
UC Irvine
ICS Technical Reports

Title
The distributed computing operating system

Permalink
https://escholarship.org/uc/item/0701c6tm

Author
Rowe, Lawrence A.

Publication Date
1975

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0701c6tm
https://escholarship.org
http://www.cdlib.org/

THEJ2JSTRIBUTED COMPUTING
OPERATING SYSTEM

Lawrence A. Rowe

This work was supported by The National
under grant GJ-1045, ~The Distributed
Project."

Notice: ThJs ~~aterial
may be protected
by Copyright Law
(Title 17 U.S.C.)

Science Foundation
Computing System

TECHNICAL REPORT #66 - June 1975

ABSTRACT

The Distributed Computing System (DCS) is a computer
network architecture emphasizing reliable, fail~soft service
at a relatively low cost. This paper describes the design
of an operating system for a DCS. Issues discussed include
interprocess communication, system initiation, and failure
detection and recovery. Features of the implementation of a
prototype system and some experiences gained from building
and using t~e prototype are also described.

Conclusions made from this work are that problems and
solutions discovered while developing minicomputer networks
are the same as those encountered in developing networks of
larger machines. Specificallyu DCS and its operating system
demonstrate that systems without centralized control can be
constructed, that broadcast messages are useful, and that
messages which are sent to a process but are intercepted and
acted upon by the environment of the receiving process are
necessary to achieve location independence.

INTRODUCTION

The Di str ibu tea Computing Operating System (DCOS) is a

rn ult ipr og rammed u multiple processor operating system

designed for the Distributed Computing System (DCS) [FAR73a,

FAR75a, HOP73], a geographically local computer network

architecture developed at the University of California,

Irvine. The design goals for this system are:

(1) to distribute control,

(2) to provide a flexible testbed to perform experiments
in computer networking and distributed processing,

(3) to minimize the complexity of programs to be
executed by the system,

(4) to execute processes without
physical location,

regard to their

(5) to use message communication for interprocess
communication, i.e., not to allow memory sharing,

(6) to maximize possibilities for detection and
automatic recovery from hardware or software
failures, and

(7) to minimize the complexity of the operating system.

DCOS is process oriented, that is most operating system

services are processes. Within each processor connected to

a DCS is a resident software nucleus which provides local

resource management (processor scheduling, memory

allocation, and servicing of physically connected devices)

and interprocess communication services. The nucleus may

- l -

allow many processes to execute simultaneously in the

processor (multi pr og ramming) or may be tailored to a single

specialized process (uniprogramming).

This paper describes the design of the process

structureu the interprocess communication facilities, and

the system initiation and recovery facilities in the DCOS

for a nucleus intended to support multiprogramming.

Following this, details of an operational prototype DCS are

given. The last section summarizes experiences with the

prototype system"

- 2 -

SYSTEM OVERVIEW

Most system services, such as resource allocationc

input-output services, and file rnanagementw are provided as

processes (or collections of cooperating processes) and

details of their design are contained elsewhere [FAR72c,

LEV? 3, ROW7 4] • Processes communicate by sending and

receiving messages. To use a service, a process sends

messages to and receives messages from the process providing

the service.

Figure l shows a six processor DCS. Each processor is

connected to a unidirectional high speed communication ring

by a ring interface (RI). Processors 4 and 6 support file

systems which involve physically connected mass storage

devices. This example of a DCS

processors 1, 2, and 3 in the

is an interactive system;

figure support terminals.

Processor 3 also provides magnetic tape and line pr inter

service.

Messages are directed to a process by name, as opposed

to physical location, so that where a particular process

resides in the network is not important to the message

sender (cal led "location independence") • Message

transmission is accomplished through a combination of

hardware and software. Transrniting a message from one

process to another causes it to be passed around the ring

- 3 -

PROCESSOR

11 6

FILE
SYSTEM

LPT: Line Printer
MAG: Magnetic Tape Drive
RI: Ring Interface
TTY: Terminal

PROCESSOR

It 1

RI

\
PROCESSOR

If 5

PROCESSOR

II 2

PROCESSOR

II 4

FILE
SYSTEM

Figure 1: Six Processor DCS

- .4 -

PROCESSOR

II 3

l

from processor to processor and to be copied into the

processor on which the destination process resides by the

processor s RI. Each RI has a list of the processes

executing in its processor. As a message passes byu a ring

interface compares the destination process name in the

message with its list of process names, copies those

messages for which there is a match into the attached

processor, and sets two status bits at the end of the

message indicating whether the message was not matched,

matched and not copied 0 or matched and copied. (Actually,

each RI "or's" in its value for the two status bits.) The

message continues around the ring and is removed by the

sending RI which returns the status bits to its attached

processor as a response to the send request. Thus, DCS uses

an irnpl icit acknowledgment to signal the success or failure

of a send request. The format of a message is shown in

figure 2 and the possible values of the response status bits

and their interpretation are shown in figure 3. (These

response status bits are called the "match 91 and "accept"

bits.) Details of the RI and hardware level protocols

(control passing scheme) on the ring are described in a

paper by Loomis [L0073].

DCS supports two forms of interprocess communication:

one process to one process (process-to-process) and one

- 5 -

L--D_P_N __ ..l...._o_P_N __ ..J..-_L_E_N __ _.__T_E_x_T ___________ j ~

where:

DPN Destination process name

OPN Originating process name

LEN Length of message text in characters

TEXT Text of message

Figure 2: Message Format

Match .Accept Meaning

0

0

1

1

0

1

1

The destination process name
matched by any ring interface.

was not

The message has been copied by at least one
ring interface.

The destination process name was matched by
at least one ring interface but not copied
by any of them.

The destination process name was matched by
at least two ring interfaces. At least one
ring interface copied the message and at
least one did not.

Figure 3: Message Transmission Response Status Bits

- 6 -

process to many processes (broadcast). Process-to-process

messages are used when two individual processes are

communicating with each other. Broadcast messages are used

when one process wants to communicate with several

processes. Broadcast messages provide a convenient

mechanism for supporting two methods of distributing

information: maintaining multiple copies of the information

or separating the information into disjoint subsets. More

details on these two information distribution methods are

given in the section on experiences with the prototype.

There are three distinct types of messages: process

messages (messages sent by a process which are received by

the destination process) , control messages (messages sent by

a process to the nucleus of the processor on which the

a est inat ion process is executing) , and sequence messages

(messages used to manage the logical communication paths

between processes). Process messages are used when one

process wants to communicate with one or more other

processes. This is the standard message type. Control

messages are used when one process requests that a nucleus

function (such as suspend or start a process} be performed

on another process. Because the sending process does not

know on which processor the destination process is executing

(location independence), it cannot send the message directly

- 7 -

to the nucleus. So, a control message is sent to the

destination process requesting the function. The message is

intercepted and acted on by the nucleus in the processor on

which the destination process is executing. Sequence

messages and their use are described in the section on

interprocess communication. It is important to realize that

all messages, whether process-to-process or broadcast, have

a type. For example, a broadcast control message is a

control message directed to several processes.

Each nucleus is composed of three processes and a

kernel. The three processes are:

(l} a null process -- executes whenever the processor is
idle, thereby providing a convenient way tcr measure
this statistic~

(2) a nucleus process services nucleus requests
(e.g., load process, 1 ist names of processes
executing in the processor, or terminate process},
made indirectly by a control message or directly by
a system call (trap to the processor nucleus on
which the process is executing} ~ and

(3) a sequence bit process -- described in the section
on interprocess communication.

The kernel is that portion of the nucleus which operates in

privileged mode and provides processor scheduling, interrupt

servicing, message formatting and routing, event handling,

and memory management. On those machines to which input or

output devices are physically connected, there is also an

- 8 -

input/output handler process which controls the devices.

Within a DCS there are a number of other processes.

These include command processes (the monitors or executives

to which terminal users or batch streams are connected),

resource allocators (processes that manage system resources

via the bid-request scheme [FAR73a]), status checkers

(processes that monitor the status of the system and its

resources [ROW73]), record-keeping processes (e.g., sign-on,

accounting, and measurement processes), and application

processes (e.g., text editors, file directory listers, file

copiers, language processes, and text preparation

processes).

