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Abstract

The Denjoy integral is an integral that extends the Lebesgue integral and can
integrate any derivative. In this paper, it is shown that the graph of the indef-
inite Denjoy integral f +— f: f is a coanalytic non-Borel relation on the product
space M|a, b] x C'[a, b], where M[a, b] is the Polish space of real-valued measurable func-
tions on [a, b] and where C|[a, b] is the Polish space of real-valued continuous functions
on [a,b]. Using the same methods, it is also shown that the class of indefinite Denjoy
integrals, called ACG.Ja, ], is a coanalytic but not Borel subclass of the space Cla, b],
thus answering a question posed by Dougherty and Kechris. Some basic model theory
of the associated spaces of integrable functions is also studied. Here the main result
is that, when viewed as an R[X]-module with the indeterminate X being interpreted
as the indefinite integral, the space of continuous functions on the interval [a, b] is el-
ementarily equivalent to the Lebesgue-integrable and Denjoy-integrable functions on
this interval, and each is stable but not superstable, and that they all have a common
decidable theory when viewed as Q[X]-modules.

*Department of Logic and Philosophy of Science, 5100 Social Science Plaza, University of California,
Irvine, Irvine, CA 92697-5100, swalsh108@gmail.com, walsh108@Quci.edu
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1 Introduction

The Denjoy integral is an integral that extends the integrals of Riemann and Lebesgue
and that can integrate any derivative. This paper studies the Denjoy integral from two
perspectives from mathematical logic, namely that of descriptive set theory and model theory.
From the perspective of descriptive set theory, the natural question to ask is: how hard is it
to define the Denjoy integral when viewed as a subset of a Polish space? Recall that a Polish
space is a separable topological space whose topology can be given by a complete metric, and
the measure of complexity of definitions on Polish spaces is induced by the hierarchy of Borel
sets: open and closed sets are regarded as minimally complex, Borel sets formed from them
by the operations of countable union and intersection are regarded as more complex, and
continuous images of Borel sets and their complements are regarded as yet more complex.
The continuous images of Borel sets turn out to be the same as the continuous images of
closed sets, and these sets are called analytic sets, and their complements are called coanalytic
sets. Our results show that certain sets pertaining to the Denjoy integral are coanalytic but
not Borel, and thus are comparatively complex under the measure of complexity coming
from descriptive set theory.

As with the Riemann and Lebesgue integrals, the indefinite Denjoy integrals F'(z) = fax f
of real-valued functions f on [a,b] are themselves continuous, and so it is natural to view
them as a subset of the Polish space of real-valued continuous functions defined on [a, b].
This space is denoted by Cla,b], and its topological structure is taken to be induced by
the supremum metric. One of our main results (cf. Theorem 1.6 below) says that the set of
indefinite Denjoy integrals is coanalytic but not Borel when viewed as a subspace of C([a, ]).
This is important for two reasons. First, this result provides another example of a logically
complex object that occurs naturally in analysis. For a survey of other such examples, see
Becker Becker [1992]. The second reason that this result is important is that it answers a
question of Dougherty and Kechris from their earlier study (Dougherty and Kechris [1991])
of descriptive set theory and Denjoy integration.

Prior to stating Dougherty and Kechris’ question, and describing their own results, it is
necessary to first present the definition of the Denjoy integral. There are many equivalent
definitions of this integral, but the one which is most apt for our purposes is a generalization
of the fundamental theorem for the Lebesgue Integral. This theorem gives an equivalent
condition for a measurable function f : [a,b] — R and a continuous function F': [a,b] — R
with F'(a) = 0 to be such that f is Lebesgue integrable with F(z) = [ f. In particular, the
fundamental theorem says that this is equivalent to F' being absolutely continuous and for F’
to exist almost everywhere with F’ = f almost everywhere (cf. Theorem 1.4 below). The
Denjoy integral generalizes the Lebesgue integral via a generalization of absolute continuity.
Let us then proceed by first recalling the definition of absolute continuity and then specifying
Denjoy’s generalization.

To this end, it will be convenient to introduce some notation, employed throughout the
paper, for describing partitions and related notions. As will become clear, it will often be
necessary to indicate that the edges of these partitions lie in some antecedently-specified
closed subset of [a,b]. Hence, given a closed subset K of [a,b], a K-edged pre-partition D



of [a,b] is a finite non-empty collection Ji,...,J, of non-overlapping closed subintervals
of [a,b] which have both their endpoints in K. In this, two closed intervals J = [¢,d|, J" =
[, d'] are said to be non-overlapping if either d < ¢ or d’ < ¢, so that sharing an endpoint
is allowed and i.e. J = [¢,d] and J” = [d,e| count as non-overlapping. A pre-partition D
of [a,b] is called a partition if its union is equal to the whole interval [a,b]. The length of a
closed interval J will be denoted by its Lebesgue measure p(J). With this in place, we can
now define the notion of absolute continuity and the generalization that is operative in the
definition of the Denjoy integral:

Definition 1.1. Let F : [a,b] — R be continuous and let K C [a,b]. Then F is absolutely
continuous on K, and written F' € AC(K), if for every € > 0 there is § > 0 such that for
all K-edged pre-partitions D of [a, D]

(1.1) > u(J) < 6= |F(max(J)) — F(min(.J))| < e

JeD JeD

The generalizations are obtained by relaxing the consequent of this conditional. One does
this by introducing the notation

(1.2) W(F, J) = sup{|F(z) — F(y)| : 2,y € J}
and then by defining:

Definition 1.2. Let F : [a,b] — R be continuous and let K C [a,b]. Then F is absolutely
continuous in the restricted sense on K, and written F' € AC.(K), if for every ¢ > 0
there is 6 > 0 such that for all K-edged pre-partitions D of [a,b] if >, ,u(J) < §
then Y, pw(F,J) < e. Finally, F' is generalized absolutely continuous in the restricted
sense, and written F' € ACG,(K), if there is a countable sequence of closed K, C [a, b] such
that K =, K,, and F' € AC.(K,,).

Note that on this definition, all AC,(K) and ACG,(K) functions are continuous. One could
obviously define analogous notions for non-continuous functions. But since the functions
which interest us are indefinite integrals which are automatically continuous, we maintain
the convention in this paper that all AC,(K) and all ACG,(K) functions are continuous.
The Denjoy integral may then be defined as follows:

Definition 1.3. Suppose that f : [a,b] — R. Then f is Denjoy integrable or f € Denla, b|
if there is F' € ACG.([a,b]) such that F’ exists almost everywhere and F” = f almost
everywhere. If in addition F(a) = 0, then one defines [ f = F(z).

The motivation for this definition comes from the parallel with the fundamental theorem
for the Lebesgue integral, which in virtue of the above definitions we can state as follows:

Theorem 1.4. (Fundamental Theorem of Calculus for Lebesgue Integrals Folland [1999]
Theorem 3.35 p. 106). Suppose f : [a,b] — R is measurable and F': [a,b] — R is continuous
with F(a) = 0. Then [f € L'[a,b] & F(z) = [ f]iff [F € AC([a,b]) & F' = f a.c]
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Here we use the standard notation L'[a,b] for the space of real-valued Lebesgue integrable
functions on [a, b], and the standard abbreviation a.e. for almost everywhere equivalence. It
turns out that all Denjoy integrable functions f : [a,b] — R are Lebesgue measurable (cf.
Gordon [1994] Theorem 7.6 p. 109). From this and the definition of the Denjoy integral
(Definition 1.3) we can immediately deduce the following analogue of Theorem 1.4:

Theorem 1.5. Suppose f : [a,b] — R is measurable and F' : [a,b] — R is continuous
with F(a) = 0. Then [f € Denla,b] & F(z) = [ f] iff [F € ACG,([a,b]) & F' = f a.e.]

Since any function in ACG,([a,b]) is differentiable a.e. (cf. §2), this theorem says that the
Denjoy integrable functions are, up to almost everywhere equivalence, exactly the derivatives
of ACG,([a,b]) functions. The analogy between Theorem 1.4 and Theorem 1.5 thus becomes
all the more apparent when one observes that F' € AC(K) iff F € AC,(K) in the specific
case where K is a closed interval. For, Theorem 1.4 then says that the Lebesgue integrable
functions are, up to almost everywhere equivalence, exactly the derivatives of AC,([a,b])
functions.

At the end of their study of the Denjoy integral, Dougherty and Kechris posed the follow-
ing question about the generalization of absolute continuity which features in Theorem 1.5:

A second problem is related to the definability aspects of the so-called “descrip-
tive definitions of integrals” (see [S, Chapts VII, VIII] [Saks [1937]]). These are
essentially implicit definitions like the original one of the primitive. For example,
the Lebesgue integral F' of an integrable function f can be defined as the unique
(up to a constant) F' such that (i) F' is absolutely continuous and (ii) F’ = f(z)
for almost all x. By replacing in (i) absolute continuity by more general condi-
tions, one can obtain descriptive definitions of integrals involving any derivative.
The question is whether these conditions can possibly be Borel (Dougherty and
Kechris [1991] p. 166, cf. Kechris [1987] p. 312).

In the beginning of this quotation, Dougherty and Kechris refer to Saks’ 1937 book The
Theory of the Integral. And §VIII.1 of Saks’ book is called “the descriptive definition
of the Denjoy integral” and contains Definition 1.3 (Saks [1937] p. 241). It seems then
that Dougherty and Kechris are asking about the descriptive set-theory complexity of the
set ACG,[a,b]. This paper answers this question by showing that the condition ACG,|a, b]
cannot be Borel:

Theorem 1.6. The set ACG.([a,b]) is coanalytic but not Borel in C|a, b].

