
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
New proofs of (new) Direct Product Theorems

Permalink
https://escholarship.org/uc/item/06x6r9kk

Author
Jaiswal, Ragesh

Publication Date
2008

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/06x6r9kk
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

New Proofs of (New) Direct Product Theorems

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science and Engineering

by

Ragesh Jaiswal

Committee in charge:

Professor Russell Impagliazzo, Chair
Professor Sam Buss
Professor Fan Chung Graham
Professor Nolan Wallach
Professor Sanjoy Dasgupta

2008

.

Copyright

Ragesh Jaiswal, 2008

All rights reserved.

The dissertation of Ragesh Jaiswal is approved, and it is

acceptable in quality and form for publication on micro-

film:

Chair

University of California, San Diego

2008

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

Acknowledgements . vii

Vita, Publications, and Fields of Study viii

Abstract . ix

I Introduction . 1
A. Applications of Direct Product Theorems 2

1. Average-case Complexity . 2
2. Cryptography . 3
3. Derandomization . 4
4. Error-correcting Codes . 6

B. A Direct Product Theorem . 8
1. Relationship with XOR Lemma 11

C. Direct Product Theorems: A History 14
1. Levin-style Argument . 15
2. Impagliazzo’s Hard-core Set Argument 17
3. Trust Halving Strategy . 18

II Direct Product Theorems: A Coding Theoretic Perspective 22
A. Introduction . 22

1. Uniform versus Nonuniform Computation 23
B. Why Direct Product Theorems Fail in a purely Uniform Setting? . . 25
C. Direct Product Codes . 27

1. List Decoding Direct Product Codes 28
D. Uniform Direct Product Theorems 34
E. XOR Codes . 35

1. List-decoding XOR Codes . 36
F. Summary of List-decoding Bounds 43

III Uniform Direct Product Theorems . 44
A. Introduction . 44

1. Statement of the Uniform Direct-Product theorem 46
2. Generalized direct-product encoding: intersection codes 48
3. Concatenated codes and hardness condensing 50
4. Relation to previous work . 53

B. Preliminaries . 56
1. Concentration bounds . 56

iv

2. Pairwise independence of subspaces 56
3. Graphs . 57

C. Decoding intersection codes . 63
1. Why CA,v works . 65
2. Choosing an excellent edge (A,B) 68

D. Extensions . 71
1. Approximate version of the Uniform Direct-Product Theorem . . 71
2. Derandomized Direct-Product Theorems 73
3. Hardness condensing . 75

E. k-XOR code . 77
F. Conclusions . 83

IV Uniform Hardness Amplification . 85
A. Introduction . 85
B. Uniform hardness amplification in PNP‖ 88

V Chernoff-type Direct Product Theorems 93
A. Introduction . 93
B. A Simple Chernoff-type Direct Product Theorem for Boolean Functions 94
C. Cryptographic Setting . 96

1. Challenge Response Protocols . 97
2. A Cryptographic Scenario where Direct Product Theorem Fails . 98

D. Chernoff-type Direct Product Theorem for Weakly Verifiable Puzzles 100
1. Example: CAPTCHA . 101
2. Weakly verifiable puzzles: Definition and examples 102
3. Our main result . 105
4. Related work . 106
5. Our techniques . 108

E. Preliminaries . 110
1. Basics: Hoeffding bound . 110
2. Samplers . 110

F. Proof of the Main Theorem . 116
1. Proof under simplifying assumptions 116
2. Proof without simplifying assumptions 119

G. Open problems . 123

VI Applications of Direct Product Theorems in Cryptography 125
A. Introduction . 125
B. Security Amplification for Cryptographic Primitives 126

1. Message Authentication Codes (MACs) 126
2. Digital Signatures (DSs) . 139
3. Pseudorandom Generators (PRGs) 142
4. Pseudorandom Functions (PRFs) 145

v

VII Conclusions and Open Problems . 149

Bibliography . 151

vi

ACKNOWLEDGEMENTS

I am greatly indebted to my advisor, Russell Impagliazzo, for his patient

and careful guidance. His immense clarity, deep intuition, breadth of knowledge

and creative thinking has influenced me a lot.

I am indebted to Russell Impagliazzo, Valentine Kabanets and Avi Wigder-

son for their collaboration, and insights which has helped to shape my research

work.

I am thankful to the Theory group at UC San Diego. I have learned

a lot from the conversations with my fellow graduate students, including Kirill

Levchenko, Yi-Kai Liu, Vadim Lyubashevsky, Chris Calabro, and Sashka Davis. I

am also thankful to the Indian group at UCSD for making my stay a fun experience.

Last but not the least, I am indebted to my family for their unquestioning

and unwavering support for all my pursuits.

Chapter II is, in part, based on the paper “Approximately List-decoding

Direct Product Codes and Uniform Hardness Amplication” co-authored with Rus-

sell Impagliazzo and Valentine Kabanets. In Proceedings of the Forty-Seventh

Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages

187–196, 2006.

A summary of the results in Chapter III appeared in the paper “Uniform

Direct Product Theorems: Simplified, Optimized, and Derandomized” co-authored

with Russell Impagliazzo, Valentine Kabanets and Avi Wigderson. In Proceedings

of the Fortieth Annual ACM Symposium on Theory of Computing (STOC’08),

pages 579–588, 2008.

Chapter V is, in part, based on the paper “Chernoff-type Direct Prod-

uct Theorems” co-authored with Russell Impagliazzo and Valentine Kabanets. In

Advances in Cryptology - CRYPTO 2007, Twenty-Seventh Annual International

Cryptology Conference, pages 500–516, 2007.

vii

VITA

1980 Born, Jamshedpur, India

2003 B.Tech., Indian Institute of Technology Kanpur, India

2005 M.S., University of California San Diego, USA

2003–2008 Research Assistant, Department of Computer Science
and Engineering, University of California San Diego,
USA

2008 PhD., University of California San Diego, USA

PUBLICATIONS

Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets. “Approximately
List-decoding Direct Product Codes and Uniform Hardness Amplication”. In Pro-
ceedings of the Forty-Seventh Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’06), pages 187–196, 2006.

Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets. “Chernoff-type
direct product theorems”. In Advances in Cryptology - CRYPTO 2007, Twenty-
Seventh Annual International Cryptology Conference, pages 500–516, 2007.

Russell Impagliazzol, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson.
“Uniform direct-product theorems: Simplied, optimized, and derandomized”. In
Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing
(STOC’08), pages 579–588, 2008.

FIELDS OF STUDY

Major Field: Computer Science
Studies in Theoretical Computer Science.
Professors Russell Impagliazzo

viii

ABSTRACT OF THE DISSERTATION

New Proofs of (New) Direct Product Theorems

by

Ragesh Jaiswal

Doctor of Philosophy in Computer Science and Engineering

University of California, San Diego, 2008

Professor Russell Impagliazzo, Chair

In this Dissertation we give an alternate proof of the well known Direct

Product Theorem which in contrast to the previous proofs, achieves optimal values

for the related parameters. We also obtain a stronger version of the Direct Product

Theorem which is motivated by some interesting applications in Cryptography.

Direct Product Theorems are formal statements of the intuition: “if solv-

ing one instance of a problem is hard, then solving multiple instances is even

harder”. For example, a Direct Product Theorem with respect to bounded size

circuits computing a function is a statement of the form: “if a function f is hard

to compute on average for small size circuits, then fk(x1, ..., xk)
def
= f(x1), ..., f(xk)

is even harder on average for certain smaller size circuits”. The proof of the such

a statement is by contradiction, that is, we start with a circuit which computes fk

on some non-negligible fraction of the inputs and then use this circuit to construct

another circuit which computes f on almost all inputs. By viewing such a construc-

tive proof as decoding certain error-correcting code, it was independently observed

by Trevisan [Tre03] and Impagliazzo [Imp02] that constructing a single circuit is

not possible in general. Instead, we can only hope to construct a list of circuits

such that one of them computes f on almost all inputs. This makes the list size

an important parameter of the Theorem which can be minimized. In a sequence

of results [IJK06] and [IJKW08], we achieve optimal value of the list size which

ix

is a substantial improvement compared to previous proofs of the Theorem. In

particular, this new version can be applied to uniform models of computation (e.g.

randomized algorithms) whereas all previous versions applied only to nonuniform

models (e.g. circuits). This proof is presented in Chapter III.

Consider the following stronger and a more general version of the previous

Direct Product Theorem statement: “if a problem is hard to solve on average,

then solving more than the expected fraction of problem instances from a pool of

multiple independently chosen instances becomes even harder”. Such statements

are useful in cryptographic settings where the goal is to amplify the gap between

the ability of legitimate users to solve a type of problem and that of attackers. We

call such statements “Chernoff-type Direct Product Theorems” and prove such a

statement for a very general setting in [IJK07]. This is presented in Chapter V.

x

I

Introduction

Direct product theorems are formal statements of the intuition:

If a problem is hard to solve on the average, then solving multiple instances of the

problem is even harder.

In order to make the above informal statement more precise, we will need

to define what the problem is, the entity solving the problem, and what do we

mean by hard on average? The problem could be as simply defined as computing

some function or could involve a more complex setting where the goal is to generate

an attack for certain cryptographic protocol. The entity solving the problem could

be a bounded size circuit or an algorithm with bounded running time. Finally, a

problem is hard on average if a bounded resource solver fails to solve the problem

on some noticeably large number of instances of the problem. For the initial part of

this Dissertation, we will consider the problem of computing functions by bounded

size circuits and algorithms with bounded running time.

Before we start analyzing more formal statements of the direct product

theorem, we begin by looking at some of the places where such statements are

useful. First, we take a look at the general organization of this Dissertation.

Organization of this Dissertation In the remainder of this chapter, we will

discuss application areas of direct product theorems and some proof techniques.

1

2

In Chapter II, we look at a coding theoretic view of the direct product theorem

and establish bounds for the parameters involved in the theorem. In Chapter III

we give our new proof of the theorem which achieves optimal bounds which were

established in Chapter II. In Chapter IV, we discuss an applications of such

uniform version of direct product theorems. Chapter V discusses a stronger and

more general version of the theorem which we call “Chernoff-type Direct Product

Theorem”. Finally, in Chapter VI we discuss some interesting applications of direct

product theorems.

I.A Applications of Direct Product Theorems

I.A.1 Average-case Complexity

In the 1970s, a significant amount of progress was made in showing that

a large number of naturally occurring problems belong to a special class called

NP. For example, a very important problem within NP is satisfiability. Here an

instance of the problem is a formula ψ(x1, ..., xn) over boolean variables x1, ..., xn

and the goal is to tell whether there is an assignment to these variable which makes

ψ true. Some problems in the class NP are believed to be hard for polynomial time

algorithms in the worst case. This essentially means that no algorithm would be

able to solve a problem in the class NP on all instances, where the algorithm is only

allowed time which is some polynomial in the size of the instance. This is basically

the P versus NP question which is one of the most important open problems in

Theoretical Computer Science.

Even if a problem is hard in the worst case, it might be easy to solve on

“typical” instances, or in other words on instances that occur naturally for that

problem. This suggests that a better notion for studying hardness of problems

would be to evaluate the behavior of efficient algorithms against problem instances

which are themselves generated efficiently. This leads to a structural theory of

Average-case complexity of problems, the foundation of which was laid by Levin

3

[Lev86]. Much work was been done building on this foundation. One important

question that arises in Average-case complexity is that of Hardness Amplification.

Here we are interested in how the degrees of average-case hardness of problems

within a certain complexity class, say NP, are related. More specifically, say we

have a problem within NP which is “mildly” hard on the average for efficient

algorithms, then does this imply that there is another problem within NP which is

very hard on average for efficient algorithms? Note the similarity of the previous

statement with the direct product theorem statement. Indeed, direct product

theorems play a very crucial role in addressing such questions. We will see this

formal connection when we study Uniform Hardness Amplification in Chapter IV

of this Dissertation.

We encourage the readers to look at [Imp95b, BT06] for some some ex-

cellent survey on average-case complexity.

I.A.2 Cryptography

Cryptography is built upon problems which are believed to be hard on

the average, or in other words, are intractable on most instances. More specifically,

most of the Cryptographic Primitives 1 are based on the assumption that one-way

functions exists. These are functions which are hard to invert on the average. This

essentially means that for most inputs x, given f(x), it is hard to compute any

element of f−1(f(x)). So, the parameter of interest is the fraction of inputs for

which a function cannot be inverted by efficient algorithms. Given this, a natural

question to ask is whether there is a generic method to amplify this parameter.

That is, if there is a one-way function which is “weak” in the sense that it is

hard to invert the function for some non-negligible number of inputs, then does

that imply that there is a “strong” one-way function (hard to invert on almost all

inputs)? Moreover, is there a generic way to construct a strong one-way function

from weak ones? Once again note the similarity of the previous statement to the

1these are very basic components used to accomplish various Cryptographic tasks.

4

statement of the direct product theorem. Indeed, weak one-way functions implies

strong ones [Gol01, Yao82] and the proof arguments essentially involves proving a

direct product theorem.

Direct product theorems have more direct applications in Cryptography.

Consider the following examples of cryptographic challenges:

1. Two-round protocol involving puzzles: Consider a simple two-round, two-

party protocol involving a prover and a verifier. The verifier sends a randomly

generated puzzle as a challenge to the verifier. The verifier needs to solve

this puzzle in order to get accepted. An example is the CPATCHA protocol

where the prover is trying to convince the verifier that it is a human user

by answering randomly generated CAPTCHA puzzles. These puzzles are

usually based on some hard artificial intelligence problem like determining a

distorted text.