One purpose of this project is to investigate a system

architecture that provides high reliability. DCS attempts

to minimize the probability of undetected errors and to

maximize the possibility for recovery from errcr~. This is

achieved by dis tr ibu ti on (a combination of separation and

redundancy of system components), isolation {keeping local

failures from spreading) and dynamic reconf igur at ion.

System architectures designed in this way admit the

possibility that a failure, whether due to hardware or

software, may interrupt the service to a subset of the

active users while minimizing the possibility of

interrupting service to all active users. A system

- 9 -

exhibiting this behavior (called "fail~soft'') r-:quires that

there not be a critical componente either in the software or

hardware. For a functioning DCS this means that there must

be more than one copy of the command processe resource

allocator,

processes.

status checker, and

- lf2l -

other selected system

PROCESS STRUCTURE

This section describes the components of a process,

process names, process creation and des tr uc ti on~ and the

system calls provided by the nucleus.

The Components of a Process

A process is composed of a task control block (TCB), a

context block (CB) 0 and a program segment. The TCB contains

process information needed by the system all the time, such

as its name, execution status, message queue, program

segment descriptor, execution statistics 0 and file directory

descriptor. This information can not be changed by the

process.

The CB contains two kinds of information: (l)

of information the process may

initializing process, name of

termination, and descriptor of

connected to the process) 1 and f

change (e.g., name

process to notify on

the terminal, if any,

(2) information not needed

by the system if the process is in a dormant state (e.g.,

machine state when last interrupted and receive message

buffer descriptor).

The program segment contains the actual program code

and data space.

- 11 -

Process Names

Process names in DCS are of the form

where~

CLASS

NAME

CLASS.NAME.PROCESSOR.ID.SEQUENCE

is the class (e.g. u SYS or USER) the process
belongs toe

is the program name (e.g. u BASIC u QEDu or
RUNOFF') ,

PROCESSOR is the type of processor (e.g. Lockheed SUE
or Varian DATA 620/i),

ID is the particular processor identification
number, and

SEQUENCE is a sequence number on PROCESSOR.. ID.

A process name is created at process creation time and thus

reflects the place the process was initiated, not

necessarily where it is presently executing. Notice that

the triple <PROCESSORuIDuSEQUENCE> guarantees uniqueness of

names throughout the system. Examples of process names are:

SYS.RA.SUE. 1.5 (the resource allocator process RA executing

on a Lock heed SUE c in par ti cul ar the fifth system class

process initiated on SUE number one), and

USER.TXT.DATA620/i.3.52 (a user class process TXT executing

on Varian DATA 620/i number three, the fifty-second process

initiated on that processor)o

To send a process-to-process message, the process name

- 12 -

of the destination process is used. To send a broadcast

message u a general name is used. A general name is a

process name

marked to

SYS. RA.* • ·k • *

in which one or more fields

match any possible value.

is a general name used to

resource allocators.

in the name are

For example,

broadcast to all

Name representation in the prototype system is

constrained to 16 bi ts. Because this is not enough bi ts to

represent a complete name, a shortened representation is

used in the prototype to encode the process name. (Details

of the prototype system and the process name encoding are

described in a later section.)

Managing Collections of Processes

Facilities for creating and managing collections of

processes are primitive. (Another project goal is to

investigate process organizations to achieve improved

performance and reliability.) The present facilities result

in a nonhierarchial process structure (as opposed to the

rigid hierarchical structure described by Dijkstra [DIJ68]

and Brinch Hansen [BRI70]).

Associated with each process are the names of two other

processes: the initiating process (INIT) and the

notification process (NOTIF) • When a process wants to

create a new processu it sends a request to 60 so to a

- 13 -

resource allocator agent, who selects a machir.e on which to

initiate the process and causes it to be initiated with INIT

for the new process being set to the name

and NOTIF set to INIT unless otherwise

create request.

of the requester

specified in the

A process can be terminated by its own request, by a

request from the process named in INITw or by an authorized

system process. Upon termination, all resources bound to

the terminating process are released, and a notification of

the termination is sent to the process named in NOTIF.

Should the notification process not exist, the message is

sent to the process named in INIT. Termination of a process

does not imply that processes it created are terminated.

They continue to execute until their eventual terminations.

Descendant processes request and release resources on their

own, and upon termination their resources are returned to

the free pool as opposed to being passed to their initiator.

System Calls

There are four system calls provided by the nucleus:

send message, receive message, terminate process, and read

time.

To send ~ message, a process issues a send message

system call passing the destination process name and a

reference to the message text to the nucleus (actually the

- 14 -

system call server is part of the nucleus kernel).

Packeting~ retries on errors, and sequencing are handled by

the nucleus interprocess communication facilities as

described in the next section. After completing the

transrnissionu the nucleus returns the response status bits,

described in figure 3u to the process.

Message sending in DCOS is asynchronous, that is,

before a process can request that another message be sent,

the previous transmission must be complete (i.e., the

response status bits returned). This means that a process

is blocked when a send message call is made and unblocked

after the transmission is completed. Asynchronous

communication was chosen for two reasons. First, this

results in a conceptually simpler system from a user's point

of view; and second, the operating system is less complex.

By contrast, if synchronous communication were allowed,

complex protocols and conventions would be necessary. For

example, to handle situations such as might occur if four

send message requests are made and a transmiesion error

occurs on the second. A convention about what to do with

the two queued requests (e.g., perform regardless or abort)

must be adopted and a protocol for notifying the process

about the transmission response status must be developed.

To avoid these com pl icat ions, DCOS uses asynchronous

- 15 -

communication.

To

message

buffer

receive a message,

system call, passing

(1 ocation and size)

a process issues

a descriptor for

to the nucleus.

a receive

a message

The first

message in the process's message queue, if one is present,

is copied into the message buffer in the format shown in

figure 2. The destination process name is copied so that a

process can determine whether the message was sent to its

. process name or its broadcast name. When making a request

to receive a message, a process may specify the specific

process from which it wants to receive a message and may

specify a time after which, if a message has not been

received, control is returned to the process.

The third system call is terminate process. A process

uses this call to terminate itself.

The last system call is read time.

the local processor date-time block

(hardware dependent local clock).

- 16 -

This call returns

or system clock

INTERPROCESS COMMUNICATION

As described in the previous section, a process

requests that a message be transmitted to another process

(or processes in the case of a broadcast message) by issuing

a send request call and requests that a message be received

by issuing a receive request call. After the originating

process requests the transmission, the nucleus assembles the

message in a message buffer. If the destination process

exists on the same processor as the originating process, the

message buffer is placed on the nucleus input message queue

for the processor. Thus, the message is not needlessly sent

around the ring. (However, all broadcast messages must be

sent around the ring.) If the message is to be sent around

the ring, it is placed on the nucleus output message queue.

The output message routine issues the output request to the

ring interface. The receiving processor ring interface

copies the message into a message buffer which is placed on

the receiving nucleus's (or nuclei's) input me. ssage queue.

The input message routine then places the message on the

message queue for the destination process. When the process

requests a message and the message is at the front of its

message queue, it is copied into the receive message buffer

in the process address space. Figure 4 shows two examples

of message transmission: an interprocessor transmission and

- 17 -

ORIGINATING
PROCESS

message buffer

message

/ messa

\
i
(_ DESTINATION j'

\ PROCESS _,,,,
'- ,,,,_,,

~--...__,.

Intraprocessor Transmission

\ORIGINATING
\ PROCESS
("message"

t,,,.-",,,, .. f_,,

DESTINATION
PROCESS

Figure 4: Examples of Message Transmission

-, 18 -

an intraprocessor transmission.

This section describes how the message is actually

transmitted from the originating process to the destination

process. It describes message packeting, detecting and

recovering from transmission errors, and managing the

logical communication paths between processes. These

communication system mechanisms are transparent to a process

sending and receiving messages. This is followed by a brief

discussion of higher level communication protocols.

Message Packeting

In order that certain system resources, nCdllely message

buffers and ring transmission capacity, can be equitably

shared by all processes, messages are transmitted in packets

if they are longer than a fixed parameter (determined at

system creation time). Since packeting and reassembly are

performed by the nucleus, the processes involved are unaware

that it happens. In the discussions that follow, the term

"message" is used instead of "message. packet", because it

makes the explanations easier to understand.

