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ABSTRACT OF THE DISSERTATION

Stress and Human-Computer Interaction at the Workplace:
Unobtrusive Tracking With Wearable Sensors and Computer Logs

By
Fatema Akbar
Doctor of Philosophy in Informatics
University of California, Irvine, 2021

Professor Gloria Mark, Chair

The relationship between workplace stress and computer use has mostly been investigated
with self-reports or in controlled environments. However, self-report methods are prone to
memory and emotion expression biases, and can be interruptive to employees when imple-
mented for continuous stress tracking in real workplace environments. Researchers have
explored the use of wearable sensors for unobtrusive and continuous stress tracking, but
mostly in controlled laboratory settings, which limit the understanding of factors influencing
stress in real-workplace environments, and the extent to which passive sensing can reveal

information about stress during uncontrolled computer interactions.

This dissertation presents novel findings on computer use and stress at the workplace by
employing computational methods leveraging computer activity logging and wearable de-
vices that unobtrusively and continuously measured physiological stress through heart-rate

variability in two real-world workplace settings: information work and medical work.

In the first part of the dissertation, fifty office employees were tracked for three to four weeks.
Time spent on the work computer during and outside workhours, email work strategy, win-
dow switching, and computer activity types explained 14% of the variance in the daily stress

duration. Individual differences (personality and work-life balance) moderate the relation-

xil



ship between workplace computer use factors and stress. A novel measure of variability in
daily computer work was associated with perceived job demands, effort and overcommit-
ment and arousal. Employees’ perspectives on technology-supported stress tracking at the
workplace indicated trust in algorithmic output, confirmation bias, and challenges balancing

unobtrusiveness and engagement.

The second part of the dissertation analyzed how physicians use Electronic Health Record
(EHR) systems and measured their physiological stress throughout the workday. One month
of EHR logs of 1275 physicians were analyzed to characterize EHR use. Temporal patterns
of EHR inbox use were found to be different from other EHR functions in their distribution
throughout the day. Factors associated with high EHR inbox use were identified. Physiolog-
ical stress data were collected for 47 physicians for a week and paired with their EHR logs.
Among three patterns of EHR inbox work identified, the pattern characterized by working
mostly outside of workhours had the longest average stress duration. Inbox work duration,
the rate of EHR window switching, working outside of workhours and batching inbox work

were associated with physicians’ daily stress duration.

By evaluating a range of computer use factors and their association with daily physiological
stress, the dissertation extends previous work that often focused on specific computer tasks or
used self-reports. I provide recommendations and design implications for supporting different
personal and organizational technology-supported stress tracking goals, and suggest future

areas of work.
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Chapter 1

Introduction

Imagine your computer knowing that you are experiencing stress and communicating with
your virtual assistant (e.g. Amazon’s Alexa or Apple’s Siri) to play soothing music, or to
inform your partner that you had a stressful day at work. For decades, researchers and science
fiction writers have envisioned that future computers will be able to recognize our feelings
and adapt to them. In the last 30 years, advances in affective computing [224] showed the
possibility and importance of recognizing affective states for human-computer interaction.
In this dissertation, I explore the relationship between stress and how employees interact
with their computers at the workplace. Many individuals spend an increasingly significant
proportion of their workday at a computer, especially those in information work. With the
prevalence of workplace stress, it is sensible to expect that stress can be influenced by, and

manifested in, workplace computer use.



1.1 Motivation

Workplace stress, which results from perceived job demands exceeding available resources
[55], is a main factor for employee burnout, diminished productivity, and a number of health
and wellbeing risks including cardiovascular disease and impaired immunity functions [55,
138, 194]. Some workplace computer tasks are known to be associated with stress, such
as answering emails [145, 176] and presenting to a remote audience [306, 128|. Besides
cognitively demanding tasks, workplace stressors include time pressure [196], social pressure
28], interruptions [172] and anticipatory stress from upcoming deadlines [8, 210]. Thus,
capturing stress levels in the workplace is vital for improving our understanding of real-life
stress and the factors surrounding it. Measuring stress unobtrusively and in real time at the
workplace can enable affective computing applications that incorporate user’s stress and new
forms of context-aware interactions [226, 66]. Mental health professionals and organizational
psychologists can also benefit from stress monitoring at the workplace, to better understand

stress and associated factors, and to deliver interventions.

Quantification of affective states and work activities is becoming more widely adopted by
individuals and organizations [72]. Tracking workplace practices can enable higher produc-
tivity [74, 134] and employees desire systems which help them pair their tracked activities
with stress [195]. Tracking employees’ stress in the workplace has also been widely used by
researchers to understand what influences employees’ stress. For example, prior work has
leveraged stress monitoring to suggest an association between stress and email use at the
workplace [176, 177]. Research has also suggested incorporating real-time stress data to pro-
vide just-in-time interventions to manage stress, including offering suggestions for users (e.g.
playing games or guided breathing [219]) or changes in the computer interface (e.g. changes
in the screen color or brightness [86] and managing stressful notifications [324]). Technology-
supported stress tracking in the workplace can help individuals and organizations understand

stress patterns and manage stressors.



However, measuring stress at the workplace is a non-trivial task. Workplace stress can be
challenging to measure. Although several questionnaires have been developed to measure
work-related stress (e.g. [126, 263]) or overall stress [52], these questionnaires are retrospec-
tive and not designed to measure real-time stress, as they mainly measure stress as a trait in
the context of life events over weeks or months. In HCI, self-reports and wearable physiologi-
cal sensors are commonly used for real-time stress tracking. Self-reports of stress represent a
subjective evaluation based on cognitive appraisal of a given situation. Self-reports can pro-
vide frequent measures of stress when delivered through Ecological Momentary Assessments
(EMASs) [262] where users are prompted with short questions about their stress multiple
times throughout the day. Self-reports are subjective and are affected by memory and emo-
tion expression biases [252, 94]. They can also be disruptive as they require the full cognitive
attention of the user, and do not allow continuous stress measurement. Wearable sensors,
on the other hand, do not require manual user input, but rather infer physiological stress

from objective measures such as heart rate variability (HRV) [69, 161].

Advances in wearable sensors and the algorithms that filter and analyze their data enable
objective continuous unobtrusive sensing of physiological measures directly associated with
stress, such as HRV (See Ch.2.2.2). Measuring HRV throughout the day can give an objec-
tive and continuous measure of stress and relaxation, which can be used to identify events

associated with stress in more granularity than is possible with self-reports.

Limited research has been done in real workplace environments using wearable sensors for
stress tracking. This presents an opportunity to study factors associated with daily stress at
the workplace in more depth and detail than has been previously done with self-reports. In
previous work [7], we identified a gap in the literature as most studies modeling workplace
stress with wearable sensors focus on specific high-stress short-duration computer tasks to
induce stress in laboratory settings (e.g. [87, 166, 156]), which might not be representative of

those in real workplace settings and can overlook issues and challenges related to stress mea-



surement with physiological sensors during different computer activities. A limited number
of recent in-situ studies used wearable sensors to assess the stress associated with specific
computer tasks such as email [176], which shows promise for the deployment of computer
activity logging and wearable sensors to investigate a wider range of computer work factors

associated with daily stress.

1.2 Thesis Statement

The dissertation is structured around the following thesis statement:

Continuous and unobtrusive tracking of workplace computer use and stress has several con-
ceptual and methodological benefits. Computer use metrics can be quantified and can reveal
information about daily stress in different work contexts. Indiwvidual factors are expected
to affect the relationship between computer use and associated stress. Workplace tracking
presents benefits and challenges to employees and organizations related to engagement with
and understanding of the tracked data, and privacy concerns. Design and organizational rec-
ommendations can be made based on the observed associations between computer use metrics

and stress, and employees’ perceptions of tracking.

To defend this statement, four studies were conducted in two workplace settings. First,
information workers’ daily computer use factors associated with stress are identified, by using
computer logging and wearable devices. Second, Information workers’ perceived benefits and
challenges of workplace tracking are evaluated. Third, physicians’ electronic health record
use is analyzed to characterize patterns of work. Fourth, physicians’ stress associated with
electronic health record use is evaluated. For each study, I identify the design implications

and recommendations for organizations.



1.3 Research objectives

The objective of this dissertation is to apply computational methods to quantify metrics
about computer work, and to employ unobtrusive approaches for tracking these metrics,
along with tracking stress, in real workplace settings. The specific aims of this dissertation

are:

e To assess the extent to which tracking computer use patterns at the workplace predicts
stress for different working populations

e To identify factors related to computer use that correlate with stress in the workplace

e To model and understand the underlying mechanisms through which individual stress
is affected by different computer use factors by identifying individual differences that

affect the relationship between computer use and stress

e To evaluate employees’ perspectives on and experience with technology-supported

stress tracking in the workplace

e To develop actionable guidelines for organizations and system designers to tackle stress

associated with workplace computer use

e To provide recommendations for effectively deploying technology-supported stress track-

ing at the workplace

1.4 Dissertation outline

The outline of the remainder of this dissertation is as follows:

Chapter 2 provides background information on stress and its measurement, and an overview

of relevant research on stress tracking during computer work.



Chapter 3 details the methods used in this dissertation work. The chapter reviews the data
streams and data collection tools for physiological and perceived stress at the workplace, as

well as computer use data.

Chapter 4 investigates the relationship between information workers’ stress and their com-
puter interactions in the workplace. In particular, features extracted from computer activity
logs of 51 employees are entered into a mixed model predicting daily stress duration as
measured unobtrusively and continuously by wearable heart-rate sensors. In addition, the
variability of daily time spent on work-related computer activities is correlated with several

stress measures.

Chapter 5 explores the benefits and challenges of two daily stress tracking modalities from
the employees’ perspective: automated tracking with wearable sensors and manual tracking
through self-reports in EMAs. The chapter also provides actionable design guidelines for

deploying daily stress tracking in the workplace.

Chapter 6 presents a large-scale study of a potential stressor in medical computer work:
inbox management. The chapter analyzes Electronic Health Records system use for 1,257
physicians. Specifically, we quantify the extent to which inbox work permeates physicians’
time during and outside of workhours, describe daily patterns of inbox work, contrast tem-
poral patterns of inbox work and other computer work, and identify factors associated with

inbox work duration.

Chapter 7 builds upon the findings from Chapter 6 with a study that analyzes objectively
measured stress of physicians during their daily work and interaction with the EHR inbox.
The study investigates physicians’ EHR inbox work patterns by identifying clusters of distinct
temporal inbox work patterns, measuring physicians’ stress throughout the workday using

wearable sensors, and identifying EHR inbox work factors associated with stress.

Finally, Chapter 8 concludes the dissertation by discussing the major findings of the dis-



sertation drawing on relevant previous work. The limitations of the dissertation are also
discussed, as well as the implications of the presented findings and areas for future work in

workplace stress tracking and system design.



Chapter 2

Background: Stress and Computer

Use in the Workplace

This chapter provides an overview of relevant background information and research on stress
and computer use at the workplace. In particular, the chapter explains: (1) the definition
of stress in psychology and physiology, (2) stress measurement approaches, (3) theoretical
frameworks for stress research, (4) literature review of stress tracking with sensors in the
workplace and laboratory studies examining computer use, and (5) a review of workplace
computer-use factors potentially associated with stress for information workers and physi-

cians.

2.1 Defining stress

Stress is the perceived imbalance in demands and resources and is experienced when a
situation is appraised as personally significant, taxing or exceeding resources for coping [79].

According to the American Psychological Association (APA), stress exists in two main forms:



acute (passing) and chronic (global, long-term) !. Acute stress is the result of interpreting
a situation in the recent past or near future as requiring more resources (e.g. time, mental
resources, money, etc.) than we have [92]. Most people occasionally experience acute stress.
Besides its effect on performance, acute stress is associated with emotional distress, rapid
heartbeat, shortness of breath, gut problems, and muscular problems such as tension, back
pain and headaches [227, 205, 102]. These symptoms usually subside when short-term stress

passes.

The second type of stress is chronic stress, which is due to long-standing pressures and
demands including those experienced as a result of difficulties in socio-economic conditions,
interpersonal relationships, or one’s career [92]. Chronic stress depletes mental and physical
resources and is associated with suicide, violence, heart attacks, immune dysregulation and
an overall lower quality of life [40, 14, 190]. Both short and long term stress play a role in
our daily functioning, especially for regulating important processes such as attention and

memory acquisition.

In the psychology literature, stress is divided into two components: the stressor and the stress
response [152]. Stressors can be thought of as stress antecedents, the triggers or environment
in which stress occurs. Psychologists studied two types of stressors: daily hassles and life
events. Lazarus (1984) argued that seemingly minor negative events of daily life are the
most significant form of stress as they accumulate and affect health and wellbeing [151, 125].
Examples of events appraised by individuals as daily hassles include financial responsibilities,
dislike of colleagues, feeling lonely and lacking sleep, among others [125]. Life events, on the
other hand, are events that require significant change in one’s accustomed pattern of life,
and have been found to be related to stress and illness [113]. The Holmes-Rahe stress scale
lists 43 life events including death of a spouse, foreclosure of mortgage, change in residence

and change in habits [113].

thttp://www.apa.org/helpcenter /stress-kinds.aspx



The second component of stress, the stress reaction or response, can be thought of as the
immediate stress consequences. When the body experiences stress, a number of physiological
events occur driven by two branches of the Autonomic Nervous System, which is a control
system in the human body that regulates bodily functions. The first branch is the Sym-
pathetic Nervous System, which drives the body’s resources to respond to a challenge or
a threat in ways such as quickening the pulse, deepening respiration, and tensing muscles,
a reaction called the ‘fight-or-flight’ response [230]. During the fight-or-flight response, the
systems that are not essential to immediate survival, such as the digestive system, the repro-
ductive system and the immune system are suppressed, and more resources are allocated to
the heart and brain. This process is controlled and complemented by the Parasympathetic
Nervous System which regulates bodily functions at rest conditions. In non-stressful settings,
these two systems work in coordination to achieve homeostasis, the condition where internal
functions remain stable and balanced. In a stressful setting, the autonomic nervous sys-
tems are uncoordinated. Prolonged imbalance in these two systems leads to a physiological
condition known as allostatic load [191, 190] in which the body fails to trigger appropri-
ate responses for stress and rest condition, and would trigger a fight-or-flight response in
non-stress conditions, making it difficult to return to a homeostasis condition and leading to

serious health problems.

Beside the physiological response, psychological and emotional reactions include experiencing
negative emotions such as annoyance, fear and anger [152]. Finally, behavioral consequences
of stress include changes in health practices such as shortened and fragmented sleep [329] and
less physical activity [278]. Behavioral consequences also include declining performance on
complex tasks [315], and alterations in interpersonal behaviors such as insensitivity towards
others [51] and social avoidance [53]. Figure 2.1 summarizes the two components of stress
and their traditional measurement approaches, which are further detailed in the following

section.
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Stress
The perceived imbalance in
demands and resources

Stressors: Stress Response:
- Daily hassles - Physiological
- Life events - Psychological
- Behavioral
Traditional Measurement: Traditional Measurement:
Surveys and checklists of events Physiological: cortisol, skin, brain,

. muscle and respiration sensors
Interviews

Psychological: surveys of stress
appraisal and affective response

Behavioral: surveys, observations
and interviews

Figure 2.1: Components of stress and their traditional measurement approaches.

2.2 Stress measurement approaches

Cohen et al. (1997) outline three broad traditions of assessing stress: (1) the environmental
tradition that focuses on the assessment of environmental events or experiences that are nor-
matively associated with substantial adaptive demands, (2) the psychological tradition that
focuses on individual’s subjective appraisal of their ability to cope with demands, and (3) the
biological tradition that focuses on activation of specific physiological systems that are trig-
gered by demanding conditions. Data for these approaches are collected either subjectively

through self-reports or objectively using sensors.
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2.2.1 Stress measurement through self-reports

Retrospective Surveys

Numerous surveys have been developed to measure long and short-term stress experienced
by individuals in different settings. Retrospective surveys vary in their retrospective period,
as some measure stress in an immediate preceding event (e.g. NASA-TLX [98]) while others
are based on life-long events (e.g. [272]). The Perceived Stress Scale (PSS) [52, 12] is a widely
used instrument to measure appraised general stress. The questions are worded as “in the last
month, how often have you felt....” to capture feelings of stress and loss of control. In HCI
research, PSS is commonly used as a baseline for global stress (e.g. [176, 249]). Limitations
of PSS include retrospective recall biases and the varying ability and willingness of people to
accurately identify and express their emotions. Other surveys rely on reconstructing specific
stressful events to quantify the stress experienced within a time period. For example, the
Holmes and Rahe Stress Scale counts stressful events in the past year [113]. Similarly, but
for a day rather than a year, the Daily Stress Inventory [37] quantifies the stress experienced
during the previous day by counting the occurrence and intensity of relatively minor stressful
events. To address recall bias in remembering events from the previous day, Kahneman
et al. (2004) developed the Day Reconstruction Method (DRM) [124] that systematically
guides individuals to reconstruct their activities and affective states from the previous day.
Comparison between EMA and day reconstruction method showed that agreement between
the two methods varies across different emotions [70]. The lowest agreement was on stress.
This shows that even when people experience stress, they cannot recall it a day after. This

is an important shortcoming in stress studies that rely on delayed self-reports.
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Ecological Momentary Assessments

A widely adopted method of collecting self-reports in daily life settings is Ecological Mo-
mentary Assessments [262] (a.k.a Experience Sampling Method, ESM [149]). Advancement
in mobile computing enabled a wide adoption of this technique by prompting the user at
specific times through their mobile phones (e.g. [244]) or smart-watches (e.g. [117]) for real-
life stress monitoring. A commonly used mood assessment approach for self-reports through
EMASs is based on the Russell’s circumplex model [246], a two-dimensional approach for
affect classification. With the circumplex model, affect is quantified on the dimensions of
valence (positivity) and arousal (activeness). In EMAs delivered through mobile phones and
wearables, users can be asked to rate their current mood on these two dimensions, which can
then be used to infer the affective state (e.g. stress would be high arousal and low valence).
One of the benefits of using EMAs on the everyday devices is that people are already carrying
these devices and are used to sending and receiving information with them. Hernandez et al.
(2016) compared EMAs delivered through multiple wearable devices to measure stress and
found that differences in devices affect user responses [104]. Designing and delivering EMAs
should take into account the effect of the delivery medium. Another limitation of EMAs
is that receiving the prompts several times in a day can be disruptive or frustrating, which
can affect answers to some questions about affective state and makes EMAs unsuitable for
continuous long-term stress monitoring. Nevertheless, compared to retrospective surveys,
EMASs minimize retrospective recall biases [25, 262] and allow for measuring the subjective

experience of acute stress on-the-go in real-life settings.

Although self-report instruments are commonly used in the literature, they are subjective,
require the full cognitive attention of the user, often do not capture context, and are affected
by memory recall as well as emotion expression biases [252, 94]. While self-report instruments
are not suitable for continuous unobtrusive measurement of stress, they remain important

as perceived stress has been shown to have health and wellbeing implications [243, 146].
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2.2.2 Physiological sensors

Stress produces a number of physiological responses in the human body. Most physiological
reactions are momentary and do not carry over after the stressor has passed. Thus, while they
are good at detecting stress when it happens, they are not very good at measuring carried-
over experiences of stress as subjective surveys do. The physiological response to stress
can be measured through measuring the level of cortisol, known as the stress hormone.
While cortisol measurement for stress is used in clinical and lab studies (see [137] for a
review), it requires collecting saliva or blood samples, which is intrusive and not suitable for
continuous tracking. In addition, cortisol is not responsive to all types of stressors, as it is
more responsive to social evaluative stress [67]. Therefore, measuring physiological changes
related to the autonomic nervous system (e.g. changes in heart activity) rather than HPA
activity (i.e. the cortisol hormone) are more appropriate for the minor and diverse stressors
of the workplace environment and especially computer work which is not typically socially
evaluative. Physiological sensors can provide continuous, unobtrusive stress tracking. This
subsection focuses on skin and heart activity, which are commonly found in wearable devices

and used in HCI research, and have been used in both lab and in-situ settings.

Skin Conductance

Electrodermal activity (EDA), also known as Galvanic Skin Response (GSR), is a physio-
logical response to stress that captures the sympathetic nervous system’s activation through
skin reaction. EDA measures skin conductance, which is the skin’s susceptibility to conduct
electricity. When a person experiences stress, sweat glands are activated as a physiological
response of sympathetic nervous system activation. When sweat glands are activated, perspi-
ration decreases skin’s resistance to electrical current. Thus, stress is related to higher skin

conductance. Ideally, EDA should be measured at the palm or the fingers, where capturing
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even small EDA responses precisely is feasible [293]. In everyday settings, using sensors
on the palms and fingers is not practical as it interferes with daily tasks. Thus, wearable

wrist-bands equipped with electrodes are commonly used in HCI research to monitor EDA.

In a study using EDA to measure stress, Hernandez et al. (2011) developed personalized
models to automatically recognize the stress levels for call center employees with an accuracy
of 78%, compared to 58% accuracy when using generalized models (i.e. training and testing
models on different people) [107]. The sample size was 9 subjects, and stress after the call
was measured based on the subjects answer to 1 question (“how was the call”) on a Likert
scale with the endpoints labeled as “extremely good” indicating non-stressful and “extremely
bad” indicating very stressful. In another study, Setz et al. (2010) built a classifier to classify
EDA signals for cognitive load and stress with accuracy higher than 80% [258]. Healey and
Picard (2005) also successfully detected stress form EDA with a 97% accuracy of detecting
stressful driving conditions [99]. Besides building predictive models, EDA signals have been

used to develop systems aimed at encouraging personal reflection (e.g. [181, 248]).

While EDA is widely used and is available in wrist-worn devices, it has several limitations
from usability and signal validity perspectives. The electrodes used for EDA sensing can be
uncomfortable for long-term wear, and require maintenance to change worn electrodes (as
they degrade with time) or charge the device. Sensor readings in real-life settings are prone
to different types of sensor artifacts. For example, sensor electrodes can move, detach from
the skin, or change in pressure on the skin, all which can affect the sensor signals. More
importantly, physical activity and humidity levels confound EDA readings, although some
work has shown that physical activity effects can be modeled and removed from EDA signal
(e.g. [10]). Furthermore, some people naturally do not produce adequate EDA responses

225).
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Heart activity

Two parameters relating to heart activity are widely used for measuring stress: Heart Rate
(HR) and Heart Rate Variability (HRV). Heart rate becomes elevated when a person is
stressed. HRV provides more information, as it is a measure of the variation in the interbeat
intervals (i.e. time between one beat and another, a.k.a R-R interval). Contrary to HR,
HRV is inversely related to stress. A low HRV indicates that the body is under stress
as the autonomic nervous system is trying to regulate the body. HRV is measured with
electrocardiogram (ECG) devices that pick up electrical pulsing from the heart contractions
through electrodes attached to the chest. Another way of measuring HRV is through blood
activity. Changes in HR and HRV produce fluctuations in blood volume and blood pressure.
Therefore, monitoring changes in blood activity is a means of stress measurement. Blood
activity can be measured with photoplethysmography (PPG), a low-cost, noninvasive optical
technique [92]. A PPG sensor sends an optical pulse through a light emitting diode and has a
receiver to capture the reflected light. When light is emitted in an area where blood volume

is high (a reaction to stress), more light is absorbed and less light is reflected.

Although heart activity is a momentary physiological reaction, studies have shown relation-
ships between HRV and self-reported perceived acute and chronic stress in clinical settings
[69], a relationship which has not been strongly supported for other physiological signals
[115, 165]. HRV is widely used in research and clinical studies to measure clinical conditions
related to the autonomic nervous system such as neuropathy, heart conditions (see [279] for
a review), and stress [41, 1, 237]. In HCI research, HRV has been used as a measure of stress
in studies investigating different factors influencing daily stress, such as ICT usage for college
students [178] and email use for information workers [177] using a wearable chest-strap that

accurately captures HR and HRV.

A shortcoming of heart activity from a signal validity perspective is sensitivity to respiratory
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influences. Choi et al. (2010) tried to address this issue by building a linear model to predict
the effect of breathing on HRV, then subtracting that effect from HRV reading to get a
better assessment of mental stress [47]. Another effort to address the confound of physical
activity and missing data is by Sarker et al (2016), who estimated the recovery time for
physiological signals after physical activity to remove it from the model [251]. Another
limitation of signal validity in real-life settings is that body posture affects the signal [297].
For example, HR is usually higher when a person is standing as compared to sitting. From a
usability perspective, sensors in chest straps provide the most accurate signals but could be
uncomfortable to wear for long periods, although wrist-worn alternatives are commercially

available.

2.3 Theoretical frameworks for stress research

This section presents theories and theoretical constructs that have been proposed in the

literature to explain and understand stress in general, and workplace stress in particular.

2.3.1 Individual differences in the experience of stress

Stress is multifaceted, hence, beside the objective measures of physiology, there are subjective
aspects relating to the personal experience of stress. People’s experiences and manifestation
of stress, whether acute or chronic, vary greatly based on how they evaluate, interpret and
cope with stress [165, 287]. Personality factors, job-related factors, and contextual factors can
affect whether and how a person might experience stress. For example, individual differences
in the experiences of stress have been linked to perception of mastery (i.e. perceived ability
to exercise control) [84], personality traits (i.e. extraversion and introversion) associated with

responding more or less effectively to happiness strategies [256], and the personality traits
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of openness to experience and need for personal structure that are associated with whether
a person experiences stress as a cost of interruption at work [172]. Another individual factor
influencing the experience of stress is gender. For example, a study found end of day (an
approximation of sleep time) influences stress differently for males and females, as males who
end their day after 2 a.m. have the highest stress the next day, whereas females who ended

end their day before midnight have the highest stress the next day [178].

The manifestation of stress as captured through everyday devices also varies with individual
differences. For example, Vizer (2013) found that keystroke dynamics and linguistic features
of typed text change differently for different individuals in stress and rest conditions, although
the study did not report personality or demographic measures associated with this difference
[299]. Thomée et al., (2005) found that prolonged use of mobile and computer, and the

number of short text messages, was associated with stress for women, but not men [290].

2.3.2 Stress, motivation and performance

The biopsychosocial model of challenge and threat (BPS) by Blascovich and Tomaka [32]
states that the ratio between resources and demands dictates a person’s stress experience.
When the ratio is close to balance, the stress response reflects perceiving the situation as
challenging, which is associated with positive outcomes such as productivity and engagement.
Otherwise, when the gap between resources and demands is greater (i.e. increased stress)
the person experiencing stress will perceive the situation as threatening, which is associated

with negative outcomes.

