] is used, which

can be related to the Dirac CP violating phase δ via

JCP = Im(Uµ3U
∗
e3Ue2U

∗
µ2), (3.74)

where Uiα are the elements of the neutrino mixing matrix in the PDG convention. As κ

is varied between purely real and purely imaginary, sin2 2θ23 slowly increases from 0.966

(purely real κ) to 1 (purely imaginary κ). Using the current PDG values for sin2 θ23 puts

this value for a purely real κ a little less than two sigma away from the best-fit value [10].

For the analysis of the neutrinoless double beta decay parameter (mee) sin2 2θ13 was varied

between the values in Eq. 3.73 and κ was allowed to vary arbitrarily between purely real and

purely imaginary. For the analysis of JCP a purely imaginary κ was used, and sin2 2θ12 was
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varied between the values in Eq. 3.72, and sin2 θ23 was determined to be one, as required.

The results of the analysis indicate that mee is mostly sensitive to variations in θ12 whereas

JCP is mostly sensitive to variations in θ13. In Figs. 3.10 3.11 these results are plotted, and

the sensitivity to different angles is demonstrated. In Fig. 3.10, the upper band represents

the purely real κ solutions, and the lower band represents the purely imaginary κ solutions.

Points in the region in between these two bands are allowed for arbitrary choices in κ’s

phase. Alternatively, in the case where the charged lepton sector hasMl of the form given

Κ Re

Κ Im
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Figure 3.10: Predictions of mee versus sin2(2θ12) for sin2(2θ13) = 0.095± 0.0105.
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Figure 3.11: Predictions of JCP versus sin2(2θ13) for κ imaginary and sin2(2θ12) = 0.857±
0.025.
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by Eq. 3.51 then to get to the tribimaximal basis it is necessary to transformMν from Eq.

3.46 such that

Mν = U2


a+ f(b+ c)/2 (b+ c)/

√
2 f(−b+ c)/2

(b+ c)/
√

2 fa (b− c)/
√

2

f(−b+ c)/2 (b− c)/
√

2 a− f(b+ c)/2

U2T, (3.75)

where

U2 =


0 1 0

1/
√

2 0 −i/
√

2

1/
√

2 0 i/
√

2

 , (3.76)

where UTBM = U †ωU2. Note that in this form there is an additional phase of the form that

ei2α = −1; to return to the form of Eq. 3.46 it is necessary to rotate away this additional

phase. Re-writing these parameters in an analogous way as in the case whenMl is diagonal

using f = −1 + ε′, η′ = (b+ c)/2a, and κ′ = (b− c)/2a, yields

MTB
ν ≈


1− η′

√
2η′

√
2κ′

√
2η′ −1 + ε′ κ′

√
2κ′ κ′ 1 + η′

 a, (3.77)

where ε′, η′, κ′ are assumed to be small compared to one as before. Incidentally, this

yields the same approximate solution as the case when Ml is diagonal after the following

substitutions are made:

a =
−3b

2
, η′ =

ζ

6
, κ′ =

κ

2
√

6
, ε′ =

−4ε

3
. (3.78)

Additionally, the predicted value of mee is approximately identical, and thus the numerical

predictions of this second model are largely indistinguishable from the first model even after

dispensing with the approximation.
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3.4 Scotogenic Model with µ− τ Interchange Symmetry

In 2002 a special form of the neutrino mass matrix first appeared appeared in

Refs. [66, 88], and can be written as:

Mν =


A C C∗

C D∗ B

C∗ B D

 , (3.79)

where, A and B are real. As discussed in Refs. [6, 72], this neutrino mass matrix can be

implemented utilizing a discrete Z3 flavor symmetry. Additionally, the pattern for the mass

matrix in 3.79 has been shown [87] to be protected by an interchange symmetry (that is e

→ e and µ↔ τ) along with CP conjugation. This pattern of mixing matrix is of continued

interested because it allows θ13 6= 0 while θ23 and δCP are maximal [6]; these predictions

and the interchange symmetry are consistent with the present experimental data. In the

analysis of Ref. [72], the ratio of the Yukawa couplings λ = fτ/fµ was taken to be 1 though

this assumption can be relaxed as shown in Ref. [6]:

Mλ
ν =


1 0 0

0 1 0

0 0 λ

Mν


1 0 0

0 1 0

0 0 λ

 . (3.80)

Instead of the simplest scotogenic model, the model in Ref. [6] utilizes an earlier proposal of

one-loop generated neutrino mass from Ref. [89] and analyzed in Ref. [72]. The mechanism,

seen in Fig. 3.12 generates an inverse seesaw mass as discussed in Refs. [6,72] and has three

additional scalar singlets, s1,2,3, a Dirac fermion doublet (E0, E−) and a Dirac fermion

singlet N. All of the additional particles are odd under an exactly conserved Z2 symmetry,

and the lightest neutral particle is a DM candidate. The neutral components of the doublet

mix with the singlet via the SM Higgs, in addition to invariant Dirac masses mE and mN .
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Figure 3.12: One-loop generation of inverse seesaw neutrino mass.

After the Higgs gains a VEV, this results in a mass matrix that connects (N̄L, Ē
0
L) and

(NR, E
0
R):

MN,E =

mN mD

mF mE

 , (3.81)

which results in two Dirac fermions of masses m1,2 that are a mixture of N and E0. Ad-

ditionally, N has a Majorana mass given by mR
2 N c

RN̄R + mL
2 N c

LN̄L. To diagonalize the

mass matrix in 3.81 the left-handed components need to be rotated separately from the

right-handed, in an analogy to the SM lepton sector:

M1,2 =

m1 0

0 m2

 = UTL

mN mD

mF mE

UR, (3.82)

where the matrices UL and UR can be parameterized as rotation matrices:

UR,L =

cos θR,L − sin θR,L

sin θR,L cos θR,L

 , (3.83)

with the mixing angles

mDmE +mFmN = sin(θL) cos(θL)(m2
1 −m2

2) (3.84)
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mDmN +mFmE = sin(θR) cos(θR)(m2
1 −m2

2). (3.85)

Using these mixing angles, the E and N states can be written in terms of the mass eigenstates

ω1 and ω2 N(R,L)

E(R,L)

 =

 cos θ(R,L) sin θ(R,L)

− sin θ(R,L) cos θ(R,L)


ω1

(R,L)

ω2
(R,L)

 . (3.86)

The loop in Fig. 3.12 can be calculated after inserting the Majorana masses mR and mL and

using the Yukawa interaction fsĒ0
RνL, however it is convenient to first split the calculation

into sub-diagrams using the proper combinations of ω1 and ω2 from Eq. 3.86, and finding

the full mass term by summing over each possible combination. In order to illustrate how

this can be done, consider the representation of these sub-diagrams coming from the mR

and mL mass insertions respectively in Fig. 3.13. After taking into account the proper
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Figure 3.13: The scotogenic one-loop mechanism, written using the mass eigenstates with
Majorana mass insertions to complete the loop.

combinations of chirality — see Appendix B — the neutrino mass can be calculated:

mν = f2mR cos2 θR sin2 θR(m2
1 −m2

2)2

∫
d4k

(2π)4

k2

k2 −m2
s

1

(k2 −m12)2

1

(k2 −m22)2

+ f2mLm
2
1 cos2 θR sin2 θL

∫
d4k

(2π)4

1

k2 −m2
s

1

(k2 −m11)2

+ f2mLm
2
2 sin2 θR cos2 θL

∫
d4k

(2π)4

1

k2 −m2
s

1

(k2 −m22)2

− 2f2mLm1m2 cos θR sin θR cos θL sin θL

∫
d4k

(2π)4

1

k2 −m2
s

1

k2 −m12

1

k2 −m22

(3.87)
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In general, the diagonalized 3x3 neutrino mass matrix Md defined as


m1 0 0

0 m2 0

0 0 m3

 , (3.88)

where m(1,2,3) are the physical neutrino masses, is found from the non-diagonal mass matrix

Mν via

Md = EαU
TEβMνEβUEα, (3.89)

where

Eα,β =


ei(α,β)1 0 0

0 ei(α,β)2 0

0 0 ei(α,β)3

 . (3.90)

While there are six phases in Eq. 3.89, only three of the phases are physical — two relative

Majorana phases and one Dirac phase [10]. The differences in neutrino masses squared are

the relevant parameters for neutrino oscillation data:

M2
d = E†αU

†Mν(Mν)†UEα (3.91)

This general procedure also works for the mass matrix from Ref. [72]. Using Eq. 3.80 it is

possible to relate the solutions of Ref. [72] to the more general case where λ 6= 1 in Ref. [6].

