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PSYCHIATRIC GENOMICS

Shared molecular neuropathology
across major psychiatric disorders
parallels polygenic overlap
Michael J. Gandal,1,2,3,4 Jillian R. Haney,1,2,3 Neelroop N. Parikshak,1,2,3

Virpi Leppa,1,2,3 Gokul Ramaswami,1,2,3 Chris Hartl,1,2,3 Andrew J. Schork,5

Vivek Appadurai,5 Alfonso Buil,5 Thomas M. Werge,5,6,7 Chunyu Liu,8,9

Kevin P. White,10,11 CommonMind Consortium,* PsychENCODE Consortium,*
iPSYCH-BROAD Working Group,* Steve Horvath,3 Daniel H. Geschwind1,2,3†

The predisposition to neuropsychiatric disease involves a complex, polygenic, and
pleiotropic genetic architecture. However, little is known about how genetic variants impart
brain dysfunction or pathology. We used transcriptomic profiling as a quantitative readout
of molecular brain-based phenotypes across five major psychiatric disorders—autism,
schizophrenia, bipolar disorder, depression, and alcoholism—compared with matched
controls. We identified patterns of shared and distinct gene-expression perturbations
across these conditions.The degree of sharing of transcriptional dysregulation is related to
polygenic (single-nucleotide polymorphism–based) overlap across disorders, suggesting
a substantial causal genetic component. This comprehensive systems-level view of the
neurobiological architecture of major neuropsychiatric illness demonstrates pathways of
molecular convergence and specificity.

D
espite remarkable success identifying ge-
netic risk factors for major psychiatric dis-
orders, it remains unknown how genetic
variants interact with environmental and
epigenetic risk factors in the brain to impart

risk for clinically distinct disorders (1, 2). We
reasoned that brain transcriptomes—a quantita-
tive, genome-widemolecularphenotype (3)—would
allow us to determine whether disease-related sig-
natures are shared acrossmajor neuropsychiatric
disorders with distinct symptoms and whether
these patterns reflect genetic risk.
We first analyzed published gene-expression

microarray studies of the cerebral cortex across
five major neuropsychiatric disorders (3–11) using

700 cerebral cortical samples from subjects with
autism (ASD) (n = 50 samples), schizophrenia
(SCZ) (n = 159), bipolar disorder (BD) (n = 94),
depression (MDD) (n = 87), alcoholism (AAD)
(n = 17), and matched controls (n = 293) (12).
These disorders are prevalent and disabling,
contributing substantially to global disease bur-
den. Inflammatory bowel disease (IBD) (n = 197)
was included as a non-neural comparison.
Individual data sets underwent stringent qual-

ity control and normalization (Fig. 1) (12), includ-
ing rebalancing so as to alleviate confounding
betweendiagnosis and biological (such as age and
sex) or technical (such as post mortem interval,
pH, RNA integrity number, batch, and 3′ bias)
covariates (figs. S1 and S2). Transcriptome sum-
mary statistics for each disorder were computed
with a linearmixed-effectsmodel so as to account
for any sample overlap across studies (12). Com-
parison of differential gene expression (DGE) log2
fold change (log2FC) signatures revealed a signif-
icant overlap among ASD, SCZ, and BD and SCZ,
BD, and MDD (all Spearman’s r ≥ 0.23, P < 0.05,
40,000 permutations) (Fig. 2A). The regression
slopes between ASD, BD, andMDD log2-FC effect
sizes compared with SCZ (5.08, 0.99, and 0.37,
respectively) indicate a gradient of transcriptomic
severity with ASD > SCZ ≈ BD > MDD (Fig. 2B).
To ensure robustness, we compared multiple
methods for batch correction, probe summariza-
tion, and feature selection, including use of inte-
grative correlations, none of which changed the
qualitative observations (fig. S3) (12). Resultswere
also unaltered after first regressing gene-level RNA
degradation metrics, suggesting that systematic
sample quality issueswere unlikely to drive these
correlations (fig. S3). Further, the lack of (or nega-
tive) overlap between AAD and other disorders

suggests that similarities are less likely due to
comorbid substance abuse, poor overall general
health, or general brain-related post-mortem
artefacts.
Disease-specific DGE summary statistics (data