The BPS model supports the idea that some level of stress is desirable. The underlying
physiological mechanism of why some stress is good is the fight-or-flight response which
leads to higher arousal and focus in order to deal with life-threatening situations. The

underlying psychological mechanism, on the other hand, can be linked to motivation. Since
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stress involves personal appraisal of the imbalance between demands and capacity [31], it has
been argued that stress is linked to motivation to meet those demands, as motivation arises
as an effort to improve conditions that are less than optimum [315]. However, when stress
is too high, a person’s perception of their ability to improve conditions diminishes, which
affects motivation and performance [315]. This relationship between stress and performance
is portrayed by the Yerkes-Dodson law (also known as the inverted-U hypothesis) (Figure
2.2), which shows that increased stress (more specifically, arousal, the physiological reaction
to stress) is associated with improved performance up to a certain point, and when stress
exceeds that point, performance declines [323, 50]. Therefore, over- or under-arousal reduces
task performance. An example of this inverted-U relationship is performance on a driving
task under different stress levels. When driving under no stress (little active control needed
for driving) or very high stress, driving performance is impaired because of boredom and low
alertness, or overload and distraction, but some stress yields safer driving [180, 222].

Optimal

Performance

Level of arousal

Figure 2.2: The Yerkes—Dodson Law showing the relationship between arousal and perfor-
mance (Cohen, 2011).

2.3.3 Stress and affect

In the psychology literature, stress has been studied as a pathway connecting affect and
health [62]. Pressman and Cohen (2005) posit that positive affect can decrease the negative

consequences of stress on one’s health, and psychological and physiological wellbeing [228].
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Moreover, positive affect can reverse the negative effects of stress such as cardiovascular
consequences [81]. For example, one study reported that heightened cardiovascular arousal
levels returned towards baseline levels more rapidly for people who were shown positive
films after fear-inducing films, compared to slower cardiovascular recovery for people who
were shown neutral or sad follow-up films [81]. Another study showed similar cardiovascular
recovery benefits for inducing positive affect through smiling during stress [144]. Positive
affect during stress not only can decrease or reverse negative consequences of stress, but it can
also help in building resilience and endurance during stress, which can aid in handling future
stressors [144]. These insights into the role of affect in moderating stress consequences can
inspire the affective computing and computational mental health communities to go beyond

stress measurement and tap into stress moderation through affective technologies.

2.3.4 Workplace stress

Workplace stress received special attention over the years. Several models linking the psy-
chology of stress to job-related factors have been proposed to explain stress at the workplace.
Aligned with the general definition of stress in psychology, these models view workplace stress
as an imbalance between two factors. The Person-Environment Fit (PEF) model suggests
that job stress occurs when there is a mismatch between the person’s abilities and the job’s
demands, or a persons’ aspirations and the job’s resources [71]. Another job stress model is
the Job Demand-Control model [126], which explains job stress as an imbalance between job
demands and the employees’ control over those demands. According to the model, stress oc-
curs when job demands are high and the employees’ control (or decision latitude) is low. The
demands-control model of job stress has the advantage of not relying solely on the subjective
stress perception of the employee, but rather it assesses stress based on reported structural
features of the employees’ situation in their workplace (i.e. demand and control). Finally,

the Effort-Reward Imbalance model postulates that job stress occurs when an employee feels
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that their job requires high effort and offers low rewards. Similar to the Demands-Control
model, the Effort-Reward model assesses structural features of one’s job situation, but it
also allows for assessing the employees’ perception of intrinsic effort (i.e. overcommitment)

besides extrinsic effort (i.e. job demands).

2.4 Modeling stress in the workplace with unobtrusive

SENSsors

In this section, we review studies of stress monitoring in workplace settings or computer
use contexts. To narrow the scope of the review, we consider studies that use physiological
signals to detect stress, and exclude studies focused on physical, facial and behavioral signals
of stress (e.g., [162, 6, 34, 73, 108, 188, 250]). Studies approximating physiological measures
with motion-based sensors such as accelerometers and gyroscopes (e.g., [307, 106, 105]) are

also beyond the scope of this review, which is adapted from our previous work [7].

The keywords used to search Google Scholar were: stress tracking, workplace stress sensors,
workplace stress tracking, computer stress tracking and computer stress sensors. Seventeen
publications in areas spanning human—computer interaction, ubiquitous computing, biomed-
ical informatics, user modeling, multimodal interaction, and affective computing from the
years 2006-2017 were included in this review. Tables 2.1-2.3 summarize the reviewed studies
based on the sensors and physiological signals, the computer task/stressor involved, the de-
pendent variable (i.e., the stress measure), number of subjects, duration of physiological

measurement and whether it is a lab or field study.

Most of the reviewed studies are controlled lab studies where subjects perform a task on the
computer while wearing sensors to capture stress. The reviewed studies used computer tasks

that simulate workplace computer use scenarios that might lead to stress. The tasks include
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Table 2.1: Sensors and signals of the reviewed studies.

Publication Sensor: Signal

[87] Wrist sensor: PPG, EDA, ST

[109] Chest sensors: HR, HRV, BR; Wrist sensors: EDA, ST

[139] Wrist sensor: EDA, ST, acceleration

[142] Chest sensors: HR, HRV; Finger sensor: EDA; Cameras; Kinect 3D

[143] Chest sensors: HR, HRV; Finger sensor: EDA; Cameras ; Kinect 3D

[156] Thermal imaging of the corrugator

[166] PPG: sVRI, blood pressure; ECG: HRV

[189] Digital camera: HR, BR and HRV

[200] Smartphones: audio, physical activity, social interaction; Chest belts: HRV
[206] Pressure sensor; eye-tracker; fingertip sensor: EDA, BVP, HR

[257] Hand sensor: EDA

[267] Necklace sensor: ECG; Fingertip sensor: EDA and ST; Chest sensor: BR.
[275] Chest sensors: HR, HRV; Finger sensor: EDA

[319] Chest belt: ECG and respiration; Hand sensor: EDA; Shoulder electrodes: sSEMG
[326, 327, 23] Hand sensor: BVP, EDA, ST; Eye-tracker: PD.

[7] Wristband: HR and EDA; chest-band: ECG (HR), BR; Thermal camera: PP
This work Wristband: HRV

PPG: Photoplethysmogram, EDA: Electrodermal Activity, ST: Skin Temperature, HR: Heart-Rate,
HRV: Heart-Rate Variability, BR: Breathing Rate, sVRI: Stress-Induced Vascular Response Index,
ECG: Electrocardiogram, BVP: Blood Volume Pulse, sSEMG: Surface Electromyogram, PD: Pupil Di-
ameter, PP: Perinasal Perspiration.
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Table 2.2: Computer tasks/stressors of the reviewed studies.

Publication Computer Task/Stressor

87] MIST

109 Unconstrained work environment

139 Unconstrained work environment

142 Writing reports with email interruptions and time pressure
143 Writing reports with email interruptions and time pressure
156 CWT and mental arithmetic

166 Arithmetic problems

]
)
]
]
]
)
189 Cognitive tasks: ball control task and BCST
)
]
]
]
]
]

200 Unconstrained environment—in and outside of work

206 CWT and information pick up task

257 MIST

267 CWT; talking about stressful experiences; math test

275 Writing reports with email interruptions and time pressure

319 Problem solving, puzzle, and memory task, done under time pressure, social pressure,

and distracting noise
326, 327, 23] CWT
7] CWT, relaxing video, multitasking, monotasking, essay writing, online presentation

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

This work Unconstrained work environment

MIST: The Montreal Imaging Stress Task (mental arithmetic under time and evaluation pressure),
CWT: Stroop Color-Word test, BCST: The Berg Card Sorting Task.
computerized versions of validated stress-inducing tasks such as problem solving, solving
puzzles, memory tasks, cognitive tasks, and mental arithmetic. Some tasks are validated
stressors (such as the Stroop Color-Word test) while other tasks had additional stressors
introduced (such as time pressure or social stress) to create the desired effect. For most
studies, sample size ranged from 10 to 35 subjects, but varied in terms of unit of analysis
(i.e., hours, sessions). A direct comparison of the results of all the above studies is not
possible due to their differences in stress definitions, study design, sensors used, features

extracted, and analysis methods.

The most common experimental setting in the reviewed studies was comparing a condition
where stress was induced (e.g., by performing a stressful task or introducing social stressors),
against another condition where no stress was induced. This approach results in binary clas-

sification models where data points are classified into either stress or rest. This classification
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Table 2.3: Summary of reviewed studies.

Publication Dependent/Output # Subjects Duration of mea- Controlled
Variable surements
[87] STAIL-Y Lab: 21, Total: 1564 min (lab), Partially
Field: 5 1327 h (field)

[109] Self-report 15 5 days No

[139] EDA level 10 4 weeks No

[142] Self-report 25 3h Yes

[143] Self-report 25 3h Yes

[156] Difference from baseline 11 12 min Yes

[166] Physiological measures 40 50 min Yes

[189] Stress condition 10 10 min Yes

[200] Self-report 35 4 months No

[206] Stress condition 10 21 min Yes

[257] Stress condition 33 4h Yes

[267] Stress condition 20 20 min Yes

[275] Stress condition 25 3h Yes

[319] Stress condition 30 40 min Yes

[326, 327, 23]  Stress condition 32 10 min Yes

(7] Difference from baseline 61 90 min Yes

This work Duration of difference 47 and 51 1 week and 3 weeks  No

from baseline

STAI: State-Trait Anxiety Inventory. Controlled: Whether data is collected in a controlled lab ex-

periment.
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is an oversimplification of workplace stress, as employees are seldom at rest (i.e., doing noth-
ing). Some studies tried to address this limitation by increasing the number of classes (e.g.,
‘relaxed’, ‘concentrated’, and ‘stressed’ in [206]) or replacing the ‘rest’ condition with non-
stressful computer work (i.e., ‘low cognitive load’ vs. ‘stress’ in [257]). Other than predicting
the stress condition, studies have also considered self-reports as ground truth, and used phys-
iological signals as predictive variables (e.g., [87, 200]). Finally, a stress measure that has
been used, which captures more variation in stress, is departure from the baseline physiolog-
ical measure, where stress is said to be detected if the physiological signal during the task is

higher than the subject’s baseline measure (e.g., [156, 166]).

While many studies measure stress during standardized tasks (such as the Stroop Color-
Word test) as a proxy for workplace computer use, Koldijk et al., [142, 143] present a
dataset of physiological measures during email interruption and time pressure as simulated
workplace stressors, validated by self-reports of mental load. Using this dataset, Sriram-
prakash et al. [275] were able to build a model discriminating a neutral condition from the
email interruption and time pressure condition using heart-rate and skin conductance mea-
sures. More work exploring workplace computer use scenarios beyond standardized comput-
erized stressors is needed to account for the variation in workplace activities and the possible

challenges for real-time stress monitoring during those activities.

While these studies help advance unobtrusive stress measurement in the workplace, deploying
these systems in real-life work scenarios requires a more nuanced understanding of the costs
and benefits involved. There is a lack of in-situ studies using these wearable sensors to
track stress at the workplace and correlate it with potential stressors, and to understand

employees’ perspectives on tracking their stress with wearables.

25



2.5 Computer-use factors potentially associated with

stress

Tracking stress in the workplace has gained increased attention in HCI, often with the goal of
building predictive models from wearable and environmental sensors, or for designing work-
place stress interventions. For example, studies have explored whether tracking keystrokes,
keyboard pressure, and mouse clicks [108, 140, 300, 299, 328] or tracking posture [141] can
predict mood and stress. Physiological sensors have mostly been tested in simulated work-
place lab settings (see Section 2.4 for a review). A few studies incorporated stress tracking
in real workplace settings to explore patterns and correlates of stress (e.g. [109, 165, 183]).
In the below subsections, we present relevant literature that explored computer-use factors

potentially associated with stress or stress proxies such as workload and burden.

2.5.1 Email

Email is an integral part of everyday work for many in knowledge work professions. The
benefits of email at the workplace go beyond providing a means for communication, as
we increasingly rely on email for information sharing and archiving, and for assigning and
delegating tasks. Despite these benefits, previous work on patterns of email use in the
workplace consistently noted the considerable time and attention that email management
requires. Email has been found to be associated with stress and burnout due to the time
it takes to go through an ever-increasing volume of emails, the task demands associated
with emails, and the interruptions they create [239, 22, 177]. A 2016 study [176] found that
during business hours, employees spent an average of almost one and a half hours on email per
workday, and checked their emails on average 77 times. There was a wide variation among

employees in how long and how often they checked email. No difference in average email
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duration was found between employees who checked email based on external notifications
and those who checked email on their own. However, differences in email duration existed
between employees who check their emails all at once or a few times (batching) or consistently

throughout the day, where the latter group had longer average email duration.

Batching may decrease stress by avoiding disruptions of task activity and reducing cognitive
load [292]. However, results are mixed as to whether individual strategies of checking email
are related to stress [36, 145, 176]. Email is often managed while multitasking with other
work tasks. One might be working on email while having a concurrent task at hand and also
anticipating an upcoming deadline or important appointment. Little research has explored
this complex workplace dynamic as it relates to stress and performance. In previous work,
we modeled this complexity of a real-world work environment in a study that examined
the interplay between email use patterns, stressors, and task performance [8]. We looked
at stress reactions when participants worked on a task while receiving emails in one of two
modes: high interruptions (intermittent email notifications) or low interruptions (getting a
batch of emails to process all at once). Participants in the high email interruption mode
spent more total time on email as their stress increased, perhaps due to the time it takes to
re-focus after being interrupted. Higher stress in the high interruptions mode was associated
with a higher use of anger-related words in email responses. We also found that in the low
interruption mode (i.e. when participants received a batch of emails to process all at once),
stress increased for people who scored high on the personality trait of neuroticism [8]. A
potential explanation for this is that neurotics are more susceptible to stress in general, and
since handling emails in a batch requires a more sustained focus duration than addressing
emails intermittently with breaks in between, it could be that this sustained focus causes
stress. These individual differences should not be overlooked when examining computer use

and stress, as they might explain conflicting results from prior work on email stress.
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2.5.2 Attention switching

Computer work often involves managing multiple tasks. Multitasking could increase work-
load and stress [318, 178, 236] as well as cause errors in the tasks performed [216, 193].
As multitasking requires frequent attention switching, it can causes cognitive burden and
feelings of inefficiency and diminished productivity [170]. Attention switching can also re-
sult from interruptions such as receiving an email notification, a phone call or a face-to-face

interaction.

Studies in HCI have repeatedly shown the prevalence of multitasking, interruptions, and
attention switching for information workers during computer work [88, 172, 171]. While
some interruptions can be beneficial for providing important information or social interaction
[116, 209], they can also be detrimental by affecting productivity, lengthening the time to
resume tasks, and causing errors [77, 154, 216, 292]. Interruptions also affect mood and stress

as continual switching of attention increases cognitive workload and consequently stress [192].

2.5.3 After-hours work connectivity

Many working individuals continue to be connected with their workplace tasks outside of
formal work hours, either by staying longer in the office to finish tasks, or by accessing work-
place systems through portable devices such as mobile phones or laptops during commuting
or at home, before or after formal work hours. The use of communications technologies
after-hours to perform job-related functions has been widely investigated for many job roles
(e.g. [35, 78, 185, 241]). Not surprisingly, after-hours work connectivity is associated with
work-life conflict, distress, and sleep problems, but these relationships are moderated by

perceived job autonomy and control [35, 253].

Inbox management is one of the top work activities that people engage in outside of work
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hours and on mobile devices [185, 241]. One study that examined email use after formal
work hours found that time spent on email after hours, as well as organizational expectations
regarding monitoring work emails after hours, led to emotional exhaustion and a negative
perception of work-life balance [29]. Another study based on interviews with office employees
reported that participants view incoming messages less than an hour after they are received

during non-work hours through their mobile phones [185].

A more detailed analysis of work connectivity after hours can be achieved with log data
analysis, rather than self-reports, to uncover daily patterns and to characterize users based

on these patterns.

2.6 Physician stress related to EHR systems and EHR

inbox

An important working population affected by computer-related stress at the workplace is
physicians. Studies have noted the burden of EHR digital work for physicians [54, 259, 85].
EHR-related factors that could lead to physician stress and burnout include the extra time
needed, often beyond work hours, to complete EHR-related work [16, 247, 17, 4], usability
issues [101, 295, 129], risks associated with errors [218] and taking time from face to face

interaction with patients [45].

With EHR systems being accessible through laptops and mobile phones, this creates the
possibility of constant connectivity for physicians to their work tasks. Concerns have been
raised regarding EHR use extending beyond usual work hours for tasks such as completing
patient notes and placing work orders [16, 247]. In this dissertation, we extend those findings
to investigate physicians’ email use patterns after work hours and their association with

stress.
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Physicians have increasing inbox management demands. Email has been introduced into
physicians’ work relatively recently as part of advanced EHRs used in providing clinical
care to patients. The EHR inbox is being increasingly integrated into physicians work
[3, 63, 260]. Tasks that used to be done through other means like paper and face-to-face
communication are now integrated into the EHR inbox. These tasks include communication
with patients, receiving lab results and approving medication refills. Inbox integration has
advantages making these tasks more streamlined and automated, as well as enhancing access
to physicians and building relationships with patients and families [159, 234, 233]. Patients
are also increasingly adopting secure messaging to communicate with physicians. In 2015,
64% of physicians had an EHR with the capability to exchange secure messages with patients,

an over 50% increase from 2013 [288].

A 2017 study [16] using EHR logs found that time in the inbox accounted for 24% of total
EHR time, and of the time spent in the inbox, a larger proportion was spent after-hours
compared with the time spent on other EHR activities. Another study reported that 86%
of surveyed physicians worked outside of work hours to respond to inbox messages [266].
Besides the time it takes within and outside of work hours, inbox-related burden has been
attributed to the volume and source of EHR messages [284, 93], and information overload
from notifications (aka asynchronous alerts) [265]. Although some studies quantified EHR
inbox—related factors and measured self-reported workload, well-being, or burnout at a single

time point [202, 203], they did not measure daily stress associated with EHR inbox use.

As with office employees, email has been associated with increased interruptions and burnout
for physicians [159, 284]. The nature of physicians’ work makes the patterns of interaction
with email different from other types of office employees. For physicians, clinic time is
dedicated mostly to patient appointments and using EHR functionality related to patient
data/orders. This workday structure likely exacerbates the challenge of managing inbox

work because of the lack of dedicated or flexible time to manage the inbox, so the patterns
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of physicians’ email use might not be the same as those seen in other office environments

where employees have more flexibility and control over when to check their inbox.

Finally, physicians” EHR work could be associated with many switches in attention when pro-
cessing messages amid patient visits and other clinical responsibilities. Studies in healthcare
show that attention switching, both due to endogenous and exogenous factors, is associated
with lower performance and higher stress [167, 314], as well as an increase in the likelihood
of errors during clinical tasks [317, 316]. We therefore investigate the frequency of window

switching during EHR work and its association with stress.

2.7 Summary

This chapter has provided an overview of how stress is defined and measured, how workplace
stress is conceptualized, and how previous research investigated modeling workplace stress
with wearable sensors. The chapter also covered computer-work related factors that are
potentially associated with stress for information workers and physicians. Stress is defined
as the perceived imbalance in demands and resources, which triggers several psychological
and physiological responses. These responses can be measured with self-reports or sensors,
although each modality presents some limitations. Frequent self-report surveys might not
be suitable for unobtrusive and continuous stress tracking at the workplace, so researchers
have explored measuring physiological stress response with unobtrusive wearable sensors.
Limited research has been done in real workplace environments using wearable sensors for
stress tracking. This presents an opportunity to study factors associated with daily stress

at the workplace in more depth and detail than has been previously done with self-reports.
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Chapter 3

Methods: Unobtrusive Tracking of

Stress and Computer Use

The methods used in this dissertation combine unobtrusive sensing of physiological stress
through wearable sensors, collecting self-reported perceived stress through Ecological Mo-
mentary Assessments, and tracking computer activity through computer activity logging
software. These methods were used in two real-world workplace contexts: information (i.e.
office) work and medical work. This chapter describes the common aspects of methods
used in these two study contexts. The details specific to each study are presented in their

respective chapters.

3.1 Physiological stress through a wearable sensor

Participants were given a wrist-worn device (Garmin Vivosmart 3, Figure 3.1a) with an
optical heart-rate sensor to measure HRV-based stress. The optical sensor (photoplethysmo-

gram, PPG) works by emitting light onto the skin (an area where arteries are close to the
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skin) and measuring how much light is reflected back. As the heart contracts and pumps
blood, the arteries of the body swell slightly and return to normal. When the arteries are
slightly swollen, they will absorb more light reflecting less light back to the sensor. Contin-
uously emitting and measuring reflected (or transmitted) light can measure heart activity
such as heart rate, heart-rate variability and blood pressure. PPG sensors are commonly
used in consumer-grade wrist-wearable devices given their usability and comfort compared

to using electrodes.

Compared to other physiological stress measures that can be obtained from wearable sensors
in daily life, HRV is more reliable in real-world (outside the lab) settings. For example,
skin conductance (i.e. electrodermal activity, EDA) can be hard to measure in dry indoor
air-conditioned settings as the electrodes rely on sweat to measure conductance. In addition,
some people naturally do not produce adequate EDA signal [225]. HRV sensors in wrist-

wearable devices are light-based and are more commonly used in consumer-grade wearables.

3.1.1 Validation of the Garmin Stress Score

The wearable device we used produces a real-time “stress score” based on HRV in still mo-
ments (i.e. excluding times with physical activity that interfere with HRV readings) and
accounts for the physiological norm of each user. The method used for HRV analysis in the
Garmin wearable uses an algorithm by Firstbeat (Firstbeat Technologies Ltd., Jyvéskyla,
Finland) which builds a digital model to recognize different states of physiology and their
intensity [161]. The intensity of stress calculated based on variables related to sympathetic
dominance of the autonomic nervous system. These variables include, for example, high fre-
quency power,low frequency power, respiration rate, and HR. The model takes into account
the individual scale of physiological features within a person. Changes in HRV that are

known to occur during postural changes, such as standing up, are also differentiated from
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other factors that influence cardiac activity to more accurately capture stress from HRV.
The provided stress score ranges from 0 to 100, with 0-25 indicating rest, 26-50 indicating
low stress, 51-75 indicating medium stress, and 75-100 indicating high stress. The Garmin
API provides this stress score as 3-minute averages of the real-time stress scores generated

on the device.

According to the developers (Firstbeat Technologies), their stress classification method is
based on data from thousands of lab assessments and more than 100,000 field assessments.
The method has been empirically tested and validated in several settings such as corpo-
rate wellness, work ergonomics, healthcare and sports [161]. Stress classification using this
method has been shown to correlate with cortisol after awakening and indicators of stress
and relaxation during sleep for 17 hospital workers, and significant differences in stress were
observed between sleep and awake times, as expected [245]. The method’s classification of
stress and relaxation was also found to correlate with psychological work-stress-related vari-
ables such as work effort (r=-.66 for relaxation %) and daily self-assessments of stress and
satisfaction at work (r between .67 and .88 for different HRV-based measures) [294], as well
as self-assessment of occupational burnout (standardized beta =.3, p=.001 for the percent-
age of stress time in a workday) [289]. In another study involving 12 participants over the
period of 10 weeks [13], days were divided into “good days” and “bad days” based on a factor
analysis of a number of self-assessments of mood. Significant differences in the duration of
stress (by the Firstbeat method) were found between good and bad days, where bad days had
longer periods of stress (p=.001). Direct correlations between self-reports and HRV stress
measures were weak, as only mental strive and busyness were associated with stress duration
(r=.16 and r=.13) measured by the firstbeat algorithm [13]. Other self-reported emotions
such as anger, anxiety and fatigue were not individually associated with HRV-based stress
[13]. While these studies used the Firstbeat stress classification method with different HR
monitoring devices, Garmin heart-rate sensors were compared to other devices and found

to be among the most accurate in both lab and real-life settings based on a review of 42
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studies from 2016 to 2019 [82]. Thus, using the Firstbeat HRV-based Stress Score generated

on Garmin devices can give an accurate and continuous measure of stress for this study.

Besides its validity and reliability, we chose to use the Garmin wearable because it does
not require daily charging like other validated wearables for HR monitoring (e.g. the Apple
Watch). The Garmin device needs to be charged once every 4-5 days, thus significantly
reducing participant burden. Participants were able to view their real-time stress data on
the device, and view their previously recorded stress measures as timeline charts in the

associated mobile app (Figure 3.1).

& Stress & Stress Details

2h 7min
» 2h 18min
36 Low
50min
\/ 6min

You had enough restful moments on this day to
balance out your stress reactions.

Feb 29, 2020
Feb 28, 2020

Feb 27, 2020

hlmm

@R Iy 2%

Feb 26, 2020

Feb 25,2020

(a) (b)

Figure 3.1: The display of tracked stress scores on the wearable device and its app.

In our analyses, the HRV-based stress measure is the number of minutes in medium and
high stress (stress score >50) during the workday. We excluded low stress periods (scores
from 25 to 50) because a certain amount of stress (or arousal) is expected and needed for
performing daily tasks [32]. Low stress during the workday could reflect a healthy autonomic

nervous system that adapts to the daily demands of the job. We chose the outcome measure
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of mid-high stress duration rather than stress intensity (i.e. the level of departure from the
physiological norm, or how "high’ stress is) because stress patterns might be obscured when
averaging stress and relaxation scores throughout the workday. An average daily stress score
will not tell us how long the stressor lasted or show how stress fluctuated. Very different

patterns of stress can produce the same average stress score.

There were some gaps in the continuous HRV-stress data. Missing HRV-stress data could
be attributed to loose-fitting of the sensors on the wrist, removing the device for charging
or forgetting to wear the device, or physical activity. We set a minimum of 20 minutes of
HRV data per hour for hourly stress measures and two hours of data for daily measures to
be included in the analyses. We further report the number of valid minutes of data each

reported stress measures is based on.

HRV is affected by a number of factors other than stress, such as physical activity and
overall health. Thus, HRV as a measure of stress is most reliable for healthy participants in
sedentary settings. Previous studies used HRV from wearable devices as a measure of stress
in office settings where participants were working on a computer [212, 176, 141, 166], making

this method applicable to computer-based work by information workers and physicians.

3.1.2 Technical setup for data collection and storage

HRV data was unobtrusively and continuously collected and uploaded from the wearable
device, to the participant’s phone, to our servers. This mobile sensing system is a modified
version of the StudentLife data collection system [309] which has been used in recent mobile
sensing projects [183]. Participants were asked to install the Gamin Connect app, the offi-
cial app of Garmin devices. After creating a Garmin account and logging in, participants
were asked to enter their credentials in a portal in order for their Garmin app data to be

transmitted through the Garmin API to a designated server at the University of California,
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Irvine, School of Information and Computer Sciences. The data from the Garmin app in-
cluded processed data from the wearable device, such as stress scores calculated from HRV,
heart-rate and steps. Participants were also asked to install a mobile app (Tesserae Phone
Agent) which streams data from the wearable device to the participant’s mobile phone via
Bluetooth and uploads it to UCI servers (via Notre Dame servers, as the developers of the
app) in JSON format whenever the phone is connected to WiFi. Participants downloaded
the Tesserae app from a link sent to them by email along with their login credentials (a study
username and password that we provide), and paired their wearable device with the app to
start data collection. The data from the Tesserae app included more fine-grained data than
the Garmin app data, such as continuous RR intervals and HR. However, since the data was
raw and did not exclude physical activity or postural changes, and was not normalized per
person, it was not used for this study and the Garmin processed HRV-based stress scores

were used.