The proof of this theorem occurs at the close of §5. After Dougherty and Kechris pose this
question about ACG,[a,b], they pose another question about whether there is a uniform
Borel method of recovering the integral of a function which one antecedently knows to be
integrable.

Before stating this other question precisely (cf. Question 1.8 below), let us briefly summa-
rize Dougherty and Kechris’ own results. These are reported in their joint paper (Dougherty
and Kechris [1991]) as well as the paper associated to Kechris’ 1986 ICM talk (Kechris
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[1987]). A distinctive feature of Dougherty and Kechris” work is that it restricts attention
to the action of the Denjoy integral on the derivatives of everywhere differentiable functions.
For, if F': [a,b] — R with F(a) = 0 is everywhere differentiable, then F' is ACG*[a,b] (cf.
Gordon [1994] Theorem 7.2 p. 108). Then Theorem 1.5 implies that f = F” is Denjoy inte-
grable with indefinite integral fax f = F(x). Now, it is a classical result, due to Mazurkiewicz,
that Diff[a, b], the set of everywhere differentiable real-valued functions on [a, b], is a coan-
alytic complete subset of Cla,b] (cf. Kechris Kechris [1995] §33.D Theorem 33.9 p. 248).
The topic which Dougherty and Kechris pursued was the complexity of the associated set of
derivatives A = {F' : F' € Diff]a, b]}.

To make this question precise, one must find some Polish space in which A or a related
set can naturally be viewed as a subspace. Dougherty and Kechris opted to work in the
Polish space (Cla, b])¥, namely the countable product space of C([a,b]). Inside this space,
they focused attention on the sets

(1.3) CN = {{fu};2, € (Cla,b])¥:Vz li7rln fn(x) exists }
(1.4) A = {fu}2,€CN: lim f,, € A}

If F € Diff[a,b], then of course F' = lim, f, where f,(z) = [n- (F(z) — F(z + +))], so
that each derivative F’ might naturally be viewed as coded by the sequence f,. That is, we
map Diff[a, b] into A by F — 0(F) = {f,}3, where f,(z) = [n- (F(z) — F(z + 1))]. Now,
it turns out that the set C'N is complete coanalytic (cf. Kechris Kechris [1995] §33.E pp.
251 ff), so in looking at the complexity of subsets of CN such as A, one should ask about
how complex it is to be in A given that one is in CN. One of Dougherty and Kechris’s
results states that A is coanalytic but there is no analytic set S in (C[a, b])* such that for
all {f,}22, € ON, one has {f,}>2, € S iff {f,}>>, € A (cf. Theorem 2 Dougherty and
Kechris [1991] p. 147). This result tells us that {f,,}°°, being in A given that it is already
in C'N is a coanalytic but not Borel notion.

This suggests another question closely related to Dougherty and Kechris’s question about
the complexity of ACG,a,b]. For, there are many functions F' in ACG,[a,b] which are
not in Diff[a, b], and since Dougherty and Kechris focused on the image of Diff[a, b] under
the differentiation operation, their results in general would not have any implications for
the larger set ACG,|a,b]. However, it’s thus natural to study the complexity of the image
of ACG,[a, b] under the operation of almost everywhere differentiation. To make this question
precise, one must specify a Polish space which naturally contains this image. Here we look
at the Polish space Mla,b] of real-valued measurable functions on [a,b], modulo almost
everywhere equivalence. The topology is defined so that f,, — f in this space iff f, — f
in measure. At the outset of §5 we review the Polish space structure of M|a, b] in more detail.
But having specified this Polish space, we can now state our second main result, which is
proven at the close of §5:

Theorem 1.7. The set Denla, b] of Denjoy integrable functions is a X3-subset of the Polish
space M|a,b] and is not analytic.



Recall that a X3-subset is the continuous (or Borel) image of a coanalytic set, and it is a basic
part of the classical theory that all analytic and coanalytic sets are 33, but not vice-versa.
In the statement of this theorem, we regard elements of Den|a, b] as real-valued functions
on [a,b] modulo almost everywhere equivalence. Dougherty and Kechris’ result described
at the end of the previous paragraph essentially said that the image of Diff[a, b] under the
operation of differentiation was coanalytic but not Borel within the Polish space (Cla, b])“.
Similarly, Theorem 1.7 implies that the image of ACG,[a, b] under the operation of almost ev-
erywhere differentiation is 33 but not Borel.

After posing their question about ACG,[a,b], Dougherty and Kechris pose a question
about how hard it is to recover the integral of a function which one antecedently knows to
be integrable. In their setting, the form this question took was the following:

Question 1.8. Is there a Borel set B C (C[a, b])* x Cla,b] such that for all {f,}>2, € A

and all F' € Cla,b], one has that ({f,}:2,,F) € B iff F'(z) = lim, f,(z) for all x € [a, b]?
(Dougherty and Kechris [1991] p. 166, Kechris [1987] p. 312).

A negative resolution of this question would generalize Dougherty and Kechris result that
there is no Borel set B C (C[a, b])* such that for all {f,}%, € A, one has that {f,}>>, € B
iff fab lim,, f,,(z) dz > 0 (cf. Dougherty and Kechris [1991] Theorem 4 p. 147). The analogous
question in our setting would be the following, or perhaps variations on it wherein Den|a, b]
is replaced by various of its subsets:

Question 1.9. Is there a Borel set B C M|a,b] x Cla,b] such that for all f € Denla, b] and
all F € Cla,b] with F(a) =0, one has that (f,F) € Biff [ f = F(x) for all z € [a, ]?

We have been unable to answer Questions 1.8-1.9.

However, a crucial part of our proofs of Theorem 1.6 and Theorem 1.7 revolves around
the related issue of identifying the complexity of the graph of the indefinite Denjoy integral.
Here we establish the following result, whose proof occurs at the close of §5:

Theorem 1.10. The graph of the indefinite Denjoy integral f — fax f, viewed as a subset
of the product space Mla,b] x Cla,b], is coanalytic but not Borel.

In all three of our theorems, there is a positive claim about a certain set being coanalytic
(resp. 33), and a negative claim that the sets are not Borel (resp. not analytic). The positive
part of Theorem 1.7 follows directly from the positive part of Theorem 1.6 and the observation
that being differential almost everywhere is a Borel property of an element F' € Cla, |,
and the relation F’ = f a.e. is a Borel property of a pair (F, f) € Cla,b] x M[a,b] (cf.
Proposition 5.6). So Denla,b] is 33 because it is the image of a conalytic set ACG,]a, b]
under the Borel operation F' +— ~(F'), where v(F) = f if F’ is differentiable a.e. and F’' = f
a.e., and y(F) = 0 otherwise. It remains to prove the positive parts of Theorem 1.6 and
Theorem 1.10, as well as the negative parts of all three theorems.

The basic idea of these proofs is to look at coanalytic ranks associated to maps on the
Polish space K|a,b] of closed subsets of [a,b] (cf. Kechris §34.D pp. 270 ff). This space
has the topology generated by the “miss” sets {K € K[a,b] : K NU® = 0} and the “hit”
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sets {K € Kla,b] : KNU # 0}, where U C [a,b] is open (cf. Kechris Kechris [1995]
§4.F pp. 24 ff). The proofs proceed by defining, for each f € Mla,b] and F' € C|a,b] and
pair (f, F') € MJa,b] x C|a,b], the following three Borel functions from K{a,b| to K{a,b|:

These functions are called “derivatives” since they resemble the Cantor-Bendixson derivative
in certain of their formal properties. The intuitive idea is that D;(K) consists of those
points of K at which f is not locally Lebesgue integrable, Dp(K) consists of those points
of K at which F is not locally absolutely continuous in the restricted sense, and Dy p(K) =
D¢(K)U Dp(K). For the formal definition of these three derivatives see (3.8)-(3.10) below.

These derivatives can then be iterated countably many times by defining D*™(K) =
D(D*(K)) and taking intersections at limit stages. Since these maps are Borel (cf. §5),
it follows from the general theory of such derivatives that the set of elements f, F' whose
derivatives D$([a, b]), D%([a,b]), D r([a,b]) are eventually empty, are themselves coanalytic
sets. One can then show that f € Den|a, b] with F'(z) = ff f iff there is a countable ordinal
a such that D 1.([a,b]) is empty and F’ = f a.e. (cf. Corollary 4.4). Putting these various
results together at the end of §5 immediately gives the positive parts of the Theorem 1.6 and
Theorem 1.10. The general theory of these derivatives also yields the result that subsets of
these spaces whose derivatives vanish below some antecedently specified countable ordinal
are Borel. Hence, by showing that there are elements whose derivative only vanishes at
arbitrarily high countable ordinals (cf. Theorem 3.2), we are able to argue for the negative
parts of all three theorems at the close of §5.

Before outlining the content of the different sections of this paper, let us briefly describe
our results on the model theory of the Denjoy integral. Dougherty and Kechris’ question
was essentially a question of how difficult it is to define the Denjoy integral. One can also
ask about the complexity of the sets which are defined by this integral. Here the appro-
priate setting seems to be that of model theory, where one asks what can be defined in a
first-order way from the Denjoy integral, and a natural language for this is the language
of R[X]-modules, where the indeterminate X is interpreted as the indefinite Denjoy integral,
so that the atomic formulas are a very elementary type of integral equation. One of the basic
questions to ask here is whether there is any first-order difference between the Denjoy inte-
grable functions, the Lebesgue integrable functions, and the continuous functions with the
Riemann integral. This question is answered here in the negative by the following theorem:

Theorem 1.11. As R[X]-modules with the indeterminate X interpreted as the indefi-
nite integral X f — [ f, the continuous functions Cf[a,b], the Lebesgue integrable func-
tions L'[a, b, and the Denjoy integrable functions Denla, b] are elementarily equivalent. Fur-
ther, as Q[X]-modules, they have the same computable complete theory.