table S1) provide human in vivo benchmarks for
determining the relevance of model organisms,
in vitro systems, or drug effects (13, 14). We iden-
tified a set of concordantly down- andup-regulated
genes across disorders (fig. S4) as well as those
with more specific effects. Complement compo-
nent 4A (C4A), the top genome-wide association
study (GWAS)–implicated SCZ disease gene (15),
was significantly up-regulated in SCZ (log2FC =
0.23, P = 6.9 × 10−6) and in ASD [RNA sequenc-
ing (RNA-seq); log2FC = 0.91, P = 0.014] (data
table S1) but not in BD, MDD, or AAD. To in-
vestigate potential confounding by psychiatric
medications, we compareddisease signatureswith
those from nonhuman primates treated with
acute or chronic dosing of antipsychotic medi-
cations. Significant negative overlap (fig. S5) (12)
was observed, indicating that antipsychotics are
unlikely to drive, but rather may partially nor-
malize, these transcriptomic alterations, whereas
the psychotomimetic phencyclidine partially reca-
pitulates disease signatures.
To validate that these transcriptomic relation-

ships are generalizable, we generated indepen-
dent RNA-seq data sets for replication for three
out of the five disorders (fig. S6) (12). We iden-
tified 1099 genes whoseDGE is replicated in ASD
[odds ratio (OR) 6.4,P= 3.3 × 10−236, Fisher’s exact
test] (table S2), 890 genes for SCZ (BrainGVEX;
OR 4.5, P = 7.6 × 10−155), and 112 genes for BD
(BrainGVEX; OR 3.9, P = 4.6 × 10−26), which is
likely due to the relatively smaller RNA-seq sam-
ple size for BD (12). We observed similarly high
levels of transcriptomic overlap amongASD, SCZ,
and BD and a similar gradient of transcriptomic
severity (Fig. 2C and fig. S7). The SCZ and BD pat-
terns were further replicated in the CommonMind
data set, although gene-level overlap was lower
(fig. S7) (12, 16). The ASD signature was qualita-
tively consistent across the four major cortical
lobules, indicating that this pattern is not caused
by regional differences (Fig. 2D).
Tomore specifically characterize the biological

pathways involved,we performed robustweighted
gene coexpression network analysis (rWGCNA)
(12, 17), identifying several shared and disorder-
specific coexpression modules (Fig. 3). Modules
were stable (fig. S8), showed greater association
with disease than other biological or technical
covariates (fig. S9), and were not dependent on
corrections for covariates or batch effects (fig.
S10). Moreover, each module was enriched for
protein-protein interactions (fig. S8) and brain
enhancer-RNA co-regulation (fig. S11) derived
from independent data, which provides anchors
for dissecting protein complexes and regulatory
relationships.
An astrocyte-related module (CD4 and hubs

GJA1 and SOX9) was broadly up-regulated in
ASD, BD, and SCZ [false discovery rate (FDR)–
corrected P < 0.05] (Fig. 3C and data table S2)
(12) and enriched for glial cell differentiation
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Fig. 1. Experimental
rationale and design.
(A) Model of
psychiatric disease
pathogenesis.
(B) Flowchart of
the cross-disorder
transcriptome
analysis pipeline
(12). Cortical gene
expression data
sets were compiled
from cases of ASD
(n = 50 samples),
SCZ (n = 159),
BD (n = 94), MDD
(n = 87), AAD (n = 17),
and matched non-
psychiatric controls
(n = 293) (table S1) (12).
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Fig. 2. Cortical gene
expression patterns
overlap. (A) Rank
order of microarray
transcriptome similarity
for all disease pairs,
as measured with
Spearman’s correlation
of differential expression
log2FC values.
(B) Comparison of
the slopes among
significantly associated
disease pairs indicates a
gradient of transcrip-
tomic severity, with
ASD > SCZ ~ BD > MDD.
(C) Overlapping gene
expression patterns
across diseases are
correlated with shared
common genetic
variation, as measured
with SNP coheritability
(22). The y axis
shows transcriptome
correlations using
microarray-based
(discovery, red) and
RNA-seq (replication,
blue) data sets.
(D) RNA-seq across all
cortical lobes in ASD replicates microarray results and demonstrates a consistent transcriptomic pattern. Spearman’s r is shown for comparison
between microarray and region-specific RNA-seq replication data sets (all P < 10−14). Plots show mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
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and fatty-acidmetabolismpathways. By contrast,
amodule strongly enriched formicroglial markers
(CD11) was up-regulated specifically in ASD (two-
sided t test, FDR-corrected P = 4 × 10−9). Hubs
include canonicalmicroglial markers (HLA-DRA
andAIF1), major components of the complement