Detection and Recovery from Transmission Errors

There are three types of abnormal transmission

conditions, categorized by the way they are detected: (1)

inability to transmit, (2) transmit overrun and cyclic

- 19 -

redundancy check (CRC), and (3) match/accept errors.

An inability to transmit arises when the ring level

protocol is breached v violated e or disrupted e 'l'o insure

that only one ring interface places a message on the ring at

a given tirneu a control passing scheme is used [L0073]. A

"'control token" is passed around the ring signifying which

RI has control. A ring interface may transmit a message

only when it possesses the control token. Aft:er it places

one message on the ring, the RI passes the con tr.ol token to

the next RI. (Notice that this guarantees that one ring

interface does not hold control of the ring transmitting one

message after another for ext ended periods of time.) Upon

being requested to send

for t he cont r o 1 token •

indefinitely. Howeverg

a messageu a ring interface waits

The RI could wait for the token

the nucleus detects abnormally long

waits by establishing a time after which, if the message has

not been sent (or some other error has not been reported),

the control token is presumed lost. At this point the

nucleus forces another token onto the ring. If the ring

protocol can not be reestablished due to ring failure, the

processor continues as best as it can (probably at a

cons id er ably reduced functional capability) • Not ice that

any processor on the ring can restore the token. Thuso

control is dis tr ibu ted as opposed to being centralized. A

- 20 -

centralized control would result in a more vulnerable

system. To insure that only one processor at a time forces

a control token, the detection time out plus the time needed

to regenerate a token is significantly different on each

processor.

The second type of transmission abnormality is a

transmit overrun or cyclic redundancy checl<o A transmit

overrun condition is signaled by a ring interface when it is

unable to fetch words from memory fast enough to maintain

the ring transmission rate (approximately two million bits

per second). A cyclic redundancy check signal by a ring

interface means that the message received after being passed

around the ring is different than the message sent.

The third type of transmission abnormality is a

match/accept error. This situation is signaled by the ring

interface in the response status bits returned to the

processor after the message has traveled around the ring and

has been removed by the sending RI.

For each of these last two types of transmission

abnormalities 0 the error is counted and the transmission is

attempted again. This continues until a fixed number of

consecutive un sue cessf ul retries (threshold number of

retries) is surpassed after which the recovery mechanisms

described below are invoked. Each type of error is counted

- 21 -

separately and

threshold.

for each there is a different retry

Transmit overrun or cyclic redundancy check is probably

a transient condition so the retransmission is attempted

immediately. If the retry threshold is violated, the

sending process is returned a no-match-no-accept.

For a no-match-no-accept (i.e., process name does not

exist), the message is also immediately retransmitted. For

match-no-accept and match-accept (i.e., at least one RI

matched the name but could not copy the message), the

processor that could not copy is probably saturated. That

is, either the attached RI is not initialized for input

because there are no message buffers available or the RI is

unable to store into memory fast enough. Because we expect

that this situation may persist for a short period, the

message is not immediately r etr ansmi tted. It is pl aced on

the end of the output message queue. However, if the retry

threshold is violated the sending process is returned the

response status bits.

Managing Logical Communication Paths

In any communication system, if a message is sent and

the response signal returned by the receiver is either not

received by the sender or unintelligible to the sender, the

sender can not determine whether the message was received.

- 22 -

To resolve this problem, message communication systems

typically retransmit the message (along with some sequencing

information so that the receiver can ignore copies of

previously received messages) until an acceptable response

is received by the sender or the transmission is abandoned.

In res for example, as shown in figure 5, when

transmitting a message from processor 1 to processor 2, a

transmission error could occur either before the message has

arrived at processor 2 or after the message has passed

processor 2. Suppose the error occurs after the message has

passed processor 2 (labeled error 2 in the figure). In this

case the message may already have been copied into processor

2. Because processor 1 cannot distinguish between the two

errors, it retransmits the message with the sequence bit

indicating that this is a copy of the previoJJs message.

When processor 2 receives the second message (a copy), the

nucleus knows whether to ignore it by comparing the sequence

bit in the message with the sequence bit from the previous

message. On the other hand, suppose the error occurs before

the message has passed processor 2 (labeled error 1 in the

figure). In this case the message has not been copied into

processor 2. (Actually, the RI copies the message and

signals to the nucleus

eye 1 ic redundancy check

the arr iv al of a message with a

error, so the nucleus ignores it.}

- 23 -

error 2

PROCESSOR
II 2

PROCESSOR
II 1

error 1

Figure 5: Possible Locations of Transmission Errors

.- 24 -

When processor 2 receives the second message

the nucleus knows to accept it by checking

bits.

(not a copy) ,

the sequence

Sequencing of messages must be done at the process

level rather than the processor level. This is because DCS

uses location independent naming and a process might be

moved (from one processor to another) between when the first

message is sent and the retransmission is sent.

The communication system can be thought of as providing

logical communication paths between processes (either a

process-to-process or a broadcast path). The kernel

maintains tables describing the status of each logical

communication path for each process executing in its

processor. A path is a one-directional communication link.

Sequencing information for a path is maintained in a

sequence bit table both at the sending and receiving end of

the path. There are two sequence bit tables for each

process: a send sequence bit table and ·a receive sequence

bit table. Figure 6 shows two processes and their

associated sequence bit tables. Notice that in process A's

send sequence bit table, the sequence bit for process B is 0

and that in process B's receive sequence bit table, the

sequence bit for process A is 1. When process A sends a

message to process B, the send sequence bit for B (0) is

- 25 -

Serl:d Sequence
Bit Table

"B n
-

~-
II c"
.
.

11D1v

0
1

'

'
0

process name SB

Send Sequence
Bit Table

i!B II 0
".A" _l

. .

. .
"G" 1

process name SB

Figure 6: Sequence Bit Tables

,.. 26 -

Receive Sequence
Bit Table

i--"-
urcn 0
:1B11

r~-
0

. .

. .
"Eu 1

process nam~~

Receive Sequence
Bit Table

"A"
~'

1
v~G" Jl
. .

.
"B" 1

process name SB

pl aced in the message. After the message is received at

process B, the sequence bit in the message (0) is compared

with the receive sequence bit for A (1). Because they are

not the same (0 f 1), the message is accepted and the

receive sequence bit table entry is replaced by the sequence

bit in the message. If a message arrives in which the

sequence bit in the message matches the sequence bit in the

table, the message is ignored because it is a copy of the

previous message received. The sequence bit in process A's

send sequence bit table is flipped 0 -> 1 and 1 -> 0)

after the message has been successfully transmitted.

The process name in a sequence bit table must be exact,

either a process name or a general name. These two cases

must be kept distinct because the communication path between

a process and a collection of processes (broadcast name) is

distinct from the path between a process and a specific

member of the collection.

Initialization of sequence bit table entries is

straightforward. On the sending end, a new entry is created

and the send sequence bit is set to 0 or 1 (the choice is

arbitrary). On the receiving end, if the originating

process name in the received message is not found in the

receive sequence bit table, the message is accepted, a new

entry is created, and the receive sequence bit is set to the

- 27 -

sequence bit in the message in the norm a 1 way. (This is not

exactly correct. Actually, a synchronization message is

sent before the first message. The need for this

synchronization message and how it is accomplished is

described in a later section on initiation and recovery.)

A process executing in DCS may communicate with an

arbi tr ar ily 1 arge number of other processes which implies

that there may be many communication paths active at one

time. Because sequencing information is maintained for each

distinct path and because there are physical resource (i.e.,

memory) constraints on the total number of paths on which

information can be maintained at one time, there must be a

mechanism for closing communication paths. This problem is

analogous to that of mapping virtual memory into physical

memory in a virtual memory system and many of the same

difficulties are encountered.

A close path function can be initiated from either the

sending or receiving end of a communication path. First,

consider a close path function initiated at the the sending

end of a path. To close the path, the receiving end process

name must be r ernoved from the sender· s send sequence bit

table and the sending end process name must be removed from

the receiver ·.s receive sequence bit table. The nucleus at

the receiving end of the path must be notified by the

- 28 -

sending end nucleus to close the receive end of the path.