This final theorem is proven at the end of §7. Thus the conclusion of this part of the
paper is that from an admittedly elementary model-theoretic standpoint, these integrals are
indistinguishable. For suggestions as to less elementary perspectives, see §8.

This paper is organized as follows. In §2; some basic facts related to the Denjoy integral
are recalled and it is noted how one can define a series of subsets of the Denjoy integrable
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functions which relate to how long it takes to define the Denjoy integral in terms of the
Lebesgue integral and improper integrals. In §3 the three Cantor-Bendixson-like derivatives
mentioned above in (1.5) are formally defined and it is shown that there are Denjoy in-
tegrable functions whose derivatives vanish only at arbitrarily high countable ordinals (cf.
Theorem 3.2). In §4, it is shown that these two measures defined in the two previous sub-
sections correspond exactly, and in particular that the vanishing of the derivatives in §3 is
correlated exactly with membership in the sequence of subsets from §2: this is the content of
Theorem 4.3 and Corollary 4.4. In § 5, it is shown that the derivatives are Borel, which then
permits us to deduce the main Theorems 1.6, 1.7, and 1.10. In §6 we turn to the development
of the model-theoretic perspective pursued here and use calculations of indexes of subgroups
to show that these modules are stable but not superstable and hence are model-theoretically
more complex than the underlying vector spaces. Finally in §7 we use the Riesz theorems
from the theory of integral equations, in conjunction with the pp-elimination of quantifiers
from the model theory of modules to deduce Theorem 1.11.

2 Basic Lemmas and the Subspaces

The aim of this section is to briefly review some key facts about the Denjoy integral which
we shall employ throughout this paper. As mentioned in the introduction, the indefinite in-
tegrals of the Denjoy integrable functions on [a, b] are precisely the functions F' in ACG,|a, D]
with F'(a) = 0. In what follows, we shall repeatedly appeal to the fact that every function in
ACG,([a, b)) is differentiable almost everywhere on [a,b] (cf. Gordon Gordon [1994] Corol-
lary 6.19 p. 100).

Now, it is worth mentioning that there is a partial converse to this result. In particular,
let us say that a function F' : [a, b] — R is differential nearly everywhere if F is differentiable
except on a countable set. Then it turns out that if F' € C([a,b]) is differentiable nearly
everywhere then F' € ACG,([a,b]) (cf. Gordon Gordon [1994] p. 103 or Peng-Yee Peng Yee
[1989] p. 29). However, the full converse to this result is in general false. For examples
of real-valued continuous function F' on [a,b] that are differentiable almost everywhere but
such that F' ¢ ACG,([a,b]), see Gordon Gordon [1994] p. 119.

Frequently, we shall also appeal to certain elementary facts pertaining to the class AC,(FE)
(cf. Definition 1.2). First, if £ is itself a closed interval, then any continuous function in
AC(FE) is in AC.(E) and vice-versa; so it is only for more complicated sets E that the
two notions diverge. Second, if @ C FE is dense, then any continuous function in AC,(Q)
is in AC,(F) and vice-versa; hence without loss of generality, we may restrict attention to
evaluating absolute continuity in the restricted sense on dense subsets (cf. Gordon Gordon
[1994] Theorem 6.2 (d) pp. 90-91). Third, if F'is a continuous function on [a, b] and E C [a, b]
is closed with (a,b) — E = | | (cs,d,), then one has the following (Gordon Gordon [1994]
Theorem 6.2 pp. 90-91):

(2.1) F € AC.(E) = Y w(F,[cy,d,]) < 00



Finally, one has that if f € Den[a,b] then there are K, € Kla,b] with [a,b] = U, K\
and fxk, € L'[a,b] (cf. Gordon Gordon [1994] Theorem 9.18 pp. 148-149). Recall, in this,
that K'la,b] denotes the Polish space of closed subsets of [a, b].

Two basic lemmas on the Denjoy integral are important for what follows. The first gives a
useful sufficient condition for a function to be Denjoy integrable, and in particular provides a
way to start building up the Denjoy integral step-by-step from the Lebesgue integral. Hence
we dub this lemma the “Step Lemma”:

Lemma 2.1. (Step Lemma) Suppose that f € Mla,b] and K € Kla,b] and (a,b) —
K = |2 (cn,dy). Further suppose that fxx € L'[a,b], and fx(,a, € Den[a,b] and

P w(f; f,lcn, dy]) < oo. Then f € Denla, b] and fabf = fK D fc‘in f.
Proof. See Gordon Gordon [1994] Theorem 7.12 p. 111. 0

By looking at equation (2.1) above, one sees immediately that the assumption that

Yo w(fc“i [, len, dn]) < 0o may be replaced by the assumption that there is F' € AC,(K)
such that F(z) = [ f on [c,,d,]. Often in what follows we will apply this variant of the
lemma. Finally, the Inmproper Integrals Lemma just says that there are no improper integrals
in the context of Denjoy integration:

Lemma 2.2. (Improper Integrals Lemma) Suppose f € Mla,b]. If fxi . € Denla,b] for
every ¢ € (a,b), then f € Den[a, b] with f(f f = Lifand only if lim.\ 4+ fcb f exists and is equal
to L. Likewise, if fx(aq € Denla,b] for every c € (a,b), then f € Den|a, b] with fabf =L if
and only if lim, ~- [ f exists and is equal to L.

Proof. See Gordon Gordon [1994] Theorem 9.21 p. 150 or Swartz Swartz [2001] Theorem 4
pp- 25-26. [

These two lemmas can be used to define a series of subsets of Den[a,b] which reflect
how long it takes to recover Denjoy integration from Lebesgue integration and improper
integration. These subsets are closed under scalar multiplication, and they are subinterval-
closed in that if they contain f then they contain fx(.q) for any interval (c,d). To define
these subsets, let’s first define two preliminary notions:

Definition 2.3. Suppose that X C Denla,b]. Then f € Denla,b| is an improper inte-
gral of X if there is a countable sequence (an, b,) C (a,b) such that (i) (a,b) = U, (an, bn)

and (an, by) C (ant1, bny1) and (ii) fx(anp,) € X and (iii) ime g+ f:l [ exists, and (iv) lim, - facl f
exists. Further, define Lim(X’) to be the set of improper integrals of X.

Definition 2.4. Suppose that X C Den[a, b]. Then f € Denla, b] is given by the Step Lemma
from X if there is a K € Kla,b] with (a,b) — K = | |7~ ,(cn,d,) such that fxx € L'[a,b]
and fX(cn.a,) € X, and there is F' € AC.(K) satisfying F(z) = [ f. Further, let Step(X)
be the set of elements which are given by Step Lemma 2.1 from X.

Then we define the subsets Den,|a, b] of Denl[a, b] by recursion:
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Definition 2.5. Define Deng[a, b = L'[a,b], and for a > 0 define

Den,, [a, b] = Step(Lim( U Dengla, b]))

[B<a

It is then routine to show that these subsets are closed under scalar multiplication, that
they are subinterval-closed, that they are closed under a.e. difference, and that they are
non-decreasing as the ordinal « increases.

3 Three Derivatives and Functions of Arbitrarily High
Rank

Now we proceed to the formal definition of our three Cantor-Bendixson-like derivatives which
we mentioned in (1.5). There is a general framework for these kinds of derivatives, which
is set out in Kechris Kechris [1995] §34.D. Hence, let’s begin by recalling the basics of this
framework. In what follows, recall that K|a,b] denotes the Polish space of closed subsets
of [a,b]. Suppose that B C Kla,b] is closed under closed subsets, i.e., if K € B and L €
Kla,b] and L C K then L € B. Then define the derivative map Dgp : K|a,b] — K]|a,b] by

(3.1) Dp(K)={z e K:UNK ¢ B for any open U > x}

Further, recursively define maps D% : Kla,b] — K|a,b] by

(3.2) DY(K) =K, D' (K)= Ds(Dy(K)), Da(K)= ﬂ Dy(K), o limit
B<a

Finally, for K € Kla,b], we define its rank | K|, relative to B as follows
(3:3) | K| = inf{a: D3(K) = D" (K)}

and finally we set DF(K) = D|BK|B(K).
These maps have many of the same properties as the Cantor-Bendixson derivative. First,
one has monotonicity: if L, K are closed sets then

(3.4) L C K = D(L) C D3(K)

Second, one has |K|; < wy, or that the rank is always a countable ordinal. Hence, the set
D (K) defined immediately below (3.3) can be written as an intersection over countable
ordinals as follows:

(3.5) Dy (K)= () Di(K)

a<wi

Third and relatedly, for K € K]a,b], let us define K € B, iff K is the countable union of
elements from B. Then it turns out that K € B, iff DF(K) = (. This fact is important
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because often in what follows we will be interested in the case where the derivative vanishes,
i.e. in the case where DF(K) = (), and this last fact tells us that this happens exactly
when K can be written as a countable union of elements from B. For the proof that these
derivatives have all the properties mentioned in this paragraph, see Kechris Kechris [1995]
§34.D.