A designated server at the University of California, Irvine, School of Information and Com-
puter Sciences was set up to receive and store the wearable device data. An automated script
(cron job) periodically deleted extra files (e.g. data for troubleshooting WiFi connectivity)
to avoid exceeding the server’s storage space and to accelerate data backup and processing
for the analyses. The server is password-protected with two layers of authentication needed
to access it. Datasets are de-identified and do not contain personally identifying data such
as names, phone ID, emails or phone numbers. Data is only linked to the wearable device
ID and the provided participant ID. Datasets were backed up in an encrypted external hard

drive stored in a locked cabinet in a locked office room.
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3.2 Perceived stress through Ecological Momentary As-

sessments

Participants logged Ecological Momentary Assessment (EMA) of stress three times a day
using an app (PIEL Survey [122]). The app was preconfigured to send notifications prompt-
ing participants to complete a short survey on their phones in the morning (at a random
time between 9:30am and 10:30am), at mid-workday (between 1pm and 1:30pm), and in
the afternoon (between 3pm and 4pm). If the notification was not opened within 45 min-
utes, the survey expired. The survey consisted of questions asking participants to rate their
stress in the last 5 minutes on a sliding scale from no stress to high stress (Figure 3.2). To
identify affect more precisely, we also asked participants to report their arousal level (from
Low energy to High energy); and their valence (from Unpleasant to Pleasant) according
to Russell’s circumplex model (see Chapter 2) [246]. We used a sliding scale as previous
studies indicated participants often want more granular options than a 5-point Likert scale
[2]. The 5-minute window allows for correlating the reported stress with work activities that
the participant was doing before answering the survey, rather than merely reflecting stress
at the moment of taking the survey, which could be after a work activity has ended and its
associated stress changed. In addition to these questions, the information workers’ study
included an additional free-response question on whether this is a typical day and asked

participants to describe any abnormalities in their workday.

3.3 Computer activity logging

For each study context, we tracked computer activity to collect data including continuous
timestamped logs of pages visited and actions performed. For office employees, we used a

computer activity logging software (customized KidLogger, SafeJKA S.R.L.) and for physi-
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What was your stress

level in the last 5 Rate how you feel:

Was today a typical work
day? Please describe any

Rate how you feel:

minutes? abnormalities in your
workday today:
No stress High stress Low energy High energy Unpleasant Pleasant
Type here
(b) () (d)

Figure 3.2: The mobile EMA questions and interface.

cians we used EHR system access logs provided by the medical group. From these logs, we
created variables to quantify how time was attributed to different activities and characterize
computer or EHR use patterns. Details about the logging process and data generated for

each study is presented in the respective chapters.

We used computer activity logging instead of other methods like diaries or observations that
have been used in previous studies. Computer activity logging is unobtrusive and provides
granular data on the real use of the computer, with no recall bias or observer influence.
Another major advantage of computer logging is the ability to automate the process of
creating variables of interest to track computer use factors related to stress in real-time.
These tracked variables can be fed into smart applications and real-time interventions for

stress management.

3.4 Security and privacy

Security and privacy were a top priority throughout the entire data collection, storage, and

data analysis cycle. The data is de-identified (i.e. no direct link between the data and
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the name of the subject) and stored on a secure UCI server and an encrypted hard drive.
The data per participant is linked to a participant ID, and all names, emails and other
personally identifiable information are unlinked. All analyses were conducted only on de-
identified data. The information workers’ study was approved by UCI’s institutional review
board, and the physicians’ study was approved by the institutional review board of Kaiser

Permanente Northern California.

In accordance with IRB (Institutional Review Board) requirements for research involving
human subjects, the study protocol ensured that all participants were fully informed of
the details of the study, had the right to withdraw from the study at any time, and if
they choose, to have their data erased without any repercussions. Participation was fully
voluntary. The study team was available to respond to any participant who had concerns or

needed assistance at any point during the study.
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Chapter 4

Information Workers’ Stress and

Computer Interaction

4.1 Introduction

Capturing stress levels in the workplace in real-time can help uncover information about
related factors and behaviors that will advance and broaden our understanding of workplace
stress. However, while many studies have tested methods for technology-supported stress
tracking, only a few used these methods in real-life workplaces to identify everyday computer
work factors associated with stress. In this chapter, we present a study where we unobtru-
sively monitored stress levels for office workers and identified everyday computer interactions
related to daily stress. As described in Chapter 3: Methods, participants were asked to wear
a wrist band (Garmin commercial activity tracker) and install an application on their phone
to capture data from the band as well as an app that captured daily self-reported stress
through short surveys multiple times a day. To capture work-related variables, participants

were asked to install a computer-activity logging software and fill out one-time surveys.
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Scholars have identified several ways in which computer-based work can lead to fatigue,
burnout, overload, and stress [286, 49] (see Chapter 2.5). The use of information and com-
munication technologies (ICTs) is linked with working more and working longer [20]. For
example, given the ease and low cost, people report handling more communications and

more sorting and filing of messages with ICTs [30].

Related to increasing the amount and duration of work, the feeling of constant connectivity
is a frequently cited source of ICT-related stress [304, 184]. Having continuous access to the
work email, documents, and systems removes temporal and spatial barriers to work [241],
but also makes employees feel as they are always “on call” [286]. This constant connectivity
has also created a sense of urgency to complete tasks and respond to work commutations as
everything is “instant” [136]. Work-connectivity outside of work hours, whether by staying
late in the office or taking work home has been associated with work-life conflict, distress, and
sleep problems [35, 253]. It is unclear, however, how working outside of work hours affects
daily stress. That is, do employees experience more stress on days when they work outside
of their typical work hours? Previous research reported overall stress with overall reflective
measures of employees’ self-assessed overtime work. Capturing objective daily measures will
extend and complement previous work by offering real-time assessments that can inform

more timely decisions and interventions for stress management.

Computer work is characterized by frequent interruptions, which also extend work time by
taking time away from the main task and creating attention residue that extends the time
needed to refocus and resume the main task [154]. Interruptions or lack of focus within
computer work (e.g. receiving an email notification or being distracted by social media) can
be reflected in computer window switching [174]. Previous work has quantified interruptions
in the workplace [171], and established a correlation with perceived stress in controlled
experiments [172], but this correlation has not been empirically tested in real-workplace

settings using objective measures.
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Email has received increasing attention as a source of workplace stress [22]. As discussed
in Chapter 2.5.1, email can be related to stress as it is associated with task demands and
can build up in employees’ inboxes creating a sense of overload [239, 22, 177]. Empirical
studies supported the proposition that email is associated with stress [176]. Replicating
these findings in other work settings with a larger sample and a longer observation period,
as well as accounting for time spent on other work and non-work computer activities, can

help to assess the generalizability of these results.

Overall, studies of computer-related stress at the workplace were mostly based on surveys
where employees self-report their overall behaviors (e.g. how often they use email) and
feelings (e.g. overload, fatigue). More recently, a few studies tried to link the day-to-day
workplace computer use with employee productivity and mood [172, 176]. T extend previous
work on the relationship between day-to-day computer use and stress by simultaneously
examining a number of computer-use factors in a real workplace environment, accounting
for individual factors, and using an objective measure of stress that addresses biases in

self-reports (see section 2.2.1). I address the following research question:

RQ1: What computer use factors are associated with daily stress at the workplace? How do

individual differences affect those factors?

With objective computer usage measures, novel metrics that are otherwise hard to quantify
can be constructed. One such measure is regularity. Research in psychology has shown that
regularity of daily routines is related to wellbeing and feelings of security [19]. Regularity of
work routines relates to mental health and wellbeing at work, as routines help employees deal
with demanding aspects of their jobs under stable circumstances [211, 21]. A study found
that variability in work schedules is more strongly associated with psychological distress,
poor sleep quality, and unhappiness than low wages are associated with these outcomes
[255]. However, no study to date has quantified the variability of workload as reflected in

computer work. In HCI and ubiquitous computing studies, wearable and mobile sensors have
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been used to construct measure of daily routines and regularity of location, physical activity,
ambient sound and phone usage, and significant associations were found between these daily
routine measures and users’ mental health [321, 18, 147, 231, 309] and personality traits
[310]. Variability in computer usage at the workplace could reflect changing, unpredictable
or unstable work routines and demands, which could relate to feeling of instability or stress.
I therefore construct regularity /variability measures from computer log data to quantify the
regularity of computer workload and its association with stress, addressing the following

question:
RQ2: How does variability in computer work patterns affect stress at the workplace?

While the first two RQs deal with computer use factors and their independent associations
with stress, the next R(Q) investigates how much monitoring computer use altogether can
tell us about employees’ daily stress. In order to design systems that infer user stress from
computer use, we need to know how much information a collection of computer use factors can
reveal about stress. Research has explored ways to detect stress from computer peripherals
such as keyboard and mouse [108, 300, 65], but predicting stress form computer activity and
use patterns remain largely unexplored. Although scattered research has found associations
between individual computer use factors (e.g. email, window switching) and stress (see
section 2.5), no research has evaluated whether comprehensively monitoring computer use
at the workplace can predict stress to an extent that allows building stress prediction systems
from computer use data. If reliable predictions of stress can be made from computer activity
tracking, future applications could eliminate the need to use wearables to monitor stress,
and can rely on monitoring stress from “behavioral sensors” of computer use. I thus address

the following question:

RQ3: To what extent does unobtrusive monitoring of workplace computer use help identify

daily stress?
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4.2 Methods

4.2.1 Recruitment

We recruited employees from the University of California, Irvine in January and February,
2020. An email was sent to all university employees via the all-employees mailing list.
The email contained a flyer (Appendix A) asking for participants for a research study on
workplace stress. A screening survey (Appendix B) was included in the email for interested
subjects to fill out. The study was also advertised in the university’s wellbeing newsletter.
Within five days of sending the email, 663 responses were submitted through the screener
survey. Eligibility criteria included being an office-based employee with access to a work
computer with a Windows operating system and a smartphone with internet access, who self-
reported that computer-based work constitute most or all of their workday. Participants also
had to not be enrolled in another research study about managing stress. Employees taking
cardiac medication, using pacemakers or implantable cardiac defibrillators, those previously
diagnosed with atrial or ventricular arrhythmias, and those with a BMI over 30 were not
eligible, as these factors have the potential to interfere with the HRV-based stress measures
obtained from the wearable device. Due to privacy and security measures, employees from

some departments were excluded from participation in the study.

We enrolled 51 eligible employees. Employees included junior and senior personnel in aca-
demic and non-academic departments such as human resources, information technology,
finance, administration, student affairs and the housing office. Workplaces included closed
offices as well as open spaces and cubicles. Table 4.1 shows participant demographics and
job information. The majority (76%) of the sample were females, which is higher than the
overall university’s percentage of female staff (64%)!. The sample had a range of reported

overall perceived stress. From the Perceived Stress Scale [52], which measures overall stress,

thttps:/ /www.oir.uci.edu /files/empl /VIAOSNH-all-employees-by-gender.pdf

45



participant scores ranged from 4 to 28, making this sample suitable for assessing diverse
perspectives on stress tracking. Most participants had moderate overall stress (30) and low
stress (19), with one participant reporting high overall perceived stress. The Depression,
Anxiety, and Stress Scale (DASS) [221] showed that 49 participants did not have severe

scores on these measures which could have affected their daily stress experience.

Sex 39 Female, 12 male

Age 22-63, mean 41.49, SD 12.78, median 40

Education Post-Graduate (28), 4-year college (18), Some college (3), 2-year college
(1), high-school (1)

Job title Analyst (13), Administrative staff (11), Director/Manager (13), Special-

ist/Advisor (7), Researcher (4), Software Developer (3)

Typical work hours Start 7am-9am, end 4pm-6pm

PSS low-stress (19), moderate stress (31), high stress (1)

Depression: normal (44), mild (4), moderate (2), severe (1)
DASS Anxiety: normal (32), mild (7), moderate (9), severe (2), extremely severe (1)
Stress: normal (47), mild (2), severe (2)

Table 4.1: Summary information about participants.

4.2.2 Study protocol

At the beginning of the study, I met with each participant at their office to go over study
procedures, answer any questions about the study, have them sign the consent form, hand
over the wearable device (Garmin Vivosmart 3) and install the computer activity logging
application and the smartphone applications. I configured two mobile apps associated with
the wearable device (Garmin Connect and Tesserae Phone Agent [183]) which streamed data
from the wearable device via Bluetooth and uploaded the data to a server. A third app was

used for EMAs [122], sending short questions at specified times (see Chapter 3 for details).

Participants were asked to wear the device during work hours and respond to the daily
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experience sampling prompts for 3 weeks. Participants who did not complete 3 consecutive
weeks of data collection due to holidays or travel extended their participation in the study
to compensate for missed workdays. Participants were told they could explore the wearable
and its app however they like, but they were not given specific instructions on how to use the
device to understand their stress. At the end of the data collection period, the lead researcher
met with participants at their workplace for an exit interview and to uninstall the computer
application and mobile apps. Participants were also asked to complete a battery of surveys
on overall perceived stress, workplace stress and personality. Participants were each given
a $50 Amazon gift card upon completion of all study procedures. The study protocol was
approved by the institutional review board of the University of California-Irvine (UCI) and
software installation was cleared by UCI’s Office of Information Technology and approved

by participants’ respective I'T departments.

4.2.3 Computer activity logging

As described in Chapter 3: Methods, computer activity was logged to collect data on pages
visited and actions performed. An open-source software (Kidlogger for research, SafeJKA
S.R.L.) was customized for computer activity data collection. The software logged times-
tamped window switches and the application name (e.g. Excel, Outlook, Firefox) as well
as domain names of website visited (not the full URL; e.g. facebook.com, google.com) and
inactive (i.e. idle) time. The Kidlogger software was chosen due to the granularity of logs,
the possibility of modifying privacy settings (e.g. temporarily pausing logging, turning off
logging full URLs, storing data locally), the availability of open-source code for research,

and our past experience with the software for a previous research project.

I collaborated with the developers of KidLogger from February 2019 to June 2019 to modify

and test the Kidlogger tool in order to enhance privacy options. Specifically, we have added

47



an option to only capture domain names of visited websites (e.g. google.com) rather than
full URLs (e.g. google.com/searchPhrase). We also disabled other software features such as
tracking keystrokes and logging webpage/document window titles. The logs are stored in an

html format which I then converted to csv for processing and analysis.

For additional privacy and security, I decided to store the data locally on the participant’s
computer during the data collection period, giving them the option to view their logs at any
time. The data was collected from the participants’ computer onto an encrypted USB drive
after the data collection period has concluded. Thus, the computer logs of participants are

never transmitted online and are only stored and processed locally.

4.2.4 Measures

Active computer time

The duration of each computer activity was calculated by subtracting consequent times-
tamps. After reviewing data samples, I removed any activity with duration longer than an
hour as it is likely idle time. It is unlikely that a user will work on a single computer win-
dow for longer than an hour without switching even momentarily. Multiple approaches were
tested for setting the threshold for inactive time. Standard deviation (SD) and mean abso-
lute deviation (MAD) were not suitable approaches given the skewness of the data (excluding
activities longer than 2 MADs away from the mean activity duration would have removed
any activity over 6 minutes). Setting a threshold based on the 99.9th quantile also sets a low
threshold of 19 minutes, which would exclude many valid logs and will affect the calculation
of the total time on the the computer. I therefore set a threshold of 1 hour, which excluded
less than 0.01% of the data. The first and last day of the study for each participant were
removed from the analysis as they have partial data due to software installation/removal.

Days with no time spent on the work computer were also removed as they could be days off
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or outlier days that do not represent a typical workday. Daily and hourly duration of time
spent on the work computer were calculated by summing the durations of user actions and

excluding idle times.

Computer activity type

There were 8,915 unique computer applications and URLs visited. To classify user ac-
tivities, a 2-step approach was followed. First, a keyword search was used to find vari-
ations of common applications and websites. For example, searching ‘facebook’ returned
www.facebook.com, apps.facebook.com and business.facebook.com which were all classi-
fied as social media. Any application/URL with the word ‘mail’ or ‘outlook’ was clas-
sified as email (e.g. mail.google.com, hotmail.com, mailchimp.com, webmail.uci.edu, out-
look.office.com, outlook.exe, outlook.com, outlook.office365.com). Any URL including ‘.edu’
was classified as work-related. Second, the remainder of the top 500 most visited applica-
tions/URLs that were not classified in step 1 were manually classified. Websites related to
news, music, shopping, social media and sports were classified as non-work. Applications and
websites related to documents, spreadsheets, presentations, programming and communica-
tions (e.g. Teams, Zoom, Skype) were classified as productivity applications. This approach
resulted in classifying 2,243 (25%) of all unique applications and URLSs, which covered 94%
of all application/URL visits. The categories of email, productivity and non-work covered,

on average, 81% (SD 10%) of each employees’ computer activity.

Computer work strategies and patterns

To capture email work patterns, we classified daily email checking patterns into batching and
consistent. Workdays with dedicated blocks of time for inbox work were classified as batching

email, while workdays where employees consistently checked their inbox throughout the day
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were classified as consistent email checking. With consistent inbox checking, a uniform
distribution of inbox duration over the day would typically be observed, while batching
would show 2-3 daily peaks of high inbox work duration [176]. We defined days with inbox
work batching as days where 70% or more of the total inbox work duration for that day
occurred in three separate blocks of time or less. Figure 4.1 shows samples from the data

that illustrate the distribution of time spent on email throughout the workday.

The pattern of window switching was measured by counting the number of switches from
one computer activity (i.e. application or URL) to another. A minimum threshold of 2
seconds was set to consider an activity change as a window switch. For example, if an
employee switched from viewing a document to viewing a spreadsheet for 1 second then
switched to view a URL for a minute, this would be counted as 1 switch (from the document
to the URL), as the short switch to the spreadsheet is unlikely to be significant enough to
constitute a cognitive switch (the employee could have clicked on the spreadsheet by mistake,
for example). The 2 seconds threshold is a heuristic based on the 25th percentile of activity

duration.
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Figure 4.1: Samples of workdays where email work was batched or consistent. Green bars
represent the duration on email work and the gray bars represent other computer work.
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Regularity metrics

We used three regularity /variability metrics to measure all-day and hour-by-hour differences
in workload across workdays. To capture variability in overall daily computer work duration,
we used the measure of standard deviation (SD) of all-day computer work duration. To
capture hour-by-hour similarity between workdays, we used the regularity index (RI) and
the flexible regularity index (FRI) [310]. All three measures were computed per person to

capture within-person variability.

The regularity index (RI) measures the difference between the same hours across two different
days. The hourly computer work duration is first rescaled for each participant to [-0.5,0.5].
If the original values of computer work duration across two days are close, the product of
their rescaled values would be positive, and negative if the original values are further apart.

Equation 4.1 defines the regularity between day a and day b:

T

¥(a,b) €S, Rl =Y fla)f(x))/T (4.1)

t—1

For each pair of day a and day b in the participant’s set of all two-day pairs S, the regularity
between day a and day b is the mean of the product of their rescaled values f(x) for each
hour ¢ in all workhours 7. Workhours are hours of the day that had computer activity on
any day during the study. For example, if a participant never worked from 1-4 AM during
the study period, then 1-4 AM are removed from T to avoid over-estimating regularity.
A higher RI score indicates more similar days, hour-by-hour. The average and range (i.e.
difference between the most similar days and the most different) of RI are computed per
person. A higher RI mean indicates a higher regularity, while a higher RI range indicates
lower regularity. A low RI range indicates that each day is approximately equally different
from other days, which could indicate that the days are similar, or that it is typical for a

person’s workdays not to be similar, which indicates higher regularity.
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The flexible regularity index (FRI) also measures hour-by-hour differences between days, but
it allows more flexibility than RI by slightly shifting the hours being compared and evaluating
how many changes are needed to make the two days similar, hour by hour. The FRI is
based on the weighted Levenshtein distance [155], which measures the difference between two
strings by counting the number and type of operations needed (i.e. add, remove, substitute
characters in the string) to transform one string to the other. A lower distance between
two strings indicates more similar strings. Following the approach of [310], we compute FRI
for computer work duration by transforming a day’s hourly data to a string. Each hour is
labeled as ‘a’, ‘b’ or ‘¢’, with ‘a’ indicating that computer work duration in this hour is under
the 25 percentile of all data from this participant, ‘c’ for data over the 75th percentile, and
‘b’ in between. The weights for each operation to calculate the Levenshtein distance are as
follows: 1 for insertion, 1 for removal, 0.5 for substitution if letter are adjacent (e.g. ‘a’ and
‘b’), and 1.5 for substitution if letter are not adjacent (i.e. ‘a’ and ‘c’). We compute the
FRI for each pair of workdays per participant, then calculate the average and range of FRI.
Both FRI average and range indicate variability (i.e. the higher these measures, the higher

the variability of hour-by-hour computer work duration across workdays).

4.2.5 Analysis

We investigated the relationship between daily computer interactions and stress through a
generalized linear mixed model with employees as random effects. In the first model, the
dependent variable was the duration of HRV-based stress during workhours (hours with
computer activity). Hours with less than 20 minutes of valid HRV data were excluded
from the daily stress duration calculation and days with less than 2 hours of valid HRV
data were excluded to avoid overestimating stress duration percentage of the workday. A
Poisson distribution was used to represent stress minutes as events within the observation

period (i.e. valid HRV minutes as an offset in the model). Adding an offset in the model
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accounts for the fact that the higher the observation period (i.e. more valid HRV minutes
captured), the more likely that stress will be observed. The distribution of the dependent
variable (stress duration) was right skewed, as expected in a Poisson distribution. One
participant encountered a technical issue causing data loss for their wearable device data and
was excluded from the analysis. Another participant was excluded as their wearable device
continuously measured abnormally high stress levels and later stopped working, indicating
that the device might have been faulty and the recorded data were inaccurate. In the
second model, the dependent variable was the daily average of self-reported stress from
EMAs. Independent variables were centered (i.e. mean subtracted) and scaled. The variance
inflation factor (VIF) was under 5 for all independent variables, indicating multicollinearity
was not a problem. Independent variables included the duration of computer activity, the
percentage of computer work after-hours to all-day computer time, computer work patterns
and time spent on different computer activities. Employee’s age, sex and education were

included as controls.

To evaluate the model, three models were compared with an ANOVA likelihood ratio test
(Table 4.2). The base model included only the random effects, demographics, and the offset,
and explained 10.9% of the variance in workday HRV-based stress duration. The second
model added to the base model the day of the week, which only increased the marginal R?
to 11%. The final model is the full model with computer-work variables, which resulted in
a marginal R? of 14%. The ANOVA likelihood ratio test showed that the full model is a
better fit and explains more of the variance in HRV-based stress than the other two models

(p <.001).
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4.3 Results

4.3.1 Dalily stress

Employees experienced medium to high stress for 22.11% (SD 17.02%) of the workday (56.63
out of 254.11 minutes with valid HRV data, on average). Self-reported stress through EMAs
indicated an average stress level of 41% (SD 14%). The average participant had 37% (SD
21%) of their submitted EMAs indicating a stress level over 50%), the midpoint of the slider
scale. Participants classified 44% (SD 27%) of their workdays as relaxed, 47% (SD 22%) as

moderately stressful, and 8% (SD 12%) as highly stressful.

The generalized linear mixed model (Table 4.2) showed that computer work factors explain
14% of the variation in daily HRV-based stress. The same factors could only explain 8%
of self-reported stress through EMAs (Table 4.3). The following subsections explain the

significant factors in these models.

4.3.2 Duration of computer work

As shown in Table 4.4, on workdays, the average active time spent on computer work was
4:37 hours (SD 1:12), of which a mean of 14:35 minutes (5%; SD 18:13 minutes; median
08:21) occurred outside of typical work hours (typical work hours were self-reported by
participants). Average computer work duration was not correlated with demographics, self-

reported job stress or overall perceived stress from the one-time surveys.

The generalized linear mixed model (Table 4.2) showed that daily time spent on the work
computer and the percentage of computer work outside of work hours were inversely related
to the duration of physiological stress during work hours (p<.001). The interaction between

the proportion of computer work done outside of typical work hours and work-life imbalance
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Model 1 Model 2 Model 3

Fixed effects Std 5 SE P Std 5 SE P Std 5 SE P
Personal factors
AGE -0.265 0.146 0.069 | -0.263 0.146 0.072 | -0.212 0.156 0.174
Female -0.18 0.336 0.592 | -0.165 0.337 0.623 | -0.199 0.36  0.581
Education -0.207 0.146 0.156 | -0.205 0.146 0.162 | -0.193 0.155 0.214
Day of the week
dayMon -0.133 0.02 0 -0.1 0.021 <.001
dayTue -0.057 0.018 0.001 | -0.066 0.019 <.001
dayWed 0 0.017 0.982 | 0.012 0.017 0.502
dayThu 0.065 0.017 0 0.087 0.018 <.001
Active computer work time
Computer work duration -0.169 0.009 <.001
Non-workhours work -0.065 0.008 <.001
Work-life imbalance -0.031 0.156 0.844
Non-workhours computer work * Work-life imbalance 0.023 0.006 <.001
Computer work strategies and patterns
Batching -0.275 0.016 <.001
Neuroticism -0.197 0.156 0.207
Batching * Neuroticism 0.07 0.014 <.001
Window switching rate 0.011  0.011 0.323
Window switching rate * Neuroticism 0.135 0.011 <.001
Computer activities
Email duration pct of all computer time -0.09 0.013 <.001
Productivity apps pct of all computer time 0.063 0.014 <.001
Non-work apps pct of all computer time -0.062 0.015 <.001
Pseudo-R2 (fixed effects) 0.109 0.11 0.14
Pseudo-R2 (total) 0.977 0.977 0.98

Df AIC BIC logLik deviance  Chisq Chi Df  Pr(>Chisq)
mod1 5 30355 30376 -15172 30345
mod?2 9 30246 30285 -15114 30228 116.65 4 <2.2e-16 ***
mod3 21 29438 29529 -14698 29396 831.67 12 <2.2e-16 ***

The dependent variable is workhours’ HRV-based stress duration.

Friday is the reference category for the variable “day of week”.
Std B is the standardized coefficient.