This is accomplished by sending a special type of message,

called a "sequence message", to the process on the receiving

end which is intercepted and acted upon by the receiving end

nucleus. After the sequence message is received u the

sending end nucleus can remove the r ece iv er "s name from the

sender's send sequence bit table. Secondu consider a close

path function initiated at the receiving end of a path. As

in the previous caseu to close the pathu the sender's name

and receiver's name must be removed from, respectively, the

r ece iv er s receive sequence bit table and the sender · s send

sequence bit table. The nucleus at the receiving end of the

path notifies the nucleus at the sending end of the path to

remove the receiver's name from the sender's send sequence

bit table by sending a sequence message. In this case, the

receiving end nucleus can not remove the sender's name from

the receiver's receive sequence bit table after the sequence

message is received. This is because a message could be

sent along the path by the sending end process between when

the sequence message is received by the sending end nucleus

and when it is acted upon. For this reason, the receiver's

receive sequence bit table entry is not remo•1ed until an

acknowledgment sequence message is sent by the sending end

nucleus indicating that the other end of the path is closed.

- 29 -

The remaining paragraphs in this subsection describe in more

detail exactly how these close path functions work. Readers

not interested in these details should skip 4::.o the next

subsection on higher level protocols.

A close path function is initiated at the sending end

when: (1) a process requests that a message be sent, (2) a

comrnun ication path does not exist between this process and

the destination process (i.e. 0 the destination process name

is not in the sender's send sequence bit table), and (3) all

communication paths for the sending process are in use

(i.e., the send sequence bit table is full). A close path

function initiated at the sending end consists of:

(1) blocking the process requesting the sendf

(2) locking the process's send sequence bit table,

(3) selecting a path to closeu

(4) sending a sequence message to close the other end of
the path,

(5) freeing the entry in the send sequence bit table,

(6) unlocking the send sequence bit table, and

(7) unblocking the process requesting the send.

When a nucleus receives a sequence message request to close

a particular process's receive end of a communication path

and the path is defined (i.e", the sending process's name is

in the receiving process's receive sequence bit table) u the

- 31Zl -

path is closed by freeing the receive sequence bit table

entry. If the path is not defined, no action is taken by

the nucleus.

A close path function is initiated at the receiving end

when: (1) a message is received for a process (i.e"ff the

input message routine processes a message on the input

message queue), (2) a communication path does not exist

between the originating process and the destination process

(i.e., the originating process name is not in the receiver's

receive sequence bit table), and (3) all communication paths

for the destination process are in use (Le. e the receive

sequence bit table is f ul 1) • A close path function

initiated at the receiving end consists of:

(1) locking the destination process s receive sequence
bit tableu

(2) selecting a path to close,

(3) sending a sequence message to close the other end of
the pathu

(4) waiting for an acknowledgment sequence message
indicating that the other end of the path is closedo
and

(5) unlocking the receive sequence bit table.

When a nucleus receives a sequence message requesting that

the sending end of a particular path be closed, the path is

closed unless the sending end process has a message

- 31 -

transmission pending or its send sequence bit table is

locked. After closing the path (i.e., removing the

r ece iv er 's name from the sender's send sequence bit table) ,

an acknowledgment sequence message is sent by the sending

end nucleus to the receiving end nucleus indicating that the

receiver's end of the path may be closed. This

acknowledgment message is sent even in those cases when the

sending end process does not exist (it may have terminated)

or the path is not defined (the sequence message may be a

copy), so that the receiving end table can be unlocked. In

both cases, when the close path function is completed, the

nucleus can proceed with processing, either a send system

call or the message on the nucleus input message queue.

Locking the sequence bit table prohibits the nucleus

from initiating another close path function on a table. So,

in the case of a receive sequence bit table, messages on the

input message queue processed by the input message routine

which have a sequence bit table entry are accepted and, if

appropriate, passed to the process. Furthermore, a process

continues to execute if the function is a receive end close

path. Notice also, that a receive end close path function

and a send end close path function may be performed

simultaneously on a process.

Sequence messages are similar to control messages in

- 32 -

that they are addressed to a process but are acted on by the

nucleus of the processor on which the destination process

resides. They are different than control messages in that

they are not sequence checked. In other words 0 process

messages and control messages have sequence bits which are

checked to insure that a copy of a message is not processed.

By contrast, if sequence messages we re sequence checked,

then sequence bit tables must be maintained for sending and

receiving sequence messages" This implies that a close path

function may have to be performed in order to send sequence

messages thus resulting in an infinite recursion. Because

sequence messages are not sequence ckecked, multiple copies

of one may be received by the destination nucleus. The

close path function protocols are designed so that receiving

multiple copies of the sequence messages does not disturb

the integrity of the communication system. For the same

reason that sequence messages are not sequence checl~ed u a

special process, called the "sequence bit" process, is

included in every nucleus to perform the communication path

management functions. This process is the only one which

sends and receives (indirectly) sequence messages.

Both close path functions require that a communication

path be selected for closing. It would be desirable, for

efficiency reasons, to select a path over which

- 33 -

commun ica ti on is finished or will not be res urned for some

time. This problem is analogous to that of selecting a page

to r ernove from physical memory in a paging system. Like the

page removal problem 0 there is no good algorithm for making

the rernoval selection. 'l'he page removal problem is handled

by using a heuristic which performs better than random

selection. In the path closing problem, sever al hem: istics

are suggested~ least number of messages sent, least recently

used pathG oldest path (first in-first out), or newest path

(last in-first out). There does not appear to be a

particularly good a priori reason for selecting one of these

heuristics over another so an answer to this problem is

unknown.

section.

This issue is discussed further in a later

Suppose the nucleus at the opposite end of the

communication path selected for closing cannot be

communicated with via a sequence message u

no-match-no-accept, match-no-accept, or match-accept (the

path being closed may be a broadcast path in which case it

has a single sender and multiple receivers). Because a

no-match-no-accept means the destination process does not

exist, the other end of the path is presumed closed (Le.,

the destination process has terminated and thus cannot be

involved in future communication) and the close path

- 34 ~

Send Sequence
Bit Table

Broadcast Path Entry

_/

/ Communication Subsystem

Receive' Sequence
Bit Table 1

I

\

Receive Sequence
Bit Table 2

Broadcast Path
Entry

Receive Seq~ence
Bit Table 3

~igure 7: Sequence Bit Table State after Broadcast Sequence Message

-' 35 -

function continued. For a

received the sequence message,

match-no-accept, no nucleus

so another path is selected

for closing. (Note, a path is not closed until the function

frees the sequence bit table entry.) Match-accept causes

problems because some nuclei received messages and some did

not. In this case the message is retransmitted and, if the

situation continues after a small number of retries, no

further communication is attempted. Figure 7 shows the

state of the sequence bit tables after the broadcast

sequence message has been sent and acted upon by the

receiving nuclei. Notice that the broadcast path entry has

been freed in receive tables 1 and 2. The question is

whether to free the entry in the send table. If it was a

receive initiated close path function, the send table entry

can be retained and the next time communication along this

path is attempted all processes will receive the message

correctly (processes without receive table entries will

create a correct one and processes with an entry are already

synchronized with the sender). (Notice that the receive

sequence bit table would be locked indefinitely if the

nucleus requesting the close path function is the one that

does not receive the close path acknowledgment, the process

with receive sequence bit table 3 in the example. Thus, a

time out is set for the sequence bit table after which the

- 36 -

sending end is presumed closed and the close path function

continued.) If, on the other handw it was a send initiated

close path function 0 there are two options~ the entry can be

freed or another entry selected for closing. If the entry

is freed f the next time communication along the path is

at tempted the synchronization message (described in the next

sect ion) wi 11 cause the remaining receive table entries to

be freed.

Because it results in less complexity, both from the

user's and the system·s viewpoint, communication path

closings are invoked implicitly as opposed to explicitly,

either by the processes involved or by the system when a

process terminates. Both alternatives lead to problems when

a message is sent or received and there are no sequence bit

table entries available. Alsou in the case of user invoked

closingsr more detailed implementation knowledge is required

on the part of users. Implicitly invoked close path

functions were chosen because they would be needed even if

explicit functions were implemented.

Higher Level Protocols

DC:OS does not presume any protocol or structure on the

text portion of messages. Processes communicating among

themselves may establish any conventions they desire.