Applying Eq. 3.80 to the diagonalized mass matrix yields


1 0 0

0 1 0

0 0 λ

M2
d


1 0 0

0 1 0

0 0 λ

 =


m2

1 0 0

0 m2
2 0

0 0 λ2m2
3

 =M2
λd. (3.92)
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Applying Eq. 3.80 to Eq. 3.91 results in

M2
λd = E†α


1 0 0

0 1 0

0 0 λ

U †Mν(Mν)†U


1 0 0

0 1 0

0 0 λ

Eα. (3.93)

Defining a new matrix ∆ such that

∆ = U †


0 0 0

0 0 0

0 0 (λ− 1)

U, (3.94)

allows us to simplify Eq. 3.93 so it is entirely in terms of the mass matrices where λ 6= 1:

M2
λd = E†αU

†(1 + ∆†)Mλ
ν (Mλ

ν )†(1 + ∆)UEα (3.95)

To find the physical neutrino massesM2
λd must be diagonalized using an additional orthog-

onal matrix, which can be found numerically via

(1 + ∆)M2
λd(1 + ∆)† = OM2

physO
T, (3.96)

where M2
phys is the diagonal matrix of the physical neutrino masses. Note that the masses

in M2
λd are those used in the case that λ = 1, and U is the resulting PMNS matrix with

θ23 = π/4 and δ = ±π/2 as described in Ref. [72]. These values can be related by solving

AOM2
physO

TA†, (3.97)

where A = (1 + ∆)−1. A is entirely fixed by the choice in λ, and O has three parameters

which can be found, after the physical masses are fixed, using the constraint that the off-

diagonals in M2
λd must be zero. Once the parameters for O are found, the full mixing
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matrix is given by UO from which the correlation of θ23 and δCP are extracted [6]. There

is an ambiguity in the choice of the physical masses, as only |∆m2
32| and ∆m2

21 are known,

and the remaining mixing angles are varied to produce the correct experimental limits. For

the analysis in Ref. [6], the 2014 PDG values [10] were used:

sin2(2θ12) = 0.846± 0.021, ∆m2
21 = (7.53± 0.18)× 10−5eV2,

sin2(2θ23) = 0.999
+0.001

−0.018
, ∆m2

32 = (2.44± 0.06)× 10−3eV2 (normal hierarchy),

sin2(2θ23) = 1.000
+0.000

−0.017
, ∆m2

32 = −(2.52± 0.07)× 10−3eV2 (inverted hierarchy).

sin2(2θ13) = (9.3± 0.8)× 10−2.

As discussed in Ref. [6], there are similar constraints on δCP and θ23 when looking at

normal and inverted hierarchy solutions, so there is an insensitivity to mass hierarchy in

the predictions of the model for λ 6= 1. Both normal and inverted hierarchies are considered

with m1,3 = 0, 0.03, 0.06 eV and λ > 1, after which θ13 and θ12 in U are varied and AO is

determined numerically to produceM2
λd to determine the full mixing matrix given by UO.

Solutions are fixed by choosing central values of ∆m212, ∆m322, sin2(2θ12), and sin2(2θ13).

In Figs. 3.14 and 3.15 sin2(2θ23 and δCP are plotted versus λ. As seen in Fig 3.14 λ < 1.15 is

required in order to maintain sin2(2θ23) > 0.98. Additionally, δCP is insensitive to variations

in m1 and δCP > 0.95π/2 is required to satisfy sin2(2θ23) > 0.98. As discussed in Ref. [6]

for the case that λ > 1 it was numerically determined that θ23 < π/4. Similar results are

seen for the inverted hierarchy case in Figs. 3.19 and 3.20. The case for λ < 1 is equivalent

to λ−1 > 1 with a µ − τ exchange, and results for λ > 1 can be mapped to λ < 1 using

λ → λ−1 as illustrated in Figs. 3.17 and 3.18. In the mass scheme considered here and in

Ref. [6], the neutrinoless double beta decay parameter mee is very close to m1 for normal

hierarchy and m3 +
√

∆m2
32 for an inverted hierarchy. The results are summarized in Figs.
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3.16 and 3.21 for normal and inverted mass-hierarchy respectively.
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Figure 3.14: sin2(2θ23) versus λ for a normal mass-hierarchy.
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Figure 3.15: The Dirac CP violating phase (δCP ) versus λ for a normal mass-hierarchy.
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Λ = 1.15 1.08 1.04
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Figure 3.16: sin2(2θ23) versus δCP for a normal mass-hierarchy.

m1 HeVL
0

0.03

0.06

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

0.980

0.985

0.990

0.995

1.000

Λ

sin
2H2Θ23L

Figure 3.17: sin2(2θ23) versus λ for λ < 1 and normal hierarchy, demonstrating the mapping
of λ→ λ−1.
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Figure 3.18: sin2(2θ23) versus δCP for λ < 1 and normal hierarchy, demonstrating the
mapping of λ→ λ−1.
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Figure 3.19: sin2(2θ23) versus λ for an inverted mass-hierarchy.
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Figure 3.20: The Dirac CP violating phase (δCP ) versus λ for an inverted mass-hierarchy.
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Figure 3.21: sin2(2θ23) versus δCP for an inverted mass-hierarchy.
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Chapter 4

Collider Phenomenology

4.1 Introduction

For many processes at colliders, calculating the theoretical cross section (for either

signal or background events), is in principle a straight forward and familiar process. After

deriving the Feynman rules from a given Lagrangian, invariant amplitudes are calculated

and squared, spins or external polarizations are summed, and the phase space integral is

calculated. However, in an actual experiment, there are several complicating factors:

1. The resulting calculation doesn’t represent the effects of statistical fluctuations and

finite sample sizes.

2. Phase space integrals, particularly for many-body processes, can be tedious and com-

plicated.

3. Initial states may have indefinite initial momentum or a distribution of many states

(e.g. in the case of proton or nucleon accelerators).

4. Many diagrams may be required to be calculated and summed over.

5. Low-energy QCD effects may complicate both initial and final states.
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Additionally, as measurements of physical processes become more precise, increasingly re-

alistic simulations are sought after to determine what new physics signatures may look like

inside an actual particle detector. Because of these factors, it is necessary (or practical)

to utilize automation. Automated Monte Carlo methods are utilized in order to calculate

phase space integrals, simulate the effects of finite sample size, and more realistically sim-

ulate detector response. For a comprehensive review of Monte Carlo methods in particle

physics and for the basic designs of Monte Carlo event generators see Ref. [10].

4.1.1 Programs, Tools, and Methods

In order to quickly and more realistically analyze collider signatures originating in

novel physics, it is important to first implement the model in a parton-level event generator

such as Madgraph [90] or CalcHEP [91]. These patron-level event generators take into

account the complicated initial states for proton-proton colliders such as the LHC, and use

Monte Carlo methods and Parton Distribution Functions (PDFs) to produce lists of events

for a process of interest. These event lists are often produced in the Les Houche Event

format and list initial, intermediate, and final state particle energy and momentum among

other physically measured properties and particle identification codes. The final states in

these event lists are parton-level states, that is the process of hadronization isn’t taken into

account at this level and quarks and gluons are left as free particles. These events can

then be passed on to a more sophisticated event generator such as PYTHIA [92, 93] which

simulates the low-energy QCD processes and allows a simulation of hadronization, QED

showers, etc. It is also possible to implement various kinematic cuts in PYTHIA to take

into account the pseudorapditiy inside a detector and also and can implement algorithms

such as FastJET [94] to identify jets of particles that had a common origin (such as a free

quark that hadronized). After the patron-level events are hadronized, it is also possible

to continue with the simulation and pass these events to various programs that simulate

the particular detectors response to these particles, increasing the realism of the simulated

new physics signal. For the purposes of the collider signature analysis in this thesis the
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simulation provided by PYTHIA has been considered adequate in determining whether or

not a model may be able to yield a clear signal at the LHC, and the details of the specific

programs implemented and which settings were used are discussed in the sections below.