The specific derivatives we are interested in are associated to a measurable function
f € Mla,b] and a continuous function F' € C([a,b]). Given such functions, we define:

(3.6) By ={K € Kla,b] : fxx € L'[a,b]}, Bp ={K € K[a,b]: F € AC.(K)}

And then we further set By p = By N Bp. Since By, Bp, and By p are closed under closed
subsets, we may then use (3.1) to define:

(3.7) Dy(K) = Dp,(K), Dp(K)= Dg,(K), Djr(K)= Ds,,(K)

These definitions are then equivalent to the following, by using elementary properties of
Lebesgue integrability as well as absolute continuity in the restricted sense, and moreover
in these equivalent formalizations one has the freedom to restrict attention to endpoints ¢, d
which are rational:

(3.8) Di(K)={z € K: fXjcanr ¢ L'[a,b] for any (c,d) > z}
(3.9) Dp(K)={xe€ K: F ¢ AC.([c,d|N K) for any (c,d) > z}
(3.10) Dy p(K) = Dy(K) U Dp(K)

As one can see, Dy(K) is the points of K where f is not locally Lebesgue integrable,
while Dp(K) is the points of K where F' is not locally absolutely continuous in the restricted
sense. Comparing this to the Fundamental Theorem of Calculus for Lebesgue Integrals (cf.
Theorem 1.4), one sees that these derivatives record the points at which the Fundamental
Theorem locally fails for a measurable function f and a continuous function F'.

Fixing still a measurable function f and a continuous function F', one then recursively
defines the iterates D¢(K) as in (3.2):

(3.11) DY(K) =K, D{"(K)=Dy(D§(K)), D}(K)=()D}K), alimit
B<a

And one proceeds similarly with D%(K). To associate a rank directly to f € M]la,b] and
F € C(Ja, b)), one then employs (3.3) to define:

(3.12) 1 =1ablls, . [Fl=llablls, . 1fFl=1abls,,

Hence, the rank |f| is the least ordinal such that D% ([a,b]) = D;‘H([a, b)), and similarly for
the other ranks. Later in this section (Theorem 3.2), we will show that the ranks |f, F| of
Denjoy integrable functions f and their indefinite integrals F' may be an arbitrarily high
countable ordinal.

Let us then note that the derivatives eventually vanish for Denjoy integrable functions
and their indefinite integrals:
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Proposition 3.1. Let f € Dena,b] and let F(z) = [’ f and let K € Kla,b. Then
(i) DF(K) =0, (i) D (K) =0, and (iii) Dyp(K )—@

Proof. For (i), one has DF(K) = () if and only if K € (By),, i.e. if there are K, € Kla,b]
such that K = (J, K, and fxg, € L'[a,b]. But this happens when f € Denla,b], as we
had occasion to note immediately subsequent to equation (2.1). (ii) Likewise, D (K) = ()
if and only if K € (Bp),, i.e. if there are L,, € K][a,b] such that K = J,, L., and F €
AC,(L,,). But this is just to say that F' € ACG,[a,b], and so this follows immediately from
the Fundamental Theorem of Calculus for Denjoy Integrals (cf. Theorem 1.5). (iii) Now,
retaining the closed sets K, from part (i) and the closed sets L,, from part (ii), consider
the sequence of closed sets C,, ,, = K,, N Ly,,. Then we have that K = Unm Cy,m- Further,
since fxk, € L'[a,b] and F € AC,(L,,), we have that fxc, . € L'[a,b] and F € AC,(Ch ).
This is just to say that K € (Bjr),, so that D3 (K) = 0. O

Finally, let us close this section by noting that there are Denjoy integrable functions
whose derivatives vanish only at arbitrarily high countable ordinals. As mentioned in the
introduction, this result is important for the negative parts of Theorems 1.10 and 1.6, which
we prove in §5. The construction in the successor step of the following example is based on
the example discussed in Gordon Gordon [1994] pp. 117-118, although that discussion does
not treat the derivatives D%[a, b] introduced above.

Theorem 3.2. For every a@ < w; and every [a,b] and every r > 0, there exists an f €
Den[a, b] with fabf = 0 and f(a) = f(b) = 0 and such that the function F(z of
satisfies w(F,[a,b]) = r and a,b € D%([a,b]). Hence, for all a < w; there ex1sts an f €
Denla, b] such that the function F(z) = [ f satisfies oo < |F| < |f, F.

Proof. Suppose that o = 0. Let f(x) = sin(27(b—a)~!(x — a)). Since w(F, [a,b]) =
where F(z) = [7 f, to ensure that for any » > 0 we can obtain w(F [a b]) =, Slmply
multiply f by an appropriate constant.

Suppose now that a = § + 1. Let C' be the Cantor 1/3-set on [a,b] and let (a,b) — C' =
|l,,~0(cn, dy) and let C, the Cantor !/3-set on [c,, d,] and let (cn, dn) = Crn = s0(Cnm> dnm).-
Choose frm € Denlcum, dnm] with F,,(z f frm and f " fom = 0 and  frm(Cum) =
frm(dpm) = 0 and ¢, dpn € D?nm([cnm,dnm]) and w(Fn, [cnm,dnm]) = 27" in the case
that m < 2", while w(Fm, [Coms dum]) = 27727™72" 71 in the case that m > 2". Then by
fixing n we have

(313) Z w(an’ [Cnmadnm]) — (271 _ 1)2—n 42" Z 2—m+2"—1 -1

m>0 m>2n

Still fixing n, let f, = fum on [Cam, dum] and f,, = 0 otherwise, so that f, € Denlc,, d,]
with fcd" fn =0 by the Step Lemma 2.1, and set F,(z) = [ f,. Fixing n for the remainder
of the paragraph, we claim that we have w(F,, [c,, d,]) < 2:2°". For, let € > 0 and let [z, y] C
[¢n, dy]. Since F, is continuous, choose § > 0 such that 0 < u —x < § implies ‘fzu fnl <

and such that 0 < y — v < J implies va fn| < §. Choose u,v ¢ C, such that ¢, <
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r<u<v<y<diand ) <u—z<odand 0 <y—v < 0. If [u,v] C [Cm, dnm]
then U fn| < W(Fpms [Cnms dpm)]) < 27 and hence Uy fn} <e+27m. Otherw1se we have
that ¢,y <u < dn < cpm < v < dpm, and then estimating as before we have |fy fnl <
27"+ C"m fn‘, and so it suffices to show that f o f =0, which follows as above from the

Step Lemma 2.1. Hence we have in fact shown that, ﬁxmg n, we have w(F,, [c,,d,]) < 2-27™.

This of course implies that ) _ w(Fy, [cn, dp]) <30, 202-27" < 2, and so letting f = f,
on [c,,d,] and f = 0 otherwise, we have that f € Den[a,b] with fabf = 0 by the Step
Lemma 2.1. Now set F(z) = [* f. To see that a,b € D%([a,b]), note that by hypothe-
SIS Crm, Apm € Dgﬂm([cnm, dym)) and hence ¢, dp € DI’B;( [a, b]), since

(3.14) D, (Cnms dum)) = Dy o ([enms dum]) € Dip([a, b))

Since a subsequence of the ¢, converge to ¢, and since a subsequence of the d,,,, converge
to d, we have that ¢,,d, € D%(|a,b]). Then we claim that ¢,,d, € Dp(D%(|a,b])). We give
the argument for ¢, since the argument for d, is similar. For, if ¢, ¢ Dp(D?([a,b])) then

there is open U 3 ¢, such that F' € AC,(U N D%([a,b])) and hence F € AC,(U N D% ([a,b])).
Then choose ¢ > 0 corresponding to € = % Since U is open and intersects C', we have that U
contains infinitely many intervals (¢, d) and so an interval (¢, dg) with length dy—cy < §. Ap-
plying equatlon (3.13) with n set equal to ¢, choose a finite sequence (¢p1,dp1), - - -, (Coenr, donr)

such that Z _ W(Fpm, [Coms dem]) > % But this is a contradiction, since (cp,dn), .-,

(Conry depr) isa UN Df;,([a, b])-edged pre-partition with Zn]\le Ao — Com, < dp — ¢y < 6. Hence
in fact ¢,,d, € Dp(D%([a,b])) for all n which of course implies that a,b € Dp(D%([a,b])) =
D%([a, b]), since there is a subsequence of the ¢, converging to a and likewise a subsequence
of the d,, converging to b.