Neverthelessf some processes use a standardized protocol in

- 37 -

which a message requesting a function and arguments has the

form 11 identification, function, argument, ••• , argument" and

a message responding with ·the results of a requested

function has the form "identification, response, result ••• ,

result". The "identification" is a symbol (supplied in some

cases by the requestor and in others by the responder)

useful for maintaining the distinction between simultaneous

events being acted upon by two processes. For example, a

requestor may supply an identification in a request message

so that the response message (with the same identification

returned by the process providing the function) can be

distinguished as the one for the particular function

request. More details and examples of the use of this

higher level protocol are available in the "DCOS Programming

Guide" [ROW74] (specifically section 3. 4 on the input/output

handler).

- 38 -

INITIATION AND RECOVERY

This section describes how a DCOS is initiated and how

detection of and recovery from nucleus or process failure

are handled. Four design goals were established for the

initiation and recovery procedures. They should:

(1) not require a centralized control or source of
information,

(2) maximize similarity
processes (sue h as
resource allocators),

of nuclei and
input/output

common system
handlers and

(3) allow dynamic reloading of nuclei and processes with
minimal disruption of the system, and

(4) minimize resident memory spaGe of initiation and
recovery procedures.

Much of the material on nucleus and process failure detection

and recovery is taken from a previous paper [ROW73].

System Initiation

Processors are divided into two classes for system

(nucleus and system processes) loading purposes, those with a

local information source (any physically connected device

which allows access to a copy of the nucleus, such as disk,

magnetic tape, card reader, or paper tape) and those without

a local information source. Processors with a local source

may load a nucleus directly or may be loaded across the ring.

Those without a local source must be loaded across the ring.

- 39 -

'!'his is accomplished by executing a ring loader which clears

the ring interface name table (may first have to initiate

ring) and communicates with a file system (probably a special

ring load process) to load a copy of the nucleus. In keeping

with the goal of minimizing resident memory space of the

initiation and recovery procedures, the ring loader is

bootstrapped across the ring into the processor as shown in

figure 8. Thus, the ring bootstrap is kept small to make

loading it easy and to minimize the probability of it being

destroyed. (In a production version of DCS, the bootstrap

could be "wired-in", either in the ring interface or in the

processor.) Obviously, processors cannot be loaded remotely

until at least one processor has been loaded directly.

Otherwise, no restrictions are placed on the order in which

processors are loaded.

All nuclei, for a particular type processor, are

identical except for the machine identification number,

interrupt device tables, and the input/output handler (if

present). The machine identification number is passed to the

nucleus by the nucleus load function (either a direct or ring

load). The interrupt device tables bind physical device

numbers to device type. The problem is how to initialize the

device tables without maintaining special instances of the

software. The same problem occurs with input/output

- 40 -

Ring

Ring Bootstrap

Bootstrap Ring Loader

Ring

Ring Loader

F-igure 8: Bootstrapping the Primitive Ring Loader

.. 41 -

handlers. Several solutions are possible, such as

predefining all machines of a particular type to use the same

physical device numbers for similar devices, compiling nuclei

separately with appropriate device table definitions,

compiling all possible device tables (for a set of

processors) into one copy of the nucleus and selecting the

appropriate table at initiation time, or establishing a more

restricted initiation ordering so that the tables can be read

from a file. Each of these solutions has advantages and

disadvantages and the one chosen depends on the particular

implementation environment. Another solution requiring

special hardware, available on some third generation

processors, is to provide facilities for the system to

interrogate its environment to determine what physical

devices exist and what their physical addresses are.

Each nucleus is loaded with a start process which

initializes local resources and data structures. The start

process may also load some additional system processes (e.g.,

command process, resource allocator, or status checker)

depending on the OCS configuration. (Notice that the

info rma ti on location problem discussed in the previous

paragraph arises here also.) The process configuration (the

number of instances of each type of system process and their

distribution) strongly influences the performance and

- 42 -

reliability of a system. This theme

later section on experiences with

is elaborated on in a

the prototype. There

certainly must be one (and probably more than one so as not

to centralize control) operator or configuration control

process for externally monitoring and changing the

di str ibu ti on and number of system processes. This is

distinct from a status checker whose function is to monitor

the maintenance of a minimal configuration, to do simple load

balancing, and to insure that nuclei are still functioning.

Ring initialization is handled by the same detection and

recovery mechanism described previously, i.e., some process

attempts to send a message and, if the ring times out, a new

token is generated.

Nucleus Failure Detection and Recovery

Status checkers test periodically for processor failure

by sending to each nucleus a message requiring a response.

If a nucleus fails to respond to sever al consecutive status

check messages, the status checker hypothesizee that the

nucleus has failed. A single status checker cannot establish

that a particular nucleus has failed. However, if a given

percentage of checkers decide that a nucleus has failed,

recovery procedures are initiated.

Recovering from a nucleus failure is accomplished in the

same way the nucleus was initially loaded, either directly

- 43 -

from a local information source or indirectly from a remote

source. The only difference between recovery and initiation

is that recovery is invok by a status checker while

initiation might have resulted from an external impetus (for

examplee an operator). Nevertheless 0 particular instances of

a OCS may elect to require human intervention in recovery

procedures.

Nucleus failure and, in very l im i tea cases 0 process

failure, 1 ead to a peculiar problem cone er ning sequence bit

synchronization. Suppose two processes, A and B, are

communicating, and process A is in a processor that fails

then process A fails. When the nucleus is reloaded, if

process A was a necessary system process it will be restarted

with the same name (eog. input/output handler, nucleus

process or resource allocator) • Suppose the new copy of

process A sends a message to process B. Because B does not

know A failed and was restarted, their communication path may

not be synchronized and the message may be discarded. To

resolve this problem, when the first message is sent to a

process~ a close path function is initiated at the sending

end to synchronize the logical communication path. Notice

that this also solves the problem described in the previous

section wherein a broadcast path is not completely closed

(i.e., one or more of the receive end processes do not close

~ 44 -

the path but the send end is closed) •

Status checkers also periodically check that processes

bound to resources (defined in the input/output handler

device reservation tables) still exist. This prevents

resources from being lost when a nucleus fails.

Process Failure Detection and Recovery

Software failures in a process are detected by

traditional hardware failure indicators, e.g., an attempt to

reference an undefined or protected address or an attempt to

execute an undefined or protected instruction. There are

several actions the system can take when a process failure is

detected:

(1) save a copy of the process environment,

(2) initiate a test process,

(3) initiate a new copy of the failed process, or

(4) take no action until directed to do so by an external
source.

The particular action taken depends on what process failed and

the circumstances causing the failure.

- 45 -

PROTOTYPE DETAILS

This section describes details (as of February 1975) of

the prototype DCS developed at U. C.

the directions being pursued.

Hardware

Irvine and discusses

The present system is composed of three processors,

Lockheed SUE minicomputers, connected by ring interfaces to a

data ring operating at 2.3 megabits. There are also two

Varian 620/i's with IBM 2314 class disk drives attached: these

620/i's are currently connected to SUE's providing a

rudimentary file system capability for the DCS. There is a

modest complement of peripherals including: several terminals

(teletypes and alphanumeric and graphic displays), an

Addmaster and a Remex paper tape reader, a Calcomp plotter, a

Kennedy magnetic tape, a Tektronix 611 storage scope, a low

speed Centronics line printer, and a text preparation facility

(Diablo Hytype printer and a high speed upper/lower case Data

Products printer). In the near future the Varian 620/i's will

be connected directly to the ring resulting in the

configuration shown in figure 9. (A Computer Automation

ALPHA-LSI-2 controls the text preparation facility.)

The ring interfaces are constructed using TTL circuitry.

Each inter face provides 16 names, each 16 bi ts 1 ong, in an

- 46 -

~

TEKI ILPT

TTY
32K

MTA

PL TI 162¢/i .----
=tr. I

TTY TTY

DSKI. I PTR

TTY

TTY[1r:v
8~< .

Ls1}-[-LPTI
I

TTY

·suE
4:1.: I

31K -
SUE
t-t 2

RI.

