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ABSTRACT 

The Distributed Computing System (DCS) is a computer 
network architecture emphasizing reliable, fail~soft service 
at a relatively low cost. This paper describes the design 
of an operating system for a DCS. Issues discussed include 
interprocess communication, system initiation, and failure 
detection and recovery. Features of the implementation of a 
prototype system and some experiences gained from building 
and using t~e prototype are also described. 

Conclusions made from this work are that problems and 
solutions discovered while developing minicomputer networks 
are the same as those encountered in developing networks of 
larger machines. Specificallyu DCS and its operating system 
demonstrate that systems without centralized control can be 
constructed, that broadcast messages are useful, and that 
messages which are sent to a process but are intercepted and 
acted upon by the environment of the receiving process are 
necessary to achieve location independence. 



INTRODUCTION 

The Di str ibu tea Computing Operating System (DCOS) is a 

rn ult ipr og rammed u multiple processor operating system 

designed for the Distributed Computing System (DCS) [FAR73a, 

FAR75a, HOP73], a geographically local computer network 

architecture developed at the University of California, 

Irvine. The design goals for this system are: 

(1) to distribute control, 

(2) to provide a flexible testbed to perform experiments 
in computer networking and distributed processing, 

(3) to minimize the complexity of programs to be 
executed by the system, 

(4) to execute processes without 
physical location, 

regard to their 

(5) to use message communication for interprocess 
communication, i.e., not to allow memory sharing, 

( 6) to maximize possibilities for detection and 
automatic recovery from hardware or software 
failures, and 

(7) to minimize the complexity of the operating system. 

DCOS is process oriented, that is most operating system 

services are processes. Within each processor connected to 

a DCS is a resident software nucleus which provides local 

resource management (processor scheduling, memory 

allocation, and servicing of physically connected devices) 

and interprocess communication services. The nucleus may 
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allow many processes to execute simultaneously in the 

processor (multi pr og ramming) or may be tailored to a single 

specialized process (uniprogramming). 

This paper describes the design of the process 

structureu the interprocess communication facilities, and 

the system initiation and recovery facilities in the DCOS 

for a nucleus intended to support multiprogramming. 

Following this, details of an operational prototype DCS are 

given. The last section summarizes experiences with the 

prototype system" 
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SYSTEM OVERVIEW 

Most system services, such as resource allocationc 

input-output services, and file rnanagementw are provided as 

processes (or collections of cooperating processes) and 

details of their design are contained elsewhere [FAR72c, 

LEV? 3, ROW7 4] • Processes communicate by sending and 

receiving messages. To use a service, a process sends 

messages to and receives messages from the process providing 

the service. 

Figure l shows a six processor DCS. Each processor is 

connected to a unidirectional high speed communication ring 

by a ring interface (RI). Processors 4 and 6 support file 

systems which involve physically connected mass storage 

devices. This example of a DCS 

processors 1, 2, and 3 in the 

is an interactive system; 

figure support terminals. 

Processor 3 also provides magnetic tape and line pr inter 

service. 

Messages are directed to a process by name, as opposed 

to physical location, so that where a particular process 

resides in the network is not important to the message 

sender (cal led "location independence") • Message 

transmission is accomplished through a combination of 

hardware and software. Transrniting a message from one 

process to another causes it to be passed around the ring 
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from processor to processor and to be copied into the 

processor on which the destination process resides by the 

processor s RI. Each RI has a list of the processes 

executing in its processor. As a message passes byu a ring 

interface compares the destination process name in the 

message with its list of process names, copies those 

messages for which there is a match into the attached 

processor, and sets two status bits at the end of the 

message indicating whether the message was not matched, 

matched and not copied 0 or matched and copied. (Actually, 

each RI "or's" in its value for the two status bits.) The 

message continues around the ring and is removed by the 

sending RI which returns the status bits to its attached 

processor as a response to the send request. Thus, DCS uses 

an irnpl icit acknowledgment to signal the success or failure 

of a send request. The format of a message is shown in 

figure 2 and the possible values of the response status bits 

and their interpretation are shown in figure 3. (These 

response status bits are called the "match 91 and "accept" 

bits.) Details of the RI and hardware level protocols 

(control passing scheme) on the ring are described in a 

paper by Loomis [L0073]. 

DCS supports two forms of interprocess communication: 

one process to one process (process-to-process) and one 
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L--D_P_N __ ..l...._o_P_N __ ..J..-_L_E_N __ _.__T_E_x_T ___________ j ~ 

where: 

DPN Destination process name 

OPN Originating process name 

LEN Length of message text in characters 

TEXT Text of message 

Figure 2: Message Format 

Match .Accept Meaning 

0 

0 

1 

1 

0 

1 

1 

The destination process name 
matched by any ring interface. 

was not 

The message has been copied by at least one 
ring interface. 

The destination process name was matched by 
at least one ring interface but not copied 
by any of them. 

The destination process name was matched by 
at least two ring interfaces. At least one 
ring interface copied the message and at 
least one did not. 

Figure 3: Message Transmission Response Status Bits 
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process to many processes (broadcast). Process-to-process 

messages are used when two individual processes are 

communicating with each other. Broadcast messages are used 

when one process wants to communicate with several 

processes. Broadcast messages provide a convenient 

mechanism for supporting two methods of distributing 

information: maintaining multiple copies of the information 

or separating the information into disjoint subsets. More 

details on these two information distribution methods are 

given in the section on experiences with the prototype. 

There are three distinct types of messages: process 

messages (messages sent by a process which are received by 

the destination process) , control messages (messages sent by 

a process to the nucleus of the processor on which the 

a est inat ion process is executing) , and sequence messages 

(messages used to manage the logical communication paths 

between processes). Process messages are used when one 

process wants to communicate with one or more other 

processes. This is the standard message type. Control 

messages are used when one process requests that a nucleus 

function (such as suspend or start a process} be performed 

on another process. Because the sending process does not 

know on which processor the destination process is executing 

(location independence), it cannot send the message directly 
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to the nucleus. So, a control message is sent to the 

destination process requesting the function. The message is 

intercepted and acted on by the nucleus in the processor on 

which the destination process is executing. Sequence 

messages and their use are described in the section on 

interprocess communication. It is important to realize that 

all messages, whether process-to-process or broadcast, have 

a type. For example, a broadcast control message is a 

control message directed to several processes. 

Each nucleus is composed of three processes and a 

kernel. The three processes are: 

(l} a null process -- executes whenever the processor is 
idle, thereby providing a convenient way tcr measure 
this statistic~ 

(2) a nucleus process services nucleus requests 
(e.g., load process, 1 ist names of processes 
executing in the processor, or terminate process}, 
made indirectly by a control message or directly by 
a system call (trap to the processor nucleus on 
which the process is executing} ~ and 

(3) a sequence bit process -- described in the section 
on interprocess communication. 

The kernel is that portion of the nucleus which operates in 

privileged mode and provides processor scheduling, interrupt 

servicing, message formatting and routing, event handling, 

and memory management. On those machines to which input or 

output devices are physically connected, there is also an 
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input/output handler process which controls the devices. 

Within a DCS there are a number of other processes. 

These include command processes (the monitors or executives 

to which terminal users or batch streams are connected), 

resource allocators (processes that manage system resources 

via the bid-request scheme [FAR73a]), status checkers 

(processes that monitor the status of the system and its 

resources [ROW73]), record-keeping processes (e.g., sign-on, 

accounting, and measurement processes), and application 

processes (e.g., text editors, file directory listers, file 

copiers, language processes, and text preparation 

processes). 

