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ABSTRACT OF THE DISSERTATION

Manifesting Hidden Structure in Scattering Amplitudes

by

Michael Enciso

Doctor of Philosophy in Physics

University of California, Los Angeles, 2019

Professor Zvi Bern, Chair

This dissertation explores hidden structure within scattering amplitudes in quantum field

theory, both at tree-level and at loop-level, and introduces some novel methods for making

this hidden structure manifest. In Chapter 1 we give a brief introduction to the field of

scattering amplitudes. In Chapter 2, we examine two-loop amplitudes in half-maximal su-

pergravity (SUGRA) and discuss different ways of manifesting the underlying and surprising

UV-finiteness. In particular, we apply state of the art techniques for performing integra-

tion by parts (IBP) reduction on families of multiloop integrals and introduce a new way of

exposing UV-cancellations by performing IBP reduction directly on vacuum diagrams in a

way that does not mix up UV and IR divergences. In Chapter 3 we continue to explore IBP

reduction, now from a different perspective. Here we focus on planar Feynman diagrams and

use the properties of dual conformal transformations to identify a family of IBP vectors that

do not double propagators, and are therefore compatible with the highly successful unitarity

method of computing loop amplitudes. A natural extension of these ideas is to try to apply

similar methods to nonplanar diagrams, and doing so leads to some very preliminary steps

towards uncovering a nonplanar analog of dual conformal symmetry, which is believed to

exist from other considerations. Initial steps along this direction are discussed at the end of

this chapter. In Chapter 4 we continue on from Chapter 3 in uncovering a nonplanar analog
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of dual conformal symmetry. Here we show that through three loops in N = 4 super-Yang–

Mills (sYM) theory at four points and through two loops at five points, a representation of

the amplitudes exist such that every relevant nonplanar diagram enjoys this hidden nonpla-

nar symmetry. In Chapter 5 we leave the world of loop amplitudes and consider one of the

simplest classes of scattering amplitudes—tree amplitudes in planar N = 4 sYM. A novel

geometric perspective on this class of amplitudes is afforded by the amplituhedron picture.

We introduce a new formalism for computing these amplitudes in the NMHV helicity sector,

and a new and purely combinatorial description of the underlying polytopes. Our formalism

makes the equivalence of different triangulations of the underlying space manifest by intro-

ducing a new set of objects that can be used to express the amplitude uniquely. In Chapter

6 we discuss ongoing work. In the first section, we discuss some progress that has been made

in extending the formalism introduced in Chapter 5 to different MHV sectors. This would

provide new insight on the geometric underpinning of these amplitudes, which is currently

not understood. Finally, in the last section of this chapter we describe an algorithm for

finding complete sets of numerical solutions to the scattering equations, and doing so faster

than other implementations currently available.
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Chapter 1

Introduction

In elementary particle physics, one of the most fundamental observables is the scattering

cross section, either in its full form (σ) or its differential form ( dσ
dΩ

). The reason for this

is simple: elementary particles are difficult, and sometimes even impossible, to obtain and

manipulate on their own. Therefore, the best recourse that physicists have available to them

is to collide beams of particles together many times and study the statistical properties of the

resulting events. In slightly more detail, we take two beams of (possibly identical) particles,

collide them at various energy scales, and study the counts, lifetimes, charges, masses, and

other properties of the particles that come out of this process. The theoretical description

of these processes is contained in the scattering amplitude A for the relevant particles in the

relevant theory. The scattering amplitude is directly related to the measured (differential)

scattering cross-section via a theory-independent phase space integral. Schematically,

dσ

dΩ
=

∫
P
|A|2dµ, (1.0.1)

where the amplitude A is stripped of its momentum-conserving delta function1 and the

integral is performed over the kinematically allowed portion of phase space, which accounts

1There must still be one overall momentum-conserving delta function, and we implicitly include this is
in the phase-space measure.

1



for overall momentum conservation as well as the on-shell and positive-energy conditions of

the external particles.

With scattering amplitudes carrying all of the theory-dependent information for one

of the most fundamental observables in elementary particle physics, it is imperative that

the underlying theoretical framework is amenable to their computation. This underlying

framework is quantum field theory, and the method for using this framework to compute

scattering amplitudes has been worked out in great detail decades ago. Most notably, it

was Richard Feynman who clarified many of the computational methods for computing

these observables order-by-order in perturbation theory, using diagrams that have now been

named after him.

In short, one picks a quantum field theory in which to compute a scattering amplitude

and a particular order (of a suitable parameter g) in perturbation theory on which to focus.

The latter corresponds to tree-level, one-loop, two-loop, and n-loop (at order gn, roughly

speaking) amplitudes. These names come from the topology of the relevant diagrams that

one must draw, which in turn come from the order n expansion of the path integral

A f.t.∼
∫
DφI(φ)ei

∫
dDxL(φ,∂φ). (1.0.2)

In this schematic expression, the quantum fields are generically denoted by φ, I(φ) is a mono-

mial in the fields encoding the interaction that is being considered, and L is the Lagrangian

defining the quantum field theory2. We have also used f.t. to denote the fact that we fourier

transform the fields so that the amplitudes are functions on momentum space.

For a given theory and at a given order, Feynman’s calculus tells us how to compute

any scattering amplitude we wish to obtain. When computing at orders that involve loops,

one often encounters ultraviolet (UV) and/or infrared (IR) divergences. The latter are well-

understood and do not affect the finiteness of any observable quantities. UV divergences

2This formula does not address many subtleties, such as Wick rotation, the presence of gauge redundancy
in the path integral, how spinor fields are dealt with, and so on. For the sake of the current discussion,
however, we will not need to address these issues.
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pose a more troubling problem, but even these can be regulated and either reabsorbed in

the couplings and masses of the theory (in the case of a renormalizable theory) or absorbed

by the coefficients of higher-order operators in an effective field theory. It therefore would

appear that, after many decades of work, the problem of computing scattering amplitudes

is solved and one simply needs to sit down and patiently perform whatever computation the

experimentalists might desire.

Philosophically, this is indeed the case, but in practice things are not quite as simple. In

particular, even some of the simplest processes in phenomenologically relevant theories, at

orders of perturbation theory that experimentalists can resolve, would require amounts of

computation that are entirely intractable even with modern supercomputers. For example,

when two gluons scatter into eight gluons—a reasonably frequent process, given the nonlinear

self-couplings of gluons—one would need to compute over ten million Feynman diagrams in

order to obtain the scattering amplitude, and this would only provide the lowest-order (tree-

level) contribution. Therefore, while a mathematician might consider the issue of computing

scattering amplitudes in perturbation theory a solved problem, a physicist does not have

this luxury, since these quantities must also be computed with reasonable efficiency in order

to keep up with experiment.

Indeed, the experimental need for these gluon-to-gluon scattering amplitudes motivated

Stephen Parke and Tomasz Taylor to perform some of these calculations, for reasonably

high numbers of gluons. In particular, they chose a particular helicity configuration—the

maximally helicity-violating (MHV) configuration in which all but two gluons share the

same helicity—and performed these heroic computations. What they found, however, not

only provided necessary theoretical predictions, but also spearheaded a new industry. In

particular, they found that the (color-ordered) amplitude for 2 → n − 2 gluon scattering,

with gluons i and j having opposite helicities from the others, can be written simply as

AParke-Taylor = i(−g)n−2 〈ij〉4
〈12〉〈23〉...〈(n− 1)n〉〈n1〉 (1.0.3)

3



when expressed in terms of spinor-helicity variables3. Recalling that for n = 10 this is the

result of summing over ten million Feynman diagrams, we see that this result is simply

astounding.

In fact, this result teaches us (at least) three important lessons. First and foremost, it

shows us that scattering amplitudes can be simpler than one could have ever reasonably

hoped for. Second, it shows us that sometimes one needs to use non-standard variables (in

this case, spinor-helicity variables as opposed to the usual 4-momentum variables) in order

to expose this simplicity. Third, and perhaps most importantly, it shows us that there is a

structure hiding inside scattering amplitudes that is completely obscured by the standard

(i.e., Feynman diagramatic) way of computing these objects. To appreciate this, we must

note that while the standard approach asks us to increase the number of Feynman diagrams

in this calculation with a faster-than-factorial growth as n increases, the above Parke-Taylor

formula asks us to include one more term in the denominator. This not only exemplifies the

simplicity of any given amplitude but also shows that there is a hidden structure within this

class of amplitudes as a whole that the usual field-theoretic approach is blind to.

This, in turn, begs a few questions. How can this simplicity be explained, understood,

and exploited? How special is this simplicity to gluon amplitudes and when, more generally,

can we expect to find these surprises? Once we know that there is hidden structure and/or

simplicity to be found, how can we make it manifest?

Throughout the last couple decades the community has seen tremendous progress in an-

swering these questions and finding hidden structure and simplicity in large classes of theories

and in wide ranges of orders in perturbation theory. This was perhaps most strikingly ob-

served when Witten showed in 2004 [7] that the Parke-Taylor amplitudes can be understood

as an instanton expansion of a string theory with supertwistor space as its target space. This

result opened the floodgates for the study of scattering amplitudes as a theoretical endeavor

in its own right, setting an example for the types of connections across seemingly disparate

3For a review on spinor-helicity variables, see e.g. Ref. [6].
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arenas of particle physics that one might hope to uncover.

Indeed, simplicity is not the only surprising characteristic that can be found in scattering

aplitudes. As is well known [8–10], there are amplitudes in various supergravity theories that

are UV-finite despite the lack of any well-established symmetry argument, and in Chapter 2

we explore various ways of making this finiteness manifest. The study of amplitudes has also

helped to uncover hidden symmetries of theories, since amplitudes can reflect a symmetry

even if that symmetry cannot be easily seen at the level of the Lagrangian. In Chapters

3 and 4, we show how dual conformal symmetry—a hidden symmetry in planar N = 4

super-Yang–Mills (sYM)—can not only be used to simplify the computation of higher-loop

amplitudes, but also be extended in certain cases to the nonplanar sector of the theory. In

these chapters we therefore see some of the surprises that one can find in an amplitude—

simplicity, finiteness, and hidden symmetry—as well as different ways of exploiting these

surprises for computational efficiency.

Understanding where these surprises come from, however, presents a new (though related)

challenge, and progress in this direction has also been immense in the last two decades. One

such example is the discovery of the amplituhedron [11], which gives a unified geometric

understanding of the tree-level amplitudes and loop-level integrands of planar N = 4 sYM,

making no explicit reference to many of the usual field-theoretic paradigms such as locality

and unitarity. While this geometric picture is elegant and surprising, it is often obscured

in any explicit representation of the amplitudes. In Chapter 5, we present a new formalism

for computing the simplest class of these amplitudes—the tree-level NMHV amplitudes—

in such a way that makes manifest the underlying geometric picture. Finally, in Chapter

6, we discuss some progress that has been made in extending this picture to other, more

complicated tree-level amplitudes in this (admittedly very special) theory, as well as some

other ongoing work.
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Chapter 2

Manifesting enhanced cancellations in

supergravity: integrands versus

integrals

Examples of ‘enhanced ultraviolet cancellations’ with no known standard-symmetry explana-

tion have been found in a variety of supergravity theories. By examining one- and two-loop

examples in four- and five-dimensional half-maximal supergravity, we argue that enhanced

cancellations in general cannot be exhibited prior to integration. In light of this, we explore

reorganizations of integrands into parts that are manifestly finite and parts that have poor

power counting but integrate to zero due to integral identities. At two loops we find that

in the large loop-momentum limit the required integral identities follow from Lorentz and

SL(2) relabeling symmetry. We carry out a nontrivial check at four loops showing that the

identities generated in this way are a complete set. We propose that at L loops the com-

bination of Lorentz and SL(L) symmetry is sufficient for displaying enhanced cancellations

when they happen, whenever the theory is known to be ultraviolet finite up to (L−1) loops.

6



2.1 Introduction

The study of ultraviolet properties of four-dimensional gravity theories has a long history,

starting from the seminal work of ’t Hooft and Veltman [12]. Despite this we do not know the

answer to the basic question of at which loop order various gravity theories actually diverge.

In addition, when divergences occur in graviton amplitudes we now know that they have

unusual properties, including dependence on evanescent effects [13] and suspected links to

anomalies [14,15]. Even more interesting are indications in certain supergravity theories that

the loop order where the first divergence occurs is higher than previous expectations [8–10].

This renews the possibility that certain theories, such as N = 8 supergravity, are ultraviolet

finite at any order in perturbation theory. No known symmetry is powerful enough to render

a four-dimensional quantum gravity theory ultraviolet finite, so if this were true it would be

extraordinary.

Certain cancellations in gravity theories are different from those in supersymmetric gauge

theories in that they cannot be made manifest for ordinary local representations. When such

cancellations happen they are dubbed ‘enhanced cancellations’ [9]. In simple cases, these

enhanced cancellations can be understood through conventional means by constraining the

set of available counterterms from symmetry considerations. For example, at one loop, a

well-known counterterm argument [12] explains that the n graviton amplitudes are finite even

though the diagrams scale poorly in the ultraviolet. On the other hand, recent examples of

enhanced cancellations have as yet no standard symmetry explanation, despite attempts [17–

19] and insight from string theory [20]. These examples include N = 5 supergravity at four

loops in D = 4 [9], N = 4 supergravity at three loops in D = 4 [8], and half-maximal

supergravity at two loops in D = 5 [10]. In the relatively simple case of half-maximal

supergravity at two loops the cancellations have been understood using the double-copy

structure that allows the amplitudes to be built from gauge-theory ones [10]. Unfortunately,

it is not clear how to generalize this understanding to higher loops.
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In light of the difficulties in trying to develop a comprehensive explanation for enhanced

cancellations, we should consider alternative approaches. For instance one could try to mimic

diagram-based proofs of finiteness that were successfully carried out for N = 4 super-Yang–

Mills theory (see for example Refs. [21,22]). These were achieved by finding representations

of the integrand where every term is ultraviolet finite by power counting. However, enhanced

cancellations are different: By definition they cannot be made manifest diagram by diagram

at the integrand level, using only standard Feynman propagators. But one can still wonder if

some kind of integrand-level reorganization could be found that makes large loop-momentum

cancellations manifest or at least clarifies how the cancellations occur.

An obstruction to pursuing these ideas is that we lack a good definition of global vari-

ables for all diagrams of a multiloop amplitude including nonplanar diagrams. One way

to approach this difficulty is to use unitarity cuts. At one loop, a systematic program was

successfully followed for all one-loop (super)gravity amplitudes in Ref. [23] using a formal-

ism [65] based on generalized unitarity [24]. This was used to demonstrate the existence of

nontrivial cancellations between diagrams as the number of external legs increases. However,

a general extension of the one-loop analysis to higher loops remains a challenge.

In this chapter instead of attempting a general argument we turn to specific examples in

half-maximal supergravity, which we study in some detail. We construct the examples using

the Bern–Carrasco–Johansson (BCJ) double-copy construction of gravity loop integrands in

terms of gauge-theory ones [25, 26]. These examples are based on the one- and two-loop

N = 4 supergravity amplitudes previously obtained in Refs. [27–29].

We first show that at one loop it is not possible to construct integrands where cancella-

tions are manifest in general dimensions. In particular, we identify cancellations in D = 4

that require integration identities. At two loops we use unitarity cuts to argue that can-

cellations cannot be made manifest at the integrand level. To further investigate this case,

we use integration-by-parts (IBP) technology [30–34,73,98] to reorganize the integrand into

pieces that are finite by power counting and pieces that are divergent by power counting,
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yet integrate to zero. Although this re-arrangement of the complete integrand is successful,

it requires detailed knowledge of the specific integrals and their relations, making it difficult

to generalize to higher loops.

To deal with this, we then turn to a simpler approach by giving up on trying to make

the full integrand display enhanced ultraviolet cancellations. Instead we series expand in

large loop momenta in order to focus on the ultraviolet behavior. We show that at least in

the two loop examples we study the integral identities necessary for exposing the enhanced

cancellations follow from only Lorentz and SL(2) relabeling invariance. These ideas continue

to higher loops, and as a nontrivial confirmation we found that these principles generate all

required integral identities for exposing the ultraviolet behavior of maximal supergravity at

four loops in the critical dimension where the divergences first occur [35]. Based on these

results, we conjecture that at L loops the IBP identities generated by Lorentz and SL(L)

relabeling symmetry are sufficient for revealing the enhanced cancellations, when they exist.

The principles are generic and present in all amplitudes in the large loop-momentum limit.

This chapter is organized as follows. In Section 2.2, we present one- and two-loop ex-

amples showing the lack of integrand-level cancellations. In Section 2.3 we outline how one

can arrange complete integrands so that they are manifestly finite by power counting up to

terms that integrate to zero. In Section 2.4 we then analyze the large loop-momentum limit,

bringing us to a conjecture on symmetries of the integrals responsible for making enhanced

cancellations visible. We give our conclusions in Section 2.5. We also include an appendix

on subtleties regarding boundary terms in integration-by-parts identities.

2.2 Absence of enhanced cancellations in the integrand

Enhanced cancellations are a recently identified type of ultraviolet cancellation that can

occur in gravity theories [8–10]. These cancellations are defined as follows: Start with an

amplitude organized in terms of diagrams whose denominators are only the usual Feynman

propagators i/(p2 + iε). Suppose this amplitude is ultraviolet finite, yet there are terms
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that are divergent by power counting and cannot be re-assigned to other diagrams without

introducing additional spurious denominators in other diagrams. This implies nontrivial

cancellations that cannot be manifest in the integrand of each diagram. We would then say

there is an enhanced cancellation.

This notion is distinct from the question of whether it is possible to exhibit the cancel-

lations at the integrand level; one might imagine that with careful choices of loop variables

in each diagram, one might be able to align the loop momenta in just the right way so that

poor behavior cancels algebraically between diagrams prior to integration. Here we show

that this does not happen.

We present examples of enhanced cancellations to illustrate that it is only after integration

that divergences cancel. We focus on the relatively simple cases of 16-supercharge half-

maximal supergravity at one and two loops in D = 4 and D = 5. In D = 4 this theory

is just N = 4 supergravity [36]. Even though the one-loop D = 4 cancellation is a well-

known consequence of supersymmetry [37], it provides a relatively simple concrete example

of cancellations that do not arise at the integrand level, but can be exposed using Lorentz

invariance. We then turn to the more interesting case of two-loop half-maximal supergravity

in D = 5. In this case no known standard-symmetry argument invalidates [17–19, 38] the

potential R4 divergence. However, both field theory [10] and string theory [16] calculations

show that there are no R4 terms in the effective action.

In order to construct the integrands we use the BCJ double-copy construction [25, 26],

which we review briefly. The double-copy construction is useful because it directly gives us

gravity loop integrands from corresponding gauge-theory ones. In this construction, one of

the two gauge-theory amplitudes is first reorganized into diagrams with only cubic vertices,

AL-loop
m = iLgm−2+2L

∑
Sm

∑
j

∫ L∏
l=1

dDpl
(2π)D

1

Sj

cjnj∏
αj
Dαj

, (2.2.1)

where the Dαj are the propagators of the jth diagram, L is the number of loops, m is
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the number of external legs and g is the gauge coupling. The first sum runs over the m!

permutations of external legs, denoted by Sm, while the second sum over j runs over the

distinct cubic graphs. The product in the denominator runs over all Feynman propagators.

The symmetry factor Sn accounts for any overcounts and internal automorphisms. The cj

are the color factors associated with the diagrams and the nj are kinematic numerators.

The double-copy construction relies on BCJ duality [25, 26] where triplets of diagram

numerators satisfy equations in one-to-one correspondence with the Jacobi identities of the

color factors of each diagram,

ci + cj + ck = 0 ⇒ ni + nj + nk = 0 . (2.2.2)

The indices i, j, k label the diagram to which the color factors and numerators belong. If the

diagram numerators satisfy the same algebraic properties as the color factors, we can obtain

corresponding gravity amplitudes simply replacing the color factors of a second gauge theory

with numerator factors where the duality holds:

ci → ni . (2.2.3)

The gauge-theory coupling constant is also replaced by the gravitational one: g → (κ/2).

In this construction the duality (2.2.2) needs to be manifest in only one of the two gauge

theories [26, 39]. This construction also extends to cases where the gauge theory includes

fundamental-representation matter particles [40].

2.2.1 One-loop example

We start with the one-loop amplitude of pure half-maximal N = 4 supergravity in four

dimensions [36]. This amplitude is well studied and has been computed in Refs. [27, 28].

The double-copy construction of this amplitude is particularly simple. We start from the

corresponding N = 4 super-Yang–Mills and pure Yang–Mills amplitudes.
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Figure 2.1: The three box diagrams contributing to the one-loop four-point amplitude of
maximal N = 4 super-Yang–Mills theory and half-maximal supergravity.

The one-loop four-point N = 4 super-Yang–Mills amplitude was first obtained from the

low-energy limit of a Type I superstring amplitude [41]. This amplitude is particularly simple

and the only nonzero kinematic numerators are those of the box diagrams in Fig. 2.1,

nbox
N=4 = stAtree

N=4(1, 2, 3, 4) , (2.2.4)

where s = (k1+k2)2 and t = (k2+k3)2 are the usual Mandelstam invariants andAtree
N=4(1, 2, 3, 4)

is the color-ordered tree superamplitude. The combination stAtree
N=4(1, 2, 3, 4) is crossing sym-

metric, so the three box diagrams have identical numerators. It is easy to check that this

representation of the amplitude satisfies the color-kinematics duality (2.2.2).

Replacing the color factors in the pure Yang–Mills box contributions given in Ref. [42]

with the N = 4 super-Yang–Mills numerators (2.2.4), we obtain the N = 4 supergravity

amplitude as a sum over box diagrams,

Mone-loop
N=4 = −

(
κ

2

)4

stAtree
N=4(1, 2, 3, 4)

(
I1234[n1234,p] + I1324[n1324,p] + I1423[n1423,p]

)
, (2.2.5)

where

I1234[n1234,p] ≡
∫

dDp

(2π)D
n1234,p

p2(p− k1)2(p− k1 − k2)2(p+ k4)2
, (2.2.6)

is the first box integral in Fig. 2.1 and n1234,p is the expression defined in Eq. (3.5) of Ref. [42].

The triangle and bubble contributions from the pure Yang–Mills amplitude are simply set

to zero because the corresponding N = 4 SYM numerators vanish. As dictated by the

double-copy construction, the supergravity states are given by the tensor product of pure
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Yang–Mills gluon states with the states of N = 4 super-Yang–Mills theory.

The case ofD = 4 is an example of enhanced cancellations because the three box diagrams

are each logarithmically divergent, yet the sum over diagrams is finite. We can see this by

finding power-counting divergent terms in each diagram that cannot be moved to other

diagrams without introducing nonlocalities in the diagram numerators. An example is the

term,

n1234,p ∼ pµ1pµ2pµ3pµ4ε
µ1
1 ε

µ2
2 ε

µ3
3 ε

µ4
4 + · · · , (2.2.7)

where εµii is the gluon polarization of leg i on the pure Yang–Mills side of the double copy.

The cancellations between the diagrams are nontrivial. To see the cancellation of the

logarithmic divergences, we expand in large loop momentum or equivalently small external

momenta kµi . Because the integrals are only logarithmically divergent in D = 4, this amounts

to simply setting all kµi to zero in the integrand (keeping the overall prefactor fixed). In this

limit, the propagator of each graph become identical, and the resulting graph effectively

becomes a scaleless vacuum integral. Such scaleless integrals vanish in dimensional regu-

larization, but we can introduce a mass for each propagator to separate out the infrared

divergences without affecting the ultraviolet divergence. Starting with the pure Yang–Mills

numerators, keeping only the leading terms in all three box diagrams results in an integrand

proportional to

−istAtree
N=4(Ds − 2)

εµ11 ε
µ2
2 ε

µ3
3 ε

µ4
4

2(p2 −m2)4

[
(p2)2(ηµ1µ4ηµ2µ3 + ηµ1µ3ηµ2µ4 + ηµ1µ2ηµ3µ4)

−4p2(ηµ1µ2pµ3pµ4 + ηµ1µ3pµ2pµ4 + ηµ1µ4pµ2pµ3 + ηµ2µ3pµ1pµ4

+ ηµ2µ4pµ1pµ3 + ηµ3µ4pµ1pµ2) + 24 pµ1pµ2pµ3pµ4

]
, (2.2.8)

where Atree
N=4 = Atree

N=4(1, 2, 3, 4) and Ds is a state-counting parameter coming from contrac-

tions ηµ
µ = Ds. (In conventional dimensional regularization [43] Ds = 4 − 2ε, but in other

schemes, such as the four-dimensional helicity scheme [44], Ds = 4.) In the expression above

we see explicitly that the amplitude is logarithmically divergent by power counting and

13



that no purely algebraic manipulations can expose the cancellation of the divergence. What

makes this case particularly simple is that in the large loop-momentum limit all diagrams

degenerate to a single vacuum integral, avoiding loop-momentum labeling ambiguities in

different terms that plague higher loops.

This example provides a clear demonstration that even after summing over diagrams,

enhanced cancellations are not visible prior to using properties of integrals. To expose the

ultraviolet cancellation we use Lorentz invariance in the form of integration identities:

∫
dDp

pµpν
(p2 −m2)4

=

∫
dDp

1

D

ηµνp
2

(p2 −m2)4
, (2.2.9)∫

dDp
pµpνpρpσ

(p2 −m2)4
=

∫
dDp

1

D(D + 2)

(ηµνηρσ + ηµρηνσ + ηµσηρν)(p
2)2

(p2 −m2)4
. (2.2.10)

With these identities, we find that the integral of Eq. (2.2.8) is equal to the integral of

−istAtree
N=4(Ds − 2)

(p2)2

2(p2 −m2)4

(D − 2)(D − 4)

D(D + 2)

× εµ11 ε
µ2
2 ε

µ3
3 ε

µ4
4 (ηµ1µ2ηµ3µ4 + ηµ1µ3ηµ2µ4 + ηµ1µ4ηµ2µ3) , (2.2.11)

which vanishes in D = 4. While in this case, the cancellation is understood to be a conse-

quence of supersymmetry [37], it does provide a robust example illustrating that enhanced

cancellations become visible in the amplitudes only after making use of integral identities.

2.2.2 Two-loop example

Enhanced cancellations become more interesting beyond one loop where they correspond

to a variety of ultraviolet cancellations for which standard-symmetry explanations are not

known [17–19]. We therefore turn to half-maximal supergravity at two loops. In D = 4 the

cancellations are well understood to be a consequence of supersymmetry [45], but in D = 5

no such explanation is known [10].

In D = 4 we can enormously simplify the integrand by using helicity states. A sim-
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ple trick that helps us simplify the analysis in higher dimensions as well is to start with

the higher-dimensional theory but to restrict the external states and momenta to live in a

four-dimensional subspace. In this way we can use four-dimensional helicity methods to enor-

mously simplify higher-dimensional integrands as well. This trick, of course, does not work

for all states in the higher-dimensional theory, but is sufficient for our purpose of illustrating

the difficulty of exposing enhanced cancellations at the integrand level.

Consider the four-point two-loop amplitude of N = 4 supergravity. This amplitude has

already been discussed in some detail in Ref. [29]. The double-copy construction of the two-

loop integrand is rather straightforward. We start from the dimensionally-regularized D = 4

all-plus helicity (+ + ++) pure Yang–Mills amplitude in the form given in Ref. [42]. (An

earlier form of the integrand may be found in Ref. [46].) In this representation the kinematic

numerators of the planar and nonplanar double-box diagrams shown in Fig. 2.2 are

nP YM
1234 = T

(
(Ds − 2)s

(
λ2
pλ

2
q + λ2

pλ
2
p+q + λ2

qλ
2
p+q

)
+ 16s

(
(λp · λq)2 − λ2

pλ
2
q

)
+

1

2
(Ds − 2)(p+ q)2

(
(Ds − 2)λ2

pλ
2
q + 8

(
λ2
p + λ2

q

)
(λp · λq)

))
, (2.2.12)

nNP YM
1234 = T

(
(Ds − 2)s

(
λ2
pλ

2
q + λ2

pλ
2
p+q + λ2

qλ
2
p+q

)
+ 16s

(
(λp · λq)2 − λ2

pλ
2
q

))
, (2.2.13)

where Ds is the state-counting parameter similar to that at one loop and the subscript

‘1234’ refers to the diagram external leg labeling as in Fig. 2.2. The momenta p and q are

the momenta carried by the propagators indicated in Fig. 2.2, while λp and λq are their

(−2ε) components, where ε = (4 − D)/2. We use λp+q as a shorthand for λp + λq. The

crossing symmetric prefactor

T =
[12][34]

〈12〉〈34〉 , (2.2.14)

is defined in terms of spinor inner products, following the notation of Ref. [47]. The remain-

ing planar and nonplanar double-box numerators are given by relabeling these. There are

contributions to the Yang–Mills integrand from other types of diagrams as well, but we will

not need them for the double-copy procedure.
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(a) (b)

Figure 2.2: The planar and nonplanar double-box diagrams that contribute to the four-point
amplitudes of N = 4 supergravity.

To obtain half-maximal supergravity we then take the pure-Yang–Mills amplitude and

replace the color factors with N = 4 super-Yang–Mills numerators that satisfy BCJ duality

using Eq. (2.2.2). For the two-loop four-point amplitude ofN = 4 SYM a representation that

satisfies the duality happens to match the original construction [48]. The only nonvanishing

diagrams are the planar and nonplanar double boxes shown in Fig. 2.2. The substitution

(2.2.3) is simply

cP
1234 → nPN=4

1234 = s2tAtree
N=4(1, 2, 3, 4) ,

cNP
1234 → nNPN=4

1234 = s2tAtree
N=4(1, 2, 3, 4) , (2.2.15)

where numerators other than the planar and nonplanar ones vanish. As for the one-loop

case, we package the N = 4 super-Yang–Mills tree amplitude for all states into a single

superamplitude. The half-maximal supergravity amplitude is then obtained by summing

over the planar and nonplanar double boxes in Fig. 2.2, with kinematics numerators given

by the product of pure Yang–Mills and N = 4 super-Yang–Mills numerators,

NP half-max. sugra
1234 = s2tAtree

N=4(1, 2, 3, 4)× nP YM
1234 ,

NNP half-max. sugra
1234 = s2tAtree

N=4(1, 2, 3, 4)× nNP YM
1234 . (2.2.16)

The remaining supergravity planar and nonplanar double-box numerators are given by simple

relabelings. Diagrams other than the planar and nonplanar double boxes vanish.
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This construction is also valid for the D = 5 theory with the external states restricted

to a D = 4 subspace. We simply take ε→ −1/2 + ε and accordingly the λp and λq become

one dimensional up to O(ε) corrections. Similarly the state-counting parameter should be

shifted, Ds → Ds+ 1. With these modifications, the simple integrand in Eq. (2.2.16) is valid

for the D = 5 theory as well.

As terminology for the rest of the chapter, when we label an amplitude by its external

helicity, we are not referring to the helicities of the supergravity theory, but to the helicities

of the pure Yang–Mills theory comprising one side of the double-copy supergravity theory.

Cuts and labels for nonplanar amplitudes

Enhanced cancellations generally occur between diagrams of different topologies. A difficulty

for exposing the cancellations at the integrand level beyond one loop is that there is no

unique and well-defined notion of an integrand involving nonplanar diagrams. Nor is it

clear in general how one should choose momentum labels in each diagram that would allow

cancellations between diagrams of various topologies to occur. For planar diagrams there is

a canonical choice of global variables for all diagrams based on dual variables [113], but no

analogous notion is known in the nonplanar case. As a simple example consider the planar

and nonplanar double-box diagrams in Fig. 2.2. Fundamentally, the propagator structure is

different, making it unclear how one might be able show the cancellation without integration.

A way to sidestep the labeling issue is to focus on unitarity cuts. Generalized unitarity

cuts that place at least one line on-shell in every loop impose global momentum labels on

the cut. We can then ask whether we can find nontrivial cancellations in the cut linked to

enhanced cancellations. If such cancellations happen at the level of the integrand, one should

expect an improvement in the overall power counting after summing over all contributions to

the cuts compared to individual terms. Some care is required because cuts can also obscure

cancellations by restricting the diagrams that appear. The more legs that are cut, the fewer

diagrams are included, since only those diagrams that contain propagators corresponding to
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Figure 2.3: The three sunset integrals. These are ultraviolet divergent in D = 4 and D = 5.

the cut ones will be included. Because of this, it is best to focus on cuts where only a few

legs are placed on shell.

Absence of cancellations in a three-particle cut

The three-particle cut in Fig. 2.4 is useful for studying enhanced cancellations. In the fol-

lowing section, using integration-by-parts technology we describe an arrangement of the in-

tegrand where potential divergences are pushed into sunset diagrams, illustrated in Fig. 2.3.

This suggests that the three-particle cut, where the cut lines correspond to the three propa-

gators of a sunset diagram, is a natural one for studying enhanced cancellations. In addition,

this cut fixes all loop momentum labels in this amplitude in terms of the momenta of the

cut lines. An obvious guess is that if we apply the three-particle cut corresponding to the

internal lines of the sunset diagram, we should find improved power counting in the full sum

over terms compared to individual contributions.

The (++++) amplitude has a number of special features that simplify the analysis of the

cut, making it easier to find ultraviolet cancellations if they exist. On the three-particle cut,

the terms in the numerator proportional to (p+q)2 in Eq. (2.2.12) are set to zero because they

corresponds to one of the on-shell inverse propagators `2
1, `2

2 or `2
3, as can be seen in Fig. 2.4,

making the form of the planar and nonplanar numerators identical in the three-particle cut.

A useful feature of the remaining numerator terms that we exploit is that they are invariant

under relabelings: the expression is the same under any mapping of the p and q propagator

labels to any two of the three `1, `2 and `3. In addition, up to prefactors depending on

external momenta, the dependence of the numerators is only on the components outside the
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=
1

2
× +

+ +
1

2
× +

1

2
×

+ perms(`1, `2, `3) + (1↔ 2) + (3↔ 4) + (1↔ 2 , 3↔ 4).

Figure 2.4: The contributing diagrams of the three-particle cut of the half-maximal super-
gravity two-loop four-point amplitude. The shaded (red) dashed lines indicated the legs
which are cut.

four-dimensional subspace where the external momenta and helicities live. These features

enormously simplify the analysis of the cut because most of the numerator factors out and

is independent of permutations of external or internal legs.

Using these observations, after inserting the numerators into the planar and nonplanar

double-box diagrams and taking the three-particle cut shown in Fig. 2.4, we obtain the

expression:

Icut = P(`1, `2, `3)

×
[(1

2

t2

(`1 + k1)2(`3 + k2)2(`3 − k3)2(`1 − k4)2
+

t2

(`2 + k1)2(`3 + k2)2(`3 − k3)2(`1 − k4)2

+
s2

(`1 + `2)2(`2 + `3)2(`3 + k2)2(`1 − k4)2
+

1

2

s2

(`2 + `3)2(`3 + k1)2(`2 + k2)2(`1 − k4)2

+
1

2

s2

(`1 + `2)2(`3 + k2)2(`2 − k3)2(`1 − k4)2

)
+ perms(`1, `2, `3)

+ (1↔ 2) + (3↔ 4) + (1↔ 2, 3↔ 4)

]
, (2.2.17)
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where the on-shell conditions `2
1 = `2

2 = `2
3 = 0 are imposed. The prefactor P(`1, `2, `3) is

P(`1, `2, `3) =− i(Ds − 2)stAtree
N=4(1, 2, 3, 4) T

×
((
λ2
`1
λ2
`2

+ λ2
`1
λ2
`3

+ λ2
`2
λ2
`3

)
+ 16s

(
(λ`1 · λ`2)2 − λ2

`1
λ2
`2

))
, (2.2.18)

which is invariant under the permutations of external and internal cut legs indicated in

Eq. (2.2.17). We have analyzed Eq. (2.2.17) both analytically and numerically and we

find that for `i → ∞ there is no improvement in the large loop-momentum behavior after

summing over all terms, compared to the behavior of a single term. In fact, this is no surprise

because other than the overall prefactor (2.2.18), this sum over terms is precisely the same

one that appears in the three-particle cut of the two-loop four-point amplitude of N = 8

supergravity given in Eq. (5.15) of Ref. [49]. In N = 8 supergravity we know there are no

further cancellations arising from the sum over diagrams. This can be seen as follows: the

only nonvanishing diagrams in N = 8 supergravity are the planar and nonplanar double

boxes of Fig. 2.2, but with no loop momenta in the numerators [49]. Simple power counting

shows that each diagram of N = 8 supergravity is ultraviolet divergent in dimensions D ≥ 7.