2. Digital Signatures (DS) and Message Authentication Codes (MAC): The chal-

lenge for the adversary is to generate a DS/MAC for any message after ob-

taining DSs/MACs for a few messages. The adversary is said to succeed if it

is able to generate a correct DS/MAC for many secret keys.

The harder it is for an adversary to meet these challenges the stronger

the cryptographic protocol is. So an important question for such cryptographic

challenges is whether we can amplify the difficulty of an adversary by asking it to

solve multiple challenges in parallel instead of a single challenge. In many cases, it

can be shown that parallel repetition of a cryptographic protocol indeed achieves

this property. The main work involved is formulating and proving a direct product

theorem. We will see such results in Chapter V of this Dissertation.

I.A.3 Derandomization

Randomness is a very useful paradigm in algorithm design. In the past, it

has been used to construct efficient algorithms for problems for which no efficient

5

deterministic (not using any randomness) algorithm was known. On the other

hand, there have been a number of instances where such problems have later been

derandomized. This essentially means that an efficient deterministic algorithm was

found for the problem. One classical example is the derandomization of the Primal-

ity Test2 due to Agrawal, Kayal, and Saxena [AKS04]. This raises a fundamental

question “is randomness useful as far as computational efficiency is concerened?”.

One way to address this question, when aiming for a negative answer, is to try to

construct a universal procedure that can be used to derandomize any probabilistic

computation.

A randomized algorithm is different from a deterministic algorithm in

that it takes as input a random string in addition to the input. A natural way to

derandomize any probabilistic computation is to try out all random strings, but

then it no longer remains efficient. This is because the size of the random input is

allowed to be proportional to the size of the input. Pseudorandom generators which

have been studied in Cryptographic settings are known to stretch a small truly

random string, called seed, to a longer random “looking” string. This essentially

means that no efficient algorithm would be able to tell apart a truly random

string from the output of the pseudorandom generator. Given an appropriate

pseudorandom generator we can give the output of this pseudorandom generator

(instead of truly random string) to the probabilistic algorithm and then try out all

possible random seeds. The hope is that the number of distinct random seeds are

small enough to keep the computation efficient. Unfortunately, as in Cryptography

where the existence of a pseudorandom generator is based on the existence of

one-way functions, the pseudorandom generator required in this setting is also

conditional. The existence of a generator required for derandomization is based

on the average-case hardness of the complexity class EXP (problems which can be

solved in deterministic time 2poly(n)). [NW94] used the above sequence of arguments

to show, in some sense, that average-case hardness can be traded for randomness.

2here the problem is to check whether a given number of prime.

6

There was further interest in obtaining a similar tradeoff starting from a worst-

case assumption. This was achieved by [BFNW93] which showed a worst-case to

average-case reduction for the class EXP. This essentially means that an instance

of any problem in EXP can be solved by solving randomly chosen instances. Note

that this also means that if a problem in EXP is hard in the worst-case then it is also

hard in the average-case. The worst-case to average-case reduction in [BFNW93],

however, gave a function which was only mildly hard on the average. XOR Lemma,

which is closely related to the direct product theorem, was used to amplify the

average-case hardness but the parameters fell short of the requirements of the

[NW94] construction and only partial derandomization was obtained. Finally,

[IW97] overcame this by giving a derandomized version of the XOR Lemma. In

Section I.B.1 we will show how the XOR Lemma, which plays an important part

in the above derandomization results, is related to the direct product theorem.

A lot of progress in derandomization has been made more recently. In-

terested readers are encouraged to look at [Kab02] and [Imp02] for nice surveys on

this topic.

I.A.4 Error-correcting Codes

An Error-correcting code is a mapping C : Σm → Σn (Σ is a finite set

called the alphabet for the code) such that given a string which is sufficiently close

to the encoding of a message, it is possible to output this message. The minimum

distance (number of places where two strings disagree) between the encoding of

two messages is called the distance of the code C. A necessary and sufficient

condition for the above decoding property to hold is that this distance is not too

small. In addition to the distance being large, we would ideally like to keep the

length of the codeword small. So, the rate of the code which is defined to be

the ratio m/n is another important parameter of the encoding which we would

like to minimize. Efficiency of decoding is also an important issue that should

be addressed. Error-correcting codes have numerous applications ranging from

7

practical areas like Communications and Data Storage to theoretical areas like

Average-case complexity and Derandomization.

One simple but very useful coding construction is the Hadamard code.

Here the alphabet is binary, that is, Σ = {0, 1}. Given a message x ∈ {0, 1}m of size

m its codeword C(x) is of size n = 2m. Suppose we index the codeword by a string

r ∈ {0, 1}m, then the bit of codeword indexed by r is given by C(x)[r] = 〈x, r〉,

where 〈., .〉 denotes the inner product of two binary strings. Note that this code

has a very large distance n/2 but an extremely poor rate m/2m. Let us try to

improve the rate by changing the code slightly. Let the codeword of size
(
m
k

)
, be

indexed by string r ∈ {0, 1}m such that hamming weight3 of r is exactly k. Then

the bit of the codeword indexed by a string r ∈ {0, 1}m of hamming weight k is

given by C(x)[r] = 〈x, r〉. This is known as the k-truncated hadamard code. Note

that this code has poor distance property since any two messages that are close

to each other will have almost the same encodings. On the other hand the rate of

the code is large compared to the hadamard code.

From the point of view of this Dissertation, this code is interesting be-

cause of its close connection with the direct product theorem. Given a mes-

sage x ∈ {0, 1}m we can interpret this message as the truth table of a func-

tion f : [m] → {0, 1} such that ∀i ∈ [1...m], f(i) = x[i]. In that case the bit

of the codeword indexed by r ∈ {0, 1}m with hamming weight k is nothing but

C(x)[r] = f⊕k(i1, ..., ik)
def
= f(i1)⊕f(i1) . . .⊕f(ik), where i1, ..., ik are the k indices

where r has a non-zero value. If we can show that average-case hardness of f

implies stronger average-case hardness of f⊕k then this could give us a decoding

algorithm for the k-truncated hadamard code. This is because the average-case

hardness amplification proof is usually by contradiction. That is, we start with the

assumption that we know the correct value of f⊕k on some non-negligible fraction

of inputs and then try to compute f on most inputs. So, basically given a corrupted

codeword we have a procedure that reconstructs the message approximately. As

3number of 1’s in the string

8

we will see in the next section, the proof of the above hardness amplification goes

through a direct product theorem.

We will discuss these codes and their connection with the direct product

theorem in detail in the next Chapter.

I.B A Direct Product Theorem

In order to initiate the discussion and begin formal analysis, we look at

a direct product theorem in this section. Even though this is the simplest of the

direct product theorems that we will study in this Dissertation, the analysis will

bring out most of the underlying concepts, techniques, and issues. We consider

hardness of boolean functions against boolean circuits. We will need the following

definitions.

Definition I.B.1 (Circuit). A Circuit C with n inputs and m outputs is a directed

acyclic graph. It has n inputs nodes with no incoming edges and m output nodes

with no outgoing edges. All the other nodes are called boolean gates and are

labeled ∨, ∧, and ¬ (denoting a boolean OR, AND, and negation). The nodes

labeled ∨ and ∧ have two incoming nodes and nodes labeled ¬ have only one

incoming edge. The size of the circuit, which is denoted by |C|, is total number of

nodes in this directed acyclic graph.

A Boolean Circuit is a circuit with a single output.

The boolean circuit defined above implements a boolean function. For

a boolean function f : {0, 1}n → {0, 1}, we say that a circuit C computes this

function if ∀x ∈ {0, 1}n, C(x) = f(x). Note that any such function f can be

computed by a large circuit of size O(n2n) 4 . A natural question to ask is whether

any such function can also be computed by circuits of smaller size, say circuits of

size poly(n) for some polynomial poly. The answer turns out to be negative by the

4This can easily be seen by expressing f as a boolean formula in conjunctive normal form and then
constructing the circuit which implements this boolean formula.

9

following simple counting argument due to [RS42]: there could be at most 23S logS

different circuits5 with S gates, whereas there are 22n different boolean functions.

This means that there are lots of boolean functions which are not computable by

any boolean circuit with size as large as 2n/(30n). Which means that there are

functions which cannot be computed by a boolean circuits of any (fixed) polynomial

size. Note that this simple argument gives us our first unconditional hardness

result. This however is a worst-case hardness result for boolean functions against

bounded size boolean circuits. The next natural question to ask is whether we can

get a stronger, average-case hardness result. For instance consider the following

stronger statement: is there a boolean function such that no polynomial size circuit

is able to compute the function on most inputs. In other words, any polynomial

size circuit C disagrees with this function on non-negligible, say constant fraction

of inputs. We again use counting arguments to show that there are functions which

are hard on the average for polynomial size circuits. Let us first formally define

average-case hardness of boolean functions.

Definition I.B.2 (Average-case hardness of boolean functions). Let f : {0, 1}n →

{0, 1} be a boolean function, 0 < δ ≤ 1, and s ∈ N. f is said to be δ-hard for

circuits of size s if for any circuit C of size at most s we have

Prx∈{0,1}n [f(x) = C(x)] < (1− δ)

We will need the following definitions and lemma to show an uncondi-

tional average-case hardness result.

Definition I.B.3 (Hamming Distance). Let N ∈ N. The hamming distance

between any two string x, y ∈ {0, 1}N which is denoted by ∆(x, y) is defined as

∆(x, y) = |{i : x[i] 6= y[i], i ∈ {1...N}}|

Definition I.B.4 (Volume of a Hamming Ball). Let N ∈ N. Given a binary string

c ∈ {0, 1}N , a hamming ball of radius r ∈ {1, ..., N} centered at s is defined to be

5each gate accepts at most 2 inputs and 1 output and there are S gates which means there could be
at most (S3)S possible acyclic graphs denoting the circuit

10

the subset of string S ⊆ {0, 1}N such that ∀x ∈ S,∆(x, c) ≤ r. The Volume of

such a hamming ball, denoted by V (c, r) is the size of the set S.

Next, we state the following well known Lemma without proof.

Lemma I.B.5 (Folklore). Let N ∈ N and 0 < δ ≤ 1/2 is some constant. For any

c ∈ {0, 1}N , V (c, δN) ≤ 2H(δ)N , where H(δ) = (1− δ) log 1/(1− δ) + δ log 1/δ.

The following Theorem uses counting argument to show that there exists

functions which are hard on average for polynomial size circuits.

Theorem I.B.6. Let n ∈ N. There exists a boolean function f : {0, 1}n → {0, 1}

such that f is (1/4)-hard for circuits of size 2n/(30n).

Proof. Let N = 2n. Let F be the set of functions mapping n bits to a single bit.

Then |F | = 22n = 2N . Let S ⊆ F be the subset of these functions which are

computed by circuits of size 2n/(30n). Then we know that |S| is at most 22n/10.

For any function f ∈ F , let T (f) denote the truth table of f . For any s ∈ S,

consider a hamming ball of radius N/4 around T (s). The hamming ball contains

all T (f) such that s computes f on at least 3/4 fraction of inputs. Since |S| is at

most 22n/10 and the volume of a hamming ball (from previous Lemma) is at most

20.85N , the number of functions which are computable on at least 3/4 fraction of

inputs by at least one of the functions ∈ S is at most 20.95N . This implies that

there is a function f such that f is (1/4)-hard for circuits of size 2n/(30n).

Corollary I.B.7. Let n ∈ N. There exists a boolean function f : {0, 1}n → {0, 1}

such that f is (1/4)-hard for circuits of size poly(n) for any polynomial poly and

all sufficiently large values of n.

Finally, we state the direct product theorem with respect to boolean

function against bounded size circuits.

Theorem I.B.8. Let n, k, s ∈ N, 0 < δ ≤ 1, and f : {0, 1}n → {0, 1} be a boolean

function. Define fk : {0, 1}nk → {0, 1}k as fk(x1, ..., xk)
def
= f(x1).f(x2)...f(xk).

11

If f is δ-hard for circuits of size s, then fk is (1 − ε)-hard for circuits of size s′,

where δ = Θ
(

log 1/ε
k

)
and s′ = s · poly(δ, ε, 1/k, 1/n) for some polynomial poly.

A number of proofs of the above theorem can be found in the literature.

We will discuss them in Section I.C. Let us try to see the intuition behind the

above Theorem. Consider a biased coin which gives 1 with probability (1−δ) and 0

with probability δ whenever it is tossed. The coin toss turning 1 can be associated

to the function being computable on a randomly chosen input and similarly for

the coin toss turning 0. Then the probability that k independent coin tosses all

turning 1 is (1 − δ)k. So, intuitively the probability that a circuit simultaneously

computes the function on k randomly chosen inputs should also be proportional

to (1 − δ)k. Even though this fact is true, the argument is not so simple. The

flaw in the argument using the coin toss analogy is that a circuit computing fk

is not constrained to compute different instances of the function independently.

We have to account for any other strategy that the circuit might possibly employ

to compute fk. This motivates proof by contradiction where we start with the

assumption that there is a circuit which computes fk with probability at least

(1− δ)k and then use it to construct a circuit which computes f with probability

at least (1− δ). We defer this discussion until Section I.C.