TTY

31K -
SUE
:-t'-·~ ., .. , tJ

Figure 9: DCS Gonfiguration

PTR

BK -,,
620/j TTY

:f.t 2

DS~<

TTY

associative store. The associative store is implemented by a

bit serial associative memory. The hardware does not support

broadcast name matching so the software system uses 2 names in

the associative store for those processes which may be

broadcast to, one for the process name and one for the

broadcast name. The fabrication cost of a ring interface is

$1000v in quantities of 1. This cost would be cut in half if

they were produced in larger quantities (approximately HI).

It is estimated that they could be produced for $100 each

using large scale integration (LSI) technology [FAR75b].

Software

The current version of the operating system consists of

nuclei for each processor, sign-on processes, command

processes, input/output handlers, and system status and

statistics collection processes. User or application level

software available includes an assembler, machine oriented

language compilers (MOL6 20 [HOP7 l] and MOLSUE [HOP? 5]) ,

linkage editors, a file transfer processv a file directory

l istin.g process, a line oriented text editor (QED), a text

outputting system (RUNOFF) , a debugger for distributed

processes [SOW74] u and other utility and diagnostic processes.

Status checkersw complete resource allocators, and the fully

distributed file system [FAR72c] have not been implemented.

A hardware name is obtained from a process name when it

- 48 -

is created. This is because the RI hardware only allows 16

bit names. The format of a hardware name and how it is

encoded from a process name are shown in figure 10. Certain

system processes have predefined names:

l.i.l nucleus.process

l.i.2 input/output handler

l.i.3 command process

l.i.4 sequence bit process

where i is the processor number. The existence of reserved

system process names for input/output handlers and command

processes does not imply that all of these processes exist on

every possible processor. Different software configurations

of the system may include some but not all of them.

When transmitting messages between processes, the system

includes a message control word. The control word contains

three fields, as shown in figure 11: a packet definition

field, a sequence bit field, and a message def ini ti on field.

The packet def ini ti on field indicates whether this packet is

the first, neither first nor last, last, or first and last

packet of the message. The sequence bit is used to determine

if this packet is a copy of the one previously sent. The

message def ini ti on field describes whether the message is a

process, control, or sequence message. The control word is

- 49 -

CLASS.NAME.PROCESSOR.ID.SEQUENCE

where:

0 :: CLASS f; 15

CLASS.ID.SEQUENCE

Process class:

0
1
2

3-8
9

10-15

not used
system processes
reserved for resource allocators
reserved for system process classes
user processes
reserved for user process classes

0 ~ ID!:::: 15 Processor number

0:: SEQUENCE* 255 Sequence number

Figure 10: Hardware Names

- 50 -

.__o_P_N _____ o_PN __ LEN . [CTLW J TEXT -~ D
CTLW contains:

PDF Packet definition field:

1 ast packet first packet
bit

0
0
1
1

SB Sequence bit field

bit
0
1
0
1

MDF Message definition field:

1 Process message
2 Control message
8 Sequence message

Neither first nor last packet
First packet but not last
Last packet but not first
First and last packet

Figure 11: Message with Control Word

- 51 -

put into a message by the nucleus when it is copj.ed from the

sender· s address space into a message buffer and removed when

it is copied from a message buffer into the receiver's address

space. Thus, like packeting, the sending and receiving

processes are not aware of the existence of the message

control word.

Control message functions provided by each nucleus are

listed in figure 12. Most of these functions are performed by

the nucleus process because messages must be sent to carry

them out.

The packet size in the current system is chosen so that a

disk file record (as defined in the file system) can be

transmitted without packeting; a record is approximately 130

characters.

The control token lost wait, the length of time a nuc.leus

waits after requesting that a message be sent

presumes the ring control token has been lost,

for each machine and ranges from 1/2 second to 1

- 52 -

Status check
Does process exist? Nucleus ignores message: sender
notified that process exists by response status bits.

Suspend process
Suspend process execution, do not release resources.
Notify and connect terminal to process named in NOTIF
field of the suspended processes· context block.

Terminate process
Terminate process execution, release resources.

Start process
Start process execution at start address specified in
load module.

Restart process
Start process
suspended.

execution at address where process

Interrupt process
Suspend process execution (initiated by
terminal). Perform same actions specified
process function.

Read directory

user at
in suspend

Read file directory name which process is logged on to.

Examine memory
Read specified memory locations in process.

Deposit memory
Write specified memory locations in process.

Figure 12: Control Message Functions

- 53 -

After

The message transmission thresholds are:

transmit overrun or
cyclic redundancy check

match- ace ept

match-no-accept

no-match-no-accept

attempts to send

50

1

15

1

a single match-accept or no-match-no-accept, the

response is returned to the sender. The no-match-no-accept

threshold is one because a considerable number of messages are

sent to non-existent processes, which, if the threshold were

higher, results in a noticeable reduction in transmission

rate.

Currently, each process is allocated eight sending and

eight receiving logical communication paths. The algorithm

for selecting a path to close is least number of messages sent

or received. This algorithm has proven unacceptable. Certain

critical processes, in particular input/output handlers, tend

to get their sequence bit tables filled with four or five

processes with large numbers of messages sent (typically

processes reading or writing large files). With the current

a lg or i thrn it becomes nearly impossible to close these

communication paths even though the processes may no longer

exist. Once this happens, the overhead from sending sequence

- 54 -

messages gets larger as processes contend for scarcer

resources, that is, the remaining sequence bit table entries.

A least recently used algorithm (LRU) is being implemented to

resolve this problem.

In order to minimize the time a ring interface is

disabled while processing a message received signal, a linked

ring of message buff~ is maintained. After a message is

received, the interrupt routine marks the buffer full and

reinitializes the ring interface input with the next buffer.

The input message routine periodically tests whether a buffer

is full. If so, a system message buffer is allocated, the

message is copied from the ring interface buffer to the system

buffer, and the system buff er is pl aced on the input message

queue. Thus, messages are copied four times if the message is

transmitted around the ring, and only twice if it is not.

Future Directions

Pl ans for the near future include connecting the var ian

620/i's directly to the ring, constructing a new ring

interface [FAR75b], continuing efforts to improve the

reliability of the system, and assessing the performance and

suitability of ring computer networks. The DCS prototype is

being used as a tool in an undergraduate class on systems

programming and as a resource for departmental research\ in

resource allocation in distributed systems [EAR74], in the

- 55 -

design of specialized text handling processors [ARV75], and in

the exploration of secure network communication protocols and

internetwork security [FAR75c]. A link between DCS and the

ARPANET is also being planned [EAR73, FAR73b],

Longer range plans include using the new ring interface

to connect devices other than processors (e.g., terminals)

directly to the ring and interfacing an existing operating

system to DCOS.

~ 56 -

EXPERIENCES WITH THE PROTOTYPE

Experiences with the DCS prototypeu including available

performance statistics, information distribution by broadcast

messages, suggested changes to the ring interface,

relationship between memory space and reliability D and the

problem of how a process discovers a desired service's name

are discussed in this section

Performance Statistics

There is no analysis of the DCS prototype available

al though work in this area is underway. Never th el ess, some

subjective results were obtained by gathering data while the

system was executing and developing a composite description of

the sarnpl es. As such, the results should not be interpreted

as precise descriptions of controlled experiments, rather they

should be thought of as suggestive of the observed

performance. In what follows, data on the distribution of

message lengths and the frequencies of transmission errors are

presented.

The . message length probability density and cumulative

distribution functions for a five minute period executing a

three machine OCS with three interactive users are shown in

figures 13 and

programs, sue h

14. During

as QED and

the sampling period, arbitrary -

the assembler, we re loaded and

- 57 -

/it.SO-

75'0-

500 -

D·/o 11-W Zl-30 31-'lo 41-5o 5/-1..D ll-]o 7/-80 fJ/-'fo '!/·Ii'--<-~ 101-!/o /iHUJ 121-130

Message Length (in characters)

E'igure 13: Message Length Probability Density Function

Message Length (in characters)

Figure 14: Message Length Probability Distribution Function

- 58 -

executed. There are three peaks in the density function. The

first peaku messages with length between 1 and 10 characters,

contains all input request and output response messages (4 and

2 characters long respectively) and other request and response

messages. The peak between 81 and 90 character messages

corresponds to sending binary records produced by the

assembler. The last peaku messages between 121 and 130

characters in length, are reads and writes of the maximum

length disk record (128 characters plus identification and

request/response fields). Thus, frequently invoked mechanisms

with constraints established in other parts of the systemu

such as the file system, significantly affect the observed

distribution of message lengths.