system (C1QA and C1QB), and TYROBP, a microg-
lial signaling adapter protein (18). Results fit with
convergent evidence for microglial up-regulation
in ASD and an emerging understanding that mi-
croglia play a critical role regulating synaptic
function during neurodevelopment (19).

One module, CD2, was up-regulated specif-
ically in MDD (FDR-corrected P = 0.009) (data
table S2) and was enriched for G protein–coupled
receptors, cytokine-cytokine interactions, and hor-
mone activity pathways, suggesting a link be-
tween inflammation and dysregulation of the

Gandal et al., Science 359, 693–697 (2018) 9 February 2018 3 of 5

Fig. 3. Network
analysis identifies
modules of coex-
pressed genes across
disease. (A) Network
dendrogram from
coexpression
topological overlap
of genes across
disorders. Color bars
show correlation of
gene expression
with disease status,
biological, and
technical covariates.
(B) Multidimensional
scaling plot demon-
strates relationship
between modules
and clustering by
cell-type relationship.
(C) Module-level
differential expression
is perturbed across
disease states.
Plots show b values
from linear mixed-
effect model of
module eigengene
association with
disease status (FDR-
corrected #P < 0.1,
*P < 0.05, **P < 0.01,
***P < 0.001).
(D) The top 20 hub
genes are plotted
for modules most
disrupted in disease.
A complete list of
genes’ module
membership (kME) is
provided in data
table S2. Edges are
weighted by the
strength of correla-
tion between genes.
(E and F) Modules
are characterized by
(E) Gene Ontology
enrichment (top two
pathways shown for
each module) and
(F) cell-type specific-
ity, on the basis of
RNA-seq of purified
cell populations
from healthy human
brain samples (25).
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hypothalamic-pituitary (HPA) axis, which is con-
sistent with current models of MDD patho-
physiology (20). Several modules annotated as
neuronal/mitochondrial were down-regulated
across ASD, SCZ, and BD (CD1, CD10, and CD13)
(Fig. 3C and data table S2) (12). The overlap of
CD10 with a mitochondrial gene-enriched module
previously associated with neuronal firing rate
(21) links energetic balance, synaptic transmis-
sion, and psychiatric disease (data table S2).
The transcriptomemay reflect the cause or the

consequence of a disorder. To refine potential
causal links, we compared single-nucleotide poly-
morphism (SNP)–based genetic correlations be-
tween disease pairs (22) with their corresponding
transcriptome overlap. SNP coheritability was
significantly correlated with transcriptome overlap
across the same disease pairs (Spearman’s r = 0.79,
95% confidence interval 0.43 to 0.93, P = 0.0013)
(Fig. 2C), suggesting that a major component of
these gene-expression patterns reflects biological
processes coupled to underlying genetic variation.

To determine how disease-associated variants
may influence specific biological processes, we
investigated whether any modules harbor ge-
netic susceptibility for specific disorders or for
relevant cognitive or behavioral traits (12). We
identified significant enrichment among several
of the down-regulated, neuronal coexpression
modules (CD1, CD10, and CD13) for GWAS signal
from SCZ and BD, as well as for educational
attainment and neuroticism (FDR-corrected
P < 0.05, Spearman) (Fig. 4A) (12). We also ob-
served enrichment for the three down-regulated
neuronal coexpression modules in the iPSYCH
Consortium (23) ASD GWAS cohort (Fig. 4A and
table S3) (12). By contrast, thesemodules showed
no enrichment for MDD, AAD, or IBD. Further,
none of themicroglial- or astrocyte-specific mod-
ules showed psychiatric GWAS enrichment. Ex-
tending this analysis to disease-associated rare
variants (data table S3) (2, 12), we found that the
CD1 neuronal module was enriched for genes
harbouring rare, nonsynonymous de novo muta-