4.2 Scotogenic Model, A4, with WDM

In the minimal scotogenic model, a general relationship for the loop-generation of

neutrino mass was obtained [32]. In section 3.2, the analysis of a particular assumption

of the scalar and fermion masses was discussed, but it is also possible to take a different

limit (see Appendix A). If the dark scalar doublet has a large mass, then it is the neutral

fermions (N) that act as a dark matter candidate and the resulting neutrino mass matrix

gives a inverse seesaw like mass matrix (see Eq. A.7 from Appendix A):

(M)ij =
ln(m2

R/m
2
I)

16π2

∑
k

hikhjkMk. (4.1)

In order to explain the smallness of the neutrino mass the masses of the additional fermions

N are large, however for this expression either the Yukawa coupling is required to be tuned

to be extremely small, or the mass of N is much smaller than the electroweak scale. Al-

ternatively, if the mass splitting between the real and imaginary components of η is small,

then the mass is suppressed by the log term, but this isn’t strictly necessary, and for a split-

ting of 110 GeV this term is close to 1 (log(m2
R/m

2
I = 0.94). If the new neutral fermions

are assigned a lepton number L = −1, then L is conserved in all interactions except the

Majorana mass term which violates lepton number by two units, but continue to conserve

(−1)L. As this mass term is taken to zero, the lepton violation term is eliminated, and fully

conserved lepton number is restored, thus the smallness of the N mass is natural. Moreover,

it can be argued that this mass should be on the order of the electron mass, which is the

smallest lepton conserving mass. With MNk ∼ 10 keV and h2 ∼ 10−3, then mν sin 0.1 eV.

With mη on the order of 102 GeV, then N can be considered ”sterile” making it a warm
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dark matter (WDM) candidate dubbed the scotino [95, 96]. Many models of WDM have

various constraints from astrophysical observation [97, 98], in particular a popular model

of WDM are the sterile neutrinos, which are reviewed in Ref. [99]. However, the lightest

scotino is absolutely stable and does not mix with the neutrinos and does not contribute

to galactic x-ray emissions avoiding the upper bound of 2.2 keV on WDM mass [97]. The

Lyman-α forest observations still apply to the scotino and yield a lower bound of around

5.6 keV [98].

Because the scotino is light, it potentially contributes to muon decay, flavor chang-

ing neutral currents (µ→ eγ), and the muon anomalous magnetic moment. However, with

the addition of an A4 flavor symmetry the contributions to these terms, as well as the

phenomenology of the scotino and the dark scalar doublet, can be significantly changed.

Consider the case where the doublet η is a singlet under A4 and (νi, li), Nk ∼ 3, then the

Yukawa couplings in Eq. 4.1 become

hik = hδik, (4.2)

and the neutrino mass matrix is simply

Mν = ζMN , (4.3)

where ζ = h2 log(m2
R/m

2
I)

16π2 . The A4 flavor symmetry may be replaced by any flavor symmetry

as long as Eq. 4.2 is possible using singlet and triplet representations of the flavor symmetry.

Since the interactions with Nk and the charged leptons occur through η+ and depend on

the Yukawa couplings hik and the PMNS matrix elements Ulν , the flavor-changing neutral

current of µ → eγ is highly suppressed — the leading term is proportional to
∑
k

hµkh
∗
ek,

which is equal to |h|2
∑
k

UµkU
∗
ek and is exactly zero. The next-to-leading term is non-zero

but is negligibly small, and so there is no useful bound on η+ from muon decay. The scotino

also potentially changes the SM muon anomalous moment ∆aµ, and this contribution has
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been calculated in Ref. [100]:

∆aµ =
∑
k

h2
kµm

2
µ

(4π)2m2
η

F2(sNk), (4.4)

where sNk = m2
Nk
/m2

η, and

F2(x) =
1− 6x+ 3x2 + 2x3 − 6x2 log x

6(1− x)4
(4.5)

(see Ref. [100] for details). Unlike the case presented in Ref. [100], if η is in the hundred

GeV mass range and the scotinos are in the keV mass range then the model in Ref. [3] has

a small sNK , and thus Eq. 4.5 at leading order becomes

F2(x) ≈ 1/6, (4.6)

and Eq. 4.4 is thus

∆aµ =
∑
k

h2
kµm

2
µ

96π2m2
η

. (4.7)

And given Eq. 4.2, this yields the total contribution to the ∆aµ of the form

∆aµ = −
m2
µ|h|2

96π2m2
η

= −1.18× 10−12

( |h|2
10−3

)(
100 GeV

mη

)2

, (4.8)

and so the contribution to the SM is negligible. While the lightest scotino is absolutely

stable there are three, and the heavier scotinos decay vis N3 → N1ν̄1ν3, where N1 is the

lightest scotino and N2,3 are the heavier states. This decay rate occurs through ηR,I and is

given by

Γ(N3 → N1ν̄1ν3) =
|h|4

256π3MN3

(
1

m2
R

+
1

m2
I

)2

×
(
M6
N3

96
−
M2
N1
M4
N3

12
−

M8
N1

96M2
N3

+
M4
N1
M2
N3

8
log

M2
N3

M2
N1

)
,

(4.9)

56



If MN1 = 10 keV, MN3 = 14.85 keV, |h|2 = 10−3, mR = 240 GeV, and mI = 150 GeV then

this decay rate is 1.0× 10−46 GeV which yields a lifetime of 2.1× 1014 years that is much

larger than the age of the universe. The lifetime of N2 is even longer as the differences in

mass-squared for neutrinos are related to the mass-squared differences between the scotinos

and ∆m2
21 � ∆m2

31. As a result N2 and N3 are stable enough to contribute to the observable

DM, but this doesn’t yield an appreciable contribution to x-ray signatures via N2,3 → N1γ

for the same reasons that µ → eγ is suppressed, namely the A4 flavor symmetry prevents

the leading order term which significantly reduces galactic x-ray signatures. Because the

scotinos are of order of 10s of keV, muon decay can occur at tree level through µ→ NµeN̄e,

giving the inclusive rate of

Γ(µ→ NµeN̄e) =
|h|4m5

µ

6144π3m4
η

. (4.10)

The muon decay through scotinos potentially changes the experimental measurement of the

Fermi constant GF , which leads to a lower bound on the charged η mass of

mη+ > 70 GeV. (4.11)

Additionally, there are existing bounds on the charged η mass from LEP that yield a lower

mass range between 70 to 90 GeV [101]. This mass range prevents the 125 GeV Higgs

from decaying directly to pairs of charged η, however the dark scalars do contribute to the

H → γγ rate as discussed in the Refs. [102–105]. In earlier LHC runs, the Higgs decay

to two photons had an intriguing excess [106] whereas the current data shows this rate

to be largely consistent with the SM prediction [107], potentially further constraining the

η± mass. For the analysis presented here and in Ref. [3] has not been taken these new

constraints into account. A novel prediction of this model is the Yukawa coupling between

η, N , and the charged leptons occurs with equal strength to each generation of charged

lepton. Additionally, because of the A4 flavor symmetry and the assignment of leptons and
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scotinos as A4 triplets, the decays are

η± → e±N1, µ
±N2. (4.12)

If the mass of η is low enough then it is possible for the charged dark scalar to be pair

produced at the LHC. The structure of the Yukawa sector restricts the decay of η into

pairs of charged leptons with e+µ− or e−µ+ 1/9 of the time along with large missing energy

from the scotinos. Such signatures also can occur from W+W− production, with subsequent

decays to leptons and a neutrino. To analyze the model in Ref. [3], the model is implemented

in CalcHEP [91] to generate parton-level events using the CTEQ6L [108] parton distribution

functions which are then analyzed by PYTHIA [92] to produce leading-order (LO) results

for the signal events coming from η pair production. The background events coming from W

pair production were produced using PYTHIA [92] and were scaled to the next-to leading-

order cross-section for W+W− at the 8 TeV LHC (57.3 pb). To analyze both the background

and the signal, basic cuts to transverse momentum and pseudorapidity (pT > 10 GeV and

|η| < 2.5) are applied to the leptons in the final state. A variety of additional transverse

momentum cuts were applied to the leptons, in addition to cuts on the missing transverse

energy, in an attempt to find a set of cuts that reduce the SM background below that of

the signal. While scanning over combinations of cuts, it was found that the most relevant

parameter for signal/background discrimination is the missing energy, and the results of

several missing energy cuts using a variety of mη± are summarized in Table 4.1. After these

cuts are applied, the SM background signal can be significantly reduced from its initial

value of 57.3 pb down to as low as 8.6 fb, however since the initial cross-section for η pair-

production is on the order of 102 fb no cuts were found that allowed the signal to exceed

the background [3]. As discussed in Ref. [3], it is possible to increase the scotogenic particle

content to complete SU(5) multiplets which is discussed further in Ref. [109] and a case

where complete multiplets are used (without gauge coupling unification) is demonstrated
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mη± (GeV) σ (fb) for various Emiss
T cuts: 0 GeV 25 GeV 50 GeV 100 GeV

80 33.2 27.9 18.3 2.88
90 22.7 19.8 14.4 3.10
100 15.7 14.0 10.6 3.08
110 11.4 10.3 8.13 3.03
120 8.72 7.99 6.54 2.91
130 6.45 5.98 5.05 2.57
140 4.97 4.64 3.96 2.21
150 3.84 3.62 3.16 1.89

SM Background σ (fb): 626 453 206 8.60

Table 4.1: Cuts applied to the signal and background for opposite-sign opposite-flavor
dileptons + missing energy (Emiss

T ).

in Ref. [5] and is discussed in Section 4.3. This SU(5) completion makes it possible to have

strongly produced scalars which may be potentially seen at future LHC runs.