In the next subsection we take a look at the XOR Lemma which came up

earlier in our discussion and which has applications in Cryptography and Error-

correcting codes. Here we will see how the XOR Lemma follows from the direct

product theorem and vice versa.

I.B.1 Relationship with XOR Lemma

Following is the classical XOR Lemma.

Theorem I.B.9 (XOR Lemma). Let n, k, s ∈ N, 0 < δ ≤ 1, and f : {0, 1}n →

{0, 1} be a boolean function. Define f⊕k : {0, 1}nk → {0, 1} as f⊕k(x1, ..., xk)
def
=

f(x1)⊕f(x2)⊕ ...⊕f(xk). If f is δ-hard for circuits of size s, then f⊕k is (1/2−ε)-

12

hard for circuits of size s′, where δ = Θ
(

log (1/ε)
k

)
and s′ = s · poly(ε, δ, 1/k, 1/n)

for some polynomial poly.

The proof of the above XOR Lemma follows from the direct product

theorem I.B.8. The proof requires the following theorem due to Goldreich and

Levin.

Theorem I.B.10 ([GL89]). Let x ∈ {0, 1}n be any string, s′ ∈ N and let C ′ be

a boolean circuit on n variables of size s′ such that Prr∈{0,1}n [C ′(r) = 〈x, r〉] ≥

1/2 + γ, for some γ > 0. Then, there is a randomized circuit6 C of size s =

s′ · poly(n, 1/γ) such that C outputs the string x with probability at least Ω(γ2).

Proof of Theorem I.B.9 using Theorem I.B.8. For the sake of contradiction, as-

sume that there is a circuit C such that C computes f⊕k with probability at

least 1/2+ε. We will show a construction of a circuit which computes the function

f with probability at least (1− δ).

Consider the function F : {0, 1}2nk×{0, 1}2k → {0, 1} defined as follows:

For x1, . . . , x2k ∈ {0, 1}n and r ∈ {0, 1}2k,

F (x1, . . . , x2k, r) = 〈f(x1) . . . f(x2k), r〉.

Note that conditioned on r ∈ {0, 1}2k having exactly k 1s, the function

F (x1, . . . , x2k, r) is distributed exactly like the function f⊕k(x1, . . . , xk), for uni-

formly and independently chosen xis.

Consider the following circuit for computing F . Given an input

x1, . . . , x2k, r, count the number of 1s in the string r. If it is not equal to k, then

output a random coin flip and halt. Otherwise, simulate the circuit C on the

sub-tuple of x1, . . . , x2k of size k which is obtained by restricting x1, . . . , x2k to the

positions in r that are 1, and output the answer of C.

Let p be the probability that a random 2k-bit string contains exactly k

1s. It is easy to see that the described circuit for computing F is correct with

6a randomized circuit is a circuit that also takes as input a random string.

13

probability at least (1− p)/2 + p(1/2 + ε) = 1/2 + pε. Since p ≥ Ω(1/
√
k), we get

that our circuit for F is correct with probability at least 1/2+ε′, for ε′ = Ω(ε/
√
k).

By a Markov-style argument7, we have that for each of at least ε′′ = ε′/2

of the 2k-tuples x1, . . . , x2k, our circuit computes F (x1, . . . , x2k, r) for at least

1/2 + ε′′ fraction of rs. Using the Goldreich-Levin circuit of Theorem VI.B.22, we

get a randomized circuit that computes f 2k(x1, . . . , x2k) with probability at least

ε′′′ = Ω(ε′′3), where the probability is both over the input 2k-tuples x1, . . . , x2k

and the internal randomness of our randomized algorithm. By averaging, ran-

domly fixing the internal randomness of the algorithm yields, with probability at

least ε′′′/2, a deterministic circuit (ε′′′/2)-computing the direct product function

f 2k(x1, . . . , x2k). Finally, applying Theorem I.B.8 to this direct product circuit

yields, with probability poly(ε), a circuit computing f on at least 1− δ fraction of

inputs of f , as required.

We proved the XOR Lemma using the direct product theorem. We can

also prove the direct product theorem using the XOR Lemma thus showing that

both these hardness amplification results are essentially saying the same thing.

Theorem I.B.11 (XOR Lemma implies Direct Product Theorem). Let n, k, s ∈

N, ε ≥ 4 · e−k/4, and f : {0, 1}n → {0, 1} be a boolean function. If ∀k′ ∈

[k/4, 7k/4], f⊕k
′

is (1/2 − ε/4)-hard for circuits of size s, then f 2k is ε-hard for

circuits of size s′ = s.

Proof. For the sake of contradiction, assume that there is a circuit C of size at most

s′ such that Pr(x1,...,x2k)[C(x1, ..., x2k) = fk(x1, ..., x2k)] ≥ ε. Consider the following

circuit which attempts to compute 〈f 2k(.), r〉 for a randomly chosen r ∈ {0, 1}2k:

C ′: “Given an input ((x1, ..., x2k), r), where r ∈ {0, 1}2k output
〈C(x1, ..., x2k), r〉”

We have:

Pr(x1,...,x2k),r[C
′((x1, ..., x2k), r) = 〈f 2k(x1, ..., x2k), r〉] ≥ 1/2 + ε/2 (I.1)

7for random variables X,Y , event E(X,Y) and for every α ∈ [0, 1], if PrX,Y [E(X,Y)] ≥ α, then
PrX [PrY [E(X,Y)] ≥ α/2] ≥ α/2

14

The probability that the number of 1’s in a random 2k-bit string is not in the

range [k/4, 7k/4] is at most e−k/4 from Chernoff bounds. This is at most ε/4 from

the assumed bound on ε. Combining this fact with equation I.1 we get that there

exists a k′ ∈ [k/4, 7k/4] such that

Pr(x1,...,x2k),r,|r|=k′ [C
′((x1, ..., x2k), r) = 〈f 2k(x1, ..., x2k), r〉] ≥ 1/2 + ε/4

This implies that the following circuit computes the function f⊕k
′

with probability

at least 1/2 + ε/4

C ′′: On input (x1, ..., xk′), construct an input (y1, ..., y2k) by choosing
2k − k′ inputs randomly and randomly arranging the chosen inputs
and the given inputs. Finally, C ′′ evaluates C(y1, ..., y2k) and outputs
the xor of bits at position where the given inputs are placed within
y1, ..., y2k.

I.C Direct Product Theorems: A History

A seminal paper by Yao [Yao82] introduced a number of ideas in Com-

plexity Theory. One of them was Hardness Amplification which is the general idea

that multiple instances of a problem is harder to solve than a single instance. More

specifically, a version of the XOR Lemma I.B.9 was informally introduced without

a formal proof. The first formal proof of the XOR Lemma was given by Levin in

[Lev87]. Due to its applicability in areas of Complexity Theory and Cryptogra-

phy various other proofs of the XOR Lemma and the direct product theorem were

given. Each proof engineered for a different application. The formal connection

between the direct product theorem and the XOR Lemma, using the Goldreich-

Levin result was given in a very nice survey [GNW95] on the topic by Goldreich,

Nisan, and Wigderson. Next, we look at the three main styles of proof arguments

that have been used for proving the direct product theorem. We do not give a

formal proofs though.

15

I.C.1 Levin-style Argument

Levin [Lev87] gave the first proof of the XOR Lemma which was later

expanded on in a survey work [GNW95] on this topic. The presentation in this

subsection follows the presentation in [GNW95].

Here we will sketch the proof of the direct product theorem for the special

case of k = 2. This will be sufficient to give the intuition of the main ideas involved

in the proof. Informally, we will show that if an arbitrary function f : {0, 1}n → R

(R is the range of the function) is δ-hard for circuits of size s, then the function

defined as f 2(x1, x2)
def
= f(x1).f(x2) is (1 − (1 − δ)2 − ε)-hard for circuits of size

s · ε2
n

. The arguments can be extended for arbitrary k using induction. Note that

this proof argument works for arbitrary functions and is not restricted to boolean

functions.

The proof, as is the case with direct product theorems, is by contradiction.

So, let us assume that there is a circuit C such that computes f 2 with probability

at least (1 − δ)2 + ε. Let X, Y denote independent random variables uniformly

distributed over {0, 1}n. Then we have

Pr[C(X, Y) = f 2(X, Y)] = Pr[C(X, Y) = f(X).f(Y)]

≥ (1− δ)2 + ε. (I.2)

We will show that we can use this circuit to either construct a circuit C ′ which

computes f well in average. Let us write the success probability of C as

Pr[C(X, Y) = f(X).f(Y)] = Pr[C(X, Y)[2] = f(Y)]

·Pr[C(X, Y)[1] = f(X)|C(X, Y)[2] = f(Y)]

where C(X, Y)[i], i ∈ {1, 2} denotes the output of C corresponding to the ith

instance of the function. Next, we need to consider the following two cases:

1. In the case Pr[C(x, Y)[2] = f(Y)] > (1 − δ) for any fixed x ∈ {0, 1}n, then

we can construct the following circuit C ′ for computing f :

16

“Given an input y ∈ {0, 1}n, output C(x, y)[2].”

Note that Pr[C ′(Y) = f(Y)] > (1− δ).

2. In case Pr[C(X, Y)[1] = f(X)|C(X, Y)[2] = f(Y)] > (1 − δ) + ε, we can

construct the following circuit C2: Suppose we are given a set S of random

samples of the function f , that is, S contains pairs of the form (y, f(y)) for

random y ∈ {0, 1}n. Then consider the following circuit C ′ for computing f :

“Given an input x, let SC denote the subset of samples in S such
that for any (y, f(y)) ∈ SC , C(x, y)[2] = f(y). Pick a random
element (y, f(y)) from the set SC and output C(x, y)[1].”

Given that |S| = Ω(n/ε2), we have

Prx[C
′(x) = f(x)] = Prx,(y,f(y))∈SC [C(x, y)[1] = f(x)|C(x, y)[2] = f(y)]

≥ Pr[C(X, Y)[1] = f(X)|C(X, Y)[2] = f(Y)]− ε

> (1− δ).

Finally, given that Pr[C(X, Y) = f(X).f(Y)] > (1 − δ)2 + ε, either case (1) or

case (2) holds. This means that there is a circuit C ′ which computes f on at least

(1− δ) fraction of the inputs.

There are some important issues which remain unaddressed in the above

discussion . For example, the above proof argument is non-constructive, that is,

we only showed the existence of a circuit C ′ which computes f well on average. So

the question is whether we can give an explicit construction of such a circuit C ′ by

doing a more careful analysis? We assumed that we are given a samples from the

function f , that is, pairs (y, f(y)) for randomly chosen y’s. Since we are talking

about circuits, we can assume that these samples are hardwired into the circuit

computing f . However, this seems to be another bottleneck when trying to come

up with a constructive proof. So, an important question is whether such samples

are necessary for proving the direct product theorem and if so, can we quantify

this? We will answer this question in Chapter II.

17

I.C.2 Impagliazzo’s Hard-core Set Argument

A fundamental result by Impagliazzo [Imp95a] reshaped and increased our

understanding about hardness of boolean functions. As defined before, a boolean

function f : {0, 1}n → {0, 1} is δ-hard for circuits of size s if no circuit of size s

can compute the function on at least (1− δ) fraction of the inputs. So, any fixed

circuit makes mistakes on at least δ fraction of the inputs. The natural question

to ask is whether circuits of size s makes mistakes on different sets of δ · 2n inputs,

or is there a hard set of inputs where the mistakes are of all such circuits are

restricted. Intuitively, if different circuits make mistakes on very different sets

in inputs, then we might be able to combine these circuits to construct another

circuit which computes f on almost all inputs. [Imp95a] showed that this intuition

is indeed correct and there indeed exists a “hard-core” set of inputs. [Hol05]

improved the results of [Imp95a] to obtain optimal size of such a hard-core set.

Here the statement of the theorem.

Theorem I.C.1 ([Imp95a] and [Hol05]). Let n, s ∈ N, 0 < δ, ε ≤ 1, and f :

{0, 1}n → {0, 1} be a boolean function. If f is δ-hard for circuits of size s, then

there is a set H ⊆ {0, 1}n such that |H| ≥ (2δ)2n and for any circuit C of size at

most dε2δ2s, we have

Prx∈H [C(x) = f(x)] ≤ 1/2 + ε/2,

where d is an absolute constant.

The above theorem essentially says that if a function is δ-hard for circuits

of size s, then there is a subset H of inputs of density at least 2δ such that no

circuit of certain smaller size can compute the function much better than randomly

guessing the function value on inputs in the subset. The set H is usually referred

to as the hard-core set for the function f .

The above theorem can be used to prove the XOR Lemma in the following

manner: Since f is δ-hard, from the above theorem we get that there is a subset

18

H, |H| ≥ (2δ)2n of hard inputs. For the sake of contradiction, assume that there

is a circuit C which computes f⊕k with probability at least (1− 2δ)k + εk/2. Let

Al, l ≥ 0 denote the set of inputs (x1, ..., xk) such that exactly l, xi’s are from the

hard-core set H. Since |A0| ≤ (1− 2δ)k, there exists an l ≥ 1 such that

Pr(x1,...,xk)∈Al [C(x1, ..., xk) = f⊕k(x1, ..., xk)] ≥ 1/2 + ε/2. (I.3)

Using this, we can construct the following circuit C ′ for computing f :

“On input x, chooses l − 1 random inputs (a1, ..., al−1) from the hard-
core set H, k − l − 1 inputs (b1, ..., bk−l−1) from the complement of H,
and then constructs an input for the circuit C by randomly arranging
these inputs. If f(a1) ⊕ ... ⊕ f(al) ⊕ f(b1) ⊕ ... ⊕ f(bk−l−1) = 0 then
return the value of C evaluated on the constructed input, otherwise
return the complement answer.”