One purpose of this project is to investigate a system 

architecture that provides high reliability. DCS attempts 

to minimize the probability of undetected errors and to 

maximize the possibility for recovery from errcr~. This is 

achieved by dis tr ibu ti on (a combination of separation and 

redundancy of system components), isolation {keeping local 

failures from spreading) and dynamic reconf igur at ion. 

System architectures designed in this way admit the 

possibility that a failure, whether due to hardware or 

software, may interrupt the service to a subset of the 

active users while minimizing the possibility of 

interrupting service to all active users. A system 
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exhibiting this behavior (called "fail~soft'') r-:quires that 

there not be a critical componente either in the software or 

hardware. For a functioning DCS this means that there must 

be more than one copy of the command processe resource 

allocator, 

processes. 

status checker, and 
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PROCESS STRUCTURE 

This section describes the components of a process, 

process names, process creation and des tr uc ti on~ and the 

system calls provided by the nucleus. 

The Components of a Process 

A process is composed of a task control block (TCB), a 

context block (CB) 0 and a program segment. The TCB contains 

process information needed by the system all the time, such 

as its name, execution status, message queue, program 

segment descriptor, execution statistics 0 and file directory 

descriptor. This information can not be changed by the 

process. 

The CB contains two kinds of information: ( l) 

of information the process may 

initializing process, name of 

termination, and descriptor of 

connected to the process) 1 and f 

change (e.g., name 

process to notify on 

the terminal, if any, 

(2) information not needed 

by the system if the process is in a dormant state (e.g., 

machine state when last interrupted and receive message 

buffer descriptor). 

The program segment contains the actual program code 

and data space. 
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Process Names 

Process names in DCS are of the form 

where~ 

CLASS 

NAME 

CLASS.NAME.PROCESSOR.ID.SEQUENCE 

is the class (e.g. u SYS or USER) the process 
belongs toe 

is the program name (e.g. u BASIC u QEDu or 
RUNOFF') , 

PROCESSOR is the type of processor (e.g. Lockheed SUE 
or Varian DATA 620/i), 

ID is the particular processor identification 
number, and 

SEQUENCE is a sequence number on PROCESSOR.. ID. 

A process name is created at process creation time and thus 

reflects the place the process was initiated, not 

necessarily where it is presently executing. Notice that 

the triple <PROCESSORuIDuSEQUENCE> guarantees uniqueness of 

names throughout the system. Examples of process names are: 

SYS.RA.SUE. 1.5 (the resource allocator process RA executing 

on a Lock heed SUE c in par ti cul ar the fifth system class 

process initiated on SUE number one), and 

USER.TXT.DATA620/i.3.52 (a user class process TXT executing 

on Varian DATA 620/i number three, the fifty-second process 

initiated on that processor)o 

To send a process-to-process message, the process name 
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of the destination process is used. To send a broadcast 

message u a general name is used. A general name is a 

process name 

marked to 

SYS. RA.* • ·k • * 

in which one or more fields 

match any possible value. 

is a general name used to 

resource allocators. 

in the name are 

For example, 

broadcast to all 

Name representation in the prototype system is 

constrained to 16 bi ts. Because this is not enough bi ts to 

represent a complete name, a shortened representation is 

used in the prototype to encode the process name. (Details 

of the prototype system and the process name encoding are 

described in a later section.) 

Managing Collections of Processes 

Facilities for creating and managing collections of 

processes are primitive. (Another project goal is to 

investigate process organizations to achieve improved 

performance and reliability.) The present facilities result 

in a nonhierarchial process structure (as opposed to the 

rigid hierarchical structure described by Dijkstra [DIJ68] 

and Brinch Hansen [BRI70]). 

Associated with each process are the names of two other 

processes: the initiating process (INIT) and the 

notification process (NOTIF) • When a process wants to 

create a new processu it sends a request to 60 so to a 
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resource allocator agent, who selects a machir.e on which to 

initiate the process and causes it to be initiated with INIT 

for the new process being set to the name 

and NOTIF set to INIT unless otherwise 

create request. 

of the requester 

specified in the 

A process can be terminated by its own request, by a 

request from the process named in INITw or by an authorized 

system process. Upon termination, all resources bound to 

the terminating process are released, and a notification of 

the termination is sent to the process named in NOTIF. 

Should the notification process not exist, the message is 

sent to the process named in INIT. Termination of a process 

does not imply that processes it created are terminated. 

They continue to execute until their eventual terminations. 

Descendant processes request and release resources on their 

own, and upon termination their resources are returned to 

the free pool as opposed to being passed to their initiator. 

System Calls 

There are four system calls provided by the nucleus: 

send message, receive message, terminate process, and read 

time. 

To send ~ message, a process issues a send message 

system call passing the destination process name and a 

reference to the message text to the nucleus (actually the 
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system call server is part of the nucleus kernel). 

Packeting~ retries on errors, and sequencing are handled by 

the nucleus interprocess communication facilities as 

described in the next section. After completing the 

transrnissionu the nucleus returns the response status bits, 

described in figure 3u to the process. 

Message sending in DCOS is asynchronous, that is, 

before a process can request that another message be sent, 

the previous transmission must be complete (i.e., the 

response status bits returned). This means that a process 

is blocked when a send message call is made and unblocked 

after the transmission is completed. Asynchronous 

communication was chosen for two reasons. First, this 

results in a conceptually simpler system from a user's point 

of view; and second, the operating system is less complex. 

By contrast, if synchronous communication were allowed, 

complex protocols and conventions would be necessary. For 

example, to handle situations such as might occur if four 

send message requests are made and a transmiesion error 

occurs on the second. A convention about what to do with 

the two queued requests (e.g., perform regardless or abort) 

must be adopted and a protocol for notifying the process 

about the transmission response status must be developed. 

To avoid these com pl icat ions, DCOS uses asynchronous 
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communication. 

To 

message 

buffer 

receive a message, 

system call, passing 

(1 ocation and size) 

a process issues 

a descriptor for 

to the nucleus. 

a receive 

a message 

The first 

message in the process's message queue, if one is present, 

is copied into the message buffer in the format shown in 

figure 2. The destination process name is copied so that a 

process can determine whether the message was sent to its 

. process name or its broadcast name. When making a request 

to receive a message, a process may specify the specific 

process from which it wants to receive a message and may 

specify a time after which, if a message has not been 

received, control is returned to the process. 

The third system call is terminate process. A process 

uses this call to terminate itself. 

The last system call is read time. 

the local processor date-time block 

(hardware dependent local clock). 
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INTERPROCESS COMMUNICATION 

As described in the previous section, a process 

requests that a message be transmitted to another process 

(or processes in the case of a broadcast message) by issuing 

a send request call and requests that a message be received 

by issuing a receive request call. After the originating 

process requests the transmission, the nucleus assembles the 

message in a message buffer. If the destination process 

exists on the same processor as the originating process, the 

message buffer is placed on the nucleus input message queue 

for the processor. Thus, the message is not needlessly sent 

around the ring. (However, all broadcast messages must be 

sent around the ring.) If the message is to be sent around 

the ring, it is placed on the nucleus output message queue. 

The output message routine issues the output request to the 

ring interface. The receiving processor ring interface 

copies the message into a message buffer which is placed on 

the receiving nucleus's (or nuclei's) input me. ssage queue. 