4.3 Strong Production in Scotogenic Model

As pointed out in Section 2.3.4, it is possible to extend the scotogenic model to

generate quark and lepton masses [73], by forbidding the tree-level Yukawa couplings of

the lightest generation of quarks and leptons via any non-Abelian discrete flavor symmetry

[5]. Additionally, these new particles allow the scotogenic model to have complete SU(5)

multiplets, which can be extended to form a GUT in a non-minimal model as described in

Section 2.3.4. Since the model connects DM and quark and lepton masses through a single

SM Higgs boson the problems with earlier flavor symmetry models (namely the need for

many new scalars) is avoided. As discussed in Ref. [33], the new Yukawa coupling constants

can potentially deviate from the SM prediction and are either larger or smaller than the

SM value. The analysis in this thesis follows that of Ref. [5], however many of the generic

predictions are similar to the model found in Ref. [73] but are worked out in detail and

analyzed with CalcHEP [91], Madgraph [90], and PYTHIA [93].

Just as in the minimal scotogenic model there is an additional Z2 symmetry, under

which all additional particles to the SM are odd. In this case, this serves a similar function
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to R-parity in SUSY. The additional particles allow for the modified scotogenic mechanism

illustrated in Fig. 2.2, and their transformations under the SM gauge group are summarized

in Table 4.2. In this model, the flavor symmetry is carried by the neutral fermions N — the

Field Spin SU(3)C SU(2)L
(η+, η0) 0 1 2
χ+ 0 1 1

(ξ2/3, ξ−1/3) 0 3 2

ζ2/3 ζ−1/3 0 3 1
N1,2,3 1/2 1 1

Table 4.2: Relevant particle content for unified quark and lepton mass scotogenic mecha-
nism.

DM candidates of the model — which is softly broken by the mass matrixMN . This flavor

symmetry also forbids the usual tree-level Yukawa terms for the quarks and leptons, and for

a suitable choice of flavor symmetry can be utilized so that the first two generations have

radiative mass, while the top and bottom quarks could still have tree-level masses. The new

color-triplet fields are analogous to the squarks from SUSY, with the exception that these

new scalars do not have family structure and do not carry flavor. The flavor information

is carried by the Dirac fermions N . Since these new fields are color-triplets they can be

pair-produced directly at the LHC via gluons (see Fig. 4.1). This is a notable difference

g

g

ζ−1/3

ζ−1/3

g

g

g

ζ−1/3

ζ−1/3

Figure 4.1: Feynman diagrams for squark pair-production.

from the previous scotogenic model in Section 4.2, in which the main particles of interest
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were produced electroweakly. While the flavor structure is fixed by the chosen symmetry, a

specific pattern for the Yukawa couplings has been assumed [5]:

L = f(d̄RN1L + s̄RN2L)ζ−1/3 + f
′
(ēRN1L + µ̄RN2L)χ− + h.c., (4.13)

where it is also assumed that mζ > mN2 > mχ > mN1 , so that N1 is the DM candidate and

N2 decays into N1 through χ. As mentioned, any of the scalar color-triplets can be pair-

produced at the LHC from gluons, and each ζ can decay to a strange quark and a neutral

fermion (N2), or a down quark and a neutral fermion (N1) due to the Yukawa couplings

in Eq. 4.13. Subsequently, any N2’s will decay through χ to µ±e∓N1. The free quarks (s

and d) will hadronize, and be seen as jets in the detector, and N1 will appears as missing

energy (Emiss
T ). Generically this allows several signatures at the LHC:

1. 2 jets + Emiss
T

2. 2 jets + opposite-sign opposite-flavor (OSOF) dileptons + Emiss
T

3. 2 jets + four leptons (OSOF) + Emiss
T

Since the model above produces several qualitatively distinct signatures, and can

be strongly produced, there is a potential for a novel signature at the LHC. As mentioned,

the color-triplet ζ behaves as a squark, so it couples to gluons but in the scotogenic model

there is no gluino and the squark-analogs do not couple to to quarks except through Eq. 4.13

which always involves N1,2,3. As such, the branching fractions of ζ → dN1 and ζ → sN2 are

roughly equal, and are set to 0.5 for the purposes of the analysis here and in Ref. [5]. The

mass of the charged scalar χ is constrained to be greater than 70 GeV from LEP data [101].

After analyzing the model with a range of masses, it is found [5] that the best scenarios of

optimizing the ratio of the cross sections of the signal divided by background under various

cuts are those for mN2 = 400 GeV and mχ = 200 GeV. Thus the choice of the specific mass

scheme of mζ > mN2 > mχ > mN1 , as already mentioned.

To analyze the phenomenology of this model in more detail, the model is imple-
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mented in CalcHEP [91] to generate parton-level events using the CTEQ6M PDFs [110],

which are then analyzed with PYTHIA 8 [92,93] to produce leading-order (LO) results. The

LO production cross section of the squark analogs (hereby referred to simply as squarks)

is verified through the Feynrules [111] interface with Madgraph 5 [90], producing a cross

section consistent with CalcHEP. Whereas the main signature of this model is distinct from

that of SUSY squarks, there are simplified SUSY models with only one light family of squark

and the gluinos decoupled (called simplified topologies) which have the same production

cross section as the squarks analogs analyzed in this work. Most importantly, the masses

excluded by the LHC are much lower for such models as seen in Fig. 4.2. This scenario is

used for the expected 13 TeV data where the production cross sections of the squarks are

compared to simplified topology models of SUSY squarks, which are calculated at Next-

To-Leading-Order (NLO) and Next-Leading-Log (NLL) from Ref. [112]. The comparison of

the LO calculation to these results is used to obtain a scale factor in order to approximate

the NLO contributions to the squark production by scaling the cross-sections calculated

in CalcHEP. For the opposite-sign opposite-flavor dilepton events, the main background

is from tt̄ pairs. This is different from the case of same-flavor leptons — a generic SUSY

signature — which has significant contribution from Drell-Yan production [113]. For the ex-

pected 13 TeV data, only the tt̄ background is generated with CalcHEP, using a k-factor to

scale to the NLO production cross section for tt̄ [114], which is then analyzed with PYTHIA

8.

In addition to the opposite-sign opposite-flavor dilepton + 2 jets + Emiss
T signature,

it is also possible for each squark to decay directly to DM and a quark, thus producing two

jets and missing energy, without any lepton. As a result, SUSY searches at 7 TeV and 8

TeV for this signature in simplified SUSY topologies offer useful constraints on the model

in Ref. [5]. The searches at 8 TeV [115] are presented in Fig. 4.2. For the current model,

the 7 TeV (not shown) and 8 TeV (Fig. 4.2) data are taken into account by ensuring the

cross section for ζ decaying directly to dN1 is lower than the upper limit observed at the

LHC for a single squark (in a simplified topology) decaying directly to a quark + LSP. After
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these constraints are taken into account, the results from the 7 TeV [116] and 8 TeV [113]

searches looking for events with 2 leptons, 2 jets, and missing energy do not provide any

further constraints. Additionally, it is possible for the squark to be produced through a
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Figure 4.2: Results of squark searches at LHC through quark + LSP at 8 TeV from CMS-
PAS-SUS-13-019.

t-channel process directly with DM producing a monojet signal, however this production

cross section is a smaller contributor to an LHC signal than the dijet + Emiss
T . Such a

monojet + Emiss
T signature for DM has been investigated in a model independent way (see

Refs. [117–120]). When considering the monojet signature, the upper bound of allowed

events in the 8 TeV data [118] are taken into account at LO if a squark mass above 400