From (I.3) we get that Prx∈H [C ′(x) = f(x)] ≥ 1/2 + ε/2 which contradicts with

the fact that H is the hard-core set for the function f . We can obtain the direct

product theorem by using the reductions of the previous section.

We should note certain things about the above discussion. Firstly, this

proof argument works only for boolean functions. Secondly, we get a weaker hard-

ness parameter (weaker by a factor k) compared to the Levin-style argument.

Finally, as in the previous section, we need samples of the function f which again

raises the question whether such samples are necessary for the proof.

I.C.3 Trust Halving Strategy

This proof method called the “trust halving strategy” was introduced in

[IW97]. This was motivated by research in Derandomization that we discussed in

one of the previous sections. There was a need for a derandomized version of the

XOR Lemma8 and new techniques which allowed the possibility of derandomization

were needed. We look at one such techniques in this subsection.

It will be easier to talk in terms of advantage of a circuit which is defined

as below:
8An XOR Lemma where the inputs are not chosen independently and might have some dependencies

19

Definition I.C.2. Let n ∈ N and f : {0, 1}n → {0, 1} be any boolean function.

Advantage of a circuit C over a function f on a set of inputs S is defined as

Adv(C, f) = Prx∈S[C(x) = f(x)]−Prx∈S[C(x) 6= f(x)]

This is related to the success probability of the circuit in guessing f on

the set of inputs by the following simple fact.

Fact I.C.3. Let n ∈ N and f : {0, 1}n → {0, 1} be any boolean function. A circuit

C has advantage ε over function f on a set of inputs S iff Prx∈S[C(x) = f(x)] =

1/2 + ε/2.

We will again use Impagliazzo’s hard-core theorem of the previous sub-

section. Given a function which is δ-hard , we know that there is a subset H of

hard-core inputs such that |H| ≥ 2δ2n and any small circuit has negligible ad-

vantage on the inputs contained in H. Towards contradiction, we will start with

the assumption that there is a circuit which computes the direct product func-

tion fk on non-negligible fraction of inputs and then construct a circuit which has

non-negligible advantage over the hard-core set of inputs H.

Here is the description of this circuit C ′:

“Given an input x ∈ H, the circuit randomly selects inputs x1, ..., xk−1 ∈
{0, 1}n, an index i ∈ {1...k}, constructs an input (y1, ..., yk) = (x1, ...,
xi−1, x, xi+1, ..., xk−1) and execute C on this input. Let T (y1, ..., yk) be
the set of indices other than i where C makes a mistake given input
(y1, ..., yk), that is, T (y1, ..., yk) = {j : C(y1, ..., yk)[j] 6= f(yj), j 6= i}.
C ′ makes a “soft” decision about outputting C(y1, ..., yk)[i] depending
on the size of the set T . In some sense, C ′ has more “trust” in C if C is
giving the correct answers on the indices other than i. Once again, C ′

can compute L since we assume that it has access to random samples of
the function f which are hardwired into C ′. C ′ outputs C(y1, ..., yk)[i]
with probability 2−|T (y1,...,yk)| and with the remaining probability it out-
puts an arbitrary answer.”

Let us now analyze the advantage of C ′ over f on H. First, note that

constructing an input (y1, ..., yk) in order to query C induces a distribution on

the k-tuple of inputs which is different from the uniform distribution on {0, 1}nk.

20

More specifically, for any fixed (y1, ..., yk), let L(y1, ..., yk) denote the set of indices

such such that C evaluated on (y1, ..., yk) makes mistakes on these indices, that

is, L(y1, ..., yk) = {i : C(y1, ..., yk)[i] 6= f(yi), i ∈ {1, ..., k}}. Then the probability

that a k-tuple (y1, ..., yk) is sampled is |L(y1,...,yk)|
2δk

times the probability of sampling

from uniform distribution. This is because i can be chosen as any one of these s

positions, and once i is fixed, we have 1 out of 2δ2n ways to fix yi and 1 out of

2n ways to fix the other inputs. For further analysis, let us divide the k-tuples

into the following subsets. We will evaluate the advantage of C ′ conditioned on

sampling a k-tuple from these subsets.

1. {(y1, ..., yk)||L(y1, ..., yk)| < δk}: From a simple application of Chernoff bounds

we know that the density of this subset of tuples is at most e−δk/4 < ε/8.

So, in the worst case this subset of tuples contribute at least −ε/8 to the

advantage.

2. {(y1, ..., yk)||T (y1, ..., yk)| = 0, |L(y1, ..., yk)| ≥ δk}: The conditional advan-

tage over this set of tuples is 1. Furthermore, the density of this subset of

tuples is at least ε − ε/4. So it contributes at least (ε − ε/4) · δk
2δk
· 1 = 3ε/8

to the total advantage.

3. {(y1, ..., yk)|0 < |T (y1, ..., yk)| ≤ δk/4, |L(y1, ..., yk)| ≥ δk}: For a fixed

(y1, ..., yk) in this set, the conditional advantage can be written down as(
1− |T (y1, ..., yk)|
|L(y1, ..., yk)|

)
2−|T (y1,...,yk)| −

(
|T (y1, ..., yk)|
|L(y1, ..., yk)|

)
· 2−|T (y1,...,yk)|+1

which is a positive quantity even in the worst case.

4. {(y1, ..., yk)||T (y1, ..., yk)| > δk/4}: In the worst case the conditional ad-

vantage is −2−δk/4. So this subset contributes at least −ε/8 to the total

advantage.

So, the total advantage is at least (3ε/8− ε/8− ε/8) = ε/8 which then contradicts

with the hard-core Theorem.

21

Let us now see some of the important things one should note about the

above proof argument. The crucial idea used in the above proof argument is the

following property:

(*) For any subset of inputs S ⊆ {0, 1}n of density at least 2δ, only
negligible fraction of k-tuples (x1, ..., xk) (inputs for fk) contain less
than δk inputs from S.

Given this, the proof argument can be summarized as follows: we associate the set

S with the hard-core set for the function f . Then almost all the inputs on which

C gives correct answers have lots of inputs from the hard-core set. This makes it

possible to construct a circuit which achieves good advantage over the hard-core

set given that C answers correctly on some non-negligible fraction of k-tuples.

The property above can be easily shown using Chernoff bounds given

that the k-tuple is chosen independently. If we can show a similar property when

the inputs are not chosen independently but might have some dependencies (and

hence a shorter description), then we almost immediately obtain a derandomized

direct product theorem. [IW97] consider k-tuple of inputs obtained by doing a

random walk on certain small degree graphs. The property is shown to be true

and a derandomized direct product theorem is obtained.

II

Direct Product Theorems: A

Coding Theoretic Perspective

(Parts of this Chapter is based on a joint work with Russell Impagliazzo
and Valentine Kabanets.)

II.A Introduction

In the previous Chapter, we looked at direct product theorems under a

simple setting. We considered circuits computing functions with fixed size inputs.

In this Chapter, we look at more general settings and study the difficulties that

arise in such generalizations.

We will consider general functions f : {0, 1}∗ → {0, 1} and Languages.

In order to study the hardness of general functions and languages with respect to

circuits we will need to consider circuit family which is defined in the following

manner.

Definition II.A.1 (Circuit Family). Let s : N → N be a function. An s(n)-size

circuit family is a sequence {Cn}n∈N of boolean circuits such that Cn has n inputs

and one output and for every n, |Cn| ≤ s(n).

We can now define hardness of general boolean functions with respect to

circuit families.

22

23

Definition II.A.2 (Average-case hardness of geneal functions wrt. circuit fami-

lies). Let s : N→ N, δ : N→ N, and f : {0, 1}∗ → {0, 1} be functions. f is called

δ(n)-hard for size s(n)-size circuit families if for sufficiently large n, any boolean

circuit C on n inputs and of size at most s(n) satisfies

Prx∈{0,1}n [C(x) = f(x)] ≤ (1− δ(n)).

In most parts of the following discussion for general boolean functions, we will

implicitly assume that δ and s are functions and simply say that f is δ for size s.

We will also need to talk about average-case hardness of languages within

some complexity class. So, let us define what we mean by a language being decid-

able by circuit families.

Definition II.A.3 (Language Recognition by Circuit Families). Let s : N → N

be a function. We say that a language L is decidable by s(n)-size circuit families

or simply L is in size s(n), if there is an s(n)-size circuit family {Cn}n∈N such that

for all sufficiently large n, for every x ∈ {0, 1}n, x ∈ L iff Cn(x) = 1.

Note that there is a very crucial difference between a language being

decidable by circuit families compared to a language being decidable by Turing

machines. Apart from the fact that model of computation is different, note that for

the case of circuits we are allowing a different circuit for each problem size. On the

other hand, for Turing machines we are only allowed a single Turing machine for all

problem sizes. It is not immediately clear as to which definition is stronger. These

are uniform (Turing machines) and nonuniform (circuits) models of computation

and we discuss them in the next subsection.

II.A.1 Uniform versus Nonuniform Computation

The uniform model of computation allows a single machine for instances

of all sizes for a given problem. It is synonymous with Turing machines. The

resource we are interested here is the running time of the Turing machine.

24

On the other hand, nonuniform model of computation allows a different

machine for instances of different sizes for a given problem. An example of a

nonuniform model of computation is a circuit family. The resource we are interested

in is the size of this circuit family. Another example is a Turing machine which is

allowed an advice string as an additional input which only depends on the size of

the input. The resource which are of interest in this case is the running time of the

Turing machine and the size of the advice as a function of the instance size of the

problem. Intuitively, this model seems to be more powerful than Turing machines

since there is an additional advice string which could assist in solving problems. An

important question then is “in what ways is this a stronger model of computation

compared to the uniform model?”. One way to answer this question is to define

a complexity class for this model and then study the relation of this complexity

class with analogous classes defined in the uniform model. Let P/poly denote

the class of problems decidable by polynomial time Turing machines which are

allowed polynomial amount of advice. Alternatively, this is the class of problems

which are decidable by polynomial size circuit families. This class contains P (the

class of problems which can be solved using polynomial time Turing machines)

but under some strongly believed complexity theoretic assumptions NP 6⊆ P/poly.

Furthermore, it is hard to upper bound the computational power of this class in

general as this class also contains some undecidable languages.

In this Dissertation, we will consider a “semi-uniform” model of compu-

tation following [TV02]. Here we define the class BPP//log as the class of proba-

bilistic algorithms with advice of length O(log n) that depends on the random coin

tosses of the algorithm, but not on the input. We can view such an algorithm as

producing a polynomial-sized list of polynomial-size circuits

Direct product theorems provide another scenario which brings out the

gap between the computational power of nonuniform/semi-uniform and uniform

model of computation. We will study this difference in the following section.

25

II.B Why Direct Product Theorems Fail in a purely Uni-

form Setting?

In the previous Chapter we considered average-case hardness of functions

with fixed input size against bounded size circuits. We generalized this to hard-

ness of general functions against bounded size circuit families. In this section, we

consider uniform model of computation. We look at avergae-case hardness of gen-

eral functions against Turing machines (algorithms) with bounded running time.

We will see that notion of hardness within the uniform model is weaker than the

analogous notion of hardness in the nonuniform model. This is in the sense that

strong amplification of hardness within the uniform model using direct product

theorems is not possible. On the other hand, we have seen direct product theo-

rems in the nonuniform model. First we need to define average-case hardness of

general functions in the uniform model.

Definition II.B.1 (Average-case hardness in the uniform model). Let t : N→ N,

δ : N → N, and f : {0, 1}∗ → {0, 1} be functions. f is said to be δ(n)-hard for

time t(n) if for all sufficiently large n and every algorithm1 A with running time

t(n), we have

Prx∈{0,1}n [A(x) = f(x)] < (1− δ(n)).

The probability is over the choice of inputs of a given length and the internal

randomness of the algorithm A.

We now show that a string direct product theorem in the uniform setting

is not possible.

Theorem II.B.2. There is a function f : {0, 1}∗ → {0, 1} such that f is (1/5)-

hard for polynomial time and there is a polynomial time randomized algorithm A

such that for all sufficiently large n

Pr(x1,...,xk)∈{0,1}nk [A(x1, ..., xn) = fk(x1, ..., xn)] ≥ 1/n.

1the algorithm can be randomized, that is, it is allowed to use some randomness in computation.

26

Proof. Consider the following set Fn of functions on n bit inputs: the functions in

Fn depend on only the first log n bits of the inputs. The functions in Fn can be

indexed by a string x ∈ {0, 1}logn and let this function be denoted by fn,x. For

any x ∈ {0, 1}logn, fn,x is defined as:

∀y ∈ {0, 1}n, fn,x(y)
def
= 〈x, y[1]...y[log n]〉

Clearly, ∀n, |Fn| = n. Note that for any pair of functions (fn,x, fn,y), fn,x, fn,y ∈

Fn, x 6= y we have

∆(T (fn,x), T (fn,y)) ≥ (1/2) · 2n

where T denotes the truth table of a function and ∆ denotes the hamming distance

between two strings. Consider probabilistic Turing machines which have descrip-

tion length at most (log n − 1). Note that there are n − 1 such machines. The

following lemma shows that there is a function ∈ Fn which is hard on average for

all these machines.