Suppose that o < w; is a limit ordinal. Let «, be an enumeration of the ordinals
less than a. Let w be the midpoint of [a,b]. Choose u, ~\, a™ from above with uy = w
and v, /' b~ from below with vy = w. Choose h : w — w such that h~!(n) is infinite for
all n. Choose f,, € Denluyy1,u,] with F,(z) = [7 . fn and f f=0and f(un) =

f(u,) =0 and un+1,un E Dy oh( ">([un+1, up]) and w(Fy,, [uni1, Uy)) = 77' Likewise, choose g, €
Den[v,,, v,41] with G, ( f g and fvn“ =0and g,(vn) = gn(Vns1) = 0 and v, 41,0, €

Dg}:n)([vm Un41]) and (Gm [Um Uny1]) = %

Let f = f, on [upi1,u,] and f = g, on [v,,v,11] and f(a) = f(b) = 0. Since
W(Fy, [tns1, Up)) = w(Gh, [Un, Uny1]) = =, we claim that f € Den[a,b] with fabf = 0 by the
Improper Integrals Lemma 2.2. For, to apply this lemma, it must be shown that lim.\ ,+ fcw f
and lim, »- fucj f exist and are equal to zero, where recall that w is the midpoint of |a, b].
Without loss of generality, consider the case of limg\ 4+ f Y f. Let € > 0. Choose N such
that + ~ < €and set § = uy —a. Suppose that 0 < c—a <9, sothat a <c <uy. Let n > N

such that a < Upy < ¢ < up, < uy. Since w(Fy, [Uupy1, u,]) = % and fJH f =0, it follows

that |fwf‘ ’f“"f‘—i—z “"Zlf’<l+0<%<e Hence, infacthDen[a,b]

u”L’L

with f f =0 by the Improper Integrals Lemma 2.2, and so we define F'(x f f
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To show that a € D%([a,b]), it suffices to show that a € D% ([a,b]) for all n. So,
fixing n and recalling that h~'(n) is infinite, choose sequence u,, N\, a® from above such
that Uny, € D%:k([unwrl’unk])' Since Uy € Dg’:k<[unk+17unk]) and D%Zk([unwrlaunk}) =
D???[unkﬂ,unk]([unﬁhu”k]) C D% ([a, b)), it follows that u,, € D% ([a,b]). Since u,, N\, a*
from above, it follows that a € D%"([a,b]). Since the «, enumerated the ordinals below
the limit ordinal «, it follows that a € D%(]a,b]). An analogous argument shows that

b € D%([a,b]). O

4 Calibrating Rank and Entry into Subspaces

In the last section, we defined three derivatives whose vanishing is related to how far one is
from satisfying the Fundamental Theorem of Calculus for Lebesgue Integrals (Theorem 1.4).
In §2 we defined the sequence of subsets Den,|a, b] which record how long it takes to define
the Denjoy integral in terms of Lebesgue integration and improper integrals. The main result
of this section, Theorem 4.3, calibrates entry into the subsets Den,[a, b] with the vanishing
of the derivatives. From this theorem, we obtain Corollary 4.4 which presents an equivalent
characterization of Denjoy integration in terms of the vanishing of derivatives, or equivalently
entry into the subsets Den,la,b]. The equivalent characterization in terms of the vanishing
of the derivatives is what we use in the next subsection to obtain our main results on the
descriptive set theory complexity of Denjoy integration. We begin with two preliminary
propositions.

Proposition 4.1. Suppose f € Mla,b] and K € Kla,b]. (i) If Dy(K) = 0 then fxx €
L'a,b]. (i) Further, (p,q) N Dy(K) = @ iff for all rational [r,s] C (p,q) it is the case
that fX[r,s}ﬂK € Ll[a7 b]

Proof. For (i), note that by (3.8), if Df(K) = 0 then for every x € K there is open interval
(az,bz) > @ such that fx,s.jnx € L'[a,b]. By the compactness of K, there is a finite

subcovering of K by such intervals (ay,b1),. .., (ay,by). Then of course fxx € L'[a,b]. For
(ii), the left-to-right direction follows immediately from (i), while the right-to-left direction
follows directly from the equivalent characterization of D;(K) in equation (3.8). O

Proposition 4.2. Suppose F € C[a,b] and K € Kla,b]. (i) If Dp(K) = 0 then F €
AC,(K). (ii) Further, (p,q) N Dp(K) = 0 iff for all rational [r,s] C (p,q) it is the case
that F' € AC.([r,s]| N K).

Proof. For (i), note that by (3.9), if Dr(K) = 0 then for every x € K there is (a,,b,) 2 «
such that F' € AC,([az,b,] N K). By the compactness of K, there is a finite subcover-
ing (ar,b1),..., (an,by) of K such that F' € AC.([a;,b;]NK). Let n > 0 be strictly less than
all the nonzero |a; — bj|, |b; — a;| for ¢ # j. Let € > 0 and choose ¢; > 0 such that for ev-
ery [a;, b)) N K-edged pre-partition D of [a,b] if Y, p p(J) < 0; then >, pw(F,J) < N7'-e.
Choose § > 0 such that § < 9; for each i as well as § < 7.

Suppose that D is an K-edged pre-partition of [a,b] with ), _,u(J) < . Note that
requiring 6 < 7 implies that if some closed interval J € D is not [a;, b;] N K-edged for any j,
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then there are non-overlapping closed intervals I, L; such that J = I;UL; and I is [a;, b)) N
K-edged and Ly is [ak, bi] N K-edged for some i # k. Let K be a K-edged pre-partition
of [a,b] which (i) contains J where J € D is an [a;,b;] N K-edged for some j, and which
(ii) contains I, Ly where J € D is not [a;, b;|NK-edged for any j. Then for every J € K there
is some j such that J is [a;, b;]N K-edged. Let K; be an [a;, b;]N K -edged pre-partition of [a, b]
which consists of those J € K such that J is [a;, b;] N K-edged. Then K; is an [a;, b;j] N K-
edged pre-partition of [a, b] such that ) ;. pu(J) <6 < dj, so that ) ;o w(F,J) < Nt

Then we have >, pw(F,J) <3, e w(F,J) =300, 3 o w(F,J) < S Nle=e.
For (ii), the left-to-right direction follows immediately from (i), while the right-to-left
direction follows directly from the equivalent characterization of Dp(K) in equation (3.9). O

These preliminary propositions in place, let us then prove the main theorem of this
section.

Theorem 4.3. Let & < wy and f € Den[a,b] and F(z) = [ f. Then one has that
D% a,b] = 0 if and only if f € Dengla, b].

Proof. The proof is by induction on a. Let a« = 0. First suppose that D?}l la,b] = 0.
By Proposition 4.1 (i) we have that f € L'[a,b] = Dengla,b]. Second, suppose that f €
Dengla, b] = L'[a,b]. By the Fundamental Theorem of Calculus for Lebesgue Integrals (The-
orem 1.4), F' € AC([a,b]) and hence F' € AC,([a,b]). Then D;‘f}l([a, b]) = Dyr([a,b]) = 0.

Now let @ > 0, and suppose that the result holds for all f < «. First suppose
that D;‘f}l([a, b]) = 0. By the two previous propositions, we have that fy DY p(lab]) € L'[a, b]
and F' € AC.(D$ p(la,b])). Suppose (a,b) — D¢ p([a,b]) = |, (cn,dn). If [, d'] C (cn,dn),
then

(4.1) D p([d,d]) € [¢,dT < (cn, dn) € (a,b) = Df p([a, b])

Hence D$ ([, d']) = (). Then there is 3 < «a such that DB—H([CI,d/]) = () and hence by
induction hypothesis fx[~ #) € Dengla,b]. Hence, since we are supposing that f € Denla, b]
it follows from the left-to-right direction of the Improper Integrals Lemma 2.2 that fxic, 4. €
Lim(Ujs.,, Dengla, b]). Since by definition we have (a,b) — D% ([a,b]) = |],(cn,dn) and
since we have already established that ' € AC.(D$ ([a,b])), it follows from Definition 2.4
that f € Step(Lim(U,.,, Dengla, b])) = Den,/[a, b].

Second, suppose that f € Den,[a,b] = Step(Lim(|J;., Dengla,b])). By Definition 2.4,
there is a closed set K € Kla,b] with (a,b) — K = | | (c,, dy) such that fxx € L'[a,b] and
FX(enidn) € Lim(Ug_, Dengla, b]) and F € AC,(K) satisfying F(z) = [" f. Further, we may
assume without loss of generality that a,b € K.

Further, since fx(c,.4,) € Lim(Ug, Dengla, b]), it follows from Definition 2.3 that (a,b) =
U (€, @) a0d fX (e ,dn) X (cnmdnm) € Deng,,.[a,b] for some B, < a. Let [, d.,.] =

[cn, dp) N [Comy dnm], sO that fxpe @ 1 € Deng, [a,b. By induction hypothesis, one has
D?”};”H([ dp]) = 0 and thus D¢ p([c,,,,, d,,]) = 0. Since a,b € K, it follows that

nm ) 'nm nm ) 'nm

(4.2) [a,b] € K U ((a,b) — KUUc%n (Coms ) )
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Then by intersecting both sides with D¢ x([a, b]), we may obtain:

(4.3) D p([a.b]) € K UJ(D p(a,0]) 0 (cns dn) N (€ dum))

nm

But since D§ -(E) NU C D$ o(ENU) for any open U and closed E, this implies:

(4.4) DS p([a,b]) € K U| DS p((cns dn) O (Cam, dnim))

nm

and the latter are all empty by the hypothesis that D$ n([c],,,, d,,,]) = 0, and so we obtain

D¢ p([a,b]) € K. From this and the fact that fxx € L'[a,b] and F' € AC,(K) it follows
that D?}l([a, b]) C Dy p(K) =0, which is what we wanted to establish. O

Here is then the equivalent characterizations of Denjoy integration. It’s perhaps worth
noting explicitly the absence of a condition related purely to the derivative Dy from this
list; indeed, one can show that the vanishing of this derivative does not in general suffice for
being Denjoy integrable.

Corollary 4.4. Let f € MJa,b] and let F' € C[a,b] with F(a) = 0. Then the following are
equivalent:

(i) f € Denla,b] and F(z) = [ f

(ii) There is a < w; such that f € Den,[a,b] and F(z) = [ f
(iii) There is & < wy such that D?}l([a, b)) =0 and F' = f a.e.
(iv) There is @ < w; such that D& ([a,b]) = 0 and F' = f a.e.