The input message routine then places the message on the 

message queue for the destination process. When the process 

requests a message and the message is at the front of its 

message queue, it is copied into the receive message buffer 

in the process address space. Figure 4 shows two examples 

of message transmission: an interprocessor transmission and 
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an intraprocessor transmission. 

This section describes how the message is actually 

transmitted from the originating process to the destination 

process. It describes message packeting, detecting and 

recovering from transmission errors, and managing the 

logical communication paths between processes. These 

communication system mechanisms are transparent to a process 

sending and receiving messages. This is followed by a brief 

discussion of higher level communication protocols. 

Message Packeting 

In order that certain system resources, nCdllely message 

buffers and ring transmission capacity, can be equitably 

shared by all processes, messages are transmitted in packets 

if they are longer than a fixed parameter (determined at 

system creation time). Since packeting and reassembly are 

performed by the nucleus, the processes involved are unaware 

that it happens. In the discussions that follow, the term 

"message" is used instead of "message. packet", because it 

makes the explanations easier to understand. 

Detection and Recovery from Transmission Errors 

There are three types of abnormal transmission 

conditions, categorized by the way they are detected: (1) 

inability to transmit, (2) transmit overrun and cyclic 
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redundancy check (CRC), and (3) match/accept errors. 

An inability to transmit arises when the ring level 

protocol is breached v violated e or disrupted e 'l'o insure 

that only one ring interface places a message on the ring at 

a given tirneu a control passing scheme is used [L0073]. A 

"'control token" is passed around the ring signifying which 

RI has control. A ring interface may transmit a message 

only when it possesses the control token. Aft:er it places 

one message on the ring, the RI passes the con tr.ol token to 

the next RI. (Notice that this guarantees that one ring 

interface does not hold control of the ring transmitting one 

message after another for ext ended periods of time.) Upon 

being requested to send 

for t he cont r o 1 token • 

indefinitely. Howeverg 

a messageu a ring interface waits 

The RI could wait for the token 

the nucleus detects abnormally long 

waits by establishing a time after which, if the message has 

not been sent (or some other error has not been reported), 

the control token is presumed lost. At this point the 

nucleus forces another token onto the ring. If the ring 

protocol can not be reestablished due to ring failure, the 

processor continues as best as it can (probably at a 

cons id er ably reduced functional capability) • Not ice that 

any processor on the ring can restore the token. Thuso 

control is dis tr ibu ted as opposed to being centralized. A 
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centralized control would result in a more vulnerable 

system. To insure that only one processor at a time forces 

a control token, the detection time out plus the time needed 

to regenerate a token is significantly different on each 

processor. 

The second type of transmission abnormality is a 

transmit overrun or cyclic redundancy checl<o A transmit 

overrun condition is signaled by a ring interface when it is 

unable to fetch words from memory fast enough to maintain 

the ring transmission rate (approximately two million bits 

per second). A cyclic redundancy check signal by a ring 

interface means that the message received after being passed 

around the ring is different than the message sent. 

The third type of transmission abnormality is a 

match/accept error. This situation is signaled by the ring 

interface in the response status bits returned to the 

processor after the message has traveled around the ring and 

has been removed by the sending RI. 

For each of these last two types of transmission 

abnormalities 0 the error is counted and the transmission is 

attempted again. This continues until a fixed number of 

consecutive un sue cessf ul retries (threshold number of 

retries) is surpassed after which the recovery mechanisms 

described below are invoked. Each type of error is counted 
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separately and 

threshold. 

for each there is a different retry 

Transmit overrun or cyclic redundancy check is probably 

a transient condition so the retransmission is attempted 

immediately. If the retry threshold is violated, the 

sending process is returned a no-match-no-accept. 

For a no-match-no-accept (i.e., process name does not 

exist), the message is also immediately retransmitted. For 

match-no-accept and match-accept (i.e., at least one RI 

matched the name but could not copy the message), the 

processor that could not copy is probably saturated. That 

is, either the attached RI is not initialized for input 

because there are no message buffers available or the RI is 

unable to store into memory fast enough. Because we expect 

that this situation may persist for a short period, the 

message is not immediately r etr ansmi tted. It is pl aced on 

the end of the output message queue. However, if the retry 

threshold is violated the sending process is returned the 

response status bits. 

Managing Logical Communication Paths 

In any communication system, if a message is sent and 

the response signal returned by the receiver is either not 

received by the sender or unintelligible to the sender, the 

sender can not determine whether the message was received. 
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To resolve this problem, message communication systems 

typically retransmit the message (along with some sequencing 

information so that the receiver can ignore copies of 

previously received messages) until an acceptable response 

is received by the sender or the transmission is abandoned. 

In res for example, as shown in figure 5, when 

transmitting a message from processor 1 to processor 2, a 

transmission error could occur either before the message has 

arrived at processor 2 or after the message has passed 

processor 2. Suppose the error occurs after the message has 

passed processor 2 (labeled error 2 in the figure). In this 

case the message may already have been copied into processor 

2. Because processor 1 cannot distinguish between the two 

errors, it retransmits the message with the sequence bit 

indicating that this is a copy of the previoJJs message. 

When processor 2 receives the second message (a copy), the 

nucleus knows whether to ignore it by comparing the sequence 

bit in the message with the sequence bit from the previous 

message. On the other hand, suppose the error occurs before 

the message has passed processor 2 (labeled error 1 in the 

figure). In this case the message has not been copied into 

processor 2. (Actually, the RI copies the message and 

signals to the nucleus 

eye 1 ic redundancy check 

the arr iv al of a message with a 

error, so the nucleus ignores it.} 
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Figure 5: Possible Locations of Transmission Errors 
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When processor 2 receives the second message 

the nucleus knows to accept it by checking 

bits. 

(not a copy) , 

the sequence 

Sequencing of messages must be done at the process 

level rather than the processor level. This is because DCS 

uses location independent naming and a process might be 

moved (from one processor to another) between when the first 

message is sent and the retransmission is sent. 

The communication system can be thought of as providing 

logical communication paths between processes (either a 

process-to-process or a broadcast path). The kernel 

maintains tables describing the status of each logical 

communication path for each process executing in its 

processor. A path is a one-directional communication link. 

Sequencing information for a path is maintained in a 

sequence bit table both at the sending and receiving end of 

the path. There are two sequence bit tables for each 

process: a send sequence bit table and ·a receive sequence 

bit table. Figure 6 shows two processes and their 

associated sequence bit tables. Notice that in process A's 

send sequence bit table, the sequence bit for process B is 0 

and that in process B's receive sequence bit table, the 

sequence bit for process A is 1. When process A sends a 

message to process B, the send sequence bit for B (0) is 
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pl aced in the message. After the message is received at 

process B, the sequence bit in the message (0) is compared 

with the receive sequence bit for A (1). Because they are 

not the same (0 f 1), the message is accepted and the 

receive sequence bit table entry is replaced by the sequence 

bit in the message. If a message arrives in which the 

sequence bit in the message matches the sequence bit in the 

table, the message is ignored because it is a copy of the 

previous message received. The sequence bit in process A's 

send sequence bit table is flipped 0 -> 1 and 1 -> 0) 

after the message has been successfully transmitted. 

The process name in a sequence bit table must be exact, 

either a process name or a general name. These two cases 

must be kept distinct because the communication path between 

a process and a collection of processes (broadcast name) is 

distinct from the path between a process and a specific 

member of the collection. 