This divergence does not cancel in the sum over diagrams, leading to a divergence of the

four-point amplitude of N = 8 supergravity [49]:

Mtwo-loop,D=7−2ε
4

∣∣∣
UV div.

=
1

2ε(4π)7

π

3
(s2 + t2 + u2)×

(
κ

2

)6

stuM tree
N=8(1, 2, 3, 4) , (2.2.19)

where we have stripped the coupling constant and M tree
N=8 is the supergravity tree amplitude.

The fact that there are no further cancellations in N = 8 supergravity implies that no

integrand-level cancellation is possible in our N = 4 supergravity three-particle cut (2.2.17).

One might imagine trying to include relabelings `i → −`i in the spirit of Ref. [50] or other

relabelings in order to try to expose cancellations. However, because of the link to the N = 8

supergravity cut, it is clear there are no further cancellations to be found.

In summary, we see no evidence of cancellations at the integrand level. The usual su-
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pergraph Feynman rules or amplitudes-based proofs of ultraviolet finiteness in gauge theory

(see for example, Ref. [21]) rely on the ability to make the integrand manifestly ultraviolet

finite by power counting. The difficulty in finding a standard-symmetry based explanation

for enhanced cancellations [17–19] in gravity theories is presumably tied to our difficulty in

identifying the cancellations at the integrand level. This greatly complicates any all-order

understanding of the divergence properties of supergravity theories. If we are to unravel

enhanced cancellations, we need to turn to the systematics of cancellations from integral

identities.

2.3 Rearranging the integrand to show finiteness

As discussed in the previous section, it does not appear possible to expose enhanced cancella-

tions purely at the integrand level. In this section we show how one can rearrange integrands

into a form where all terms are manifestly finite by power counting, except those that inte-

grate to zero. We do so using modern integration-by-parts (IBP) technology [30–34,73, 98].

In our discussion we will be using the language of integrands and integrals interchangeably.

This is because the modern approaches to integration by parts can be used to track terms

in the integrand that integrate to zero, in a manner analogous to the one-loop technology of

Refs. [51, 65].

We first outline how IBP relations can be used to reorganize integrands with enhanced

cancellations so that all terms that are naively ultraviolet divergent by power counting inte-

grate to zero. We start from a given integrand that has the schematic structure

Itotal =
∑
i

Ifin.
i +

∑
j

Idiv.
j . (2.3.1)

The sum runs over the various pieces of the integrand, denoted by Ifin.
i , which are finite by

power counting, and Idiv.
i which are divergent by power counting. After integration, however,
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the total may be finite. The idea is to reorganize this integrand into the form

Itotal =
∑
i

Ĩfin.
i +

∑
j

Ĩvan.
j , (2.3.2)

where Ĩfin.
i is another set of integrands that are finite after integration and Ĩvan.

j can be

divergent by power counting but integrate to zero,

∫
Ĩvan.
j = 0 , (2.3.3)

thus making the finiteness manifest. The reorganization is accomplished by writing the sum

over power-counting divergent integrals as

∑
j

Idiv.
j =

∑
j

I ′fin.
j +

∑
j

(Idiv.
j − I ′fin.

j ) , (2.3.4)

where the terms in parentheses integrates to zero and the finite integrals I ′fin.
j are included

with the finite ones in Eq. (2.3.2).

IBP technology offers a systematic means for accomplishing this. We briefly review this.

The IBP method [30] takes advantage of the fact that in dimensional regularization a total

derivative vanishes: ∫ ∏
i

dD`i
∂

∂`µj

(
vµj∏
kDk

)
= 0 , (2.3.5)

where 1/Dk are propagators and vµj are arbitrary functions of loop momenta as well as

external kinematics or other vectors in the problem. Evaluating the derivatives gives a sum

of terms, and the vanishing of the integral therefore implies a relation amongst the integrals

corresponding to each term. By exhausting all such independent relations one can choose a

basis of integrals in terms of which to express a given amplitude. The standard basis choice

at one loop is a combination of boxes, triangles, and bubbles [52], but at higher loops there

is no canonical choice. In general, different bases might be used to manifest different aspects
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of the amplitude, such as its symmetries and/or behavior on certain unitarity cuts.

Generically, when applying integration-by-parts identities, there is no natural separation

of the type in Eq. (2.3.2). In general, the coefficients of individual terms can develop 1/ε

singularities, and divergences cancel in complicated ways, making the finiteness unclear. To

avoid this, some care is required to pick integral bases that (a) do not introduce divergences

in integral coefficients and (b) contain a minimal number of divergent integrals. Usually, one

picks a linearly independent set of integrals, because this minimizes the number of objects

that need to be computed. But, even for an ultraviolet finite amplitude, a general choice

of basis will likely have explicit ultraviolet divergences either in basis integrals or in their

coefficients. The finiteness is thus obscured because the divergence cancels only in the full

sum over contributions. A way to avoid this problem and express the amplitude in the form

of Eq. (2.3.2) is to use an overcomplete set of integrals. The overcompleteness gives sufficient

freedom that we can exploit to make the finiteness manifest.

We illustrate this procedure with a simple example. Suppose our expression is given as

the sum of integrals:

A =
1

70
− 1

2s2
− 1

2t2
. (2.3.6)

Each of these integrals are ultraviolet divergent in five dimensions with the following leading

divergences (omitting an overall π/32):

∣∣∣∣∣
UV div.

=
1

3ε
,

∣∣∣∣∣
UV div.

=
s2

210ε
,

∣∣∣∣∣
UV div.

=
t2

210ε
. (2.3.7)

Evaluating the divergence shows that Eq. (2.3.6) is finite, but this is not manifest in the
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above representation. Now consider the following IBP identities

dω1 = − 70

s2
− 1

3s2
,

dω2 = +
70

su
+

70

tu
− st

3u
, (2.3.8)

where dω1 and dω2 are appropriate total derivatives; their precise form is not important for

our purposes. The dot placed on a propagator indicates that the propagator is doubled, i.e.,

squared. This choice is convenient because the two integrals with doubled propagators are

both ultraviolet finite in D = 5.

For this simple example, one can solve this system of equations for two of the three

ultraviolet-divergent integrals. Plugging in the solution leaves only a single ultraviolet-

divergent integral whose coefficient must vanish, if the amplitude is finite. However, the

ability to express A in Eq. (2.3.6) in terms of a basis of manifestly finite integrals is a

consequence of the simplicity of this example, and for more complicated amplitudes this

straightforward approach will not suffice. We will therefore take a more general approach

for this example. In particular, we can use Eq. (2.3.8) to rewrite the crossed box integral as

= α
(
− 70

su
− 70

tu
+
st

3u

)

+ (1− α)
(70

s2
+

1

3s2

)
+ d
(

(1− α)ω1 + αω2

)
, (2.3.9)

where α is a free parameter. In this way we traded one ultraviolet-divergent integral for two
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ultraviolet-divergent sunset integrals which were already in the basis, plus two other finite

integrals and a collection of integrals that vanish (i.e., are total derivatives). Plugging this

back into the original expression for A gives

A =
(1− α

s2
− α

su
− 1

2s2

)
−
( α
tu

+
1

2t2

)
(2.3.10)

+ finite +
1

70
d
(

(1− α)ω1 + αω2

)
,

where “finite” corresponds to integrals that are manifestly ultraviolet finite with finite co-

efficients and the term 1
70
d(...) vanishes upon integration. For general α this form of A is

still not manifestly finite, but since α is arbitrary we can take it to be α = −u/2t, in which

case the coefficients to the two sunsets both vanish and A is then manifestly a sum of finite

integrals and integrals that vanish. In general, one free parameter will not be enough to

tune away two coefficients of ultraviolet-divergent integrals. For more complicated examples

one needs to generate more IBP relations and introduce more tunable parameters, and in

general each parameter can be used to set one coefficient to an ultraviolet-divergent integral

to zero.

As a nontrivial example, we carried out this procedure for the (− + ++) two-loop am-

plitude of half-maximal supergravity in D = 5. (Recall that the helicity labels refer to

the helicities of the pure Yang–Mills side of the double copy, with the external states re-

stricted to live in a four-dimensional subspace.) The structure of this amplitude is much

more complicated than the (+ + ++) case and more representative of generic cases. In the

first step we reduce the full integrand to a basis of master integrals using Larsen and Zhang’s

method [34]. After this procedure the only contributing ultraviolet-divergent integrals are

the three different labels of the sunsets and a few others. We then used these types of over-

complete relations to express all of the (non-sunset) ultraviolet-divergent integrals in terms

of ultraviolet-divergent sunset integrals, finite integrals and total derivatives that integrate
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to zero. The tunable parameters are solved so that coefficients of the three sunsets vanish

separately, while maintaining finiteness of the coefficients of all finite integrals. Therefore,

by allowing for an over-complete basis and tuning the parameters that keep track of this

over-completeness, we are able to write the amplitude in the desired form, Eq. (2.3.2).

We note that unless special care is taken, an IBP identity in general involves doubled

propagators, as in Eq. (2.3.9). This has the unwanted side effect of introducing spurious

infrared singularities even in D = 5. With more modern approaches [31–34, 73, 98] we can

avoid the appearance of such integrals. This is achieved by imposing

∑
j

vµj
∂

∂`µj
Dk = fkDk , (2.3.11)

on the vµj and where fk has polynomial dependence on Lorentz-invariant dot products of

momenta. We have also applied the more modern approach and find similar results.

The procedure sketched above shows that the D = 5 two-loop four-point integrand of

half-maximal supergravity can be rewritten in a form that is manifestly finite, up to terms

that integrate to zero. However, this procedure relies on the specific details of the integrand

and corresponding IBP relations. It is also computationally difficult to extend to higher

loops. Clearly, we need an approach where the necessary identities can be derived from

generic properties of loop integrals. We will describe such an approach in the next section.

2.4 Vacuum expansion and systematics of ultraviolet cancellations

In this section we describe a systematic approach to understanding enhanced cancellations,

in a manner that appears to have an all-loop generalization. We continue to focus on the

two-loop amplitudes of half-maximal supergravity. The ultraviolet behavior is determined at

the integrand level by large values of loop momenta, or equivalently small external momenta.

It is therefore natural to series expand the integrand in this limit. Although this expansion

has the unwanted effect of losing contact with the unitarity cuts and introducing spurious
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singularities, such as doubled propagators, it does have the important advantage of focusing

on the term directly relevant for the ultraviolet behavior. In general, we are interested in

the logarithmic divergences, so we series expand to the appropriate order where the integrals

become logarithmically divergent in ultraviolet [19, 53]. (We note that while dimensional

regularization does not have direct access to power divergences, such divergences become

logarithmic simply by lowering the dimension.) This expansion generates a set of vacuum

integrals. For example, at two loops these integrals have the form

∫
dDp dDq

N (p, q, ki)

(p2)A(q2)B((p+ q)2)C
, (2.4.1)

where A,B and C denote the powers of the propagators. In addition to being ultraviolet di-

vergent, these vacuum integrals also are infrared divergent. This complicates the extraction

of the ultraviolet divergences. For example, in dimensional regularization these integrals are

scaleless, and the infrared singularities exactly cancel the ultraviolet ones. This is usually

dealt with by introducing a mass regulator or by injecting external momentum into the dia-

gram. (See, for example, Refs. [19,35,53].) We will avoid this complication by systematically

finding relations between the divergences of the integrals using integration by parts.

As noted in the previous section, the simplest example to analyze is the case where the

external gluons in the pure Yang–Mills side of the double-copy are restricted to live in four

dimensions, and correspond to all-plus helicity (+ + ++). For this helicity configuration

on the pure Yang–Mills side of the double copy, we use the spinor-helicity integrands in

Eqs. (2.2.12) and (2.2.13). For the remaining helicity configurations we used the pure Yang–

Mills integrand from Ref. [54]. The only contributions needed are those whose color structure

matches those of the planar and nonplanar double-box diagrams. For other helicities we used

the gauge-invariant projection method to be described in Ref. [55].

In four-dimensions these integrals do not have overall ultraviolet divergences because

they are suppressed by the numerators; they are proportional to the (−2ε)-dimensional
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components of loop momenta. (They do however contain subdivergences which cancel.) To

have a nontrivial example, we turn to the same integrand but with the internal states in

D = 5. In this case the numerator is not suppressed because λp and λq are one-dimensional.

(In the context of dimensional regularization in D = 5 − 2ε, they are actually (1 − 2ε)

dimensional.) Using D = 5 properties the integrand simplifies: In D = 5 the λp and λq

become one-dimensional so that

(λp · λq)2 − λ2
pλ

2
q → O(ε) , (2.4.2)

in Eqs. (2.2.12) and (2.2.13).

In the large loop-momentum limit, the logarithmically divergent terms in D = 5 are

given by

IP,NP = (Ds − 2)s

∫
dDp dDq

(
λ2
pλ

2
q + λ2

pλ
2
p+q + λ2

qλ
2
p+q

)
(p2)A(q2)B[(p+ q)2]C

+ UV finite , (2.4.3)

where

(A,B,C) =


(3, 3, 1) , P: planar double box ,

(3, 2, 2) , NP: nonplanar double box .

(2.4.4)

In the planar case there are power divergences coming from terms proportional to (p + q)2,

which removes the middle propagator generating a product of one-loop integrals. Such terms

do not give rise to logarithmic divergences. (This is consistent with finiteness of such integrals

in dimensional regularization, which is sensitive only to logarithmic divergences.) We may

then ignore such terms for the purposes of trying to understand overall two-loop logarithmic

divergence.

One way to evaluate Eq. (2.4.3) is to consider vacuum integrals with numerators that are

polynomial in vj · p and vj · q, where the vj’s are a set of orthonormal basis vectors for the
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five-dimensional momentum space. We have

v5 · p = λp , v5 · q = λq ,
∑
j

(vj · p)(vj · p) = p2,
∑
j

(vj · q)(vj · q) = q2 , (2.4.5)

with appropriate factors of i inserted for the metric signature. Lorentz invariance then

implies

UV finite =

∫
dDp dDq v

[µ
i v

ν]
j

(
pµ

∂

∂pν
+ qµ

∂

∂qν

) N (vk · p, vk · q)
(p2)A(q2)B[(p+ q)2]C

, (2.4.6)

where the Lorentz indices µ and ν are antisymmetrized. By replacing N in the above

equation by all possible monomials in vi ·p and vi · q up to degree four, we generate linear re-

lations between vacuum integrals with different numerators, allowing us to reduce Eq. (2.4.3)

to scalar vacuum integrals. The result of this procedure is

IP,NP =
3

70
(Ds − 2)s

∫
dDp dDq

[(p2)2 + (q2)2 + ((p+ q)2)2]

(p2)A(q2)B[(p+ q)2]C

=
3

70
(Ds − 2)s(IA−2,B,C + IA,B−2,C + IA,B,C−2) , (2.4.7)

where the scalar vacuum integrals are defined as

IA,B,C =

∫
dDp dDq

1

(p2)A(q2)B[(p+ q)2]C
, (2.4.8)

which is invariant under the six permutations of {A,B,C}. One can also obtain this equation

by reducing the implicit tensor integrals in Eq. (2.4.3), using Lorentz invariance in the more

traditional way following for example Eq. (4.18) of Ref. [35]. Alternatively, Mastrolia et.

al. recently proposed an efficient algorithm to integrate away loop momentum components

orthogonal to all external momenta [56].
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For the particular cases of Eq. (2.4.7) we obtain

IP =
3s

70
(Ds − 2) (I1,3,1 + I3,1,1 + I3,3,−1) + UV finite

=
3s

70
(Ds − 2)(2I3,1,1 + I3,3,−1) + UV finite, (2.4.9)

INP =
3s

70
(Ds − 2)(I1,2,2 + I3,0,2 + I3,2,0) + UV finite , (2.4.10)

where we used the fact that the integrals are invariant under the exchange of p and q in

the second equality in Eq. (2.4.9). Summing the planar and nonplanar contributions, we

conclude that the logarithmic UV divergence is given by

(IP + INP)
∣∣
log UV

=
3s

70
(Ds − 2) (2I3,1,1 + I1,2,2)

∣∣
log UV

. (2.4.11)

As explained above, the terms with “one-loop squared” propagator structures (e.g., I3,2,0

or I3,3,−1 ) do not contain logarithmic UV divergences. Also, it is not surprising that the

final result is a linear combination of I3,1,1 and I1,2,2, as these are the only two possible

logarithmically divergent vacuum integrals in D = 5.

By explicit evaluation using a uniform internal mass m as an infrared regulator and

dimensional regularization in 5− 2ε dimensions as an ultraviolet regulator, we find

I3,1,1

∣∣∣
UV div.

= − π

192ε
,

I1,2,2

∣∣∣
UV div.

=
π

96ε
, (2.4.12)

so the combination of integrals in Eq. (2.4.11) is ultraviolet finite in D = 5. However, in

order to understand the general structure of the cancellations, it is illuminating to instead

show this using IBP identities.
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2.4.1 Extracting divergences using IBP identities

We recall that the fundamental assumption of the IBP method is that the integral of a total

derivative vanishes in dimensional regularization, as shown in Eq. (2.3.5). Obviously, inte-

grals of total derivatives only vanish when boundary contributions vanish. In dimensional

regularization however, we can consider the integral in a dimension where the boundary

contribution is vanishing and then analytically continue the result (zero) to the original

dimension. But in an another regularization scheme one has to consider the behavior of

boundary terms. In particular, if the boundary term contains ultraviolet or infrared diver-

gences itself, the corresponding IBP identity cannot be used to relate the divergences of the

integrals.

On the other hand, dimensional regularization is known to regulate the ultraviolet and

infrared simultaneously. In general this is very convenient, but this fact might obstruct the

use of certain IBPs in this scheme for extracting ultraviolet divergences. The reason for this

is that IBP identities in dimensional regularization can mix up ultraviolet and infrared poles.

To illustrate this consider the following identity that relates bubble and triangle integrals in

D = 4:

dω = s ε× + , (2.4.13)

where ω is not relevant for the discussion. The internal propagators are all massless. The

triangle integral has only an infrared divergence with a 1/ε2 pole and the bubble has only

an ultraviolet divergence with a 1/ε pole. The ε dependence in the coefficient of the triangle

allows the infrared and ultraviolet divergences to mix. In order to directly extract ultraviolet

divergences without introducing an explicit infrared cutoff (such as a mass) we must make

sure that the IBPs being used do not mix infrared and ultraviolet poles. These subtleties
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are pertinent to our discussion since our aim is to extract ultraviolet divergences by focusing

on scaleless vacuum integrals, which vanish in dimensional regularization.

However, IBP identities that avoid both of the above complications can be directly used

to give relations between the ultraviolet divergences of different dimensionally-regularized

vacuum integrals without introducing an additional explicit infrared cutoff. In this way we

can demonstrate ultraviolet cancellations without explicitly evaluating any integrals. The

situation in the presence of subdivergences is more subtle and outside the scope of our present

discussion. We note that our principal aim is to examine the loop order where ultraviolet

divergences might first occur, so subdivergences are not of primary concern.

Consider the following identities between two-loop vacuum integrals

UV finite =

∫
dDp dDq

(
pµ

∂

∂pµ
− qµ ∂

∂qµ

)
1

(p2)A(q2)B((p+ q)2)C

= (−2A+ 2B) IA,B,C − 2C IA−1,B,C+1 + 2C IA,B−1,C+1 ,

UV finite =

∫
dDp dDq

(
pµ

∂

∂qµ

)
1

(p2)A(q2)B((p+ q)2)C

= (−B + C) IA,B,C −B IA−1,B+1,C +B IA,B+1,C−1

+ C IA−1,B,C+1 − C IA,B−1,C+1 ,

UV finite =

∫
dDp dDq

(
qµ

∂

∂pµ

)
1

(p2)A(q2)B((p+ q)2)C

= (−A+ C) IA,B,C − AIA+1,B−1,C + AIA+1,B,C−1

+ C IA,B−1,C+1 − C IA−1,B,C+1 . (2.4.14)

In any of the three above identities, we can easily write the integrand as a total derivative

because the contributions arising from commuting the loop momenta past the derivatives

vanish. As desired there is no explicit dependence on the dimension D. With A+B+C = 5,

the above IBP identities relate logarithmically divergent integrals in D = 5.

With dimensional regularization (and a mass as infrared cutoff) there are no boundary

terms, but here we allow more general regularization schemes, in which case there may be
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a ultraviolet finite boundary term on the left hand side of Eqs. (2.4.14). As elaborated in

the appendix, even in such schemes, boundary terms do not contain divergences and do not

modify the relations. We therefore use Eq. (2.4.14) as a direct relationship between the

ultraviolet divergences of the vacuum integrals.

With A = 1, B = C = 2, the first equation in Eqs. (2.4.14) provides the following relation

between the leading overall divergences of the integrals

(I1,2,2 + 2I1,1,3 − 2I0,2,3)
∣∣
log UV

= (I1,2,2 + 2I1,1,3)
∣∣
log UV

= 0 , (2.4.15)

where we used the fact that I0,2,3 is a “one-loop squared” integral with power divergences

and no logarithmic divergence. This is consistent with the explicit results in Eq. (2.4.12),

while allowing us to expose cancellations in Eq. (2.4.11) without computing divergences of

individual integrals or using identities that depend on details of the integrand.

In addition, by starting with the Yang–Mills integrand from Ref. [54] to construct the

half-maximal supergravity integrand via Eq. (2.2.16), we have checked that for any external

state, the log divergences in D = 5 are always proportional to the same combination as

above,

(I1,2,2 + 2I3,1,1) , (2.4.16)

whose leading log divergence vanishes.

While dimensional regularization is not sensitive to the potential quadratic divergences

in D = 5, we can study these divergences by lowering the dimension to D = 4. In D = 4

one finds that for any helicity configuration h the expanded amplitude is

Ah = Ch (2I3,3,−2 − 11I3,2,−1 + 7I3,1,0 + 5I2,2,0) + UV finite , (2.4.17)

for some coefficient Ch depending on the external states and on choices made for reference

momenta when choosing external polarizations. We constructed the required integrand by
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starting from two-loop four-point Feynman diagrams for pure-Yang-Mills and then applied

to double-copy procedure to generate the diagrams of half-maximal supergravity. These are

then expanded large loop momentum and simplified using Lorentz symmetry to obtained

Eq. (2.4.17). We apply the identities (2.4.14) to the D = 4 case, under the logarithmic power-

counting requirement A+B+C = 4, with A,B,C chosen to be all possible combinations of

integers (some of which may be negative) with some cutoff on their absolute values. Dozens

of IBP identities are generated, and the resulting linear system relates all integrals to I1,2,2. In

this way, we obtain cancellation of the divergences of Eq. (2.4.17) for the vacuum expansion

of the N = 4 supergravity amplitude.

Thus, we see that the two-loop cancellations in D = 4 and D = 5 can be understood

entirely and systematically using IBP identities.

2.4.2 Generalizations and an all-loop conjecture

In general, the structure of IBP equations can be rather opaque. Might there be a simple

organizing principle that applies to all loop orders? A strong hint is that the subset of IBP

identities given in Eq. (2.4.6) follows from Lorentz symmetry. We also saw the key role that

Lorentz symmetry played at one loop in Section 2.2. The obvious L-loop extension is

UV finite =

∫ ( L∏
a=1

dD`a

)
v

[µ
i v

ν]
j

L∑
a=1

`aµ
∂

∂`νa

N (`a · vb, `a · `b)∏
j D

Aj
j

, (2.4.18)

where the `a are an independent set of loop momenta to be integrated, the va a set of external

vectors in the problem and the 1/Dj the propagators in the diagram. As noted earlier, we

can equivalently apply Lorentz invariance following the methods in Refs. [35,56].

What about the identities in Eq. (2.4.14)? These can be understood as belonging to a

special class of IBP identities generated by SL(2) transformations of the loop momenta of
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the form p
q

→ eω

p
q

 , (2.4.19)

with some traceless 2×2 matrix ω. Since such an SL(2) transformation leaves the integration

measure dDp dDq invariant, we have

UV finite =

∫
dDp dDq ωab `

µ
a

∂

∂`µb

1

(p2)A(q2)B[(p+ q)2]C
, (2.4.20)

where we used the notation (`1, `2) = (p, q). We can rewrite this as an IBP relation,

UV finite =

∫
dDp dDq

∂

∂`µb

ωab `
µ
a

(p2)A(q2)B[(p+ q)2]C
, (2.4.21)

due to ωab being traceless. This also shows that these relations do not have explicit depen-

dence on the spacetime dimension D.

In particular, the IBP identity which come from the first equation in (2.4.14) used to ex-

hibit the cancellation of the logarithmic divergence in D = 5 is given by the SL(2) generator,

ωab =

1 0

0 −1

 . (2.4.22)

In fact, the above ideas generalize trivially to the L-loop case by considering generators of

SL(L). In more generality, the combination of Lorentz invariance and SL(L) transformations

gives rise to some subset of SL(DL) transformations. As a nontrivial check that these ideas

provide the key relations between the ultraviolet divergences of vacuum integrals, we have

reproduced the relations between ultraviolet divergences of four-loop vacuum integrals in

Appendix C of Ref. [35] in the context of obtaining the four-loop ultraviolet divergence for

N = 8 supergravity in the critical dimension, D = 11/2. One example of such a relation

is given graphically in Fig. 2.5. This shows that Lorentz and SL(4) symmetry generates
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UV finite =
1

2
+ 2 − −

Figure 2.5: A four-loop relation between ultraviolet divergences of vacuum integrals in D =
11/2 dimensions, matching identity 22 from Table I in Appendix C of Ref. [35]. Where a
black dot appears, the propagator is raised to a squared power.

a complete set of IBP identities necessary for reducing the vacuum integrals encoding the

ultraviolet divergence to an independent set. (We know the set is independent from Eq. (4.15)

of Ref. [35].) In this case there were no enhanced cancellations, but had they been present

they would have been found after applying the identities.

This brings us to a conjecture:

• Given a loop integrand, homogeneous linear transformations of the loop momentum

variables with unit Jacobian are sufficient for revealing enhanced cancellations of po-

tential ultraviolet divergences in gravity theories.

Generally, we are interested in the first divergence of a theory in a given dimension so we

do not need to concern ourselves with complications due to subdivergences or divergences

beyond the logarithmic ones. Even if the cancellation are not complete and an ultraviolet

divergence remains we expect these symmetries to generate a complete set of IBP identities

for studying logarithmic divergences.

If this conjecture were to hold in general, it would shed light on the mysterious enhanced

cancellations that have been observed in various supergravity theories. Furthermore, these

transformations can be connected to the labeling difficulty of nonplanar integrands. Remark-

ably, even though there does not seem to be a single “discrete” relabeling of the integration

variables for each diagram that allows us to construct an integrand that would manifest the

cancellations, the freedom to change integration variables appears to be at the root of the

cancellations.
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2.5 Conclusions

In this chapter we took initial steps towards systematically understanding enhanced ultra-

violet cancellations in supergravity theories [8–10]. These cancellations go beyond those

presently understood from standard-symmetry argumentation [17–19] and therefore appear

to require novel explanations.

While a different avenue for understanding enhanced cancellations based on exploiting

the double-copy structure of gravity theories has been successful for the special case of half-

maximal supergravity in D = 5 [10], it is unclear how to extend that argument beyond two

loops. In contrast, our large loop-momentum analysis here relies only on generic properties

of the integrands and integrals.

In nonabelian gauge theories, standard methods including superspace techniques can be

used expose ultraviolet cancellations at the integrand level. One might have thought that

it is possible to similarly find organizations of multi-loop integrands of supergravity theory.

However, as we showed via one- and two-loop examples, it does not seem possible to do this

without relying also on integration properties.

The simplest example of an enhanced cancellation in a supergravity theory is proba-

bly the vanishing of one-loop divergences in pure N = 4 supergravity in four dimensions.

While the cancellation of the divergence in D = 4 is well understood as a consequence of

supersymmetry [37], the pattern of cancellation amongst the diagrams serves as a proto-

type for enhanced cancellations. The double-copy construction [26] allowed us to obtain

the N = 4 supergravity integrand very easily from the corresponding ones of pure-Yang–

Mills and N = 4 super-Yang–Mills theory. Even in this relatively simple case where there

are no labeling ambiguities, we found that the cancellations cannot be exposed at purely

the integrand level. After using integral identities that follow from Lorentz invariance, the

cancellations become visible.

We also investigated the more interesting case of half-maximal supergravity at two loops.
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In D = 5, no standard symmetry explanation is known for the cancellation that removes the

logarithmic divergence [10,17]. We showed that the three-particle cuts display no integrand-

level cancellations, even though the final integrated expression does display the cancellations.

Based on our considerations, purely integrand-based proofs of the observed enhanced can-

cellations do not appear to be possible.

In order to systematize ultraviolet cancellations after integration, we used integration-

by-parts identities [30]. This gives a systematic means for finding all relations between the

different integrals. While the machinery of doing so is generally difficult to apply at high loop

orders, at two-loops we made use of various advances for controlling the complexity of the

identities [31–34,73,98]. As an example we showed that one can use these ideas to rearrange

the full integrands of amplitudes so that they consist of terms that are manifestly finite as well

as terms that integrate to zero. While this construction is a proof of principle and gives some

insight into how the cancellations happen, it is too dependent on details of the integrands

and the associated identities to be useful for developing an all-orders understanding.

To develop such an understanding, we instead focused on the large loop-momentum

behavior of the integrands. For the two-loop N = 4 supergravity amplitude, by series

expanding at large loop momentum, we demonstrated that the only identities needed to

expose the cancellation are those that follow from Lorentz and an SL(2) symmetry. Using

these principles we also reproduced the necessary four-loop identities [35] for extracting the

ultraviolet divergence of N = 8 in the critical dimension where it first appears, suggesting

that we have identified the key identities.

This led us to conjecture that at L loop order the integral identities generated by Lorentz

and SL(L) symmetry are sufficient for exposing the enhanced cancellations of ultraviolet

divergences, when they happen. If generally true, it would point towards a symmetry expla-

nation of enhanced cancellations.

There are a number of avenues for further exploration. It would be important to first

explicitly confirm our conjecture for the known three- and four-loop examples of enhanced
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ultraviolet cancellations [8, 9], and to develop an all-loop understanding. It would also be

interesting to study whether this set of integral identities is also applicable to more general

problems in QCD and other theories that involve extracting ultraviolet divergences. It may

also turn out to be helpful for efficiently obtaining the required integration-by-parts identities

for analyzing divergences inN = 8 supergravity at five loops and beyond, once the integrands

become available [57].

We expect that in the coming years, as new theoretical tools are developed, a complete

and satisfactory understanding of enhanced ultraviolet cancellations in gravity theories will

follow.

2.6 Boundary terms in logarithmically divergent IBPs

In section 2.4 we claimed that for logarithmically divergent integrals even in schemes other

than dimensional regularization, the boundary contributions of the IBP relations do not

alter the relation between the divergences. Here we demonstrate this. This is relevant to

our discussion because it supports the notion that the required IBP relations to obtain the

cancellations of the studied logarithmic divergences are robust and do not depend on details

of the scheme.

First, recall that the vacuum expansion to logarithmically divergent integrals, the IBPs

are of the form, ∫ ∏
i

dD`i
∂

∂`µj

(
`µk
∏

aN
Ba
a∏

bD
Ab
b

)
, (2.6.1)

where the powers Ab and Ba of the propagators 1/Db and irreducible numerators Na are such

that the integrals are logarithmically divergent. Consider ultraviolet regularization after

Wick rotation using a physical cut off Λ, under which the right-hand-side of Eq. (2.6.1), as a

total divergence, is turned into a boundary integral at the compact cutoff surface by Stokes’

theorem. Since the number of propagators makes the integral logarithmically divergent,

the boundary integral also has mass dimension 0. In Wilson’s floating cutoff picture, a
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change in the cutoff Λ does not change the boundary integral, which precludes it from

having an ultraviolet divergence. Note that the above argument breaks down if we consider,

e.g. quadratically divergent IBP relations. This argument is equivalent to the textbook

explanation of the finiteness of anomalies in one-loop diagrams given by a boundary term of

a linearly divergent integral [58].

However, there is an extra subtlety at higher loops that does not arise in the study of

anomalies. The argument cannot be trivially extended to the case where there are subdiver-

gences because there is no longer just one UV divergence coefficient to be fixed by a single

floating cutoff. However, this is of secondary concern because usually we are interested in

studying the very first potential divergence of a supergravity theory. (There are some sub-

tleties with evanescent effects feeding into divergences which require some care [13].) The

most interesting cases, such as N = 8 supergravity at five loops in D = 24/5, automatically

have no subdivergences because of a lack of lower-loop divergences. It would be nevertheless

interesting to understand the behavior of boundary terms in general and study whether the

relations generated by Lorentz and SL(L) symmetry can be applied to more general problems

of extracting divergences from vacuum integrals in the presence of subdivergences.

We also comment on the dimensional regularization, which requires a mass regulator to

separate out infrared singularities. One might worry that this mass regulator might interfere

with the IBP identities. However, it is easy to argue that when there are no subdivergences

the mass regulator does not cause any issues. To prevent IBP identities from mixing up ul-

traviolet and infrared poles, infrared divergences can be regulated by introducing a uniform

mass m to every propagator on the right-hand-side of Eq. (2.6.1). It is best to introduce the

mass prior to vacuum expansion to retain cancellations of subdivergences [53]. After series

expanding in small external momentum, we again obtain a sum of logarithmically divergent

vacuum integrals (whose internal propagators are regulated by the uniform mass), but we

also obtain additional vacuum integrals multiplied by factors of m2. To have the correct

dimensions, these additional integrals must have negative mass dimension and are power-
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counting finite in the ultraviolet. Assuming there are no one-loop subdivergences, a naive

power counting is sufficient for establishing the lack of ultraviolet divergence. Therefore we

obtain relations between logarithmic ultraviolet divergences of massive vacuum integrals.