Proof. For (i)=(ii), suppose that f € Denla,b] with F(z) = [* f. Then by Proposition 3.1
there is v < wy such that Da+1([ b)) = 0, and so by the left to-right direction of the previous
theorem we have that f is a member of Den,[a,b]. For (ii)=-(iii), since f is in Den,la, b],
it is an element of Den|a, b] and hence by the right-to-left direction of the previous theorem
we have that D;‘f}l([a, b)) = 0. For (iii)=(iv), simply note that it follows from the identity
Dy p(K) = Dy(K) U Dp(K) in (3.10), that D7 ([a,b]) € D} p([a,b]) for all ordinals 3. For
(iv)=-(i), simply note that by the remark at the beginning of §3 (pertaining to the notation
B,), from D% ([a,b]) = () we can infer that there is a sequence E, € K][a,b] such that
la,b] =, E» and F € AC.(E,), which is just the definition of ACG,[a,]. O

5 The Three Derivatives are Borel

In this section we undertake the analysis of the complexity of the notions related to the
Denjoy integral which we have defined in the previous sections. So we build towards showing
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that the derivatives Dy, Dp, and Dy p from (3.8)-(3.10) are Borel maps in Propositions 5.2,
and 5.4. Then, at the close of this section, we derive the main Theorems 1.6, 1.7, and 1.10.

Let us begin by taking brief survey of the Polish spaces with which we shall be working.
Recall that K |a, b], the space of compact subsets of [a, 8], is a Polish space, where the topology
is generated by the “miss” sets {K € Kla,b] : KNU® = 0} and the “hit” sets {K € K]a,b] :
KNU # 0}, wherein U C [a, b] is open (cf. Kechris Kechris [1995] §4.F pp. 24 ff). Likewise,
as mentioned in the introduction §1, C|a,b] the space of continuous real-valued functions
on [a,b], is a Polish space, where the topology is given by the sup-metric ||F' — G|, =
sup{z € [a,b] : |F(z) — G(z)|} (cf. Kechris Kechris [1995] §4.E p. 24).

The Polish space structure on M|a,b|, the space of real-valued measurable functions
on [a, b] (where functions which are equal a.e. are identified), is less widely used. It is given
by the metric d(f,g) = fab min(1, |f — g|), which has the effect that f, — f in Mla,b] if
and only if f, — f in measure, that is lim, u({z € [a,b] : |fu(z) — f(z)| > €}) = 0 for
all ¢ > 0. For the proof that it is a Polish space, see Doob Doob [1994] §§11-12 pp. 65-
68 or Banach Banach [1987] p. 6. Since we're dealing with measurable functions on the
interval [a,b] as opposed to the entire real line, it follows that addition and multiplication
are continuous functions on MJa,b] (cf. Folland Folland [1999] p. 63). Further, note that
absolute value is continuous on M|a,b] since if f, — f in measure, then |f,| — |f| in
measure because {z € [a,b] : | |fu(z)] = |f(2)]| > €} C {z € [a,b] : |fulx) — f(x)] > €}.
Finally, recall that if f,, — f in measure, then f,, — f a.e. for some subsequence f,, of f,
(cf. Folland [1999] Theorem 2.30 p. 61).

In what follows we’ll show that various maps are Borel, and it is helpful in this connection
to recall that if Y is second-countable metrizable then a necessary and sufficient condition
for f: X — Y to be Borel is for f~!(B(y,€)) to be Borel for all y € Im(f) and all ¢ > 0.
We begin with arguments pertaining to the derivative map K — D(K).

Proposition 5.1. (i) The map FE + yg from Kla,b] into M|a, b] is Borel, and (ii) L'[a, ]
is Borel in M|a, b].

Proof. For (i) it suffices to show that {D € Kla,b| : d(xp, xg) < €} is Borel. But one has
that d(xp, xXg) = fab IXxp — xg| = W(DAE) = pn(DUE)—u(DNE). And the maps (D, E) —
DUE, (D,E)— DNE and E — u(E) are Borel (cf. Kechris Kechris [1995] p. 27, p. 71,
and p. 114).

For (ii), let Cy = {f € L'[a,b] : ff |f| < N} for each N > 1. Since L'[a, b] is the union
of the Cly, it suffices to show that each Cy is closed in M]a,b]. So suppose that f, is a
sequence in Cy with f,, — f in measure. Since absolute value is continuous on M a, b], one
then has |f,| — |f| in measure. Then some subsequence |f,, | converges to |f| a.e. Then by
Fatou’s Lemma, one has that fab | f| < liminfy fab |fn]l < N,and so fisin Cy as well. [

Proposition 5.2. The map (f, K) — D;(K) is Borel from M|a,b] x Kla,b] to Kla,b].

Proof. Tt suffices to show that the graph G = {(f,K,E) € Mla,b] x (K[a,b])* : E =
D¢(K)} of the map is Borel. But note that since K, E are closed sets, it follows that
(f,K,E) € G precisely when for all rationals p < ¢ one has that (p,q) N E = 0 iff (p,q) N
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D¢(K) = 0. But the left-hand side of this biconditional is Borel in K[a, b] by definition of the
topology on K[a, b], while the right-hand side of this biconditional is Borel in M |a, b] x K{a, 0]
by Proposition 4.1 (ii) and Proposition 5.1, and the fact that the map (D,L) — DN L
from Kla,b] x Kla,b] to Kla,b] is Borel (cf. Kechris Kechris [1995] p. 71). O

Let’s turn now to the derivative K — Dp(K) and show that it too is a Borel map. First
let’s note the following:

Proposition 5.3. The relation F' € AC,(F) is Borel on C|a,b] x Kla,b].

Proof. Since F' is continuous, we may replace F by a countable dense subset. But maps d,, :
Kla,b] — [a,b] with {d,(E) : n > 0} dense in E for all E € KJa,b] may be chosen to
be Borel (see Kechris Kechris [1995] Theorem 12.13 p. 76). Moreover, consider the closed
subset A = {(¢,d) € R x R : ¢ < d} which is thus a Polish space, and note that the
map (F,c,d) — w(F,[c,d]) from C([a,b]) x A to R is a continuous map.

Let €,0 > 0 and let o = (nq,mq,...,ny,my) be a finite string of natural numbers of even
length, and define the set X 5, to be the set of pairs (F, E') such that if one has

(5.1) t, (E) < dmy (E) < dny(E) < dpny(E) < -+ < dy (E) < dip, (E)

then one has

L

(5.2) Y (dun,(E) = dn (E)) <6 = ZW(F’ [dn; (E), dim, (E)]) < €

=1

Since the maps F +— d,(F) and (F,c¢,d) — w(F,[c,d]) are Borel, it thus follows that the
set X5, is Borel.

Further, note that F' € AC,(F) iff for all positive rational € > 0 there is positive rational
d > 0 such that (F,F) € X5, for all finite strings o of natural numbers of even length.
Hence the relation F' € AC,(FE) is Borel. O

Proposition 5.4. The map (F, K) — Dp(K) is Borel from Cla, b] x K[a,b] to K][a,b].

Proof. Tt suffices to show that the graph G = {(F, K, F) € C[a,b] x (K|a,b])? : E = Dr(K)}
of the map is Borel. But note that since K, E are closed sets, it follows that (F, K, E) € G if
and only if for all rationals p < ¢ we have (p,q) N E = 0 iff (p,q) N Dp(K) = 0. But the left-
hand side of this biconditional is Borel in K'a, b] by definition of the topology on K [a, b], while
the right-hand side of this biconditional is Borel in C[a, b] x K][a,b] by Proposition 4.2 (ii),
Proposition 5.3, and the fact that the map (D, L) — DN L from Kla,b] x KJa,b] to Kla, b
is Borel (cf. Kechris Kechris [1995] p. 71). O

Now, from Propositions 5.2, 5.4 and the fact that the map (D, E) — DU FE is continuous
(see Kechris Kechris [1995] p. 27), we can conclude that the third derivative Dy p from
equation (3.10) is also Borel.

Since the derivatives are Borel we can then deduce the following from Kechris Kechris
[1995] Theorem 34.10 & p. 275:
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Proposition 5.5. The following sets are coanalytic and the ranks |K|;, K|, and |K]; ;
are coanalytic ranks on these sets:

(i) {(f,K) € Mla,b] x K[a,b] : 3o < wy DF(K) = 0}
(ii) {(F,K) € Cla,b] x K[a,b]: 3a <w; DEK) =0}
(iti) {(f, F, K) € Mla,b] x Cla,b] x K[a,b] : 3 a <w D} p(K) = 0}

Finally, before turning to the proofs of the main theorems, we need only verify that the
partial operation of a.e. differentiation is too Borel:

Proposition 5.6. The class of (F, f) in Cfa,b] x M[a,b] such that F' is differentiable a.e.
and F' = f is Borel.

Proof. Consider the function v : B — M]Ja,b] given by v(F) = F’ wherein B = {F €
Cla,b] : F' exists a.e.}. So let us show that B and the graph of v are Borel. To this end, let
us define:

(5.3) E" = {(F,x) € Cla,b] x [a,b] : F'(z) exists & |F'(x)| > r}
(5.4) E = U E" ={(F,z) € Cla,b] x [a,b] : F'(x) exists}
reQ

Further, for F' € Cla,b], © € [a,b] and |h| > 0, define Apyy(h) = w Then E”
is analytic, since for F' € C([a,b]) we have (F,z) € E" iff 3 |L| > rVeec Qt 30 €
Q" V |h| € QN (0,0) |Ape(h) — L| < e. Likewise, E" is coanalytic, since (F,z) € E"
iff vV hn, h;z — 0 [A(F,x)<hn>; A(F@)(h%) Cauchy & limn }A(F,:p)(hn) — A(F@)(h%)} =0 &
FqeQ "INV >N |Awa(ha)| >+ ). So it follows that E” is Borel and hence
that E too is Borel. Since E' is Borel, the set {F € C([a,b]) : u(Er) = b — a} is Borel by
Kechris Kechris [1995] Theorem 17.25, wherein Er denotes the projection Ep = {z € [a,b)] :
(F,x) € E}. But this set is precisely equal to B, so that B too is Borel. Now let us show
that the function v : B — M|a, b] is Borel, where again v(F") = F’. It suffices to show that

for F' in B, the following set is Borel:
(5.5) {G e B:u{x€[a,b]: F(x),G(r)exists & |F'(x) —G'(z)] >r}) <r}
But this set is equal to {G' € B : u((E")r_g) < r} which is Borel since E" is Borel. O

Now we turn to the proof of our main theorems:

Theorem 5.7 (1.10). The graph of the indefinite Denjoy integral f fax f, viewed as a
subset of the product space M|[a,b] x Cla,b], is coanalytic but not Borel.