Initialization of sequence bit table entries is 

straightforward. On the sending end, a new entry is created 

and the send sequence bit is set to 0 or 1 (the choice is 

arbitrary). On the receiving end, if the originating 

process name in the received message is not found in the 

receive sequence bit table, the message is accepted, a new 

entry is created, and the receive sequence bit is set to the 
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sequence bit in the message in the norm a 1 way. (This is not 

exactly correct. Actually, a synchronization message is 

sent before the first message. The need for this 

synchronization message and how it is accomplished is 

described in a later section on initiation and recovery.) 

A process executing in DCS may communicate with an 

arbi tr ar ily 1 arge number of other processes which implies 

that there may be many communication paths active at one 

time. Because sequencing information is maintained for each 

distinct path and because there are physical resource (i.e., 

memory) constraints on the total number of paths on which 

information can be maintained at one time, there must be a 

mechanism for closing communication paths. This problem is 

analogous to that of mapping virtual memory into physical 

memory in a virtual memory system and many of the same 

difficulties are encountered. 

A close path function can be initiated from either the 

sending or receiving end of a communication path. First, 

consider a close path function initiated at the the sending 

end of a path. To close the path, the receiving end process 

name must be r ernoved from the sender· s send sequence bit 

table and the sending end process name must be removed from 

the receiver ·.s receive sequence bit table. The nucleus at 

the receiving end of the path must be notified by the 
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sending end nucleus to close the receive end of the path. 

This is accomplished by sending a special type of message, 

called a "sequence message", to the process on the receiving 

end which is intercepted and acted upon by the receiving end 

nucleus. After the sequence message is received u the 

sending end nucleus can remove the r ece iv er "s name from the 

sender's send sequence bit table. Secondu consider a close 

path function initiated at the receiving end of a path. As 

in the previous caseu to close the pathu the sender's name 

and receiver's name must be removed from, respectively, the 

r ece iv er s receive sequence bit table and the sender · s send 

sequence bit table. The nucleus at the receiving end of the 

path notifies the nucleus at the sending end of the path to 

remove the receiver's name from the sender's send sequence 

bit table by sending a sequence message. In this case, the 

receiving end nucleus can not remove the sender's name from 

the receiver's receive sequence bit table after the sequence 

message is received. This is because a message could be 

sent along the path by the sending end process between when 

the sequence message is received by the sending end nucleus 

and when it is acted upon. For this reason, the receiver's 

receive sequence bit table entry is not remo•1ed until an 

acknowledgment sequence message is sent by the sending end 

nucleus indicating that the other end of the path is closed. 
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The remaining paragraphs in this subsection describe in more 

detail exactly how these close path functions work. Readers 

not interested in these details should skip 4::.o the next 

subsection on higher level protocols. 

A close path function is initiated at the sending end 

when: (1) a process requests that a message be sent, (2) a 

comrnun ication path does not exist between this process and 

the destination process (i.e. 0 the destination process name 

is not in the sender's send sequence bit table), and (3) all 

communication paths for the sending process are in use 

(i.e., the send sequence bit table is full). A close path 

function initiated at the sending end consists of: 

(1) blocking the process requesting the sendf 

(2) locking the process's send sequence bit table, 

(3) selecting a path to closeu 

(4) sending a sequence message to close the other end of 
the path, 

(5) freeing the entry in the send sequence bit table, 

(6) unlocking the send sequence bit table, and 

(7) unblocking the process requesting the send. 

When a nucleus receives a sequence message request to close 

a particular process's receive end of a communication path 

and the path is defined (i.e", the sending process's name is 

in the receiving process's receive sequence bit table) u the 
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path is closed by freeing the receive sequence bit table 

entry. If the path is not defined, no action is taken by 

the nucleus. 

A close path function is initiated at the receiving end 

when: (1) a message is received for a process (i.e"ff the 

input message routine processes a message on the input 

message queue), (2) a communication path does not exist 

between the originating process and the destination process 

(i.e., the originating process name is not in the receiver's 

receive sequence bit table), and (3) all communication paths 

for the destination process are in use (Le. e the receive 

sequence bit table is f ul 1) • A close path function 

initiated at the receiving end consists of: 

(1) locking the destination process s receive sequence 
bit tableu 

(2) selecting a path to close, 

(3) sending a sequence message to close the other end of 
the pathu 

(4) waiting for an acknowledgment sequence message 
indicating that the other end of the path is closedo 
and 

(5) unlocking the receive sequence bit table. 

When a nucleus receives a sequence message requesting that 

the sending end of a particular path be closed, the path is 

closed unless the sending end process has a message 
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transmission pending or its send sequence bit table is 

locked. After closing the path (i.e., removing the 

r ece iv er 's name from the sender's send sequence bit table) , 

an acknowledgment sequence message is sent by the sending 

end nucleus to the receiving end nucleus indicating that the 

receiver's end of the path may be closed. This 

acknowledgment message is sent even in those cases when the 

sending end process does not exist (it may have terminated) 

or the path is not defined (the sequence message may be a 

copy), so that the receiving end table can be unlocked. In 

both cases, when the close path function is completed, the 

nucleus can proceed with processing, either a send system 

call or the message on the nucleus input message queue. 

Locking the sequence bit table prohibits the nucleus 

from initiating another close path function on a table. So, 

in the case of a receive sequence bit table, messages on the 

input message queue processed by the input message routine 

which have a sequence bit table entry are accepted and, if 

appropriate, passed to the process. Furthermore, a process 

continues to execute if the function is a receive end close 

path. Notice also, that a receive end close path function 

and a send end close path function may be performed 

simultaneously on a process. 

Sequence messages are similar to control messages in 
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that they are addressed to a process but are acted on by the 

nucleus of the processor on which the destination process 

resides. They are different than control messages in that 

they are not sequence checked. In other words 0 process 

messages and control messages have sequence bits which are 

checked to insure that a copy of a message is not processed. 

By contrast, if sequence messages we re sequence checked, 

then sequence bit tables must be maintained for sending and 

receiving sequence messages" This implies that a close path 

function may have to be performed in order to send sequence 

messages thus resulting in an infinite recursion. Because 

sequence messages are not sequence ckecked, multiple copies 

of one may be received by the destination nucleus. The 

close path function protocols are designed so that receiving 

multiple copies of the sequence messages does not disturb 

the integrity of the communication system. For the same 

reason that sequence messages are not sequence checl~ed u a 

special process, called the "sequence bit" process, is 

included in every nucleus to perform the communication path 

management functions. This process is the only one which 

sends and receives (indirectly) sequence messages. 

Both close path functions require that a communication 

path be selected for closing. It would be desirable, for 

efficiency reasons, to select a path over which 
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commun ica ti on is finished or will not be res urned for some 

time. This problem is analogous to that of selecting a page 

to r ernove from physical memory in a paging system. Like the 

page removal problem 0 there is no good algorithm for making 

the rernoval selection. 'l'he page removal problem is handled 

by using a heuristic which performs better than random 

selection. In the path closing problem, sever al hem: istics 

are suggested~ least number of messages sent, least recently 

used pathG oldest path (first in-first out), or newest path 

(last in-first out). There does not appear to be a 

particularly good a priori reason for selecting one of these 

heuristics over another so an answer to this problem is 

unknown. 

section. 