Claim II.B.3. There is a function f ∈ Fn such that for any probabilistic Turing

machine M which has description length at most (log n− 1) we have

Prx∈{0,1}n [M(x) = f(x)] ≤ 4/5.

Proof. Consider hamming balls of radius 2n/5 centered around T (f) for all func-

tions f ∈ Fn. Since the minimum distance between the truth table of any two

functions in Fn is at least 2n/2, these hamming balls do not intersect. Let T (M)

denote the truth table of a machine . Since there are only n−1 probabilistic Turing

machines with description size at most (log n− 1), there is at least one hamming

ball which does not contain the truth table of any function g which is computable

by any of these (n−1) machines. This means that the function f corresponding to

this hamming ball is the hard function which satisfies the claim in the lemma.

In the previous claim, we have essentially showed that there is a function

f : {0, 1}∗ → {0, 1} such that for every probabilistic Turing machine M , there is

an n0 ∈ N such that ∀n ≥ n0,Prx∈{0,1}n [M(x) = f(x)] ≤ 4/5.

27

Let us now prove the second part of the theorem. For any function

f : {0, 1}∗ → {0, 1} defined in the manner above there is a simple probabilistic

Turing machine M which solves fk.

“Given any input (x1, ..., xk) such that |(x1, ..., xk)| = nk, M chooses a
a function f ∈ Fn uniformly at random and returns (f(x1), ..., f(xk)).”

Since |Fn| = n, we get the probability that M succeeds is at least 1/n. This proves

the theorem.

The theorem above shows that there is a function for which we cannot

amplify the hardness beyond a polynomial amount.

II.C Direct Product Codes

In the previous section, we showed that an impossibility result for strong

direct product theorems in the Uniform setting. In this section, we will analyze the

reasons behind this. We will study a related error-correcting code called the direct

product code and analyze its properties. Some interesting properties of this code

will give us valuable intuition behind the impossibility of strong direct product

theorems in the uniform setting.

Definition II.C.1 (Direct Product Code). Let n, k ∈ N, N = 2n and Σ = {0, 1}k.

A k-wise direct product Code C : {0, 1}N → ΣNk
is defined as follows: Given

a message m ∈ {0, 1}N in binary, the encoding of the message C(m) is over the

alphabet Σ. Let the message be indexed by strings in {0, 1}n, where the bit indexed

by x ∈ {0, 1}n is denoted by m[x]. The codeword is indexed by a k-tuple of strings

in {0, 1}n. A letter in the codeword indexed by (x1, ..., xk) ∈ {0, 1}nk is denoted

by C(m)[(x1, ..., xk)] and is defined as

C(m)[(x1, ..., xk)] = m[x1].m[x2]...m[xk]

Note the similarity of the k-wise direct product code with the direct

product theorem. Given a function f : {0, 1}n → {0, 1}, if we consider the truth

28

table of this function as a message for the encoding then the truth table of the

direct product function fk is essentially the encoding of the message. Let us now

see how we can make use of this similarity. Suppose the proof of the direct product

theorem was by contradiction, that is, we start with the assumption that there is

a circuit which computes fk on some non-negligible number of inputs and then

constructed another circuit which computes f on almost all inputs. Such a proof

can be interpreted as decoding algorithm for the k-wise direct product code. This

is because we essentially give a procedure to construct (a circuit which computes)

a string that is close to the message, given (a circuit which computes) a corrupted

codeword.

In the other direction, the decoding properties of this code gives im-

portant knowledge about the limitation of direct product theorems. In the next

subsection we study some of these properties of the direct product codes.

II.C.1 List Decoding Direct Product Codes

Note that the k-wise direct product code has small distance since any

two messages which are close2 to each other have almost the same codewords. To

make things worse, for our purposes, we would like to reconstruct a message given

its corrupted codeword which is corrupted almost everywhere. In an ideal setting,

we would like to give a decoding algorithm which reconstructs a message uniquely

from a corrupted codeword. However, this would not be possible for direct product

codes. So we relax the notion of decoding in the following ways:

1. List decoding: We would like to decode starting from an extremely corrupted

codeword which can be corrupted in at all but ε fraction of positions for small

ε. Intuitively, there would be lots of messages such that their codewords are

at a distance at most (1−ε) from the given corrupted codeword. Since any of

these messages could be the original message, we have to allow the decoding

algorithm to output a list of messages instead of a single message.

2here we mean close in the hamming sense

29

2. Approximate decoding: Note that since we have a small distance code, the

list of messages above could be very large. We can reduce the list size for

the same amount of measure of corruption if we further relax the notion of

decoding. We allow the decoding algorithm to output a list of messages such

that at least one of the messages is close to the original message.

3. Local decoding: Finally, we are interested in these code from the perspective

of direct product theorems. In direct product theorems we are interested

in constructing a circuit which when given an input (given a position in

the message), queries the circuit for the direct product function (reads some

positions of the corrupted codeword) and outputs the function value (bit

at the given position) of the input. This corresponds an idea called local

decoding which has been used in the error-correcting code literature to allow

sub-linear time (sub-linear in the code size) decoding algorithms.

So we would be interested in local, approximate, list decoding of direct

product codes. With that motivation, let us now study the combinatorial proper-

ties of direct product codes which would be of interest to us.

Definition II.C.2 (Hamming distance). Let k ∈ N and Σ be some alphabet.

Given two string x, y ∈ Σk, the hamming distance between x and y which we

denote by ∆(x, y) is defined as

∆(x, y) = |{i : x[i] 6= y[i]}|

Approximate list decoding requires us to output the smallest possible list

of messages such that at least one of them is close to the original message with

closeness parameter δ. More specifically, there should be at least one element

in the list which is agrees with the original message on at least (1 − δ) fraction

of positions. Given this, we can assume that the list does not contain a pair of

messages which disagree on less than δ fraction of positions (if it does then we

can make the list smaller by removing a message from the list). We first show

30

that for fixed δ ≤ 1/17, if ε is very small, then there could be exponentially many

messages in the list such that their codewords agrees with the given word on at

least ε fraction of positions and each pair of messages in the list disagree on at

least δ fraction of the positions. Consider the following theorems

Theorem II.C.3. Let δ ≤ min {(ln 1/ε)/(2k), 1/17}. There exists a set of at least

2δN−1 of N-bit messages of pairwise Hamming distance at least δN and such that

the direct product encoding of each message has agreement at least ε with the string

0N
k
.

The proof of this theorem will follow from the two lemmas below.

Lemma II.C.4. Let δ ≤ min{(ln 1/ε)/(2k), 2/3} and let m1, . . . ,ml be n-bit

strings of Hamming weight δN . Let C be the direct product code. Then, for every

i ∈ [l], we have

Prs∈{0,1}nk [C(mi)[s] = 0k] = (1− δ)k ≥ ε.

Proof. For a given message mi, C(mi)[s] = 0k when s has an no intersection with

the subset of positions in mi which are 1. The probability of this event is exactly

(1− δ)k which is at least ε.

Lemma II.C.5. Let M = {m1, . . . ,ml} be the set of all N-bit strings of Hamming

weight δN , where δ ≤ 1/17. Then there is a subset N ⊆ M of size at least 2δN−1

such that any two messages in N have Hamming distance at least δN .

Proof. Consider a graph with the messages in M denoting the vertices and there

is an edge between two messages if they differ in less than δN positions. Set I to

be an independent set of this graph, chosen as follows: pick a vertex v and place

it in I, delete v and its neighboring vertices; repeat until no vertices are left.

The size of I is lowerbounded by |M |/(∆ + 1), where ∆ is the maximum

31

degree of the graph. We have

∆ =

δN/2∑
i=1

(
δN

i

)(
(1− δ)N

i

)

≤
(

(1− δ)N
δN/2

) δN/2∑
i=1

(
δN

i

)
(since δ ≤ 1/2)

≤
(

(1− δ)N
δN/2

)
· 2δN

≤ 2δN ·
(

N

δN/2

)
.

This yields

|N | ≥
(
N
δN

)
∆ + 1

≥
(
N
δN

)
2 · 2δN ·

(
N

δN/2

)
=

1

2δN+1
· N(N − 1) . . . (N − δN + 1)

N(N − 1) . . . (N − δN/2 + 1)
· (δN/2)!

(δN)!

=
1

2δN+1
· (N − δN/2)(N − δN/2− 1) . . . (N − δN + 1)

(δN)(δN − 1) . . . (δN/2 + 1)

≥ (1/δ − 1)δN/2

2δN+1

≥ 2δN−1 (for δ ≤ 1/17).

Proof of Theorem II.C.3. The proof is immediate from Lemma II.C.4 and

Lemma II.C.5.

The above theorem showed that for a fixed δ ≤ 1/17, if ε is very small

(δ < log 1/ε
2k

), then there could be exponentially many messages such that all these

messages agrees with the given word on at least ε fraction of the inputs and more-

over any pair of messages disagree on at least δ fraction of the positions. This

implies that for these parameters the direct product code can only be approxi-

mately list decoded with extremely large list size. Having established this fact, let

us only concentrate on the case when ε is large, say δ ≥ 2 log 1/ε
k

. Note that there

32

is a gap in the analysis which is unaccounted for. We hope to address this gap in

the future.

The following theorems establish a combinatorial bound on the approxi-

mate, local, list-decodability of direct product codes.

Theorem II.C.6 (List size for direct product code (lower bound)). Let n, k ∈ N,

δ ∈ (0, 1], N = 2n, Σ = {0, 1}k, and C : {0, 1}N → ΣNk
be the k-wise direct

product code. Let ε > 2−N/4 and δ < 1/2. There exists a string s ∈ ΣNk
and

t ≥ 1/ε messages m1, ...,mt such that

1. ∀i ∈ {1, ..., t},∆(C(mi), s) < (1− ε) ·Nk, and

2. ∀i, j ∈ {1, ..., t}, i 6= j,∆(mi,mj) > δN ,

Proof. Let us arbitrarily partition the set of the k-tuples (x1, ..., xk) ∈ {0, 1}nk that

is used to index into any codeword, into t = 1/ε subsets S1, ..., St each containing

at least ε fraction of the k-tuples. Given that ε > 2−N/4, there exists t messages

m1, ...,mt such that for any pair of distinct message mi,mj, ∆(mi,mj) > δ · N .

Given this, we can construct s in the following manner:

∀(x1, ..., xk) ∈ Si, s[(x1, ..., xk)] = mi[x1].mi[x2]...mi[xk]

This is sufficient to ensure property (1) of the theorem. This concludes the proof.

Theorem II.C.7 (List size for direct product code (upper bound)). Let n, k ∈ N,

δ ∈ (0, 1], N = 2n, Σ = {0, 1}k, and C : {0, 1}N → ΣNk
be the k-wise direct

product code. Let δ ≥ 2 log 2/ε
k

. For any string s ∈ ΣNk
and messages m1, ...,mt

such that

1. ∀i ∈ {1, ..., t},∆(C(mi), s) < (1− ε) ·Nk, and

2. ∀i, j ∈ {1, ..., t}, i 6= j,∆(mi,mj) > δN ,

then t ≤ 2/ε.

33

Proof. For the sake of contradiction, assume that for any string s ∈ ΣNk
there

are t messages m1, ...,mt messages with t > 2/ε such that these messages satisfy

properties (1) and (2). Fix the string s and any message m let Am denote the

subset of k-tuples (x1, ..., xk) ∈ {0, 1}nk such that s[(x1, ..., xk)] = m[x1]...m[xk].

Note that ∀i ∈ {1, ..., t}, |Ami |/2nk ≥ ε. We will need the following lemma for

further discussion.

Lemma II.C.8. For any pair of messages mi,mj ∈ {m1, ...mt}, i 6= j,

|Ami ∩ Amj |/2nk < ε2/4

Proof. Given any pair of messages m1,m2 such that ∆(m1,m2) > δN , their code-

words can agree on at most (1− δ)k < ε2/4 fraction of positions.

Fix any 2/ε ≥ i. From the above claim, we know that for all j ≤ i, |Ami∩

Amj |/2nk < ε2/4. This implies that

|Ami ∩ (Am1 ∪ Am2 ∪ ... ∪ Ami−1
)|

2nk
< (ε2/4) · (2/ε) < ε/2

On the other hand, we know that |Ami |/2nk ≥ ε. This implies that each Ami

contains at least ε/2 fraction of k-tuples which are not contained in Am1∪...∪Ami−1
.

This implies that
|Am1 ∪ ... ∪ Am2/ε

|
2nk

> 1

which gives us a contradiction.

Suppose the approximate decoding requires to produce a message which

agrees with the original message on at least (1− δ) fraction of the positions when

given a corrupted codeword which is corrupted in at most (1 − ε) fraction of the

positions. Then the above theorem essentially says that it is only possible to output

a list of Θ(1/ε) messages such that at least one of them satisfies the criterion, where

ε and δ are related as δ ≥ 2 log (2/ε)
k

.