GeV is assumed. Additionally, studies of DM that can interact with a colored scalar have

investigated the constraints from relic abundance and direction detection of DM, which are

potentially more restrictive than the LHC [117,119,120]. In particular, XENON100 is able

to probe down to 10−45 cm2 for a DM mass of 100 GeV [120], which would rule out much
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of the parameter space if f is of order unity. However, to yield the proper down quark mass

a value of f ≈ 0.01 must be used and the spin dependent, direct detection, cross section

for Dirac fermion dark matter [120] can be of order 10−45 cm2 for a squark mass of 400

GeV and a DM mass of 100 GeV. Calculating the relic density for DM that can interact

with quarks via the squark following Ref. [120] yields an incorrect value for ΩN1h
2 unless

f > 0.5. Unlike the model in Ref. [120], the scotogenic model has additional contributions to

annhilation particularly through the exchange of the dark scalar doublet η and the charged

singlet χ. Using MicrOMEGAs [121] to implement the Yukawa couplings of N1 with ζ and

χ indicates that the correct relic density can be reproduced with a choice of f ≈ 0.01 and

f ′ ≈ 0.5. While f is required to produce the correct quark masses, the lepton masses are

determined by two separate Yukawa couplings f ′ and the connection between the leptons

and η [33]. Note this calculation has not taken into consideration the potential contributions

to the relic density originating from the dark scalar doublet, which may reduce the size of

f ′; for the purposes of the collider searches the branching fraction of N2 to e and µ being

equal is more important than the absolute size of f ′. Additionally, the LUX constraints on

DM searches should be taken into account, however the spin-independent cross-section for

mζ = 750 GeV and mN1 = 160 GeV produced in MicrOMEGAs is found to be well below

the 2014 LUX limit [40].

For the analysis of potential signatures at the 13 TeV LHC, six cuts are applied

to the signal and background events in PYTHIA, with four of the cuts corresponding to

the cut regions from Ref. [116], while the last two cut regions are found to be effective for

the scotogenic model [5]. All of the six cuts are described in Table 4.3 below, with the

resulting tt̄ decay cross section in each cut region. Each cut is implemented in PYTHIA

8 and applied to both the signal events, and the background events from tt̄ decays. A

signal-to-background (SB) ratio of the resulting cross sections is calculated for each choice

of squark and DM mass. In Figs. 4.3 and 4.4 the regions in which the choice of DM mass

and squark mass satisfies SB > 5 for various cuts are shown. Two of the cut regions, R1

and R4, do not have any mass choice for which SB > 5, and so do not appear in Figs. 4.3
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and 4.4.

Cut: Emiss
T HT pj

T (pl
T ) |ηj| upper-limit |η| e (µ) upper-limit σcut (fb)

R1 275 300 30 (20) 3.00 2.40 (2.50) 10.0
R2 200 600 30 (20) 3.00 2.40 (2.50) 0.5
R3 275 600 30 (20) 3.00 2.40 (2.50) 0.4
R4 200 > 125, < 300 30 (20) 3.00 2.40 (2.50) 33.1
R5 200 350 30 (20) 3.00 2.40 (2.50) 7.1
R6 200 350 150 (25) 3.00 2.40 (2.50) 1.2

Table 4.3: Cuts applied to the signal and background for opposite-sign opposite-flavor
dileptons + 2 jets + missing energy (Emiss

T ).

As seen in Figs. 4.3 and 4.4, the cuts R5 and R2 allow fewer mass choices to have

a large SB ratio. This can be understood after consulting the resulting background cross

sections in Table 4.3, which show that the background cross section for these cuts are larger

than the cuts R6 and R3, so while fewer background events survive these more stringent

cuts, the background events are cut down even further producing the results seen in Figs.

4.3 and 4.4. Based on the results from Ref. [5], the model discussed in this thesis has the
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Figure 4.3: Masses for N1 and ζ that yield a signal-to-background ratio larger than 5 under
the R2 and R3 cuts described in Table 4.3
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Figure 4.4: Masses for N1 and ζ that yield a signal-to-background ratio larger than 5 under
the R5 and R6 cuts described in Table 4.3

potential to be observed at the LHC during the 13 TeV run, and has a signature distinct

from SUSY. The major difference between this model and SUSY is that the signature is

produced solely in the opposite-flavor channel, however, same-sign searches use the opposite-

flavor events to estimate the flavor symmetric background [113], and subtract it from the

observed same-sign background to obtain a signal for SUSY [113]. Given a similar search

strategy, our model would predict a significant negative signal in same-flavor searches. As

a result, any large, positive, signal in the same-flavor channel could potentially rule out or

heavily constrain our model. For example the mass choices that produce large SB ratios

would be ruled out in such a scenario. In addition, searches at 13 TeV for ζ decaying

directly to dN1 will provide further constraints. With the full results of the 8 TeV run,

a more detailed analysis to determine the full extent that SUSY searches constrain the

scotogenic model is warranted.
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Chapter 5

Summary and Discussion

The discovery of θ13 being non-zero [47, 48] has opened the question: what, if

any, flavor symmetry is the correct one to explain neutrino oscillation and flavor structure.

Additionally, the discovery of a SM-like Higgs boson of 125 GeV [7, 8] has made the sco-

togenic mechanism first proposed in 2006 [32] to be of particular interest as it naturally

accommodates flavor structure without the need for many additional scalars.

In Chapter 3, four models of neutrino oscillation have been analyzed, where the

use of D7 symmetry in a non-scotogenic model is easily contrasted with three examples of

scotogenic models with various symmetries. The first scotogenic model considered connects

the neutrino mass matrix to a neutral fermion mass matrix which had been studied previ-

ously in a non-scotogenic context, however the scotogenic model complicated the analysis of

the neutrino mass mixing by the introduction of a logarithmic term which allowed different

neutrino mass hierarchies and predictions that differed from the non-scotogenic neutrino

mass texture. Before θ13 was known to be non-zero, two non-scotogenic models using the

∆(27) flavor symmetry had predicted theta13 6= 0, and it was shown in Section 3.3 how both

structures of neutrino mass matrix could be reproduced in either the minimal scotogenic

model, or an extended scotogenic model where the dark symmetry is promoted to a U(1)D

gauge symmetry (which could remain exact or be subsequently broken spontaneously). And

lastly, a non-minimal scotogenic model with µ− τ interchange symmetry was investigated
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for the case when the ratio of the µ and τ Yukawa coupling constants was no-longer set to

unity.

In Chapter 4, the collider signatures for a scotogenic model using an A4 flavor

symmetry and a mass scheme with a warm dark matter candidate was investigated,

illustrating that the signature would be hard to distinguish from the SM background

coming from W bosons. In the subsequent section a scotogenic mechanism that also

incorporated quark and lepton mass, and utilizing a generic flavor symmetry to give a

particular flavor structure of the Yukawa couplings, was investigated. The constraints

from existing searches for SUSY were compared to such a model, and constraints from

generic models of DM with a strongly coupled mediator were also considered. After

considering these constraints, and simulating the scotogenic signal, it was found that for

particular choice of masses a signal could potentially be found at the LHC run that is

currently underway at a center of mass energy of 13 TeV. With the recent release of the

full 8 TeV SUSY searches, it was also suggested that further analysis of the scotogenic

model is warranted.
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Appendix A

Scotogenic Loop Calculation

The loop generation of neutrino mass is guaranteed to be finite, but counting

the superficial degree of divergence of the diagrams leads one to believe that these should

diverge. However, as stated in the body of the thesis, there is a mass splitting between the

scalar degrees of freedom and thus the loop cancels. In order to calculate the loop from the

scotogenic diagram in Fig. A.1, it is necessary to first re-draw the diagram. The literature

usually displays the diagram in a way so that the nature of the five dimensional operator

is manifest, but when calculating the loop it is crucial to only use the mass eigenstates of

the problem. As such the diagram that the loop comes from can be re-drawn as seen in

νi νjNk

η0 η0

〈φ0〉 〈φ0〉

×

Figure A.1: The minimal scotogenic mechanism.
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ν νNk

η0R, η
0
I

Figure A.2: Scotogenic loop diagram using mass eigenstates

Fig. A.2, and this diagram results in the integral of the form:

I =
∑
k

∫
d4k

(2π)4
(/k +mNk)

[
i

(k2 −m2
Nk

)(k2 −m2
R)
− i

(k2 −m2
Nk

)(k2 −m2
I)

]
(A.1)

=
∑
k

∫
d4k

(2π)4
i(/k +mNk)

[
m2
R −m2

I

(k2 −m2
Nk

)(k2 −m2
R)(k2 −m2

I)

]

To perform this integral, the propagators will be combined following the Feynman parameter

prescription (see Ref. [122]). For n propagators (labeled An), each copied mi times in the

denominator, we can use the following general formula [122]:

1

Am1
1 Am2

2 . . . Amnn
=

∫ 1

0
dx1 . . . dxnδ

(∑
xi − 1

) Πxmi−1
i

(
∑
xiAi)

∑
mi

Γ(
∑
mi)

Γ(m1) . . .Γ(mn)
(A.2)

The above integral can thus be re-written (after taking into account the Dirac delta func-

tion):

I =
∑
k

i(m2
R −m2

I)

∫
d4k

(2π)4
(/k +mNk)

∫ 1

0
dx

∫ 1−x

0
dyΓ(3)

× (x(k2 −m2
Nk

) + y(k2 −m2
R) + (1− x− y)(k2 −m2

I))
−3
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Rearranging the denominator:

I = 2
∑
k

i(m2
R −m2

I)

∫ 1

0
dx

∫ 1−x

0
dy

∫
d4k

(2π)4

/k +mNk

(k2 −∆)3
,

where ∆ = x(m2
Nk
−m2

I) + y(m2
R −m2

I) +m2
I

The integral over /k goes to zero by symmetry. Using a Wick rotation (k0 = il0 so that

k2 → −l2) the integral over k can be performed in a four-dimensional spherical space:

I = 2
∑
k

mNk(m2
R −m2

I)

(2π)4

∫ 1

0
dx

∫ 1−x

0
dy

∫
l3dldΩ

1

∆3(1 + l2/∆)3

= 2
∑
k

mNk(m2
R −m2

I)

(2π)4

∫ 1

0
dx

∫ 1−x

0
dy

∫
2π2 l3dl

∆3(1 + l2/∆)3

=
∑
k

mNk(m2
R −m2

I)

4π2

∫ 1

0
dx

∫ 1−x

0
dy

∫ π
2

0
∆−1 cos θ sin3 θdθ

=
∑
k

mNk(m2
R −m2

I)

16π2

∫ 1

0
dx

∫ 1−x

0
dy

1

x(m2
Nk
−m2

I) + y(m2
R −m2

I) +m2
I

=
∑
k

mNk(m2
R −m2

I)

16π2

∫ 1

0
dx log

[
x(m2

Nl
−m2

R) +m2
R

x(m2
Nk
−m2

I) +m2
I

]

The final integral can be performed by taking the derivative under the integral sign, and

the final result — with Yukawa couplings hij — is:

I =
∑
k

hikhjkmNk

16π2

[
m2
R

m2
R −m2

Nk

log(m2
R/m

2
Nk

)− m2
I

m2
I −m2

Nk

log(m2
I/m

2
Nk

)

]
(A.3)

The above is the full solution to the basic scotogenic model, but there are several key ap-

proximations that have also been considered in the literature. As stated, the mass splitting

from the real and imaginary components of η are related to λ5 ( m2
R−m2

I = 2λ5v
2). If this

splitting is small compared to m0 = (m2
R +m2

I)/2 then Eq. A.3 can be re-written:
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Mij ≈
∑
k

hijhjk
mNk

16π2

[
m2

0 + λ5v
2

(m2
0 −m2

Nk
)

log(m2
I)− log(m2

R)
m2

0 − λ5v
2

(m2
0 −m2

Nk
)

]

−
∑
k

hijhjk
mNk

16π2

[
25v

2

m2
0 −m2

Nk

log(m2
Nk

)

]

=
∑
k

hijhjk
mNk

16π2(m2
0 −m2

Nk
)

[
2λ5v

2(−log(m2
Nk

) + log(m2
0)) +m2

0(log(m2
I/m

2
R))
]

The log(m2
I/m

2
R) term is written in terms of this mass splitting yielding log

[
1+λ5v2

1−λ5v2
]

and

expanded (λ5v
2 � m2

0). Substituting this expression into Mij yields:

Mij =
∑
k

hijhjk
λ5v

2mNk

8π2(m2
0 −m2

Nk
)

[
1−

M2
Nk

m2
0 −m2

Nk

log

(
m2

0

m2
Nk

)]
(A.4)

This form of the scotogenic mass was first considered in Ref. [32]. Additionally, if m2
0 �M2

k

then Eq. A.3 can be simplified:

Mij ≈
∑
k

hijhjk
mNk

16π2

[
m2

0 + λ5v
2

(−m2
Nk

)(1−m2
R/m

2
Nk

)
(log(m2

R)

]

−
∑
k

hijhjk
mNk

16π2

[
log(m2

Nk
))− (log(m2

I)− log(m2
Nk

))
m2

0 − λ5v
2

(−m2
Nk

)(1−m2
I/m

2
Nk

)

]

=
∑
k

hijhjk
mNk

16π2

[
2λ5v

2(log(m2
Nk

)− log(m2
0))−m2

0(log(m2
I/m

2
R))
]

Just as for Eq. A.4, the log(m2
I/m

2
R) yields

Mij =
∑
k

hijhjk
λ5v

2

8π2mNk

[
log

(
m2
Nk

m2
0

)
− 1

]
. (A.5)
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This results in a seesaw like neutrino mass, modified by a log term, and is thus called the

radiative seesaw where deviations from a typical seesaw mechanism come in the form of the

logarithmic corrections. An analysis of a particular implementation of this mass-scheme

is discussed in Ref. [1]. If the splitting is taken to be small, but m2
0 � m2

Nk
, Eq. A.3 is

approximated by a straightforward seesaw equation:

Mij =
∑
k

hijhjk
λ5v

2

8π2

mNk

m2
0

(A.6)

As pointed out in Ref. [123], if we do not make assumptions about the splitting between

m2
R and m2

I , but rather assume m2
Nk
� m2

R,m
2
I , then Eq. A.3 is approximately

Mij =
∑
k

hijhjk
log(m2

R/m
2
I)mNk

16π2
, (A.7)

which results in an inverse seesaw mechanism in order to generate small neutrino mass, and

is implemented and analyzed in Ref. [3].
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Appendix B

Inverse Scotogenic Loop

Calculation

To illustrate how the mass is calculated for the scotogenic mechanism depicted in

Fig. B.1 and analyzed in Ref. [6], the amplitude will be written out explicitly in terms of

fields, and then contracted in order to carefully take into account the chirality of particles

within the loop and properly deal with the Majorana mass terms that complete the loop.

The Yukawa term generating the mass is fsĒ0
RνL, which can be re-written using the chirality

projection operators defined as:

PR =
1 + γ5

2
(B.1)

PL =
1− γ5

2
. (B.2)

To generate the mass term ν̄cν, the amplitude is given by the contribution from the mR

mass insertion

〈out | (ν̄cPLEcRs)(mRN̄
c
RNR)(sĒRPLν) | in〉, (B.3)
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and the contribution from the mL mass insertion

〈out | (ν̄cPLEcRs)(mLN̄
c
LNL)(sĒRPLν) | in〉, (B.4)

where the external momentum is set to zero, the Yukawa coupling constant f2 has been set

to 1 and the integral over the loop momentum k has been omitted for notational simplicity.

Note that there is no factor of 1/2 in the mass insertions; this is to properly take into account

either the two possible Majorana contractions due to the Majorana mass or a definition of

the Feynman rules for the mass insertion that properly takes this into account. The mass

ν νs

N N×
E0E0

φ0φ0

Figure B.1: The scotogenic mechanism for inverse seesaw neutrino mass.

eigenstates are actually given by ω1,2 which are related to ER,L and NR,L via

N(R,L)

E(R,L)

 =

 cos θ(R,L) sin θ(R,L)

− sin θ(R,L) cos θ(R,L)


ω1

(R,L)

ω2
(R,L)

 . (B.5)

Using the notation that cos θR,L = cR,L and sin θR,L = sR,L then the amplitude becomes

〈out | [ν̄cPL(cRω
c
2− sRωc1)s] [mR(cRω̄

c
1 + sRω̄

c
2)PR(cRω1 + sRω2)] [s(cRω̄2− sRω̄1)PLν] | in〉,

for mR and

〈out | [ν̄cPL(cRω
c
2 − sRωc1)s] [mR(cLω̄

c
1 + sLω̄

c
2)PL(cLω1 + sLω2)] [s(cRω̄2 − sRω̄1)PLν] | in〉,
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for mL. As described in many Quantum Field Theory books, and in particular Ref. [122],

we now perform the contracts of the fields ω1,2 where the non-zero contractions are of the

following form for the mR component

〈out | [ν̄cPL(cRω
c
2− sRωc1)s] [mR(cRω̄

c
1 + sRω̄

c
2)PR(cRω1 + sRω2)] [s(cRω̄2− sRω̄1)PLν] | in〉,

and for the mL component of the form

〈out | [ν̄cPL(cRω
c
2 − sRωc1)s] [mL(cLω̄

c
1 + sLω̄

c
2)PL(cLω1 + sLω2)] [s(cRω̄2 − sRω̄1)PLν] | in〉.