This issue is discussed further in a later 

Suppose the nucleus at the opposite end of the 

communication path selected for closing cannot be 

communicated with via a sequence message u 

no-match-no-accept, match-no-accept, or match-accept (the 

path being closed may be a broadcast path in which case it 

has a single sender and multiple receivers). Because a 

no-match-no-accept means the destination process does not 

exist, the other end of the path is presumed closed (Le., 

the destination process has terminated and thus cannot be 

involved in future communication) and the close path 
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function continued. For a 

received the sequence message, 

match-no-accept, no nucleus 

so another path is selected 

for closing. (Note, a path is not closed until the function 

frees the sequence bit table entry.) Match-accept causes 

problems because some nuclei received messages and some did 

not. In this case the message is retransmitted and, if the 

situation continues after a small number of retries, no 

further communication is attempted. Figure 7 shows the 

state of the sequence bit tables after the broadcast 

sequence message has been sent and acted upon by the 

receiving nuclei. Notice that the broadcast path entry has 

been freed in receive tables 1 and 2. The question is 

whether to free the entry in the send table. If it was a 

receive initiated close path function, the send table entry 

can be retained and the next time communication along this 

path is attempted all processes will receive the message 

correctly (processes without receive table entries will 

create a correct one and processes with an entry are already 

synchronized with the sender). (Notice that the receive 

sequence bit table would be locked indefinitely if the 

nucleus requesting the close path function is the one that 

does not receive the close path acknowledgment, the process 

with receive sequence bit table 3 in the example. Thus, a 

time out is set for the sequence bit table after which the 
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sending end is presumed closed and the close path function 

continued.) If, on the other handw it was a send initiated 

close path function 0 there are two options~ the entry can be 

freed or another entry selected for closing. If the entry 

is freed f the next time communication along the path is 

at tempted the synchronization message (described in the next 

sect ion) wi 11 cause the remaining receive table entries to 

be freed. 

Because it results in less complexity, both from the 

user's and the system·s viewpoint, communication path 

closings are invoked implicitly as opposed to explicitly, 

either by the processes involved or by the system when a 

process terminates. Both alternatives lead to problems when 

a message is sent or received and there are no sequence bit 

table entries available. Alsou in the case of user invoked 

closingsr more detailed implementation knowledge is required 

on the part of users. Implicitly invoked close path 

functions were chosen because they would be needed even if 

explicit functions were implemented. 

Higher Level Protocols 

DC:OS does not presume any protocol or structure on the 

text portion of messages. Processes communicating among 

themselves may establish any conventions they desire. 

Neverthelessf some processes use a standardized protocol in 
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which a message requesting a function and arguments has the 

form 11 identification, function, argument, ••• , argument" and 

a message responding with ·the results of a requested 

function has the form "identification, response, result ••• , 

result". The "identification" is a symbol (supplied in some 

cases by the requestor and in others by the responder) 

useful for maintaining the distinction between simultaneous 

events being acted upon by two processes. For example, a 

requestor may supply an identification in a request message 

so that the response message (with the same identification 

returned by the process providing the function) can be 

distinguished as the one for the particular function 

request. More details and examples of the use of this 

higher level protocol are available in the "DCOS Programming 

Guide" [ROW74] (specifically section 3. 4 on the input/output 

handler). 
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INITIATION AND RECOVERY 

This section describes how a DCOS is initiated and how 

detection of and recovery from nucleus or process failure 

are handled. Four design goals were established for the 

initiation and recovery procedures. They should: 

(1) not require a centralized control or source of 
information, 

(2) maximize similarity 
processes (sue h as 
resource allocators), 

of nuclei and 
input/output 

common system 
handlers and 

(3) allow dynamic reloading of nuclei and processes with 
minimal disruption of the system, and 

(4) minimize resident memory spaGe of initiation and 
recovery procedures. 

Much of the material on nucleus and process failure detection 

and recovery is taken from a previous paper [ROW73]. 

System Initiation 

Processors are divided into two classes for system 

(nucleus and system processes) loading purposes, those with a 

local information source (any physically connected device 

which allows access to a copy of the nucleus, such as disk, 

magnetic tape, card reader, or paper tape) and those without 

a local information source. Processors with a local source 

may load a nucleus directly or may be loaded across the ring. 

Those without a local source must be loaded across the ring. 
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'!'his is accomplished by executing a ring loader which clears 

the ring interface name table (may first have to initiate 

ring) and communicates with a file system (probably a special 

ring load process) to load a copy of the nucleus. In keeping 

with the goal of minimizing resident memory space of the 

initiation and recovery procedures, the ring loader is 

bootstrapped across the ring into the processor as shown in 

figure 8. Thus, the ring bootstrap is kept small to make 

loading it easy and to minimize the probability of it being 

destroyed. (In a production version of DCS, the bootstrap 

could be "wired-in", either in the ring interface or in the 

processor.) Obviously, processors cannot be loaded remotely 

until at least one processor has been loaded directly. 

Otherwise, no restrictions are placed on the order in which 

processors are loaded. 

All nuclei, for a particular type processor, are 

identical except for the machine identification number, 

interrupt device tables, and the input/output handler (if 

present). The machine identification number is passed to the 

nucleus by the nucleus load function (either a direct or ring 

load). The interrupt device tables bind physical device 

numbers to device type. The problem is how to initialize the 

device tables without maintaining special instances of the 

software. The same problem occurs with input/output 
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handlers. Several solutions are possible, such as 

predefining all machines of a particular type to use the same 

physical device numbers for similar devices, compiling nuclei 

separately with appropriate device table definitions, 

compiling all possible device tables (for a set of 

processors) into one copy of the nucleus and selecting the 

appropriate table at initiation time, or establishing a more 

restricted initiation ordering so that the tables can be read 

from a file. Each of these solutions has advantages and 

disadvantages and the one chosen depends on the particular 

implementation environment. Another solution requiring 

special hardware, available on some third generation 

processors, is to provide facilities for the system to 

interrogate its environment to determine what physical 

devices exist and what their physical addresses are. 

Each nucleus is loaded with a start process which 

initializes local resources and data structures. The start 

process may also load some additional system processes (e.g., 

command process, resource allocator, or status checker) 

depending on the OCS configuration. (Notice that the 

info rma ti on location problem discussed in the previous 

paragraph arises here also.) The process configuration (the 

number of instances of each type of system process and their 

distribution) strongly influences the performance and 
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reliability of a system. This theme 

later section on experiences with 

is elaborated on in a 

the prototype. There 

certainly must be one (and probably more than one so as not 

to centralize control) operator or configuration control 

process for externally monitoring and changing the 

di str ibu ti on and number of system processes. This is 

distinct from a status checker whose function is to monitor 

the maintenance of a minimal configuration, to do simple load 

balancing, and to insure that nuclei are still functioning. 

Ring initialization is handled by the same detection and 

recovery mechanism described previously, i.e., some process 

attempts to send a message and, if the ring times out, a new 

token is generated. 

Nucleus Failure Detection and Recovery 

Status checkers test periodically for processor failure 

by sending to each nucleus a message requiring a response. 

If a nucleus fails to respond to sever al consecutive status 

check messages, the status checker hypothesizee that the 

nucleus has failed. A single status checker cannot establish 

that a particular nucleus has failed. However, if a given 

percentage of checkers decide that a nucleus has failed, 

recovery procedures are initiated. 