During the 15 minute experiment, from which the 5 minute

message length distribution sample was taken, the following

error frequencies were observed~

frequency of retries on send

frequency of transmit overrun
or CRC error

frequency of receive overrun
on input

inability to transmit (token lost)

ring not initialized for input
because buffer not available

The errors observed occurred in bursts, i.e.

- 59 -

.1%

• 01216%

.1%

.01%

.04%

many retries

were required on a few messages as opposed to a single retry

for many messages.

The frequency of transmission errors, at presentu appears

to be directly related to the transmission load. For example,

as more processes are execu tea

frequently by existing processes,

increases. This may result from

or messages

the frequency

errors not

sent more

of errors

previously

encountered in the hardware and software. Considerable effort

is being made to understand and correct this problem.

Although we have not conducted any quantitative

experiments on process and processor failure detection and

recovery, the mechanisms for handling these errors are

operational. The detection and recovery mechanisms in the

prototype are not automatic (because status checkers have not

been implemented); however, reloading the nucleus in the

failed processor is straightforward. In most cases, processes

executing on other processors not depending on processes

executing in the failed processor have continued

uninterrupted. This demonstrates the fail-soft reliability

characteristic which was a predominant goal in this research

project. Where this characteristic has not been achieved is

at the process level. The problem is that an arbitrary

executing process may depend on a resource provided by a

specific process andu if the resource providing process fails

- 60 -

it is impossible for the system to unbind the using process

from the failed process andu in those cases where meaningful,

substitute another resource providing process. More work

needs to be done in this area. In particular, investigating

the possibilities of describing resource needs and usages in a

way which would allow an algorithm, when notified of the usage

needs of those processes affected by a failure, to substitute

other processes (perhaps restarting failed processes) for the

preempted resource. Some preliminary theoretical work on this

problem has been cornpl eted recently by Merl in [MER74].

Information Distribution by Broadcast Messages

The DCS broadcast facility conveniently supports two ways

of distributing information.

information into disjoint

The first is to distribute the

subsets. The second is to

di str ibu te complete copies of the info rma ti on. In the fir st

case f a process accesses the information by broadcasting a

request to all disjoint subsets, expecting an answer from the

one who has the requested information. An example of this

kind of distribution is resource allocation information. Each

RA maintains a disjoint subset of the resources available in

the system. In the second case, a process accesses the

information by broadcasting to all copies of the information,

using the first answer received. Fileu

information [FAR72c] is an example of

- 61 -

catalogu or directory

this second kind of

distribution. In both cases, the problem of updating

redundantly stored information is not made easier by the

existence of the broadcast facility.

The broadcast facility is inadequate in cases where it is

imperative that all processes which should get the message do

get it. Notice that in the presently available facilities, if

a process broadcasts a message and gets a match~accept

response (some but not all got the message), resending the

message may result in some destinations receiving a second

copy and some a fir st copy. Furthermore, if the response to

the retransmission is match-accept again, it is still

indeterminant whether all processes which should get the

message did.

broadcasts to

An example of this situation is when a nucleus

all input/output handlers a command to free

resources bound to a terminated process. The solution to this

difficulty would be a broadcast facility which guaranteed that

messages were received by all who should receive it.

There is another problem with match-accept responses to a

broadcast message involving message sequencing. Suppose that

a process broadcasts a message and the response status bits

are match-accept. The processes which did not receive the

message (because of the match no copy) may not receive the

next message broadcast to them because their receive sequence

bit is not synchronized with the sender's.

- 62 -

Enhancing the Ring Interface

Based on our experience with the prototype, several

improvements to the ring interface are possible. The order in

which the improvements are discussed is not related to their

relative importance. Several of these improvements are being

incorporated into a new ring interface [FAR75b].

The fir st improvement is that the names in the ring

interface should be longer and there should be more of them.

Another related improvement is to include hardware matching of

broadcast names. The absence of this mechanism in the

prototype has severely reduced the effective number of

avail able names.

Including a machine identification

interface is a third possible improvement.

number in the ring

This number could

be used by the nucleus after it is loaded to initialize local

variables pertaining to process name generation, interrupt

device tables, and, where appropriate, input/output handler

device reservation tables. The identification number should

be manually resetable as is currently done with magnetic tape

drives.

A local clock for detecting control token loss should be

added to the ring interface. This would reduce nucleus

overhead. It may also be desirable to pl.it a token

regeneration function in the hardware.

- 63 -

I

A fifth improvement is to include a mechanism in the ring

interface wherein a message sent to it causes the processor to

interrupt and initiate the ring load function. This would

allow complete automation of the nucleus load function. Other

external control functions should be investigated, such as

sample processor status, power on processor, or power off

processor, although these functions may be considerably more

complex. Mechanisms similar to these and their effects on

operating systems have been discussed with respect to the

ARPANET by Metcalfe [MET72].

Some sort of transmission error check of the match/accept

bits is needed. The current ring interface does not include

the match/accept bits in the cyclic redundancy check (CRC).

Other error detection schemes to supplement the CRC [HEI73]

should be investigated.

Another possible improvement is to allow selective name

shutoff at the ring. If one process is deluged with messages,

currently the only way to shut off receipt of messages for

that process is to disable receipt of all messages at the ring

interface. This is an unacceptable alternative because other

processes executing in a given processor should not be

penalized by the behavior of the deluged process.

Furthermore, selective shutoff is desirable because it signals

to the sending process that the destination process is busy.

- 64 -

The next suggested improvement concerns ring level

protection. If a network composed of processors with varying

levels of hardware supported protection is to be protected

from intrusions caused by requesting sensitive services in a

more protected environment from a less protected environment,

there must be a way of insuring the legitimacy of requests.

One possible mechanism for accomplishing this is to have each

ring interface include in each message a field describing the

protection hardware support level of its attached processor.

By using thisu along with a table describing the lowest

protection level from which a request for a given service can

be made, ring level protection can be accomplished"

The last improvement is to include logical communication

path management (sequence bit tables) in the hardware. Good

design principles suggest similar functions should be grouped

into modules and accesses to them rigidly controlled. In the

current software, communication path management (a

communication subsystem function) has percolated up to the

process 1 evel. This has resulted in additional overhead and

complexity in the nucleus to handle an infrequent problem

(errors caused by disruptions on the transmission lines).

Thus, communication path management should be incorporated

into the hardware or an alternative solution to the

transmission disruption problem found.

- 65 -

Relationship Between Memory Space and Reliability

One bas.ic premise of this approach to providing reliable

computing service is that the cost of processors and me,mory is

decreasing. This was taken advantage of by connecting many

processors together, resulting in a potentially more reliable

system. One effect of this has been the use of multiple

copies of information and software. At one stage of the

development of the system, it was noticed that inordinate

amounts of memory space were being used by the copies of

various processes.

space, which at the

Thus,

time

it was decided to conserve memory

had become scarce due to budget

constraints, and to put more and more functions into fewer

copies of software. For example, why distribute input/output

devices around the network, requiring each processor to run an

input/output handler? (If all devices are ·connected to a

single processor, only one copy of an input/output handler is

needed.) The reason is reliability. Clearly, if the processor

to which all input/output devices are connected fails, most

likely all processes executing in the system will eventually

fail. This violates the goal of providing reliable, fail-soft

computing service. From this one can infer that, up to some

limit, distribution is directly related to reliability. Of

course, this depends on how hardware and software are

distributed in a particular configuration in relation to the

- 66 -

specific profile of demand. Notice though, that DCS provides

a flexible environment for changing the software and hardware

configuration.

Discovering a Desired Service"s Name

This problem besets all computer

programmer knows the particular service

networks. Suppose a

he desires (this is

not very easy either) 0 say for instance a regression analysis

process. How does one find out the name of this process so a

message can be sent to it requesting a regression analysis?

In DCS, one sends a message to a resource allocator agent (a

process which carries out the bid-request allocation

algorithm) to initiate the process if a sharable copy is not

presently executing. But how does one know the process name

of the resource allocator agent? There are two solutions:

predefine a name which all users are required to know or

define a nucleus function "send to RA agent". In the f i:rst

solution, the process requesting the service broadcasts to all

agents who send a message giving their specific name: after

which the initiate request can be sent. In the second

solution, the nucleus is responsible for knowing the name of a

particular agent and, if the agent known by the nucleus

disappears, the nucleus finds the name of another agent.