Proof. Equivalently, the claim to be established is that the set of (f, F') in M|a,b] x Cla, b
such that f € Denla,b] and F(z) = [’ f is coanalytic but not Borel. That this set
is coanalytic follows immediately from the previous proposition and Proposition 5.5 and
Corollary 4.4. That the set is not Borel follows from the fact that if the set is Borel then
there is a < wy such that |f, F| < « for all f, F' in the set (see Kechris Kechris [1995] Theo-
rem 35.23). But this contradicts Theorem 3.2. ]
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Theorem 5.8 (1.6). The set ACG.([a,b]) is coanalytic but not Borel in C|a, b].

Proof. That this set is coanalytic follows from Proposition 5.5, and the observation that a
function F' is in ACG.([a,b]) iff [a,b] € (Br), iff there is a < w; such that D% ([a, b]) = 0.
(For the notation (Br),, see the outset of §3). That the set is not Borel follows, as in the
proof of the previous theorem, from the fact that if the set is Borel then there is v < wy such
that |F| < « for all F' in the set. But this again contradicts Theorem 3.2. O

Theorem 5.9 (1.7). The set Denla, b] of Denjoy integrable functions is a X3-subset of the
Polish space M[a,b] and is not analytic.

Proof. The set Den[a, b] is X3 since it is the image of the coanalytic set ACG,([a, b]) under
the Borel function F' +— ~(F'), where y(F') = f if F’ is differentiable a.e. and F’ = f a.e.
and y(F) = 0 otherwise (cf. Proposition 5.6). Suppose now for the sake of contradiction
that Den[a,b] is analytic. Note that it follows immediately from Theorem 1.5 that F' €
ACG,([a, b)) iff there is f € Den[a,b] such that F’ = f a.e. Since this last condition is a
Borel condition (cf. Proposition 5.6), it follows that ACG.([a,b]) would be analytic, which
contradicts Theorem 1.6. O

Again, for the obvious questions about how to sharpen these results, see the discussion
in §8.

6 Indexes of Subgroups and Stability

In this section, we begin our study of Den[a, b] from the perspective of model theory, where we
view Denla, b] as a Q[X]-module (resp. R[X]-module) and where we interpret the map f —
X f as the indefinite integral, so that X f = f; f. It’s also natural to consider various
submodules like C[a,b] and L'[a,b], where the integrals are respectively the Riemann and
Lebesgue integrals. Further, our results hold also for a broad class of submodules of Den|a, b].
If X is a subset of an R-module M, then let (X’) be the R-submodule of M generated by X'.
Our results hold in particular for the submodules (Den,|a, b]) of Den[a, b] (cf. Definition 2.5).

Recall that the signature of R-modules is simply the signature of abelian groups equipped
with linear maps 7 for each element r of R. Hence, e.g., the signature of R[X]-modules is
uncountable, whereas the signature of Q[X]-modules is countable. Likewise, since elements r
of R correspond to linear maps in an R-module M, subsets of M such as rM = {ra:a € M}
and ker(r) = {a € M : ra = 0} are definable without parameters in M.

We begin with a theorem on the indexes of subgroups which is important for the derivation
of Theorem 1.11 given in the next section. Recall from the end of §2 that M is subinterval-
closed if when f € M then fx(.q € M for any interval (c,d).

Theorem 6.1. Suppose that M is a submodule of Dena, b] which contains C|[a, b]. Suppose
further that one of the following conditions holds: (i) M = Cla,b] or (ii) M is subinterval-
closed. Then [X*M : X*T1M] is infinite.
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Proof. First we show this for M satisfying hypothesis (i). For each f € M we may choose g €
Cla,b] such that f = g a.e., and so M may be identified with Cf[a,b]. This implies that
for k > 0 we have

(6.1) X*M = {f € C¥a,b] : Vi< k fD(a) =0}

where we stipulate X°M = M and C°[a,b] = Cla,b]. For, in the case of k = 0, this follows
by the stipulation. Suppose that (6.1) holds for k. To see it holds for k + 1, consider
first the left-to-right containment. Suppose that f € X*™ M. Then f = [”g where g €
X*M C M = Cla,b]. Then since this is the Riemann integral applied to a continuous
function, it follows that f is differentiable everywhere and that f* = ¢. Then for i = 0,
one has f(a) = f(a) = ['g = 0, while for 0 < ¢ < k+ 1, one has i — 1 < k and
f@(a) = g™V (a) = 0 by induction hypothesis. For the right-to-left containment of (6.1),
suppose that f € C**1a,b] and f®(a) = 0 for all i < k+1. Let g = f’ which by hypothesis
is in Cla,b] = M. Then by induction hypothesis, it follows that g € X*M C M = C|a, b],
so that from ["g = [ f' = f(z) — f(a) = f(x) we may infer f € X" M. Hence, in fact
(6.1) holds for all k£ > 0.

Now C*[a, b] is a Banach space with norm given by || fllur = >o<icn |f @]l Where || - |,
is the sup-norm on Cla, b] (cf. Folland Folland [1999] p. 155). From this and equation (6.1)
it follows that X*M is a closed subgroup of C*[a,b] and hence is itself a Polish group.
Now, note that for all £ > 0, it is the case that X*M and X**'M are homeomorphic by
the map f — X f. By induction on k& > 0, it follows from this that X**'M is meager
in X*¥M. For k = 0, note that XM = XCla,b] is meager in M = Cla, b] since the nowhere
differentiable functions are comeager in M and contained in the set M \ X M. Suppose that
it holds for k, that is suppose that X**1 M is meager in X*M. Since meagerness is preserved
under homeomorphisms, it follows that X**2M is meager in X**'M, which is just to say
that the statement holds for k£ + 1.

From this it easily follows that [X*M : X*+1M] is infinite, and indeed uncountable. For,
suppose that [X¥M : X*1M] were countable. Then X*M = || g, + X*™ M, where g, €
X*M. Since X*M is a Polish group and each X**'M is meager in X*M, we have that
each ¢, + X*1M is meager in X*M. Hence, the Polish space X¥M would a countable
union of meager subsets, contradicting the Baire Category Theorem. So [X*M : X*T1 0]
is infinite (and indeed uncountable) for M satisfying hypothesis (i).

Now we show the result for M satisfying hypothesis (ii). Suppose that this fails, and [X*M :
XF+HIM] is finite. Then X*M = | [°, X*f; + X*"'M, where f; € M. Choose con-
tinuous nowhere differentiable function g € Cla,b] € M. Choose a partition [a,b] =
la1,bi] U - U [an, by, and let h = X*[g + >°7 | fiX[aipy), which is in X*M since M is
subinterval-closed. So, by hypothesis, there is j € [1,n] such that h € X*f; + X" M.
Then X*[g + O, fiXlan]) — 5] = h— X*f; € XFT'M. From this it follows that
g+ -0 fiXjasn]) — f; € XM. But then this function is differentiable a.e. and so dif-
ferentiable a.e. on each [a;, b;]. But on the interval [a;, b;], this function is equal to g, which
contradicts the choice of g. So [X*M : Xkt M] is infinite when M satisfies hypothesis
(ii). O
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Let’s note an immediate consequence of this theorem for the model-theoretic complexity
of Denjoy integration. The underlying vector space of Den[a, b] is model-theoretically a very
well understood object and is stable and indeed superstable. By contrast, the next corollary
tells us that the addition of the integral adds to the complexity of Denla, b]:

Corollary 6.2. Suppose that M is a submodule of Den|a, b] which contains C/[a, b]. Suppose
further that one of the following conditions holds: (i) M = C]a,b] or (ii) M is subinterval-
closed. Then M is stable but not superstable.

Proof. Tt is a classical result that all modules are stable (cf. Prest Prest [1988] Theo-
rem 3.1 (a) p. 55). Further one has that a module M is superstable if and only if there is no
infinite descending sequence of definable subgroups, each of infinite index in its predecessor
(Prest Prest [1988] Theorem 3.1 (b) p. 55, or Ziegler Ziegler [1984] Theorem 2.1 p. 156.). But
the previous theorem tells us that there are such sequences of subgroups in this case. O

7 Elementary Equivalence and Decidability

The aim of this section is to establish our Theorem 1.11. To do this, we must first recall
some basic facts from the model theory of modules. If M is a module over a ring R, then a
pp-formula p(z1, ..., x;) is a formula of the form I yy,...,yx Aim; wi(z1, .., 25, Y1, -, Uk)
where ¢; is an atomic formula without parameters. Any subset G C M’ defined by a pp-
formula is a subgroup of M7, and the invariant sentences of Th(M) are sentences of the
form [G: GNH] =kor [G:GNH| >k, where k > 0 and where G, H C M are pp-definable
subgroups of M. The following theorem then tells us that the invariant sentences determine
the complete first-order theory of the module:

Theorem 7.1. (pp-Elimination of Quantiifers) (i) Every set definable without parameters
in an R-module M is a Boolean combination of pp-definable sets. (ii) For an R-module M,
the theory Th(M) is axiomatized by the R-module axioms and the invariant sentences of M.