Table 4.2: Nested model and Likelihood Ratio Test for information worker’s model of daily

HRV-based stress and computer use.
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Fixed effects Std 8 SE P

Personal factors

AGE 0.046 0.021 0.031
Female 0.007 0.049 0.881
Education 0.031 0.02 0.133
Neuroticism 0.014 0.021 0.497
Work-life imbalance -0.007 0.02 0.73
Active computer work time
Computer work duration 0.02 0.011 0.062
Non-workhours work -0.013 0.009 0.148
Non-workhours computer work * Work-life imbalance -0.011 0.009 0.248
Computer work strategies and patterns
Batching 0.026 0.019 0.17
Batching * Neuroticism -0.016 0.018 0.384
Window switching rate 0.026 0.011 0.018
Window switching rate * Neuroticism 0.012 0.01 0.2
Computer activity type
Email duration pct of all computer time 0.026 0.015 0.078
Productivity apps pct of all computer time 0.014 0.015 0.365
Non-work apps pct of all computer time 0.005 0.016 0.764
Day of the week
Monday 0.018 0.025 0.464
Tuesday 0.015 0.022 0.493
Wednesday 0.045 0.022 0.042
Thursday 0.026 0.022 0.228

Observations: 582, Groups: 50
Pseudo-R2 (fixed effects) = 0.08
Pseudo-R2 (total) = 0.43

The dependent variable is the average self-reported stress from EMAs.
Friday is the reference category for the variable “day of week”.

Std S is the standardized coefficient.

Table 4.3: Generalized linear mixed model for information worker’s daily self-reported stress
and computer use.
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Measure Mean SD Median Range

Computer activity duration (hrs:mins) 4:37 1:12 4:43 2:07-7:00
Outside workhours computer work (mins:secs) 14:35  18:13  08:21 0-103:21
Outside workhours computer work (%) 5.72 7.33 2.96 0-36.74
Batching email work (% of workdays) 39.02 2346 40 0-1

Window switches 389.62 170.43 345.17 126.70-895.06
Window Switching Rate (per min of computer use) 1.39 0.43 1.22 0.84-2.65
Time on email (mins:secs) 88:02  40:30  82:40 17:44-189:17
Email % of all computer time 32.78 12.66  33.28 5.2-62.21
Time on productivity applications (mins:secs) 114:43 56:46  100:25 36:08-251:05
Productivity % of computer time 39.66  14.05  38.94 13.86-74.66
Time on non-work applications (mins:secs) 22:28  30:41  11:20 00:27-165:34
Non-work % of computer time 8.17 11.13  3.92 15-47.47

Table 4.4: Descriptive statistics of daily averages of computer use measures. N=51.

was significant (p<.001). Specifically, working outside of typical work hours was associated
with more stress for employees who indicated problems with work-life balance (Figure 4.2).
It is worth noting that working outside of typical work hours was not common in our sample,

as shown in Table 4.4.

In comparison, the duration of computer work and work outside of workhours were not

significant in the model of daily self-reported stress.

4.3.3 Computer work strategies and patterns

Email batching

The average employee batched their email on 39% (SD 23%, range 0-100%) of their workdays.
On average, 68% of daily email work was done in 3 blocks of time or less. To investigate
whether following a batching strategy for email work was associated with daily stress, we
included batching in the generalized linear mixed model predicting daily stress. An interac-

tion term of batching and neuroticism was also added based on our finding from a previous
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Figure 4.2: Interaction between non-workhours computer work duration and work-life bal-
ance on HRV-stress.

study in a lab setting [8]. The results in Table 4.2 show a significant main effect of batching
and the batching x neuroticism interaction. Batching email was associated with less daily
stress. Neuroticism, contrary to expectations, did not have an effect on daily stress, although
it was associated with self-reported overall life stress (PSS) in a separate analysis (r=.63,
p<.001). Confirming our previous findings from a lab study [8], employees who score high in
the neuroticism trait are more stressed when they batch their email work than those low in

neuroticism (Figure 4.3). Batching email work was not associated with self-reported stress.

Window switching

Employees switched computer windows every 43.73 seconds, on average (SD 13). Window
switching was not associated with HRV-based stress (Table 4.2), but was associated with
perceived stress (Table 4.3). A previous study found that neuroticism was associated with
shorter online focus duration [175] so we included an interaction term of neuroticism and

window switching rate (the inverse of focus duration) in the generalized linear mixed model.
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Figure 4.3: Interaction between batching and neuroticism on HRV-stress.

The interaction effect was significant. The relationship between window switching rate and
daily HRV-based stress was moderated by the personality trait of neuroticism: window
switching was associated with more physiological stress for employees with higher neuroticism

than employees with lower neuroticism (Figure 4.4).

4.3.4 Computer activity types

Employees spent an average of 1:28 hours on email (SD 40 mins) and the average email
duration as a percentage of computer work duration was 33% (SD 13%). The average
time spent on productivity applications was 01:55 hours (SD 56:46 mins). For non-work
applications, the average time spent was 22:28 minutes (SD 30:41). Productivity and non-
work applications constituted 40% (SD 14%) and 8% (SD 11%) of all-day computer use

duration at work, respectively.

The generalized linear mixed model (Table 4.2) showed that employees who spent more of

their computer time on email were less stressed than those who spent less time on email. Time
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Figure 4.4: Interaction between window switching rate and neuroticism on HRV-stress.

on productivity applications (e.g. word processing, spreadsheets) was positively associated
with daily stress, while time on non-work applications (e.g. social media, news, music, sports,
shopping) was negatively associated with daily stress (Table 4.2). These factors were not

associated with self-reported stress.

4.3.5 Variability of computer work duration

In a separate analysis, we investigated whether the within-person variability of computer
work duration is associated with different measures of stress. To capture variability of
daily workload, we excluded time spent on non-work related computer activities. Bivariate
correlations between the within-person variability measures and measures of HRV-based
stress, perceived stress, and job stress are shown in Table 4.5. We corrected for multiple

comparison using the Benjamini-Hochberg method.

All three within-person variability measures (SD, RI, FRI) were not associated with the

average HRV-based stress per person or perceived overall life stress (PSS). For self-reported
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work stress, the standard deviation of daily computer work duration was associated with
perceived job demands (r=.53, corrected p=.003), but not control or support from the Job
Content Questionnaire. Similarly, for the effort-reward imbalance measure, the standard
deviation of daily computer work duration was associated with reported effort (r =.45,
corrected p=.016) and overcommitment (r =.47, corrected p=.011), but was not associated
with reward. The standard deviation of daily computer work duration was also positively
associated with work-life balance problems (r =.42, corrected p=.033). The hourly variability

measures (RI and FRI) were not associated with reported job stress measures.

The variability measures were not associated with daily self-reported stress (last 5 minutes
or overall day). However, FRI measures were positively associated with arousal (Table 4.5).
The higher the variability of workdays in terms of computer work duration, the higher the
arousal (ie. energy). High arousal includes a range of moods and emotions from stress and
frustration to excitement and enthusiasm. On the other hand, the more similar the days the

lower the arousal. Low arousal includes a range of moods and emotions from bored to calm.

4.4 Discussion

4.4.1 What computer use factors are associated with daily stress
at the workplace? How do individual differences affect those

factors?

With computer activity logging, we aimed to create computer use measures that can be
unobtrusively tracked and their computation easily automated. We aimed for these measures
to be grounded in the literature on human-computer interaction, occupational stress, and

ergonomics. A frequently used measure of computer use at the workplace is the duration
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SD RI mean RI range FRI mean FRI range
r p r p r p r p r p

HRV-stress

stress duration 028 847 -.030 .840 -.082 .582 .102 492 .025  .863
Survey: PSS

overall perceived life stress .165  .261 .024 .868 -.022 .879 .095 .506 .006  .966
EMA

last 5 min stress 137 358 -.138 338 -.119 .409 .011 937 -.021 .882

overall day stress -.064 .668 A37 0 342 006 965 -.057  .692 -.039 .786

arousal 159 287 262 .066 .333 .018 .491 <.001* 538  <.001*

valence .001  .992 146 311 167 245 244 .088 325 .021
Job stress survey: ERI

effort 451 .001* -191 180 -.042 .769 -.018 .901 .033  .819

reward -.074 618 229 106 -.150 .294 .074  .607 .044 757

overcommitment 472 <.001%  -.070 .627 -.023 .870 .264 .062 120 401
Job stress survey: JCQ

demands 539 <.001* 002 .990 .027 .852 .223  .117 189 184

control 196 181 161 259 283 .044 0.177 214 203 152

support -.093 531 154 280 -.014 924 -.010 .946 -.026 .858
Survey: WLB

Work-life imbalance 418  .003* -.025 .860 .038 .792 .103 474 .085  .552

* Significant after multiple comparison correction
HRV: heart-Rate variability, PSS: perceived stress scale, EMA: ecological momentary assessments
ERI: effort-reward imbalance, JCQ: job content questionnaire, WLB: work-life imbalance

Table 4.5: Bivariate correlations of stress measures (HRV-based, PSS, job stress surveys)

and within-person regularity measures (SD, RI mean, RI range, FRI mean, FRI range).
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of time spent actively working on the computer. We surprisingly found that computer
work duration was inversely related to daily stress duration. A plausible reason could be
that employees in our dataset might experience more stress during non-computer based
activities, such as meetings, presentations and conferences. It is possible that days with
longer computer time are days that are more quiet, and employees get to finish their work

tasks without much external interruptions.

Another surprising finding is that more time spent working outside of work hours (propor-
tional to total computer work time) was associated with less stress, contradicting research
that showed associations between after-hours work connectivity and several health and well-
being problems such as mental health and cardiovascular disorders [274], and lack of sleep
[44]. Several pointers from previous research could explain this contradiction. First, peo-
ple with higher ambition and job involvement have been reported to work more outside of
work hours [35]. A study of university faculty members reported that overtime work was
experienced as less effortful and less stressful than regular workhours, and that workers re-
ported positive work characteristics [27]. The observed lower stress during work hours in our
sample could reflect the positive job perceptions. Second, previous research has highlighted
several factors that moderate the relationship between after-hours work and the negative
outcome, showing that the relationship is not direct. For example, perceived job autonomy,
control and rewards moderate the relationship between working after hours and the nega-
tive outcomes [26, 253, 296]. Previous work has also suggested that the quality of overtime
work and the work environment (i.e. rewards for overtime work and whether overtime work
is executed voluntarily) dictate the relationship between overtime and fatigue [26]. These
moderating factors could explain discrepant results in the literature. Third, previous re-
search has focused on perceptions of overall long-term associations between outside-hours
work and health outcomes, while our study investigated the daily duration of after-hours
work and the association with day-to-day stress. Although limited past research has found

associations between day-to-day short-term increase in workload (i.e. excessive overtime)
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and increased adrenaline excretion and elevated heart rate [80, 163], the long-term effects
could be cumulative and therefore more pronounced [296, 229], especially given the relatively
low average of overtime work in our sample. Lastly, the average duration of work outside
of work hours in our study was low. A study found that moderate overtime (less than an
hour a day) is common among employees and is not associated with fatigue, although it was
associated with higher perceived job demands and surprisingly also associated with higher
motivation [26]. We extend these previous findings by showing that days with moderate

work outside of work hours are associated with less daily physiological stress.

The interaction between non-workhours computer work and work-life imbalance further clar-
ifies the association with stress. For employees with high work-life balance, their stress de-
creased on days with more computer time outside work hours, while for people with low
work-life balance (i.e. reporting not having time to socialize/relax with family/friends, tak-
ing work home, worrying about the effect of work stress on health, relationship issues with
partner due to work), they experienced more stress on days when they worked more outside
of work hours. Since our computer activity logging only tracked employees’ desktop com-
puters at their offices, this measure reflects time spent in the office outside of work hours.
Those with work-life balance problems could view days when they have to work outside
of their hours as adding more demands on their already highly demanding jobs, or days
that could exacerbate already existing work-related issues with their partners or families.
Research suggested that employees who might feel compelled by external circumstances to
work for long hours tend to report problems with work-life balance [95] and thus might also
experience more stress than those who are internally driven to work long hours and do not
report worklife issues. On the other hand, those who work long hours and report a high
work-life balance might be internally driven [95], which could also explain our finding that
their stress decreases. Employees who reported that their job does not adversely affect their
work-life balance might find occasionally working outside of work hours to be a quiet time

to finish work tasks without external interruptions, and therefore experience less stress. Fur-
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ther research is needed to support these propositions. This finding builds on previous work
that stressed the importance of considering moderating variables in the association between

overtime work and its health outcomes [26, 253].

We found that on most days, employees continually check their emails throughout the day
(rather than ‘batch’ their email work). On days when employees batched their email work,
they experienced less stress. Previous work has indicated that email stress, or the feeling of
email overload, is a result of continual interruptions to ongoing tasks and focus disruption
that emails create [177, 271, 121|. Therefore, checking email a limited number of times
throughout the day (ie batching) could decrease feelings of email overload and consequently
stress, as observed in our study. Other studies suggest that batching might increase stress
as email will pile up and create a sense of email overload [64]. Studies have therefore found
mixed results for the association between batching and stress. Our previous work in a lab
setting has suggested that the interaction between batching and neuroticism explains the past
mixed results [8], which was confirmed in our current in-situ study. Stress increases with
neuroticism on days when when email is batched, but not on days when email is continually
checked. A possible explanation is that handling email in a batch requires a more sustained
focus, which increases stress [97] and this might be more evident in neurotics as they are
more susceptible to stress in general [186]. Also, seeing a pile of email all at once might
create a sense of overload for people susceptible to stress. Future research can examine
further factors moderating the the association between batching and stress. For example,
as the volume of emails and the perceived importance of email to an employees’ job affects

their batching behavior [64], they could consequently affect stress.

The window switching rate in our study was similar to that reported in previous studies of
focus duration for information workers [175], which also found that focus duration is shorter
for employees who scored high on neuroticism. We extended those previous findings to show

that for neurotics, increased window switching increases stress. High-interruption computer
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work conditions create a sense of more mental effort [142], which could increase stress for some
employees, or create a sense of more positive valence and feelings of dominance for others
[142] who might feel more connected and accomplished when multitasking. Our findings,
along with previous findings on the effects of interruptions, suggest that dispositional factors

dictate whether and how computer-use factors relate to stress.

Our analysis of computer activity types showed that more time on email was associated with
less stress. This finding contradicts previous studies that linked email to stress [177, 176]. In
a controlled experiment comparing completing tasks with and without email interruptions,
researchers found that the email condition yielded reports of more mental effort, but also
more positive valence and dominance, and no difference in perceived stress [142]. The authors
explained that emails might have caused a feeling of being connected and glad to help.
Another study based on self-reports reported that job autonomy, the perceived importance
of email for work, email volume and spam volume increased feelings of email overload [64]. A
study that logged work computer use and collected self-reports about mood and engagement
reported that email can be rote or focused work, and that rote work was associated with
feeling happy while focused work can involve stress [174]. Further research is needed to
investigate email work and stress, taking into consideration job-related and dispositional

factors, as well as email content, importance and urgency as potential moderating factors.

We found that increased time on productivity applications increased stress duration, which
is expected given that these applications reflect job demands and require focus. On the
other hand, time on non-work applications was associated with less stress. It is unclear
whether the lower stress associated with non-work applications is due to employees taking
breaks, which reduces their stress, or whether employees who spend more time on non-work
applications have overall lower job demands which could be associated with lower overall

stress.

Finally, daily self-reported stress was not associated with any computer work factors except
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window switching. Higher window switching rate was associated with a higher self-reported
daily stress score. It is unclear why only window switching is associated with perceived stress,
especially given the mixed results in previous work on the attentional and emotional states
associated with window switching. In studies of information workers, researchers found that
higher window switching is associated with boredom [174] and feelings of lower productivity
[173]. Boredom is a low arousal state [246], which could explain why physiological stress was
not directly associated with window switching. It is possible that feelings of low productivity
at work might make employees feel stressed about completing work tasks, but this kind of
perceived stress does not manifest physiologically. In Chapter 8, I discuss the distinction

between perceived and physiological stress in more depth.

4.4.2 How does variability in computer use patterns affect stress

at the workplace?

Our study introduced variability as a novel computer-use factor that could relate to stress
at the workplace. Findings revealed interesting associations between variability in computer
work duration and different measures of stress. Computer work duration variability was not
associated with daily stress from self-reports or wearables. This can be explained by the
biopsychosocial model of challenge and threat (BPS) by Blascovich and Tomaka [32], which
states that the ratio between resources and demands dictates a person’s stress experience.
There are two sides of the scale that make up stress: it takes both the perception of high
demands and the perception of low resources to experience stress. When the ratio is close
to balance, a situation might be perceived as a challenge, but when demands exceedingly
outweight resources, a situation is perceived as a threat and causes stress [32]. We found
that day-to-day variability in computer work patterns affect only one side of the scale: the
perception of higher demands, effort, overcommitment and arousal. These factors alone do

not necessarily lead to stress. The perception of high work demands is associated with stress
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when it is paired with the perception of low control and support. Work effort and overcom-
mitment are associated with stress when there are also low rewards. Arousal is associated
with stress when valence is low. These findings suggest that variability in computer work
is associated with stress for some people (i.e. those who have low job control/support, low
job rewards, low valence). Those with more balanced demands and resources might not
experience stress from variability of computer work patterns because their high job rewards,

support and control offset the added demands and effort.

To our knowledge, this work is the first to compute variability measures of logged workplace
computer use data, and the first to associate these variability measures with stress. These
variability measures were computed per participant rather than per day like the previous
analysis with the mixed model. HRV-based stress was averaged per participant for the du-
ration of the study so the patterns of daily stress might have been obscured. Given our
results overall, HRV-based stress might better reflect daily stressors (e.g. time on produc-
tivity apps, working outside workhours) while self-reports of overall job stress better reflect

overall job-related patterns (e.g. how regular the workload is).

4.4.3 To what extent does unobtrusive monitoring of workplace

computer use help identify stress levels?

One goal of tracking workplace activities is to build predictive models that can accurately
identify when an employee is stressed. Building such models based on tracked computer
usage eliminates the need for the employees to continuously wear heart-rate sensors for stress
tracking, as these wearables would only be needed for building the model, and occasionally
to update it. In our study, the fixed effects based on computer usage and personal factors
explained 14% of the variance of daily stress, which is considerable given the myriad factors

that affect daily stress. However, this is not enough to build systems that predict or identify
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daily stress. A higher prediction power will be needed to accurately capture employees’
stress level from computer usage alone, and to utilize those predictions for stress management
interventions and other applications. The high conditional R? (fixed+random effects) tells us
that most of the unexplained variation is between individual employees rather than between
observations within an employee’s data. Therefore, we would not expect to significantly
improve our model by collecting more data on measures that mainly vary within individuals,
but instead should find measures that mainly vary between individuals. This stresses the
importance of individual differences and the need for individual models of stress rather than

generalizing models.

Previous studies vary greatly in their attempts to build models that unobtrusively infer
stress at the workplace. In a controlled laboratory experiment, Hernandez et al found that
keyboard pressure and mouse contact could detect stressful computer tasks for over 70%
of participants [108]. Another study that tracked 15 researchers for 5 days in their real
work environment found that head motions (indirectly capturing head gestures and facial
expressions) yielded a predictive value of 59% for predicting daily self-reported stress (2
classes, high/low stress) [109]. Features extracted from sensors tracking contextual signals
such as atmospheric pressure, humidity, light and temperature yielded predictive values
between 53% and 58% [109]. Using smartphone features (audio from microphone recordings,
physical activity and location from motion sensors and social interaction features from phone
calls, calendar, address book and battery), Muaremi et al . reported an accuracy of 55 %
for predicting three levels of daily retrospective self-reported stress (low, moderate, and high
perceived stress) [200]. It is important to note that these studies used machine learning
models with 2 or 3 class classifications of stress, which have a different interpretation from
our linear mixed-effects model. While the stress classification model prediction power reflects
the accuracy of the model (i.e. what percentage of the cases were correctly classified), our
model shows what percentage of the variance in stress is explained by the independent

variables and captures more fine-grained day-to-day variation of stress than 2 or 3 levels of
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stress. As machine learning approaches in precious work are mostly focused on obtaining
the highest model performance, these studies do not report on the direction and strength of
the association between the features (i.e. independent variables) of the model and stress. To
our knowledge, this is the first study to investigate and quantify this range of features for
computer work and how they relate to daily stress measured objectively and continuously

with sensors.

Regardless of the overall prediction power, capturing daily activities alongside physiological
data can provide insightful information for a wide variety of applications, such as visual-
izations to augment memory, reflect on daily activities and feelings, and share emotionally
significant moments with others [103, 139]. Research has shown that users benefited from
visualizations pairing their physiological stress and work activities that were tracked contin-

uously throughout the workday [103, 139].

Daily EMAs did not correlate with computer use factors in the daily analysis nor in the overall
aggregate analysis per participant. The extent to which EMAs can accurately capture daily
stress associated with specific uncontrolled events needs further validation. I return to this

point in more depth in Chapter 8.

4.4.4 Limitations

As our main goal is to investigate computer use factors that can be unobtrusively and
automatically tracked, we did not incorporate other data sources that might provide further
work context, such as calendars. Calendar data requires careful annotation and curation,
which does not align with our approach. There would be large differences in how employees
label their calendar events, and capturing that information might also introduce privacy

issues. Future work can investigate ways to capture the context of computer work.
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Our sample is not balanced in terms of the number of male and female participants. The
results could be biased towards females, and employees with higher education degrees. We
believe our results generalize to other information work contexts, but generalizing to other

work contexts requires careful consideration.

The classification of work and non-work computer activity is not 100% accurate. Some
participants said they use social media, shopping or food delivery websites for work purposes.
On the other hand, productivity applications could be sometimes used for non-work purposes.
We believe our classification reflects the overall most common purposes of the classified
computer activities, but future individual-level analyses should account the differences in

what is considered work and non-work computer activity as per the individual’s job role.

4.5 Conclusion

Computer interactions at the workplace can reveal information about an employee’s stress.
Unlike previous efforts that relied on self-reported measures of computer use and stress, we
used unobtrusive and continuous measures that can be automated and incorporated in real-
time applications such as visualizations and interventions. The duration of computer work
within and outside work hours, computer work strategies and patterns, and time spent on
different computer activity types explained 14% of the variance in daily stress. Explaining
14% of the variance of a highly complex affective state is meaningful, and motivate fur-
ther investigations to get a more complete picture of workplace stress. Our findings, along
with previous findings on the effects of digital interruptions, suggest that dispositional and
job-related factors dictate whether and how computer-use factors relate to stress. Organiza-
tional interventions to reduce stress should consider how policies around working outside of
work hours, email checking norms, and non-work computer activities could affect different

employees differently.
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Chapter 5

Information Workers’ Perspectives on

Technology-Supported Stress Tracking

5.1 Introduction

Previous chapters have discussed two methods for in-situ stress measurement: wearable
sensors and EMAs. These methods vary in the physical, time, and emotional demands
they place on the employees tracking their stress. Although some studies in HCI have de-
ployed stress tracking in real workplace settings using varying methods [177, 176], it is not
well-understood how employees perceive the benefits and burdens that the varied options
for tracking workplace stress present. Contrasting employee perspectives on different tech-
nologies for stress tracking can help inform design recommendations for stress-monitoring
systems which employees can use to effectively monitor their stress without disrupting their
workflow or introducing more stress. Given the increasing prevalence of personal tracking
in workplace wellness programs [48, 238, 277], designing with employee perspectives in mind

can result in more successful deployments of these systems.
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From interview data of participants in the workplace stress study detailed in Chapters 3
and 4, we compared employee perspectives on automated (i.e. passive) and manual (i.e.
participatory) stress tracking in the workplace. We link those perspectives with discussions
of automated and manual self-tracking in the personal informatics literature to provide
insights for the research and design of future workplace stress tracking systems. Specifically,

we address the following research questions:

e What benefits and challenges do employees perceive overall with technology-supported

stress tracking in the workplace?

e How do employees’ perceived benefits and challenges differ between automatic (e.g.,

wearable sensor) and manual (e.g., EMA) stress tracking?

e What are employees’ preferences for how technology can support workplace stress

monitoring, and what design guidelines can be produced from these preferences?

Our work contributes the following: (1) An understanding of the different perceived benefits
of wearables and EMAs. Almost half of the participants reported not engaging with their
wearable’s data enough to understand their stress. Participants reported brief interactions
with the wearable when they were stressed to validate how they felt, while their interaction
with the EMAs encouraged them to reflect more on how they were feeling; (2) A description
of the distinct challenges that affect data usefulness and data reliability for each tracking
modality. Stress data from wearables were more difficult for participants to interpret, but
EMASs created challenges quantifying and articulating subjective stress. Both modalities
were subject to missing data, but missing data for EMAs resulted in data which might not
accurately reflect a person’s overall stress because EMA prompts were not answered during
high stress periods; (3) Evidence that employees have varying and sometimes conflicting
preferences around how technology can support stress tracking at the workplace, and that

organizational and individual goals for stress tracking can be challenging to align; (4) ac-
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tionable design guidelines. Building on these contributions, we present recommendations for
how designs can account for this variability and meet organizational and individual stress

tracking goals.

5.2 Methods

We aimed to understand the benefits, challenges, and preferences information workers have
when stress tracking is implemented in their natural workplace. Employees’ perspectives
were obtained through interviews after the 3-week workplace stress tracking intervention

using both automated and manual tracking methods, as described in Chapters 3 and 4.

In a semi-structured interview at the end of the study, participants were asked open-ended
questions about their experience monitoring their stress during the study, what they liked
and disliked about stress tracking, and any challenges they encountered. To further elaborate
on potential benefits and challenges of stress tracking, participants were asked whether they
viewed their stress data on the wearable or its app, and if they did, how viewing their
stress levels helped or did not help them understand and/or manage their stress or stressors.
Questions also included whether they feel that they changed their behavior knowing that
their stress and computer activity are being tracked. They were also asked to describe what
they would change about how technology could support stress tracking at the workplace.
Interviews typically lasted for 15-25 minutes. Our IRB approval did not cover audio-recording
the interviews, so the interviewer took detailed notes on participant responses and recreated
transcripts immediately following the interview. Note-taking was done as the participant
was speaking, and verbatim quotes were noted, excluding vocalized pauses such as “hmm”
or “uhh”. Notes were not taken when participants were discussing matters unrelated to the
questions (e.g. talking about the gift card compensation or their overall job role). When

transcripts were reviewed following the interview, typos were fixed and missing words (e.g.
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the, and) were filled.

We thematically analyzed our interview data according to Braun and Clarke [38]. Two
researchers read the interview notes, generating initial codes in four categories: perceived
benefits, perceived challenges, perceived behavior change, and suggestions for stress tracking
at the workplace. After refining themes, the final codebook consisted of 26 codes, includ-
ing codes for missing data, interpretation challenges, reflection, validation, and technical
issues. One researcher coded all interviews, with another researcher reviewing the coding
and discussing final themes. We did not calculate inter-rater reliability because interviews
were semi-structured, and people frequently apply the same code to different parts of a

conversation [15, 187].

Participants were divided in two groups based on their objectively measured daily stress
(HRV-based stress). Perspectives of participants in the top quartile of daily stress duration
(stress duration >= 30% of the workday) were compared to perspectives of participants in
the bottom quartile (stress duration <= 7.9% of the workday). The same themes emerged

in both groups in similar frequencies.

We report counts of participants who expressed certain perspectives under each theme.
However, since the interviews were semi-structured with open-ended questions, participants
were not explicitly prompted about each perspective, and were not always prompted to
elaborate on their perspectives beyond what they expressed. Therefore, our reported counts
of participants who expressed a perspective might under-represent the actual number of

participants who agreed with it.