These contractions yield the usual fermion propagator in momentum space

Di = ωiω̄i = ωci ω̄
c
i =

i(/k +mi)

k2 −m2
i

, (B.6)

while the contraction of s yields the usual scalar propagator

Ds =
i

k2 −m2
s

. (B.7)

For the mR the propagators are thus

c2
Rs

2
RPL(D1PRD1 −D1PRD2 −D2PRD1 +D2PRD2)PL, (B.8)

which can be simplified via

PLDiPRDjPL = PL
/k +mi

k2 −m2
i

PR
/k +mj

k2 −m2
j

PL (B.9)

= PL
/k

k2 −m2
i

/k

k2 −m2
j

PL (B.10)

= PL
k2

(k2 −m2
i )(k

2 −m2
j )
PL, (B.11)
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Applying the PL operators to either ν or ν̄c, and using Eq. B.11, allows Eq. B.8 to be

further simplified

= c2
Rs

2
Rk

2

(
1

(k2 −m2
1)2

+
1

(k2 −m2
1)2
− 2

(k2 −m2
1)(k2 −m2

2)

)
(B.12)

= c2
Rs

2
R

k2

(k2 −m2
1)2(k2 −m2

2)2

(
(k2 −m2

1)2 + (k2 −m2
2)2 − 2(k2 −m2

1)(k2 −m2
2)
)

(B.13)

= c2
Rs

2
R

k2

(k2 −m2
1)2(k2 −m2

2)2

(
m4

1 +m4
2 − 2(m2

1m
2
2)
)
. (B.14)

Taking into account the Yukawa couplings, the common factor of Ds, and the integral over

the loop momentum k yields the final contribution to mν from the insertion of mR:

mR
ν = f2mR cos2 θR sin2 θR(m2

1 −m2
2)2

∫
d4k

(2π)4

k2

(k2 −m2
s)(k

2 −m2
1)2(k2 −m2

2)2
. (B.15)

For the mL contribution:

PL(s2
Rc

2
LD1PLD1 − cRsRcLsLD1PLD2 − cRsRcLsLD2PLD1 + c2

Rs
2
LD2PLD2)PL, (B.16)

where

PLDiPLDjPL = PL
/k +mi

k2 −m2
i

PL
/k +mj

k2 −m2
j

PL (B.17)

= PL
mimj

(k2 −m2
i )(k

2 −m2
j )
. (B.18)
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After taking into account Yukawa couplings, and the common factor of Ds and the integral

over the loop momentum k yields the final contribution to mnu from mL:

mL
ν = f2mL sin2 θR cos2 θLm

2
1

∫
d4k

(2π)4

1

(k2 −m2
s)(k

2 −m2
1)2

+ f2mL cos2 θR sin2 θL

∫
d4k

(2π)4

1

(k2 −m2
s)(k

2 −m2
2)2

− 2f2mL cos θR sin θR cos θL sin θL

∫
d4k

(2π)4

1

(k2 −m2
s)(k

2 −m2
1)(k2 −m2

2)

(B.19)

As a result the total mν is given by Eq. 3.87 from Ref. [6]:

mν = f2mR cos2 θR sin2 θR(m2
1 −m2

2)2

∫
d4k

(2π)4

k2

k2 −m2
s

1

(k2 −m12)2

1

(k2 −m22)2

+ f2mLm
2
1 cos2 θR sin2 θL

∫
d4k

(2π)4

1

k2 −m2
s

1

(k2 −m11)2

+ f2mLm
2
2 sin2 θR cos2 θL

∫
d4k

(2π)4

1

k2 −m2
s

1

(k2 −m22)2

− 2f2mLm1m2 cos θR sin θR cos θL sin θL

∫
d4k

(2π)4

1

k2 −m2
s

1

k2 −m12

1

k2 −m22

(B.20)
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Appendix C

Group Theory

C.1 Review of Group Theory

In this Appendix, I summarize the basic facts of group theory without proof, for

useful proofs see [84,124–127]. A set, G, is a group if it satisfies the following properties:

1. Closure: Given any two elements of G such that a, b ∈ G, then ab = c ∈ G [84,124,125]

2. Associativity: Given a, b, c ∈ G then (ab)c = a(bc) [84,124,125]

3. Identity: The set G includes an element, e, such that for any a ∈ G then ae = ea =

a. [84,124,125]

4. Inverse: For any a ∈ G there exists an element, a−1, such that aa−1 = a−1a = e.

[84, 124,125]

Any set that satisfies all of the above criteria is hereto referred to, simply, as a group. It is

useful to quickly list some of the basic properties of groups:

• Order: the order of a group, G, is defined as the number of elements in G. Elements

in G can also have an order if there exists some number, x, such that ax = e [84,124]
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• Abelian: A group, G, is called Abelian if any element a, b ∈ G satisfies ab = ba (ie G

is Abelian if every element commutes with every other element). If a group does not

satisfy this, it is called non-Abelian [84, 124].

• Subgroup: A group, H, is a subgroup of group G if every element in H is also in G

and if the order of H is a factor of the order of G [84, 124].

• Conjugate: Elements in a group, a, b ∈ G, are called conjugate elements if there

exists some element, c ∈ G, such that c−1ac = b [84, 124].

• Conjugacy Class: Conjugacy class is the set of all elements conjugate to an element,

a ∈ G. That is, the set of all c such that c−1ac,∀c ∈ G [84, 124].

There are many additional properties beyond these rudimentary features, and group the-

ory is a wide and rich topic of mathematical inquiry. One of the more interesting aspects

of groups is known as the representation of a group. A representation of a group is a

one-to-one mapping of elements of the group G onto matrices and is denoted as D(g) for

g ∈ G, and any representation D(g) also satisfies the properties of a group (i.e. closure,

associativity, identity, inverse, and whether or not the matrix representations of group ele-

ments commute or not) [84, 124, 126, 127]. The vector space that these matrices, D(g), act

on is known as the representation space, and the dimension of the representation space

is equal to the dimension of the representation. If we take a vector from the representation

space of D(g), and if D(g) acting on a vector from the subspace produces another vector

in that same subspace, then the representation is referred to as reducible [84]. An irre-

ducible representation is thus a representation where there is no such invariant subspace.

In short, these properties allow us to write any reducible representation of the group G

as a direct sum of irreducible representations. This has a familiar application in the form

Young tableau [124], which allows us to write products of non-Abelian continuous groups

as sums of irreducible representations. A similar decomposition also exists for products of

discrete group representations, but the finite number of elements reduces these rules to a
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handful. Additionally, the character of a representation can be defined as the trace of the

representation of an element of the group [84,124,126,127]

χi(g) = tr(Di(g)), (C.1)

which also obey an orthogonality relation

∑
χα(gi)χ

∗
β(gj) = δijδαβ

NG
ni
, (C.2)

where α and β represent different representations of the form Dα(gi), NG is the order of the

group G, and ni are the number of elements in the conjugacy class Ci for element gi. The

orthogonality relation in Eq. C.2 necessarily implies that elements in the same conjugacy

class will have the same character for a particular dimension of representation [84], and also

leads to the following relation [84,124]:

∑
α

χ2
α(C) =

∑
n

mnn
2 = NG , (C.3)

where n is the dimensionality of the representation, and mn is the dimensionality of the

representation that must satisfy
∑
n

mn = NC , where NC is the number of conjugacy classes.

Thus, using these relations and knowing the order of the group it is possible to determine

the dimensionality of representations of the discrete group. An interesting result, quoted

without proof, is that the number of irreducible representations is equal to the number of

conjugacy classes [84].

C.2 Non-Abelian Discrete Groups

All of the non-Abelian discrete groups discussed in this thesis are finite subgroups

of SU(3), and many of these can be organized into the ”dihedral-like” [126] subgroups

labeled either as ∆(3n2) or ∆(6n2) where ∆(12) is isomorphic to A4 (for n= 2 and ∆(3n2))
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and ∆(6) is isomiorphic to S4 (for n =1 and ∆(6n2)) [84,126]. For a general n in ∆(3n2) and

∆(6n2) the conjugacy classes, character tables, and multiplication rules have been worked

out in full detail in, for instance, Refs. [84, 127]. For the purposes of this brief review, the

smallest non-Abelian discrete group, S3, will be worked out in some detail followed by a

general discussion of the discrete groups relevant to the work in this thesis.