Furthermore, there is a smooth limit when the dimension D tends to a fixed integer (or a

fractional number in more exotic cases), while the mass m tends to zero, because our special

IBP identities have no D dependence and because leading logarithmic ultraviolet divergences

are mass-independent. So we end up with relations between logarithmic ultraviolet diver-

gences of massless vacuum integrals. This argument is applicable whenever dimensional

regularization rules out lower-loop subdivergences, for example for supergravity calculations

in fractional dimensions (see e.g., Ref. [35]). We note that Ref. [59] also investigated well-

defined limits of IBP identities as the dimension tends to an integer, in the different context

of studying finite integrals.
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Chapter 3

Dual Conformal Symmetry,

Integration-by-Parts Reduction,

Differential Equations and the

Nonplanar Sector

We show that dual conformal symmetry, mainly studied in planar N = 4 super-Yang–Mills

theory, has interesting consequences for Feynman integrals in nonsupersymmetric theories

such as QCD, including the nonplanar sector. A simple observation is that dual conformal

transformations preserve unitarity cut conditions for any planar integrals, including those

without dual conformal symmetry. Such transformations generate differential equations

without raised propagator powers, often with the right-hand side of the system proportional

to the dimensional regularization parameter ε. A nontrivial subgroup of dual conformal

transformations, which leaves all external momenta invariant, generates integration-by-parts

relations without raised propagator powers, reproducing, in a simpler form, previous results

from computational algebraic geometry for several examples with up to two loops and five

legs. By opening up the two-loop three- and four-point nonplanar diagrams into planar ones,
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we find a nonplanar analog of dual conformal symmetry. As for the planar case this is used

to generate integration-by-parts relations and differential equations. This implies that the

symmetry is tied to the analytic properties of the nonplanar sector of the two-loop four-point

amplitude of N = 4 super-Yang–Mills theory.

3.1 Introduction

Dual conformal symmetry is a hidden symmetry of planar N = 4 super-Yang-Mills the-

ory [60–64] which puts strong constraints on the analytic structure of its scattering ampli-

tudes. In this chapter we will discuss applications of this symmetry towards questions of

practical interest in generic theories, such as finding useful and compact integration-by-parts

(IBP) relations and differential equations (DEs) for loop integrals. We also use these ideas

to extend the symmetry to the nonplanar sector by explicitly constructing it for the full

two-loop four-point amplitude of N = 4 super-Yang–Mills theory. As for the planar case,

the symmetry leads to useful IBP relations and DEs.

An important feature of the IBP relations and DEs generated by dual conformal trans-

formations is that they are naturally compatible with generalized unitarity [24], which is

a powerful method for computing multi-loop scattering amplitudes. Generalized unitarity

helps to overcome the fast growth of complexity as the loop order and the number of legs

increase. At one loop, unitarity-compatible integrand-based reduction [51, 65, 66] simplifies

loop amplitudes to a linear combination of master integrals, with coefficients determined

from generalized unitarity cuts. This has led to tremendous progress, including the “NLO

revolution” for computing NLO QCD corrections for collider processes (see e.g. Refs. [67]).

To extend the reach of generalized unitarity to generic theories at higher loops, it is natural

to retain the following two important properties: (i) the parametrization is minimal without

redundant parameters, leading to invertible linear systems which can be solved to determine

the integrand; (ii) the integrand is decomposed into master integrands and spurious inte-

grands that vanish upon integration, so only the coefficients of the master integrands are
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needed to evaluate the amplitudes.

These methods for evaluating scattering amplitudes offer great promise to tackle general

problems at two loops and beyond (see e.g. Ref. [68]). For dimensionally regularized integrals

beyond one loop, it is in fact easy to write down a parametrization that satisfies property

(i) by identifying a minimal set of “irreducible numerators” that cannot be expressed as

linear combinations of inverse propagators. For integrals in integer (most often four) di-

mensions, the problem is more intricate, as Gram determinant identities further reduce the

number of independent terms in the integrand. But a complete and computationally effi-

cient solution has been found using polynomial division algorithms [56,69,70]. To construct

a parametrization to satisfy the above property (ii), a first step has been developed in the

mentioned papers exploiting the rotation symmetry in the “transverse” directions orthogonal

to all external momenta. This is in direct analogy with the one-loop case [71]. A second

step, which is substantially more nontrivial, is to identify all remaining contributions that

integrate to zero. At higher loops the only known practical means to accomplish this [33] is

to exploit IBP relations [30] without increasing propagator powers [31], to not only simplify

the problem, but to make it naturally compatible with generalized unitarity. Our approach

based on exploiting dual conformal transformations automatically generates IBP relations

with these properties.

In the study of scattering amplitudes, theories with more symmetries have often led to

unexpected simplifications for theories with fewer symmetries. For example tree-level gluon

amplitudes in pure Yang-Mills have hidden supersymmetry because they coincide with the

same amplitudes in super-Yang–Mills theory [75]. A one-loop example is that supersym-

metric decompositions can be applied to nonsupersymmetric theories [24,76]. Following this

philosophy, we aim to develop a relatively simple analytic understanding of IBP-generating

vectors for a variety of one- and two-loop Feynman integrals with vanishing or degener-

ate masses, using dual conformal symmetry of planar N = 4 super-Yang–Mills theory as

a guiding principle. The use of dual conformal symmetry also extends to a large class of
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planar Feynman integrals in even integer dimensions, with an appropriate number of prop-

agators [59–63, 77]. This is easiest to implement for planar diagrams where dual conformal

symmetry is defined, but as we shall see by opening up nonplanar diagrams into planar

diagrams [78], we identify a symmetry that is analogous to dual conformal symmetry.

When we consider integrals in arbitrary dimensions, generic numerators or integrals with

too few propagators, the symmetries are lost because the numerators cannot balance the

conformal weights from the denominators and the integration measure. However, for our

purpose of finding IBP-generating vectors, only the geometry of the unitarity cut surface,

fixed by the propagators not the numerators, is relevant. Therefore we can still find insights

from dual conformal symmetry in order to analyze the loop integrals of any theory more gen-

erally. It turns out that a subgroup of dual conformal transformations, which leaves external

momenta unchanged, generates infinitesimal shifts in the loop momenta to produce IBP

relations without higher-power propagators. This is connected to the fact that under dual

conformal transformations and their nonplanar generalization, the infinitesimal variations of

inverse propagators are proportional to the inverse propagators themselves.

To illustrate the ideas in a simple context, we first present a number of one-loop examples.

As a toy example we illustrate the case of the one-loop triangle diagram with a single external

mass. While standard integral reductions [51, 52, 65] reduce tensor triangle integrals to the

scalar triangle integral, we show that dual conformal transformations can be directly applied

to reduce the scalar triangle integral to bubble integrals. Then we use this example to

illustrate the embedding formalism [59, 80] which reduces conformal transformations in an

SO(d − 1, 1) dual spacetime to linear Lorentz transformations in an SO(d, 2) embedding

space. The latter treatment will involve a general algorithm that can be applied to all one-

loop integrals. Finally, we turn to two-loop examples, including nonplanar cases. We adopt

a level-by-level approach to IBP reduction. For each topology, we only identify IBP relations

which reduce all tensor integrals to top-level master integrals and lower-level integrals with

fewer propagators. One can descend into the lower-level topologies recursively to accomplish
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the complete IBP reduction.

We also use dual conformal symmetries to generate DEs for integrals [81, 96]. This has

proven to be a powerful means for evaluating integrals. The DEs we generate are in terms

of integrals without propagators raised to higher powers, along the lines of Ref. [82]. For the

integrands that would be invariant in four dimensions under dual conformal transformations

or their nonplanar analogs, the right-hand side of the DEs are automatically proportional to

the dimensional regularization parameter ε = (4−d)/2. If there were no infrared singularities,

we could take ε → 0, and the right side of the DEs would vanish. This property is already

known for such integrals, after reducing to a carefully chosen basis of integrals [83–85]. In

our case, it follows from the existence of a symmetry.

Besides the practical utility of IBP relations and DEs, our considerations point to a non-

trivial generalization of dual conformal symmetry to the full nonplanar sector of N = 4

super-Yang–Mills theory. Refs. [86, 87, 116] found in a variety of nontrivial examples that

the analytic properties implied by dual conformal symmetry such as having only logarithmic

singularities, no poles at infinity and other properties carry over to the nonplanar sector.

What symmetries might be behind this? In this chapter we take initial steps toward un-

derstanding the symmetries behind these properties, by building on the connection between

dual conformal transformations and polynomial tangent vectors of unitarity cut surfaces.

For the case of the nonplanar sector of the two-loop four-point amplitude [48, 49] based on

our analysis of symmetries of integrals we show that there is indeed a symmetry analogous

to dual conformal symmetry.

This chapter is organized as follows. In Section 3.2, we review unitarity-compatible IBP

relations, dual conformal transformations and the embedding formalism which linearizes the

transformations. In Section 3.3, we illustrate the application of dual conformal transforma-

tions, starting from the simple toy example of the one-loop triangle with massless propagators

and one massive external leg. Two parallel treatments are presented, one based directly on

dual conformal transformations in d dimensions and the other based on the SO(d, 2) em-
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bedding space. The latter part of the section will present two more complicated examples

at one loop, namely the triangle diagram with two external masses, and the massive trian-

gle diagram involved in QCD corrections of the H → bb̄ decay. Section 3.4 gives two-loop

planar examples, reproducing nontrivial IBP-generating vectors previously obtained from

computational algebraic geometry. Section 3.5 outlines applications to obtain DEs using

transformations that act nontrivially on the external momenta. Section 3.6 formulates a

nonplanar analog of dual conformal symmetry. Applications to IBP and differential equa-

tions for dimensionally-regularized nonplanar integrals are also worked out. In Section 3.7,

we show the invariance of the two-loop four-point amplitude of N = 4 super-Yang–Mills

theory under this symmetry. Our conclusions and outlook are presented in Section 3.8.

An appendix giving matrices describing the dual conformal transformations of the two-loop

pentabox integrals is also included.

3.2 Basic concepts

In this section we give an overview of basic concepts that will be useful for the remainder

of the chapter. We first review the notion of unitarity-compatible IBP relations that do

not increase the propagator powers, which generically occurs whenever derivatives hit prop-

agators. Then we discuss using dual conformal transformations as a means for generating

IBP relations that are compatible with unitarity cuts and do not increase the powers of the

propagators. We will also review the embedding formalism for dual conformal transforma-

tions. This will be useful in subsequent sections, since it reduces conformal transformations

to simpler Lorentz transformations in two higher dimensions.
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3.2.1 Unitarity-compatible IBP relations

Consider an L-loop Feynman integral with L independent loop momenta, l1, l2, . . . , lL, M

external legs with momenta pi, 1 ≤ i ≤M , and N propagators, 1/∆j, 1 ≤ j ≤ N ,

∫ L∏
A=1

ddlA
N∏
j ∆j

. (3.2.1)

where N is a numerator that has polynomial dependence on all possible Lorentz-invariant

dot products amongst loop and external momenta.

Integration-by-parts relations [30] arise because total derivatives integrate to zero in

dimensional regularization,

0 =

∫ L∏
A=1

ddlA
∂

∂lµB

vµBN∏
j ∆j

, (3.2.2)

where there is implicit summation over the loop momentum label B, and vµB is built out of

all possible Lorentz vectors pµi and lµA, each multiplied by polynomials in Lorentz-invariant

dot products. The identity amongst integrals comes from explicitly applying the derivative.

We will refer to

vµB
∂

∂lµB
, (3.2.3)

as an IBP-generating vector or IBP vector.

If the vector satisfies the condition [31]

vµB
∂

∂lµB
∆j =Wj∆j , (3.2.4)

where there is an implicit sum over B and µ, for each 1 ≤ j ≤ N , with the Wj being

polynomials in Lorentz-invariant dot products, then the IBP relation Eq. (3.2.2) will not

lead to propagators raised to two or more powers. More generally speaking, if we start

with some propagator raised to a power, the power of that propagator will not be increased

further in the IBP relation [68]. This will be called a “unitarity-compatible” IBP relation,
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as unitarity cut conditions are easily imposed when there are no raised propagator powers.

The standard ways to find IBP vectors that satisfy Eq. (3.2.4) are based on solving syzygy

equations [31,34,68,74], often using software for computational algebraic geometry [88].

This is natural with the unitarity approach. If a certain inverse propagator ∆j is set to

zero by a unitarity cut, then for that case the right-hand side of Eq. (3.2.4) is zero, which

means the IBP-generating vector is a tangent vector to the unitarity cut surface of any cut,

maximal or non-maximal [33]. It should be emphasized that it is a polynomial (rather than

rational) tangent vector.

3.2.2 Unitarity-compatible differential equations

A powerful method for evaluating Feynman integrals is differential equations with respect

to external momenta [81,96]. In this method, one computes derivatives

χµi
∂

∂pµi

∫ L∏
A=1

ddlA
N∏
j ∆j

, (3.2.5)

where there is implicit summation of i over every external momentum, and χµi generates an

infinitesimal change in the kinematic invariants (i.e. Lorentz-invariant dot products between

external momenta). We require χµi to have no dependence on loop momenta. Since total

derivatives vanish upon integration, Eq. (3.2.5) is equivalent to

∫ L∏
A=1

ddlA

[
χµi

∂

∂pµi

N∏
j ∆j

+
∂

∂lµB

vµBN∏
j ∆j

]

=

∫ L∏
A=1

ddlA

[
∂vµB
∂lµB

+

(
χµi

∂

∂pµi
+ vµB

∂

∂lµB

)] N∏
j ∆j

. (3.2.6)

We will refer to

χµi
∂

∂pµi
+ vµB

∂

∂lµB
(3.2.7)
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as the DE-generating vector. Under the condition [82]

(
χµi

∂

∂pµi
+ vµB

∂

∂lµB

)
∆j =Wj∆j , (3.2.8)

for some polynomial Wj for each 1 ≤ j ≤ N , Eq. (3.2.6) has no propagators raised to

higher powers, i.e. is unitarity compatible. In our framework, IBP-generating vectors are

special cases of DE-generating vectors without external momentum derivatives. Similarly,

IBP relations are regarded as special cases of differential equations whose left-hand side is zero

rather than an external momentum derivative of the integral. Similar to the interpretation of

Eq. (3.2.4), Eq. (3.2.8) implies that the DE-generating vector is a tangent vector to unitarity

cut surfaces, considered as solutions to unitarity cut conditions in the space of both external

and loop momenta.

We will refer to Wj as the weight of the inverse propagator ρj under the infinitesimal

transformation of pi and lB generated by the vector (3.2.7). The total divergence term

∂vµB/∂l
µ
B in Eq. (3.2.6) may be regarded as the weight Wmeasure of the integration measure,

coming from an infinitesimal deviation of the Jacobian from unity (see a later discussion

around Eq. (3.2.23)), under the same transformation. In addition, in some cases of interest,

the numerator N also has a well-defined weightWN with polynomial dependence on external

and loop momenta. In this case Eq. (3.2.6) is rewritten as

∫ L∏
A=1

ddlA

[
∂vµB
∂lµB

+

(
χµi

∂

∂pµi
+ vµB

∂

∂lµB

)] N∏
j ∆j

=

∫ L∏
A=1

ddlA

(
Wmeasure +WN −

∑
k

Wk

)
N∏
j ∆j

. (3.2.9)

If in the above equation,

Wmeasure +WN −
∑
k

Wk = 0 , (3.2.10)

then the integral is formally invariant under the infinitesimal transformation generated by

the vector (3.2.7). A trivial example is a Lorentz transformation (in both external and loop
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momenta), under which the integration measure, propagators, and the numerator are sepa-

rately invariant. In most cases the integrals are infrared singular and an infrared regulator

is needed. This shifts the weight of the measure factor by terms proportional to ε, making

the symmetry anomalous.

3.2.3 Properties of IBP- and DE-generating vectors

IBP-generating vectors defined by Eq. (3.2.4) and DE-generating vectors defined by Eq. (3.2.8)

satisfy the following properties:

First, if an IBP-generating vector (or DE-generating vector) is multiplied by a polynomial

in Lorentz-invariant dot products of external and loop momenta, it is still a valid IBP-

generating vector (or DE-generating vector). Furthermore, the linear combination of two

IBP-generating vectors (or DE-generating vectors) is still a valid vector. Therefore, IBP-

and DE-generating vectors form modules over the ring of polynomials.

Second, by applying Eq. (3.2.8) twice, it can be seen that the composition of two DE-

generating vectors still does not raise the power of any propagator. Furthermore, the compo-

nents χµi remain independent of the loop momenta. This can be used to compute higher-order

differential equations [89,90] without generating doubled propagators.

Third, it follows from the second property above that IBP- and DE-generating vectors

form a closed Lie algebra. The action of the DE vector (3.2.7) in Eq. (3.2.6) is, in the

language of differential geometry, the Lie derivative action on the form

L∏
A=1

ddlA
N∏
j ∆j

. (3.2.11)

It is well known that the Lie derivative action of vectors commutes with the Lie bracket

of vectors, i.e. the Lie algebra structure extends to the action of IBP- and DE-generating

vectors. This is essentially the observation of Ref. [91] in the slightly different context

of IBP reduction with doubled propagators. As in the aforementioned reference, the Lie
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algebra structure allows us to reduce the redundancy of IBP relations—all the necessary IBP

relations arise from the action of a minimal generating set of IBP vectors on the possible

tensor integrals.

Fourth, given the unitarity-compatible conditions in Eqs. (3.2.4) and (3.2.8), the IBP-

and DE-generating vectors are valid on unitarity cuts and can be used to generate relations

between cut integrals [92, 93].

3.2.4 Dual conformal symmetry

If the Feynman integral Eq. (3.2.1) is planar and only has massless propagators, we can write

each inverse propagator as either

(yA − yB)2, (A 6= B) , (3.2.12)

or

(yA − xj)2 , (3.2.13)

where A and B are loop-momentum labels, and xj are the vertices of a coordinate-space

polygon whose edge (xi+1 − xi) is equal to the external momenta pi. We will refer to xj

as external momentum points and yA as loop-momentum points. This is known as the

dual-space version of planar Feynman integrals, as each yA and xj may be considered as

coordinate-space points in a dual SO(d−1, 1) “spacetime” (not to be confused with ordinary

spacetime).

As a simple example, consider the two-loop planar double-box integral,

I(2) =

∫
ddl1 d

dl2
1

l21(l1 − p1)2(l1 − p1 − p2)2l22(l2 + p4)2(l2 + p3 + p4)2(l1 − l2)2
,

(3.2.14)
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x4y1 y2

l1 l2

Figure 3.1: The double-box integrals. Differences of the dual points give momenta flowing
in the diagram. The xi and yi are dual coordinates of the double box integral. The dual
diagram is given by the dashed (blue) diagram.

illustrated in Fig. 3.1. We define the dual points implicitly, via

p1 = x2 − x1 , p2 = x3 − x2 , p3 = x4 − x3 , p4 = x1 − x4 ,

l1 = y1 − x1 , l2 = y2 − x1 . (3.2.15)

These variables automatically enforce momentum conservation on the pi. Performing the

change of variables (3.2.15) in the double box, gives

I(2) =

∫
ddy1 d

dy2
1

(y1 − x1)2(y1 − x2)2(y1 − x3)2(y1 − y2)2(y2 − x1)2(y2 − x3)2(y2 − x4)2
.

(3.2.16)

The dual conformal transformations include scalings zi → azi and inversions zµi → zµi /z
2
i ,

where zi may be either an external xi or internal yA dual point. Under the inversion, we

have

(xi − xj)2 → (xi − xj)2

x2
ix

2
j

, (yA − xj)2 → (yA − xj)2

y2
Ax

2
j

, (yA − yB)2 → (yA − yB)2

y2
Ay

2
B

.

(3.2.17)

From the perspective of planar N = 4 super-Yang-Mills theory, dual conformal transforma-

tions are interesting because they formally leave the amplitude invariant, ignoring regulator
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issues. From our perspective, what makes them interesting is that they leave the unitarity

cut surface (yA−xj)2 = 0 invariant. These considerations suggest that we can generate IBP

relations and differential equations that are automatically compatible with unitarity. This is

true whether or not the integrals are invariant. Indeed, the noninvariance is precisely what

we will use to generate nontrivial IBP relations and differential equations.

To generate IBP relations and differential equations we should phrase the conformal

transformation as infinitesimal transformations. Under an infinitesimal conformal boost

defined by an SO(d− 1, 1) vector bµ, a dual coordinate zµ transforms as

∆zµ =
1

2
bµz2 − (b · z)zµ . (3.2.18)

Under an infinitesimal scaling (i.e. dilatation) transformation with parameter β,

∆zµ = βzµ . (3.2.19)

(Throughout this chapter, ∆ will be understood as a differential operator or a symmetry

generator, so the right-hand side of the above equation is not multiplied by an explicit

infinitesimal parameter.) Finally, under Lorentz transformations parametrized by an anti-

symmetric Ωµν ,

∆zµ = Ωµρηρνz
ν = Ωµ

ν z
ν , (3.2.20)

where ηρν is the metric. Combining the conformal boost, scaling, and Lorentz transforma-

tions, we have

∆zµ =
1

2
bµz2 + (β − b · z)zµ + Ωµ

ν z
ν . (3.2.21)

In terms of the infinitesimal transformations, if two points zµ1 and zµ2 both transform accord-

ing to Eq. (3.2.21), then a simple calculation gives

∆(z1 − z2)2 = [2β − b · (z1 + z2)] (z1 − z2)2 , (3.2.22)
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which is proportional to (z1−z2)2. Therefore, under an infinitesimal dual conformal transfor-

mation for yµA and xµj , the variation of any inverse propagator is proportional to the inverse

propagator itself. This immediately echoes the condition (3.2.8) for the lack of propagators

raised to higher powers, and implies that dual conformal transformations generate unitarity-

compatible differential equations [82]. The dual-spacetime integration measure transforms

as the trace of the infinitesimal deviation of the Jacobian matrix from the identity matrix,

∆
(
ddz
)

= ddz
∂∆zµ

∂zµ
= ddz (β − b · z) d . (3.2.23)

As discussed in Section 3.2.2, IBP-generating vectors arise if we impose the further condition

that the infinitesimal dual conformal transformations do not shift the external points,

∆xj = 0 , (3.2.24)

for each external point xj. We will give examples in subsequent sections for explicitly solving

this constraint.

3.2.5 Embedding formalism

A convenient means for carrying out conformal transformations is via the embedding for-

malism of Refs. [59, 80]. In this construction, the system is embedded in a space with two

extra dimensions. This allows us to reformulate dual conformal transformations as Lorentz

transformations in the higher-dimensional space.

The embedding formalism maps each dual point zµ in the SO(d − 1, 1) dual space to a

point in SO(d, 2) invariant space. Following the conventions of Ref. [59], we introduce

Za =


Zµ

Z−

Z+

 =


zµ

−z2

1

 . (3.2.25)
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These vectors are defined modulo the identification

Z ∼= αZ, α 6= 0 , (3.2.26)

which is referred to as a GL(1) “gauge freedom”. The inverse map is

zµ =
Zµ

Z+
. (3.2.27)

The SO(d, 2) invariant contraction is defined by the inner product

(XY ) = XaXa ≡ 2XµYµ +X+Y − +X−Y + . (3.2.28)

Thus the point defined in Eq. (3.2.25) is on the light cone,

(ZZ) = 0 . (3.2.29)

We introduce the point at infinity, I, which is the limit of Eq. (3.2.25) with all components

of xµ uniformly tending to infinity, with an appropriate scaling using the gauge freedom in

Eq. (3.2.26),

Ia = lim
|z|→∞

(
− 1

z2

)
zµ

−z2

1

 =


0

1

0

 . (3.2.30)

This has the effect of compactifying the loop-momentum space [93]. Using Eq. (3.2.25), we

map the loop-momentum points yµA to

Y a
A =


yµA

−y2
A

1

 , (3.2.31)
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and map the dual kinematic points xµj to

Xa
j =


xµj

−x2
j

1

 . (3.2.32)

The inverse propagators are now represented by SO(d, 2) inner products between these points,

(yA − yB)2 = − (YAYB)

(YAI)(YBI)
, (3.2.33)

(yA − xj)2 = − (YAXj)

(YAI)(XjI)
, (3.2.34)

where GL(1) invariance is ensured by the denominators involving the point at infinity. The

denominators are unity in the gauge of Eq. (3.2.31). The factor (XjI) in the denominator

of the right-hand side of the second line can be omitted, because we will always choose the

gauge (XjI) = 1, as in Eq. (3.2.32).

The integration measure for each loop becomes, suppressing the loop label,

ddy → dd+2Y δ(Y 2/2)

(Y I)d Vol(GL(1))
, (3.2.35)

where Y 2 is a shorthand for (Y Y ) = Y aYa and the expression is formally divided by the

volume of the GL(1) gauge orbit.

We define SO(d, 2) Lorentz transformations acting on some function f(Z) using two

reference vectors Zi and Zj, as

∆f(Z) = (Z[i Z)

(
Zj]

∂

∂Z

)
f(Z) = Za

[i Za Z
b
j]

∂

∂Zb
f(Z)

=

(
Za
i Za Z

b
j

∂

∂Zb
− Za

j Za Z
b
i

∂

∂Zb

)
f(Z) , (3.2.36)

where a and b are SO(d, 2) indices. Notice that the factor δ(Y 2/2) in Eq. (3.2.35) is in-
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variant under these transformations. The square-bracket notation in the first line indicates

antisymmetrization over i and j, as explicitly implemented in the second line.

Integration-by-parts relations follow from Lorentz invariance identities [59],

0 =

∫
dd+2Y δ(Y 2/2)

Vol(GL(1))
u(Zi, Zj)I , (3.2.37)

where

u(Zi, Zj) ≡ (Z[i Y )

(
Zj]

∂

∂Y

)
= (Zb

i YbZ
a
j − Zb

jYbZ
a
i )

∂

∂Y a
, (3.2.38)

is a one-loop IBP-generating vector. In Eq. (3.2.37) it acts on some general loop integrand

I. The factor 1/(Y I)d from the integration measure in Eq. (3.2.35) is absorbed into I.

Concrete examples of such IBP relations will be given in subsequent sections.

The SO(d, 2) Lorentz transformations exactly correspond to conformal transformations

in Minkowski space with the SO(d− 1, 1) invariant metric, which can be checked using the

inverse map formula (3.2.27). For example, in Eq. (3.2.38), a d-dimensional translation

∆zµ = eµ is equivalent to setting

Zi = I =


0

1

0

 , Zj =


eµ

0

0

 . (3.2.39)

A d-dimensional conformal boost (3.2.18) with parameter bµ is equivalent to setting

Zi = −1

2


0

0

1

 , Zj =


bµ

0

0

 . (3.2.40)
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Finally, a scaling transformation (3.2.19) is equivalent to setting

Zi = I =


0

1

0

 , Zj = −


0

0

β

 . (3.2.41)

Therefore the IBP relations from SO(d, 2) Lorentz invariance arise from infinitesimal confor-

mal transformations of the d-dimensional loop momenta. Following the logic of the previous

subsection, such IBP relations will not have propagators raised to higher powers if the

SO(d, 2) Lorentz transformations in Eq. (3.2.36) leave the external momenta invariant, i.e.

leave the Xj points invariant up to GL(1) gauge scaling.

More generally, we can consider any IBP-generating vector in the embedding space,

V a ∂

∂Y a
. (3.2.42)

The above expression can be identified with an IBP-generating vector vµ∂µ in ordinary

SO(d − 1, 1) space if it satisfies the following two conditions: (i) it must be GL(1) gauge

invariant, and (ii) it must commute with the measure factor δ(Y 2/2), i.e.,

V aYa = 0 . (3.2.43)

The resulting IBP relation is, again showing the one-loop case for illustration,

0 =

∫
dd+2Y δ(Y 2/2)

Vol(GL(1))

∂

∂Y a
(V aI)

=

∫
dd+2Y δ(Y 2/2)

Vol(GL(1))

(
I ∂V

a

∂Y a
+ V a ∂I

∂Y a

)
, (3.2.44)

consisting of a divergence term proportional to an integrand I and a second term involving

derivatives of I. For an IBP-generating vector as in Eq. (3.2.38) from Lorentz invariance,

the divergence term vanishes, so Eq. (3.2.37) only involves derivatives of I.
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We can extend the above discussion to include internal masses [93, 94] by modifying

Eq. (3.2.32) to map the external momentum point xµj to

Xa
j =


xµj

−x2
j +m2

j

1

 . (3.2.45)

This changes Eq. (3.2.34) to

(xj − yA)2 −m2
j = −(YAXj)

(YAI)
. (3.2.46)

Since Eq. (3.2.46) contains a mass mj that is independent of the loop label A, the formula

only allows arbitrary masses at the one-loop level, and at higher loops, the masses of some

propagators must be correlated or vanishing.

3.3 IBP for one-loop triangle integrals

To illustrate the ideas of the previous section, we present some simple one-loop examples.

It is well known that by Passarino-Veltman or OPP reduction [51, 52, 65], triangle tensor

integrals can all be reduced to triangle scalar integrals and daughter integrals (i.e. bubble

and tadpole integrals from collapsing certain propagators of the triangle diagram). In the

language of unitarity-compatible IBP reduction, this is accomplished by IBP-generating

vectors which are rotation generators in the spacetime directions orthogonal to all external

momenta [33]. However, under special kinematic configurations, scalar triangle integrals can

be further reduced to bubble integrals using IBP reduction. The necessary IBP-generating

vectors will be the main topic of this section.

First we show directly how dual conformal transformations can be used to generate

unitarity-compatible IBP relations without higher-power propagators. We then streamline

the procedure using the embedding formalism [59,80] that reduces conformal transformations
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p1

p2

l
l − p2

l + p1

x2

x3

x1

y

Figure 3.2: The one-loop triangle with outgoing external momenta p1, p2, −p1−p2 and dual
points x1, x2, x3. All internal propagators are massless, and the single massive external leg
has mass (p1 + p2)2 = s, shown as a thick (red) line. The dashed (blue) lines indicate the
dual diagram.

to simpler Lorentz transformations in higher dimensions.

3.3.1 One-external-mass triangle: direct treatment

Consider the one-loop triangle shown in Fig. 3.2. For illustrative purposes, we specialize to

the simple case of all internal and external legs being massless, with the exception of the

right-most leg of the figure. The three inverse propagators are

∆1 = (l + p1)2, ∆2 = l2, ∆3 = (l − p2)2 . (3.3.1)

The external kinematic invariants are

p2
1 = p2

2 = 0, (p1 + p2)2 = s . (3.3.2)

We introduce dual coordinates xj, 1 ≤ j ≤ 3 and y, such that

p1 = x2 − x1, p2 = x3 − x2, l = y − x2 . (3.3.3)

The external points xj completely fix the external momenta, while y is an internal point

corresponding to shifted loop momentum. Since pj and l are expressed as differences between
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dual coordinates xj and y in Eq. (3.3.3), we are free to apply the same translation to all the

dual coordinates. We choose to fix the translation “gauge freedom” by taking,

x2 = 0 , (3.3.4)

so the explicit expressions for the dual coordinates are

x1 = −p1 , x2 = 0 , x3 = p2 , y = l . (3.3.5)

With this gauge choice, in terms of these dual coordinates, Eqs. (3.3.1) and (3.3.2) become

∆1 = (y − x1)2 , ∆2 = y2 , ∆3 = (y − x3)2 , (3.3.6)

and

x2
1 = x2

2 = x2
3 = 0, (x2 − x1)2 = (x3 − x2)2 = 0, (x3 − x1)2 = s . (3.3.7)

Eqs. (3.3.6) and (3.3.7) imply that

y · x1 =
1

2
(∆2 −∆1), y · x2 = 0 , y · x3 =

1

2
(∆2 −∆3) . (3.3.8)

As discussed in Section 3.2, the key property of the dual conformal transformations

(3.2.21) is that when acting on inverse propagators, they return results proportional to the

inverse propagator itself, as shown in Eq. (3.2.22). In order to use dual conformal transforma-

tions to generate IBP relations, we restrict to the subset (3.2.24) where the transformations

do not shift the external points.

The shift under the transformation of the loop momentum gives an IBP-generating vector

∆yµ
∂

∂yµ
= ∆lµ

∂

∂lµ
= vµ

∂

∂lµ
, (3.3.9)
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that satisfies the key condition of Eq. (3.2.4) that it does not raise the power of propagators in

the IBP identity. Applying Eq. (3.2.21) to xµj , and using x2
j = 0 from Eq. (3.3.7), Eq. (3.2.24)

becomes

0 = (β − b · xj)xj, j = 1, 2, 3 . (3.3.10)

One solution to Eq. (3.3.10) is

β = s , b = −2(x1 + x3) , (3.3.11)

where we used Eq. (3.2.3). This gives, using Eq. (3.2.21),

∆l = v = −l2(x1 + x3) + [s+ 2 l · (x1 + x3)] l . (3.3.12)

The IBP-generating vector vµ∂µ satisfies

vµ
∂

∂lµ
ρi =Wiρi, 1 ≤ i ≤ 3 , (3.3.13)

where Wi follows from Eq. (3.2.22),

Wi = 2β − b · (l + xi) . (3.3.14)

The divergence of the vector follows from Eq. (3.2.23),

Wmeasure =
∂vµ

∂lµ
= (β − b · l)d . (3.3.15)
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We obtain the IBP relation

0 =

∫
ddl

∂

∂lµ
vµ

∆1∆2∆3

=

∫
ddl (Wmeasure −W1 −W2 −W3)

1

∆1∆2∆3

=

∫
ddl
[
(d− 6)β + b · (x1 + x2 + x3)− (d− 3)b · l

] 1

∆1∆2∆3

=

∫
ddl
[
(d− 4)s+ 2(d− 3)(x1 + x3) · l

] 1

∆1∆2∆3

. (3.3.16)

In the last line above, we have used the explicit solution for β and bµ in Eq. (3.3.11).

Simplifying the result using Eqs. (3.3.5) and (3.3.8), the final IBP relation is

0 =

∫
ddl
[
(d− 4)s+ (d− 3)(2ρ2 − ρ1 − ρ3)

] 1

∆1∆2∆3

= (d− 4)sItri + 2(d− 3)I
(s)
bub , (3.3.17)

where Itri is the scalar triangle integral in Fig. 3.2 and I
(s)
bub is the scalar bubble integral

obtained from the term proportional to ∆2 which cancels the propagator 1/∆2 = 1/l2, so

that the mass of both external legs is s. The terms proportional to ∆1 and ∆3 in the

second line of Eq. (3.3.17) give bubble integrals with massless external legs, which vanish

in dimensional regularization and are discarded in the last line. Eq. (3.3.17) corresponds to

a well-known relation between the one-external-mass triangle and the bubble integral (see

e.g. the fourth appendix of Ref. [95]). The coefficient of the triangle integral in Eq. (3.3.17)

vanishes as d→ 4 while the coefficient of the bubble integral does not. This is due to infrared

singularities of the triangle integral. This simple example illustrates the basic principle

behind using dual conformal symmetry to generate useful IBP relations.
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3.3.2 Embedding-space treatment of one- and two-external-mass

triangles

To streamline dual conformal transformations and the construction of IBP-generating vec-

tors we use the embedding formalism [59, 80] summarized in Section 3.2.5. This reduces

d-dimensional conformal transformations to simpler (d+2)-dimensional Lorentz transforma-

tions. The algorithm involves solving for all (d+2)-dimensional Lorentz transformations that

leave the external momenta invariant. This is used to construct a matrix that encodes the

action of the IBP vector, so that the IBP relations can be conveniently constructed. We will

use the above one-external-mass triangle as an example, before explaining the generalization.

Here we apply Lorentz rotations that act in the subspace of external points. One can also

consider Lorentz rotations in the embedding space that only act in the space orthogonal to

the external points, as we do in Section 3.4.2.

Using Eqs. (3.2.34) and (3.2.35), the scalar triangle integral in Fig. 3.2 is written in the

SO(d, 2) embedding space,

Itri =

∫
dd+2Y δ(Y 2/2)

(Y I)d−3 Vol(GL(1))

(−1)3

(Y X1)(Y X2)(Y X3)
, (3.3.18)

where Y and Xj are as defined in Eqs. (3.2.31) and (3.2.32) and as in Eq. (3.2.35) Y 2 is a

shorthand for (Y Y ) = Y aYa. The factor (−1)3 comes from the minus sign on the right-hand

side of Eq. (3.2.34).