- 67 -

CONCLUSIONS

Three types of conclusions can be drawn from our work on

an operating system for DCS. First, many of the problems and

possible solutions explored in the context of a minicomputer

network are not restricted to that context. In particular,

problems concerning process distribution, centralized control,

and interprocess communication are found in networks composed

of 1 arge processors and networks composed of both large and

small processors, so solutions used in DCS might well be used

in these other networks.

The second type of conclusion concerns specific details

of the design which have proven useful in the prototype

system. The utility of broadcast messages as a communication

system mechanism for facilitating certain types of information

distribution has been demonstrated. The feasibility of a

system without centralized control has been demonstrated. The

prototype has shown the necessity for different types of

messages, i.e., process, control, and sequence. In

particular, control messages are essential to being able to

design a system that operates without commitment to the

physical location of a process (location independence) and

that has no centralized control. The suggested improvements

to the ring interface should also prove valuable in a future

implementation.

- 68 -

The

concerns

last type

possible

of conclusion resulting from our work

directions for future research in

computer-communication networks and in distributed computing.

One area in computer-communication networks that needs

investigation is alternative solutions to the problem of

sequencing after transmission errors, solved in our system by

the use of process level sequence bits.

An area for research in di str ibu tea computing is

discovering and evaluating different forms of interprocess

communication. A communication system could be designed with

several forms of communication, ranging from

one-process-to-one-process to

processes, where the less powerful

many-processes=to-many­

forms cost 1 ess than the

more powerful, according to some measure such as the product

of transmission time and utilization of transmission capacity.

Several forms are suggested by our work~

one=process-to-one-process (DCS process-to-process messages) 6

one-process-to-many-processes without guaranteed receipt by

all destinations (DCS broadcast messages),

one-process-to-many-processes with guaranteed receipt by all

destinations, and content-based communication [GOR74].

Another area for research is investigating mechanisms for

unbinding a service using process from a service providing

process that has failed and substituting, where possible~ an

- 69 -

equivalent service providing process.

- 70 -

ACKNOWLEDGMENTS

Many people have contributed to the OCS projecL

Foremost a.re Professors David J. Farber and Julian Feldrnanu

principal investigators on the grants which supported the

design and development of OCSw who have provided guidance to

all phases of the project.

Particular contributions have been made by David J.

Farber, who developed the initial system architecture [FAR72a,

FAR72b]; by Frank R. Heinrich and Kenneth C. Larson, who

contributed to the early design of the operating system and

communications system; by Donald C. Loomis, who designed and

implemented the ring interface; by Allan D. Foodyrn who

contributed to the design and implementation of various parts

of the system; and by Wi 11 iam J. Ear 1 and Paul V.

Mockapetr isl' who are conducting the evaluation of the

prototype system and are redesigning and reimplementing major

parts of it.

Others who

Crosby, Steven

have made contributions

K. Howell, Robert R.

include

Ramos,

William E.

Edward S.

Schwartz? and Henry A. Sowizr al, who implemented system and

support software, and Gregory L. Hopwood and Marsha D.

Hopwood, who designed and implemented the system programming

languages used in the development of the software.

Finallyu I wish to thank Dave Farber, Frank Heinrich, and

- 71 -

particularly Marsha Hopwood, whose comments on an earlier

draft of this paper significantly improved its presentation.

- 72 -

REFERENCES

ARV75 Arvind. Personal communication.

BRI70

DIJ68

Br inch Hansen,
system. Comm.

Dij ks tr a, E.
mul tiprograrnming
341-346.

P. The nucleus of a multiprogramming
ACM 13 (April 1970), 238-241, 250.

W. The structure
system. Comm. ACM

of
11

the
(May

T.H.E.
1968),

EAR73 Earl' w. J. Interfacing the DCS to the ARPANET. DCS
Project Memo, Department of Information and Computer
Science, u. C. Irvine (March 1973).

EAR74 Earl, W. J. Resource allocation in a distributed
computer network. Dissertation Proposal, Department of
Information and Computer Science; U. C. Irvine (June
1974).

FAR72a Farber, D. J. and K. C. Larson. The structure of a
distributed computer system the communication
system. Proc. Symposium on Computer-Cdmmunications
Networks and Teletraffic, Microwave Research Institute
of Polytechnic Institute of Brooklyn (April 1972),
21-27 •

. FAR72b Farber, D. J. and K. C. Larson. The structure of a
distributed computer system the software system.
Proc. Symposium on Computer-Communications Networks
and Teletraf f ic, Microwave Research Institute of
Polytechnic Institute of Brooklyn (April 197 2) ,
539-545.

FAR7 2c Farber, D. J. and F. R. Heinrich. The structure of
a distributed computer system -- the di8tributed file
system. Proc. International Conference on Computer
Communicafions-(october 1972), 364-370.

FAR73a Farber, D. J., et. al. The distributed computing
system. Proc. Seventh Annual IEEE Computer Society
International Conference (February 197~1-34.

FAR73b Farber, D. J. and J. J. Vittal. Extendibility
considerations in the design of the distributed
computer system (DCS). Proc. National

- 73 -

Telecommunications Conference (November 1973).

FAR75a Farber, D. J. A ring network. Datamation 21
(February 1975), 44-46.

FAR75b Farber, D.
development
intelligent
to ARPA-IPT

J. An unsolicited proposal for the
of a ring communications system for the
terminal environment. Proposal Submitted
(June 1975).

FAR75c Farber, D. J. and K. C. Larson. Network security
via dynamic process renaming. To appear in Proc.
Fourth Data Communications Symposium (October 1975).

GOR74

F.IEI73

Gord, E. P., M. D. Hopwood and
Language constructs for message
decentralized programs. Proc. 1974
Conference (November 1974), 526-530-.~-

L. A. Rowe.
handling in
ACM National

Heinrich, F.
supplement the
transmission.
Information and
197 3) •

R. Some error detection schemes to
cyclic redundancy check in DCS ring
DCS Project Memo, Department of

Computer Science, u. C. Irvine (March

HOP75 Hopwood' G. L. Notes on MOLSUE. DCS Project Memo,
Department of Information and Computer Science, u. C.
Irvine (January 1975).

HOP7 l Hopwood' M. D. and G. L. Hopwood. MOL620 a

HOP73

LEV73

L0073

machine oriented language and language compiler for the
Varian 620/I. Technical Report #1, Department of
Information and Computer Science, U. C. Irvine
(September 1971).

Hopwood, M. D. , D. C. Loomis and L.
Design of the distributed computing system.
Report #2 5, Department of In.formation and
Science, u. c. Irvine (June 1973).

A. Rowe.
Technical

Computer

Levin, s. L. The distributed BASIC interpreter.
Technical Report #33, Department of Information and
Computer Science, u. c. Irvine (June 1973).

Loomis, D. c. Ring communication protocols.
Technical Report #26, Department of !~formation and
Computer Science, u. c. Irvine (January 1973).

- 74 -

MER74 Merlin, P. M. A study of the recov8rability of

MET72

corn put ing systems. Ph. D. Dissertation f Technical
Report #58, Department of Information and Computer
Science, u. C. Irvine (November 1974).

Metcalfeff R. M. Strategies for operating
computer networks. Proc. 197 2 ACM
Conference (August 1972), 278-281-.- -

systems in
National

ROW73 Rowe, L. A., M. D. Hopwood and D. J. Farber.
Software methods for achieving fail-soft behavior in
the distributed computing system. Record 1973 IEEE
Symposium on Computer Software ReTiabil itY-(Apr il
1973), 7-11~,

ROW74 Rowe u L. A., et. al. Distributed computer operating

SOW74

system pro:;Jrammer 's guide. Technical Report #46,
Department of Information and Computer Science, u. c.
Irvine (April 1974).

Sowizr al, H. A.
program debugger.
Information and
(November 197 4) •

and D. J. Farber.
DCS Project Memo,

Computer Science, U.

- 75 -

4 di str ibu ted
Department of

C. Irvine