76



5.3 Results

Our findings revealed distinct benefits and challenges employees expressed about different
methods of stress tracking. Participants also expressed different preferences for how tech-

nology can support stress tracking at the workplace.

5.3.1 Perceived benefits

Overall: Unobtrusiveness and awareness

When asked about their experience in the study, most participants (n=34) indicated that
their experience was smooth and that the study was unobtrusive and did not interfere with
their work. As one participant indicated “it is in the background you forget it is running you
don’t notice it.” (P52) and another commented “it was very non-intrusive. Not really a lot
to do.” (P48). Besides unobtrusiveness, the familiarity of activity trackers was appreciated,
especially for those who already use other activity trackers, as P24 indicated “I do wear a
smartwatch usually, so I'm used to having that.” P42 expressed a similar sentiment that
it is not out of the ordinary for them to wear a smartwatch. For the EMAs, participants

appreciated that it was very short and did not take much time away from their work.

As an overall benefit, two participants said that they tried to stress less, “at the beginning
I was aware. I was checking how my mood was more, I would calm myself down at emails
that irritate me. After a while I forgot it was there and I was not thinking about whether
I was stressed.” (P48) and “I am a worry kind. I tried to be more relaxed. Not that I
intentionally did it but the watch was a reminder to not stress” (P33) while others said they
did not change their stress-related behaviors (see subsection 5.3.2 Overall: Minimal impact

on stress management practices).
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Wearables: Validation of perceived stress

Participants who viewed their stress data on the wearable device tended to do so to seek
validation of how stressed they felt. Participants reported checking to see if the device
reflected that they are stressed. P1 noted, “when I had some really stressful moments, I
looked at the watch to see what it said and it was accurate! And I thought yep! It detected
when I was stressed.” Others tried to confirm their perceptions, such as P32, “sometimes I
feel stressed then I check to see it if shows” and P25 “The device was nice to use because it

had stress and I was able to look at it and see and it was reflecting my stress”.

Participants rarely brought up instances where their measured stress did not align with how
they felt. Only P38 indicated that they felt the recorded stress did not align with what they
felt “T don’t think it showed that I am stressed, sometimes [when| something very stressful
[happens], I check the watch and it showed no stress”, which also indicates that participants
seek validation of their perceived stress by checking the wearable device, even if the recorded
score does not always align with their perception. Other participants seemed to trust the
stress level on the device over their own evaluation of their stress level. P42 trusted the
device over their own judgments, saying “I think for me it confirmed. I wouldn’t know if I
am stressed or not so checking to see confirmed it showed me I am stressed.” P50 learned,

“I realized I’'m not as relaxed as I thought I am.”

EMASs: Reflection on stress and stressors

Participants often felt they benefited from reflecting on their stress through the EMAs,
reporting that the short surveys prompted them to think about their stress level in order to
report it in the survey. For example, one participant said “I found myself having to check
in with the survey. It was good to be able to do that [because it helped me] evaluate and

force me to think about it and reflect.” (P25), another said “[it was] great to reflect upon
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how stressed I was and having those check in points about how stressed I am.” (P42). The
check-in points often caused some employees to realize that they were stressed. For example,
P48 indicated “It did try to make me think whether I am stressed or not especially when
doing the survey. I appreciate that it let me look into what I was doing and how I was
feeling.” P29 particularly appreciated how the EMAs required them to try to measure their
stress level, saying “I liked the survey it was self-reflection for me because I never quantify
how stressed I was after stressful moments.” P12 felt they benefitted more from the survey
than the wearable because it encouraged reflection, describing “I most benefited from the
survey because [...] I thought critically [about] what had been impacting me in an unusual

way in a given time and I had to articulate it and write it in the survey so that was helpful”.

To further investigate how participants reflected on their stress in the EMAs, we analyzed
the free-text responses to evaluate whether participants provided sufficient information about
potential stressors in their day to contextualize their self-reported stress score. The average
participant left the free text empty in 32% (SD 33%) of the surveys they took, providing no
contextual information about their reported stress level. The non-empty responses often did
not explain their stress level in-depth, as sometimes participants left comments like “none”,
“nothing atypical” or a single character like a dot. The most frequent comments in the free
text question were variants of “yes”, “typical” and “none” (46%). The average participant’s
response length was 5.13 words (SD 2.98). One-word and two-word responses other than
variants of “none” and “typical day” included activities such as “meeting”, “driving”, “bud-
geting”, “writing”, “student interviews”, “team workshop”, “engagement review”, “doing
webinar” and “conference working”. Others highlighted feelings such as “stress”, “frustrat-
ing”, “headache”, “good” and “busy”, while some described events such as “big event”,
“deadline day”, “extra activity”. Others described the overall sentiment of their day as,

J

“good day” or “quiet day.”

We sampled 100 random responses that were over 5 words long, finding that participants
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mostly described events rather than feelings in longer descriptions. Participants reported
daily events such as when they arrived at work, e.g. “Arrived to work later than usual”, non-
work activities during work hours, e.g. “took a 15 minute walk around 117 and “I went out for
lunch today”, planned work activities for the day, e.g. “no meetings in morning so hopefully
will spend most of my time on computer writing” and “Today is a typical recruitment day,
but also have to interview participant for one of the studies I coordinate.”, describing work
activities such as attending a meeting, e.g. “Had two video conference trading this morning
and afternoon” and “Team meeting and meeting with school leadership”, or being busier
than usual, e.g. “Back to back day no breaks” and “Covering extra work duties for vacant
position”. A few responses described feelings, such as “I typically feel a little more relaxed
after the two conference calls this morning. My stress level decreases and am also less
anxious.”, “I'm at staff social having a good time”, “A lot of work to do in the office but feel

Y

more relaxed today” and “Stressed and tired from working late last night and having a lot
of work to do today”. Two responses also indicated coping strategies “Had to take a mental
break in afternoon and bought some chocolate” and “eating a lot of sugar, deadlines!!”.
Some also described non-work events that could affect stress at work, e.g. “[a person] was
in a car accident and I just found out” and “Yes [typical day] but I have a cold”. Overall,
when describing their day for stress tracking, participants tended to reflect on events and

activities rather than sentiments or feelings. These events can provide context for stress by

identifying potential stressors.

5.3.2 Perceived challenges

Overall: Minimal impact on stress management practices

Despite some participants reporting awareness of their stress as a benefit, almost all partic-

ipants (n=48) said that they did not change their stress or computer use behavior during
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the study period. Most participants felt they were too busy to change their work routine.
P1 said, “It didn’t make me change my routine. My routine stayed the same.” P15 felt that
passively tracking was insufficient to impact their stress management practices, saying “No
[it didn’t change my behavior], because it wasn’t something that was in your face like noti-
fications, It didn’t change anything about my stress.” Participants also described forgetting
that their stress and computer use were being monitored, such as P63 “The first day or two
I felt conscious of it and then no I was not thinking about it.” Other participants said they
were more aware of their activities on the computer as they know they are being logged, but
their normal computer use did not change. For example, P42 said “I was aware of it but
maybe not really changed my behavior [...] soon after I resumed to work as usual” and P59

said “I was more aware but I don’t know if I changed my behavior”.

Wearables: Missing data, lack of engagement and difficulty interpreting stress

levels

For the wearable device, reported challenges included an uncomfortable form factor, remem-
bering to wear the device, and technical challenges. The device was uncomfortable to wear
for some participants (n=6). P48 said “Personally, I don’t like wearing accessories so I had
to get used to wearing it I couldn’t wait to get home and take it off. The way it is positioned
bothered me when typing”. Some participants (n=7) stated that remembering to wear the
device was a challenge. Technical issues, reported by 10 participants, mainly concerned the
frequency of needing to charge the device and connection issues between the phone and

device.

When participants reflected on their experiences of stress tracking, many felt that it helped
them understand or be more aware of their stress and stressors, as indicated in the benefits
section above. However, about half of participants (21) indicated that they did not view

their data enough to say that they understand their stress better. Other participants said it
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helped them “understand but not manage” (P45) their stress.

Participants often struggled to interpret the stress level generated by the wearable device,
which showed as a number between 0 and 100. Some participants stated that although
they were interested or curious to see their stress data, they did not understand what the
numbers meant. For example, P63 stated “I was curious but I couldn’t make of the numbers.
I didn’t know what that meant so I decided I don’t really care” and P28, “I was not sure
what it meant. Just something to look at.” One participant attributed the difficulty of
understanding the automatically-generated stress scores to the lack of comparison against
a threshold, “it was just interesting to see but I didn’t have anything to compare to so it
didn’t help [me to understand my stress|]” (P48), which might indicate that users are more
interested in relative scores rather than absolute scores displayed on the device. Similarly,
another participant said “I don’t know what the values/range is for stress” (P15) even though
they were occasionally interested in viewing their data, which also indicates the need to have

a threshold to compare to.

EMA: Missing data, difficulty articulating stress, and intervention causing stress

On the other hand, challenges specific to EMAs included not paying attention to the phone
while busy or not being able to answer surveys during meetings (n=28). P27 indicated “I
missed some [surveys| because I'm busy or in meetings can’t stop what I'm doing.” P60
indicated that when their day was busy and stressful, they would occasionally miss surveys,
“I missed a few especially if it a stressful or a busy day I miss all of them.” This indicates
EMASs sometimes missed high-stress periods when participants felt they could not stop what
they are doing to take the survey. On average, participants missed a third of the EMA
prompts on weekdays, amounting to 15 (SD 10) missed EMAs out of 45 EMAs over 15

workdays.
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Participants reported not being able to articulate an answer for the free-text question or
being unsure of how to rate their stress on a scale (n=12). P19 said that it was “hard to
describe how I feel on the survey.” For the stress sliding scale, participants commented that
it is “confusing because what does it compare to? How do I select a point on it?” (P52).
Another participant also mentioned that it is hard to pick a point on the scale because they
could not compare it with their other responses and suggested “if there were markers at least
to compare to my previous response” (P12). P12, P20 and P52 indicated that they hesitated
to pick the highest stress point, in order to preserve it for a potential more stressful time.
They were not sure at any point whether the stress they are experiencing is their maximum
stress, half of their maximum stress, or any other proportion corresponding to a point on
the scale. Others commented on the subjectivity of the survey, questioning its rigor for
evaluating stress, as P58 stated “Surveys [should] be less subjective. I am bad at evaluating

my own emotions” and P30 also said “It’s very subjective how you say pleasant or stressful”.

For the free-text question about whether this is a typical day and asking participant to
describe any abnormalities in their day, participants described the question as “confusing”
(P44 and P49), “difficult to answer” (P47), “vague” (P52) and “repetitive” (P55). They
explained that it is hard to describe their day. Sometimes it is typical for their days not
to be typical. Several tasks and events are typical of their job but can be stressful. P28
said “I had trouble articulating for the last question” and P44 also said “was it typical
day? I would say yes or no but don’t know how to describe” which is what a few other
participants also expressed. This indicates that for open ended questions, participants might
be unsure of what to log and in how much detail. Completing EMAs also created stress for
some participants, such as for P32: “[the] survey adds a bit of stress”. One participant
(P35) indicated that “having to have my phone near me for the survey made it a little bit
harder” because they manage their stress by keeping their phone away during work and only
checking it during breaks. It is possible that the additional stress from EMAs was caused by

EMAs sending notifications in inappropriate busy times, as described earlier, or that EMAs
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reminded participants of their stress as they reflected on how they felt to report it in the

survey.

5.3.3 Conflicting preferences for stress-tracking at the workplace

When asked about what they would change about stress tracking in the workplace, almost
a third of participants (n=15/50) said more workplace factors should be tracked to provide
context as potential stressors, such as external interruptions from colleagues and meetings.
Participants expressed interest in seeing how those factors relate to their stress. Five partici-
pants suggested adding actionable insights to stress tracking, and expressed opinions on how
their organizations should be involved. For example, P12 suggested “the organization should
have clear outcomes that benefit the individual like workshops. [For example,| you can go
for a walk in these windows in a day. Clear actionable recommendations and follow through.
Have the HR identify when you had a spike either live or in next day report”. P13 also
suggested providing advice for stress management, but added that “it should be somewhat
self-directed but give tips”. Another suggestion was adding community support: “have the
opportunity for people participating to meet if they want to talk about how it is going and
what you're learning. It takes commitment so it is good to see others for accountability”

(P13).

For EMAs, one participant suggested adding the option to manually log stress scores in
the daily surveys in addition to logging at pre-scheduled times. Another participant sug-
gested adding multiple alarms as reminders to take the daily surveys, while others suggested
fewer daily prompts and said that “surveys multiple times a day forever could be annoying”
(P024). Because it was common to miss phone EMAs, some participants (n=>5) suggested
computer-based EMAs such as having them sent by email. For automatic stress tracking,

three participants preferred stress tracking without the need for a wearable device.
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Privacy

Participants had conflicting views about privacy. A few participants explained that they
are not generally concerned about privacy due to tracking their stress in the context of
an IRB-approved research study, while also stating that an organizational implementation
of stress tracking would be considered invasive. For example, P13 said “I know it is for
research not like my performance review” and P30 said “I would be uncomfortable with my
employer doing something like this, I would feel it is too intrusive”. During the study, some
participants felt “a little bit weird to know everything was being tracked” (P32), with P43

adding, “sometimes I feel like I was being watched”.

While most participants did not comment on privacy concerns regarding stress tracking with
EMAs or wearable sensors, some raised concerns about computer activity tracking as a part
of stress tracking. Several participants said that at the beginning of the study, they tried to
limit their non-work web browsing to avoid that being logged. However, they soon returned
to their normal routine. For example, P38 said “at the beginning I was aware and then I
forgot it was there” and P48 said “At the beginning, [...] I probably did less non work stuff
then I realized those are break times for me to get away from doing too much work at a time
so I just step away from my desk. Then I forgot things were there”. P14 also said “I was more
aware of what I was looking at on the screen because I knew my computer activity is being
monitored. I don’t like having things logged. I tried to just behave normally after a little
while”. A common alternative to non-work-related browsing on the computer was browsing
on the mobile phone, which was not logged: “Maybe 1-2 days I was aware that my computer
was monitored so I would use phone instead of computer for social media breaks” (P17),
“I didn’t go on as much on [non-work website| so I would open it on my phone instead.”
(P19). Participants felt that if their organization were to implement such a stress tracking
system, they would be potentially concerned about what data was being collected, despite

desiring collecting more potential stressors for their own self-understanding. For example,
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P59 said “Some individuals will have an issue with activities being logged even if anonymous.
People have privacy concerns” and P43 said “Watching what we are doing on the computer
will create a lot of dissatisfaction”. However, other participants did not have such privacy
concerns, “I don’t really care. I always operate under the assumption that it is visible what

I'm doing on the work computer” (P49).

5.4 Discussion

The findings revealed that stress tracking with wearables and EMAs provided different ben-
efits to employees, and that employee preferences might not always align with organizational
goals of workplace stress tracking. While wearables were beneficial for validating how em-
ployees felt at times of stress, EMAs were helpful for pausing and reflecting on stress several
times a day. These perceived benefits raise questions about trust in algorithmic output, con-
firmation bias, and balancing unobtrusiveness and engagement. We discuss these findings
in light of literature in personal informatics and broader self-tracking applications to pro-
vide an understanding of how people perceive their interactions with stress-tracking devices
and data. We also discuss implications for designing and deploying stress tracking in the

workplace to support potentially conflicting personal and organizational tracking goals.

5.4.1 Design implications for the validation vs. reflection on stress

Participants perceived different potential value from tracking with each modality. Seeking
validation from the wearable’s objective stress measure could indicate people’s trust in al-
gorithmic output [112, 273, 312, 322] which could be due to assuming sophisticated system
capabilities [112, 269]. Surprisingly, some participants even trusted the wearable’s stress level

over their own appraisal of their stress, and others questioned the validity of self-reported
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stress in EMAs for being subjective and relying on one’s potentially poor judgement of their
stress. This might indicate that people view the system as surpassing their own abilities to
evaluate stress. Deferring emotions to devices and trusting algorithms to tell us how we feel
has been discussed in previous work [112]. Users have been found to trust and confirm even
random outputs of systems framed as “intelligent”, assuming that the system has better
insight into the mood of users than users themselves [273]. This has important implications
as people’s understanding of their stress, as well as their experience of stress, could be influ-
enced by system outputs. False system outputs about stress based on heart rate have been
found to impact self-reported anxiety after a stressful task, reducing user anxiety when the
system’s output falsely indicated low heart-rate [60]. Additionally, the same physiological
data could be framed positively as ’engagement’ or negatively as ’stress’ and can influence
how users perceive their emotional states [112]. When users of emotion-feedback systems
have little or no knowledge about how these systems work, they might adopt incorrect con-
ceptual models to confirm system outputs. To address this issue, implementation of stress
tracking in the workplace should improve users’ knowledge of how the algorithm operates to
measure stress, to avoid adopting incorrect conceptual models confirming and deferring to
system outputs. For example, employees should be educated on physiological stress reactions
that sensors measure, the confounding variables affecting those measures such as physical
activity and overall health, and the distinction between physiological stress responses and

emotion recognition through subjective evaluation.

Some employees reported checking the device in moments of high stress to validate perceived
stress. This behavior could introduce confirmation bias, where people look for confirming
evidence to prove their own hypothesis and ignore disconfirming evidence [313]. Specifically,
people will only confirm their perceived stress in certain moments and miss other stress
episodes that could present disconfirming evidence about their perceived stress. A study
found potential confirmation bias with self-monitoring for patients with diabetes, where

patients formed hypotheses about increases in their blood sugar and monitored their data to
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reinforce their assumptions [169]. Confirmation bias in stress tracking could similarly lead to
people creating an incomplete understanding of their stress. Automated methods for tracking
stress should therefore facilitate discoveries about one’s stress, rather than merely reinforce
presumptions. This could be done in real-time through notifications giving people updates on
their measured stress at randomized times, or retrospectively by presenting daylong patterns
of stress at the end of the workday. In systems that capture context, providing contextual

information alongside measured stress could facilitate learning of pairing context with stress.

Overall, while participants appreciated that they could validate or confirm their perceived
stress and reported it as a benefit, this brief interaction with a wearable is unlikely to gen-
erate deep insights that lead to awareness and action [157]. In contrast, our finding that
EMAs encouraged self-reflection points to a typically desired outcome of self-tracking. The
self-tracking literature frequently suggests that self-reports encourage participation and en-
gagement with the data, and help people reflect on their own emotions [179, 242]. To encour-
age more reflection and avoid deferring emotions to system outputs, automated approaches
could engage users by encouraging them to actively evaluate system output [33, 269], either

in real time or retrospectively.

5.4.2 Trade-offs between unobtrusiveness, engagement, and value

Several design recommendations can be made to balance the tradeoffs between unobtrusive-
ness and value to benefit employees and organizations. We found that employees often did
not engage with their wearable’s data or could not interpret it. To encourage engagement
with and understanding of objective stress measures, glanceable or ambient feedback for
wearables’ data can be designed [91, 201, 325]. Research has also shown that lowering ac-
cess burden such as providing feedback on the computer’s taskbar instead of having to open

an app or a website to view data increases engagement and improves awareness [57, 134].
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Designers of these tools could consider adding a display of stress information, although the

effects on privacy and potentially increasing stress about the results warrant further study.

While automated modalities run in the background to continuously and unobtrusively col-
lect data throughout the workday, manual stress tracking with EMAs runs the risk of not
capturing the moments which are important to capture, as employees indicated not respond-
ing to EMAs when they are busy. Because being busy often correlates with stress, those
moments with missed EMAs could be the highest stress events. While this limitation might
not need to be addressed to support employees’ stress tracking goals, it poses a challenge for
organizations trying to obtain complete logs of stress throughout the workday and during
different work activities. Interruptibility detection [213, 214], which integrates with other
work systems, could be used to find opportunistic moments within busy periods to prompt
employees to fill out EMAs. System developers could also consider EMAs on other devices
such as wearables instead of phones, which have been found to increase the number of an-
swered prompts and the speed to start answering [109] and are potentially less interruptive
or distracting [119]. EMAs could also leverage voice assistants (e.g. Siri on iPhones and
Apple Watches), although the appropriateness to work environments might vary based on

office space (e.g. open or closed office space) and perceived sensitivity of stress logging.

Our participants reported difficulties quantifying and articulating their stress in EMAs,
which has also been found in a previous study [2] where participants criticized the 5-point
stress scale and suggested adding further granularity. A study on food journaling also found
that participants had difficulty deciding what to report in EMAs and in how much detail [59].
Adding more guiding questions in the EMAs could help employees articulate details about
stress in their day. For example, because participants typically attributed their increased
or decreased stress to the presence or absence of events (e.g., meetings, deadlines), prompts
could ask employees to consider whether that day’s events influenced their perceived stress.

EMASs could also use open-ended logging to avoid quantifying stress on a scale, allowing
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employees to describe their stress without the imposed structure of a scale corresponding
to numbers. While flexible logging might help employees to express their stress in ways
that make more sense to them, it creates significant challenges for organizations trying to
quantify or summarize employees stress to feed into intervention systems or to systematically

compare stress patterns across employees.

For both manual and automated methods, adding comparative measures or signals might im-
prove reporting and understanding of one’s stress. Participants reported wanting to compare
their stress to a threshold or to their previous stress in order to better report their current
stress in EMAs or better understand the sensor stress score on the wearable. Facilitating
comparison with a previous reported stress (or multiple recent stress logs) or a benchmark
might assist with the difficulties in quantifying and self-reporting stress, and also assist in

understanding objective stress measures on the wearable device.

5.4.3 Designing for varying and conflicting preferences

Participants had various and sometimes conflicting suggestions and preferences for how tech-
nology can support stress tracking in the workplace. The most frequent suggestion was the
need to track more workplace factors such as emails, meetings and social interactions in
order to better capture stress and provide a more realistic and complete picture of workplace
stress and stressors. At the same time, some participants raised privacy concerns about the
computer logging component of the study. It is possible that participants’ varying privacy
concerns could relate to their perception of their employers’ involvement in the process. Pri-
vacy concerns could also shift over time, as more concerns can surface as employees have
more experience with tracking [90]. Therefore, we recommend the design of flexible stress
tracking interventions, allowing employees to choose what they are comfortable with for a

system to collect about them alongside what workplace factors might help them achieve their
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stress-tracking goals. Tracking systems can have privacy controls breaking down the kinds
of computer activity or other automatically-logged measures to let employees specify what

to log and whether to share data with the organization.

Some participants indicated interest in having community support to discuss what they
are learning from tracking and issues they are facing. Including social features in tracking
applications, as well as having offline social communities of trackers in the workplace could
encourage participation and sustain motivation [5, 96]. However, other studies have found
that social features can both support or discourage tracking [59] as some participants could
have privacy concerns about sharing their data and their practices. Further research is
needed to examine the desirability and effects of integrating social features in stress tracking

at the workplace.

While some participants wanted additional manual (i.e. non-scheduled) EMAs, computer-
based EMAs, and more notifications and reminders about EMAs, others wanted less frequent
EMAs. For the wearable, while some participants appreciated its familiarity and thought it is
easy to wear, others reported that it is uncomfortable and preferred tracking stress without
wearing a watch. To accommodate these varying and conflicting preferences, multimodal
systems can be implemented [46, 135, 158], supporting both EMA and automatic logging that
can be used separately or simultaneously. The tracking system can then merge the data or use
the data of one modality as a backup to the other while maintaining distinct interpretations
of each modality (i.e. clarifying that automatic tracking measures physiological reactions

while manual input measures personal appraisal).

In summary, workplace implementations of stress tracking should support customization for
what and how to track in order to accommodate varying and conflicting employee preferences.
The workplace presents unique challenges around privacy and personal data sharing with
the organization, as well as the challenge of balancing the need for complete and continuous

data for organizations to track patterns of stress, with employees’ preferences for different
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tracking modalities.

5.4.4 Limitations

We do not report on motivations or goals of people who track their stress, since participants in
this study were instructed to wear the watch and answer EMAs, and were not necessarily self-
motivated to track their stress. Hence, our conclusions might not generalize to people who
elect to self-track their stress. However, it could generalize to workplace wellness programs

where people are given wearable devices or EMAs.

Giving participants both stress tracking modalities at once might have affected their views.
On one hand, they could compare the two methods directly. On the other hand, opinions
about one modality could have affected opinions about the other. For example, reflecting

through EMA responses might have changed the interpretation of physiological signals.

Our participant sample was skewed towards people with higher-education degrees, including
post-graduate degrees. While this is typical in information work, generalizing to other work-
places should consider demographics and the nature of work could influence perceptions of

stress tracking.

Adherence, perceived benefits and challenges based on three weeks can differ from those
of long-term tracking. However, in the three-week period some people already said they
engaged more with their data in the beginning of the study and their interest started to fade

away at the end, which could reflect trends of long-term tracking.

Participants were told that we are recruiting for “a research study about stress in the work-
place. This study may help us to better understand events, interactions, and contexts that
surround high-stress episodes.” It is therefore possible that participants intentionally did not

change their stress-related practices in order to provide a realistic picture of stress in their
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daily work for purposes of the research study. Future work can investigate whether provid-
ing guidance on how to leverage stress tracking for stress management influences employees’

stress-related practices.

Finally, conducting thematic analysis without recording the interviews is a potential limita-
tion. Although note-taking was as thorough and verbatim as possible, there still could be

missed nuances that reviewing an audio recording after the interview can reveal.

5.5 Conclusion

This chapter addresses a gap between employees’ experiences with workplace stress tracking,
underlying benefits and challenges in self-tracking, and organizational implementation of
stress tracking systems. While automated tracking with wearables can be comfortable and
unobtrusive, employees might be less inclined to engage with their data. Participants used
the devices to validate how stressed they felt. These brief interactions might be prone to
confirmation bias where employees only confirm their perceived stress in certain moments and
miss the opportunity for disconfirming evidence to learn deeply about their stress. Manual
input methods encouraged reflecting on momentary stress and stressors, but challenges need
to be addressed around quantifying subjective appraisal of stress and articulating stressors.
Individual and organizational stress tracking goals and desired outcomes might be challenging
to align. While objective and continuous data from wearables provides more detailed insights
on employees stress patterns and can be correlated with other continuous data streams such
as work activity tracking, individual employees might not gain much value from tracking with
completely automated methods. On the other hand, manual methods generate stress data
that could be harder to analyze by the organization, harder to compare across employees,
and has limitations in terms of frequent and long-term implementation, but might engage

employees more with their data and encourage reflection that is likely to lead to awareness
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and action.
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Chapter 6

Physicians’ Electronic Inbox Work
Patterns and Factors Associated With

High Inbox Work Duration

6.1 Introduction

The electronic inbox forms a crucial hub for physicians to communicate with other clini-
cians, staff, and patients via electronic health record (EHR)-based messages. The ability
to communicate with patients and families via email-like secure messages helps physicians
build relationships [159, 234, 235, 42, 199, 233]. Electronic inbox management has become a
progressively more important component of physicians’ work as EHR adoption and patient

use of secure messages have increased [3, 63, 260).