34

II.D Uniform Direct Product Theorems

Having established connections with direct product codes, let us revisit

the question why we failed to obtain a strong direct product theorems in the uni-

form setting. In order to prove a direct product theorem with respect to computing

functions f : {0, 1}n → {0, 1} within some computational model, we assume that

there is a machine which solves the direct product function fk on some ε fraction

of the inputs and then construct a machine which computes the function f on at

least (1− δ) fraction of inputs. Here ε and δ are related as δ = Θ
(

log 1/ε
k

)
. In the

previous section we saw that for these parameters the analogous direct product

code is not uniquely decodable but only list decodable with list size Θ(1/ε). This

translates to the fact that given a machine which computes fk on at least ε frac-

tion of the inputs, then there is a list of Θ(1/ε) machines such that at least one of

them computes f on at least (1 − δ) fraction of the inputs. Note that a string of

length Θ(log 1/ε) can be used to point out the correct machine in the list. With

this observation, we can state the previous statement as: given a machine which

computes fk on at least ε fraction of the inputs, then there is machine and a string

of length Θ(log 1/ε) such that this machine when given this string computes f on

at least (1−δ) fraction of the inputs. This then allows us to generalize the previous

statement to general functions instead of functions with fixed input length. Here

is what we get for general function: Given a function f : {0, 1}∗ → {0, 1}, for all

sufficiently large n, if there is a machine which computes fk on at least ε fraction

of inputs of size nk, then there is a machine and a string of length Θ(log 1/ε)

such that this machine when given this string computes f on at least δ fraction

of inputs of size n. This string for the machine computing f can be interpreted

as advice for the machine. Note that this advice string is the same for any input

of length n. Interestingly, this is precisely the statement of the direct product

theorem in the nonuniform model of computation which essentially says that if a

function is hard to compute for Turing machines with advice which is the same

35

for all inputs of the same size then the direct product function is even harder for

Turing machines with/without advice. As the size of the advice of Turing machines

grows smaller, the bound on the provable hardness of the direct product function

decreases. Finally, with no advice which is precisely the uniform setting, we were

able to construct a function which was hard with respect to Turing machines but

its direct product can be shown to be easy.

In the nonuniform setting, let us informally refer to the length of advice

allowed to a Turing machine as the “nonuniformity”. We have shown that a

strong direct product theorem is not possible in the uniform setting. We also

showed that for the parameters of interest, that is δ = Θ
(

log 1/ε
k

)
, the amount

of nonuniformity needed is Ω(log(1/ε)). Abusing notation, we let “unifrom direct

product theorem” to mean a direct product theorem where the nonuniformity is

the least possible. More specifically, here is the formal statement for the uniform

direct product theorem. We will prove this theorem in the next Chapter.

Theorem II.D.1 (Uniform Direct Product Theorem). Let f : {0, 1}∗ → {0, 1} be

a function, ε, δ : N→ [0, 1], k ∈ N. For all sufficiently large n, if f is δ(n)-hard for

Turing machines with Θ(log(1/ε(n))) advice and running time t(n), then fk is (1−

ε(n))-hard for Turing machines with running time t(n) · poly(ε(n), δ(n), 1/n, 1/k).

II.E XOR Codes

In the previous sections, we studied direct product codes and its connec-

tion with direct product theorems. This was useful in motivating and formalizing

uniform direct product theorems which will be proved in the next Chapter. In

this section we look at the analogous XOR code and its connection with the XOR

Lemma. Here we will formalize the analogous uniform XOR lemma which has

interesting applications in Average-case complexity for showing hardness amplifi-

cation.

The XOR code is defined similarly to the direct product code. Here is

36

the formal description.

Definition II.E.1 (XOR Code). Let n, k ∈ N, and N = 2n. The k-XOR Code

C : {0, 1}N → {0, 1}Nk
is defined as follows: Given a message m ∈ {0, 1}N in

binary, the encoding of the message C(m) is also binary. Let the message be

indexed by strings in {0, 1}n, where the bit indexed by x ∈ {0, 1}n is denoted by

m[x]. The codeword is indexed by a k-tuple of strings in {0, 1}n. An alphabet

in the codeword indexed by (x1, ..., xk) ∈ {0, 1}nk is denoted by C(m)[(x1, ..., xk)]

and is defined as

C(m)[(x1, ..., xk)] = m[x1]⊕m[x2]⊕ ...⊕m[xk]

As for direct product codes, we would be interested in locally, approxi-

mate, list decoding of the k-XOR code defined above. In the next subsection we

study some list decoding properties of the XOR code.

II.E.1 List-decoding XOR Codes

As in the previous section, we will show that for a fixed value of δ ≤ 1/17,

if ε is small (δ < log 1/ε
4k

), then there could be exponentially many messages such

that their codewords agrees with the given word on at least 1/2 + ε fraction of

positions and every pair of messages disagree on at least δ fraction of positions.

Theorem II.E.2. Let δ ≤ min {(ln 1/ε)/(4k), 1/17}. There exists a set of at least

2δN−1 of N-bit messages of pairwise Hamming distance at least δN and such that

the XOR encoding of each message has agreement at least 1/2 + ε with a string

s ∈ ΣNk
.

The proof of this theorem will follow from the two lemmas below.

Lemma II.E.3. Let δ ≤ min{(ln 1/ε)/(4k), 1/3} and let m1, . . . ,ml be n-bit strings

of Hamming weight δN . Let C be the direct product code. Then, for every i ∈ [l],

we have

Prs∈{0,1}nk [C(mi)[s] = 0] = 1/2 + (1− 2δ)k/2 ≥ 1/2 + ε.

37

Proof. For a given message mi, C(mi)[s] = 0 when s has an even intersection

with the subset of positions in mi which are 1. The probability of this event

is exactly
∑

even i∈[k]

(
k
i

)
δi(1 − δ)k−i which is 1/2 + (1 − 2δ)k/2 ≥ 1/2 + ε when

δ ≤ min {(ln 1/ε)/(4k), 1/3}.

Proof of Theorem II.E.2. The proof is immediate from Lemma II.E.3 and

Lemma II.C.5.

We now show that XOR-codes are approximately list-decodable for an

appropriate choice of parameters.

Theorem II.E.4 (List size for XOR code (upper bound)). Let n, k ∈ N, δ ∈ (0, 1],

N = 2n, Σ = {0, 1}k, and C : {0, 1}N → {0, 1}Nk
be the k-wise XOR code. Let

δ ≥ log 1/ε
k

. For any string s ∈ {0, 1}Nk
and messages m1, ...,mt such that

1. ∀i ∈ {1, ..., t},∆(C(mi), s) < (1/2− ε) ·Nk, and

2. ∀i, j ∈ {1, ..., t}, i 6= j,∆(mi,mj) > δN ,

then t ≤ 1/(3ε2).

Proof. For every w ∈ {0, 1}nk, let

εw = Pri∈[t][C(mi)[w] = s[w]]−Pri∈[t][C(mi)[w] 6= s[w]] =
1

t

∑
i∈[t]

(−1)C(mi)[w]⊕s[w].

Observe that Expw∈{0,1}nk [εw] ≥ 2ε. So, we get that 4ε2 ≤ (Expw[εw])2. By

Jensen’s inequality, the latter is at most Expw[(εw)2].

We have

Expw[(εw)2] = Expw

[
1

t2

∑
i,j

(−1)C(mi)[w]⊕C(mj)[w]

]

= Expw

[
1

t2

∑
i,j

(−1)C(mi⊕mj)[w]

]

=
1

t2
· Expw

[∑
i

(−1)0 +
∑
i 6=j

(−1)C(mi⊕mj)[w]

]

=
1

t
+

1

t2
·
∑
i 6=j

Expw
[
(−1)C(mi⊕mj)[w]

]
.

38

Next we bound the quantity Expw
[
(−1)C(mi⊕mj)[w]

]
in the expression

above.

Claim II.E.5. For any i 6= j, we have Expw
[
(−1)C(mi⊕mj)[w]

]
≤ (1− 2δ)k.

Proof. First, observe that by the assumption on pairwise distance between mes-

sages, we have that the string m′ = mi ⊕mj has relative Hamming weight ρ ≥ δ.

We need to compute the probability that a random k-tuple w ∈ {0, 1}nk hits an

even number of 1s in the string m′ minus the probability that it hits an odd number

of 1s. This is exactly ∑
even i∈[k]

(
k

i

)
wi(1− w)k−i −

∑
odd i∈[k]

(
k

i

)
wi(1− w)k−i


=

∑
i∈[k]

(
k

i

)
(−w)i(1− w)k−i

= (1− 2w)k.

The latter is at most (1− 2δ)k.

Using the bound from Claim II.E.5, we have

Expw(εw)2 ≤ 1

t
+
t(t− 1)

t2
(1− 2δ)k ≤ 1

t
+ e−2δk.

Recalling that Expw(εw)2 ≥ 4ε2, we obtain

t ≤ 1

4ε2 − e−2δk
≤ 1

3ε2
,

as required.

Next, we obtain a lower bound on the list size for XOR code. We do that

by first obtaining a lower bound for a code which is very similar to the XOR code.

We call it the Subset XOR code. We then extend this lower bound to the XOR

code.

Definition II.E.6 (Subset XOR Code). Let n, k ∈ N, and N = 2n. The Subset

k-XOR Code C : {0, 1}N → {0, 1}Nk
is defined as follows: Given a message

39

m ∈ {0, 1}N in binary, the encoding of the message C(m) is also binary. Let the

message be indexed by strings in {0, 1}n, where the bit indexed by x ∈ {0, 1}n

is denoted by m[x]. The codeword is indexed by a subset of strings in {0, 1}n of

cardinality k. An alphabet in the codeword indexed by (x1, ..., xk) ∈ {0, 1}nk is

denoted by C(m)[(x1, ..., xk)] and is defined as

C(m)[(x1, ..., xk)] = m[x1]⊕m[x2]⊕ ...⊕m[xk]

Theorem II.E.7 (List size for Subset XOR code (lower bound)). Let n, k ∈ N,

δ ∈ (0, 1], N = 2n, Σ = {0, 1}k, and C : {0, 1}N → {0, 1}Nk
be the Subset k-

wise XOR code. Let ε > max{
(
N
k

)−1/256
, 2−N/256} and δ < 1/4. For any string

s ∈ {0, 1}Nk
, there are t = Ω(1/ε2) messages m1, ...,mt such that

1. ∀i ∈ {1, ..., t},∆(C(mi), s) < (1/2− ε) ·Nk, and

2. ∀i, j ∈ {1, ..., t}, i 6= j,∆(mi,mj) > δN ,

Proof. Let t = 2T + 1 be an odd positive integer to be specified later. Pick strings

a1, . . . , at ∈ {0, 1}N uniformly at random. The probability that any two of them

are within Hamming distance less than N/4 is at most O(t2e−(1/4)2N/2). This

probability is less than o(1/
√
t) for t < eN/90.

For a given t-tuple a = (a1, . . . , at), define the function Ba : {0, 1}N →

{0, 1} as follows: for every r ∈ {0, 1}N ,

Ba(r) = Maj1≤i≤t〈ai, r〉.

We will show that there exists a such that the function Ba evaluated at all strings

r of Hamming weight exactly k agrees in at least 1/2 + Ω(1/
√
t) fraction of places

with C(ai), for at least Ω(t) of ai’s. This will imply the lemma for ε = Ω(1/
√
t).

The intuition is as follows. Fix a string r of Hamming weight k. Fix an

index i ∈ [t]. Randomly choose all the other aj for j 6= i. For each j 6= i, the

random variable 〈aj, r〉 is a fair coin flip (for a random aj). For different j’s, the

corresponding random variables are independent. If we flip 2T independent fair

40

coins, we get exactly T heads with probability at least Ω(1/
√
T). Conditioned

on getting exactly T heads, we have that Ba(r) = 〈ai, r〉, i.e., Ba(r) = C(ai)r

3. By averaging, we can argue that if we randomly fix aj’s for j 6= i, then (with

probability at least Ω(1/
√
T)) we will have at least Ω(1/

√
T) fraction of strings r

(of Hamming weight k) for which we have Ba(r) = C(ai)r. For every remaining r,

the value Ba(r) is fixed (because of the fixed aj’s for j 6= i), but is independent of

ai. The random variables 〈ai, r〉 over these remaining r’s are uniformly distributed

and pairwise independent. Hence, a random choice of ai is likely to result in about

1/2 of these random variables being equal to the fixed value Ba(r) (and by the

Chebyshev inequality, we can bound the probability that this value deviates from

the expectation). Thus, for random a1, . . . , at, we are likely to get Ba and C(ai)

agree in about 1/2 + Ω(1/
√
T) fraction of positions. With some extra work, we

will show that this happens simultaneously for Ω(t) different indices i ∈ [t], which

yields many codewords with good agreement with the string Ba. We give a formal

argument next.

Given a t-tuple a, we say that a string r is balanced for a if the number

of indices i with 〈ai, r〉 = 0 is either T or T + 1.

Claim II.E.8. There is a constant c such that for at least c/
√
t fraction of random

t-tuples a, there are at least c/
√
t fraction of strings r ∈ {0, 1}N of Hamming weight

k such that each r is balanced for a.

Proof. Each fixed nonzero r (of Hamming weight k) is balanced for a with prob-

ability at least c′/
√
t over the choice of a random t-tuple a, for some constant c′.

Hence, we have

Pra,r[r is balanced for a] ≥ c′/
√
t,

where r is a random N -bit string of Hamming weight k. By averaging, the claim

follows for c = c′/2.

3for a string r ∈ {0, 1}N of hamming weight exactly k, let x1, ..., xk in{0, 1}n denote the indices such
that ∀i, r[xi] = 1, then C(ai)r denotes C(ai)[(x1, ..., xk)].