We define a subset of infinitesimal (d + 2)-dimensional Lorentz transformations ∆ω by

an antisymmetric 4× 4 matrix ωij, acting on a (d+ 2) dimensional point Za as

∆ωZ
a =

∑
1≤i,j≤4

(ZXi)ω
ijXa

j , (3.3.19)

where X1, X2, X3 are the three external points in Eq. (3.3.18) and X4 = I, where I is defined

in Eq. (3.2.30). We will choose the ωij such that the above Lorentz transformation leaves
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X1, X2, X3 invariant up to a GL(1) gauge scaling. This means that under the transformations

only the loop-momentum shifts by an infinitesimal amount, captured by the IBP vector,

1

2
ωiju(Xi, Xj) = ωij(XiY )Xa

j

∂

∂Y a
. (3.3.20)

The summation over 1 ≤ i, j ≤ 4 is implicit, and we have used the definition of u(Xi, Xj) in

Eq. (3.2.38).

The Lorentz transformations in Eq. (3.3.19) acts on Xk as

∆ωX
a
k = gki ω

ijXa
j

≡ ω̄ j
k X

a
j , (3.3.21)

where we defined the “embedding-space gram matrix” as,

gij = (XiXj) =



0 0 −s 1

0 0 0 1

−s 0 0 1

1 1 1 0


, (3.3.22)

where we identify X4 with I and the last row and column contain entries of unity due to the

gauge choice (XjI) = 1 in Eq. (3.2.32). We then impose the condition that X1, X2, X3 but

not X4 = I, are left invariant by the Lorentz transformation:

∆ωX
a
k = αkX

a
k , if k = 1, 2, 3, (3.3.23)

where αk can be absorbed into the GL(1) invariance of the integrand (3.2.26) which takes

(d+2)-dimensional vectors to be equivalent if they are scaled. The second line in Eq. (3.3.21)

66



defines the “IBP matrix”, and depends on the free parameters ωij which we determine below,

ω̄ ≡ g ω =



sω13 − ω14 sω23 − ω24 −ω34 −sω34

−ω14 −ω24 −ω34 0

−ω14 −sω12 − ω24 −sω13 − ω34 −sω14

−ω12 − ω13 ω12 − ω23 ω13 + ω23 ω14 + ω24 + ω34


. (3.3.24)

Eq. (3.3.23) implies

ω̄ j
k = 0 if k = 1, 2, 3, j 6= k, 1 ≤ j ≤ 4 , (3.3.25)

i.e., the non-diagonal entries have to vanish in all but the last rows. This gives four indepen-

dent homogeneous linear constraints on the six possible components of the antisymmetric

matrix ω,

ω14 = ω34 = 0 ,

−sω12 − ω24 = 0 ,

sω23 − ω24 = 0 . (3.3.26)

The two independent solutions are

ω(1) =



0 −1 0 0

1 0 1 s

0 −1 0 0

0 −s 0 0


, ω(2) =



0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0


, (3.3.27)
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under which the IBP matrix in Eq. (3.3.24) becomes

ω̄(1) =



0 0 0 0

0 −s 0 0

0 0 0 0

1 −2 1 s


, ω̄(2) =



s 0 0 0

0 0 0 0

0 0 −s 0

−1 0 1 0


, (3.3.28)

respectively. To compute IBP relations, the IBP vector (3.3.20) acts on (Y Xk) as

∆ω(Y Xk) =
1

2
ωiju(Xi, Xj)(Y Xk) = ωij(XiY )(XjXk) = −gkjωji(Y Xi)

= −ω̄ i
k (Y Xi), (3.3.29)

where we used the antisymmetry of ω, and u(Xi, Xj) is defined in Eq. (3.2.38). In terms of

matrix components ω̄i
j that are nonvanishing for either solution, the resulting IBP relation

is,

0 =

∫
dd+2Y δ(Y 2/2)

Vol(GL(1))
∆ω

(
(−1)3

(Y I)d−3(Y X1)(Y X2)(Y X3)

)
=

∫
dd+2Y δ(Y 2/2)

Vol(GL(1))

(−1)3

(Y I)d−3(Y X1)(Y X2)(Y X3)

{[( 3∑
i=1

ω̄ i
i

)
+ (d− 3)ω̄ 4

4

]

+
1

(Y I)

[
(d− 3)

3∑
i=1

ω̄ i
4 (Y Xi)

]}

=

∫
ddl

1

∆1∆2∆3

{[( 3∑
i=1

ω̄ i
i

)
+ (d− 3)ω̄ 4

4

]
− (d− 3)(ω̄ 1

4 ∆1 + ω̄ 2
4 ∆2 + ω̄ 3

4 ∆3)

}

=

∫
ddl

1

∆1∆2∆3

{[( 3∑
i=1

ω̄ i
i

)
+ (d− 3)ω̄ 4

4

]
− (d− 3)ω̄ 2

4 ∆2

}
, (3.3.30)

where on the last line we dropped the contributions proportional to ∆1 and ∆3 because those

generate scaleless bubble integrals that vanish in dimensional regularization.
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p1

p2

l
l − p2

l + p1

x2

x3

x1

y

Figure 3.3: The one-loop triangle with outgoing external momenta p1, p2, −p1 − p2. All
internal propagators are massless, and the massive external legs, shown as thick lines, have
masses p2

2 = t and (−p1 − p2)2 = s. The dashed (blue) line indicates the dual diagram.

Substituting the first solution for ω̄ in Eq. (3.3.28) ,

ω̄
(1)
1

1 = ω̄
(1)
3

3 = 0 , ω̄
(1)
4

4 = −ω̄(1)
2

2 = s, ω̄
(1)
4

2 = −2 , (3.3.31)

into Eq. (3.3.30) yields,

0 = s(d− 4)Itri + 2(d− 3)I
(s)
bub , (3.3.32)

reproducing Eq. (3.3.17).

For the second solution in Eq. (3.3.27), we have

ω̄
(2)
1

1 = −ω̄(2)
3

3 = s , ω̄
(1)
2

2 = ω̄
(1)
4

4 = 0 , ω̄
(1)
4

2 = 0 , (3.3.33)

so the IBP relation (3.3.30) is trivial because it involves only integrals that vanish in dimen-

sional regularization.

As another example, consider the triangle with two external masses shown in Fig. 3.3.

Following the same procedure as in the one-external-mass case, we introduce dual coordinates

as usual

p1 = x2 − x1 , p2 = x3 − x2 , l = y − x2 . (3.3.34)

Following a similar analysis as for the single-external-mass case, we find only a single solution
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that leaves all the external momenta invariant. The associated IBP matrix is

ω̄ =



−(s− t) 0 0 0

0 −(s− t) 0 0

0 0 s− t 0

2 −2 0 s− t


, (3.3.35)

which encodes the action of the IBP-generating vector through Eq. (3.3.29). The resulting

IBP relation, expressed in terms of the non-vanishing matrix components ω̄ j
i , is

0 =

∫
ddl

1

∆1∆2∆3

{[ 3∑
i=1

ω̄ i
i + (d− 3)ω̄ 4

4

]
− (d− 3)ω̄ 1

4 ∆1 − (d− 3)ω̄ 2
4 ∆2 − (d− 3)ω̄ 3

4 ∆3

}
= (d− 4)(s− t)I(s,t)

tri − 2(d− 3)I
(t)
bub + 2(d− 3)I

(s)
bub , (3.3.36)

where I
(s)
bub is the bubble diagram obtained by canceling the propagator l−q2, and I

(s)
bub is the

bubble diagram obtained by canceling the propagator l− q1. When t = 0, I
(t)
bub is a scaleless

integral which vanishes in dimensional regularization, so the above IBP relation Eq. (3.3.36)

becomes the same as the previous IBP relation Eq. (3.3.32) found for the triangle with only

one massive external leg.

3.3.3 The Higgs to bb̄ decay triangle

As a more sophisticated example to illustrate the use of dual conformal transformations in

the presence of a mass, consider the one-loop triangle integral involved in the decay of the

Higgs to a bb̄ quark pair, with the bottom quark mass appearing in both internal and external

lines, as depicted in Fig. 3.4. Internal masses are included in the embedding formalism, as

described at the end of Section 3.2.5.

Introducing dual coordinates as usual, the three propagators are written as squared
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p1
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Figure 3.4: The one-loop triangle that appears in the decay of a Higgs boson to a bb̄ quark
pair. The outgoing external momenta are p1, p2, −p1 − p2. The Higgs leg, shown as a thick
(red) line on the right-most part of the figure, has squared mass (−p1 − p2)2 = m2

H . The
bottom-quark lines, appearing in both external legs and internal propagators, are shown as
thick (blue) lines with squared mass m2

b .

differences between dual coordinates,

∆1 = (y − x1)2, ∆2 = (y − x2)2, ∆3 = (y − x3)2 , (3.3.37)

with gauge choice x2 = 0, while the kinematic invariants are written as

x2
2 = 0, x2

1 = x2
3 = m2

b , (x2 − x1)2 = (x3 − x2)2 = m2
b , (x1 − x3)2 = m2

H ,

(3.3.38)

involving three massive external legs and two massive internal propagators. Eqs. (3.3.37)

and (3.3.38) imply that

y · x1 =
1

2
(∆2 −∆1 +m2

b) , y · x2 = 0 , y · x3 =
1

2
(∆2 −∆3 +m2

b) . (3.3.39)

The embedding-space Gram matrix is, using the mapping Eq. (3.2.45) for the massive case

71



and identifying I with X4,

gij = (XiXj) =



2m2
b 0 2m2

b −m2
H 1

0 0 0 1

2m2
b −m2

H 0 2m2
b 1

1 1 1 0


. (3.3.40)

Using the general algorithm illustrated in Subsection 3.3.2, there is only one solution to the

antisymmetric matrix ωij such that the IBP vector

1

2
ωiju(Xi, Xj) , (3.3.41)

leaves all external momenta invariant. The solution is

ω =



0 −1 0 0

1 0 1 m2
H − 4m2

b

0 −1 0 0

0 −(m2
H − 4m2

b) 0 0


, (3.3.42)

which gives the IBP matrix,

ω̄ =



0 0 0 0

0 −(m2
H − 4m2

b) 0 0

0 0 0 0

1 −2 1 (m2
H − 4m2

b)


, (3.3.43)

which encodes the action of the IBP-generating vector through Eq. (3.3.29). The resulting
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IBP relation, expressed in terms of the matrix components ω̄ j
i , is

0 =

∫
ddl

1

∆1∆2∆3

{[( 3∑
i=1

ω̄ i
i

)
+ (d− 3)ω̄ 4

4

]
− (d− 3)ω̄ 1

4 ∆1 − (d− 3)ω̄ 2
4 ∆2 − (d− 3)ω̄ 3

4 ∆3

}

= (d− 4)(m2
H − 4m2

b)I
Hbb̄
tri + 2(d− 3)I

(H)
bub − 2(d− 3)I

(b)
bub , (3.3.44)

where IHbb̄tri is the scalar triangle diagram, I
(H)
bub is the bubble sub-diagram obtained by can-

celing the propagator with momentum l, and I
(b)
bub is the bubble sub-diagram obtained by

canceling either the propagator with momentum l + p1 or the one with momentum l − p2.

The IBP relation for the one-external-mass triangle (3.3.32) can be reproduced from the

above IBP relation (3.3.44) by setting m2
H = s, m2

b = 0.

For higher-loop planar integrals with up to four external legs of any topology, the algo-

rithm presented above can be adapted to find nontrivial dual conformal transformations that

leave all the external momenta invariant. We start with the embedding-space Gram matrix

for the specific integral topology as in Eq. (3.3.22), with XN+1 defined to be equal to I. Then

we repeat the subsequent calculations to produce the IBP matrix as in Eq. (3.3.24), leading

to homogeneous linear constraints as in Eq. (3.3.25). Solving the linear constraints gives the

IBP vectors and relations. As discussed in the previous subsection, for any solution of the

antisymmetric matrix ω that has a vanishing last column, we will obtain IBP relations that

only involve integrals with canceled propagators. Therefore such solutions may be discarded

if we are interested in the IBP reduction of top-level integrals. In the next section we will

describe another class of useful dual conformal transformations orthogonal to all external

momenta, which will be useful at higher loops.

3.4 IBP for planar two-loop integrals

In this section we discuss the more interesting case of higher-loop integrals. With generic

mass configurations (e.g. with all external and internal masses being different from each
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other), a complete set of IBP-generating vectors is tabulated in Ref. [33]. Here we apply dual

conformal symmetry to uncover extra IBP-generating vectors for planar two-loop integrals

with massless lines. In Section 3.6 we will extend this to the nonplanar case.

3.4.1 Conformal transformations in transverse dimensions

In the direct treatment of Section 3.3.1, the parameter of the conformal boost in Eq. (3.3.11),

with xµi given in Eq. (3.3.5), is a linear combination of external momenta. However, another

interesting possibility is a conformal boost in a direction orthogonal to all external momenta,

which gives unitarity-compatible IBP-generating vectors for every planar integral at any loop

order.

Consider a general L-loop N -point diagram. For a planar N -point diagram at L loops,

we take the dual coordinates to be x1, x2, . . . , xN . It is easy to fix the translation gauge

freedom such that every xµi is written as a linear combination of the external momenta pµi .

(For example, if we fix x1 = 0, then xi =
∑i−1

j=1 pj.) In Eq. (3.2.22), we choose the conformal-

boost parameter bµ to be any vector that is orthogonal to all external momenta, and do

not include a scaling transformation (i.e. setting β = 0). This gives ∆(xi − xj)2 = 0 for all

pairs of i, j, which means all Mandelstam variables are left invariant. Therefore it is always

possible to keep each individual external momentum invariant by adding a compensating

Lorentz transformation.

In the planar case, the SO(d, 2) embedding formalism gives a convenient way of pro-

ceeding. This eliminates the need to fix a gauge for the translation degrees of freedom of

the dual coordinates. For illustration, we focus on d = 4 − 2ε dimensional loop integrals

with N external momenta, where N ≤ 5. Generally, the embedding-space reference points

X1, X2, . . . , XN and the point at infinity I together span N + 1 “physical” dimensions, leav-

ing an orthogonal “transverse” space of dimension (d + 2) − (N + 1) = d − (N − 1). This

directly corresponds to the subspace of ordinary SO(d − 1, 1) spacetime orthogonal to the
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N−1 dimensions spanned by the external momenta.1 In addition, in the (N+1)-dimensional

“physical” space spanned by X1, X2, . . . , XN , I, one can always find one vector Ĩ that satisfies

the N conditions,

(ĨXi) = 0, 1 ≤ i ≤ N . (3.4.1)

In particular, if the top-left N×N sub-block g̃ij = (XiXj) of the embedding-space Gram ma-

trix is non-singular, then the above Ĩ can be found by projecting I onto the space orthogonal

X1, X2, . . . XN ,

Ĩa = Ia − (IXi)(g̃
−1)ijX

a
j . (3.4.2)

We can also define a set of vectors that span the transverse space. Let Nk, with 1 ≤

k ≤ d + 1 − N , be an orthonormal basis of this orthogonal space. The SO(d, 2) Lorentz

transformations in Eq. (3.2.36), with Zi = Ĩ and Zj = Nk for any 1 ≤ k ≤ d+ 1−N , leave

all Xj (1 ≤ j ≤ N) invariant, since it only acts in the transverse space. So we obtain a valid

unitarity-compatible IBP-generating vector

u(Ĩ , Nk) =
∑
A

[
(Ĩ YA)

(
Nk

∂

∂YA

)
− (Nk YA)

(
Ĩ

∂

∂YA

)]
, (3.4.3)

following the notation of the one-loop version in Eq. (3.2.38). However, the IBP relation

from the multi-loop version of Eq. (3.2.37),

0 =

∫ (∏
A

dd+2YA δ(Y
2
A/2)

Vol(GL(1))

)
u(Ĩ , Nk) I , (3.4.4)

breaks the Lorentz symmetry in the d − (N + 1)-dimensional transverse space, since it

introduces vectors Nk not present in the original problem, so it is not ideal. A remedy is

to contract the Lorentz indices to give IBP-generating vectors that are invariant under the

Lorentz symmetry of the transverse directions. We can write down the following L different

1For example, for a five-point diagram, with dimensional regularization the transverse space has dimension
4− 2ε− (5− 1) = −2ε.
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vectors,

1

(−YBI)
(NkYB)u(Ĩ , Nk) = u

(
Ĩ ,

ỸB⊥
(−YBI)

)
, (3.4.5)

where the index k is summed and 1 ≤ B ≤ L specifies one of the independent loop momen-

tum. The label B is not summed in Eq. (3.4.5). The contraction over the index k ensures

Lorentz invariance in the transverse directions, while the normalization factor 1/(−YBI) en-

sures GL(1) gauge invariance. YB⊥ is the projection of YB onto the transverse space, using

the inverse of the (N + 1)× (N + 1) Gram matrix gij = (XiXj) with XN+1 ≡ I,

Y a
B⊥ = (NkYB)Na

k = Y a
B − (YBXi)g

−1
ij X

a
j . (3.4.6)

This results in the IBP relations (see Eq. (3.2.44) for the one-loop analog),

0 =

∫ (∏
A

dd+2YA δ(Y
2
A/2)

Vol(GL(1))

)∑
A

[
(Ĩ YA)

(
Nk

∂

∂YA

)
− (Nk YA)

(
Ĩ

∂

∂YA

)](
(NkYB)

(−YBI)
I
)
,

(3.4.7)

where there is implicit summation over k, and B is a fixed loop label 1, 2, . . . , L.

The right-hand side of Eq. (3.4.5) is an example of an IBP-generating vector defined

using reference vectors with dependence on loop momenta. The IBP relation from such a

vector is a superposition of familiar SO(d, 2) Lorentz symmetry identities, as in Eq. (3.4.7).

IBP relations are obtained from the vector in explicit components,

u

(
Ĩ ,

ỸB⊥
(−YBI)

)
=

(
(ĨYA)

(−YBI)
Ỹ a
B⊥ −

(ỸB⊥YA)

(−YBI)
Ĩa
)

∂

∂Y a
A

, (3.4.8)

then calculating the total divergence, as in Eq. (3.2.44). As before, in this expression A is

summed over but B is not.

Since the IBP relations we derived earlier already suffice to reduce the triangle integrals

to bubble integrals, we do not need the additional IBP relations coming from the transverse

space.2 But these relations are needed at the two-loop level.

2 These additional IBP relations in fact vanish on the maximal cut, for the three different triangle integrals
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3.4.2 Global and loop-by-loop conformal transformations

Now consider Lorentz transformations in the embedding space that affect the external mo-

menta. To simplify the discussion we focus on two loops. We trivially extend the definition

of the infinitesimal Lorentz transformation in Eq. (3.2.38) to simultaneously transform both

Y1 and Y2,

u12(Zi, Zj) =
2∑

A=1

uA(Zi, Zj) =
2∑

A=1

(Z[i YA)

(
Zj]

∂

∂YA

)
. (3.4.9)

Similarly, we will define loop-by-loop Lorentz transformations, namely

u1(Zi, Zj), u2(Zi, Zj) (3.4.10)

acting only on Y1 and only on Y2, respectively. For appropriate Zi and Zj, u12(Zi, Zj) can be

considered a global SO(d, 2) transformation (instead of acting only on the loop momentum

points) that leaves all the external momenta invariant, so that Eq. (3.4.9) is a two-loop IBP-

generating vector that does not lead to propagators raised to higher powers. The situation

is entirely analogous to the one-loop case, and allows one-loop IBP-generating vectors to

be reused at higher loops. A difference from the one-loop case is that we need the IBP-

generating vectors arising from transverse directions, as explained in Section 3.4.1, which

may be considered as loop-momentum-dependent global conformal transformations.

For some of the more complicated two-loop integral topologies such as the penta-box

discussed in Subsection 3.4.5, IBP-generating vectors from global conformal transformations

are not sufficient. To deal with this, we construct a class of loop-by-loop unitarity-compatible

IBP-generating vectors. Consider the inverse propagators,

− (Y1Xi)

(Y1I)
, −(Y2Xj)

(Y2I)
,

(Y1Y2)

(Y1I)(Y2I)
, with i ∈ σ1, j ∈ σ2 , (3.4.11)

where σ1 and σ2 are both subsets of {1, 2, . . . , N}. If an SO(d, 2) transformation parametrized

considered in the previous section.
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by the antisymmetric matrix ωij(1) leaves all the Xi points (i ∈ σ1) invariant, the action of

the transformation on Y1 alone gives the IBP-generating vector

V a
1

∂

∂Y a
1

=
1

2
ωij(1)u1(Xi, Xj) , (3.4.12)

which does not raise the power of any propagator denominator of the form −(Y1Xi)/(Y1I).

The vector also does not raise the power of any propagator denominator of the form−(Y2Xj)/(Y2I)

because the vector does not involve derivatives with respect to the second loop momen-

tum. However, the vector may double the power of the propagator denominator ∆c ≡

−(Y1Y2)/(Y1I)(Y2I), so this is not yet a valid unitarity-compatible vector.

Similarly, if a conformal transformation parametrized by ωij(2) leaves all the Xj points

with j ∈ σ2 invariant, we can write down an IBP-generating vector

V a
2

∂

∂Y a
2

=
1

2
ωij(2)u2(Xi, Xj) , (3.4.13)

which again does not increase the power of any propagator denominator except for ∆c. Our

final IBP-generating vector, to be denoted by cross(V1, V2), is

cross(V a
1 ∂1 a, V

a
2 ∂2 a) =

1

(Y1I)(Y2I)

{[
V b

1

∂

∂Y b
1

(Y1Y2)

]
V a

2

∂

∂Y a
2

−
[
V b

2

∂

∂Y b
2

(Y1Y2)

]
V a

1

∂

∂Y a
1

}
=

1

(Y1I)(Y2I)

{
(V1Y2)V a

2

∂

∂Y a
2

− (V2Y1)V a
1

∂

∂Y a
1

}
, (3.4.14)

where the overall prefactor 1/((Y1I)(Y2I)) is needed for GL(1) gauge invariance. This is

designed to annihilate (Y1Y2). As a result, this IBP-generating vector does not raise the

power of the propagator denominator ∆c. To see this, in Eq. (3.2.4) we have

Wc =
cross(V a

1 ∂1 a, V
a

2 ∂2 a)ρc
ρc

= −cross(V a
1 ∂1 a, V

a
2 ∂2 a)

(
(Y1I)(Y2I)

)
(Y1I)(Y2I)

, (3.4.15)

which evaluates to an expression with polynomial dependence on loop momenta, because
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l2 − l1

Figure 3.5: The triangle-box diagram.

the gauge (Y1I) = (Y2I) = 1 eliminates the denominators.

3.4.3 The triangle-box

As an explicit example, consider the two-loop triangle-box diagram shown in Fig. 3.5. The

inverse propagators are

∆1 = (l1 + p1)2, ∆2 = l21, ∆3 = (l1 − p2)2,

∆4 = (l2 + p1)2, ∆5 = (l2 − p2)2, ∆6 = (l2 − l1)2 , (3.4.16)

while an “irreducible numerator”, which cannot be written as a linear combination of inverse

propagators, is

∆7 = l22 . (3.4.17)

Notice that l2 is not the momentum of any propagator, due to our choice of momentum

routing. The external kinematic invariants are identical to those of the one-loop triangle

with one external mass in Section 3.3,

p2
1 = p2

2 = 0, (p1 + p2)2 = s . (3.4.18)
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Introducing dual coordinates as usual, the six inverse propagators and one irreducible nu-

merator become

∆1 = (y1 − x1)2, ∆2 = (y1 − x2)2, ∆3 = (y1 − x2)2,

∆4 = (y2 − x1)2, ∆5 = (y2 − x3)2, ∆6 = (y2 − y1)2, ∆7 = (y2 − x2)2 , (3.4.19)

with the kinematic invariants written as

(x2 − x1)2 = (x3 − x2)2 = 0, (x3 − x1)2 = −s . (3.4.20)

The triangle-box integral, with the irreducible numerator ∆7 raised to the m-th power,

is written as

Itri - box
m =

∫
ddl1

∫
ddl2

∆m
7

∆1∆2∆3∆4∆5∆6

=

∫
dd+2Y1 δ(Y

2
1 /2)

Vol(GL(1))

∫
dd+2Y2 δ(Y

2
2 /2)

Vol(GL(1))

× (−1)6+m(Y2X2)m

(Y1I)d−4(Y2I)d−3+m(Y1X1)(Y1X2)(Y1X3)(Y2X1)(Y2X3)(Y1Y2)
. (3.4.21)

Since the external momenta are identical to those for the one-loop triangle, the same sub-

group of conformal transformations in dual space leaves the external momenta invariant.

Therefore, we can reuse the IBP-generating vectors for the one-loop triangle. The IBP-

generating vector is parametrized as

1

2
ωiju12(Xi, Xj) =

2∑
A=1

ωij(XiYA)Xa
j

∂

∂Y a
A

, (3.4.22)

which differs from the corresponding one-loop expression (3.3.20) only by an additional

summation over the loop label A. We reuse the first solution ω(1) for the antisymmetric

matrix ωij in Eq. (3.3.27) found at one loop. The action of the IBP-generating vector is a
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straightforward generalization of the one-loop expression (3.3.29),

∆ω(1)(YAX1) = ∆ω(1)(YAX3) = 0,

∆ω(1)(YAX2) = s(YAX2),

∆ω(1)(YAI) = − [(YAX1)− 2(YAX2) + (YAX3)]− s(YAI),

∆ω(1)(Y1Y2) = 0 . (3.4.23)

Other than the appearance of the loop label A which may be either 1 or 2, the only difference

from the one-loop expression is the last line, namely the trivial statement that (Y1Y2) is

invariant under simultaneous Lorentz transformations of Y1 and Y2.

IBP relations can be computed in a way similar to how it is done at one loop in Eq.

(3.3.32), in terms of the non-vanishing components of the first solution for ω̄ in Eq. (3.3.28),

0 =

∫
dd+2Y1 δ(Y

2
1 /2)

Vol(GL(1))

∫
dd+2Y2 δ(Y

2
2 /2)

Vol(GL(1))

×∆ω(1)
(−1)6+m(Y2X2)m

(Y1I)d−4(Y2I)d−3+m(Y1X1)(Y1X2)(Y1X3)(Y2X1)(Y2X3)(Y1Y2)

=

∫
dd+2Y1 δ(Y

2
1 /2)

Vol(GL(1))

∫
dd+2Y2 δ(Y

2
2 /2)

Vol(GL(1))

× (Y2X2)m

(Y1I)d−4(Y2I)d−3+m(Y1X1)(Y1X2)(Y1X3)(Y2X1)(Y2X3)(Y1Y2)

×
{

(−1)6+m
[
−ω̄ 2

2 (m− 1) + (d− 4)ω̄ 4
4 + (d− 3 +m)ω̄ 4

4

]
+(−1)5+m

[
−(d− 4)

(Y1I)

(
3∑
i=1

ω̄ i
4 (Y1Xi)

)
− (d− 3 +m)

(Y2I)

(
3∑
i=1

ω̄ i
4 (Y2Xi)

)]}
. (3.4.24)

It is illuminating to look at Eq. (3.4.24) on the maximal cut of the triangle-box, which sets

(Y1X1) = (Y1X2) = (Y1X3) = (Y2X1) = (Y2X3) = (Y1Y2) = 0 . (3.4.25)

After translating Eq. (3.4.24) back to SO(d − 1, 1) loop-momentum space, imposing the
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maximal cut, and substituting ω̄ j
i for their explicit values, we obtain

0 = 2(d− 4 +m)s Itri-box
m + 2(d− 3 +m)Itri-box

m+1 + daughter integrals, (3.4.26)

using the notation of Eq. (3.4.21) and “daughter integrals” refer to integrals where some of

the triangle-box propagators are canceled. This is a recursion relation which reduces all the

triangle-box integrals to the scalar integral Itri - box
0 and integrals with canceled propagators.

We will further show that the scalar triangle-box integral is also reducible to integrals

with canceled propagators, by constructing another IBP relation using transformations in

the transverse directions as explained in Subsection 3.4.1. We define

Ĩ = X2 , (3.4.27)

which satisfies Eq. (3.4.1) and also define Y1⊥ according to Eq. (3.4.6) with B set to 1,

Y a
1⊥ = Y a

1 − (Y1Xi)g
−1
ij X

a
j , (3.4.28)

which is the projection of Y1 onto the transverse space orthogonal to X1, X2, X3, I. Using

the IBP-generating vector Eq. (3.4.5) with B = 2,

−1

(Y1I)
u12(Ĩ , Ỹ1⊥) , (3.4.29)

the IBP relations can be written down as a total divergence as in Eq. (3.2.44) (but generalized

to more than one loop by trivially adding a summation over loop labels 1 and 2), with I set

to

I =
(−1)6s

(Y1I)d−4(Y2I)d−3(Y1X1)(Y1X2)(Y1X3)(Y2X1)(Y2X3)(Y1Y2)
. (3.4.30)

Explicit calculation gives the IBP relation, again dropping terms that vanish on the maximal
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cut for the purpose of illustration,

0 = −(d− 3)s Itri - box
0 + daughter integrals . (3.4.31)

Combined with the recursion relation Eq. (3.4.26), this shows that all triangle-box integrals

can be reduced to zero on the maximal cut. In other words, all these integrals can be

reduced to integrals with canceled propagators, if we retain all terms proportional to inverse

propagators in the calculation of the IBP relations.

3.4.4 The double box

Consider now the two-loop double-box integral in Fig. 3.1. The inverse propagators with the

assigned momentum labels are

∆1 = l21 , ∆2 = (l1 − p1)2 , ∆3 = (l1 − p1 − p2)2 , ∆4 = (l2 − p1 − p2)2 ,

∆5 = (l2 + p4)2, ∆6 = l22 , ∆7 = (l2 − l1)2 , (3.4.32)

while a choice of irreducible numerators is

∆8 = (l1 + p4)2 , ∆9 = (l2 − p1)2 . (3.4.33)

To write every inverse propagator in the dual-space form, as either (y1−y2)2 or (yA−xj)2,

we define the SO(d− 1, 1) dual coordinates xj and yA such that

xµ2 − xµ1 = pµ1 , xµ3 − xµ2 = pµ2 , xµ4 − xµ3 = pµ3 , xµ1 − xµ4 = pµ4 ,

yµ1 − xµ1 = lµ1 , yµ2 − xµ1 = lµ2 . (3.4.34)
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under which the seven inverse propagators become

∆1 = (y1 − x1)2 , ∆2 = (y1 − x2)2 , ∆3 = (y1 − x3)2 , ∆4 = (y2 − x3)2 ,

∆5 = (y2 − x4)2 , ∆6 = (y2 − x1)2 , ∆7 = (y2 − y1)2 , (3.4.35)

and the two irreducible numerators become

∆8 = (y1 − x4)2 , ∆9 = (y2 − x2)2 . (3.4.36)

A convenient visualization of the dual points is shown in Fig. 3.1. In terms of these quantities,

we define the planar double-box integrand as

ΩP
1 = ddl1d

dl2
st

∆1...∆7

. (3.4.37)

where

s = (p1 + p2)2 = (x1 − x3)2 , t = (p2 + p3)2 = (x2 − x4)2 , (3.4.38)

are Mandelstam invariants needed to cancel overall conformal weights.

As usual for planar integrals, we map the dual coordinates yµA and xµj to SO(d, 2)

embedding-space points YA and Xj, following Eqs. (3.2.31) and (3.2.32). If we use the

algorithm presented in Section 3.3.2 to find infinitesimal SO(d, 2) Lorentz transformations

that leave all Xj invariant, we find two such transformations in the notation of Eq. (3.2.38):

u12(X1, X3), u12(X2, X4) , (3.4.39)

following the notation of Eq. (3.4.9). For the one-loop box diagram, both transformations

vanish on the maximal cut because (Y Xi) = 0, 1 ≤ i ≤ 4. But for the two-loop double-

box topology, (Y1X4) and (Y2X2) are proportional to the irreducible numerators, so the

84



IBP-generating vector,

u12(X2, X4) , (3.4.40)

still gives an IBP-generating vector that does not vanish on the maximal cut. Eq. (3.4.40)

is essentially the same as the first IBP-generating vector for the double box in Ref. [31]

obtained using computational algebraic geometry. There is another IBP-generating vector

for the double box following the discussion of Subsection 3.4.1. We define another SO(d, 2)

embedding-space point Y1⊥,

Y a
1⊥ = Y a

1 − (Y1Xi)g
−1
ij X

a
j , (3.4.41)

where as usual, gij = (XiXj) is the embedding-space Gram matrix, with X5 identified with

I. We also define the SO(d, 2) embedding-space point Ĩ,

Ĩa = s(Xa
2 +Xa

4 ) + t(Xa
1 +Xa

3 ) + st Ia , (3.4.42)

which is the same as Eq. (3.4.2) but with an extra overall factor st, and satisfies Eq. (3.4.1).

Using the IBP-generating vector (3.4.5) with B = 1, we have

u12(Ĩ , Y1⊥) . (3.4.43)

We have checked using computer algebra that the two IBP-generating vectors, Eqs.

(3.4.40) and (3.4.43), with all possible choices of numerators in I in the two-loop gener-

alization of Eq. (3.2.44), generate a complete set of IBP relations that reduce all double-box

tensor integrals to two double=box master integrals and daughter integrals (i.e., integrals

with canceled propagators). It is worth noting that the two vectors we found are written

down in a very compact form, whereas in Ref. [31] nearly one page is needed to display the

vectors found from computational algebraic geometry.
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x5
y1 y2

Figure 3.6: The penta-box integral.

3.4.5 The penta-box

As a more complex example consider the two-loop five-point penta-box shown in Fig. 3.6,

along with dual coordinates xi and yA introduced as usual. There are five independent

kinematic variables, which may be chosen as

s12, s23, s34, s45, s51 , (3.4.44)

where sij = (pi + pj)
2. The embedding-space Gram matrix is, identifying I with X6,

gij = (XiXj) =



0 0 −s12 −s45 0 1

0 0 0 −s23 −s51 1

−s12 0 0 0 −s34 1

−s45 −s23 0 0 0 1

0 −s51 −s34 0 0 1

1 1 1 1 1 0


. (3.4.45)
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With Ĩ defined as in Eq. (3.4.2), we obtain two IBP-generating vectors from conformal

transformations in transverse directions, by setting B = 1, 2 in Eq. (3.4.5),

u

(
Ĩ ,

Ỹ1⊥

(−Y1I)

)
, (3.4.46)

u

(
Ĩ ,

Ỹ2⊥

(−Y2I)

)
. (3.4.47)

Next, we examine conformal transformations which do not explicitly involve transverse di-

rections. As in Eq. (3.3.19), we write down a conformal transformation parametrized as

∆ωZ
a =

∑
1≤i,j≤6

(ZXi)ω
ijXa

j , (3.4.48)

where ω is a 6 × 6 antisymmetric matrix. Unlike the previous three-point and four-point

examples in this chapter, we are not able to find a solution for ωij which leaves all external

momenta invariant. However, all is not lost. As discussed in the latter half of Subsection

3.4.2, we can look for two different conformal transformations for the two sub-loops, and

combine the two to give a unitarity-compatible IBP-generating vector.