Proof. See Prest Prest [1988] Corollaries 2.16 & 2.19 p. 37, or Hodges Hodges [1993] p. 655.
O

The main idea of the proof of the main Theorem 1.11 is to isolate the invariant sentences in
the modules related to the Denjoy integral, which we do in Corollary 7.6.
To this end, it will be helpful to briefly take note of some special cases of pp-formulas.

A pp-formula ¢(xq,...,z;) is said to be basic if it can be written as ZZZI rexy = 0 or
3y (O)_ rexe) + sy = 0. That is, over an R-module M, the basic pp-formula definable
sets are ker(7) or 7~'sM. In this section, if 7 = (r1,...,r;) is a tuple of ring elements,

then we will write 7~'Y to denote the inverse image of Y under the map 7 : M/ — M
given by T — ZL1 rexe. This notation ought not be confused with anything to do with
multiplicative inverses in the ring. Further, If R is a PID, then every pp-formula formula is
equivalent to a finite conjunction of basic pp-formulas, and if R is countable, then given a pp-
formula one can compute from R the finite conjunction of basic pp-formulas (cf. Prest Prest
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[1988] Theorem 2.Z.1 pp. 46-47). Finally, note that if M is a module over a commutative
ring R, then multiplication by an element of R is a homomorphism of M, and when the map
is bijective it is an automorphism of M.

To calculate the pp-definable subgroups of modules related to the Denjoy integral, we
briefly recall some elements of Riesz theory from integral equations. Suppose that M is a
normed space. Then a compact linear operator q : M — M is a linear operator which maps
bounded sets to sets with compact closure. The Riesz Theorem says then that if M is a
normed space and g : M — M is a compact linear operator, then the map 1+ ¢ is surjective
if and only if 1+ ¢ is injective (cf. Kress Kress [1999] pp. 29-30). Using this theorem we can
then show:

Proposition 7.2. Suppose that p € R[X] such that X { p. Then p : C[a,b] — Cla,b] is an
automorphism of the R[X]-module Cla, b].

Proof. Tt suffices to show that it is a bijection. Since X { p, we may without loss of generality
write p = 1 + a; X + --- + a X*. Note that by the Arzela-Ascoli Theorem, one has that
p — 1 is a compact linear operator. Then by the Riesz Theorem, it suffices to show that p is
injective, or what is the same, that the only solution to p- f = 01is f = 0. For this, it in turn
suffices to show that any solution to p- f = 0 would be a solution to a certain higher-order
differential equation which has only one solution, namely f = 0. For, suppose p- f = 0.
If one writes this out explicitly, one has f + a; X f + --- + a, X*f = 0. First note that
since f is in Cla,b] and X f = fax f, it follows from this equation that f(a) = 0. Second,
note that if f satisfies this equation then it is differentiable, and by differentiating once
we obtain: f' 4+ aif + - + ax X*'f = 0. Iterating this an additional k¥ — I-more times,
one has that f satisfies the initial value problem f(a) = f'(a) = --- = f*Y(a) = 0 and
f® 4 a f*=Y 4 ... 4+ qpf = 0. Then by the uniqueness theorems for this higher-order
differential equation, any solution f to this equation is equal to zero, which is what we
wanted to establish. O

The following trick of lifting the Riesz theory to Denla,b] is from the proof of Theo-
rem 3.10 of Federson and Bianconi (Federson and Bianconi [2002] pp. 103 ff), although they
restrict themselves to the case of Den[a, b] and do not frame this in the language of modules.

Proposition 7.3. Suppose that M is a submodule of Den[a, b] which contains C/[a, b]. Sup-
pose that p € R[X] such that X ¥ p. Then p : M — M is an automorphism of the
R[X]-module M.

Proof. Again, it suffices to show that p : M — M is bijective. And again, we may without
loss of generality assume that p = 1+a; X +--- + a3 X*. To see that p is injective, note that
if pf =0 then f = —a;Xf — -+ —apX¥f. Since XM C Cla,b], we have that f € Cla, b]
and pf = 0 in C[a, b]. But by the previous proposition, p : C[a,b] — C|[a, ] is an injection,
and hence f = 0. So in fact p: M — M is an injection.

To see that p : M — M is a surjection, suppose that g € M. Since XM C C|a, b], we
have that (p — 1)g € C|a, b] and hence —(p — 1)g € Cla, b]. By the previous proposition, p :
Cla,b] — Cl|a,b] is a surjection, and hence there is f € C|a,b] such that pf = —(p — 1)g.
Then p(f + g) = g. Hence, in fact p: M — M is a surjection. O
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In the statement of the following proposition, recall the notational conventions introduced
immediately after Theorem 7.1, namely that p~! denotes inverse image and not multiplicative
inverse.

Proposition 7.4. Suppose that M is a submodule of Den[a, b] which contains C[a, b]. Sup-
pose further that p,q € R[X]. Then p~'¢M is either M or X*M for some ¢ > 0. Further,
there is a computable procedure which (i) given p, ¢ € Q[X] determines which of these occurs
and which (ii) returns ¢ > 0 if the latter occurs.

Proof. Compute the largest k such that X* divides both p and ¢. Let p = X*p, and ¢ =
X*qo. Then p~tqgM = py'qoM since pf +qg = 0 if and only if X*(pof + qog) = 0 if and only
if pof + gog = 0. Now either X | go or X t qo, and we can compute which of these occurs.

If X | go then by definition of k we have X t py and so pp is an automorphism of M
as a R[X]-module. Further, if X | gy then compute the largest ¢ > 0 such that X* | gp.
Let gy = X*%qi, where X { ¢;. Then ¢ is an automorphism of M as a R[X]-module. Then
we have the following, where the last equality is due to the fact that automorphisms fix
definable sets:

(7.1) pigM = pytgeM = py ' X g M = pgt XM = XM

On the other hand, suppose that X 1 ¢o. Then g is an automorphism of M as a R[X]-module.
Then p~iqM = palqoM = palM =M. O

Proposition 7.5. Suppose that M is a submodule of Den[a, b] which contains C/[a, b]. Sup-
pose further that p € R[X]. Then ker(p) is either 0 or M. Further, there is a computable
procedure which given p € Q[X] determines which of these occurs.

Proof. 1f p is zero then ker(p) = M, and we can compute whether this occurs. If p is non-zero,
then compute the largest k such that X* divides p. Let p = X*py. Then ker(p) = ker(py)
since X*pof = 0 if and only if pof = 0. Then X { py and so we have that p, is an
automorphism of M as an R[X]-module and so ker(py) = 0. O

Corollary 7.6. Suppose that M is a submodule of Den|a, b] which contains C/[a, b]. Suppose
further that one of the following conditions holds: (i) M = Cfa,b] or (ii) M is subinterval-
closed. Suppose finally that G, H are pp-definable subgroups of M. Then [G: GN H] =1
or [G : GN H| infinite, and from formulas defining G and H we can compute which of these
occurs. Further, this procedure is uniform in such M, in that formulas for G and H will
return the same values for [G : G N H] for all such M.

Proof. By the two previous propositions, G and H are finite conjunctions of the sub-
groups 0, XM, and M, and hence themselves are among the subgroups 0, X“M, and M.
Further by the two previous propositions, given formulas defining G we can computably
determine whether G (resp. H) is 0, X‘M, or M. So there are nine possible cases to
consider. The cases in which 0 occurs are trivial, and so there are really only four in-
teresting cases to consider. Case one: G = M and H = M. Then [G : GN H| = 1.
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Case two: G = M and H = X*M. Then [G : G N H] infinite by Theorem 6.1. Case
three: G = X‘M and H = M. Then [G : GN H] = 1. Case four: G = XM and H = X*M.
Then [G: GNH]=1if ¢ >k and [G : G N H] infinite if £ < k by Proposition 6.1. O

From this Corollary and the fact mentioned at the outset of this section (cf. Theorem 7.1)
that the invariant sentences determine the complete theory of a module, we can immediately
deduce Theorem 1.11.

8 Further Questions

In addition to Questions 1.8-1.9 mentioned in the introductory section § 1, a couple of other
questions are left open by our study:

Question 8.1. In Theorem 1.7, it was shown that Denla, b] is a X3-definable non-analytic
subset of M[a,b]. Can it be shown that Den[a, b] is not coanalytic? If it is not coanalytic,
can it be shown that it is not A?

Question 8.2. In Theorem 1.6 and Theorem 1.10, certain sets are shown to be coanalytic
but not Borel. Can one show that these sets are coanalytic complete?

Question 8.3. In the last sections we showed that Cla, b], L'[a, b], (Den,[a, b]), and Den|a, b]
are elementarily equivalent as R[X] (or Q[X]-modules). Are they non-isomorphic in this
signature? Obviously the elementary equivalence result all by itself — in abstraction from
the non-superstability and decidability results— would be less interesting if it turned out that
they were all isomorphic.

Question 8.4. Do the non-superstability, elementary equivalence, and decidability results
from the last sections still hold if one views Cla,b], L'[a,b], (Den,la,b]), and Den|a,b] as
R[X] or Q[X]-modules, where alternatively X f ff K(z,y)f(y)dy for some appropriate
real-valued continuous function K(z,y)? Note that some care has to be exercised with
respect to the choice of K, since Den[a, b] is not closed under multiplication (cf. Swartz
Swartz [2001] Example 14 p. 43).
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