Recovering from a nucleus failure is accomplished in the 

same way the nucleus was initially loaded, either directly 
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from a local information source or indirectly from a remote 

source. The only difference between recovery and initiation 

is that recovery is invok by a status checker while 

initiation might have resulted from an external impetus (for 

examplee an operator). Nevertheless 0 particular instances of 

a OCS may elect to require human intervention in recovery 

procedures. 

Nucleus failure and, in very l im i tea cases 0 process 

failure, 1 ead to a peculiar problem cone er ning sequence bit 

synchronization. Suppose two processes, A and B, are 

communicating, and process A is in a processor that fails 

then process A fails. When the nucleus is reloaded, if 

process A was a necessary system process it will be restarted 

with the same name (eog. input/output handler, nucleus 

process or resource allocator) • Suppose the new copy of 

process A sends a message to process B. Because B does not 

know A failed and was restarted, their communication path may 

not be synchronized and the message may be discarded. To 

resolve this problem, when the first message is sent to a 

process~ a close path function is initiated at the sending 

end to synchronize the logical communication path. Notice 

that this also solves the problem described in the previous 

section wherein a broadcast path is not completely closed 

(i.e., one or more of the receive end processes do not close 
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the path but the send end is closed) • 

Status checkers also periodically check that processes 

bound to resources (defined in the input/output handler 

device reservation tables) still exist. This prevents 

resources from being lost when a nucleus fails. 

Process Failure Detection and Recovery 

Software failures in a process are detected by 

traditional hardware failure indicators, e.g., an attempt to 

reference an undefined or protected address or an attempt to 

execute an undefined or protected instruction. There are 

several actions the system can take when a process failure is 

detected: 

(1) save a copy of the process environment, 

(2) initiate a test process, 

(3) initiate a new copy of the failed process, or 

(4) take no action until directed to do so by an external 
source. 

The particular action taken depends on what process failed and 

the circumstances causing the failure. 
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PROTOTYPE DETAILS 

This section describes details (as of February 1975) of 

the prototype DCS developed at U. C. 

the directions being pursued. 

Hardware 

Irvine and discusses 

The present system is composed of three processors, 

Lockheed SUE minicomputers, connected by ring interfaces to a 

data ring operating at 2.3 megabits. There are also two 

Varian 620/i's with IBM 2314 class disk drives attached: these 

620/i's are currently connected to SUE's providing a 

rudimentary file system capability for the DCS. There is a 

modest complement of peripherals including: several terminals 

(teletypes and alphanumeric and graphic displays), an 

Addmaster and a Remex paper tape reader, a Calcomp plotter, a 

Kennedy magnetic tape, a Tektronix 611 storage scope, a low 

speed Centronics line printer, and a text preparation facility 

(Diablo Hytype printer and a high speed upper/lower case Data 

Products printer). In the near future the Varian 620/i's will 

be connected directly to the ring resulting in the 

configuration shown in figure 9. (A Computer Automation 

ALPHA-LSI-2 controls the text preparation facility.) 

The ring interfaces are constructed using TTL circuitry. 

Each inter face provides 16 names, each 16 bi ts 1 ong, in an 
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associative store. The associative store is implemented by a 

bit serial associative memory. The hardware does not support 

broadcast name matching so the software system uses 2 names in 

the associative store for those processes which may be 

broadcast to, one for the process name and one for the 

broadcast name. The fabrication cost of a ring interface is 

$1000v in quantities of 1. This cost would be cut in half if 

they were produced in larger quantities (approximately HI). 

It is estimated that they could be produced for $100 each 

using large scale integration (LSI) technology [FAR75b]. 

Software 

The current version of the operating system consists of 

nuclei for each processor, sign-on processes, command 

processes, input/output handlers, and system status and 

statistics collection processes. User or application level 

software available includes an assembler, machine oriented 

language compilers ( MOL6 20 [HOP7 l] and MOLSUE [HOP? 5] ) , 

linkage editors, a file transfer processv a file directory 

l istin.g process, a line oriented text editor (QED), a text 

outputting system (RUNOFF) , a debugger for distributed 

processes [SOW74] u and other utility and diagnostic processes. 

Status checkersw complete resource allocators, and the fully 

distributed file system [FAR72c] have not been implemented. 

A hardware name is obtained from a process name when it 
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is created. This is because the RI hardware only allows 16 

bit names. The format of a hardware name and how it is 

encoded from a process name are shown in figure 10. Certain 

system processes have predefined names: 

l.i.l nucleus.process 

l.i.2 input/output handler 

l.i.3 command process 

l.i.4 sequence bit process 

where i is the processor number. The existence of reserved 

system process names for input/output handlers and command 

processes does not imply that all of these processes exist on 

every possible processor. Different software configurations 

of the system may include some but not all of them. 

When transmitting messages between processes, the system 

includes a message control word. The control word contains 

three fields, as shown in figure 11: a packet definition 

field, a sequence bit field, and a message def ini ti on field. 

The packet def ini ti on field indicates whether this packet is 

the first, neither first nor last, last, or first and last 

packet of the message. The sequence bit is used to determine 

if this packet is a copy of the one previously sent. The 

message def ini ti on field describes whether the message is a 

process, control, or sequence message. The control word is 
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CLASS.NAME.PROCESSOR.ID.SEQUENCE 

where: 

0 :: CLASS f; 15 

CLASS.ID.SEQUENCE 

Process class: 

0 
1 
2 

3-8 
9 

10-15 

not used 
system processes 
reserved for resource allocators 
reserved for system process classes 
user processes 
reserved for user process classes 

0 ~ ID!:::: 15 Processor number 

0:: SEQUENCE* 255 Sequence number 

Figure 10: Hardware Names 
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1 
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SB Sequence bit field 

bit 
0 
1 
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MDF Message definition field: 

1 Process message 
2 Control message 
8 Sequence message 

Neither first nor last packet 
First packet but not last 
Last packet but not first 
First and last packet 

Figure 11: Message with Control Word 
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put into a message by the nucleus when it is copj.ed from the 

sender· s address space into a message buffer and removed when 

it is copied from a message buffer into the receiver's address 

space. Thus, like packeting, the sending and receiving 

processes are not aware of the existence of the message 

control word. 

Control message functions provided by each nucleus are 

listed in figure 12. Most of these functions are performed by 

the nucleus process because messages must be sent to carry 

them out. 

The packet size in the current system is chosen so that a 

disk file record (as defined in the file system) can be 

transmitted without packeting; a record is approximately 130 

characters. 

The control token lost wait, the length of time a nuc.leus 

waits after requesting that a message be sent 

presumes the ring control token has been lost, 

for each machine and ranges from 1/2 second to 1 
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Status check 
Does process exist? Nucleus ignores message: sender 
notified that process exists by response status bits. 

Suspend process 
Suspend process execution, do not release resources. 
Notify and connect terminal to process named in NOTIF 
field of the suspended processes· context block. 

Terminate process 
Terminate process execution, release resources. 

Start process 
Start process execution at start address specified in 
load module. 

Restart process 
Start process 
suspended. 

execution at address where process 

Interrupt process 
Suspend process execution (initiated by 
terminal). Perform same actions specified 
process function. 

Read directory 

user at 
in suspend 

Read file directory name which process is logged on to. 

Examine memory 
Read specified memory locations in process. 

Deposit memory 
Write specified memory locations in process. 