41

For any i ∈ [t], and any (t − 1)-tuple a−i = (a1, . . . , ai−1, ai+1, . . . , at) of

n-bit strings, we say that a string r ∈ {0, 1}n is i-balanced for a−i if the number of

j ∈ [t] \ {i} with 〈mj, r〉 = 0 is T .

Claim II.E.9. Let d be any constant. Suppose i ∈ [t] and

a−i = (a1, . . . , ai−1, ai+1, . . . , at) are such that d/
√
t fraction of strings r ∈ {0, 1}N

of Hamming weight k are i-balanced for a−i. Then for a random ai ∈ {0, 1}N and

the t-tuple a = (a1, . . . , ai−1, ai, ai+1, . . . , at), we have

Prai

[
Ba(r) = 〈ai, r〉 for at least

1

2
+
d/4√
t

of r’s

]
> 1−O

(
t

m

)
,

where m =
(
N
k

)
.

Proof. For r’s that are i-balanced for a−i, we have Ba(r) = 〈ai, r〉 whatever ai is.

Let R be the set of the remaining r’s of weight k that are not i-balanced. For each

r ∈ R, Ba(r) is determined, and so is independent of the choice of ai.

Define random variables Xr where Xr = 1 if < ai, r >= Ba(r), and

Xr = 0 otherwise. We get that, for r ∈ R, these random variables Xr are uniformly

distributed and pairwise independent, for a random choice of ai. We expect Xr = 1

for half of the r’s. By Chebyshev, for any constant d′, the probability that there

are fewer than 1/2− d′/
√
t fraction of r ∈ R with Xr = 1 is less than O(t/m).

Finally, observe that if the latter event does not happen for some ai, then

we have that the agreement between 〈ai, r〉 and Ba(r) is at least

d√
t

+

(
1− d√

t

)(
1

2
− d′√

t

)
≥ 1

2
+

(d/2)− d′√
t

.

The latter can be made at least 1/2 + (d/4)/
√
t by choosing d′ = d/4.

By Claim II.E.8, there are at least c/
√
t fraction of a’s with c/

√
t fraction

of strings r balanced for a. Fix any such a. Observe that each r that is balanced

for a is also i-balanced for T + 1 > t/2 values of i. Since we have c/
√
t fraction of

r’s balanced for a, we get by a simple averaging argument that there are at least

t/4 values of i such that each has at least (c/4)/
√
t fraction of i-balanced r’s. Note

that this happens with probability at least c/
√
t over a’s.

42

On the other hand, Claim II.E.9 implies that the probability (over t-tuples

a) that there is at least one i with (c/4)/
√
t fraction of i-balanced r’s, such that

for this i, the agreement between 〈ai, r〉 and Ba(r) is less than 1/2 + (c/16)/
√
t is

at most O(t2/m). For t = o(m1/3), this probability is less than o(1/
√
t).

Thus there is at least c/
√
t − o(1/

√
t) ≥ (c/2)/

√
t fraction of a’s such

that, for each of these a’s, we have that

1. there are at least t/4 values of i, each having at least (c/4)/
√
t fraction of

i-balanced r’s, and

2. for every such i, the agreement between 〈ai, r〉 and Ba(r) is at least 1/2 +

(c/16)/
√
t.

Recall that for all but o(1/
√
t) fraction of a = (a1, . . . , at) we have that

the pairwise Hamming distance between ai and aj is at least δN , for all i 6= j in

[t]. Therefore, there must exist a choice of a = (a1, . . . , at) and a subset I of t/4

of the i’s such that, for each i ∈ I, the agreement between code(ai) and Ba is at

least 1/2 + (c/16)/
√
t, and the pairwise Hamming distance between any ai and aj,

for i 6= j, is at least δn. Setting t = ((c/16)/ε)2 concludes the proof.

Now we reduce the case of XOR codes to the case of Subset XOR codes,

obtaining the following.

Theorem II.E.10. Let m =
(
N
k

)
, ε > max{m−1/256, 2−N/256}, k2/N ≤ o(ε), and

δ < 1/4. Let C : {0, 1}N → {0, 1}Nk
be the XOR-code. Then there exists a string

B ∈ {0, 1}Nk
and t = Ω(1/ε2) messages m1, . . . ,mt of pairwise Hamming distance

at least δN such that the agreement between B and C(mi) is at least 1/2 + Ω(ε)

for each i ∈ [s].

Proof. Recall that the XOR encoding of an N -bit message m is the sequence of

m[x1] ⊕ · · · ⊕m[xk] over all k-tuple (x1, . . . , xk) ∈ {0, 1}nk. The fraction of those

k-tuples (x1, . . . , xk) that contain some index xj ∈ {0, 1}n more than once is at

most k2/N , which is o(ε) by our assumption.

43

Ignoring the k-tuples with repeats, we can partition the remaining k-

tuples into ` blocks where each block contains
(
N
k

)
tuples corresponding to distinct

k-size subsets of {0, 1}n. For each such block, the XOR encoding of a given message

m (restricted to the k-tuples in the block) coincides with the Subset XOR encoding

of m. So, the XOR encoding of m restricted to the k-tuples with Subset elements

is just a concatenation of ` copies of the Subset XOR encoding of m.

By Theorem II.E.7, there is a collection of Ω(1/ε2) N -bit messages (pair-

wise Hamming distance δN apart) and a string B′ such that the Subset XOR

encoding of each message agrees with B′ in at least 1/2 + Ω(ε) fraction of posi-

tions. Let B′′ be the string obtained as a concatenation of ` copies of the string

B′. It follows that for the same collection of messages, their XOR encodings will

agree with the string B′′ in at least 1/2 + Ω(ε) fraction of positions, when the

positions are restricted to the k-tuples with Subset elements. Let us now pad B′′

with enough 0’s to get the string of length Nk. Let us call the new string B.

We have that the XOR encodings of our messages will agree with B in at least

1/2 + Ω(ε)− k2/N ≥ 1/2 + Ω(ε) fraction of positions.

II.F Summary of List-decoding Bounds

We showed that if δ smaller than min
(

1
17
, log (1/ε)

4k

)
, then the list size for

approximate list decoding both direct product and XOR code is exponentially large

in the message size. On the other hand, when δ is larger than 2·log (1/ε)
k

, then the

list size can be shown to be Θ(1/ε) for the direct product code and Θ(1/ε2) for the

XOR Code.

Acknowledgements : This Chapter is, in part, based on the paper “Approxi-

mately List-decoding Direct Product Codes and Uniform Hardness Amplication”

co-authored with Russell Impagliazzo and Valentine Kabanets. In Proceedings of

the Forty-Seventh Annual IEEE Symposium on Foundations of Computer Science

(FOCS’06), pages 187–196, 2006.

III

Uniform Direct Product

Theorems

(This Chapter is a joint work with Russell Impagliazzo, Valentine Ka-
banets, and Avi Wigderson.)

III.A Introduction

Applications such as cryptography and derandomization require reliably

hard problems, ones that cannot be solved by any fast algorithm with even a

non-trivial advantage over random guessing. Direct-product theorems are a pri-

mary tool in hardness amplification, allowing one to convert problems that are

somewhat hard into problems that are more reliably hard. In a direct-product

theorem, we start with a function f such that any feasible algorithm has a non-

negligible chance of failing to compute f(x) given a random x. We then show

that no feasible algorithm can, given multiple instances of the problem x1, . . . , xk,

compute all of the values f(xi), with even a small probability of success. (Usu-

ally, the xi’s are chosen independently, but there are also derandomized direct-

product theorems where the xi’s are chosen pseudo-randomly.) Many strong di-

rect product theorems are known for non-uniform models, such as Boolean cir-

cuits [Yao82, Lev87, GNW95, Imp95b, IW97, STV01]. Unfortunately, in general,

44

45

direct-product theorems fail in completely uniform models such as probabilistic

computation.

However, Trevisan [Tre05] pointed out that proofs of direct product the-

orems correspond to (approximate) error-correction of sparse codes. Using this

view, we think of a function f as being encoded by Code(f) = fk, its values on all

k-tuples. We seek a decoding algorithm which will generate efficient circuit(s) for f

(on most inputs), given access to a circuit C ′ which is a highly corrupted codeword,

agreeing with fk only on an ε-fraction of all k-tuples. (Note that this code, like

any code that can be computed locally with oracle access to f , has extremely poor

distance. This precludes exact decoding, i.e., recovering a circuit that computes f

on all inputs, but not approximate decoding.)

The strictly uniform direct-product theorem fails because these codes are

not uniquely decodable. A circuit C ′ might agree on ε-fraction of k-tuples for each

of 1/ε different functions. Thus list decoding is essential, and one can quantify

uniformity in terms of the list size. However, the non-uniform direct-product

theorems yield list sizes which are all exponential in 1/ε. In contrast, a strong

uniform direct-product theorems should have the list size which is polynomial in

1/ε. [IJK06] gave the first such proof of the direct-product theorem. However, their

reduction was quite complex and fell short of the information-theoretic bounds in

many respects.

Here, we give a new uniform direct-product theorem that has the following

features:

• Optimality: The parameters achieved by our list decoding algorithm are

information theoretically optimal (to within constant factors).

• Efficiency: The decoding algorithm is simply a projection, namely imple-

mentable in uniform NC0 with oracle access to the corrupted circuit C ′. The

circuits it produces are implementable in uniform AC0. Thus, our hardness

amplification applies to much simpler uniform classes than P.

46

• Simplicity: Both the decoding algorithm and the proof of correctness are

extremely simple (even when compared with proofs in the non-uniform set-

ting!).

• Generality: The decoding algorithm and its proof turns out to work without

change for a general family of codes of which the above direct-product code

is just an example. We define this class of intersection codes, which is simply

specified by the family of k-subsets used to record values of f in Code(f).

We explain how the quality of the decoding (and thus of the amplification)

depend on the sampling properties of the family of sets, and of their pairwise

intersections.

• Derandomization: As an immediate bonus of the above setting we get the

first derandomized direct-product theorems in the uniform setting. A direct

application of the above intersection codes to subspaces yields amplification

with input size O(n), instead of the trivial bound of O(kn) when using all

subsets. In a more sophisticated application, using a concatenation of two

intersection codes, we get similar savings in randomness, but with hardly any

loss in other parameters.

• Consequences: As observed by [TV02, Tre05], efficient list-decoding has

the same consequences as unique decoding in terms of hardness amplifica-

tion within many natural complexity classes, e.g., NP,PNP‖,#P,PSPACE and

EXP.

III.A.1 Statement of the Uniform Direct-Product theorem

We say that a circuit C ε-computes a function F if C(z) = F (z) for at

least ε fraction of inputs z. A function F is (1− ε)-hard for size t(n) if no circuit

of size t(n) ε-computes F .

Following [TV02], we define the “semi-uniform” class BPP// log as the

class of probabilistic algorithms with advice of length O(log n) that depends on

47

the random coin tosses of the algorithm, but not on the input. We can view

such an algorithm as producing a polynomial-sized list of polynomial-size circuits:

the algorithm then is judged by how well the best circuit on its list does. A

probabilistic polynomial-time algorithm with advice, A(x, r, z), ε-computes F if,

for every length n, there is a function z(r) taking a polynomial-size string r to

a logarithmic length output, so that Prx,r[A(x, r, z(r)) = F (x)] ≥ ε. A function

F is (1 − ε)-hard for BPP// log if no such algorithm and function z(r) exist. For

superpolynomial time complexity t = t(n), we can generalize in the obvious way

to the class BPTIME(poly(t))// log t.

Given a Boolean function f : {0, 1}n → {0, 1}, the k-wise direct-product

function fk maps every k-set (x1, . . . , xk) of n-bit strings (ordered according to

some fixed ordering of the universe {0, 1}n) to the k-tuple (f(x1), . . . , f(xk)).
1

One of our main results is the following.

Theorem III.A.1 (Uniform Direct-Product Theorem). There is an absolute con-

stant c > 0 so that for any functions δ = δ(n), k = k(n), t = t(n), and

ε = ε(n) ≥ e−δk/c and ε > t−1/c, if f is δ-hard for BPTIME(poly(t(nk)))// log t

, then fk is (1− ε)-hard for BPTIME(poly(t))// log t.

The proof is via the following reconstruction algorithm, which is

information-theoretically optimal up to constant factors.

Theorem III.A.2 (Approximate list-decoding algorithm). There is a constant

c and a probabilistic algorithm A with the following property. Let k ∈ N, and

0 < ε, δ < 1 be such that ε > e−δk/c. Let C ′ be a circuit that ε-computes the Direct-

Product fk, for some Boolean function f : {0, 1}n → {0, 1}. Given such a circuit

C ′, algorithm A outputs with probability Ω(ε) a circuit C that (1 − δ)-computes

f . The algorithm A is a uniform randomized NC0 algorithm (with one C ′-oracle

gate), and the produced circuit C is an AC0 circuit of size poly(n, k, log 1/δ, 1/ε)

(with C ′-oracle gates).

1The usual definition of k-wise direct product is in terms of k-tuples rather than k-sets, but it is easily
seen to be equivalent, by randomly reordering the input tuple.

48

The circuit output by algorithm A will have the following structure. Fix

s = k/2. Let A = (a1, . . . , as) be an s-subset of {0, 1}n, and let v = (v1, . . . , vs) be

an s-bit string. For intuition, imagine that vi = f(ai) for all 1 ≤ i ≤ s.

We define the following randomized circuit CA,v:

“On input x ∈ {0, 1}n, check if x = ai for some ai ∈ A; if so, then output vi.