In business and information work, inbox management has been associated with stress and
burnout due to the time required to handle the ever-increasing volume of emails, the task

demands associated with emails, and the interruptions they create [239, 22, 177]. In the same
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way, electronic inbox management has been purported to contribute to physician stress and
burnout [159, 284, 202]. To understand the relationship between EHR adoption and use and

stress, it is critical to examine how physicians spend time on the EHR inbox.

Scant research on physicians’ electronic inbox use patterns currently exists. Previous studies
of daily EHR work patterns have evaluated overall EHR use throughout the day [308, 217, 16]
but inbox management has received limited attention beyond studies that have quantified
the time spent on it. To facilitate more adept use of electronic inboxes, it is critical to
gain a more detailed understanding of how physicians manage them. Understanding the
temporal patterns of inbox work and identifying factors associated with high duration of
inbox work are key steps toward learning how to potentially reduce stress associated with
inbox management. To this end, the study presented in this chapter aimed to:

1) quantify the amount of time physicians spend on electronic inbox management,

3

(1)

(2) describe daily patterns of inbox use,

(3) describe variation in inbox work by the type of message received, and
(4)

4) identify factors associated with high duration of time on electronic inbox work.

6.2 Study setting

Data collection was conducted at the Permanente Medical Group, one of the largest medical
groups in the United States. The medical group has 9,200 physicians and serves 4.4 million
members via 21 hospital-based medical centers and more than 250 medical offices in Northern
California. Physicians are salaried, and each primary care practitioner has a defined panel

of affiliated patients to manage.

Since 2008, the participating medical group has used a comprehensive EHR (Epic Systems,

Verona, WI) that integrates inpatient, emergency, and outpatient care, including primary
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care, specialty, laboratory, pharmacy, and imaging data. The EHR inbox is the primary
message hub that physicians use for clinical care. The EHR inbox receives messages patients
send via a portal website (also available through patient-facing mobile applications), as
well as messages from other physicians, clinical staff, the pharmacy, laboratory, and other
departments. Physicians can access the inbox on computers or mobile devices. Physicians are
expected to reply to each patient message within 2 business days. Patients are encouraged
to use the messaging functionality of the EHR to enhance access to their physicians and the

care experience.

The practice environment was relatively consistent across physicians in this study. Clinical
work hours when clinical settings are open and patient appointments are booked were Mon-
day to Friday, 8:30 AM to 12:30 PM and 1:30 PM to 5:30 PM. Clinical work hours were
scheduled predominantly with patient appointments conducted in person or via telephone
or video telemedicine. Within clinical work hours, some departments earmarked periods of
time without scheduled patient visits called “panel management time,” to protect time for
physicians to manage inboxes and do other types of work. Physicians sometimes worked

clinically on weekends, with work hours that could differ from weekdays.

This setting’s patient population was diverse, with 54% of adults being White, 21% being
Asian, 16% being Latino, and 6% being Black. Approximately half of adult members had a
college degree, more than three-fourths were employed or self-employed, and most lived in

urban or suburban areas [89].

6.3 EHR system logs

We used system access logs, which contained granular timestamped data on the Epic system

EHR use. These logs contain second-by-second records of the EHR components physicians
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have accessed and records of the associated actions performed. The logged data for the inbox
includes the type of message being accessed, the time, user ID, and the access mode (desktop
or mobile). We created hourly time bins and variables from the log data to quantify how
time was attributed to different activities and different types of inbox messages per hour.
These variables include, for every hour, the number of minutes spent in the EHR, the number
of minutes spent in the inbox, the number of minutes spent working on each inbox message
type, and the number of window switches (i.e. clicking on a new computer window /page).
The logged time spent on the inbox only included time spent on the inbox page, and did not
count time spent on other EHR components that physicians might use to gather information
to respond to messages. Hence, the inbox time in this analysis was an underestimate of the

total time physicians spent on inbox-related work.

EHR log data were extracted from March 1 to 31, 2018, for all internists and family prac-
titioners who were doing at least 70% fulltime equivalent (FTE) outpatient clinical practice
at the time of the analysis. We chose March because it is a representative month: neither
extremely busy due to influenza season nor slow due to summer vacations. We also obtained
physicians’ age, sex, years in practice, and their FTE in clinical practice, a measure of their
workload in scheduled clinical hours where 40 hours per week of scheduled work is 1.0 FTE.
Internal analyses by this medical group reveal that FTE is strongly correlated with panel
size. We thus include patient panel characteristics per physician (mean age, percentage over

65 years of age, percentage female).

After preliminary analyses of the 1275 physicians in the dataset, we excluded physicians
with <10 working days in the month, and those with no time spent on the inbox on all
workdays, leaving 1257 physicians in the study population. We defined a workday for a
physician as a day with at least 1 scheduled in-person visit or more than 7 telephone and
video visits. We chose this cut point based on the number of telephone encounters among

physicians on weekends in March 2018 to properly classify days off when a physician may
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make a few telephone calls to relay lab results to patients while not scheduled to work. We
removed weekend workdays (Saturdays and Sundays) from our analysis of workdays to better
distinguish work and nonwork hours, as work hours can vary when physicians are working

on weekends.

The system logs included a “message type description” field, with 59 different labels. We
categorized these labels into higher-level groupings based on an analysis of frequencies and
input from this study’s clinical collaborators, who were familiar with the meanings and
patterns of different message types. This approach resulted in four message types: (1)
messages from patients, (2) results, such as lab test results, (3) requests, which ask the
physician to perform an action such as approving a medication refill or signing clinical orders,
and (4) Informational and administrative messages. No message content or metadata (ie,
sender, receiver, id, or timestamp) were included in were included in this study, which was

approved by the Kaiser Permanente Northern California Institutional Review Board.

6.4 Statistical analyses

To identify factors associated with duration of time spent on EHR inbox work, we compared
physicians in the top and bottom quartiles of average inbox use duration, and created mul-
tiple regression models. To compare factors between these groups, we conducted a series of
2-group tests (t tests for normally distributed variables, Mann-Whitney U tests for nonpara-
metrically distributed variables and chi-square tests for categorical variables). We corrected
for multiple comparisons using the Bonferroni correction, testing each P value against an
alpha value of .05/18 tests = .003. For the regression models, the distributions of dependent
variables were inspected to confirm the normality assumption. Multicollinearity was tested
using the variance inflation factor, and independent variables with variance inflation factor

>5 were removed. Analyses were conducted using the Scipy and Statsmodels packages in
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Python.

6.5 Results

6.5.1 Participants

Of the 1257 physicians in the study, 57% were female. Their ages ranged from 29 to 72 years
(mean 46.72, SD 8.43). Years since medical school graduation ranged from 4 to 45 years of
age (mean 19.35, SD 9.04). Participants’ workload ranged from 0.7 to 1.0 FTE (mean 0.85,
SD 0.11). On average, physicians in the dataset had 20 (SD 3) workdays and 11 (SD 3)
nonworkdays. The average physician in the study had a patient panel with an average age
of 46.78 (SD 6.25) years, with 19 (SD 10%) of patients being older than 65 years of age, and
52 (SD 18%) being female patients. The average number of patient encounters per physician
for the month was 335.26 (SD 95.1), of which 237.39 (SD 60.58) were face-to-face encounters

and 97.87 (SD 57.05) were telephone and video encounters.

6.5.2 Time spent on inbox management

On workdays, the average time spent on inbox work was a total of 52 minutes: 33 minutes
during work hours and 19 minutes outside of work hours (Table 6.1). Thus, 37% of total
time on the inbox on a workday occurred outside of formal work hours. On nonworkdays,
physicians spent an average of 12 minutes on the inbox, with a range of 0-93 minutes. On
workdays, physicians spent most of their inbox time on desktop or laptop computers, whether
within or outside of work hours. On nonworkdays, however, the inbox was mostly accessed
through mobile devices. On average, physicians had 100 message views a day during work

hours, and 53 views outside work hours (Table 6.1). On nonworkdays, physicians had an
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Mode of inbox access

Desktop/Laptop ~ Mobile Total
Workdays
Message views, mean (SD)
During work hours 94 (38) 6 (11) 100 (38)
Outside work hours 36 (25) 17 (20) 53 (31)
Total 131 (47) 23 (25) 153 (47)
Time spent (min:sec), mean (SD)
During work hours 30:55 (11:34) 2:01 (3:34) 32:56 (11:14)
Outside work hours 12:45 (9:31) 6:09 (7:27) 18:49 (11:52)
Total 43:37 (15:29) 08:10 (08:59)  51:47 (15:30)
Non-workdays
Message views, mean (SD) 4 (13) 29 (31) 33 (34)
Time spent (min:sec), mean (SD)  1:12 (4:30) 11:07 (12:33)  12:19 (13:16)

Table 6.1: Electronic inbox message views and time spent per day by primary care physicians
in the Permanente Medical Group, March 2018.

average of 33 message views daily. It is important to note that we cannot ascertain if these
were unique message counts, or if they were the number of times physicians started a period
of inbox work; rather, they were the number of times physicians switched into an inbox page.
For example, it would count as 2 message views if a physician viewed a message, then shifted
to another EHR system page to retrieve information, then returned to reply to the same

message.

Of all time spent on the EHR inbox, physicians spent 28%, 29%, 25%, and 11% on patient

messages, results, requests, and administrative messages, respectively (Table 6.2).
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Message type Workdays Non-Workdays  Overall (%)

Patient-initiated messages  14:56 (6:49)  2:24 (3:14) 28 (10)
Results 14:01 (5:20)  4:45 (5:45) 29 (6)
Requests 13:21 (5:44)  2:00 (2:33) 25 (8)
Admin 5:30 (2:44) 1:51 (2:32) 11 (5)
Other 2:48 (1:37) 1:16 (2:03) 6 (3)

Table 6.2: Average (SD) time spent on each message type during workdays and non-
workdays. The overall column indicates mean percentages of total inbox time over the
month.

6.5.3 Daily patterns of electronic inbox work compared with other

EHR work

Figure 6.1 contrasts the daily patterns of time spent on the inbox component of the EHR
with time spent on other components of the EHR. For many physicians, the most time spent
on the EHR inbox was before and after formal work hours, and during the lunch hour (Figure
6.1a). Averaging across all users showed small peaks at the beginning and end of the workday.
In contrast, time on other EHR components followed a different pattern. As Figure 6.1b
shows, time spent on EHR functionality other than the inbox (including chart review, order
entry, and charting) increased during work hours compared with nonwork hours. There was
a sharp decrease in EHR use during the lunch hour as well. On nonworkdays, both overall
EHR and inbox use had flatter patterns than workdays. As can be expected, there is a large
variance across individual users in the amount of time spent on the EHR and the inbox per

hour.

6.5.4 Factors associated with high duration of time on inbox work

To further explore different patterns of inbox use, we first compared physicians in our dataset

in the top and lowest quartiles of average duration of time spent on the inbox on workdays
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Figure 6.1: Time spent on (A) the EHR inbox and (B) EHR functionality other than the
inbox. Top figures show daily averages for each user (1257 users) and the bottom figures
show overall average across user averages.

(during and outside of work hours). This segmentation resulted in 314 users per group. The
high-duration group (top quartile) had an average inbox duration of 72 (SD 9) minutes per

workday, while the low-duration group (lowest quartile) had an average of 33 (SD 7) minutes.

Table 6.3 shows these comparisons. The high-duration user group had a higher proportion
of women (62%) compared with lowduration user group (50%) (P=.003). There was no
statistically significant difference between high- and low-duration users in the number of
days worked or FTE. Both groups had an average of 19 (SD 3) workdays during the month
and an average FTE of 0.85 (SD 0.1). However, high-duration users had more patient
encounters, older patients, and a higher percentage of patients older than 65 years of age

and female patients.

High-duration users spent more than twice the duration on messages after work hours on
workdays (30 minutes vs 9.7 minutes; P <.001), compared with users in the low-duration

group (Table 6.3). Comparing the ratio of after-hours inbox use duration to all day inbox use
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duration, we found that a larger average proportion of time on the inbox occurred outside
of work hours for high-duration users (41%) compared with low-duration users (29%) (P
<.001). We also found differences in the time spent on the inbox on nonworkdays. On
nonworkdays, high-duration users spent almost double the time on inbox work relative to
low-duration users. Users in the high-duration group averaged almost twice the message
views on workdays (199 views vs 109 views; P <.001), and spent slightly more time per
message view (22.3 seconds vs 18.9 seconds; P <.001). The duration of time spent on the
inbox on mobile devices was also more than doubled for high-duration users, compared with
low-duration users, although the ratio of inbox time on mobile to all inbox time was similar
between the groups, as both groups spent 23%-25% of their total EHR inbox time on mobile

devices.

To identify factors independently associated with inbox work duration, we created multiple
linear regression models for 2 dependent variables: all-day inbox use duration and after-hours
inbox use duration. Both measures were averages over each physician’s workdays. Indepen-
dent variables included physician characteristics (age and sex), patient panel characteristics
(age), patient encounters (face-to-face and telephone and video visits), average percentage of
inbox time spent on patient messages, average time per message view, and average percent-
age of inbox time using mobile devices. For predicting after-hours inbox time, work-hours
inbox time was also added as an independent variable. Owing to multicollinearity, we ex-
cluded patient panel percentage of female patients, percentage of patients over 65 years of

age, physician years of experience, and FTE. Model results are presented in Table 6.4.

For the model of all-day inbox duration all predictors, except physician age, had a positive
relationship with inbox duration (F' = 63.71, P <.001, adjR?> = .29). The average age of
the patient panel, the number of face-to-face patient encounters, and time per message view
had the largest effect sizes (standardized coefficients >0.3). For predicting after-hours inbox

duration, the analysis showed a negative relationship of the more time physicians spent on
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High- Low- P value

duration duration

inbox wusers inbox users

(n=314) (n=314)
Physician characteristics
Age, v 47.2 (8.5) 46 (8.6) .098
Years since medical school graduation 20.3 (9) 18.2 (9.3) .005
Female, % 62 50 .003*
Workload
Workdays 18.9 (3) 18.8 (3) 286
FTE 0.85 (0.1) 0.85 (0.1) 201
Total number of patient encounters 347.1 (82.7)  311.7 (112.7) <.001*
Number of face-to-face patient encounters 247 (57) 216 (68.8) <.001*
Number of phone/video patient encounters 100.1(42.1)  95.8 (66.8) .005
Patient panel characteristics
Patient age, y 48.3 (5.9) 44.8 (6.4) <.001*
Patients older than 65 y, % 21 (10) 16 (9) <.001*
Female, % 54 (18) 48 (18) <.001*
Temporal patterns of inbox work
% of after-hours inbox duration to total inbox duration on 41 (15) 29 (16) <.001*
workdays
After-hours inbox duration on workdays, min 30.1 (13.1) 9.7 (5.6) <.001*
Inbox duration on nonworkdays, min 16.7 (14.9) 8.5 (10.5) <.001*
Message view patterns
Message views per workday (including after hours) 199.9 (42.1) 108.8 (31.2) <.001*
Time per message view, s 22.3 (3.8) 18.9 (3.7) <.001*
Use of mobile devices
Duration of inbox work on mobile devices per workday, min 12 (11.5) 5 (5.8) <.001*
% of all inbox time spent in mobile device use 25 (18) 23 (22) .015

Values are mean (SD), unless otherwise indicated.
FTE: full-time equivalent.

*Significant at P <.003 based on the Bonferroni correction.

Table 6.3: Comparisons of high-duration and low-duration users of the electronic health
record-based inbox among primary care physicians in the Permanente Medical Group, 2018.

the inbox during work hours, the less time they spent on the inbox after hours. A negative

relationship was also found between physician age and after-hours inbox use, although the

effect size was small. Face-to-face patient encounters, time per message view, and percentage
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of inbox time that is on mobile devices had the largest effect sizes (standardized coefficients
>(0.3). Female physicians and physicians who had older patients spent more time on the inbox
after hours. The model explains 33% of the variation in after-hours inbox time (F' = 68.36,

P <.001, adj R?=.33).

All-day inbox work After-hours inbox work
Coeff (SE) p Coeff (SE) p
Physician characteristics
Female 306 (46) <.001 159 (34.64)  <.001
Age 17 (3) <.001 6 (2) 018
Patient panel characteristics
Mean age 50 (4) <.001 30 (3) <.001
Face-to-face appointments 126 (9) <.001 101 (7) <.001
Phone/video appointments 33 (10) .001 21 (7.72) .007
Inbox use patterns
% patient messages 1297 (226)  <.001 485 (170) .004
Time per message view 76 (5.76) <.001 55 (4) <.001
% on mobile 347 (145) 017 1431 (113)  <.001
Workhours inbox use - — -0.14 (0.03) <.001

Table 6.4: Regression models predicting duration of all-day inbox work (per 24-hour period)
and after-hours inbox work.

6.6 Discussion

6.6.1 Major findings

To our knowledge, this study is the first to describe how electronic inbox work fits temporally
into the workdays of PCPs. We found that, on average, PCPs spent 52 minutes on electronic
inbox work on workdays, and that more than one-third of this time occurred outside formally
scheduled work hours. This study also was unique in our ability to identify characteristics of
physicians who spent higher than average amounts of time on inbox work. Those with the

highest duration of inbox work were more likely to be female, have a higher percentage of
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female patients, have older patients, have more patient encounters, and be doing inbox work
after hours, as well as spend more time per message view and spend a higher proportion of

their inbox time on patient-initiated messages.

6.6.2 Interpretation and comparison with past studies

Previous studies of electronic inbox use have described the amount and timing of inbox
work but have neither studied temporal patterns in depth nor described variation among
physicians. A 2017 study found that PCPs spent an average of 5.9 hours per workday on
EHR systems, including 1.4 hours outside clinic hours, with 24% of the total time spent in
the inbox and a higher proportion of inbox time spent after hours compared with other EHR

activities [16].

Our study went beyond previous studies [16, 308, 217] in comparing temporal patterns of
electronic inbox use as distinct from use of other parts of the EHR (eg, chart review, order
entry, creating notes). We found that inbox use patterns did not mirror work hours, but
rather increased before and after work hours and during lunch hours. We also found that
the more time physicians spent on the inbox during work hours, the less time they spent on
the inbox after hours. These findings were not surprising because during workdays, PCPs
usually are scheduled to see patients via in-person, telephone, or video visits for most or
all of the available time. Electronic inbox work during formal work hours is typically fit
in between patient visits, and work that cannot be finished during those hours is usually
addressed just before work hours, just after work hours, or during lunch. Given that the
average time spent on the inbox after hours is 19 minutes, which is small relative to the total
time spent on EHR activities in other studies, it is possible that some physicians may be
prioritizing inbox work during work hours and completing notes outside work hours. Future

work analyzing the trade-off between different EHR actions within and outside of work hours
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could clarify this supposition.

This study found that physicians switch to view electronic messages 100 times a day. This
number is higher than previous studies of information workers, who checked their emails
an average of 77 times a day during work hours [176]. The high number of views may be
due to physicians needing to switch screens between the inbox and other parts of the EHR
to find information to reply to messages or to take other actions, indicating a high rate of
task switching within inbox work itself. Given the associations between multitasking and
stress [178, 236], physician patterns of multitasking with the electronic inbox warrant further

study.

Our finding that physicians who spent more time on inbox work tended to be female is novel,
and consistent with a recent finding that female physicians tend to spend more time on the
EHR [17]. This contrasts with another recent study in which women reported less EHR-
related stress and higher efficiency than men [130]. Studies of physicians have suggested
that burnout symptoms may be associated with being female, and that work-home conflict
may play a role [284, 114, 118]. Our observation that female physicians tend to spend more
time on inbox work suggests that this deserves further exploration as a possible factor in sex

differences in physician stress.

We also found that high inbox work duration was associated with more work outside of
work hours. Not only was the absolute amount of time spent working after hours longer,
but also the proportion of all time spent on the inbox that occurred after hours was higher.
Research in office settings has found spending more time on email associated with greater
work overload, frustration, and stress [22]. Our finding that inbox work tends to extend
beyond work hours for high-duration users suggests that further study is warranted regarding

how to best support this group.

In this study, inbox work duration was independently associated with clinician workload

108



as measured by the number of appointments seen during the month studied. This is in
accord with a previous finding that physicians with more clinical time were disproportionately
burdened by after-hours EHR work [247], and another study that found that work relative
value units (ie, work volume and complexity) were positively associated with EHR time
within and outside of work hours [17]. In contrast, we did not find that lower FTE was
associated with reduced inbox work. This finding may reflect that physicians who adopt
reduced clinical FTE schedules may not experience a commensurate decrease in their amount
of electronic inbox work, or conversely, that physicians who feel overburdened may adopt
reduced FTE schedules to allow themselves more time to complete clinical work in general,

including inbox work.

A recent study found that provider-to-provider variation was the largest source of variation
in after-hours EHR usage [17]. Similarly, the wide variation we found in inbox work dura-
tion and use patterns among PCPs in this study suggests that individual preferences and
approaches most likely play a role in inbox work patterns. Future research could attempt
to identify different types of users based on the strategies they adopt (eg, batching inbox
message work [176]), the temporal patterns of their work, and their use of mobile devices
for inbox work. In addition, future work could investigate the effect of organizational efforts
such as designating time for panel management within clinical work hours. It would be useful
to study whether inbox use patterns are associated with physician stress or productivity, or

patient satisfaction with electronic message communication with their PCPs.

6.6.3 System design and organizational implications

The results suggest practical implications for inbox system design. Given the high number
of message views (i.e. counts of switching to the inbox page), a system design consideration

would be to implement an interface that incorporates information that physicians need from
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sources outside the inbox page (e.g. patient data) to process an inbox message, thus reducing

potential frequent switching between the inbox page and other windows.

Batching (i.e. attending to the inbox once or twice a day rather than consistently checking
messages throughout the day) and checking the inbox fewer times has been found to be
associated with less time on email and less stress [177, 176, 145]. While email batching may
be desirable in some work settings, our study’s results show that the temporal patterns of
inbox use are different in medical settings, in which physicians spend smaller amounts of
time on the inbox during periods when they are scheduled to see patients. It is possible
that the messages being checked in between patient visits are those that are more clinically
urgent, making batching infeasible. Thus, the feasibility and desirability of batching inbox
time in medical contexts is yet to be evaluated. Another practical implication for inbox
system design is to implement screening and categorization of patient-initiated messages,

automatically or by assistants, which can help PCPs prioritize or delegate some messages.

6.6.4 Limitations

This study was conducted in a large medical group that encourages patients to use EHR
portal messages to communicate with physicians. The group also tries to limit the amount of
system-generated messages and administrative reminders sent to physicians’ inboxes. Thus,
this setting’s volume of inbox messages from patients may be higher and the balance of

different types of messages may differ from those in less integrated settings.

The dataset for this study had message views but not unique message counts. Thus, we did
not analyze the volume of messages, time spent per message, or how many times a message
was revisited. As noted in the Materials and Methods, inbox work duration counted time
the inbox window was open, but did not count (for example) time when the inbox window

was in the background while the user was accessing other parts of the EHR such as chart
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review or order entry in response to a message. Thus, the duration of inbox work in this

study is likely an underestimate of the time physicians spent on inbox-related work.

Finally, our analysis did not control for panel management time (ie, time designated by de-
partments specifically for tasks like inbox management). Thus, we cannot make assumptions
about why inbox work patterns and peak use times differ among physicians. Our analysis
shows an inverse relationship between time on the inbox during and after work hours. It is
possible that physicians who have dedicated panel management time during work hours are
those who spend less time on inbox work after hours. The effect of panel management time

on inbox use patterns needs further study.

6.7 Conclusion

We conducted a large-scale study of physician’s EHR inbox daily work patterns. Physicians
in the largest medical group in the United States spend roughly an hour per workday on
inbox management, and much of this work occurs outside scheduled work hours. In this
setting, patient-initiated messages and results consume the highest proportion of inbox work
time. Interventions to assist physicians in handling patient-initiated messages and results

may help alleviate inbox workload.
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Chapter 7

Physicians’ Stress and EHR Inbox

Work Patterns

7.1 Introduction

Inbox management is an important component of electronic health record (EHR) work for
physicians and a key potential stressor [202]. Although several studies have addressed work-
load or burden related to EHR. use, no study to date has directly measured stress related to
EHR inbox use. There are two main limitations in prior work. First, scant research exists
that focuses on the inbox component of the EHR (e.g. [202, 284, 93, 204]). Second, previous
studies relied on self-reported proxies of stress (e.g. burden, burnout, wellbeing) measured at
a single time-point (or a few time points) (e.g. [284]), which fails to capture the detailed and

continual stress and EHR work patterns throughout the day and is prone to bias [94, 252].

This chapter investigates physicians’ EHR inbox use patterns and associated stress, as mea-
sured unobtrusively and continuously by EHR system logs and wearable sensors. The ob-

jectives of this work were to:
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(1) collect EHR use and stress data through unobtrusive means that provide objective and
continuous measures;

(2) cluster and visualize distinct EHR inbox work patterns, and identify their associated
characteristics;

(3) identify physicians’ daily stress patterns; and

(4) evaluate the association between EHR inbox work characteristics and physician stress.

7.2 Recruitment and protocol

The study setting is detailed in Chapter 6. We recruited adult primary care physicians
(PCPs) from five medical facilities within of the largest medical groups in the United States.
To identify facilities for recruitment, one of the study’s clinical collaborators sent an email
to local adult and family medicine department chiefs in June 2019 describing the study
and asking about interest in participating. In July through September 2019, a clinical
collaborator gave a recruitment presentation in-person or remotely at a department meeting
at each of five interested facilities, with a recruitment email sent immediately thereafter to
all department physicians at the facility. Between 7 and 12 physicians were enrolled at each
facility, with a total of 47 eligible physicians enrolled. Physicians were eligible if they did
outpatient clinical work at least three and a half days a week. Physicians who were taking
cardiac medications, had pacemakers or defibrillators, or had been diagnosed with cardiac
arrhythmias were not eligible due to the interference of these factors with the HRV-based

stress measure. Eligibility was confirmed via a recruitment email.

After obtaining written informed consent, the staff assigned a wearable device with heart-rate
sensors (Garmin Vivosmart 3) and configured the associated mobile applications (Garmin
Connect and Tesserac Phone Agent [183]) on the physician’s work-issued mobile phone. The

apps streamed data from the wearable device via Bluetooth and uploaded the data to a
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server. The research team also installed an experience sampling app [122] on the physician’s
mobile phone to send short questions at specified times (see Chapter 3: Methods). At
enrollment, physicians were asked to complete a 5-question survey on their strategies for and
feelings about Inbasket (their EHR inbox) management. Physicians were asked to indicate
how distressful they found inbox management and whether they had responsibilities that

restricted their ability to work before or after formal work hours.