We find one solution ωij(1) which leaves x1, x2, x3, x4, or equivalently p1, p2, p3, invariant,

and three solutions ωij(2a), ω
ij
(2b), ω

ij
(2c) which leave x1, x4, x5, or equivalently p4, p5 invariant.

These solutions are tabulated in Appendix 3.9.3 Therefore, the following IBP-generating

vectors do not increase the power of any propagator except the vertical central propagator

in Fig. 3.6,

1

2
ωij(1)u1(Xi, Xj),

1

2
ωij(2a)u2(Xi, Xj),

1

2
ωij(2b)u2(Xi, Xj),

1

2
ωij(2c)u2(Xi, Xj) . (3.4.49)

These vectors can be combined to give IBP-generating vectors that do not increase the

3In quoting the number of solutions, we have ignored the solutions which ultimately do not lead to
independent new IBP relations.
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power of any propagator. Using the notation of Eqs. (3.4.12), (3.4.13) and (3.4.14), these

IBP-generating vectors are

cross

(
1

2
ωij(1)u1(Xi, Xj),

1

2
ωij(2a)u2(Xi, Xj)

)
,

cross

(
1

2
ωij(1)u1(Xi, Xj),

1

2
ωij(2b)u2(Xi, Xj)

)
,

cross

(
1

2
ωij(1)u1(Xi, Xj),

1

2
ωij(2c)u2(Xi, Xj)

)
. (3.4.50)

We have checked, using computer algebra, that the five IBP-generating vectors in Eqs. (3.4.46),

(3.4.47) and (3.4.50) are sufficient to reduce all penta-box integrals to three master integrals.

Again, the five vectors are given by compact analytic expressions, in contrast to lengthy

expressions one generally finds using computational algebraic geometry.

This formalism generalizes straightforwardly, e.g. to the six-point case, although one

would need to check that the IBP relations are complete for each individual diagram topology,

which is left to future work.

3.5 Differential equations for planar integrals

In this section we briefly comment on applications of the ideas described in previous sections

to constructing differential equations for integrals. An infinitesimal dual conformal trans-

formation produces differential equations when we remove the restriction to the sub-algebra

that keeps external legs invariant. We present a treatment in the embedding space, which

simplifies the transformations and has the advantage that there is no need to fix the trans-

lation gauge for the dual coordinates. In the nonplanar case, covered in Section 3.6, where

the transformations for some kinematic invariants become less obvious it will be simpler to

use a “direct” treatment.

Consider the one-loop box, shown in Fig. 3.7 which has the same external momenta and

the SO(d, 2) points Xi as the double box in Section 3.4.4. Consider an infinitesimal SO(d, 2)
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Figure 3.7: The one-loop box diagram and its dual diagram.

Lorentz transformation ∆Z given by

∆Za = (Z1Z)Za
2 − (Z2Z)Za

1 , (3.5.1)

with parameters

Z1 = X2, Z2 = s I + (X1 +X3) , (3.5.2)

which satisfies

(Z1X1) = (Z1X2) = (Z1X3) = 0, (Z1X4) = −t, (Z1I) = 1

(Z2X1) = (Z2X3) = 0, (Z2X2) = (Z2X4) = s, (Z2I) = 2 . (3.5.3)

The transformation of the SO(d, 2) points are

∆X1 = ∆X3 = 0, ∆X2 = −sX2 ,

∆X4 = −tZ2 − sZ1 = −st I − tX1 − tX3 − sX2 ,

∆Y = (Y X2)(s I +X1 +X3)− s(Y I)X2 − (Y X1)X2 − (Y X3)X2 , (3.5.4)

which shows X1, X2, and X3 are invariant up to a GL(1) gauge scaling. In other words

the d-dimensional dual coordinates xµ1 , xµ2 and xµ3 are left invariant. The factor (Y I), which
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appears in the integration measure, transforms as

∆(Y I) = (I∆Y ) = 2(Y X2)− (Y X1)− (Y X3)− s(Y I) . (3.5.5)

As a result, s = (x1 − x3)2 is invariant, while explicit calculation shows

∆t = 2(s+ t)t . (3.5.6)

So the transformation produces differential equations in the t variable,

2(s+ t)t
∂

∂t

(
stIbox

)
=

∫
dd+2Y δ(Y 2/2)

Vol(GL(1))
∆

(
(X1X3)(X2X4)

(Y I)d−4(Y X1)(Y X2)(Y X3)(Y X4)

)
=

∫
dd+2Y δ(Y 2/2)

Vol(GL(1))

(X1X3)(X2X4)

(Y X1)(Y X2)(Y X3)(Y X4)
∆

(
1

(Y I)d−4

)
=

∫
dd+2Y δ(Y 2/2)

Vol(GL(1))

(X1X3)(X2X4)

(Y X1)(Y X2)(Y X3)(Y X4)

1

(Y I)d−4+1

× (−d+ 4) [2(Y X2)− (Y X1)− (Y X3)− s(Y I)]

= ε
[
−2s

(
stIbox

)
+ 4st Itri,t − 4st Itri,s

]
, (3.5.7)

where the last line consists of the box, the t-channel triangle, and the s-channel triangle

integrals. After summing s- and t-channel versions of this equation it immediately reproduces

Eq. (4.11) of Ref. [96].

It is noteworthy that the right-hand side of the differential equation so derived is propor-

tional to ε [83,84]. It is perhaps not too surprising that this structure naturally arises in our

approach. If we ignore the effect of the regulator, the combination stIbox is invariant under

dual conformal transformations in four dimensions. However, the box integral is infrared

singular so a regulator is required. Dimensional regularization breaks the invariance, so in-

stead of finding zero on the right-hand side we find terms proportional to ε. Besides leading

to simpler differential equations, integrals with such symmetries are expected to have inter-

esting properties, including uniform transcendentality [103] and d log forms [107]. It would
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be interesting to further explore these ideas at higher loops, not only for the planar case,

but also for nonplanar integrals in the context of the approach of Section 3.6.

We end this section with some discussions about the applicability of this method to more

complicated integral topologies. First, let us look at the number of legs allowed. In this

simple example, a conformal boost changes the dimensionless ratio of Mandelstam variables,

s/t, while a scaling transformation rescales both s and t. Together these two transformations

allow the whole phase space of external kinematic invariants to be explored. For massless

planar diagrams, this breaks down when there are six or more external legs, because nontriv-

ial conformally invariant cross ratios exist [77], and conformal transformations only allow us

to explore a subspace of the phase space with the same cross ratios.

Second, consider the ε factorization properties of the differential equations for more gen-

eral integrals. For any integrand that is dual conformal invariant, our method automatically

leads to differential equations where there is an explicit factor of ε on the right-hand side.

For more complicated examples beyond the one-loop box, it is generally necessary to perform

unitarity-compatible IBP reduction to bring the right-hand side into a linear combination

of master integrals. Assuming that IBP reduction of the right-hand side does not introduce

singularities, this gives a symmetry-based understanding of Henn’s ε form of differential

equations. For planar integrals that are not invariant, we still obtain differential equations

without raised propagator powers. This allows unitarity-compatible IBP reduction to be

used to simplify the differential equations, even though we no longer would have ε factoriza-

tion prior to IBP reduction. Third, the applicability of our method to nonplanar topologies

will be demonstrated in the next section, where differential equations are derived for the

nonplanar double box by identifying a symmetry analogous to dual conformal symmetry.

3.6 Nonplanar analog of dual conformal symmetry

In this section we find a nonplanar analog of dual conformal transformations at two loops.

We do so by working out the symmetries of two-loop integrals with three or four external
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p1 p2

l1
l2

−(l2 + p1 + p2)

Figure 3.8: The crossed triangle-box, with two massless legs p1 and p2, and one massive leg
shown as a thick line. We remove the right-most part of the diagram enclosed in a (red)
ellipse, in order to open up the diagram into a one-loop planar diagram.

p1 p2

l1

l2

−(l2 + p1 + p2)

y1

x1 = 0 x2 = l2

x3 = l2 + p2x4 = −p1

Figure 3.9: This figure is obtained from Fig. 3.8 by removing the right-most part enclosed
in the (red) ellipse, including the massive leg. The result is a planar diagram, allowing dual
coordinates xi to be introduced. Each of the dashed (blue) lines corresponds to one of the
six propagators in the integral.

legs.

3.6.1 Hidden symmetry of a two-loop nonplanar three-point inte-

gral

We start by deriving IBP-generating vectors for a two-loop nonplanar integral topology,

the crossed triangle-box integral shown in Fig. 3.8, with two massless outgoing external

momenta p1 and p2, and one outgoing massive external momentum −(p1 + p2) on the right.

The kinematics is given by

p2
1 = p2

2 = 0, (p1 + p2)2 = s . (3.6.1)
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Our strategy is to open up the nonplanar diagram by removing vertices in the graph. This

strategy has been pursued in Ref. [78] to find symmetries of leading singularities of nonplanar

integrands. Here we will find symmetries of the complete off-shell integrand, up to anomalies

introduced by dimensional regularization of infrared singularities, similar to the situation in

the planar case. A key hint comes from the fact that in the planar case, dual conformal

transformations generate polynomial tangent vectors of unitarity cut surfaces, under which

each propagator transforms with a polynomial weight as in Eq. (3.2.8). Therefore, we will

first find transformations of nonplanar integrands with this property, before verifying that

such transformations are in fact a symmetry of the integrand with appropriate numerators.

To open up the nonplanar diagram in Fig. 3.8 into a planar one, we remove the massive

external leg and the vertex attached to it enclosed in the (red) circle, producing a planar one-

loop diagram in Fig. 3.9, in which two “external” legs depend on the second loop momentum.

Dual coordinates may be introduced for this planar one-loop diagram, as illustrated by the

dashed lines in Fig. 3.9. In this case, we find it more convenient to directly work with

conformal transformations in d dimensions rather than using the embedding formalism. The

inverse propagators are expressed as squared differences between pairs of points in dual

spacetime,

∆1 = l21 = (y1 − x1)2 , ∆2 = (l1 − l2)2 = (y1 − x2)2 ,

∆3 = (l1 − l2 − p2)2 = (y1 − x3)2 , ∆4 = (l1 + p1)2 = (y1 − x4)2 ,

∆5 = l22 = (x2 − x1)2 , ∆6 = [−(l2 + p1 + p2)]2 = (x4 − x3)2 , (3.6.2)

while the only irreducible numerator can be chosen as

∆7 = (l2 + p1)2 = (x2 − x4)2 . (3.6.3)

While the external momentum p1 and p2 each can be written as the difference between

two dual coordinates, this is no longer true for the massive external momenta −(p1 + p2),
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in contrast to the planar case. Choosing a gauge x1 = 0 to fix the translation degree of

freedom, the dual coordinates are positioned at

x1 = 0, x2 = l2, y1 = l1, x3 = l2 + p2, x4 = −p1 . (3.6.4)

Using these variables, the crossed triangle-box integral in Fig. 3.8, with m powers of the

irreducible numerator, is

Ictb
m =

∫
ddy1

∫
ddx2

∆m
7

∆1∆2∆3∆4∆5∆6

=

∫
ddy1

∫
ddx2

(x2 − x4)2m

(y1 − x1)2(y1 − x2)2(y1 − x3(x2))2(y1 − x4)2(x2 − x1)2(x4 − x3(x2))2
,

(3.6.5)

where x3 is taken to be a function of x2 = l2.

The expression in Eq. (3.6.5) is in a form where we can conveniently apply conformal

transformations. An infinitesimal transformation, consisting of a conformal boost with pa-

rameter bµ, a scaling with parameter β, and a Lorentz transformation Ωµ
ν , is given by

∆zµ =
1

2
z2 bµ + (β − b · z)zµ + Ωµ

νz
ν . (3.6.6)

Under the transformation, each inverse propagator of the form (z1− z2)2 has a weight given

by Eq. (3.2.22),

[2β − b · (z1 + z2)] . (3.6.7)

For a propagator given by 1/(z1 − z2)2, the weight has an opposite sign. Meanwhile, the

integration measures ddy1 and ddx2 have a weight given by Eq. (3.2.23),

∂∆yµ1
∂yµ1

= (β − b · y1) d ,
∂∆xµ2
∂xµ2

= (β − b · x2) d . (3.6.8)

For the nonplanar integral in Eq. (3.6.5), the total weight, from the integration measures,
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irreducible numerators, and propagators, is

W(m, b, β) =d (β − b · y1) + d (β − b · x2) +m [2β − b · (x2 + x4)]

−
(

4∑
i=1

[2β − b · (y1 + xi)]

)
− [2β − b · (x1 + x2)]− [2β − b · (x3 + x4)] , (3.6.9)

which, using the explicit expression Eq. (3.6.4), becomes

W(m, b, β) = 2β(d+m− 6) + b · [−(d− 4)(l1 + l2) + 2p2 − 2p1 −m(l2 − p1)] . (3.6.10)

We obtain IBP-generating vectors when the transformation Eq. (3.6.6) leaves both p1

and p2 invariant, i.e.

∆p1 = ∆x1 −∆x4 = 0 , ∆p2 = ∆x3 −∆x2 = 0 . (3.6.11)

A solution for such a transformation is

b = p2 , β = −p1 · p2

2
= −s

4
, Ωµ

ν =
1

2
p1 νp

µ
2 −

1

2
p2 νp

µ
1 . (3.6.12)

The weight (3.6.10) is then (using p2
2 = 0),

W(m, p2,−
s

4
) = −s

2
(d+m− 6) + p2 · [−(d− 4)(l1 + l2)− 2p1 −m (l2 − p1)]

=
1

2
(d− 4 +m)s+

(
d− 4 +

m

2

)
(∆7 −∆6) +

1

2
(d− 4)(∆3 −∆2) . (3.6.13)

Remarkably, the above expression vanishes when d = 4 and m = 0. This shows the integrand

of the scalar integral Ictb
0 is invariant under a nontrivial infinitesimal transformation.4

4By “nontrivial”, we mean that the transformation is not a Lorentz transformation (of both external and
loop momenta) which trivially leave the integral invariant.
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The IBP relation obtained from Eq. (3.6.13) is

0 =

∫
ddl1

∫
ddl2

∆m
7 W(m, p2,− s

4
)

∆1∆2∆3∆4∆5∆6

=
1

2
(d− 4 +m)s Ictb

m +
(
d− 4 +

m

2

)
Ictb
m+1

+ daughter integrals , (3.6.14)

which reduces all integrals of this topology to the scalar master integral Ictb
0 and daughter

integrals with canceled propagators. We checked that Eq. (3.6.14) agrees with maximal-cut

IBP relations obtained from computational algebraic geometry. Since this is a single scale

integral, differential equations are not useful unless additional scales are introduced [85]; in

any case its value is given in Ref. [97].

3.6.2 Hidden symmetry of two-loop four-point nonplanar integrals

Consider now the two-loop four-point nonplanar integral with massless external legs dis-

played in Fig. 3.10. In this case, if we follow the same procedure as for the nonplanar

triangle-box, we find no solution for a generalized dual conformal transformation that leaves

the external points invariant, so the construction does not generate IBP relations. However,

by relaxing this condition, we have no difficulty finding an invariance of the integrals with

appropriate numerators. We use it to construct differential equations along the lines of Sec-

tion 3.5, implying that the symmetry determines the analytic structure. As we emphasize

in the subsequent section, this implies that the nonplanar sector of the two-loop four-point

N = 4 super-Yang–Mills amplitude has a hidden symmetry analogous to dual conformal

symmetry.

In order to define an analog of dual conformal symmetry we open the diagram by removing

the part of the diagram in Fig. 3.10 enclosed by a red ellipse, including the leg with external

momentum p2. This opens up the two-loop diagram into a one-loop diagram with “fake”,

loop-momentum-dependent external legs as shown in Fig. 3.11. With this construction every

propagator momentum is expressed as the difference between two dual-space points. Each
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p1

p2
l1

p4p3

l1 + p1 + p2

l2

Figure 3.10: The two-loop nonplanar crossed box. The part of the diagram enclosed in a
red ellipse will later be removed, so that the diagram is broken up into a one-loop planar
diagram.

x4 = l1 − p4

p1

−l1

l2

p4p3

l1 + p1 + p2

l1 + p2

x1 = 0

x2 = p3

x3 = p1 + p3

x5 = l1

y= l2

Figure 3.11: The planar one-loop diagram obtained by removing the bottom left part of Fig.
3.10. This allows one to introduce dual coordinates xi. Each of the dashed lines corresponds
to one of the six propagators in the integral.

of the external momenta p1, p3, and p4 is also expressed as the difference between two dual

coordinates, though the same is not true for p2 (in contrast to the planar case). Although

one might worry that this may cause problems with the construction, we shall see that it

does not.
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We take the inverse propagators as,

∆1 = l21 = (x1 − x5)2, ∆2 = (l1 + p2)2 = (x4 − x3)2 , ∆3 = (l1 + p1 + p2)2 = (x4 − x2)2 ,

∆4 = (l1 − l2)2 = (y − x5)2 , ∆5 = l22 = (y − x1)2 ,

∆6 = (l2 − p3)2 = (y − x2)2 , ∆7 = (l2 − l1 + p4)2 = (y − x4)2 , (3.6.15)

and we have chosen the gauge

x1 = 0 , x2 = p3 , x3 = p1 + p3 , x4 = l1 − p4 , x5 = l1 , y = l2 . (3.6.16)

We can define two numerators (which are not independent irreducible numerators, but nev-

ertheless are convenient for notational purposes),

∆8 = (l1 − p3)2 = (x5 − x2)2, ∆9 = (l1 − p4)2 = (x4 − x1)2 . (3.6.17)

We also note that

u = (p1 + p3)2 = (x3 − x1)2 . (3.6.18)

Refs. [86, 87, 116] express the two-loop four-point amplitude in terms of integrals that

have only logarithmic singularities, reflecting a property of the full amplitude. In this rep-

resentation the two nonplanar integrands that appear in the amplitude (up to relabelings)

are,

ΩNP
1 = ddl1d

dl2
su∆8

∆1...∆7

, (3.6.19)

ΩNP
2 = ddl1d

dl2
st∆9

∆1...∆7

. (3.6.20)

The normalization of each is chosen so it has unit leading singularity [87]. Our task will be

to find a hidden symmetry responsible for the simple analytic properties after integration.
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x4 = l1 − p4

x1 = 0

x2 = p3

x3 = p1 + p3

x5 = l1

y = l2

Figure 3.12: Weight diagram for the integrand (3.6.19) under the conformal boost (3.6.23).

x4 = l1 − p4

x1 = 0

x2 = p3

x3 = p1 + p3

x5 = l1

y = l2

Figure 3.13: Weight diagram for the integrand (3.6.20) under the conformal boost (3.6.23).

A conformal boost on the xi’s and y with parameter bµ gives

∆p4 ≡ ∆x5 −∆x4 (3.6.21)

= (l1 · p4)b− (p4 · b)l1 − (l1 · b− p4 · b)p4 . (3.6.22)

The appearance of loop momentum in the transformation of external momentum is not

surprising, given that once we cut a nonplanar diagram open internal momenta effectively

become “external”. This is, of course, not desirable if we wish to use the transformations to

construct differential equations. To remove the loop-momentum dependence of this variation,
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we simply choose

b = p4 . (3.6.23)

While this restricts the transformations to a subset of conformal transformations, we shall

see that this is sufficient for constructing differential equations analogous to those of the

planar case. Applying the conformal transformation gives

∆p1 = ∆x3 −∆x2 =
1

2
(u p4 − t p3 + u p1) ,

∆p3 = ∆x2 −∆x1 = −1

2
s p3 ,

∆p4 = ∆x5 −∆x4 = 0 , (3.6.24)

so that the masslessness of these three external legs is preserved. In fact, the masslessness

of p1, p3, and p4 are trivially preserved by the properties of conformal transformations, since

each of these three momenta is the difference between two points in dual space. Remarkably,

the same is nontrivially true of the second leg, as can be readily checked,

∆p2
2 = 2p2 ·∆p2 = −2p2 · (∆p1 + ∆p3 + ∆p4) = 0 . (3.6.25)

This ensures that the transformation preserves the masslessness of all external legs, which

is essential for the construction to be useful. In addition we have,

∆s = ∆(2p3 · p4) = 2(p3 ·∆p4 + p4 ·∆p3) = −s
2
s ,

∆t = ∆(2p1 · p4) = 2(p1 ·∆p4 + p4 ·∆p1) = −t+ 2s

2
t . (3.6.26)

Note that applying Eq. (3.2.22) directly gives,

∆u = −b · (x3 + x1)u = −p4 · (p1 + p3)u = −u
2

(t+ s) = −∆s−∆t , (3.6.27)
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which is consistent with momentum conservation. It will be convenient for later purposes

to write down the weights of s, t, and u under the transformation, as dot products between

(−p4) and other momenta,

Ws ≡
∆s

s
= −p4 · p3 ,

Wt ≡
∆t

t
= −p4 · (p1 + 2p3) ,

Wu ≡
∆u

u
= −p4 · (p1 + p3) . (3.6.28)

Meanwhile, a numerator of the form (zi − zj)2 has the weight −p4 · (zi + zj), while an extra

minus sign is present in the weight for a propagator of the form 1/(zi−zj)2. The weight of the

integration measure is given by−d p4·(x5+y) = −d p4·(l1+l2). We can now straightforwardly

prove that the nonplanar contributions to the N = 4 super-Yang–Mills amplitudes are

invariant under this transformation. Namely, in d = 4, the two integrands (3.6.19) and

(3.6.20) in the amplitudes transform as,

∆ΩNP
1 = ∆ΩNP

2 = 0 . (3.6.29)

A pictorial way to derive the above equation is as follows. We have shown that the weights

of the Mandelstam variables, numerators, propagators, and integration measures are each

written in the form −p4 ·W for some “weight vector” W µ. So it is convenient to represent

the weight of the integrand diagrammatically as in Figs. 3.12 and 3.13. In the diagrams, the

weight of a propagator of the form 1/(z1 − z2)2 is represented by a dashed line connecting

two points z1 and z2, contributing −(zµ1 + zµ2 ) to the weight vector W µ. The weight of

a numerator of the form (z1 − z2)2 is represented by a wiggly line connecting two points

z1 and z2, contributing zµ1 + zµ2 to the weight vector W µ. The weight of the Mandelstam

variables appearing in the numerator is represented by a coil-like line connecting two points

z1 and z2, again contributing zµ1 + zµ2 to the weight vector W µ. To reproduce Eq. (3.6.28),
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for Ws we choose z1 = 0 = x1 and z2 = p3 = x2, for Wt we choose z1 = p3 = x2 and

z2 = p1 + p3 = x3, and for Wu we choose z1 = 0 = x1 and z2 = p1 + p3 = x3. Finally, the

weight of the integration measure is indicated by large black dots at the two points x5 and

y. In our notation, a large black dot at any point z contributes d zµ to the weight vector

W µ, with d being the spacetime dimension. The total weight vector
∑
W µ can now be read

off from the diagram in the following manner: at each vertex (i.e. a dual-space point) zµ, we

count the number of wiggly lines and coil-like lines joining the vertex, subtract the number

of dashed lines joining the vertex, and add the spacetime dimension d if a large black dot

appears at the vertex. The final number is multiplied by zµ and included in
∑
W µ. For the

first integrand ΩNP
1 in Eq. (3.6.19), the weight diagram in Fig. 3.12 gives the weight vector

∑
W µ

1 = (2− 2)xµ1 + (2− 2)xµ2 + (1− 1)xµ3 − 3xµ4 + (1− 2 + d)xµ5 + (−4 + d)yµ

= (d− 4)(lµ1 + lµ2 ) + 3pµ4 . (3.6.30)

Using this, we arrive at

∆ΩNP
1 =

(
−p4 ·

∑
W1

)
ΩNP

1 = −(d− 4)p4 · (l1 + l2)ΩNP
1 . (3.6.31)

Since the transformation changes the Mandelstam variables as in Eq. (3.6.26), we arrive at

a differential equation for the Feynman integral,

(
−s

2

2

∂

∂s
− t(t+ 2s)

2

∂

∂t

)∫
ΩNP

1 = −(d− 4)

∫
p4 · (l1 + l2) ΩNP

1 . (3.6.32)

Since ΩNP
1 has mass dimension 2(d−4), we trivially obtain another differential equation from

the simultaneous scaling of all Mandelstam variables,

s

2

(
s
∂

∂s
+ t

∂

∂t

)∫
ΩNP

1 =
s

2
(d− 4)

∫
ΩNP

1 . (3.6.33)
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Figure 3.14: An illustrative multi-loop diagram, where an analysis similar to the one for the
nonplanar double box in Fig. 3.10 identifies a hidden symmetry.

Adding Eqs. (3.6.32) and (3.6.33), we obtain the derivative of the integral against t only

tu

2

∂

∂t

∫
ΩNP

1 = ε

[
2

∫
p4 · (l1 + l2)− s

]
ΩNP

1 . (3.6.34)

For the second integrand ΩNP
2 in Eq. (3.6.20), again we read off the weight vector from Fig.

3.13. This leads to results similar to those for ΩNP
1 ,

∆ΩNP
2 =

(
−p4 ·

∑
W1

)
ΩNP

1 = −(d− 4)p4 · (l1 + l2)ΩNP
2 , (3.6.35)

and

tu

2

∂

∂t

∫
ΩNP

2 = ε

[
2

∫
p4 · (l1 + l2)− s

]
ΩNP

2 . (3.6.36)

If there were no infrared singularities, we would be able to set ε = 0 and the symmetry would

be exact.

It is interesting that a similar analysis extends to any nonplanar diagram with a single

crossed box at any loop order, as illustrated in Fig. 3.14. In particular, if we consider this

diagram with a numerator obtained from a corresponding planar dual conformal invariant

one, except for the single crossed box which is given a similar factor as in the two-loop cases

(3.6.19) and (3.6.20), then the resulting nonplanar integral possesses a higher-loop analog of

dual conformal symmetry. A way to show the invariance is to remove a three vertex from the

crossed box and perform an analysis similar to the one of the previous section for the two-
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loop crossed box. In this case, it is convenient to remove a vertex from the crossed double

box, instead of the other parts of the diagram. We have checked that the analog of dual

conformal symmetry is present for this class of nonplanar integrals, at any loop order. As for

the two-loop case, we can use it to generate differential equations to constrain the integrals

whose right-hand side is proportional to the dimensional regularization parameter, ε.

3.7 Invariance of the nonplanar two-loop four-point N = 4 super-

Yang–Mills amplitude

In the previous section we identified a new symmetry of the nonplanar integrands that appear

in the two-loop four-point amplitude of N = 4 super-Yang–Mills theory. In this section we

comment on symmetries of the full amplitude.

From Eq. (3.15) of Ref. [87] we have the full two-loop four-point amplitude of N = 4

super-Yang-Mills theory as

A2-loop
4 =− g6

4(2π)2D

∑
S4

[
cP

1234A
tree(1, 2, 3, 4)

∫
ΩP (3.7.1)

− cNP
1234

(
Atree(1, 2, 4, 3)

∫
ΩNP

1 + Atree(1, 2, 3, 4)

∫
ΩNP

2

)]
,

where cP
1234 and cNP

1234 are the planar and nonplanar color factors obtained by dressing the

diagrams in Figs. 3.1 and 3.10 with f̃abc color factors at each diagram vertex. The planar

integrands are given in Eq. (3.4.37) while the nonplanar integrands are given in Eqs. (3.6.19)

and (3.6.19). The Atree’s are color-ordered tree amplitudes of N = 4 super-Yang–Mills

theory, with the indicated ordering of legs. The overall sum is over all 24 permutations of

the external legs; the permutations act on the external color, polarization and momentum

labels. The form in Eq. (3.7.1) differs from the one originally given in Ref. [48,49] by terms

that vanish via the color Jacobi identity. In the original form, the individual nonplanar

integrals do not reflect the analytic properties of the final amplitude, such as having only
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logarithmic singularities and no poles at infinity.

In order to understand the transformation properties we divide the amplitude into sectors

determined by the tree amplitude prefactors. These tree amplitudes have differing overall

weights under the transformations, which are easy to determine using the identities [25],

stAtree(1, 2, 3, 4) = suAtree(1, 2, 4, 3) = tuAtree(1, 3, 2, 4) . (3.7.2)

From here we can see that the tree amplitudes transform with different overall weights under

Eq. (3.6.24),

∆

(
Atree(1, 2, 3, 4)

Atree(1, 2, 4, 3)

)
= ∆

( t
u

)
= − st

2u
, (3.7.3)

where we used Eqs. (3.6.26) and (3.6.27).

In Eq. (3.7.1), the coefficient of each tree amplitude factor is invariant under the four-

dimensional symmetry. In Refs. [87], the orderings of the tree factors were chosen to adjust

the factors of s, t, and u so that the remaining integrals have unit leading singularities. Not

surprisingly, these factors are exactly what is needed to make the coefficient of each tree

invariant under the four-dimensional symmetry.

As a side note, we can adjust the transformations in each sector so that a uniform trans-

formation is applied to the external momenta in all sectors of the amplitude. In doing so, the

transformations on internal momenta necessarily differ in the various sectors, as expected

from the fact that there is no uniform sets of momenta or dual variables in the nonplanar sec-

tor. This may be accomplished by adjusting Lorentz and scaling transformations. However,

since the different sectors transform with a different weight there is no need to do this.

The transformations described in the previous section can be taken as a direct analog of

dual conformal symmetry of planar N = 4 super-Yang–Mills theory, but applicable to the

nonplanar sector as well. Like dual conformal symmetry in the planar case, the infinitesimal

generators of the new symmetries can be identified as polynomial tangent vectors of unitarity

cut surfaces.
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This opens the possibility of finding numerators of higher-loop integrals with desired

properties of having simple analytic properties and associated DEs, not by detailed studies

of the singularity structure of the integrands [83, 84, 86, 87, 116], but by demanding that

given integrands be invariant under symmetries analogous to dual conformal symmetry. For

nonplanar diagrams that can be obtained from a planar one by a single replacement of a

box subdiagram by a crossed box, as in Fig. 3.14, the obvious candidate transformations

follow those described in the previous section. It would be very interesting to systematically

study these cases, as well as ones with multiple twists. We expect such integrals to be direct

building blocks for nonplanar N = 4 super-Yang–Mills amplitudes. More generally, it seems

likely that a symmetry along the lines described here is responsible for the simple analytic

properties [86, 87,116] of general nonplanar amplitudes at any loop order.

3.8 Conclusions

In this chapter we studied hidden symmetries of N = 4 super-Yang–Mills theory as a means

for generating compact integration-by-parts (IBP) relations [30] and differential equations

(DEs) [81, 96] for loop integrals encountered in generic theories. For the planar case, the

hidden symmetry is the well-studied dual conformal symmetry [64]. By exploiting the con-

nection between dual conformal symmetry and polynomial tangent vectors of unitarity cut

surfaces, we were able to find an analogous symmetry for the nonplanar sector of the two-

loop four-point amplitude as well. Besides being useful for generating IBP relations and

DEs, this points to the exciting possibility that dual conformal symmetry can be generalized

to the nonplanar sector of N = 4 super-Yang–Mills theory.

Dual conformal transformations and their nonplanar analogs have the important property

that they do not increase propagator powers, resulting in IBP relations and DEs that are

naturally compatible with unitarity [31]. Such IBP relations had been previously described

using computational algebraic geometry [31, 34, 74]. Our approach, based on exploiting

hidden symmetries, provides new analytic insights and on the practical side gives compact
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expressions for the IBP-generating vectors and DEs. In describing the symmetries we found

it useful to work with both “direct” dual conformal transformations in d dimensions and

the embedding formalism [80], which linearizes the transformations by going to (d + 2)

dimensions.

To illustrate these ideas, we presented a variety of examples at one and two loops. With

up to four massless legs and a small number of mass parameters, it is straightforward to find

several dual conformal transformations which leave the external momenta invariant, and lead

to a sufficient number of IBP relations to solve generic cases. For example, the dual conformal

transformations generate a complete set of IBP relations for the planar two-loop double-box

integral. We also studied a five-point example, namely the planar penta-box integral. In

this case, we need additional IBP-generating vectors from combining separate conformal

transformations for the left loop and right loop, generalizing the strategy of Ref. [33]. These

additional vectors still have a simple analytic form. For illustration, we also looked at a

simpler three-point nonplanar integral, and obtained IBP relations that reduce all integrals

to top-level master integral and daughter integrals.

We also described DEs, where the integrals do not have raised propagator powers, for both

planar and nonplanar cases that arise when external momenta are allowed to change under

the transformation. For one- and two-loop integrals with appropriately chosen numerators

that make the transformation weights cancel in four dimensions, the method directly gives a

DEs where the right-hand side is proportional to the dimensional regularization parameter

ε [83, 84]. This holds before IBP reduction to a basis of master integrals, because the

equations follow from a symmetry that is exact in four dimensions. For massless kinematics,

the method is applicable with up to five external legs. At higher points, when nontrivial

conformal cross ratios are present, the method generates a subset of the DEs.

Our results point to promising directions for future studies. In various one- and two-

loop examples we showed the utility of dual conformal invariance for generating both IBP

relations and DEs, as well as presented a nonplanar symmetry analogous to dual conformal
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symmetry. An obvious direction for future studies is to try to generalize this to arbitrary loop

orders and for any number of external legs. The unitarity-compatible IBP-generating vectors

and DEs constructed via dual conformal symmetry and its generalizations are particularly

simple, making it desirable to extend these ideas as widely as possible. The ability to gen-

erate relatively simple DEs becomes especially attractive when existing methods suffer from

computational bottlenecks that occur in more complicated cases. It is also worth studying

whether the compact expressions generated from our symmetry considerations can improve

computational efficiency in numerical unitarity approaches at two loops and beyond [68].

On the more formal side, we know that dual conformal symmetry [64] strongly restricts

the analytic properties of the planar sector of N = 4 super-Yang–Mills theory. In particular,

the integrands have no double poles or poles at infinity [107]. These analytic properties

also appear to carry over to the nonplanar sector [86, 87, 116]. Here we took initial steps

to identify a symmetry that can explain this. We explicitly constructed a symmetry of the

nonplanar two-loop four-point N = 4 amplitude, and used it to construct a differential equa-

tion for determining its value. As in the planar case, the symmetry is intimately connected

to polynomial tangent vectors of unitarity cut surfaces. As for dual conformal invariance

the symmetry is anomalous due to infrared singularities. We noted that for the class of

integrals with a single crossed box and the remaining part planar, the symmetry extends

straightforwardly to all loop orders with an arbitrary number of external legs. An important

next step would be to extend this to more general nonplanar cases.