tions identified in ASD (OR 1.36, FDR-corrected
P = 0.03, logistic regression) and SCZ cases (OR
1.82, FDR-corrected P = 0.014) but not unaffected
controls (Fig. 4B). A similar CD1-enrichment was
observed for genes affected by rare, recurrent
copy-number variation (CNV) in ASD (OR 2.52,
FDR-corrected P = 0.008) and SCZ (OR 2.46, FDR-
corrected P = 0.014). These results suggest conver-
gence of common and rare genetic variation acting
todown-regulate synaptic function inASDandSCZ.
We next used LD score regression (24) to

partition GWAS heritability (Fig. 4C and data
table S4) into the contribution from SNPs lo-
cated within genes from each module (Fig. 4D)
(12). CD1 again showed significant enrichment
for SCZ (2.5-fold, FDR-corrected P = 8.9 × 10−11),
BD (3.9 fold, FDR-corrected P < 0.014), and
educational attainment (1.9-fold, FDR-corrected
P < 0.0008; c2 test) GWAS, accounting for ~10%
of SNP-based heritability within each data set,
despite containing only 3% of the SNPs. This
illustrates how gene network analysis can begin
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Fig. 4. Down-regulated neuronal modules are enriched for
common and rare genetic risk factors. (A) Significant enrichment is
observed for SCZ-, ASD-, and BD-associated common variants from
GWAS among neuron/synapse and mitochondrial modules (12).
GWAS data sets are listed in table S3. (B) The CD1 neuronal
module shows significant enrichment for ASD- and SCZ-associated
nonsynonymous de novo variants from whole-exome sequencing.
The number of genes affected by different classes of rare variants is
shown in parentheses. Significance was calculated by using logistic

regression, correcting for gene length. P values are FDR-corrected.
(C) Total SNP-based heritability (liability scale for psychiatric
diagnoses) calculated from GWAS by using LD-score regression.
(D) Proportion of heritability for each disorder or trait that can be attributed
to individual coexpression modules. Significance (FDR-corrected *P < 0.05,
**P < 0.01, ***P < 0.001) is from enrichment statistics comparing the
proportion of SNP heritability within the module divided by the proportion of
total SNPs represented. The CD1 module shows significant enrichment in
SCZ, BD, and educational attainment.
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to parse complex patterns of common variants,
each of small effect size, to implicate specific
biological roles for common variant risk across
neuropsychiatric disorders.
These data provide a quantitative, genome-

wide characterization of the cortical pathology
across five major neuropsychiatric disorders, pro-
viding a framework for identifying the responsible
molecular signaling pathways and interpreting
genetic variants implicated in neuropsychiatric
disease risk. We observed a gradient of synaptic
gene down-regulation, with ASD > SZ ≈ BD. BD
and SCZ appearmost similar in terms of synaptic
dysfunction and astroglial gene up-regulation,
which may represent astrocytosis, activation, or
both. ASD, an early-onset disorder, shows a dis-
tinct up-regulated microglial signature, which
may reflect the role for microglia in regulation
of synaptic connectivity during neurodevelop-
ment (19). MDD shows neither the synaptic nor
astroglial pathology but does exhibit dysregu-
lation of HPA-axis and hormonal signaling not
observed in the other disorders.
Our data suggest that shared genetic factors

underlie a substantial proportion of cross-disorder
expression overlap. Given that a minority of these
relationships represent expression quantitative
trait loci (fig. S12), most of the genetic effects are
likely acting indirectly, through a cascade of de-
velopmental and cell-cell signaling events rooted
in genetic risk. Genetic variation is also not the
only driver of expression variation; there is un-
doubtedly a contribution from environmental
effects. Hidden confounders could introduce a
correlation structure that matches SNP-level ge-
netic correlations, but parsimony and hidden
covariate correction suggests that this is unlikely.
Diagnostic misclassification could artificially ele-
vate shared signals, but the results are robust to
disorder removal (fig. S13), and misclassification
would not account for the substantial overlap we
observed with ASD, which has a highly distinct
phenotypic trajectory from later onset disorders.
Last, we have replicated broad transcriptomic
and cell type–specific patterns independently for
ASD, SCZ, and BD, providing an organizing path-
ological framework for future investigation of
the mechanisms underlying specific gene- and
isoform-level transcriptomic alterations in psy-
chiatric disease.
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