Physicians were asked to wear the device and respond to the daily short survey prompts
for seven consecutive days, and to keep their phones and the wearable device charged with
Bluetooth enabled. Physicians were free to keep their wearable devices after the end of data
collection. The study was approved by the institutional review board of Kaiser Permanente

Northern California.

7.3 Analysis

Data for this study included EHR system logs and physician characteristics (see Chapter
6), as well as physiological and self-reported stress (see Chapter 3). We used the Gaussian
Mixture Models clustering algorithm [240] to find distinct patterns of inbox work. Features
in the model included the distribution of inbox time in work hours and outside of work
hours, contiguous and non-contiguous to work hours. Multiple feature and cluster counts
were tested and the clustering that yielded more balanced clusters and had a reasonable
silhouette score (a score that indicates how distinct or overlapping the clusters are) [276]

was selected.

To capture whether physicians dedicated certain blocks of time for inbox work or consistently
checked their inbox throughout the day, we defined days with inbox work batching as days

where 70% or more of the total inbox work duration occurred in three separate blocks of time
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or less. With consistent inbox checking, a uniform distribution of inbox duration over the
day would typically be observed, while batching would show 2-3 daily peaks of high inbox
duration [176]. We compared this measure across clusters and also used it as an independent

variable in the mixed-effects model along with the other EHR inbox use characteristics.

To compare clusters (ie, groups of different inbox work patterns), each comparison variable
was tested for normality and homogeneity of variances before conducting an analysis of vari-
ance for normal distributions with equal variances or the Kruskal-Wallis test otherwise. For
pairwise comparisons, a posthoc analysis was conducted using the Tukey honestly significant
difference test for normally distributed variables and Dunn test for nonparametric posthoc

comparisons. Categorical variables were tested using the Chi-square test.

To plot hourly stress patterns, we removed hours with less than 20 minutes of valid HRV
data to avoid overestimating the stress duration as a ratio of the measurement period (the
measurement period being valid HRV measurement duration). From a total of 4245 hours,
this filter removed 1177 hours (27.73%) of the workdays” HRV data. For daily stress mea-
sures, workdays with less than 2 hours of valid HRV data were removed from the analysis,
as well as workdays that are Saturdays or Sundays, and those with no inbox activity. This
filter removed 21 days in total, keeping 178 workdays for the daily stress analyses (cluster

comparison and a regression model).

We investigated the relationship between daily EHR inbox use and stress through a general-
ized mixed effects model with physicians as random effects. A Poisson distribution was used
to represent stress minutes as events within the observation period (ie, valid HRV minutes as
an offset in the model). The distribution of the dependent variable (ie, stress duration) was
right skewed, as expected in a Poisson distribution. The independent variables were centered
(ie, mean subtracted). The variance inflation factor was under 5 for all independent vari-
ables, indicating that multicollinearity was not a problem. Several models were compared,

starting with a base model and incrementally adding variables, to ensure that the improve-
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ment in the model justified the added complexity of adding variables. The model with the

lowest Akaike information criterion and highest marginal (fixed effects) R? is presented.

7.4 Results

7.4.1 Participants

The 47 physicians (68% female) had an average age of 43.83 years (SD 9.51; range 31-68)
with 15.17 (SD 9.93; range 4-42) years of experience in medicine and an average FTE of
81% (SD 14%). On average, physicians in the dataset had 5.26 workdays (SD 0.94) and 2.74
non-workdays (SD 0.94) over the 8 days of data collection (the day of enrollment plus 7 days

in the study).

The HRV-based stress analyses included 42 physicians, because 5 physicians (1 male and 4
female) had technical issues, thereby causing loss of the wearable device data. The inbox

strategies and stress survey was completed by 44 physicians.

7.4.2 Three distinct patterns of EHR inbox work

On workdays, physicians spent an average of 3.5 hours (SD 0.69) in the EHR, of which 1.08
hours (SD 0.38) were spent doing inbox work. On nonworkdays, physicians spent an average
of 23.88 minutes (SD 36.3) in the EHR, including an average of 13.78 minutes in inbox (SD
23.78). The majority of time in the inbox was spent on patient messages (mean 37%, SD
11%), followed by laboratory results (mean 31%, SD 8%), requests (mean 20%, SD 6%), and

administrative messages (mean 13%, SD 5%).

Using the Gaussian Mixture Models clustering algorithm, we found 3 temporal patterns of
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work, with a silhouette score of 0.41, indicating moderate separation between these clusters
(ie, distinct groupings). Figure 7.1 shows the average hourly time spent in the inbox and
other EHR work (such as charting and order entry) for physicians in each cluster. Group
1 (n=10) represented physicians who spent time in the inbox outside work hours, in the
evenings and early mornings; group 2 (n=17) represented physicians who worked mostly
within work hours; and group 3 (n=20) represented physicians who spent some time on
inbox work after hours that were mostly contiguous to work hours.

Group 1: Most inbox time is outside of workhours

15 Inbox
Other EHR
10
5
Group 2: Most inbox time i1s within workhours
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E
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Group 3: Some inbox time outside, but mostly contiguous to, workhours
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o o0 o0 o0 o0 0000000000000 00000
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288 d8EEEETEANOTNEEZARAAA
Time

Figure 7.1: Temporal patterns of inbox and other EHR work. The green background indi-
cates work hours.

Free-text responses from the survey on inbox management strategies supported these com-
putationally generated inbox work patterns. Responses from physicians in group 1 indicated

working beyond work hours, either by staying late in the office or taking work home. Some
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representative comments were as follows. A physician in group 1 reported, “I find when I
sacrifice sleep to do more at home, I'm too tired during the day and I'm very inefficient
at night,” indicating that they were working late at night. Physicians in group 2 indicated
working mostly within work hours. For example, one physician in this group asserted, “I
arrive around 8:30 and prefer to leave around 5:30.” Another stated: "I just like to work and
finish work during my allotted work time. I do not like to work at other times or at home.”
Physicians in group 3 also indicated not taking work home but at the cost of staying late in
the office to clear their inbox. For example, a physician in group 3 said, “I generally try not

to take work home [...] so often stay very late to clean out inbasket.”

Physician characteristics (age, sex, years of experience, and FTE) did not show statistically
significant differences across the 3 work patterns. In terms of EHR use, total daily time
spent on inbox work and other EHR work on workdays (24-hour period) did not differ across
groups (P = .38 and P = .15, respectively). However, as shown in Table 7.1, physicians in
group 1 spent more time in the inbox after work hours compared with other groups, both in
minutes and as a percentage of daily inbox time (P < .001). Posthoc comparisons showed
that all the groups differed from each other. Group 1 also spent more time in the inbox work

on nonworkdays (P = .03).

Physicians in group 1 were more likely to batch their inbox work (ie, do most of their inbox
work in a few chunks of time rather than consistently throughout the day) than group 2,
as 50% (5/10) of physicians in group 1 batched their inbox work compared with 6% (1/17)
in group 2 (x* = 4.03; P = .045). The rate of switching windows within the EHR was
not statistically different among the 3 groups (P = .24), with all groups switching windows
4-4.5 times per minute of EHR use, on average. The groups spent different amounts of
time per message (P = .004). The time per message was higher for group 1 (mean 0.46
min, SD 0.11 min) than for group 2 (mean 0.35 min, SD 0.06 min) and group 3 (mean 0.38

min, SD 0.07 min). Groups 2 and 3 did not differ significantly (P = .21). In terms of
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Group-1 Group-2 Group-3 P
Mean (SD) Mean (SD) Mean (SD) value

Clustering factors (% of all-day inbox duration)

Workhours inbox duration 37 (12) 82 (8) 62 (9) <.001
Outside and non-contiguous to workhours 42 (11) 1(2) 12 (5) <.001
Contiguous to work hours 21 (11) 17 (7) 26 (13) .03
Duration of inbox work on workdays and non-workdays (mins)

Workhours inbox duration 25.36 (13.03)  47.97 (13.35)  42.13 (16.56)  .002
Outside-workhours inbox duration 41.37 (13.81)  10.91 (5.63) 26.97 (13.26) <.001
Inbox duration on non-workdays 32.74 (37.46) 11.13 (19.69) 6.54 (11.3) .03
Message types (% of all inbox time)

Patients 32 (10) 35 (10) 42 (10) 02
Results 30 (9) 32 (11) 26 (10) 1
Requests 24 (7) 20 (6) 21 (6) 31
Admin 14 (5) 13 (4) 11 (4) 14

Table 7.1: Comparing inbox use characteristics across three work patterns.

inbox message types, there were statistically significant differences among groups in patient-
initiated messages (P = .02), with group 3 spending a higher average percentage of their
inbox time on patient-initiated messages than group 1, and no differences for other group

pairs (Table 7.1).

7.4.3 Stress patterns

Visualizing stress patterns throughout the day showed that stress was high at the beginning
of the workday. The first hour of work (8:30 AM to 9:30 AM) had an average stress duration
of 35% of the hour (SD 26%; SE 4%). Stress then started to decrease until the lunch hour
and increased again at the start of the afternoon clinic shift. Toward the end of the workday,
the stress duration decreased. There was another increase in stress in the evening, followed
by a decrease in stress at night and during typical sleep hours (Figure 7.2). This 3-wave
pattern of daily stress was consistent across the 3 work patterns, although group 2 had their

highest stress an hour earlier (ie, 7:30 AM to 8:30 AM) than the other groups (Figure 7.2).
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Figure 7.2: Workday stress pattern per group. Error bars represent the standard error of
the mean (SE).

There was a difference in the average duration of stress during work hours among the groups
(Kruskal-Wallis; P = .02). A posthoc comparison showed that group 1, the group with the
highest after-hours inbox work duration, had a longer duration of stress during work hours
than group 2 and group 3, with 33% (SD 27%) of work hours for group 1 being stressful (80
out of 243 min of valid HRV data indicated medium to high stress) compared with the 18%
(SD 18%) for group 2 (47 out of 265 min of valid HRV data) and 22% (SD 24%) for group 3
(58 out of 265 min of valid HRV data). There was no significant difference between group 2
and 3 (P = .73). The number of valid minutes of HRV measurements was not significantly

different across groups.
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On average, physicians missed 45% (SD 20%; 9.4 out of 21) of the experience sampling
prompts over the study period. Of the 485 submitted responses, 188 (38.8%) reported a
stress level of over 50% (the midpoint of the slider). There was no significant difference in

the average daily self-reported stress across the 3 inbox work patterns (P = .99).

Finally, in the survey on inbox management strategies and stress, physicians reported that
60% (SD 19%) of their work-related distress came from inbox management. Regarding the
question of how distressful they find inbox management overall, of the 44 physicians, 19
(43%) said it was moderately stressful, 15 (34%) said it was very stressful, 6 (14%) said it
was extremely stressful, and 4 (9%) said it was not very stressful. There were no statistically

significant differences in survey responses across the 3 inbox work patterns.

7.4.4 EHR use characteristics associated with stress

We investigated detailed EHR use characteristics associated with stress using a mixed effects
model, with workdays as the unit of analysis. The model showed that fixed effects accounted
for 15% of the variation in duration of stress during work hours (Table 7.2). The physician’s
age, sex, and FTE worked were not associated with stress. The rate of switching windows
when using the EHR was positively associated with stress (P = .001). Time spent on inbox
work during work hours was positively associated with stress (P < .001), whereas time spent
on other EHR activities during work hours was negatively (but very weakly) associated with
stress (P < .001). Inbox work outside of work hours was positively associated with stress
during work hours (P < .001). Interestingly, the proportion of inbox time spent on patient
messages was not associated with stress. Surprisingly, batching inbox work for the day was
also positively associated with stress (P < .001). Finally, days of the week were predictive
of stress, with Mondays and Thursdays negatively associated with stress, whereas Tuesdays

and Wednesdays positively associated with stress (P < .001 for each).
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Fixed effects B (SE) Std P value

Full-time equivalent 1.94 (1.39) 0.27 .16
AGE 20.01 (0.02)  -0.05 79
Female 0.45 (0.38) 0.21 24
Window switching rate 0.1 (0.03) 0.08 .001
Workhours inbox duration 0.003 (0.001) 0.08 <.001
Workhours non-inbox EHR duration -0.002 (0) -0.06 <.001
Non-workhours inbox duration proportion 0.35 (0.07) 0.09 <.001
Patient messages proportion -0.09 (0.08) -0.01 0.28
Batching 0.13 (0.03) 0.06 <.001
Monday 0.22 (0.04) 0.1 <.001
Tuesday 0.16 (0.03) 0.06 <.001
Wednesday 0.53 (0.03) 0.2 <.001
Thursday 0.13 (0.04)  -0.05 <.001

The dependent variable is duration of stress during work hours.
Friday is the reference category for the variable day of week.

Std B is the standardized coefficient.
EHR: electronic health record.

Table 7.2: Generalized linear mixed effects regression model.

7.5 Discussion

7.5.1 Principal findings

To our knowledge, this study is the first to measure physician stress using wearable sen-
sors over several days of outpatient practice and the first to identify distinct EHR inbox
work patterns and their associations with stress. Although the topic of EHR use and stress
(specifically, self-reported burden, burnout, workload, and well-being) has been addressed in
previous studies, this study is novel in that we measured stress unobtrusively and continu-
ously through physiologic measures and used system logs to gain detailed insight about EHR
use factors associated with stress. Higher rates of EHR window switching, longer inbox work
duration, and a higher proportion of inbox work done outside of work hours were associated
with higher stress. Daily stress patterns showed 3 waves of stress: in the first hour of work,

at or after lunch hours, and in the evening.
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In addition, we found that physicians fell into 3 groups with different patterns of inbox work.
Some physicians tended to do most of their inbox work within work hours, whereas others did
inbox work before or after but contiguous to work hours. The third group did inbox work in
late evenings. These groups differed in characteristics such as inbox work batching, time per
message, and the proportion of inbox time spent on patient messages. Physicians who did
most of their inbox work outside of work hours were more likely to batch email and spend
more time per message, whereas physicians who mostly do their inbox work within work
hours were more likely to continually check their inbox throughout the workday, potentially
in the short periods of time between patient appointments, and spent less time per message.
The group that did most of their inbox work outside of work hours had the longest stress

duration during work hours.

A strength of this study is that we measured stress using 3 different methods. The HRV-based
stress provided a continuous timestamped stress measure that could be correlated with inbox
use patterns throughout the day, the experience sampling measure provided momentary self-
assessment of stress 3 times a day, and the survey provided a reflective measure on perceived
overall stress related to inbox work. HRV-based stress differed across groups but self-report
measures did not. It is well established in the literature that short-term self-reported (ie,
perceived) stress and acute physiological stress do not always align linearly in daily life
settings [123, 109, 200]; however, both are important to monitor as they both have health

and well-being implications [243, 146, 298, 301].

7.5.2 Comparison with previous work

Previous studies on EHR use patterns have quantified the time spent on different EHR
activities within and outside of work hours [16, 9]. However, variation among physicians is

not well studied, and no previous study has attempted to characterize physicians based on
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their patterns of daily inbox use. One study [17] found that physician-to-physician variation
explains most of the variability in EHR use time. We extend the findings on the variation in
EHR use, focusing on inbox use and comparing physician characteristics across work patterns
based on work hours and after-hours EHR inbox use. Aligned with previous findings [17], we
did not find differences in physicians’ sex distributions between the group with the longest
after-hours inbox time and the group with the shortest after-hours inbox time. We also
did not find differences based on FTE, contrary to previous findings [17] that more work
relative value units generated by physicians (another measure of workload) were associated

with more EHR time after work hours.

Most studies use basic measures to characterize EHR usage, such as the duration of time [16,
247, 11]. In one study, researchers used more complex measures to characterize mobile EHR
usage, such as the number of log-ins and features used and usage paths (ie, the frequency and
complexity of consecutive actions) [270]. They compared doctors across medical specialties
and found that physicians other than surgeons had more diverse mobile EHR usage patterns
with higher complexity and repetitive loops compared to surgeons [270]. In this study,
we also used detailed EHR and inbox usage characteristics such as window switching, inbox
work batching, the time per message, message types, and the time distribution between work
and nonwork hours. Our finding that the window switching rate was positively associated
with stress could reflect the complexity and repetitiveness of physicians’ EHR interactions,
as indicated in prior work [270], and the efficiency issues often associated with physicians’
satisfaction with EHRs [320]. Another study on EHR inbox burden [204] also reported that
excessive steps were needed to process messages and that physicians recommended reducing

the number of mouse clicks necessary to process messages.

A recent study suggested a relationship between patient call messages and clinician burnout
[110]. Their category of patient messages included all messages related to patient care tasks,

such as phone calls, refill requests, and patient care forms. In our study, the category of
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patient messages included only patient-initiated messages and was not found to be associated

with stress, although it comprised most of the inbox time for physicians.

It is not surprising that the differences among groups in HRV-based stress did not align with
self-reported perceived stress. Previous studies have noted several issues in the interrela-
tionship between perceived and physiological stress [111]. For example, the timing of the
perceived stress prompt (before, during, or after a stressor event) could determine whether
and how perceived stress correlates with physiological stress measured during the stressor
event (254, 83, 215]. This has important implications for real-time stress monitoring for
physicians, as it suggests that daily prompts to measure perceived stress in situ could fail
to capture physiological stress. Increased and prolonged physiological stress reactions are

associated with several health and well-being risks [160].

The results also suggest practical implications for organizational changes and system design.
Previous studies have recommended a fundamental redesign of the EHR to improve data
entry and retrieval [54]. On the basis of our finding that window switching is associated with
stress, a redesign that minimizes the need to navigate to different windows to record or obtain
information may be beneficial. For example, contextual information for inbox messages can
be made visible from the inbox [204]. Our findings lend support to recommendations from
a previous study to automate frequently performed actions such as message routing and
leverage team support for inbox management [204]. Allocating time for inbox management

within work hours, also recommended in a previous study, may also help reduce stress [204].

7.5.3 Limitations

In this study, the regression model with EHR use characteristics explained 15% of the vari-
ation in duration of stress during work hours, which is a considerable proportion given the

myriad factors that can potentially influence stress. However, stress was likely to have also
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been influenced by other variables that were beyond the scope of this study. In addition, the
associations we observed between stress and window switching, inbox work duration, and
inbox work outside work hours do not necessarily prove that the latter factors cause stress.
It is possible that physicians who are busier during work hours have more stress and also
make more window switches, have more inbox work, and have to do more inbox work outside

work hours.

HRV-based measures are affected by several factors, such as health and physical activities.
Although we tried to control these effects with our participant inclusion criteria and by
removing periods that had physical activity registered by the wearable device, it is possible
that carry-over effects of physical activity are still present in the HRV data of sedentary
moments. Moreover, removing periods with physical activities could have removed periods
when psychological stress was experienced. For example, walking to an important meeting
could be mentally stressful but it will not be captured in our data because of the elimination

of periods when walking is detected.

HRV data were excluded during periods of physical activities and were occasionally missing
because of sensors losing contact with the skin. We set a minimum threshold (measurement
period) of 20 minutes of valid data per hour for hourly stress measures and 2 hours for daily
stress measures. Although not complete, we do feel that this is a reasonable proxy for the

stress experience of that hour and day and a reasonable mitigation method for missing data.

Inbox use patterns might differ from one setting to another based on the organization’s
policies and norms. For example, the medical group where this study was conducted encour-
aged patients to use EHR portal messages to communicate with physicians. Simultaneously,
system-generated messages and administrative reminders are kept to a minimum whenever
possible. Thus, the distribution of different message types may differ from that in other

settings. These factors must be considered when generalizing our findings.
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Finally, some physicians might have had panel management time (ie, time designated by
departments specifically for tasks such as inbox management) incorporated within their
work hours. In this study, we did not have access to data on panel management time. Thus,
we cannot make assumptions about why inbox work patterns differed among physicians. We

can only report the relationship of these different work patterns with stress.

7.6 Conclusion

This study is the first to use continuous and unobtrusive measures of stress to evaluate as-
sociations between EHR inbox use and stress among physicians. A total of 3 potentially
modifiable factors were associated with stress: window switching, inbox work duration, and
inbox work outside work hours. These findings have implications for research and organiza-
tional policies on stress measurement and EHR inbox management time and EHR system

design.
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Chapter 8

Discussion and Conclusion

8.1 Summary of findings

The studies presented in this dissertation investigated computer use factors associated with
stress in two working populations (information workers and physicians) by using unobtrusive
computer logging and stress tracking methods in their real work environments. With infor-
mation workers, we aimed to uncover everyday computer interactions (active computer time
within and outside work hours, computer work patterns, time on work and non-work com-
puter activities) that are associated with daily objective measures of stress, and to identify
individual factors that influence this association. We also aimed to introduce a novel measure
related to computer use, which is the regularity of work-related computer use that reflects
day-to-day fluctuations in workload, and we assessed the association between this measure
and various perceived and objective stress measures. Employee perspectives on technology-
supported stress tracking were evaluated with the aim of discovering the perceived benefits
and challenges for different stress-tracking modalities in real workplace environments, and

providing actionable recommendations for organizations and designers. With physicians,
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we focused on an emerging stressor in their Electronic Health Record (EHR) systems work,
which is increased inbox management demands. We aimed to quantify the time primary care
physicians spend managing inboxes, describe daily patterns of their inbox use, investigate
which types of messages consume the most time and identify factors associated with inbox
work duration. We also aimed to cluster distinct patterns of EHR inbox work, identify physi-
cians’ daily stress patterns, and evaluate the association between EHR inbox work patterns

and physicians’ physiological stress.

Information workers experienced stress for 22% of the workday (duration of medium and
high stress to the duration of HRV recording) compared to 33%, 22% and 18% for physicians
across the three different work patterns. The three work patterns for physicians, identified
by clustering physicians based on their temporal inbox work patterns, were: (1) most inbox
work is done outside of work hours, (2) most inbox work is done within work hours, and (3)
some inbox time outside, but mostly contiguous to, work hours. There was no difference in
EMA reported stress across the three work patterns for physicians, unlike HRV-based stress
which showed a difference, where the group with most inbox work done outside of workhours
experienced more physiological stress. Information workers reported high perceived stress
in 37% of their EMAs, and physicians reported high perceived stress in 39% of their EMAs.

Information workers missed 33% of their EMAs while physicians missed 45%.

Although information workers spent longer time working on the computer compared to
physicians (4.6 vs. 3.5 hours), the proportion of computer duration that was spent doing
inbox work was similar (33% vs 31%). For physicians, 37% of email work was done out-
side of work hours and the patterns of email work differed from the patterns of other EHR
work. Physicians also worked more outside of workhours compared to information work-
ers, although this might be explained by how work hours are defined differently for the two
populations. For physicians, workhours were fixed, defined by the clinic hours (8:30 AM to
12:30 PM and 1:30 PM to 5:30 PM). Any work outside of these hours was counted towards
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the non-workhours work duration. For information workers, work hours were defined by the
participants’ self-reported “typical” hours as their hours are somewhat flexible, so if it were
typical for an employee to arrive to work late and leave later than their formal hours, any
work outside these typical hours would count towards the non-workhours work duration.
Typical hours reflected the hours usually needed to finish their work tasks, therefore observ-
ing computer work activity outside of those hours was not common in our data. Another
factor contributing to the observed difference in outside-hours work between information
workers and physicians is the access mode to work systems. As we did not track information
workers” phones or personal laptops, any work outside of work hours from their personal
devices is unaccounted for, unless participants remotely accessed their work computers from
their personal devices over a private network, which was captured by our logging software.
Participants were asked whether they use personal devices for work, and most participants
said they only occasionally check work emails on their personal devices. For physicians,
access logs to the EHR system were recorded whether they used their work computers or

personal devices, thus fully capturing their EHR work within and outside work hours.

Physicians had a higher rate of window switching, with 4-4.5 switches per minute, compared
to 1.36 switches per minute for information workers. The study of information workers also
quantified time spent on non-work computer activities (e.g. social media, music, shopping)

and the day-to-day variability of computer work duration.

To our knowledge, this dissertation is the first to quantify this range of computer use factors
and identify their independent association with physiological stress in two working popula-
tions. Among the interesting findings is that time spent on email work was associated with
more stress for physicians, but not for information workers. The reason for this is unclear,
but it is possible that the importance of email to the job could be a factor [64]. The medical
group in this study minimizes informational and administrative messages, and primarily uses

the EHR inbox for clinical care, as shown by our message type analysis (chapter 6). Infor-
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mation workers on the other hand might use email for a wider set of purposes, including
personal communications. The perceived importance of email to the job depends on the
job role, with higher management responsibilities being related to higher email importance.
Working on many projects and collaborating with others such that one’s work depends on
the activities of others also increased the perceived importance of email to one’s job, which
in turn leads to the feeling of email overload [64]. These factors were not accounted for
in our sample of information workers, and we expect that they would vary across the job
roles included in our sample. For physicians, we expect less variation in these variables
(management responsibilities, number of projects, collaboration) as the work environment,
as well as the purpose of using the EHR email, was consistent across the sample. The EHR
inbox is primarily used for clinical care rather than managing projects and collaborations as

information workers might do.

Past research has shown several paths through which email can affect emotional states. In
studies of college students, email use was linked to decreased depression as email provided
social support [148, 198], but was not found to relate to daily physiological stress [178] or
self-reported stress in a prospective study [290]. In studies of office employees, email has
been found to be associated with daily physiological stress [177, 176], but employees also
reported feeling “cut off” when their email access was restricted for the purpose of the study
[177], which aligns with research highlighting the social aspect of emails. In another study,
despite reporting higher mental effort with email interruptions, participants did not report
more stress with email interruptions than without email [142] but surprisingly reported more
positive valence and dominance. Emails during work might cause a feeling of being connected
and happy to help, as the authors explained [142]. Furthermore, the nature of email work
can determine whether it relates to positive or negative outcomes. Specifically, email can
be rote or focused work [174]. Rote work is associated with feeling happy while focused
work can involve stress [174]. Rote email work might relate to using email as a sanctioned

way of procrastinating [223], or “workcrastination” as refered to in popular media, which
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refers to handling less important or less challenging tasks such as emails in avoidance of
working on more important and challenging tasks. Overall, while some studies indicated
a positive association between email and stress, other studies showed potential moderating
factors and proposed ways that email could be related to positive states, which could explain
the difference in email stress between our two study populations. This dissertation provided
evidence that the relationship between stress and email use at the workplace can vary across
work contexts, and even within the same work contexts (i.e. our findings with information
workers contradicting previous findings). Further research is needed to investigate email
work and stress, taking into consideration job-related and dispositional factors, as well as

email content, importance and urgency as potential moderating factors.

Batching email work was associated with less stress for information workers (moderated by
neuroticism) while batching was associated with more stress for physicians. Clinical hours
for physicians are mostly dedicated to seeing patients, therefore, on days when physicians
batch emails instead of checking in-between patient visits, they might be having busier
clinics with no time to check email and therefore have a higher stress duration on those
days. Additionally, our findings indicated that physicians who spent more time doing inbox
work outside of work hours tended to batch their emails, which could indicate that physicians
cluster their inbox work to be done after work hours when they cannot tend to it during
work hours. For information workers, their schedules might be more flexible and they can
choose when to check email. Batching email might be their preference rather than being
dictated by their work schedule, and therefore it could be associated with less stress. More

research is needed to confirm these propositions.