Figure 12: Control Message Functions 
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After 

The message transmission thresholds are: 

transmit overrun or 
cyclic redundancy check 

match- ace ept 

match-no-accept 

no-match-no-accept 

# attempts to send 

50 

1 

15 

1 

a single match-accept or no-match-no-accept, the 

response is returned to the sender. The no-match-no-accept 

threshold is one because a considerable number of messages are 

sent to non-existent processes, which, if the threshold were 

higher, results in a noticeable reduction in transmission 

rate. 

Currently, each process is allocated eight sending and 

eight receiving logical communication paths. The algorithm 

for selecting a path to close is least number of messages sent 

or received. This algorithm has proven unacceptable. Certain 

critical processes, in particular input/output handlers, tend 

to get their sequence bit tables filled with four or five 

processes with large numbers of messages sent (typically 

processes reading or writing large files). With the current 

a lg or i thrn it becomes nearly impossible to close these 

communication paths even though the processes may no longer 

exist. Once this happens, the overhead from sending sequence 
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messages gets larger as processes contend for scarcer 

resources, that is, the remaining sequence bit table entries. 

A least recently used algorithm (LRU) is being implemented to 

resolve this problem. 

In order to minimize the time a ring interface is 

disabled while processing a message received signal, a linked 

ring of message buff~ is maintained. After a message is 

received, the interrupt routine marks the buffer full and 

reinitializes the ring interface input with the next buffer. 

The input message routine periodically tests whether a buffer 

is full. If so, a system message buffer is allocated, the 

message is copied from the ring interface buffer to the system 

buffer, and the system buff er is pl aced on the input message 

queue. Thus, messages are copied four times if the message is 

transmitted around the ring, and only twice if it is not. 

Future Directions 

Pl ans for the near future include connecting the var ian 

620/i's directly to the ring, constructing a new ring 

interface [FAR75b], continuing efforts to improve the 

reliability of the system, and assessing the performance and 

suitability of ring computer networks. The DCS prototype is 

being used as a tool in an undergraduate class on systems 

programming and as a resource for departmental research\ in 

resource allocation in distributed systems [EAR74], in the 
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design of specialized text handling processors [ARV75], and in 

the exploration of secure network communication protocols and 

internetwork security [FAR75c]. A link between DCS and the 

ARPANET is also being planned [EAR73, FAR73b], 

Longer range plans include using the new ring interface 

to connect devices other than processors (e.g., terminals) 

directly to the ring and interfacing an existing operating 

system to DCOS. 
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EXPERIENCES WITH THE PROTOTYPE 

Experiences with the DCS prototypeu including available 

performance statistics, information distribution by broadcast 

messages, suggested changes to the ring interface, 

relationship between memory space and reliability D and the 

problem of how a process discovers a desired service's name 

are discussed in this section 

Performance Statistics 

There is no analysis of the DCS prototype available 

al though work in this area is underway. Never th el ess, some 

subjective results were obtained by gathering data while the 

system was executing and developing a composite description of 

the sarnpl es. As such, the results should not be interpreted 

as precise descriptions of controlled experiments, rather they 

should be thought of as suggestive of the observed 

performance. In what follows, data on the distribution of 

message lengths and the frequencies of transmission errors are 

presented. 

The . message length probability density and cumulative 

distribution functions for a five minute period executing a 

three machine OCS with three interactive users are shown in 

figures 13 and 

programs, sue h 

14. During 

as QED and 

the sampling period, arbitrary -

the assembler, we re loaded and 
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executed. There are three peaks in the density function. The 

first peaku messages with length between 1 and 10 characters, 

contains all input request and output response messages (4 and 

2 characters long respectively) and other request and response 

messages. The peak between 81 and 90 character messages 

corresponds to sending binary records produced by the 

assembler. The last peaku messages between 121 and 130 

characters in length, are reads and writes of the maximum 

length disk record (128 characters plus identification and 

request/response fields). Thus, frequently invoked mechanisms 

with constraints established in other parts of the systemu 

such as the file system, significantly affect the observed 

distribution of message lengths. 

During the 15 minute experiment, from which the 5 minute 

message length distribution sample was taken, the following 

error frequencies were observed~ 

frequency of retries on send 

frequency of transmit overrun 
or CRC error 

frequency of receive overrun 
on input 

inability to transmit (token lost) 

ring not initialized for input 
because buffer not available 

The errors observed occurred in bursts, i.e. 
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were required on a few messages as opposed to a single retry 

for many messages. 

The frequency of transmission errors, at presentu appears 

to be directly related to the transmission load. For example, 

as more processes are execu tea 

frequently by existing processes, 

increases. This may result from 

or messages 

the frequency 

errors not 

sent more 

of errors 

previously 

encountered in the hardware and software. Considerable effort 

is being made to understand and correct this problem. 

Although we have not conducted any quantitative 

experiments on process and processor failure detection and 

recovery, the mechanisms for handling these errors are 

operational. The detection and recovery mechanisms in the 

prototype are not automatic (because status checkers have not 

been implemented); however, reloading the nucleus in the 

failed processor is straightforward. In most cases, processes 

executing on other processors not depending on processes 

executing in the failed processor have continued 

uninterrupted. This demonstrates the fail-soft reliability 

characteristic which was a predominant goal in this research 

project. Where this characteristic has not been achieved is 

at the process level. The problem is that an arbitrary 

executing process may depend on a resource provided by a 

specific process andu if the resource providing process fails 
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it is impossible for the system to unbind the using process 

from the failed process andu in those cases where meaningful, 

substitute another resource providing process. More work 

needs to be done in this area. In particular, investigating 

the possibilities of describing resource needs and usages in a 

way which would allow an algorithm, when notified of the usage 

needs of those processes affected by a failure, to substitute 

other processes (perhaps restarting failed processes) for the 

preempted resource. Some preliminary theoretical work on this 

problem has been cornpl eted recently by Merl in [MER74]. 

Information Distribution by Broadcast Messages 

The DCS broadcast facility conveniently supports two ways 

of distributing information. 

information into disjoint 

The first is to distribute the 

subsets. The second is to 

di str ibu te complete copies of the info rma ti on. In the fir st 

case f a process accesses the information by broadcasting a 

request to all disjoint subsets, expecting an answer from the 

one who has the requested information. An example of this 

kind of distribution is resource allocation information. Each 

RA maintains a disjoint subset of the resources available in 

the system. In the second case, a process accesses the 

information by broadcasting to all copies of the information, 

using the first answer received. Fileu 

information [FAR72c] is an example of 
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distribution. In both cases, the problem of updating 

redundantly stored information is not made easier by the 

existence of the broadcast facility. 

The broadcast facility is inadequate in cases where it is 

imperative that all processes which should get the message do 

get it. Notice that in the presently available facilities, if 

a process broadcasts a message and gets a match~accept 

response (some but not all got the message), resending the 

message may result in some destinations receiving a second 

copy and some a fir st copy. Furthermore, if the response to 

the retransmission is match-accept again, it is still 

indeterminant whether all processes which should get the 

message did. 

broadcasts to 

An example of this situation is when a nucleus 

all input/output handlers a command to free 

resources bound to a terminated process. The solution to this 

difficulty would be a broadcast facility which guaranteed that 

messages were received by all who should receive it. 