C.3 S3

The non-Abelian discrete group S3 is the set of all permutations among three

objects, with each element representing a distinct permutation of three objects as illustrated

below [84,124]:

e1 : (a1, a2, a3)→ (a1, a2, a3)

e2 : (a1, a2, a3)→ (a2, a1, a3)

e3 : (a1, a2, a3)→ (a3, a2, a1)

e4 : (a1, a2, a3)→ (a1, a3, a2)

e5 : (a1, a2, a3)→ (a3, a1, a2)

e6 : (a1, a2, a3)→ (a2, a3, a1)

Note that the element e1 can be considered the identity element for this group. The mul-

tiplication of the above 6 elements are closed under multiplication in that the maps occur

additively, so that e3e4 yields the permutation

e3e4 : (a1, a2, a3)→e3 (a3, a2, a1)→e4 (a3, a1, a2) = e5. (C.4)

90



Because of this property of closure, these elements can be re-written as the set [84,124]

e, a, b, ab, ba, bab, (C.5)

where e is the identity, a = e2, b = e3, and in this representation the elements a and ab

correspond to reflections across a triangle and rotations of 2π/3 respectively. As such, the

three conjugacy classes can be classified as [84,124]

C1 : e, C2 : ab, ba, C3 : a, b, bab, (C.6)

now that the conjugacy classes are determined, the character table is determined by applying

the orthogonality relationship between characters from Eq. C.3, yielding [84,124]:

Conjugacy Class Elements χ1 χ1 χ2

C1 1 1 1 2
C2 3 1 1 -1
C3 2 1 -1 0

Table C.1: Character table for S3.

For Physicists, what is most relevant is how to write products of vectors with

various assignments under the non-Abelian group in a way that forms a trivial singlet.

Explicitly determining these terms thus yields the relevant terms in a Lagrangian in the

basis where the discrete symmetry is manifest (before it is broken by soft terms or spon-

taneously). In the following sections, a brief description of the group, character tables,

and the multiplication rules are listed in addition to a few explicitly written examples of

applications of these multiplication rules. rules and character tables.

C.4 A4

The alternating group of four elements, or A4, is the group made of all even permu-

tations of the S4 group and is of order 12 [84] and has three one-dimensional representations,
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and one three-dimensional representation. Utilizing the properties outlined in previous sec-

tions, the character table and multiplication rules are worked out. For specific details see

Ref. [84].

C.4.1 Character Table

Conjugacy Class Elements h χ1 χ1′ χ1′′ χ3

C1 1 1 1 1 1 3
C2 4 3 1 ω ω2 0
C3 4 3 1 ω2 ω 0
C4 3 2 1 0 0 -1

Table C.2: Character table of A4.

C.4.2 Multiplication Rules

The multiplication rules for A4 are

3× 3 = 1 + 1′ + 1′′ + 31 + 32, (C.7)
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which can be written explicitly given A = (A1, A2, A3) ∼ 3, and B = (B1, B2, B3) ∼ 3:

1 : A1B1 +A2B2 +A3B3 (C.8)

1′ : A1B1 + ωA2B2 + ω2A3B3 (C.9)

1′′ : A1B1 + ω2A2B2 + ωA3B3 (C.10)

31 :


A2B3 +A3B2

A3B1 +B3A1

A1B2 +B1A2

 (C.11)

32 :


A2B3 −A3B2

A3B1 −B3A1

A1B2 −B1A2

 (C.12)

(C.13)

C.5 D7

The dihedral group of seven elements, or D7, is the symmetry of a heptagon [2,79]

which is the seven sided regular polygon (see Ref. [84] for more general dihedral groups)

and it has two one-dimensional representations, and three two-dimensional representations.

C.5.1 Character Table

The character table for D7 is:

Conjugacy Class Elements h χ1 χ1′ χ21 χ22 χ23

C1 1 1 1 1 2 2 2
C2 7 2 -1 1 0 0 0
C3 2 7 1 1 a1 a2 a3

C4 2 7 1 1 a2 a3 a1

C5 2 7 1 1 a3 a1 a2

Table C.3: Character Table for D7.
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C.5.2 Multiplication Rules

The multiplication rules for D7 are:

1′ × 1′ = 1 (C.14)

1′ × 2i = 2i (C.15)

2i × 2i = 1 + 1′ + 2i+1 (C.16)

2i × 2i+1 = 2i + 2i+2. (C.17)

These can be written explicitly given A = (A1, A2) ∼ 21, and B = (B1, B2) ∼ 21:

1 : A1B2 +A2B1 (C.18)

1′ : A1B2 −A2B1 (C.19)

22 :

A1B1

A2B2

 , (C.20)

and given C = (C1, C2) ∼ 22 then A×C yields

21 :

A2C1

A1C2

 (C.21)

23 :

A2C2

A1C1

 . (C.22)

C.6 ∆(27)

The ∆(27) group is a dihedral-like group of ∆(3n2) for n = 3, and has nine

one-dimensional representations, and two three-dimensional representations. The character

table, multiplication rules, and some relevant invariants are shown below.

94



C.6.1 Character Table

The character table for ∆(27), following the notation in Ref. [67] is:

Class Elements h χ11 χ12 χ13 χ14 χ15 χ16 χ17 χ18 χ19 χ3 χ3̄

C1 1 1 1 1 1 1 1 1 1 1 1 3 3
C2 1 3 1 1 1 1 1 1 1 1 1 3ω 3ω2

C3 1 3 1 1 1 1 1 1 1 1 1 3ω2 3ω
C4 3 3 1 ω ω2 1 ω2 ω 1 ω ω2 0 0
C5 3 3 1 ω2 ω 1 ω ω2 1 ω2 ω 0 0
C6 3 3 1 1 1 ω2 ω2 ω2 ω ω ω 0 0
C7 3 3 1 ω ω2 ω2 ω 1 ω ω2 1 0 0
C8 3 3 1 ω2 ω ω2 1 ω ω 1 ω2 0 0
C9 3 3 1 1 1 ω ω ω ω2 ω2 ω2 0 0
C10 3 3 1 ω2 ω ω ω2 1 ω2 ω 1 0 0
C11 3 3 1 ω ω2 ω 1 ω2 ω2 1 ω 0 0

Table C.4: Character Table for ∆(27).

C.6.2 Multiplication Rules

The multiplication rules for ∆(27) are

3× 3 = 3̄1 + 3̄2 + 3̄3 (C.23)

3̄× 3̄ = 31 + 32 + 33 (C.24)

3× 3̄ =
9∑
i=1

1i, (C.25)

For the nine one-dimensional representations the multiplication rules are best labeled as in

Table C.5 which allows the rules to be written as

1i 11 12 13 14 15 16 17 18 19

1n,m: 10,0 11,0 12,0 10,1 11,1 12,1 10,2 11,2 12,2

Table C.5: Alternative notation for ∆(27) singlets.
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1i,j × 1k,l = 1i+k,j+l. (C.26)

The invariants in Eqs. C.23 and C.25 can be written explicitly given A = (A1, A2, A3) ∼ 3,

B = (B1, B2, B3) ∼ 3, and C = (C1, C2, C3) ∼ 3 (see Ref. [127] for more general discussion):

31 :


A1B1

A2B2

A3B3

 (C.27)

32 :


A3B1

A1B2

A2B3

 (C.28)

33 :


A1B3

A2B1

A3B2

 (C.29)

11 :A1B1C1 +A2B2C2 +A3B3C3 (C.30)

A3B1C2 +A1B2C3 +A2B3C1 (C.31)

A1B3C2 +A2B1C3 +A3B2C1 (C.32)

However, it is possible to make singlet combinations that are symmetric and anti-symmetric

using Eq. C.31 and Eq. C.32 which take the form of

A3B1C2 +A1B2C3 +A2B3C1 ± (A1B3C2 +A2B1C3 +A3B2C1), (C.33)

writing this in the notation used in Ref. [67] this becomes

123 + 231 + 312± (213 + 321 + 132). (C.34)

96



The invariance under ∆(27) is easily checked by writing one of the elements of ∆(27)

explicitly in a 3-dimensional representation and determining how a general A transform.

For a specific choice for the 3-dimensional representation of an element of ∆(27) (see Refs.

[84,127] for some examples) then under ∆(27) the elements of A map A1 → A2, A2 → A3,

A3 → A1 and it is trivially demonstrated that Eq. C.33 is indeed invariant under ∆(27).
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