Window switching rate was associated with higher stress for physicians, as well as informa-
tion workers who scored high on neuroticism. Physicians had almost 3 times higher window
switching rate than information workers. For physicians, anecdotal evidence has been re-

ported about the burden and inconvenience of having to collect information from several
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pages to accomplish tasks. The number of clicks needed to accomplish tasks and the number
of screens visited have also been reported as measures of inefficiency that were associated
with EHR fatigue [131, 54]. On the other hand, for information workers, more contextual
data is needed to understand whether window switching is associated with boredom and
lack of focus (less stress) [174] or inefficient design and information overload from visiting

multiple pages to accomplish tasks (more stress).

In both study populations, we found that computer use factors explain 14-15% of the vari-
ability in daily stress. This is a considerable proportion given that stress is a complex
affective and physiological state affected by many individual and situational factors that
are not yet fully understood [120]. Our research contributed to the understanding of stress
in the workplace by identifying computer use and individual factors related to objectively
measured stress. However, for the purpose of building intelligent systems that predict stress
from computer-use “behavioral sensors” (i.e. sensing stress based on behaviors exhibited
through computer interactions), a higher prediction accuracy is needed. HRV data from
wearable sensors can be used as ground truth to build models that predict stress from com-
puter use patterns. Ultimately, when these models prove a high accuracy matching what a
physiological sensor would detect, they can be deployed to track stress without the need for
wearable sensors. Based on our findings, considering building a system that tracks computer
use factors (time spent withing and outside work hours, work patterns and time spent on
different activities) and makes a prediction about user stress at a given time point based on
these tracked factors, the system would likely not be able to provide accurate stress predic-
tions to match what a physiological sensor would detect. Concerns have been raised about
the accuracy and biases of behavioral sensors such as cameras capturing facial expressions
for automated emotion recognition [127]. Other computer-interaction-based “behavioral sen-
sors” to measure stress from mouse and keyboard interaction have also had limited accuracy
(328, 108, 168, 140]. Similarly, relying on our computers to detect our stress based on our

activity patterns is still a challenging goal to reach. While a fully automated stress detection
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system from computer activity tracking is yet to be achieved, research in this area advances
the understanding of stress, its correlates and its measurement challenges. For now, wear-
able devices provide accurate and unobtrusive method to measure stress in daily workplace
settings, and replacing them with behavioral sensors is a challenging yet promising area of

research.

The analysis of employee perspectives on stress tracking at the workplace revealed distinct
benefits and challenges associated with each tracking modality: wearables and EMAs. While
most users found the wearables comfortable and unobtrusive, users did not engage with their
data enough to better understand their stress. Their brief interactions with their wearable
device data pointed to concerns regarding understanding the data, trust in algorithmic out-
put, and confirmation bias which made participants selectively validate their stress with
wearable devices. These issues have been reported in limited self-tracking literature. We
contributed empirical evidence showing the extent to which these perceived benefits of un-
obtrusive tracking could be problematic given the biases they might introduce. For EMAs,
we showed that although they encouraged reflection of momentary affective states, partic-
ipants reported difficulties assigning a “stress score” or articulating how they felt in the
EMAs. Actionable design guidelines for organizational implementation of stress tracking
systems include encouraging discoveries about one’s stress to combat the effect of selectively
engaging with the data (confirmation bias), encouraging active evaluation of system out-
puts to combat the effect of undue trust in algorithmic output, and providing comparative

measures to help users rate their stress more accurately.

Perceived and physiological stress

An important contribution of this work is demonstrating how perceived and physiological
stress do not always align in real-life settings. Our results showed that daily physiological

stress, assessed continuously through a heart-rate wearable sensor, was associated with daily
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computer-related work patterns. However, perceived stress measured three times a day
through EMAs did not correlate with any work-related measure, except window switching.
For physicians, different work patterns (i.e. working mostly within or mostly outside of

workhours) showed differences in physiological stress, but no difference in EMAs of stress.

Theories on stress posit that cognitive appraisal of stressors as threatening or demanding
lead to physiological stress responses such as changes in the level of the cortisol hormone,
faster respiration, and elevated heart rate [153, 32, 207, 291]. This relationship between
perceived stress and physiological responses has been confirmed in laboratory studies where
stress is induced through a stressful task. For example, in a study that administered three
different tasks as stressors [39], researchers found that all three tasks increased perceived
and physiological stress. However, results from studies in the wild are inconclusive with
regards to the association between perceived and physiological stress. In a review of field
studies measuring self-reported stress and cortisol [111] , researcher found that some studies
reported a positive association, while others reported a negative or no association between
self-reported mental stress and the cortisol response. Therefore, there is no sufficient evidence
from past studies for an association between self-reported stress and the cortisol response in
real life settings. The authors attributed the mixed results to the diversity in study designs
and the perceived stress instruments [111]. For HRV in real life settings, results on the asso-
ciation with perceived stress are also mixed. For example, no correlation was found between
perceived job stress (i.e. difficulty and amount of work in the last month) and HRV [123].
Daily perceived negative affect and self-reported daily stressors were correlated with HRV in
one study [264]. Another study collected physiological and self-reported momentary stress
(high versus low) for 15 participants during five regular work days and found inconsistencies
across participants in how accurately HRV can predict their EMA responses [109]. On av-
erage across participants, HRV yielded an accuracy of only 56% [109]. Another study [200]
achieved a classification accuracy of 59% in a three-level prediction task of perceived stress

(low, moderate, high). In a simpler classification task of high versus low stress, a study [197]
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found that HRV features achieved a classification accuracy of 78%.

The lack of consensus in previous studies on the relationship between HRV and perceived
stress can be attributed to methodological issues. In laboratory settings where stress is
induced through validated stressors such as mentally demanding tasks, stress is more salient
and is reflected in both physiological responses and self-reports of the stress level experienced
in the task. In everyday stress tracking in the wild, and without prior knowledge of specific
stressful periods during the day, the correlation between continuous physiological data and

a few EMAs during the day might not be strong.

The timing of the EMA of stress (before, during, or after a stressor event) could determine
whether and how perceived stress correlates with physiological stress measured during the
stressor event [254, 83, 215]. For example, a study in a controlled setting found that the
physiological response to a stressor was related to subjective measures of stress during but

not before or after the stress-inducing test [100].

Memory biases could also play a role in the lack of agreement between continuous physiolog-
ical measures and EMAs in uncontrolled settings. When EMAs ask participants to evaluate
their stress at a given moment, participants might be reflecting on a stressor that has ended.
Thus, EMAs would reflect stress while physiological response would not. Conversely, one
might also forget or not notice a stressor when reflecting on their stress, while physiological
sensors would capture such stress. Moreover, self-reported momentary stress can be influ-
enced by chronic stressors. Chronic stressors do not evoke a physiological response in the
autonomic nervous system that produces the HRV stress response for acute stressors (i.e.
the fight or flight response, see chapter 2.1), which might create a misalignment between

EMAs of stress and physiological measurements.

Lastly, EMAs might be ignored during busy and stressful times, as our findings (chapter 5)

and previous research has indicated. Thus, while the continuous HRV measure would capture
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stress during those times, the EMAs would not, which will lead to a lack of correlation for
all-day stress measures, either due to missing data points at those time, or due to delayed
EMA response until stressors have passed (i.e. tending to the EMA after finishing a stressful
task). Given the high percentage of missed EMAs in our studies (39% for information workers
and 45% for physicians), it is possible that several high-stress moments were not captured

through EMAs but were still captured with the HRV sensor.

To build on our findings, future work can systematically evaluate the association between
HRV-based stress from wearable sensors and perceived stress through EMAs in real-world
settings to better understand when and how these different measures of stress agree and

when they differ.

8.2 Research contributions

Through works presented in this dissertation, we made the following research contributions:

e We showed that tracking computer use metrics can reveal information about physio-
logical stress for different working populations, and that much of the variance in daily

stress duration is due to other (likely individual) factors.

e We identified factors related to computer use that correlate with daily stress duration
in the workplace, and showed how these factors’ association with stress can differ
between different work contexts. Specifically, we showed that batching email affects
different working populations differently, potentially due to the daily work schedule and
whether employees choose to batch email or whether their daily work schedule allows
for intermittently checking email. We also provided evidence that the relationship
between stress and email use at the workplace can vary across work contexts (i.e.

information work and medical work), and even within the same work contexts (i.e. our
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findings with information workers contradicting previous findings). The association
between window switching and stress also depends on the work context, potentially

relating to the triggers of window switching.

We modeled how individual factors affect the relationship between computer use and
stress. Specifically, the relationship of batching and window switching with stress is
moderated by neuroticism, and the relationship of non-workhours work duration and

stress is moderated by perceived work-life imbalance.

We provided evidence that unobtrusive sensing of stress via wearable sensors in real-
life settings provides a more continuous measure that correlates with more computer
work factors and captures more variation in daily stress among different work patterns

compared to perceived stress.

We evaluated employees’ perspectives of automated and manual stress tracking in the
workplace, and identified potential problematic behaviors such as confirmation bias and
undue trust in algorithmic output of wearables. We also showed that employees desire
systems that track their work and stress, but have concerns about privacy, challenges

interpreting the data, and a lack of engagement with their data.

We developed actionable guidelines for organizations and system designers in each
work context to address computer use factors associated with stress, such as increased

window switching and working after hours.

We provided recommendations for effectively deploying technology-supported stress
tracking at the workplace, taking into consideration both personal and organizational

stress-tracking goals and concerns.
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8.3 Implications

Previous chapters provided design and organizational implications specific to each study
context. This section discusses stakeholders and potential applications more broadly. The
results of research in the area of sensing and understanding stress will be of interest to several

user, researcher and practitioner communities:

8.3.1 Users

With effective deployment of stress tracking at the workplace, users would be able to monitor
their stress and understand its antecedents and consequences. With increased interest in
self-tracking (e.g. the quantified self movement), the opportunity for the results of this
line of research to reach and benefit users is promising. People with preexisting health
conditions that can have more serious consequences of stress might be especially interested,
or even instructed by their physicians, to monitor their stress [164] as personal tracking
data is envisioned to contribute to the future of health management focused on personalized
preventive health maintenance [282]. For example, people with existing heart conditions
have to monitor their stress since high levels of stress lead to overarousal, which can cause
a heart attack or sudden deaths in people with heart conditions [68]. Examples of stress
tracking for people with pre-existing conditions in clinical settings (e.g. [132, 268]) assert
the value of stress tracking and the need for unobtrusive continuous measurement of stress.

Thus, implications of this research area will be of interest to multiple user groups.

8.3.2 System designers

Designers of stress-tracking applications (e.g. wearables and EMAs) would benefit from per-

spectives of employees reported in this work. Computer systems’ designers would benefit
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from the identified computer interactions that increase stress. For example, we identified
window switching as a contributor to workplace stress. Many HCI design studies have investi-
gated the issue of multitasking and window switching (e.g. [311, 220, 261, 133]). Suggestions
for increased efficiency include different design approaches such as ordering windows by im-
portance, frequency of use or recency, in a grid, map, list or tile styles [305, 43, 261, 285].
Another approach suggested in the literature is semantic content extraction, which displays
only the most relevant content in a window [182], and has been found to enhance task
flow. These approaches can be extended to the office work applications. For the EHR inbox
context, smart applications can be developed that interpret email contents and extract only
the relevant information needed from other windows. Further studies are required to test

these approaches in different work settings.

8.3.3 Personal Informatics community

The personal informatics community includes both users and researchers. Users in the
personal informatics community are people who actively seek logging and tracking several
aspects of their health and wellbeing, and sharing their “quantified-self” data on community
forums [281]. This user base is motivated to track for behavior change, curiosity, or social
engagement [76, 281]. Although the approach implemented in this dissertation, through
unobtrusive tracking, targets regular employees who do not necessarily actively self-track,
we believe the personal informatics community of users would be especially interested to
track their stress and its related daily events. Researchers in personal informatics would
also be interested in the results and methods used in this dissertation. Insights on what
encourages people to track, how to keep the system unobtrusive while also ensuring data
quality, how to incorporate contextual information, and how to provide value for users, will

be of interest to researchers in the space of personal informatics.
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8.3.4 Affective Computing and Context-Aware Computing

In context-aware computing [66], researchers and developers try to study and develop inter-
active systems that adapt to users’ context, including their affect and mental state such as
stress [226]. Besides interest in the methods, affective computing and context-aware com-
puting can be an area of application for stress sensing, where the study and understanding
of user stress state and related behaviors inform the design of interactive context-aware

systems, and more complex forms of human-computer interaction [226].

8.3.5 Mental health research community

The mental health research community is concerned with monitoring mental health states
and understanding markers, triggers and consequences of stress. Tracking stress and com-
puter use at the workplace will uncover information about surrounding factors and behaviors
that will advance our understanding of stress in the everyday life. The individual factors
moderating the relationship between stress and computer work patterns could be investi-
gated further in future work to advance the understanding of how dispositional factors affect

mental health at the workplace.

8.3.6 Organizations

Stress is related to and manifested in workload and work performance, as well as professional
relationships and ties at the workplace [55]. Organization would be interested in quantify-
ing the stress of their employees and its related workplace implications to solve workplace
problems and improve the productivity and quality of life for employees. We discuss the
challenges and ethical considerations of such organizational programs in section 8.4. The

dissertation provided actionable guidelines for deploying stress tracking at the workplace, bal-
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ancing employees personal tracking goals and concerns with the organizational goals (chapter
5). The dissertation also highlighted how computer work contributes to employees’ stress.
Policies could be introduced to minimize after-hours work, reduce email workload and allow
for breaks with non-work computer use. Employees individual differences and personal-life
commitments could be taken into consideration to ensure the effectiveness of any policies or

interventions.

8.4 Limitations

It is possible that participants’ behavior may have changed through their knowledge of the
computer or the stress data collection. However, given the length of our data collection
period and its unobtrusive nature, as well as the participants’ busy work routines, we expect
that participants became habituated to the data collection very quickly and continued their

regular work routines without behavior change.

Our HRV-based stress measure is the duration of medium and high stress according to the
Garmin Stress Score. While studies have shown that the duration of stress is associated
with negative health outcomes as the body experiences allostatic load [191] with prolonged
exposure to stress, using the duration of stress as an outcome measure is unusual. Studies
often use stress intensity, which reflects the level of departure from a person’s normal or
average HRV level. The decision to use duration of stress based on the Garmin stress score
(score of 50-100) might make it difficult to compare stress levels found in our study to the
findings of other studies that used other HRV measures. For example, it is unclear how our
measure of stress maps to normative values of HRV [208], therefore, the health implications
associated with our stress scores are also unclear. When we aggregate the duration of stress
across different stress levels, we lose information about the variability of stress intensity.

Future research can combine measures of intensity and duration to capture stress experiences
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in more detail.

The physiological response to positive arousal (e.g. feeling energized or excited) is the
same as the physiological response to negative stress (i.e. feeling overwhelmed or worried
about demands exceeding resources). While our measure of stress could theoretically include
positive physiological arousal, we expect that typical workdays do not have a medium or high
level of it. We exclude low stress, which could be the “positive stress” needed to get daily
tasks done. Thus, we reduce the chances of our stress measure to reflect high energy and
excitement. Medium and high stress, whether positive or negative, place substantial adaptive

demands on the body and should be monitored.

On the other hand, psychological stress in daily life does not always cause physiological
arousal. Controlled studies in laboratory settings inducing stress support the association
between physiolgoical and perceived stress [283, 280, 39]. However, studies in daily life
settings report mixed results, and have used a wide variation of instruments to measure
daily, long-term, or job-related perceived stress [123, 264, 165]. Our measure of HRV-based
stress might miss some events that a person might perceive as stressful, but that did not
trigger a physiological response. We track physiological stress given its unobtrusiveness of
measurement and significant importance for health, but we also recognize the importance of

perceived stress and how it relates to wellbeing.

Participant self-selection might have unintentionally introduced bias. Only a portion of those
who received the recruitment email expressed interest in participation. Stress level, attitude
towards tracking, job responsibilities or other factors could have influenced participants
decision to participate in the study. Our surveys showed that participants varied in their
job responsibilities and their overall perceived stress, so we expect that the extent to which

self-selection bias affects the sample is limited.
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8.5 Challenges and ethical considerations

There are many challenges for real-life long-term application of stress and computer tracking
at the workplace. This dissertation’s approach addresses several limitations of using self-
reports but also introduces new challenges. For any kind of personal sensors, the challenges
associated with user adoption and abandonment of these technologies are widely recognized.
Research has not yet demonstrated the feasibility of convincing “healthy” individuals to
monitor their mental health [24], unlike monitoring physical health, which is becoming more
common for healthy individuals. For wearables, Lazar et al. [150] examined why users adopt
and abandon a wide range of wearables over a time period of two months. They enumer-
ate several reasons why users take on and give up using wearables, but most importantly
assert that unless the wearables align with people’s daily routines, adoption remains short-
lived. Given that adherence and abandonment are the main challenges of personal tracking,
addressing these issues can enhance the opportunities for collecting and using long-term
longitudinal data. Advances in sensors embedded in everyday devices enable continuous
unobtrusive sensing without requiring extra effort from the user to input data, thereby
addressing the major shortcoming of adherence and abandonment. As we highlighted in
Chapter 5, the unobtrusiveness might come with the cost of forgetting about tracking and

not engaging with the data.

A technical challenge of modeling stress for long-term applications is that models need to be
continually improved and evolved. A personalized model may be less accurate a few years
(or even months) later with lifestyle changes, changes in daily work responsibilities, and
overall mental health changes. Because of the lack of empirical research on long-term stress
monitoring, solutions to this challenge can only be hypothesized. A potential solution is an
approach called “active learning” in machine learning, where the model can query a source
to label new data. For example, the system can prompt the user to indicate their stress

level, or wear the sensors for some time, whenever the model encounters a new pattern that

144



has not previously been seen in the model training set. With long-term tracking, the models
built will need to be continuously updated taking into account new patterns in tracked data,

which might pose a technical burden.

With any user tracking system, privacy concerns are raised. Some privacy concerns asso-
ciated with collecting data from wearables and computer logs were reported by our par-
ticipants. Raij et al. [232] conducted a user study to explore privacy concerns associated
with the disclosure of data collected by wearable sensors in the everyday life and found that
disclosure of stress is among the highest concerns participants had about using wearables.
Similarly, Esptein et al (2016) suggested that perceived privacy risks negatively influenced
individual intention to track personal health with commercial fitness trackers [75]. The find-
ings of Raij et al. (2011) further show that restricting or abstracting collected data had a
significant effect on reducing privacy concerns about data exposure. Sharing personal track-
ing data with third parties such as physicians, insurance companies, and employers can have
benefits for providing personalized services. However, privacy research shows that privacy
calculus (ie the evaluation of risks and benefits of sharing personal data) affects users’ will-
ingness to share self-tracking data with third parties [303]. Specifically, perceived privacy
risks always deter users from disclosing their data, while sharing data due to perceived ben-
efits depend on data sensitivity [303]. Capturing sensitive data about users and their daily
work activities must consider privacy challenges to avoid ethical and legal consequences, and
to reach tracking goals and benefits for both users and organizations. A proposed solution is
to store and process the data locally on the user’s device, rather than sending it to a shared
server. With data never leaving the user’s device, the issue becomes more of a security issue,
keeping the data from unauthorized access and use, than a privacy issue of exposing personal

data.

Related to privacy, another ethical challenge for stress and computer tracking is user agency.

Users should have agency over their data, making informed decisions on what to track and
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share [302, 56, 58, 61]. Voida et al. [302] suggest several steps to help users make informed
privacy decision for systems collecting sensor data streams: telling participants what will be
collected, how long it will be stored, where it is going to be stored and sharing a sample of the
data with participants. Further, to ensure user agency, Voida et al. suggest allowing users to
revoke participation and delete their data. The problem with this approach of user agency
is the resulting incomplete and missing data. Missing data can be compensated for, either
by building models without the features containing missing data, or by imputing missing
values based on historical data, which might be a feasible solution if longitudinal data was
acquired. The balance between user agency and data quality remains to be fully addressed

in user tracking and sensing studies.

Another challenge in user tracking with sensors is making high-level inferences about ob-
served phenomena. Voida et al. [302] explain that the primary weakness of using sensors for
HCI research is their poor ability to answer questions of why. If used inappropriately, sensors
can even poorly detect the what, especially for higher level extrapolations. For instance, as
explained earlier, we observed window switching from computer log data, but it is unclear
whether it is triggered by employees’ interruptability, internal or external distractions, or
system affordances. Higher level interpretations (e.g. triggers, intentions, goals) from log

and sensor data need additional investigations.

8.6 Conclusion

This dissertation has presented novel findings on the association between computer use fac-
tors and stress in two working populations: information workers and physicians. Unobtrusive
tracking methods were employed in real-workplace environments. The dissertation presented
a holistic view of the process of deploying stress tracking in the workplace: from quantifying

relevant computer use metrics, identifying patterns and clusters, to assessing the prediction
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power, identifying the association between computer use factors and stress (and the indi-
vidual factors affecting the association), to reporting employee perspectives and providing
actionable guidelines for organizations and designers. The findings advance the understand-
ing of computer use factors related to stress, and advance our understanding of the benefits
and limitations of unobtrusive stress tracking in real-life workplace environments. I believe
workplace analytics is the future of monitoring employee wellbeing. Unobtrusively and con-
tinuously tracking workplace factors related to stress will help in directing efforts towards

improving the productivity and quality of life for employees.
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A STUDY OF WORKPLACE STRESS USING WEARABLE DEVICES

STRESSED AT WORK?

Track your stress with a smartwatch

We are recruiting participants for a research study about stress in the workplace.
This study may help us to better understand events, interactions, and contexts
that surround high-stress episodes.

Data collection is unobtrusive, using a smartwatch and a computer application.

You will be asked to wear a smartwatch, install a mobile application, and install a
computer application. These applications will run for the period of 3 weeks and
will not interfere with your work.

You will receive a $50 gift card at the end of the study

Fill out this form to determine your eligibility:

For more information, contact Fatema Akbar at fatemaa@uci.edu

RESEARCH TEAM

Lead Researcher Faculty Sponsor

Fatema Akbar Gloria Mark

PhD Student Professor
Department of Informatics Department of Informatics

Donald Bren School of Information and Donald Bren School of Information and
Computer Sciences Computer Sciences
University of California, Irvine University of California, Irvine

Email: fatemaa@uci.edu

UCI IRB Approved: 12-11-2019 | MOD# 27056 | HS# 2019-4895

Figure A.1: Recruitment flyer sent by email to all UCI employees.
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Appendix B

Screener survey

Thank you for your interest in participating in the ”In-Situ Study of Workplace Stress Using

Wearable Devices”.

This survey will determine your eligibility to participate.
Please answer the following questions:

What is your age?

What is your sex? Male Female

What is the highest grade or level of school that you have completed?
High School Graduate

Some College

Graduated 2-year College

Graduated 4-year College

Post Graduate (e.g. MS, PhD)

Prefer not to answer

178



Do you have access to a smartphone with internet access? Yes No
Do you have access to a work computer with internet access? Yes No

How much of your workday do you spend working on the computer?
All of my workday

Most of my workday

About half of my workday

Less than half of my workday

None at all

What are your typical work hours?
9am to 5pm
S8am to 4pm

Other (please specify)
Are you a UCI employee? Yes No
Are you enrolled in another research study about managing stress? Yes No

Are you taking cardiac medications (e.g. beta-blockers, diltiazem, verapamil, or digoxin)?

Yes No
Do you use pacemakers or implantable cardiac defibrillators? Yes No
Have you been previously diagnosed with atrial or ventricular arrhythmias? Yes No

What is your current height and weight?
height:

weight (rounded to nearest pound):

Please enter your first name and last name in the form below.
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First Name:

Last Name

What is your email address? Email Address

What is the best daytime telephone number to reach you at?

Daytime Telephone Number:

Please leave any additional information that you would like us to know in the space provided

below.

Powered by Qualtrics

180



	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	Motivation
	Thesis Statement
	Research objectives
	Dissertation outline

	Background: Stress and Computer Use in the Workplace
	Defining stress
	Stress measurement approaches
	Stress measurement through self-reports
	Physiological sensors

	Theoretical frameworks for stress research
	Individual differences in the experience of stress
	Stress, motivation and performance
	Stress and affect
	Workplace stress

	Modeling stress in the workplace with unobtrusive sensors
	Computer-use factors potentially associated with stress
	Email
	Attention switching
	After-hours work connectivity

	Physician stress related to EHR systems and EHR inbox
	Summary

	Methods: Unobtrusive Tracking of Stress and Computer Use
	Physiological stress through a wearable sensor
	Validation of the Garmin Stress Score
	Technical setup for data collection and storage

	Perceived stress through Ecological Momentary Assessments
	Computer activity logging
	Security and privacy

	Information Workers' Stress and Computer Interaction
	Introduction
	Methods
	Recruitment
	Study protocol
	Computer activity logging
	Measures
	Analysis

	Results
	Daily stress
	Duration of computer work
	Computer work strategies and patterns
	Computer activity types
	Variability of computer work duration

	Discussion
	What computer use factors are associated with daily stress at the workplace? How do individual differences affect those factors?
	How does variability in computer use patterns affect stress at the workplace?
	To what extent does unobtrusive monitoring of workplace computer use help identify stress levels?
	Limitations

	Conclusion

	Information Workers’ Perspectives on Technology-Supported Stress Tracking
	Introduction
	Methods
	Results
	Perceived benefits
	Perceived challenges
	Conflicting preferences for stress-tracking at the workplace

	Discussion
	Design implications for the validation vs. reflection on stress
	Trade-offs between unobtrusiveness, engagement, and value
	Designing for varying and conflicting preferences
	Limitations

	Conclusion

	Physicians’ Electronic Inbox Work Patterns and Factors Associated With High Inbox Work Duration
	Introduction
	Study setting
	EHR system logs
	Statistical analyses
	Results
	Participants
	Time spent on inbox management
	Daily patterns of electronic inbox work compared with other EHR work
	Factors associated with high duration of time on inbox work

	Discussion
	Major findings
	Interpretation and comparison with past studies
	System design and organizational implications
	Limitations

	Conclusion

	Physicians’ Stress and EHR Inbox Work Patterns
	Introduction
	Recruitment and protocol
	Analysis
	Results
	Participants
	Three distinct patterns of EHR inbox work
	Stress patterns
	EHR use characteristics associated with stress

	Discussion
	Principal findings
	Comparison with previous work
	Limitations

	Conclusion

	Discussion and Conclusion
	Summary of findings
	Research contributions
	Implications
	Users
	System designers
	Personal Informatics community
	Affective Computing and Context-Aware Computing
	Mental health research community
	Organizations

	Limitations
	Challenges and ethical considerations
	Conclusion

	Bibliography
	Recruitment flyer
	Screener survey