We look forward to exploring these ideas for simplifying computations of multi-loop

integrals needed for scattering cross sections at particle colliders, as well as for understanding

hidden symmetries of the nonplanar sector of N = 4 super-Yang–Mills theory. These two

issues are intertwined, as we found here.
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3.9 Sub-loop IBP-generating vectors for the penta-box

In this appendix, we tabulate the antisymmetric matrices in Eq. (3.4.49) of Subsection

3.4.5, which parametrize conformal transformations that leave a subset of external momenta

invariant. The matrices are,

ω(1) =



0 s34 s51 s34 − s51 s23 s23s34

−s34 0 0 −s34 s12 − s45 −s34s45

−s51 0 0 −s51 s23 − s45 −s45s51

−s34 + s51 s34 s51 0 s12 s12s51

−s23 −s12 + s45 −s23 + s45 −s12 0 −s12s23

−s23s34 s34s45 s45s51 −s12s51 s12s23 0


,

(3.9.1)

ω(2a) =



0 0 0 0 0 0

0 0 0 0 −s45 0

0 0 0 0 0 0

0 0 0 0 −s23 0

0 s45 0 s23 0 s23s45

0 0 0 0 −s23s45 0


,

(3.9.2)
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ω(2b) =



0 −s34 −s23 + s51 0 0 −s23s34

s34 0 s45 −s12 + s34 0 s34s45

s23 − s51 −s45 0 −s51 0 −s45s51

0 s12 − s34 s51 0 0 s12s51

0 0 0 0 0 0

s23s34 −s34s45 s45s51 −s12s51 0 0


,

(3.9.3)

ω(2c) =



0 0 0 0 s23 0

0 0 0 0 −s45 0

0 0 0 0 0 0

0 0 0 0 0 0

−s23 s45 0 0 0 0

0 0 0 0 0 0


. (3.9.4)
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Chapter 4

Dual Conformal Structure Beyond the

Planar Limit

The planar scattering amplitudes of N = 4 super-Yang–Mills theory display symmetries

and structures which underlie their relatively simple analytic properties such as having only

logarithmic singularities and no poles at infinity. Recent work shows in various nontrivial

examples that the simple analytic properties of the planar sector survive into the nonplanar

sector, but this has yet to be understood from underlying symmetries. Here we explicitly

show that for an infinite class of nonplanar integrals that covers all subleading-color contri-

butions to the two-loop four- and five-point amplitudes of N = 4 super-Yang–Mills theory,

symmetries analogous to dual conformal invariance exist. A natural conjecture is that this

continues to all amplitudes of the theory at any loop order.

4.1 Introduction

Recent years have seen significant advances in constructing scattering amplitudes, especially

for planar N = 4 super-Yang–Mills (sYM) theory. A key feature of planar N = 4 sYM

theory that makes this progress possible is its remarkable symmetries and structures. These

include dual conformal symmetry [60,64,99], Yangian symmetry [100], integrability [101], a
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dual interpretation of scattering amplitudes in terms of Wilson loops [102], uniform tran-

scendentality [103], structures that aid various bootstraps [104, 105], and even an all-loop

resummation of four- and five-point amplitudes [106]. Scattering amplitudes have been re-

formulated using on-shell diagrams and the positive Grassmannian [107], which culminated

in the geometric concept of the amplituhedron [11, 108]. Some of these advances have been

helpful in quantum chromodynamics relevant for collider physics, including improved ways

for dealing with polylogarithms that arise in multiloop computations [109] and for finding

good choices [83, 86, 87, 110] of integral bases that simplify their evaluation. In fact, the

integrals we analyze here for the two-loop five-point amplitude [87, 111] are useful choices

for the basis of master integrals for 2-to-3 scattering in generic theories [112].

These symmetries and structures impose nontrivial constraints on the analytic properties

of planar N = 4 sYM amplitudes. In particular, the loop-level color-ordered amplitudes

M123...n can be written as

M123...n = PT123...n

∫
I , (4.1.1)

where the integrand I has only logarithmic singularities, no poles at infinity [107], and unit

leading singularities [113] as tied to the amplituhedron [11, 108]. The prefactor PT123...n is

the standard Parke-Taylor factor [114], as defined in e.g. Ref. [87].

It is unclear how to define dual conformal symmetry in the nonplanar sector given the lack

of dual variables to define the symmetry. However, as shown in a variety of examples [86,

87, 115], the key analytic properties of the planar sector implied by its symmetries carry

over to the nonplanar sector, even if the symmetries are unclear. In each example, the full

amplitude can be expressed as [116]

M =
∑
k,σ,j

aσ,k,jckPTσ

∫
Ij , (4.1.2)

where the aσ,k,j are rational numbers, the ck are color factors, the PTσ are the Parke-Taylor

factors corresponding to an ordering σ of external particles, and the Ij are integrands with
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only logarithmic singularities, no poles at infinity, and unit leading singularities. Eq. (4.1.2)

is a natural extension of Eq. (4.1.1) to the nonplanar sector. It is nontrivial that such a

representation exists where each integrand is expressed in terms of local diagrams. Some

structures of the nonplanar sector were also explored at the level of on-shell diagrams [78,117].

In the present chapter we address the following question: Can we identify a hidden sym-

metry associated with the simple analytic properties for the nonplanar sector uncovered in

Refs. [86, 87, 115]? Building on the initial studies in Ref. [2], we answer this question af-

firmatively and demonstrate that the integrands Ij in (4.1.2) encoding the simple analytic

structure of the full two-loop four- and five-point amplitudes all have hidden symmetries re-

lated to dual conformal invariance. These are not hidden symmetries of the full amplitude,

but of individual components of the amplitudes, analogous to the situation with dual con-

formal symmetry in the planar case (4.1.1). We also identify an infinite class of nonplanar

integrands with the hidden symmetry. In many cases these symmetries rely on nontrivial

identities, making it all the more striking that a symmetry actually exists.

4.2 Dual coordinates and conformal symmetry

To set up our discussion of hidden symmetries in the nonplanar sector, we first briefly

review dual conformal symmetry in the planar sector [60, 64, 99]. In general, the momenta

(corresponding to edges or lines) in any planar diagram can be represented as the difference

of adjacent dual coordinates (corresponding to regions). For example, the momenta in the

planar double-box diagram on the left of Figure 4.1 can be expressed as

p1 = x2 − x1 , p2 = x3 − x2 , p3 = x4 − x3 ,

p4 = x1 − x4 , l5 = x5 − x1 , l6 = x1 − x6 , (4.2.1)

where the pi are external momenta, l5 and l6 are the loop momenta, and xi are the dual

coordinates with all Lorentz indices omitted. We can perform infinitesimal conformal trans-
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formations on these dual coordinates,

δxµi =
1

2
x2
i b
µ − (xi · b)xµi , (4.2.2)

where bµ is an infinitesimal boost vector. The transformation of the square of proper distance

is

δ(xi − xj)2 = −b · (xi + xj) (xi − xj)2 . (4.2.3)

In general, if a quantity f transforms as δf = wf with w a local function, we say f rescales

under the transformation with weight w. Thus, under dual conformal transformations,

(xi− xj)2 carries a weight −b · (xi + xj). Note that all massless external legs remain on shell

after the transformation. All the inverse propagators have the form (xi − xj)2. This implies

that locality is maintained for planar loop integrals under dual conformal transformations

and allows us to construct simple functions that are invariant.

As a simple illustration, consider an integral associated with the planar double box,

I =

∫
dDx5d

Dx6
s2t∏
k ρk

, (4.2.4)

where s = (x1 − x3)2 = (p1 + p2)2 and t = (x2 − x4)2 = (p2 + p3)2. The inverse Feynman

propagators ρk in dual coordinates are

ρ1 = (x5 − x1)2 , ρ2 = (x5 − x2)2 , ρ3 = (x5 − x3)2 ,

ρ4 = (x5 − x6)2 , ρ5 = (x6 − x1)2 , ρ6 = (x6 − x4)2 ,

ρ7 = (x6 − x3)2 . (4.2.5)

In what follows, we will be interested in the integrand I, defined by I =
∫
I. With this

numerator the integrand has a hidden symmetry exposed by using the dual variables [60,64,
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Figure 4.1: Planar double box with dual coordinates and the crossed-box related to it by
moving leg 3 to the central rung.

99]. Performing the dual conformal transformation on the integrand (4.2.4) yields

δI = −(D − 4)
(
b · (x5 + x6)

)
I , (4.2.6)

where we used

δ(dDxi) =
(∂δxµi
∂xµi

)
dDxi = −D(b · xi) dDxi . (4.2.7)

For D = 4 space-time dimensions this integrand is invariant under dual conformal trans-

formations, which is what motivated the choice of numerator s2t. Outside D = 4, this is

reminiscent of ε-form differential equations [83, 110], but without doubled propagators on

the right hand side before reduction to a basis [2, 82,118].

What is the relevance of this symmetry? It turns out that all integrands of planar

N = 4 sYM amplitudes possess this property, which then leads to nontrivial constraints on

the amplitude after integration. This is the celebrated dual conformal symmetry [60, 64, 99]

which has spurred many developments. In the following we identify an analogous symmetry

in a class of nonplanar diagrams.

4.3 Nonplanar extension

While there are no known global variables for generic nonplanar diagrams, it is natural to

require that, as for the planar case, a nonplanar analog of dual conformal transformations also
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maintains the local structure for inverse propagators, δρk ∝ ρk [2]. We start by considering

a nonplanar diagram that can be made planar by moving the location of one external leg

carrying momentum pµk . This is an infinite class of nonplanar integrals, and includes all

the nonplanar integrals at two loops with five or fewer external legs. In particular, all of

the nonplanar integrals in Figure 4.2 are of this type. For example diagram (a) can be

made planar by moving external leg 3. Under this, the momenta of the propagators are

modified compared to the planar case at most by adding or subtracting a single external

momentum pµk . Thus, the inverse propagators ρl therein can be written as either (xi − xj)2,

or (xi−xj±pk)2, when using the dual coordinates of the planar cousin. The key observation

here is that if the infinitesimal boost vector bµ is proportional to a massless external leg pµk ,

then (xi−xj ± pk)2 transforms in the same way as (xi−xj)2 for any xµi and xµj . Specifically,

δ(xi − xj ± pk)2

(xi − xj ± pk)2
=
δ(xi − xj)2

(xi − xj)2
= −b · (xi + xj) , (4.3.1)

implying that all the propagators in this class of nonplanar diagrams satisfy δρk ∝ ρk for

this conformal boost.

As a simple first example, consider the crossed double-box diagram on the right of Fig. 4.1,

with numerator N1 = su(l5 + p4)2, which is one of the nonplanar pure integrands found in

Ref. [115] as a building block of the full amplitude:

I(np) =

∫
I(np) =

∫
dDl5d

Dl6
N1∏
k ρk

, (4.3.2)

where the ρk are the inverse propagators. This diagram can be obtained from the planar

double box in Fig. 4.1 by moving the external leg 3 to the central rung. Using the dual

coordinates of the planar double box, we can write the nonplanar integrand as

I(np) = dDx5d
Dx6

(x1 − x3)2(x2 − x1 + p3)2(x5 − x4)2∏
k ρk

, (4.3.3)
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where the propagators are given by

ρ1 = (x5 − x1)2, ρ2 = (x5 − x2)2, ρ3 = (x5 − x3)2,

ρ4 = (x5 − x6)2, ρ5 = (x6 − x1)2, ρ6 = (x6 − x4)2,

ρ7 = (x5 − x6 + p3)2, (4.3.4)

with the xi defined in Eq. (4.2.1). Applying a dual conformal transformation to the integrand

with the boost vector bµ ∝ pµ3 and using equation (4.3.1) we find that

δI(np) = −(D − 4)(b · (x5 + x6))I(np) , (4.3.5)

exposing a hidden symmetry in D = 4.

A similar analysis holds for the numerator N2 = st(l5 + p3)2, corresponding to the other

pure integrand found in Ref. [115]. One can also obtain the crossed box from the planar

double box by moving the leg 4 to the central rung (and making a change in the momentum

routing of the planar double box), giving a new conformal boost with bµ ∝ pµ4 . As can be

straightforwardly checked, both numerators N1 and N2 give integrands that are invariant in

D = 4 under this transformation as well.

While we propose these transformations as a natural extension of the planar dual con-

formal symmetry, it is striking that the numerators N1 and N2 are precisely the correct

numerators of the building blocks for the two-loop four-point amplitude in N = 4 sYM that

unveil their analytic properties [115]. Here we see that we can constrain these numerators

from symmetry considerations instead of from imposing desired analytic properties on the

integrands. Similar symmetry considerations can be used to match the numerators of a sub-

set of three-loop four-point diagrams in Ref. [86] that can be obtained from planar ones by

moving a single external line.
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Figure 4.2: Diagrams (a)-(i) from the five-point amplitude in Ref. [87].

Figure 4.3: Dual variables useful for the two-loop planar pentabox and the nonplanar inte-
grals in Fig. 4.2.

4.4 Two-loop five-point case

As the central nontrivial example consider the two-loop five-pointN = 4 sYM amplitude first

obtained in Ref. [111]. This amplitude was rewritten in a desired form where each diagram

composing the amplitude contains only logarithmic singularities and no pole at infinity [87],

as follows from dual conformal symmetry in the planar case. The diagrams composing this

amplitude are given in Fig. 4.2. These diagrams are either planar, or in the nonplanar class

of diagrams discussed above, so our discussion immediately applies.

Consider diagrams (a), (d), (h), and (i), which can be made planar by moving the external
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leg 3, corresponding to choosing bµ ∝ pµ3 . Using the dual coordinates

p1 = x3 − x2 , p2 = x4 − x3 , p3 = x2 − x1 ,

p4 = x5 − x4 , p5 = x1 − x5 ,

l6 = x6 − x1 , l7 = x1 − x7 , (4.4.1)

in the diagram on the right of Figure 4.3, the propagators in the original nonplanar diagrams

are a subset of

ρ1 = (x6 − x1)2, ρ2 = (x6 − x3 + p3)2,

ρ3 = (x6 − x4 + p3)2, ρ4 = (x7 − x4)2,

ρ5 = (x7 − x5)2, ρ6 = (x7 − x1)2,

ρ7 = (x6 − x7)2, ρ8 = (x6 − x7 + p3)2. (4.4.2)

A crucial difference between integrands at four points and five points is the appearance of

spinor helicity variables, which makes the transformation properties less clear. We therefore

restrict to D = 4 from now on, and the convention for spinors is chosen such that sij =

(pi + pj)
2 = 〈ij〉[ji] = 〈i| j|i] = (〈i|ȧ |j〉

ȧ)([i|a|j]a) = 〈i| pj|i]. A complete set of numerators

for the diagrams in Figure 4.2 is given in Table 3 of Ref. [87].

To warm up, consider the numerator in diagram (i)

N (i) = 〈2| 4|3] 〈3| 5|2]− 〈3| 4|2] 〈2| 5|3] . (4.4.3)

This numerator is constructed to follow the S3 symmetry among legs 2, 3, 5 of the diagram

(up to a sign). By choosing to move leg 3 to make the diagram planar and using the

coordinates in Eq. (4.4.1), we recast the numerator as

N (i) = 〈3|x54 x43 x32|3] + 〈3|x23 x34 x45|3] , (4.4.4)
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under momentum conservation and spinor identities. To see that this numerator only rescales

with a local weight under the transformation with bµ ∝ pµ3 , we need a nontrivial identity

δ 〈b|xi1i2 xi2i3 . . . xin−1in|b]
〈b|xi1i2xi2i3 . . . xin−1in|b]

= −b · (xi1 + . . .+ xin) , (4.4.5)

where xij ≡ xi−xj and 〈b|xi1i2 xi2i3 . . . xin−1in|b] = (〈b|ȧ)(xȧai1i2)(xi2i3,aḃ) . . . (xċdin−1in
)(|b]d). One

can prove this using conformal inversions irrespective of whether the xij’s are null separated

or not. We have directly confirmed Eq. (4.4.5) numerically through n = 8. Therefore

the numerator in Eq. (4.4.4) is manifestly rescaled under the transformation with weight

−b · (x2 +x3 +x4 +x5). Moreover, accounting for the transformation of the propagators and

measure using Eqs. (4.2.7), (4.3.1), and (4.4.2), this is precisely the weight needed to make

the integrand invariant.

We can also make diagram (i) planar by moving the leg carrying momentum p2 or p5,

giving a total of three choices of bµ for the conformal boosts. We have checked that these

three transformations are independent symmetry generators, corresponding to three hidden

symmetries of this nonplanar integrand.

A more involved example is diagram (a) in Fig. 4.2. The numerator yielding the desired

analytic properties given in Ref. [87] is

N
(a)
1 = 〈13〉〈24〉

(
[24][13](l7 − l∗7)2(l6 − l∗6)2 − (1↔ 2)

)
, (4.4.6)

where l∗7 = [54]
[24]
|5〉 [2| and l∗6 = p1 + [23]

[13]
|2〉[1|. How this numerator transforms is far from

clear in the above form. In fact, the first or second term alone does not rescale with a local

weight. However, by using on-shell conditions and Schouten identities it can be rewritten as

N
(a)
1 = −〈3|x23 x34 x45|3]ρ4ρ1 (4.4.7)

+ 〈3|x23 x34 x45 x57 x76 x61 x14|3] ,
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using the dual coordinates in Eq. (4.4.1). With the help of Eq. (4.4.5), each of the two terms

in Eq. (4.4.7) above transforms with the weight necessary to make the integrand invariant

in D = 4. After canceling the propagators, the first term gives rise to the daughter diagram

(i) in Fig. 4.2, and the numerator 〈3|x23x34x45|3] also matches to one of the components in

Eq. (4.4.4).

Similarly, we can rewrite the original numerators of diagrams (d) and (h) using the dual

coordinates in the diagram on the left of Fig. 4.3 as

N
(d)
1 = s34(s34 + s35)

(
l7 −

〈54〉
〈34〉 |3〉[5|

)2

= s34(s34 + s35)ρ6 + 〈3|x71 x15 x54|3] , (4.4.8)

and

N
(h)
1 = 〈15〉[35]〈23〉[12]

(
l6 −

〈12〉
〈32〉|3〉[1|

)2

= (s23s35 − 〈3|x34 x45 x51|3])ρ1

− s12 〈3|x62 x23 x35|3] ,

N
(h)
3 = −s12 〈3| p1p5l6|3] = −s12 〈3|x35 x51 x16|3] . (4.4.9)

In addition there are numerators simply related via diagram symmetries. Using Eqs. (4.2.7), (4.3.1),

and (4.4.5), we see that these numerators have weights that make the integrand invariant

under the dual conformal boost with bµ ∝ pµ3 .

Diagrams (c) and (f) can be made planar by moving the external leg carrying momentum

p4, corresponding to bµ ∝ pµ4 . The dual coordinates are defined according to the left of

Figure 4.3, analogous to Eq. (4.4.1). The propagators in the original nonplanar diagrams
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are a subset of

ρ1 = (x6 − x1)2, ρ2 = (x6 − x2)2, ρ3 = (x6 − x3)2,

ρ4 = (x6 − x4)2, ρ5 = (x7 − x5)2, ρ6 = (x7 − x1)2,

ρ7 = (x6 − x7)2, ρ8 = (x6 − x7 + p4)2. (4.4.10)

The numerator of diagram (f) is N
(f)
1 = s14s45(l6 + p5)2 which manifestly rescales with local

weight under the transformation. To see the conformal property of diagram (c), we need

N
(c)
1 = 〈15〉[54]〈43〉[13] (l6 − l∗6)2 (l6 + p4)2 (4.4.11)

= (−s51s45ρ3 + 〈4|x46 x63 x32 x21 x15|4]) (l6 + p4)2,

with the same l∗6 as defined below Eq. (4.4.6). After canceling the propagator, the first term

matches N
(f)
2 of Ref. [87] which is related to N

(f)
1 under 4↔ 5.

We have checked all of the two-loop five-point nonplanar integrands from Ref. [87] that

manifest the desired analytic properties of the full two-loop five-point amplitude and found

that all of them have a hidden symmetry in D = 4 closely related to dual conformal sym-

metry. In cases where more than one conformal boost is available, as for diagrams (c), (f),

(h), and (i) in Figure 4.2, we have checked that all such choices of bµ give symmetries of

the integrand. While Eq. (4.3.1) guarantees that all the propagators transform with defi-

nite weight, the fact that all the corresponding numerators behave accordingly to make the

integrand invariant appears miraculous.

Using Eqs. (4.3.1) and (4.4.5) we can generalize these results to integrals relevant for

higher-point amplitudes. As a concrete example, consider diagram (a) in Figure 4.2 but

with legs 1,2,4,5 being massive or replaced with arbitrary collections of massless particles,

while keeping leg 3 massless. Crucially, the identity in Eq. (4.4.5) holds even for x2
i,i+1 6= 0.
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This implies the numerator with the dual variables in Eq. (4.4.1)

〈3|x23 x34 x45 x57 x76 x61 x14|3] , (4.4.12)

transforms with the proper weight to make the integrand invariant, providing a generalization

of the second term in Eq. (4.4.7). Another possible numerator is

s12s24

(
〈3|x47 x76 x61|3] + 〈3|x16 x67 x74|3]

)
. (4.4.13)

The latter example (4.4.13) is especially interesting since it vanishes in the collinear limit

xµ76 ∝ pµ3 and gives an infrared-finite integral, for which the hidden symmetry is exact and

free of anomalies from divergences. By working in six dimensions, additional finite integrals

with the hidden symmetry can be found; such integrals are related to four-dimensional ones

via dimension shifting relations [96,119].

4.5 Conclusions

Following the four-point hints in Ref. [2], here we demonstrated that all sectors of the two-

loop five-pointN = 4 sYM amplitude, including the nonplanar sector, possess new nontrivial

hidden symmetries related to dual conformal symmetry. To show this we demonstrated that

each integrand sector identified in Ref. [87] possessing simple analytic properties manifests

a hidden symmetry. For some sectors the symmetry is rather unobvious. The construction

used for the two-loop five-point amplitude extends to any number of loops and legs, giving

an infinite class of integrands with new hidden symmetries. It would be interesting to check

if these cases actually appear with nonzero coefficient in N = 4 sYM amplitudes. Even for

the cases studied here we can expect a larger set of symmetries than the ones we found; we

expect this to be helpful for the important problem of identifying the hidden symmetries

of more general cases beyond the ones studied here. It would be interesting to apply the
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symmetries to help identify nonplanar integrals of uniform transcendentality, which become

nontrivial at high loop orders by directly checking leading singularities [120]. It would also

be interesting to understand how the new symmetries described here relate to recent progress

in extending integrability to nonplanar theories described in Ref. [121]. Given the useful role

hidden symmetries have played in the planar sector of N = 4 sYM theory, we should expect

new progress from fully unraveling the corresponding symmetries of the nonplanar sector of

the theory.
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Chapter 5

Logarithms and Volumes of Polytopes

Describing the geometry of the dual amplituhedron without reference to a particular tri-

angulation is an open problem. In this note we introduce a new way of determining the

volume of the tree-level NMHV dual amplituhedron. We show that certain contour integrals

of logarithms serve as natural building blocks for computing this volume as well as the vol-

umes of general polytopes in any dimension. These building blocks encode the geometry of

the underlying polytopes in a triangulation-independent way, and make identities between

different representations of the amplitudes manifest.

5.1 Introduction

Recent years have seen tremendous progress in understanding scattering amplitudes in both

gauge and gravity theories. New mathematical structures that are not apparent in textbook

formulations of quantum field theory have been uncovered, and many computations have

been immensely streamlined in comparison with the standard Feynman diagram approach

(see the recent reviews [6,122,123] and references therein). While many of these developments

have applications in theories with various amounts of (including no) supersymmetry, the

computational simplicity of maximally supersymmetric gauge and gravity theories make

them ideal testing grounds for new ideas [124].
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One of the major breakthroughs in the study of maximally supersymmetric gauge theories

is the discovery of the amplituhedron, an object that encodes all tree-level amplitudes and

loop-level integrands in planar N = 4 super-Yang–Mills theory (sYM) [11, 108]. Schemat-

ically, and specializing to the case of tree amplitudes, the amplituhedron is a region of a

particular positive Grassmannian [11,107,108]. This region encodes the amplitude via a vol-

ume form with logarithmic singularities on its boundary, and after stripping off a canonical

prefactor from this form what remains (up to some fermionic integrations) is the amplitude.

For loop integrands the same is true but with the amplituhedron corresponding to a region of

a particular generalization of the positive Grassmannian. In the rest of this note we restrict

ourselves to the tree-level case.

For tree-level NMHV amplitudes, the amplitude obtained in this way is naturally in-

terpreted as the volume of a polytope in a CP4 that is dual to the space in which the

amplituhedron lives [11, 108,125]. NkMHV tree amplitudes with k ≥ 1 are therefore viewed

as a type of “generalized volume” of a dual amplituhedron [125,126]. For k > 1 a geometric

understanding of the dual amplituhedron is unclear, though there are strong indications that

such a picture should exist [126,127].

In this note we introduce a new way of computing the volume of the tree-level NMHV

(or k = 1) dual amplituhedron directly in the space in which the polytope lives. The basic

objects in this method are contour integrals with simple, closed contours in the complex

projective space containing the polytope. In Ref. [125] the authors computed these volumes

by integrating a particular volume form over the underlying polytope in the dual space, thus

placing the information about the polytope in the contour (which has boundaries). As we

will see in section 3, our method differs from that in Ref. [125] by using contours that are

closed (i.e., without boundary) and canonically specified by the integrands themselves. This

is in contrast to, for example, “dlog” representations of amplitudes, where the contour is not

specified by the integrand itself [107]. Additionally, the method we introduce is independent

of any particular triangulation of the underlying polytope, and can be used to recover any
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such triangulation.

In Ref. [5] we provided a definition of “combinatorial polytopes” which incorporates a

general class of polytopes. For these polytopes neither convexity (and therefore positivity)

nor even connectivity are necessary. We introduced a set of new objects that we denote

by Fi1...in and will now refer to as “vertex objects.” The reason for this naming convention

is that the subscripts of these vertex objects correspond to the vertices of polytopes in a

natural way that we will review shortly. In Ref. [5] we showed that we obtain the volume

of a polytope by summing these vertex objects over the vertices of the polytope. This way

of expressing the volume of a polytope does not require any triangulation of the polytope

to be known, and the volume of the polytope is uniquely expressed in terms of these vertex

objects. These observations motivate us to view the vertex objects as basic building blocks

for computing volumes of polytopes.

The vertex objects satisfy a simple relation that allows us to easily derive many nontrivial

identities between different representations of the tree-level NMHV amplitude, as we will

review in the next section. These identities and their more complex analogues for NkMHV

amplitudes with k > 1 can also be derived using global residue theorems (GRTs) on an

auxiliary Grassmannian [128, 129]. In this picture, computing tree amplitudes and loop

integrands is equivalent to specifying the correct contour for a particular integrand in the

Grassmannian [107], and relations between different representations of the amplitude follow

from the GRTs. Introducing this auxiliary space manifests the Yangian symmetry of the

amplitudes [130], while the geometry of the underlying space whose volume corresponds

to the amplitude gets obscured. By showing that the vertex objects discussed above are

naturally given by contour integrals in the dual space directly, we give a formalism that both

manifests the relations between different representations of the amplitude while avoiding

the introduction of an auxiliary space. This formalism has not been extended to NkMHV

amplitudes with k > 1, but doing so will likely illuminate the underlying geometry of the

dual amplituhedron.
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The outline of this note is as follows: In the next section we briefly review some key prop-

erties of complex projective space and the standard generalization of volumes of polytopes

to projective spaces. We will also briefly describe how NMHV tree amplitudes are expressed

as volumes of polytopes and how the vertex objects are defined and used. In section 3 we

show how contour integrals of logarithms naturally arise in computing the areas of quadri-

laterals and their higher-dimensional analogues. In section 4 we show how the vertex objects

correspond to a particular combination of these integrals.

5.2 Polytopes in Projective Space

In this section we review the ideas that will be needed in later sections. After discussing some

key facts about (complex) projective spaces, we will review the standard generalization of

volumes of polytopes in affine space to that of polytopes in projective space. We then briefly

describe the formalism introduced in Ref. [5], where the vertex objects encode the geometry

of polytopes as well as give their volumes. Finally, we review how these vertex objects are

used to manifest certain properties of the NMHV tree-amplitude. In the remaining sections

of this note we show how these vertex objects are given as contour integrals in the space

containing the polytope.

5.2.1 Projective Geometry

In this brief review of projective geometry we follow Ref. [131] and the first appendix of

Ref. [132], which provide more complete discussions of these ideas.

A point Zα ∈ CPn is defined by n + 1 homogenous coordinates, one for each value of

α = 0, ..., n. Each such point defines an (n− 1)-dimensional hyperplane HZ in the dual CPn∗

by placing a single linear constraint on the homogenous coordinates of the dual elements.

Namely, we have

HZ ≡ {Aα ∈ CPn∗ | Z · A ≡ ZαAα = 0} ' CPn−1 ⊂ CPn∗. (5.2.1)
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The subspace HZ is a linearly embedded CPn−1 in the dual CPn∗. We will refer to linearly

embedded CP1’s, CP2’s, and CPk’s with k > 2 respectively as lines, planes, and hyperplanes,

even though the underlying topology of these spaces may be rather different. For example,

a CP1 is a Riemann sphere though we will still refer to it as a line.

Intersections of lines, planes, and hyperplanes always exist in projective geometry. For

example, three points Zα
1 , Z

α
2 , and Zα

3 in CP2 give three lines in the dual CP2∗ and each pair

of lines intersects in a unique point. This is shown in Figure 5.1, where the line dual to Zα
i

is labeled by i, and the intersection of lines i and j is labeled by {i, j}.

Figure 5.1: Three lines in CP2∗ labeled by i corresponding to three points {Zα
i }1≤i≤3 in CP2.

The intersection of lines i and j is denoted by {i, j}. We note that {i, j} = {j, i} implicitly.

More generally, any two distinct (n − 1)-dimensional hyperplanes in CPn∗ intersect in a

unique (n − 2)-dimensional hyperplane. Namely, two points Zα
1 and Zα

2 in CPn define two

(n− 1)-dimensional hyperplanes HZ1 and HZ2 in CPn∗, and we have that

HZ1 ∩HZ2 ' CPn−2 ⊂ CPn∗. (5.2.2)

We therefore see that n distinct points in CPn uniquely define a point in the dual CPn∗ via

the simultaneous intersection of their n dual hyperplanes.

5.2.2 Volumes of Simplices

There is a natural generalization of the volume of a polytope to projective space. By first

understanding this extension for the case of a simplex, the volume of more general polytopes
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follows immediately by considering sums of simplices. We will therefore follow Ref. [125] and

review how to express the volume of simplices in a projective way.

Figure 5.2: A triangle in affine space defined by vertices (xi, yi), with faces (edges) labeled
by i corresponding to the points {Zα

i }1≤i≤3 in the dual space that define them. The Zα
i ’s

are explicitly defined in terms of the (xi, yi) coordinates in the text.

We begin by considering the area of a two-simplex, or a triangle, in real affine space with

vertices located at (x1, y1), (x2, y2), (x3, y3), as shown in Figure 5.2. We can write its area

A as [125]

A =
1

2

〈Z1Z2Z3〉2
〈Z1Z2P 〉〈Z2Z3P 〉〈Z3Z1P 〉

≡ [123], (5.2.3)

where we have introduced the notation 〈Z1...Zn〉 ≡ εα1...αnZ
α1
1 ...Zαn

n , with the value of n

taken from context. We have also defined

Wiα ≡


xi

yi

1

 , Pα =


0

0

1

 (5.2.4)

as well as

Zα
1 ≡ εαβγW1βW2γ, Zα

2 ≡ εαβγW2βW3γ, Zα
3 ≡ εαβγW3βW1γ. (5.2.5)

We note that the Zα
i , Wiα, and Pα all have three homogenous coordinates, in line with their

being elements of CP2 (or its dual). We have simply “lifted” the affine coordinates into a
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particular coordinate patch of projective space by placing a 1 in the third component of the

Wiα’s.

Equation (5.2.3) is projectively well-defined in the Zα
i ’s—which, according to the dis-

cussion in the previous subsection, determine the faces of the triangle—thus allowing their

domain of definition to extend to CP2. We note that (5.2.3) is not projectively well-defined

in Pα since it defines the line at infinity in CP2∗ and therefore the scaling of the area—the

scaling we choose here corresponds to the choice of placing 1 (as opposed to a different

non-zero number) in the third component of the Wiα’s. Equation (5.2.3) is also completely

antisymmetric in the Zα
i ’s, corresponding to the two possible orientations of the triangle.

It will be instructive to see explicitly how this works for one-dimensional simplices as

well. A one-simplex is simply a line, and the distance L between two points x1 and x2 in R

can be written as

L =
〈Z1Z2〉

〈Z1P 〉〈Z2P 〉
. (5.2.6)

Here we have defined

Zα
1 ≡ εαβWiβ, Wiα ≡

xi
1

 , and Pα ≡

0

1

 . (5.2.7)

Equation (5.2.6) indeed reproduces L = x1 − x2, as expected, and it expresses the length

of the line defined by the endpoints W1α and W2α in terms of their duals and the point at

infinity defined by Pα. It is projective and antisymmetric in Zα
1 and Zα

2 , corresponding to

the two different orientations of the line.

This generalizes to volumes of simplices in any dimension. For anyD+1 points {Zα
i }1≤i≤D+1

in CPD there are D+1 hyperplanes in the dual CPD∗, and the volume of the simplex bounded

by these hyperplanes is given by [125]

V =
1

D!

〈Z1...ZD+1〉D
〈Z1...ZDP 〉〈Z2...ZD+1P 〉...〈ZD+1...ZD−1P 〉

≡ [12...(D + 1)]. (5.2.8)
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This expression is projective and totally antisymmetric in the Zα
i ’s. The antisymmetry

corresponds to the two possible orientations of the simplex.

The dimension most relevant for scattering amplitudes is four, so for completeness we will

explicitly write the volume of a four-simplex, bounded by the five faces defined by Zα
1 , ..., Z

α
5 .

Translating the above formula gives

V =
1

4!

〈Z1Z2Z3Z4Z5〉4
〈Z1Z2Z3Z4P 〉〈Z2Z3Z4Z5P 〉〈Z3Z4Z5Z1P 〉〈Z4Z5Z1Z2P 〉〈Z5Z1Z2Z3P 〉

≡ [12345].

(5.2.9)

5.2.3 Volumes of General Polytopes

For a fixed dimension D, we can view any sum of simplices as the volume of a general

polytope, expressed through some particular triangulation. For example, four points Zα
1 ,

Zα
2 , Z

α
3 , and Zα

4 in CP2 define four lines in the dual CP2∗. These four lines are depicted in

Figure 5.3 and are respectively labeled by 1, 2, 3, and 4.

Figure 5.3: A quadrilateral in CP2∗ defined by four lines labeled by i according to the points
{Zα

i }1≤i≤4 in CP2 that define them.

The area of the shaded quadrilateral can be written as

A = [123]− [124], (5.2.10)
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which is the area of the triangle bounded by the faces 1, 2, and 3 minus the area of the

triangle bounded by the faces 1, 2, and 4. This is depicted in Figure 5.4.

Figure 5.4: The quadrilateral shown in Figure 5.3 viewed as the difference of two triangles.

By inspection of Figure 5.3 we also see that we can write the area of the same region as

A = [431]− [432], (5.2.11)

by viewing this area as the difference between the area of the triangle bounded by the faces

4, 3, and 1, and the triangle bounded by the faces 4, 3, and 2. We therefore see that we have

[123]− [124] = [431]− [432], (5.2.12)

which, when one unravels the definition of these 3-brackets, is a nontrivial relation.

Proving this relation through repeated application of Schouten identities on the 〈...〉

brackets quickly shows that this geometric proof is more convenient, especially for analogous

relations in higher dimensions. However, this geometric proof is not very precise, for a few

reasons. For one, we have not been careful to keep track of the orientation of the quadrilateral

in our two different triangulations. A second and more serious ambiguity is that our notion

of a polytope itself is rather tenuous. Namely, once we extend our underlying space from a

real affine space to a complex projective space, any notion of “inside” or “outside” is lost.

Moreover, one generally thinks of a D-dimensional polytope in a D-dimensional space as

being some full-dimensional region carved out by a finite number of hyperplanes. However,

by complexifying our compact space, we end up talking about D-dimensional polytopes
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in CPD, which is a space of 2D real dimensions. A third issue with trying to define a

polytope as a sum of volumes of simplices is that there are (infinitely) many triangulations

that correspond to the same polytope. Some triangulations may make apparent certain

geometric qualities of the underlying polytope while masking others.