There is another problem with match-accept responses to a 

broadcast message involving message sequencing. Suppose that 

a process broadcasts a message and the response status bits 

are match-accept. The processes which did not receive the 

message (because of the match no copy) may not receive the 

next message broadcast to them because their receive sequence 

bit is not synchronized with the sender's. 
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Enhancing the Ring Interface 

Based on our experience with the prototype, several 

improvements to the ring interface are possible. The order in 

which the improvements are discussed is not related to their 

relative importance. Several of these improvements are being 

incorporated into a new ring interface [FAR75b]. 

The fir st improvement is that the names in the ring 

interface should be longer and there should be more of them. 

Another related improvement is to include hardware matching of 

broadcast names. The absence of this mechanism in the 

prototype has severely reduced the effective number of 

avail able names. 

Including a machine identification 

interface is a third possible improvement. 

number in the ring 

This number could 

be used by the nucleus after it is loaded to initialize local 

variables pertaining to process name generation, interrupt 

device tables, and, where appropriate, input/output handler 

device reservation tables. The identification number should 

be manually resetable as is currently done with magnetic tape 

drives. 

A local clock for detecting control token loss should be 

added to the ring interface. This would reduce nucleus 

overhead. It may also be desirable to pl.it a token 

regeneration function in the hardware. 
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A fifth improvement is to include a mechanism in the ring 

interface wherein a message sent to it causes the processor to 

interrupt and initiate the ring load function. This would 

allow complete automation of the nucleus load function. Other 

external control functions should be investigated, such as 

sample processor status, power on processor, or power off 

processor, although these functions may be considerably more 

complex. Mechanisms similar to these and their effects on 

operating systems have been discussed with respect to the 

ARPANET by Metcalfe [MET72]. 

Some sort of transmission error check of the match/accept 

bits is needed. The current ring interface does not include 

the match/accept bits in the cyclic redundancy check (CRC). 

Other error detection schemes to supplement the CRC [HEI73] 

should be investigated. 

Another possible improvement is to allow selective name 

shutoff at the ring. If one process is deluged with messages, 

currently the only way to shut off receipt of messages for 

that process is to disable receipt of all messages at the ring 

interface. This is an unacceptable alternative because other 

processes executing in a given processor should not be 

penalized by the behavior of the deluged process. 

Furthermore, selective shutoff is desirable because it signals 

to the sending process that the destination process is busy. 

- 64 -



The next suggested improvement concerns ring level 

protection. If a network composed of processors with varying 

levels of hardware supported protection is to be protected 

from intrusions caused by requesting sensitive services in a 

more protected environment from a less protected environment, 

there must be a way of insuring the legitimacy of requests. 

One possible mechanism for accomplishing this is to have each 

ring interface include in each message a field describing the 

protection hardware support level of its attached processor. 

By using thisu along with a table describing the lowest 

protection level from which a request for a given service can 

be made, ring level protection can be accomplished" 

The last improvement is to include logical communication 

path management (sequence bit tables) in the hardware. Good 

design principles suggest similar functions should be grouped 

into modules and accesses to them rigidly controlled. In the 

current software, communication path management (a 

communication subsystem function) has percolated up to the 

process 1 evel. This has resulted in additional overhead and 

complexity in the nucleus to handle an infrequent problem 

(errors caused by disruptions on the transmission lines). 

Thus, communication path management should be incorporated 

into the hardware or an alternative solution to the 

transmission disruption problem found. 
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Relationship Between Memory Space and Reliability 

One bas.ic premise of this approach to providing reliable 

computing service is that the cost of processors and me,mory is 

decreasing. This was taken advantage of by connecting many 

processors together, resulting in a potentially more reliable 

system. One effect of this has been the use of multiple 

copies of information and software. At one stage of the 

development of the system, it was noticed that inordinate 

amounts of memory space were being used by the copies of 

various processes. 

space, which at the 

Thus, 

time 

it was decided to conserve memory 

had become scarce due to budget 

constraints, and to put more and more functions into fewer 

copies of software. For example, why distribute input/output 

devices around the network, requiring each processor to run an 

input/output handler? (If all devices are ·connected to a 

single processor, only one copy of an input/output handler is 

needed.) The reason is reliability. Clearly, if the processor 

to which all input/output devices are connected fails, most 

likely all processes executing in the system will eventually 

fail. This violates the goal of providing reliable, fail-soft 

computing service. From this one can infer that, up to some 

limit, distribution is directly related to reliability. Of 

course, this depends on how hardware and software are 

distributed in a particular configuration in relation to the 

- 66 -



specific profile of demand. Notice though, that DCS provides 

a flexible environment for changing the software and hardware 

configuration. 

Discovering a Desired Service"s Name 

This problem besets all computer 

programmer knows the particular service 

networks. Suppose a 

he desires (this is 

not very easy either) 0 say for instance a regression analysis 

process. How does one find out the name of this process so a 

message can be sent to it requesting a regression analysis? 

In DCS, one sends a message to a resource allocator agent (a 

process which carries out the bid-request allocation 

algorithm) to initiate the process if a sharable copy is not 

presently executing. But how does one know the process name 

of the resource allocator agent? There are two solutions: 

predefine a name which all users are required to know or 

define a nucleus function "send to RA agent". In the f i:rst 

solution, the process requesting the service broadcasts to all 

agents who send a message giving their specific name: after 

which the initiate request can be sent. In the second 

solution, the nucleus is responsible for knowing the name of a 

particular agent and, if the agent known by the nucleus 

disappears, the nucleus finds the name of another agent. 
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CONCLUSIONS 

Three types of conclusions can be drawn from our work on 

an operating system for DCS. First, many of the problems and 

possible solutions explored in the context of a minicomputer 

network are not restricted to that context. In particular, 

problems concerning process distribution, centralized control, 

and interprocess communication are found in networks composed 

of 1 arge processors and networks composed of both large and 

small processors, so solutions used in DCS might well be used 

in these other networks. 

The second type of conclusion concerns specific details 

of the design which have proven useful in the prototype 

system. The utility of broadcast messages as a communication 

system mechanism for facilitating certain types of information 

distribution has been demonstrated. The feasibility of a 

system without centralized control has been demonstrated. The 

prototype has shown the necessity for different types of 

messages, i.e., process, control, and sequence. In 

particular, control messages are essential to being able to 

design a system that operates without commitment to the 

physical location of a process (location independence) and 

that has no centralized control. The suggested improvements 

to the ring interface should also prove valuable in a future 

implementation. 
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The 

concerns 

last type 

possible 

of conclusion resulting from our work 

directions for future research in 

computer-communication networks and in distributed computing. 

One area in computer-communication networks that needs 

investigation is alternative solutions to the problem of 

sequencing after transmission errors, solved in our system by 

the use of process level sequence bits. 

An area for research in di str ibu tea computing is 

discovering and evaluating different forms of interprocess 

communication. A communication system could be designed with 

several forms of communication, ranging from 

one-process-to-one-process to 

processes, where the less powerful 

many-processes=to-many­

forms cost 1 ess than the 

more powerful, according to some measure such as the product 

of transmission time and utilization of transmission capacity. 

Several forms are suggested by our work~ 

one=process-to-one-process (DCS process-to-process messages) 6 

one-process-to-many-processes without guaranteed receipt by 

all destinations (DCS broadcast messages), 

one-process-to-many-processes with guaranteed receipt by all 

destinations, and content-based communication [GOR74]. 

Another area for research is investigating mechanisms for 

unbinding a service using process from a service providing 

process that has failed and substituting, where possible~ an 
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equivalent service providing process. 
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