The amplituhedron makes precise sense of these polytopes as a region in a positive Grass-

mannian, and for the NMHV case under consideration, this Grassmannian is simply a pro-

jective space [11]. In this program one considers convex polytopes, which places positivity

constraints on the external kinematics. One then analytically continues to consider general

kinematics. In Ref. [5] we instead focused solely on the combinatorial structure of polytopes.

We then gave a precise definition of a general type of polytope that is not necessarily convex

or even connected. In the next subsection we will briefly review these ideas in two dimen-

sions, as well as introduce the two-dimensional vertex objects {Fij}. We refer to Ref. [5] for

details and the higher-dimensional cases.

5.2.4 The Vertex Formalism

We consider again the quadrilateral in Figure 5.3 and our goal will be to give it a precise

definition. While this figure does not correctly depict the topology of the objects involved—

as mentioned above, the lines are actually Riemann spheres—it does correctly depict the

intersection structure of these objects. We therefore define this polytope by its intersection

structure, saying that this is the “quadrilateral” defined by starting at the vertex {1, 4} and

walking along line 4 to arrive at the vertex {2, 4}, then walking along line 2 to arrive at the

vertex {2, 3}, then walking along line 3 to arrive at the vertex {3, 1}, and then walking along

line 3 to arrive back at the vertex {1, 4}. This is depicted in Figure 5.5.

This set of instructions can be succinctly summarized by the list (1423), which we define

to be shorthand for

{1, 4} → {4, 2} → {2, 3} → {3, 1} → {1, 4} (5.2.13)
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Figure 5.5: The quadrilateral depicted in Figure 5.3 defined solely through the intersection
of its faces.

where each “→” means to travel along the line whose label is common to the vertex on either

side of the arrow.

In Ref. [5] we introduced a collection {Fij} of vertex objects defined as a particular sum

of volumes of simplices. These objects are referred to as vertex objects because a vertex of a

two-dimensional polytope is labeled by two lines, as is each Fij. We found that these vertex

objects are antisymmetric, so that Fij = −Fji, and that they satisfy1

Fij + Fjk + Fki = [ijk] (5.2.14)

for any choice of i, j, and k, where we recall that [ijk] is the volume of the two-simplex

bounded by the three lines i, j, and k.

We consider the sum F14 + F42 + F23 + F31 over the vertices of this quadrilateral. Using

1These vertex objects differ from those introduced in Ref. [5] by a factor of 2.
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the antisymmetry of each Fij and equation (5.2.14), we find

F14 + F42 + F23 + F31 = F14 + F42 + ([231]− F12)

= [123]− (F12 + F24 + F41)

= [123]− [124], (5.2.15)

which is precisely the volume of the quadrilateral that the list of vertices in (5.2.13) defines.

Applying equation (5.2.14) to the left hand side of (5.2.15) in a different order also shows

that

F14 + F42 + F23 + F31 = [431]− [432]. (5.2.16)

This gives a quick and rigorous proof of the nontrivial identity (5.2.12). Indeed, all possible

triangulations of the quadrilateral can be obtained by applying (5.2.14) to the left hand side

of (5.2.15), giving a simple algebraic method for proving many nontrivial identities amongst

sums of simplices [5].

This example is a special case of a more general phenomenon—given any set of vertex-

connecting instructions defining any polygon, summing the corresponding Fij for each vertex

yields the area of that polygon. This process works for general polygons, even disconnected

ones. For example, suppose we have six elements {Zα
i }, 1 ≤ i ≤ 6, defining six lines, as

shown on the left hand side of Figure 5.6. We can then define the disconnected polygon

shown on the right hand side of this figure by the instructions

{5, 1} → {1, 6} → {6, 2} → {2, 4} → {4, 5} → {5, 6} → {6, 3} → {3, 5} → {5, 1}. (5.2.17)

Analogously to the case of the quadrilateral, this set of instructions corresponds to the list

(51624563). It is then the case, rather surprisingly, that the area A of this polygon can be
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written simply as

A = F51 + F16 + F62 + F24 + F45 + F56 + F63 + F35. (5.2.18)

This can be checked against any particular triangulation of this polygon. Additionally, any

triangulation of this polygon can be obtained from this expression through repeated use of

(5.2.14).

Figure 5.6: A general polygon (right) defined solely through a set of instructions for traversing
the intersections of six lines (left). Lines are labeled by i according to the Zα

i that defines
them, and the intersection of two lines i and j is denoted by {i, j}. It is implied that
{i, j} = {j, i}.

The general result can be stated as follows. Let {Zα
i } be a collection of N elements in

CP2 defining N lines in the dual CP2∗. The most general polygon in this dual CP2∗ is given

by a list (i1i2...in), corresponding to the instructions

{i1, i2} → {i2, i3} → ...→ {in−1, in} → {in, i1} → {i1, i2}. (5.2.19)

The area A of this polygon is then given by the following sum over the vertices:

A =
n∑
k=1

Fikik+1
, (5.2.20)
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and from this expression any particular triangulation can be obtained [5]. This form of the

area is independent of any particular triangulation and is inherently tied to the data of the

polygon itself—its vertices and how we traverse them.

We note that many different lists give rise to the same polygon. For example, any cyclic

permutation of a list gives the same polygon. More trivially, the list (1234) is identical to

the list (12121234), since the latter corresponds to staying on the vertex {1, 2} over and over

again before moving on. However, the final result in terms of the vertex objects (up to trivial

cancellations) is identical. For example, the sum of these objects corresponding to the list

(12121234) is simply

F12 + F21 + F12 + F21 + F12 + F23 + F34 + F41, (5.2.21)

which, after using the antisymmetry of Fij yields the same result as the list (1234). Indeed,

the sum in (5.2.20) is dependent only on the equivalence class of lists, where equivalence of

lists is defined by their determining the same polygon. In Ref. [5] we show how to extend

this definition of polygon to arbitrary higher-dimensional polytopes.

In Ref. [5] we also defined the corresponding vertex objects in higher dimensions. For

example, in three dimensions we defined a collection of vertex objects {Fijk} completely

antisymmetric in their subscripts and satisfying

Fijk − Fjkl + Fkli − Flij = [ijkl] (5.2.22)

for any choice of i, j, k, l. We continue to use the term “vertex objects” because for a three-

dimensional polytope a vertex is defined by the intersection of three planes, each defined by a

Zα
i , and these planes determine the subscripts of a given Fijk. In four dimensions we defined

a collection {Fijkl} of vertex objects that are totally antisymmetric in their subscripts and

that satisfy

Fijkl + Fjklm + Fklmi + Flmij + Fmijk = [ijklm] (5.2.23)

138



for any choice of i, j, k, l,m.

The volume of any polytope is given by the sum over its vertices of these vertex objects.

This expression of the volume is unique, and any triangulation of the polytope can be recov-

ered from this expression using (5.2.22), (5.2.23), and their higher-dimensional analogues.

Additionally, the expression of the volume of a polytope in terms of the vertex objects also

encodes the geometry of all lower-dimensional boundary polytopes and readily gives their

volumes as well [5].

We note that equation (5.2.23) is reminiscent of the formula

∂[ijklm] = [ijkl] + [jklm] + [klmi] + [lmij] + [mijk] (5.2.24)

given in [125], describing the boundary ∂[ijklm] of the simplex and encoding where the

poles of [ijklm] are. Equation (5.2.23) does the same, and is also a genuine equality between

the volume of the simplex and objects that correspond to its vertices. Thus the objects on

the left of equation (5.2.23) are fundamentally different than those on the right of equation

(5.2.24). Similar statements can be made about equations (5.2.14) and (5.2.22) and the

lower-dimensional analogues of equation (5.2.24).

5.2.5 Applications to NMHV Amplitudes

Quite surprisingly, the n-point NMHV tree-level superamplitude Mn
NMHV in N = 4 planar

sYM can be written as the volume of a polytope in CP4∗ [125]. Indeed, Mn
NMHV can be

represented as

Mn
NMHV =

n∑
i,j

[∗i(i+ 1)j(j + 1)] (5.2.25)

where the {Zα
i } implicitly inside the five-brackets in the sum are n points in CP4 encoding

the external kinematics and Zα
∗ is a reference vector in CP4. The sum on i, j is understood

modulo n, and polytopes of this form are known as cyclic polytopes [11].

For any given n, Mn
NMHV has many different expressions depending on our choice of Zα

∗ .
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For example, if we choose Zα
∗ = Zα

1 , then for n = 6 we have

M6
NMHV = [12345] + [12356] + [13456], (5.2.26)

while if we choose Zα
∗ = Zα

2 , then we have

M6
NMHV = [23456] + [23461] + [24561]. (5.2.27)

Just as the relation (5.2.12) is not obvious at the level of Schouten identities on the 〈...〉

brackets, the equivalence of the right hand sides of (5.2.26) and (5.2.27) is nontrivial. These

two representations of M6
NMHV were initially found by performing two different BCFW shifts

on the amplitude [125,133,134]. The geometric interpretation is that they correspond to two

different triangulations of the same underlying polytope. As discussed in the introduction,

their equality can also be understood by using a global residue theorem in an auxiliary Grass-

mannian [128, 129]. Part of the utility of the vertex objects is to show that the right hand

sides of (5.2.26) and (5.2.27) are equal directly—namely, they are identical when expressed

in term of these objects. By using equation (5.2.23) on each simplex in either (5.2.26) or

(5.2.27), we find

M6
NMHV = F1234 + F1245 + F1256 + F2345 + F2356 + F2361 + F3456 + F3461 + F4561. (5.2.28)

The amplitude is therefore uniquely expressed in terms of the vertex objects. From this

expression and equation (5.2.23), any triangulation of M6
NMHV can be obtained.
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For general n, we have

Mn
NMHV =

n∑
i,j

[∗i(i+ 1)j(j + 1)]

=
n∑
i,j

F∗i(i+1)j + Fi(i+1)j(j+1) + F(i+1)j(j+1)∗ + Fj(j+1)∗i + F(j+1)∗i(i+1)

=
n∑
i,j

Fi(i+1)j(j+1), (5.2.29)

where in the second equality we used equation (5.2.23) and in the last equality we used the

cyclicity of the sum and antisymmetry of the vertex objects to cancel in pairs any terms

with ∗ as a subscript. This shows manifestly that the amplitude is independent of Zα
∗ and

that the underlying polytope has vertices only where the four hyperplanes defined by Zα
i ,

Zα
i+1, Z

α
j , and Zα

j+1 intersect.

We refer to Ref. [5] for further discussion of this vertex formalism. In the next two sections

we show that these vertex objects are naturally defined as contour integrals of logarithms.

5.3 Volumes and Logarithms

In [5] the vertex objects are defined as a particular sum of simplices. Thus, in some sense,

writing the volume of a polytope in terms of these objects may be viewed as simply choosing a

particular triangulation. However, we will now show that these objects are naturally defined

in terms of contour integrals of logarithms, thus giving them an existence independent of

simplices. This further motivates the view that the vertex objects are basic building blocks

for computing volumes of polytopes.

As mentioned in the introduction, our integrals differ from those discussed in Ref. [125]

in that the latter involve contours with boundaries on the underlying polytope. Evaluating

volumes in this way leads to the presence of spurious vertices (which correspond physically

to spurious poles) associated to a particular triangulation. For example, the vertex {1, 2} is

a spurious vertex in the triangulation depicted in Figure 5.4, since it is not present in the
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underlying polytope but shows up in individual terms in the triangulation. As we will see, the

integrals we use have closed contours, so evaluating them corresponds to a straightforward

application of Cauchy’s residue theorem. Moreover, they give rise to the vertex objects

used in the vertex formalism discussed above, in which only the genuine (i.e., non-spurious)

vertices of the polytope play a role.

5.3.1 One Dimension

As a warmup, we begin our discussion in one dimension. Another way of writing the length

L of a line from x1 to x2 is as

L = x1 − x2 =

∫
x1≤x≤x2

dx =
1

2πi

∫
x1≤x≤x2

2πi dx. (5.3.1)

By allowing the x variables to be complex, we can define the complex logarithm function

log
(
x−x1
x−x2

)
with its branch cut connecting the point x1 to the point x2 along the real axis.

We can then rewrite 2πi as Disc
(

log
(
x−x1
x−x2

))
—the discontinuity of the logarithm across its

branch cut—giving

L =
1

2πi

∫
x1≤x≤x2

Disc
(

log
(x− x1

x− x2

))
dx. (5.3.2)

Unwrapping the contour allows one to drop the “Disc” from the integrand and obtain

L =
1

2πi

∮
log
(x− x1

x− x2

)
dx. (5.3.3)

where the contour surrounds the cut. Evaluating this explicitly (for example, by going

around the pole at infinity) recovers L = x1 − x2, as expected.

Making the same definitions as in (5.2.7) we can rewrite (5.3.3) as a contour integral in

CP1∗ as

L =
1

2πi

∮
log
(Z1 ·X
Z2 ·X

) DX

(P ·X)2
, (5.3.4)

where DX ≡ εαβXαdXβ is the canonical volume form (of weight two) on CP1∗ and Xα ≡
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x
1

 . By explicitly evaluating this integral we find

L =
〈Z1Z2〉

〈Z1P 〉〈Z2P 〉
, (5.3.5)

in agreement with equation (5.2.6). In this way, the length of a line is naturally represented

as a contour integral of a logarithm.

5.3.2 Two Dimensions

Motivated by the one-dimensional result, we consider the CP2∗ integral

A =
1

(2πi)2

∮
log
(Z1 ·X
Z2 ·X

)
log
(Z3 ·X
Z4 ·X

) DX

(P ·X)3
, (5.3.6)

where DX ≡ εαβγXαdXβdXγ is the canonical volume form on CP2∗ of weight three. The

contour is again defined by the integrand in a canonical way: first go around the branch cut

of log
(
Z3·X
Z4·X

)
and then go around the branch cut of log

(
Z1·X
Z2·X

)
. This gives

A = [123]− [124], (5.3.7)

which is precisely the area of the quadrilateral given in equation (5.2.10). If we swap Zα
3 ,

and Zα
4 with Zα

1 and Zα
2 in equation (5.3.6) and pick up a minus sign from the change in

orientation of the contour, one readily sees that

A = −([341]− [342]), (5.3.8)

thus proving the identity [123]− [123] = [431]− [432] that we obtained in section 5.2.3. This

identity is now made manifest by the integrand of (5.3.6).

We have expressed a two-dimensional area as a closed contour integral whose contour
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specification comes naturally with the integrand itself. The objects whose area we compute

in this way are quadrilaterals, defined by four lines. Before describing how the vertex objects

are obtained from these kinds of integrals, we quickly discuss how we can use these integrals

to compute the volume of three- and D-dimensional “quadrilaterals,” or hypercubes.

5.3.3 Higher Dimensions

Consider the following contour integral in CP3∗ :

V =
1

(2πi)3

∮
log
(Z1 ·X
Z2 ·X

)
log
(Z3 ·X
Z4 ·X

)
log
(Z5 ·X
Z6 ·X

) DX

(P ·X)4
, (5.3.9)

where DX ≡ εαβγδXαdXβdXγdXδ. The contour is a three-torus (S1)3 that goes around the

branch cut of each logarithm. We find that

V = [1235]− [1236]− [1245] + [1246]. (5.3.10)

This corresponds to the volume of a three-dimensional “cube,” where we simply mean a

polytope bounded by 3 pairs of faces. One way to see that equation (5.3.10) is triangulating

a “cube” with faces 1 and 2 opposite each other, 3 and 4 opposite each other, and 5 and 6

opposite each other is by examining Figure 5.7, which shows the superposition of the four

simplices in (5.3.10) leaving the volume of a “cube.”

As in the two-dimensional case, there is more than one expression for the volume of this

cube. Namely, just as we could get two different expressions for the area of a quadrilateral

by viewing it as the difference between two different pairs of triangles, we can get three

expressions for the volume of the cube as a superposition of four simplices. In particular, we

also have

V = −([3415]− [3416]− [3425]− [3426]) and V = −([5631]− [5632]− [5641]− [5642]),

(5.3.11)
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Figure 5.7: A triangulation of the cube using four simplices.

which correspond to the different ways of decomposing the cube analogously to Figure 5.7

corresponding to Figure 5.8. Figure 5.8 is the three-dimensional analog of Figure 5.4. As

in the two-dimensional case, these identities are manifest from the integrand in (5.3.9) by

swapping, for example, Zα
1 and Zα

2 with Zα
3 and Zα

4 , or with Zα
5 and Zα

6 , and picking up a

minus sign from the change in orientation of the contour.

For completeness we write down the contour integral that gives the volume of a D-

dimensional “hypercube” bounded by 2D faces in “pairs.” With Zα
1 , ..., Z

α
2D defining the 2D

faces, we have a generalization of the lower-dimensional cases:

V =
1

(2πi)D

∮
log
(Z1 ·X
Z2 ·X

)
... log

(Z2D−1 ·X
Z2D ·X

) DX

(P ·X)D+1
, (5.3.12)

where DX is the natural generalization of the lower-dimensional volume forms and the

contour goes around the branch cut of each logarithm.

We note that these (hyper-)cubes are not directly related to the polytopes that are

relevant for scattering amplitudes: equation (5.3.12) applied to D = 4 gives the volume of a

four-dimensional hypercube, which has 8 codimension-1 faces and 16 vertices, whereas the
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Figure 5.8: The three-dimensional analogue of Figure 5.4, showing the three possible ways
of forming a triangulation analogous to that shown in Figure 5.7.

four-dimensional cyclic polytope whose volume is given by equation (5.2.25) corresponding

to the scattering of n = 8 particles has 8 codimension-1 faces and 20 vertices. However, as

we will show in the next section, these volumes of hypercubes can be used to obtain the

vertex objects and thus to compute the volumes of general polytopes, including the cyclic

polytopes relevant for scattering amplitudes.

5.4 Vertex Objects from Logarithms

5.4.1 Towards The Vertex Objects

We motivate the vertex objects by first seeing how to recover the volume of a simplex from

integrals of logarithms. We define

T12 ≡
1

(2πi)2

∮
γ12

log
(Z1 ·X
Z2 ·X

)
log
(Z3 ·X
Q ·X

) DX

(P ·X)3
= [123]− [12Q], (5.4.1)

where γ12 is the same contour that we have described before, only now we are making it

explicit. We have also introduced a fixed reference vector Qα, defining a reference line in
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CP2∗. Cyclicly permuting 1, 2, and 3, we define

T23 ≡
1

(2πi)2

∮
γ23

log
(Z2 ·X
Z3 ·X

)
log
(Z1 ·X
Q ·X

) DX

(P ·X)3
= [231]− [23Q], (5.4.2)

as well as

T31 ≡
1

(2πi)2

∮
γ31

log
(Z3 ·X
Z1 ·X

)
log
(Z2 ·X
Q ·X

) DX

(P ·X)3
= [312]− [31Q]. (5.4.3)

It is important to note that γ12, γ23, and γ31 are all different contours, each being the contour

defined by the integrand of the corresponding integral—namely, the contour that goes around

the branch cut of each logarithm. Performing these integrations and summing them up, we

find that

T12 + T23 + T31 = 2[123]. (5.4.4)

The dependence on Qα, while present in each Tij, drops out of this sum of integrals and

we are left with twice the volume of a single simplex. At the level of the integrated results

Tij = [ijk]− [ijQ], the Qα-independence of this sum results from using the four-term identity

in equation (5.2.12), which itself is the result of nontrivial algebra using Schouten identities.

At the level of the integrands, however, these cancellations become more manifest, and we

will explore them here in some detail.

We begin by rewriting Tij, where i, j ∈ {1, 2, 3} and k ∈ {1, 2, 3} \ {i, j}, as follows:

Tij =
1

(2πi)2

∮
γij

log
(Zi ·X
Zj ·X

)
log
(Zk ·X
Q ·X

) DX

(P ·X)3
,

=
1

(2πi)2

∮
γij

log
(Zi ·X
Zj ·X

)
log
(
Zk ·X

) DX

(P ·X)3
(5.4.5)

− 1

(2πi)2

∮
γij

log
(Zi ·X
Zj ·X

)
log
(
Q ·X

) DX

(P ·X)3
.

The contour γij now goes around the branch cut of log(Zi·X
Zj ·X ) and that of either log(Zk ·X)

or log(Q · X), depending on which term we are considering. If we now consider only the
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Qα-dependent terms in the sum T12 + T23 + T31, we find

(T12 + T23 + T31)|Qα−dependent = − 1

(2πi)2

(∮
γ12

log
(Z1 ·X
Z2 ·X

)
log
(
Q ·X

) DX

(P ·X)3
(5.4.6)

+

∮
γ23

log
(Z2 ·X
Z3 ·X

)
log
(
Q ·X

) DX

(P ·X)3

+

∮
γ31

log
(Z3 ·X
Z1 ·X

)
log
(
Q ·X

) DX

(P ·X)3

)
.

By deforming each γij to go around the P ·X = 0 pole as opposed to the log(Zi·X
Zj ·X ) branch

cut, and thus picking up an overall minus sign, we can bring all of these integrands under

the same integral and the integrand vanishes:

(T12 + T23 + T31)|Qα−dependent =
1

(2πi)2

(∮
γ

(
log
(Z1 ·X
Z2 ·X

)
+ log

(Z2 ·X
Z3 ·X

)
+ log

(Z3 ·X
Z1 ·X

))
× log

(
Q ·X

) DX

(P ·X)3

)
(5.4.7)

= 0,

where the contour γ goes around the P ·X = 0 pole and the log(Q ·X) branch cut. We can

therefore write the sum of Tij’s as

T12 + T23 + T31 =
1

(2πi)2

(∮
γ12

log
(Z1 ·X
Z2 ·X

)
log
(
Z3 ·X

) DX

(P ·X)3
(5.4.8)

+

∮
γ23

log
(Z2 ·X
Z3 ·X

)
log
(
Z1 ·X

) DX

(P ·X)3

+

∮
γ31

log
(Z3 ·X
Z1 ·X

)
log
(
Z2 ·X

) DX

(P ·X)3

)
,

which is manifestly independent of Qα. However, this representation depends on an implicit

choice of line at infinity as this defines the branch of, for example, log(Z3 · X) that γ12

circles. In the following we will therefore keep Qα and its higher-dimensional analogues in

our expressions and note the independence of our expressions on these reference boundaries

wherever necessary. We also note that a naive summation of the integrands of the Tij’s would
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give a vanishing result, but that performing the integrations along the contours as specified

by the branch cuts of their respective integrands gives non-vanishing results.

The Qα-independence of this sum of integrals can also be directly checked by differenti-

ating with respect to Qα. In particular, by again using the fact that log(Zi·X
Zj ·X ) + log(

Zj ·X
Zk·X

) +

log(Zk·X
Zi·X ) = 0, it can be easily shown—at the integrand level—that

Kα ∂

∂Qα
(T12 + T23 + T31) = 0, (5.4.9)

and therefore that this sum is independent of Qα. In the following we use integrals simi-

lar to those defining the Tij’s to define the vertex objects, and we will keep the reference

boundaries in these expressions. The sums of these objects that we will be interested in will

be independent of these boundaries, and the integrand-level proofs of these statements are

similar to those found here.

5.4.2 Two-Dimensional Vertex Objects

Suppose that we have N points {Zα
i }1≤i≤N in CP2, each defining a line in CP2∗. We define

the following collection of
(
N
2

)
integrals:

Fij ≡
1

2

1

(2πi)2

∮
γij

log
(Zi ·X
Zj ·X

)(∑
k 6=i,j

log
(Zk ·X
Q ·X

)) DX

(P ·X)3
≡ 1

(2πi)2

∮
γij

fij(X)
DX

(P ·X)3
,

(5.4.10)

where the contour γij first goes around all of the branch cuts from Zk ·X = 0 to Q ·X = 0

and then around the branch cut from Zi ·X = 0 to Zj ·X = 0. The factor of 1
2

is conventional.

Integrating this gives

Fij =
1

2

N∑
k 6=i,j

([ijk]− [ijQ]) =
1

2

( N∑
k 6=i,j

[ijk]
)
− 1

2
(N − 2)[ijQ]. (5.4.11)
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These are (up to a factor of 2) the vertex objects of Ref. [5] and so in particular we have,

for any i, j, k ∈ {1, ..., N}, that

Fij + Fjk + Fki = [ijk]. (5.4.12)

Each individual vertex object depends on Qα as well as all N of the Zα
i ’s, but the dependence

on Qα and all other Zα
l ’s (i.e., for l 6= i, j, k) drops out in the above sum, for reasons identical

to those discussed in section 5.4.1.

In equation (5.4.10) we wrote Fij as an integral over a function fij(X) on the dual space.

We readily see that fij = −fji, and can also show that for any choice of i, j, and k,

fij + fjk + fki = 0. (5.4.13)

The antisymmetry of the fij’s as well as property (5.4.13) imply that the collection of func-

tions {fij} form a representative of a Čech cohomology class on a subspace of CP2∗.

In twistor theory, Čech cohomology is a natural setting in which to discuss the Penrose

transform, which takes a cohomology class on (a subspace of) twistor space to a finite-normed

on-shell field configuration on space-time [131]. The appearance of Čech cohomology here

is of a different nature, and the role it is playing in this discussion is still unclear. For the

remainder of this note we will not explore this issue. Instead, we simply note this curious

connection to cohomology, as it may be important for generalizing these ideas to the NkMHV

amplituhedron with k > 1. For now, we simply move on to describing how to construct the

higher-dimensional vertex objects in terms of integrals of logarithms.

5.4.3 Higher-Dimensional Vertex Objects

Analogous vertex objects can be defined in any dimension. Namely, in D dimensions there

exist objects Fi1...iD such that for any choice of D+ 1 hyperplanes defined by {Zik}1≤k≤D+1,
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one has the identity

Fi1i2...iD + (−1)DFi2i3...iD+1
+ Fi3i4...i1 + ...+ (−1)DFiD+1i1...iD−1

= [i1i2...iD+1]. (5.4.14)

Given any polytope in CPD, one obtains its volume by summing the vertex objects over the

vertices of the polytope. In particular, any vertex of the polytope is defined (as reviewed

in section 2) by the intersection of D hyperplanes corresponding to Zi1 , ..., ZiD , and for this

vertex one simply includes an Fi1...iD . The precise definition of higher-dimensional polytopes

in CPD is described in Ref. [5], as is the precise way of summing the vertex objects over the

vertices. In this subsection, we will see how these higher-dimensional vertex objects arise as

contour integrals of logarithms. We will explicitly show this only for dimensions three and

four.

Three Dimensions

Let {Zα
i }1≤i≤N be N points in CP3 defining N planes in the dual CP3∗. Motivated by the

two-dimensional case, we define

Fij;k ≡
1

(2πi)3

∮
γij;k

log
(Zi ·X
Zj ·X

)
log
(Zk ·X
Q2 ·X

) ∑
l 6=i,j,k

log
( Zl ·X
Q1 ·X

) DX

(P ·X)4
, (5.4.15)

where Qα
1 and Qα

2 are fixed reference points in CP3 defining fixed reference planes in CP3∗.

The contour γij;k is an (S1)3 contour going around the branch cuts of the logarithms in the

natural way. Antisymmetrizing over i, j, and k, and noting that each Fij;k is antisymmetric

in its first two indices, we then define

Fijk ≡
1

2 · 3!
F[ij;k] =

1

3!
(Fij;k + Fjk;i + Fki;j). (5.4.16)

Each Fijk depends on Qα
1 and all N of the Zα

i ’s, although it is independent of Qα
2 . To see this

Qα
2 -independence, we note that the sum Fij;k + Fjk;i + Fki;j gives the exact same cyclic sum
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of the log(Zi·X
Zj ·X ) log(Zk·X

Q2·X ) terms in equation (5.4.15) that appear in the two-dimensional case

discussed in section 5.4.1, and thus the arguments used there to prove the Qα-independence

of this sum directly apply.

Having established that each Fijk depends only the reference boundary Qα
1 , it is worth

comparing the meaning of this boundary to that of the dummy boundary Zα
∗ that appears2 in

the BCFW/CSW triangulation of equation (5.2.25). In the latter, the boundary Zα
∗ defines

a particular triangulation of the underlying polytope, and the independence of the volume

of the polytope on this boundary follows from the general independence of the volume on

triangulation. In contrast, Qα
1 determines a boundary that is used to define the branch cuts

of the logarithms that appear in the definition of Fijk. The boundary Qα
2 plays a similar

role. As discussed in section 5.4.1, a manifestly Q-independent representation of Fijk can

be given, at the cost of making an implicit choice of a plane at infinity that determines the

branches of the logarithms. Thus, the Q’s that make an appearance here can be viewed

as generalized “planes at infinity”, the intersection of which gives a line at infinity. These

boundaries therefore do not play a direct role in defining any triangulation—such a boundary

would enter into the subscripts of Fijk itself, as in the middle line of equation (5.2.29). This

is in line with the fact that the vertex objects encode triangulation-independent data about

the underlying polytope [5]. Moreover, with an explicit choice of endpoints for the branch

cuts of the logarithms that define Fijk, these Qα’s can be removed entirely.

It is straightforward to show that the Fijk functions are (up to a factor of 2 × 3!) the

vertex objects defined in Ref. [5]. It then follows that for any choice of i, j, k, l ∈ {1, ..., N},

one has

Fijk − Fjkl + Fkli − Flij = [ijkl], (5.4.17)

where [ijkl] is the volume of the three-simplex bounded by the four faces defined by Zα
i , Z

α
j ,

Zα
k , and Zα

l . The dependence on Qα
1 and all other Zα

m’s drops out in this sum.

2We note that we are currently working in three dimensions, whereas the BCFW/CSW triangulation
triangulates a four-dimensional polytope. However, the statements we make here directly carry over to the
four dimensional case discussed in the next section.
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Four Dimensions

The definition of the four-dimensional vertex objects is similar. Let {Zα
i }1≤i≤N be N points

in CP4 defining N hyperplanes in the dual CP4∗. Define

Fij;k;l =
1

(2πi)4

∮
γij;k;l

log
(Zi ·X
Zj ·X

)
log
(Zk ·X
Q3 ·X

)
log
( Zl ·X
Q2 ·X

) ∑
m6=i,j,k,l

log
(Zm ·X
Q1 ·X

) DX

(P ·X)5
,

(5.4.18)

where Qα
1 , Q

α
2 , and Qα

3 are fixed reference points in CP4 defining reference hyperplanes in

CP4∗. The contour γij;k;l is an (S1)4 contour going around the branch cuts of the logarithms

in the natural way. We define

Fijkl ≡
1

2 · 4!
F[ij;k;l] =

1

4!
(Fij;k;l − Fij;l;k + Fik;l;j − Fik;j;l + Fil;j;k − Fil;k;j (5.4.19)

+ Fjk;i;l − Fjk;l;i + Fjl;k;i − Fjl;i;k + Fkl;i;j − Fkl;j;i).

Similarly to the two- and three-dimensional cases, each individual Fijkl is independent of Qα
2

and Qα
3 , though it is dependent on Qα

1 and all N of the Zα
i ’s.

Up to a factor of 2 × 4!, the Fijkl functions are precisely the vertex objects defined in

Ref. [5]. It therefore follows that for any choice of i,j,k,l, and m, we have

Fijkl + Fjklm + Fklmi + Flmij + Fmijk = [ijklm], (5.4.20)

where [ijklm] is the volume of a four-simplex bounded by the five faces defined by Zα
i , Z

α
j ,

Zα
k , Z

α
l , and Zα

m. Again, the dependence on Qα
1 and all other Zα

n ’s drops out in this sum. This

completes the proof that the vertex objects of Ref. [5], which can be used as basic building

blocks for computing volumes of general polytopes as described in that reference, have a

natural definition as simple contour integrals in the same space in which those polytopes

live.
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5.5 Conclusions

In this chapter we showed that volumes of general polytopes can be computed using contour

integrals of logarithms directly in the space in which the polytopes live. The contours of

these integrals are canonically specified by the integrands themselves, and the organizing

principle for combining these integrals comes directly from the geometry of the polytope—

the intersections of its faces—and thus does not rely on any particular triangulation. We also

found a surprising connection between the integrands of the two-dimensional vertex objects

and Čech cohomology. It would interesting to further explore this connection.

The vertex objects that we have defined are useful for computing NMHV tree-level am-

plitudes in the planar limit of N = 4 super-Yang–Mills, and we have seen logarithms appear

naturally. It would be interesting to see how these ideas might generalize to loop level.

Additionally, since our discussion has been limited to tree-level amplitudes, these results

readily apply at tree level to Yang–Mills theories with less (and no) supersymmetry. It

would therefore be interesting to see if similar ideas can be used for less supersymmetric

theories beyond tree level. Taking the planar limit appears to be crucial in this discussion,

as momentum (super-)twistors play a fundamental role and these cease to exist in nonplanar

theories. Nonetheless, it is worth exploring if and to what extent this discussion can be

extended to the nonplanar sector of the theory.

The vertex objects we defined can be used to obtain identities amongst sums of simplices,

and these identities can therefore now be viewed as being obtained from contour integrals of

logarithms directly in the space containing the polytope. This differs dramatically from the

Grassmannian picture discussed in the introduction. Understanding the relation between

these two approaches will help extend the method introduced in this note to NkMHV tree

amplitudes for k > 1, since the Grassmannian picture is already well-understood for these

more complicated cases. Expressing volumes in terms of the vertex objects naturally encodes

the geometry of the underlying polytope. If the analogous objects can be found for the k > 1
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cases, likely by first making a connection to the Grassmannian picture, then this should shed

light on the geometry of the dual amplituhedron directly, without a need for any auxiliary

spaces.
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Chapter 6

Current and Future Work

6.1 A Polytope Picture for Nk>1MHV Tree Amplitudes

6.1.1 Introduction

A major drawback of the formalism introduced in Chapter 5 is that it only provides a

polytope interpretation and computational formalism for tree-level amplitudes in N = 4

sYM in the NMHV sector. The amplitudes in the Nk>1MHV sectors have elluded any

direct interpretation as polytopes, though there are strong hints suggesting that such an

interpretation should exist [126].

One such motivation comes directly from using BCFW recursion to compute these higher

k amplitudes. The recursion expresses the amplitude as a sum of terms, each having a com-

mon form. By choosing different legs on which to base the recursion, one obtains different

sums of these terms. Since these expressions must all be equal, one might hope that these

are different “triangulations” of the same underlying space. Indeed, this is exactly the case

for NMHV amplitudes, where the individual terms coming from the recursion are precisely

volumes of simplices in an appropriate space. However, at higher k, there is no clear under-

standing of how these individual terms correspond to volumes of simplices, so a polytope

picture is indirect at best.

156



We have, however, taken small steps towards uncovering a polytope picture for higher k

amplitudes. This has largely involved gaining an even deeper understanding of k = 1 (i.e.,

NMHV) amplitudes, and clarifying exactly at which step the problem for higher k arises.

The remainder of this section will summarize this progress.

6.1.2 Review of the Grassmannian Formalism

An alternative way of expressing the R-invariants [ijklm] that make up the NMHV am-

plitudes is as contour integrals in a Grassmannian [128], which we will now review. We

parametrize the kinematics of a k = 1, n-point amplitude using ZI
i = (Zα

i , φAη
A
i ), for

i = 1, 2, ..., n. Here, Zα
i is the bosonic part of the supertwistor, and ηAi , with A = 1, ..., 4,

is a Grassmann odd variable parametrizing the on-shell superspace for N = 4 sYM. We

introduce φA, another Grassmann odd variable, to “bosonify” the supertwistor, placing the

supertwistor in CP4 as opposed to CP3|4 due to its having five bosonic homogenous coordi-

nates. To clarify notation, we note that there are three different kinds of twistor that we are

dealing with. We have the purely bosonic part, denoted by Zα
i (for the ith particle), which

lives in CP3. We then have the supertwistor, ZIi = (Zα
i , η

A
i ), which lives in CP3|4. Finally, we

have the bosonified supertwistor ZI
i = (Zα

i , φAη
A
i ), which is notationally distinguished from

the purely bosonic twistor only by its index, with the latter having a lower-case Greek index.

Often, context will make clear which twistors are being considered.

A more thorough review of supertwistors is given in Refs. [125,128], and our notation here

is slightly different. The superamplitude can be obtained from the “bosonified” superam-

plitude simply by integrating over φA, as will become clearer in what follows. Additionally,

we will make little distinction (except where necessary) between the superamplitude and its

bosonified form, as the former can be directly and easily obtained from the latter.

We now specialize to the 5-point NMHV amplitude, which we know from Chapter 5 is

given simply by the R-invariant [12345]. We can rewrite this R-invariant as a contour integral

in the Grassmannian G(1, 5) by introducing the homogenous coordinates Ti, i = 1, ..., 5 and
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computing the integral [128] ∮
DT

T1T2T3T4T5

δ4|4(TZI), (6.1.1)

where TZI denotes the linear combination T1Z
α
1 + ...+ T5Z

α
5 for the bosonic twistor coordi-

nates and T1η
A
1 + ...+ T5η

A
5 for the fermionic twistor coordinates.

The nice thing about writing things in this way is that it readily generalizes not only to

higher points but also to higher MHV degree. We will first address the former. Consider an n-

point NMHV tree amplitude with momentum supertwistors ZI
i = (Zα

i , η
A
i ), for i = 1, 2, ..., n.

From Chapter 5 we know that this amplitude is given by

∑
i,j

[∗i(i+ 1)j(j + 1)] (6.1.2)

where substituting in different values of ∗ gives different but equivalent expressions for the

amplitude, reflecting different possible triangulations.

We can also rewrite this amplitude as a contour integral in G(1, n), by introducing the n

homogenous coordinates T1, ..., Tn and considering

∮
C

DT

T1...Tn
δ4|4(TZI), (6.1.3)

where now C represents a particular contour in G(1, n). Namely, for a given sum of R-

invariants [i1i2i3i4i5], one simply chooses the contour that sets all of the Tj = 0 for j /∈

{i1, i2, i3, i4, i5}, and uses the delta functions to localize the remaining Tj’s. The final con-

tour is then the sum of these contours. While this method clearly recovers a particular

triangulation of the underlying polytope, it can also be shown that equalities between differ-

ent triangulations are simple manifestions of the global residue theorem (GRT). Therefore,

once one correct contour C has been found, all others are related to this one by the global

residue theorem.

More nontrivially, however, it turns out that these Grassmannian integrals also encode the

158



amplitudes for the higher MHV sectors [128]. In particular, an n-point NkMHV amplitude

can be written as a contour integral in G(k, n). We begin by introducing homogenous

coordinates Ti,j on this space, with i = 1, ..., k encoding the MHV degree and j = 1, ..., n

encoding the number of particles. By denoting Ti,1Z
α
1 + ... + Ti,nZ

α
n for the bosonic twistor

coordinates and Ti,1η
A
1 +...+Ti,nη

A
n for the on shell superspace fermionic variables collectively

as TiZ
I , we have that the tree amplitude Ak,n can be written as

Ak,n =

∮
C

DT

(1)(2)...(n)

k∏
i=1

δ(TiZI), (6.1.4)

where (i) denotes the ith cyclic minor of the matrix Ti,j [128]. All that remains is to find

a proper contour C for the amplitude, and all other expressions for the amplitude can be

related to this one by a global residue theorem. It is worth pointing out that these global

residue theorems encode many nontrivial identities, often involving dozens or even hundreds

of terms.

The problem of finding the appropriate contour C that represents the amplitude is solved

by the geometric formulation of the amplituhedron [11], which gives both a procedure for

determining these contours as well as a geometrical interpretation of the region of integration.

What the amplituhedron does not do, however, is give a direct geometrical interpretation of

the amplitude itself, but rather a more indirect geometrical interpretation of it in terms of

structures called positive geometries [107]. In particular, the geometric interpretation of the

different terms in these contour integrals is obscured for higher k values.

To summarize, we have from Chapter 5 a formalism for computing volumes of poly-

topes and therefore NMHV tree amplitudes in terms of objects that both uniquely express

the amplitude as well as manifest the underlying geometric interpretation. Moreover, this

framework computes the terms in the amplitude via contour integrals within the same space

in which the relevant polytope lives. This is in contrast to the Grassmannian and amplituhe-

dron picture, which readily generalizes to tree amplitudes of any MHV degree and encodes
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the different triangulations via GRTs but obscures the underlying geometry. It would there-

fore be ideal to find a framework that enjoys all of these features. Namely, it is an open

problem to find a framework that simultaneously encodes all the various equivalent expres-

sions for these amplitudes (which the vertex objects of Chapter 5 do manifestly, and which

the Grassmannian formalism does via GRTs), manifests the underlying geometric and/or

polytope structure, and generalizes to all MHV degree. In the next subsection we discuss

some small steps towards this that we have taken.

6.1.3 Equality of Grassmannian Formalism and Vertex Object

Formalism

A natural question to ask is why the vertex object formalism is equivalent to the Grass-

mannian picture in the first place. In particular, restricting to n-point NMHV amplitudes,

the Grassmannian picture computes amplitudes via contour integrals in G(1, n) of the form

shown in Eq. (6.1.3), whereas the vertex objects are given as contour integrals around

branches of logarithms in dual twistor space. In particular, the space in which these contour

integrals live in the case of the vertex objects is the same regardless of the number of points

n involved, whereas in principle a different Grassmannian is used for each value of n.

To clarify this confusion as well as to make steps towards understanding it, we consider

a simpler class of integrals. Instead of considering supertwistors with four bosonic and four

fermionic coordinates (i.e., elements of CP3|4, or CP4 for bosonified supertwistors), let us

consider supertwistors with one bosonic and one fermionic coordinate. These are elements

of CP0|1 or CP1 for bosonified supertwistors, since the latter have two homogeneous bosonic

coordinates. By introducing two such supertwistors ZI1 = (z1, η1) and ZI2 = (z2, η2), we

can consider the “2-point amplitude” A2 formed by computing the Grassmannian contour

integral

A2 =

∮
DT

T1T2

δ0|1(TZI). (6.1.5)
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Since these kinds of calculations will be useful in what is to follow, we will carry this one out

in detail1. Expanding out the delta function, using the holomorphic delta function for the

bosonic coordinate and the usual fermionic delta function for the Grassmann odd coordinate,

we find

A2 =

∮
DT

T1T2

δ0|1(TZI) (6.1.6)

=

∮
DT

T1T2

(T1η1 + T2η2

T1z1 + T2z2

)
.

Now we need to fix the GL(1) redundancy in the measure, as the integration variables are

only defined up to an overall scaling. One way to do this is to choose T2 = 1, thus giving

A2 =

∮
dT1

T1

(T1η1 + η2

T1z1 + z2

)
(6.1.7)

Finally, going around the T1 = −z2/z1 pole (as specified by the delta function) gives

A2 =
z1η2 − z2η1

z1z2

. (6.1.8)

We can arrive at the same result by following the vertex object formalism. Namely, we

bosonify the twistors so that Zi = (zi, φηi) ∈ CP1, and we compute

Ã2 =

∮
DX

(P ·X)2
log
(Z1 ·X
Z2 ·X

)
=

〈12〉
〈1P 〉〈2P 〉 , (6.1.9)

where we have introduced P I = (0, 1). It is then clear that

∫
dφÃ2 = A2, (6.1.10)

so that these two contour integrals are indeed computing the same quantities, up to a trivial

fermionic integration. A priori it is not obvious why this is so, and our goal for the remainder

1We will, however, be completely cavalier about factors of 2πi arising from contour integration.
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of this section will be to find a “master formula” of sorts, which can translate between the

Grassmannian and vertex object formalisms.

Our starting point will be the Grassmannian integral 6.1.6. We rewrite it here for con-

venience, expanding out the delta funcation as before:

A2 =

∮
DT

T1T2

δ0|1(TZI) =

∮
DT

T1T2

(T1η1 + T2η2

T1z1 + T2z2

)
. (6.1.11)

Recalling that we want to eventually relate this integral to an integral involving bosonified

twistors, let us trivially bosonify this expression by replacing each ηi with φηi and integrating

everything against φ. This means we just rewrite things trivially as

A2 =

∮
DT

T1T2

(T1η1 + T2η2

T1z1 + T2z2

)
=

∫
dφ

∮
DT

T1T2

(T1φη1 + T2φη2

T1z1 + T2z2

)
. (6.1.12)

By recalling that φηi is simply the homogenous component Z2
i of the bosonofied momentum

twistor ZI
i , and zi that is similarly Z1

i , we have

A =

∫
dφ

∮
DT

T1T2

(T1Z
2
1 + T2Z

2
2

T1Z1
1 + T2Z1

2

)
. (6.1.13)

If we introduce the dual twistors P I = (0, 1) and QI = (1, 0), and recall that we have defined

TZI = T1Z
I
1 + T2Z

I
2 , then we can rewrite the above equation as

A =

∫
dφ

∮
DT

T1T2

〈TZQ〉
〈TZP 〉 . (6.1.14)

As it stands, this only holds for the particular QI and P I that we have chosen. However,

being motivated by the lack of homogeneity in QI and the incorrect scaling of P I , we can

insert a factor of 〈QP 〉 in the denominator of the integrand at no cost, since for these
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particular choices of QI and P I we have 〈QP 〉 = 1. We can therefore write

A =

∫
dφ

∮
DT

T1T2

〈TZQ〉
〈TZP 〉〈QP 〉 . (6.1.15)

It is important to note that expressions like 〈TZQ〉 are indeed still antisymmetric products

of two twistors, and not three. Namely, we have

〈TZQ〉 = εIJTZ
IQJ = T1〈1Q〉+ T2〈2Q〉. (6.1.16)

This expression for A is now independent of our choice of QI , which can be shown as follows.

We differentiate A with respect to QI by applying the differential operator

LI
∂

∂QI
(6.1.17)

where LI is an arbitrary twistor. We find

LI
∂

∂QI
A =

∫
dφ

∮
DT

T1T2

LI
∂

∂QI

〈TZQ〉
〈TZP 〉〈QP 〉 (6.1.18)

=

∫
dφ

∮
DT

T1T2

(〈QP 〉〈TZL〉 − 〈LP 〉〈TZQ〉
〈TZP 〉〈QP 〉2

)
=

∫
dφ

∮
DT

T1T2

( 〈TZP 〉〈QL〉
〈TZP 〉〈QP 〉2

)
= 0,

where in the third equality we used the Schouten identity and where the final equality holds

because the pole that is needed in the Grassmannian (Ti) integral is cancelled.

We therefore have that

A =

∫
dφ

∮
DT

T1T2

〈TZQ〉
〈TZP 〉〈QP 〉 , (6.1.19)
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and A is independent of QI . We now notice that the integrand

〈TZQ〉
〈TZP 〉〈QP 〉 (6.1.20)

is precisely the length of the line (as described and computed in Chapter 5) defined by the

twistors TZI and QI , with P I defining the line at infinity. We therefore know that we can

use the vertex object formalism to write this as

〈TZQ〉
〈TZP 〉〈QP 〉 =

∮
DX

(P ·X)2
log
(TZ ·X
Q ·X

)
. (6.1.21)

If we now insert this expression into the integrand above for A, we obtain

A =

∫
dφ

∮
DT

T1T2

∮
DX

(P ·X)2
log
(TZ ·X
Q ·X

)
, (6.1.22)

This, we claim, is a “master formula” of sorts. In particular, when evaluated one way,

it recovers that Grassmannian formalism, and when evaluated another way it recovers the

vertex object formalism. To recover the Grassmannian formalism we simply need to undo

the steps we took above. Namely, we first evaluate the inner integral (in dual twistor space)

to recover Eq. (6.1.19), and then we set QI = (1, 0), recall that PI = (0, 1), and perform the

fermionic integration. To recover the vertex object formalism requires a bit more work.

Ideally we would simply swap the order of integrations and perform the Grassmannian

integral first, leaving an integral in dual twistor space that recovers the vertex object for-

malism. Unfortunately, this is not so straightforward. To see why, we consider a simpler

example in regular complex analysis. Namely, we have the standard result

1 =
1

2πi

∮
z=0

dz

z
. (6.1.23)
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We can trivially rewrite this as a double contour integral as

1 =
1

(2πi)2

∮
z=0

dz

∮
w=0

dw

w(z − w)
. (6.1.24)

Now we cannot naively switch the order of integration here and perform the contour integral

around z = 0 since the integrand no longer has a pole there. There are, however, a couple

of things we can do. One option is to shift the pole location in z to be at z = w as opposed

to at z = 0, so that we have

1 =
1

(2πi)2

∮
w=0

dw

∮
z=w

dz

w(z − w)
, (6.1.25)

however for our purposes we will use a different approach. In particular, we first apply the

global residue theorem on the z variable. In the original integral there were only two poles,

one at z = 0 and one at z =∞. We can therefore safely take the z integration around z =∞

by adding a minus sign, and write

1 = − 1

(2πi)2

∮
z=∞

dz

∮
w=0

dw

w(z − w)
. (6.1.26)

We then change variables to z → 1/z to find

1 =
1

(2πi)2

∮
z=0

dz

∮
w=0

dw

zw(1− wz)
. (6.1.27)

Now the pole that the z contour is circling is exposed and we can safely change the orders

of integration. This is the idea we want to apply to our master formula Eq (6.1.22).

We begin by first fixing the GL(1) redundancy by taking T2 = 1, as before. This gives

A =

∫
dφ

∮
〈TZP 〉=0

dT1

T1

∮
DX

(P ·X)2
log
(T1(Z1 ·X) + (Z2 ·X)

Q ·X
)
. (6.1.28)

Note that the Grassmannian integral was meant to go around the 〈TZP 〉 = 0 pole, which
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we have made explicit in this expression. However, this pole is no longer present (naively)

in the current rewriting of the integrand2. If we look at the original Grassmannian integral,

though, then we see that there are three poles in T1: 〈TZP 〉 = 0, T1 = 0, and T1 = ∞.

Therefore we can use the global residue theorem to rewrite our master formula as

A = −
∫
dφ

∮
T1=0,∞

dT1

T1

∮
DX

(P ·X)2
log
(T1(Z1 ·X) + (Z2 ·X)

Q ·X
)
. (6.1.29)

The contribution from these two poles can now be straightforwardly computed and we find

A = −
∫
dφ

∮
DX

(P ·X)2

[
log
(Z2 ·X
Q ·X

)
− log

(Z1 ·X
Q ·X

)]
, (6.1.30)

where the first term in the integrand comes from the T1 = 0 pole and the second from the

T1 =∞ pole. Simplifying the integrand gives

A =

∫
dφ

∮
DX

(P ·X)2
log
(Z1 ·X
Z2 ·X

)
, (6.1.31)

which is precisely the expression used in the vertex object formalism. Note also that the

QI-dependence has dropped out, as expected.

We have therefore introduced a “master formula”, Eq. (6.1.22), that simultaneously

encodes the Grassmannian as well as the vertex object formalism, at least in this one-

dimensional case. In order for this approach to have any hope for extension to higher MHV

levels (i.e., k > 1), we first need to see how it generalizes to higher dimensions, in which case

there is only one additional subtlety that needs to be addressed.

2The pole has become a “pinched-contour” pole [79], since when 〈TZP 〉 = 0 we have that TZI and P I

are colinear and so there is no contour separating the P ·X = 0 pole from the branch of the logarithm in
the integrand.
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6.1.4 Higher Dimensions

We consider the Grassmannian integral for an “amplitude” with supertwistors residing in

CP1|2, meaning that they have two bosonic and two fermionic coordinates, ZiI = (z1
i , z

2
i , η

A
i ),

A = 1, 2, and in particular the bosonified supertwistors reside in CP2 (having three homoge-

nous bosonic coordinates). At n-points we have n such twistors ZI
i , i = 1, ..., n, and for

now we restrict to the n = 3 case. We will discuss the general n case afterwards. The

Grassmannian integral specifying this amplitude is

A =

∮
DT

T1T2T3

δ1|2(TZI), (6.1.32)

which again, using the holomorphic delta function for the bosonic coordinates and the usual

delta function for the fermionic coordinates, gives

A =

∮
DT

T1T2T3

( (T1η
1
1 + T2η

1
2 + T3η

1
3)(T1η

2
1 + T2η

2
2 + T3η

2
3)

(T1Z11 + T2Z21 + T3Z31)(T1Z12 + T2Z22 + T3Z32)

)
. (6.1.33)

It is now straightforward to obtain a “master formula” in this case as well. Namely, we begin

by bosonifying these coordinates and integrating the newly introduced fermionic coordinates

back out. It is a straightforward calculation to check that we can write

A =

∫
d2φ

∮
DT

T1T2T3

( (T1φ · η1 + T2φ · η2 + T3φ · η3)2

(T1Z1
1 + T2Z1

2 + T3Z1
3)(T1Z2

1 + T2Z2
2 + T3Z2

3)

)
. (6.1.34)

By introducing the twistors QI
1 = (1, 0, 0), QI

2 = (0, 1, 0), and P I = (0, 0, 1), and realizing

that Z3
i = φ · ηi, it is straightforward to check that this expression is equivalent to

A =

∫
d2φ

∮
DT

T1T2T3

( 〈TZQ1Q2〉2
〈TZQ1P 〉〈TZQ2P 〉〈Q1Q2P 〉

)
, (6.1.35)

where we have included 〈Q1Q2P 〉 in the denominator since for this particular choice of QI
1

and QI
2 we have that 〈Q1Q2P 〉 = 1. The benefit of doing this is that the integrand becomes
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independent of both QI
1 and QI

2, as can be checked in an analogous manner as in the one-

dimensional case in the previous subsection. Our ability to freely choose QI
1 and QI

2 will

become important for us soon.

The key step towards obtaining a “master formula” in this case is to realize that the

integrand in Eq. (6.1.35) is precisely the volume of a simplex bounded by the planes defined

by TZI , QI
1, and QI

2. In the vertex object formalism we know how to write this volume as a

sum of contour integrals in dual twistor space. Namely,

〈TZQ1Q2〉2
〈TZQ1P 〉〈TZQ2P 〉〈Q1Q2P 〉

=

∮
γ1

DX

(P ·X)3
log
(TZ ·X
Q1 ·X

)
log
(Q2 ·X
K ·X

)
(6.1.36)

+

∮
γ2

DX

(P ·X)3
log
( Q2 ·X
TZ ·X

)
log
(Q1 ·X
K ·X

)
+

∮
γ3

DX

(P ·X)3
log
(Q1 ·X
Q2 ·X

)
log
(TZ ·X
K ·X

)
,

where we have introduced KI as a dummy twistor, and where γi is a contour going around

the two branch cuts of the logarithms in the the integrand, as discussed in more detail in

Chapter 5. We can now substitute this expression into Eq. (6.1.35) to find

A =

∫
d2φ

∮
DT

T1T2T3

[ ∮
γ1

DX

(P ·X)3
log
(TZ ·X
Q1 ·X

)
log
(Q2 ·X
K ·X

)
(6.1.37)

+

∮
γ2

DX

(P ·X)3
log
( Q2 ·X
TZ ·X

)
log
(Q1 ·X
K ·X

)
+

∮
γ3

DX

(P ·X)3
log
(Q1 ·X
Q2 ·X

)
log
(TZ ·X
K ·X

)]
.

Now, we claim that for the 3-point case, this is the master formula that we are looking

for. In particular, we can readily recover from it the Grassmannian integral by simply

rerunning the above steps in reverse. To recover the vertex object formalism, we again use

the global residue theorem, but with one small addition. Namely, the contour in the original

Grassmannian integral surrounds the poles 〈TZQ1P 〉 = 0 and 〈TZQ2P 〉 = 0. If we fix the

GL(1) redunancy by setting T3 = 1, we can say that T1 circles the first of these poles and
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T2 the second. However, in the original Grassmannian integrals, both T1 and T2 have poles

at infinity. In the one-dimensional case the pole at infinity was not a problem, but in higher

dimensions it complicates the use of the GRTs. Instead, we can simply get rid of these poles

by setting, for example, QI
1 = ZI

1 and QI
2 = ZI

2 . This is because the numerator factor

〈TZQ1Q2〉 = T1〈1Q1Q2〉+ T2〈2Q1Q2〉+ 〈3Q1Q2〉 (6.1.38)

simply becomes 〈123〉, and so there is no T1 or T2 dependence in the numerator, thus getting

rid of the poles at infinity. Therefore, with this choice of QI
1 and QI

2, the global residue

theorem tells us that we can trade the contour around 〈TZQ1P 〉 = 0 and 〈TZQ2P 〉 = 0 for

the contours around T1 = 0 and T2 = 0. We can therefore write Eq. (6.1.37) as (using our

choice of QI
1 and QI

2)

A =

∫
d2φ

∮
T1=0,T2=0

dT1dT2

T1T2

[
∮
γ1

DX

(P ·X)3
log
(T1(Z1 ·X) + T2(Z2 ·X) + (Z3 ·X)

Z1 ·X
)

log
(Z2 ·X
K ·X

)
(6.1.39)

+

∮
γ2

DX

(P ·X)3
log
( Z2 ·X
T1(Z1 ·X) + T2(Z2 ·X) + (Z3 ·X)

)
log
(Z1 ·X
K ·X

)
+

∮
γ3

DX

(P ·X)3
log
(Z1 ·X
Z2 ·X

)
log
(T1(Z1 ·X) + T2(Z2 ·X) + (Z3 ·X)

K ·X
)]
.

Evaluating the integrand at T1 = 0 and T2 = 0 then trivially gives

A =

∫
d2φ
[ ∮

γ1

DX

(P ·X)3
log
(Z3 ·X
Z1 ·X

)
log
(Z2 ·X
K ·X

)
(6.1.40)

+

∮
γ2

DX

(P ·X)3
log
(Z2 ·X
Z3 ·X

)
log
(Z1 ·X
K ·X

)
+

∮
γ3

DX

(P ·X)3
log
(Z1 ·X
Z2 ·X

)
log
(Z3 ·X
K ·X

)]
,

which we recognize as the way the vertex object formalism computes the volume [123], which

we know is the correct expression for this amplitude.
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We therefore see that Eq. (6.1.37) can reproduce both the Grassmannian and the vertex

object formalisms in the 3-point case. In order to do so in the n-point case, one follows a

similar procedure and simply needs to choose different QI
1 and QI

2 for each simplex in order

to easily apply the global residue theorem. Namely, at n-points the Grassmannian integral

gives a sum of simplices, each one being characterized by taking n − 3 of the Ti’s around

Ti = 0. From there, we can gauge fix the GL(1) redundancy by setting one of the remaining

Ti’s to 1, and we can recover the vertex object formalism by setting Q1I and Q2I to equal

the two twistors whose Ti’s have not been set to either 0 or 1.

It is therefore the case that a master formula exists in this two-dimensional case at n-

points, and we have checked that a similar formula can be found at n-points in any number of

dimensions (i.e., for (bosonic) supertwistors living in CPM for any M) via a similar process.

This therefore represents a step towards finding a formalism that preserves the benefits

of both Grassmannian and vertex object formalisms by combining them into one “master

formula” for the k = 1 case. Unfortunately such a framework for higher k has yet to be

found, but in the next subsection we discuss some steps that have been taken and a concrete

place at which we are stuck.

6.1.5 Attempt at Higher k

We quickly recall that our main goal is to find a formalism at higher k that perserves

whatever geometric content underlies the amplitudes. Since the vertex object formalism

does this manifestly for k = 1, our goal is to uncover an analogous formalism for higher k.

To do so, we will start with the Grassmannian formalism, which is known to produce the

correct amplitudes at higher k, at the expense of a direct geometric understanding. If the

Grassmannian formalism can be recast into a “master formula” as in the k = 1 case in the

previous subsection, then by integrating out the Grassmannian variables (via a GRT or any

other method), one can hope to land on a vertex object formalism. Unfortunately it is still

not known how this can be done, and in this subsection we will summarize how far we have
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gotten along these lines.

We first restrict our supertwistors to reside in CP1|2, so that the supertwistors have two

bosonic coordinates and two fermionic coordinates. This dimension with k = 2 gives the

first nontrivial example. In particular, for k = 2, we bosonify the supertwistors slightly

differently. We introduce two sets of dummy fermionic coordinates, φA1 and φA2 , (where

A = 1, 2). The bosonic supertwistors then have four homogenous coordinates given by

ZI
i = (z1

i , z
2
i , φ1 · ηi, φ2 · ηi). These bosonified supertwistors have four (bosonic) homogeneous

coordinates. This allows us to consider integrals over G(2, 4), which is the first nontrivial

Grassmannian.

For simplicity we will restrict ourselves to four points so that we have four supertwistors

ZI
i , i = 1, ..., 4. The Grassmannian integral we are concerned with is

A =

∮
DT

(1)(2)(3)(4)
δ1|2(T1Z

I)δ1|2(T2Z
I), (6.1.41)

where TiZ
I ≡ Ti1Z

I
1 + Ti2Z

I
2 + Ti3Z

I
3 + Ti4Z

I
4 , with i = 1, 2. In particular, the homogenous

coordinates on the G(2, 4) in which this integral is taking place form the matrix

T11 T21 T31 T41

T12 T22 T32 T42

 . (6.1.42)

The minors (i) in the denominator of the measure are simply the determinant of the sub-

matrix formed from the ith and (i+ 1)th columns of this matrix.

It is now a straightforward calculation, analogous to what we did in the k = 1 case in

the previous subsections, to show that

A =

∫
d2φ1d

2φ2

∮
DT

(1)(2)(3)(4)

( 〈T1ZT2ZQ1Q2〉2
〈T1ZQ1P1P2〉〈T1ZQ2P1P2〉〈T2ZQ1P1P2〉〈T2ZQ2P1P2〉

)
,

(6.1.43)

where we have introduced the twistors QI
1 = (1, 0, 0, 0), QI

2 = (0, 1, 0, 0), P I
1 = (0, 0, 1, 0),
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and P I
2 = (0, 0, 0, 1). Using a similar approach as we did in the k = 1 case, we can show that

this expression is independent of both QI
1 and QI

2. It turns out that the result of this integral

is

A =
〈1234〉2

〈12P1P2〉〈23P1P2〉〈34P1P2〉〈41P1P2〉
. (6.1.44)

In order to proceed, it is worthwhile to note the similarity of this integral with, say, that in

Eq (6.1.35.) In that equation, the result of the integral is

[123] =
〈123〉2

〈12P 〉〈23P 〉〈31P 〉 , (6.1.45)

which is of the same form as the Grassmannian integrand. Our approach there was to rewrite

the integrand as an integral in dual twistor space and then use the global residue theorem to

perform the Grassmannian integration in order to recover the vertex object formalism from

the master formula. In the current k = 2 case we find ourselves in a similar situation. We

have rewritten the Grassmannian integral Eq. (6.1.41) in a form where the integrand has

the same form as the answer.

Therefore, if we can find an integral representation for expressions like that Eq. (6.1.44)

in dual twistor space, then inserting this representation into the integrand of Eq. (6.1.43)

would give a “master formula” for the first nontrivial k = 2 example. This master formula

would allow one to recover the Grassmannian representation by simply carrying out the

inner integral, and the vertex object formulation (or more precisely whatever the vertex

object formalism would be in the k = 2 case, as it is still unknown) by using the global

residue theorem to perform the Grassmannian integration. Unfortunately such an integral

representation in dual twistor space for Eq. (6.1.44) is not currently known3. It is our hope

and our goal that such a representation can be found, in which case it is almost certain that

new geometric insights into these amplitudes and the entire amplituhedron construction will

3There is a representation given in Ref. [125], but it is not very conducive to generalization to even higher
k and we believe that a better (albeit related) representation should exist. Further investigation is still
needed.
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follow shortly thereafter.

6.2 Numerically Solving The Scattering Equations

In this section we make a departure away from the amplituhedron construction and instead

focus on the scattering equations and a method for computing their numerical solutions

quickly. The scattering equations play an interesting and important role in computing scat-

tering amplitudes with only massless particles [135–137]. In particular, one can use the

solutions to the scattering equations to compute tree amplitudes in various scalar, gauge,

and gravity theories, so long as these theories consist of only massless particles. We begin

by giving a very brief introduction to how this is done.

We assume we are scattering n massless particles, each with momentum vector kµi , i =

1, ..., n with k2
i = 0 and sij ≡ 2ki ·kj,. The scattering equations are defined to be the following

n equations, one for each i = 1, ..., n,

∑
j

sij
σi − σj

= 0. (6.2.1)

Here, the kinematic variables sij are given and fixed, and the σi are complex coordinates on

the Riemann sphere for which we are solving.

For n external particles, there are n equations in total, but due to the SL(2,R) invariance

of these equations there are only n − 3 independent equations. It is well known that there

are (n− 3)! independent solutions to these equations [135–137].

If one is able to find a full set of solutions Si = {σi1, ..., σin} for i = 1, ..., (n− 3)!, to the

scattering equations, then one can compute tree amplitudes in various theories by simply

computing the sum

Atree =

(n−3)!∑
i=1

J−1({σi})f({σi}), (6.2.2)

where J({σ}) is a universal Jacobian factor and f is a function of the σ’s which carries all of
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the theory-dependence of the amplitudes. Namely, the scattering equations themselves are

theory-independent, and recovering scalar, gauge, and/or gravity theory amplitudes from

Eq. (6.2.2) is simply a matter of choosing different functions f.

The details of how this is done will not be a concern for us here. We will instead focus on

the solutions to the scattering equations themselves. By convention, we choose σn−2, σn−1,

and σn to be fixed at 0, 1, and ∞, respectively, which we can do thanks to the SL(2,R)

symmetry of the scattering equations. The scattering equations can then be thought of as

finding the (n− 3)! extrema of the potential [138]

V ({σi}1≤i≤n−3) = −
∑

1≤i<j≤n−3

sij log(|σi − σj|)−
n−3∑
i=1

si(n−2) log |σi| −
n−3∑
i=1

si(n−1) log |1− σi|.

(6.2.3)

For given, numerical kinematics sij, this is a problem that Mathematica can handle up to 8 or

9 points in a reasonable amount of time on a laptop, and there have been recent developments

that use a statistical approach for speeding up this computation [140]. In particular, Ref.

[140] has obtained significant speed-up when specializing to four dimensions, where complete

sets of solutions up to 12 points in certain MHV sectors have been found. In this section

we will introduce a method that finds all (n− 3)! numerical solutions in general dimensions,

with a speed-up that can compute all solutions at 12 points in a half hour on a single laptop,

with little optimization, and in a highly parallelizable way.

In order to do this, we must first restrict ourselves to a subregion of kinematic space.

In particular, Cachazo, Mizera, and Zhang showed that if we restrict the variables sij for

1 ≤ i, j ≤ n − 3 as well as si(n−2) and si(n−1) for 1 ≤ i ≤ n − 3 to be positive, then the

solutions {σi} all lie on the real line [138]. Moreover, when we choose σn−2 = 0, σn−1 = 1,

and σn =∞, then the solutions all lie on the unit interval, i.e., {σi} ∈ [0, 1] for 1 ≤ i ≤ n−3.

The authors of Ref. [138] mention that they are able to use this restriction to find in-

dividual solutions to the scattering equations for up to 60 points. For the remainder of

this section we will discuss how this restriction of the kinematics can be used to solve the
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scattering equations in full. In other words, we will describe an algorithm for computing all

(n − 3)! solutions (as opposed to individual solutions) to the scattering equations with the

kinematics restricted to this positive subregion4.

6.2.1 Convexity of the Potential and Gradient Descent

The key realiziation in regards to solving these equations quickly and in full is the following.

By restricting the kinematic variables to this positive region and gauge-fixing the SL(2,R)

symmetry as discussed above, we are ensuring that all n− 3 of the remaining σ’s lie on the

unit interval, meaning that every solution is associated with an ordering of the remaining,

unfixed σ’s. There are n− 3 unfixed σ’s, and therefore (n− 3)! orderings of these variables.

Perhaps unsurprisingly, it turns out that the orderings are in one-to-one correspondence with

the solutions [138].

This is a useful realization when it comes to solving these equations numerically. To

see why, it is worthwhile to review a standard numerical optimization technique known as

gradient descent. This involves taking a function f(x1, ..., xm) of some number of variables

xi, and trying to find a minimum of it by repeatedly taking steps in the direction of the

negative gradient. Namely, we choose some (arbitrary) starting point x∗1, ..., x
∗
m, compute

the gradient of f at this point, and then update this starting point via the equation

xi,new = xi,old − α
∂f

∂xi
|xi,old , (6.2.4)

where α is an arbitrary small number known as the learning rate, which determines the size

of the step taken in the negative gradient direction. By iterating this process several times,

one arrives at a set of xi that minimize f. However, this will only find local minima—namely

the minimum which can be obtained from the arbitrary starting point by simply “flowing”

downhill. One approach to solving the scattering equations, then, is to keep picking new

4We note that this positive region of kinematic space is not the same as, but is related to, that discussed
in, for example, Ref. [139].
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starting points until (n−3)! distinct solutions have been found. This is slowed down greatly,

however, by the fact that it becomes more and more likely to flow to previously-found

solutions as the number of previously-found solutions increases.

All of this can be overcome if the function f enjoys a property known as convexity.

Convexity is defined, in essence, to mean that for any line segment in the domain of the

function, the average of the function at the two endpoints of the line segment is greater than

or equal to the value of the function at the midpoint of the line segment. In practice, what

this means is that a local minimum of a convex function will be a global minimum, which

in turn means that gradient descent can only flow to one unique minimum.

The main insight here is then the following. It turns out that for a fixed ordering of the

remaining n − 3 σ’s, the potential in Eq. (6.2.3) is convex [138]. For example, at 5 points,

where we have two remaining variables σ1 and σ2, the potential is convex on the region where

σ1 < σ2 as well as on the region σ2 < σ1. This means that if we take our starting values

of σ1 and σ2 in gradient descent to obey a particular ordering, then that ordering will be

preserved at each step and gradient descent will flow to the solution corresponding to that

ordering.

Indeed, we have implemented a simple Mathematica program that chooses the starting

position for the σ’s at evenly spaced intervals on the unit interval, one for each ordering

of the σ’s. We then let Mathematica find the local minimum for each ordering, and verify

afterwards that we have found (n− 3)! distinct solutions to the scattering equations. With

this approach, we have been able to find full solutions to the scattering equations up to 12

points in a half an hour on a single laptop.

Future work in this regard would involve optimization, possibly writing the code ourselves

in a compiled language like c++. We also note that even the Mathematica approach is highly

parallelizable, with each separate ordering being completely independent of the others, so

that one can easily obtain many factors of speed up from simple multi-threading.

This approach, combined with recent developments in regards to using homotopy theory
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to “flow” to an arbitrary solution given any other solution [141], appears to be a way forward

for computing full solutions to the scattering equations at very high numbers of external

points. This data would be valuable for numerical checks and tests of other procedures for

computing amplitudes, and may give insight into the analytic structure of these solutions,

of which little is currently known.
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