Otherwise, repeatedly sample random k-sets B such that A∪{x} ⊆ B, discarding

any B where C ′ is inconsistent with our answers v for A (i.e., where C ′(B)|A 6= v).

For the first consistent B, output C ′(B)|x. Produce some default (error) output if

no consistent B is found even after 100 · (ln 1/δ)/ε iterations.”

Intuitively, if each vi = f(ai), we are checking consistency on a subset of

inputs to see whether we believe C ′(B) on another input. In addition to having the

correct values, the algorithm CA,v requires that C ′(B) is correct for many B with

A ⊂ B (and thus, the algorithm usually finds a consistent B). Finally, we need

that consistency implies correctness: for most B for which C ′(B) is consistent with

v on A, it should be the case that C ′(B) is (almost) the same as f |B. We show

that these three properties are strongly correlated, so that they simultaneously

happen with good probability.

The main algorithm algorithm A is simply:

“Pick at random a k-set B0, an s-subset A ⊆ B0. Set v = C ′(B0)|A. Output the

circuit CA,v.”

III.A.2 Generalized direct-product encoding: intersection codes

Our analysis for direct products immediately generalize to decoding the

following form of possibly derandomized direct product codes. Let f : U → R,

where U is some universe. Usually, U will be {0, 1}n, or Fmq , an m-dimensional

vector space over a finite field Fq. The range R is an arbitrary set (R = {0, 1}

for Boolean f). Without loss of generality, we identify an s-tuple of elements of U

with the s-subset of elements appearing in the tuple.

For 1 ≤ s < k ∈ N, a k-intersection code is specified by two families

49

of subsets of U , T a family of k-subsets of U , and S, a family of s-subsets of U

(with s < k). The family S is only used in the analysis. The encoding of f using

Code = Code(T ,S) is the restriction of the direct product fk to sets B ∈ T .

Our two running examples of these families are:

• Independent: T are all k-subsets of U , and S are all s-subsets of U ; we

only use the case s = k/2.

• Subspaces: We identify U with the vector space Fmq . For positive integers

d ≥ 8 and r = d/2, we take T to be all d-dimensional affine subspaces of U ,

and S to be all r-dimensional affine subspaces of U . Here we have k = qd

and s = qr =
√
k.

The Independent example is the k-wise direct-product function consid-

ered earlier. The Subspaces example will give us a derandomized version of the

direct-product theorem, where inputs of fk will be all points in a given affine d-

dimensional subspace of U . Note that to specify k = qd such points, we only need

to specify the d + 1 vectors of U that define the d-dimensional affine subspace (d

basis vectors plus a shift vector). In our case, d and r will be constants, and so

these affine subspaces are specified with only O(n) bits.

The code Code is δ-approximately (ε, `)-list decodable if for every function

C ′ : T → Rk there is a collection of at most ` functions g1, g2, · · · , g` such that, for

every function f : U → R, if Code(f) ε-agrees with C ′, then f will (1 − δ)-agree

with some gi, for 1 ≤ i ≤ `. The code Code is efficiently locally decodable if there

is an efficient algorithm that uses oracle access to C ′ to generate circuits for the

functions gi’s (which also use that oracle).

Our decoding algorithm for Code(S, T) is exactly the same as the algo-

rithm A described in the previous section, with sets A coming from S, and sets B

from T . We show that this algorithm A produces a good circuit for f , provided

that families S, T satisfy certain sampling conditions. In particular, we prove the

following.

50

Theorem III.A.3. Both Independent and Subspaces codes are efficiently, locally,

δ-approximately (ε, O(1/ε))-list decodable, where

• Independent: δ = O((log 1/ε)/k),

• Subspaces: δ = O(1/(ε2k1/4)).

Moreover, the decoder for the Independent code is a uniform randomized NC0 al-

gorithm that outputs AC0 circuits.2

Informally, the following properties of T ,S are all we use:

Computational assumptions: It is efficiently possible to: choose B uniformly

in T ; given B ∈ T , uniformly pick A ∈ S with A ⊂ B; given A ∈ S and

x ∈ U \ A, uniformly pick B ∈ T with A ∪ {x} ⊂ B.

Symmetry: For a fixed B ∈ T , for a random A ∈ S with A ⊂ B, the elements of

A are individually uniform over B. For a fixed A ∈ S, and random B ∈ T

with A ⊂ B, the elements in B \ A are individually uniform over U \ A.

Sampling: For a fixed B ∈ T and any sufficiently large subset W ⊂ B, with

high probability over a random A ∈ S, A ⊂ B, |A∩W |/|A| is approximately

the same as |W |/|B|. For a fixed A ∈ S, and any sufficiently large subset

H ⊂ U \ A, with high probability over a random B ∈ T , A ⊂ B, we have

that |(B \ A) ∩H|/|B \ A| is approximately the same as |H|/|U \ A|.

III.A.3 Concatenated codes and hardness condensing

We also prove a stronger version of Theorem III.A.3 for the case where

we allow an oracle circuit C ′ for the direct-product fk to be only approximately

correct on at least ε fraction of inputs to fk. More precisely, we allow a circuit

C ′ such that, for at least ε fraction of T ∈ T , C ′(T) and fk(T) agree on at least

(1 − δ′) fraction of elements of T . Note that the usual version of direct-product

2This yields a much simpler construction of non-binary codes, locally list-decodable in uniform ran-
domized AC0, than the one given by [GGH+07].

51

decoding assumes δ′ = 0. Given such a circuit C ′, we show how to obtain a circuit

C which (1− δ)-computes f , for δ = O(δ′).

This relaxed notion of approximate list decoding can be formalized as

follows. The code Code is (δ, δ′)-approximately (ε, `)-list decodable if for every

function C ′ : T → Rk there is a collection of at most ` functions g1, g2, · · · , g` such

that, for every function f : U → R, if the k-tuples fk(T) and C ′(T) (1− δ′)-agree

on at least ε fraction of sets T ∈ T , then f will (1 − δ)-agree with some gi, for

1 ≤ i ≤ `. Efficient local decodability means, as before, that a collection of circuits

for such gi’s can be efficiently generated, given oracle access to a circuit C ′.

We prove the following “approximate” version of Theorem III.A.3.

Theorem III.A.4. Both Independent and Subspaces codes are efficiently, locally,

(δ,Ω(δ))-approximately (ε, O(1/ε))-list decodable, where

• Independent: δ = O((log 1/ε)/k),

• Subspaces: δ = O(1/(ε2k1/4)).

While interesting in its own right, Theorem III.A.4 will also allow us

to obtain a strong derandomized version of uniform direct product theorem for

a Boolean function f : {0, 1}n → {0, 1}. The direct product code using affine

subspaces already yields a harder function on inputs of size O(n), but only with

hardness polynomial in 1/k. In non-uniform settings, there are derandomized

direct product theorems with input size O(n) and hardness exponentially small

in n([IW97, STV01]). We will be able to meet this goal partially: we define a

function h of hardness ε = e−Ω(
√
n) with input size O(n) and k = O(log 1/ε).

The function h combines the two direct product theorems. For k =
√
n

and a field F of size q = 2
√
n, h is the restriction of fk to k-subsets of inputs that

all lie within a low dimensional affine subspace of F
√
n. We can specify the input

to h by specifying a basis for the subspace with O(n) bits, and then specifying
√
n

elements of the subspace in terms of this basis, using O(
√
n) bits each. We view h

as a concatenation of two encodings. First, for K = qd = 2O(
√
n), we think of the K-

direct product code for f using affine subspaces. This code, for each subspace, lists

52

the value of f for all inputs in the subspace. This would be very large, so instead,

we encode each block of the subspace code with the Independent k-direct product

code, for k =
√
n, listing the values on subsets within each a affine subspace.

To decode, we use the Independent direct product decoding within a given affine

subspace as a subroutine in the affine subspace decoding procedure. Since the

Independent direct product decoding is only approximate, we need Theorem III.A.4

to handle errors created in the decoding of the inner code.

Theorem III.A.5. (Uniform Derandomized Direct Product Theorem)

There is an absolute constant c > 0 so that for any constant 0 < δ < 1, and

any functions t = t(n), k = k(n), ε = ε(n) ≥ max{e−δk/c, e−Ω(
√
n), t−1/c}, and

K = K(n) = O(1/(εδ)8), if f : {0, 1}n → {0, 1} is δ-hard for BPTIME(t)// log t ,

then the function h defined from f as described above is (1− ε)-hard for

BPTIME(t1/c)//(1/c) log t. The input size of h is O(n).

We give an interpretation of Theorem III.A.5 in terms of “hardness con-

densing” in the spirit of [BOS06]. We obtain some form of “hardness condens-

ing” with respect to BPTIME(t)// log t. For an affine subspace B ∈ T , think of

g(B) = f |B as the truth table of the Boolean function mapping b ∈ B to f(b).

Since B is an affine d-dimensional subspace, each element of B can be described

by a d-tuple of field elements (α1, . . . , αd) ∈ Fdq , and so each f |B : Fdq → {0, 1} is a

Boolean function on d log q-size inputs. Also, each B ∈ T can be described with

(d + 1)m log q bits, and so each function in the function family {f |B}B∈T has a

short description.

Consider the problem: Given (a description of) B ∈ T , construct a circuit

that computes f |B well on average. We show the following.

Theorem III.A.6 (Hardness condensing). For an absolute constant c > 0, if

a function f is δ-hard for BPTIME(t)// log t, then every probabilistic t1/c-time

algorithm C has probability at most ε = max{q−d/16, t−1/c} (over random B ∈ T

and the internal randomness of C) of producing a circuit that (1−Ω(δ))-computes

53

f |B.

Intuitively, for almost every B, the function f |B has almost the same

hardness as f , but is defined on inputs of smaller size. Thus the reduction from f

to fB can be thought of as “hardness condensing”.

Finally, we can convert our uniform direct product theorem into a uni-

form version of the Yao XOR Lemma [Yao82]. While a qualitative version of this

conversion follows immediately from [GL89], we obtain a quantitatively optimal

version, up to constant factors. A uniform version of XOR Lemma is an approx-

imate list decoding algorithm for a truncated version of the Hadamard code, and

optimality is defined in terms of the information-theoretic coding properties of this

code ([IJK06]). For f : {0, 1}n → {0, 1} and k ∈ N, the k-XOR encoding of f is

the function f⊕k mapping each k-subset of n-bit strings (x1, . . . , xk) to the value

⊕ki=1f(xi).

Theorem III.A.7. The k-XOR code is efficiently, locally, δ-approximately (1/2+

ε, O(1/ε2))-list decodable, for δ = O((log 1/ε)/k).

III.A.4 Relation to previous work

Non-uniform Direct Product Theorem

The classical Direct-Product Theorem (and closely related Yao’s XOR

Lemma [Yao82]) for circuits has many proofs [Lev87, Imp95b, GNW95, IW97]. The

basic idea behind all these proofs is the following: If a given circuit C ′ ε-computes

fk(x1, . . . , xk), for some δ-hard function f : {0, 1}n → {0, 1}, with ε > (1 − δ)k,

then it must be the case that the correctness of the answers of C ′ at some position

i is correlated with the correctness of its answers in the remaining positions (since

otherwise it would be the same as trying to compute f(x1), . . . , f(xk) independently

sequentially, which obviously cannot be done with probability greater than (1−δ)k).

This correlation of C ′’s answers can be exploited in various ways to get

a circuit (1 − δ)-computing f from the circuit C ′ (yielding different proofs of the

54

direct-product theorem in [Lev87, Imp95b, GNW95, IW97]). Usually, one takes a

random k-tuple (x1, . . . , xk) containing a given input x in some position i, runs C ′

on that tuple, and checks how well C ′ did in positions other than i. To perform

such a check, one obviously needs to know the true values of f at the inputs xj

for j 6= i; these are provided in the form of non-uniform advice in the circuit

model. Then one decides on the guess for the value f(x) based on the quality of

C ′’s answers for xj, j 6= i. For example, in [IW97], one flips a random coin with

probability that is some function of the number of incorrect answers given by C ′

outside position i.

Uniform Direct Product Theorem, and decoding vs. testing

To get a uniform algorithm for f , we need to remove (or at least minimize

the amount of) the non-uniform advice f(xj), j 6= i. The first result of that type

was obtained in [IJK06]. Their idea was to use the circuit C ′ itself in order to

get enough labeled examples (x, f(x)), and then run the direct-product decoding

algorithm of [IW97] on C ′ and the obtained examples.

To get sufficiently many examples, [IJK06] use a method they called direct

product amplification, which is to take an algorithm solving the k-wise direct

product to one that (approximately) solves the k′-wise direct product problem with

k′ � k. This amplification is essentially equivalent to approximate list decoding

when there are only k′ possible instances in the domain of the function f . Their list-

decoding algorithm used one random “advice set” (where the algorithm produced

correct answers) as a consistency check for another set that contains the instance

to be solved. To be a meaningful consistency check, the advice set and instance-

containing set need to have a large intersection. For independent random sets, this

implies by the birthday-paradox bounds, that k′ � k2. Because of this constraint,

[IJK06] had to use direct-product amplification iteratively, to cover the whole

domain size of 2n instances. These iterations complicated the construction and

made the parameters far from optimal.

55

We instead pick the instance-containing set conditioned on having a large

intersection with the advice set. This can be done at one shot, on any domain size,

so no iterations are needed.

This idea is similar in spirit to the direct-product testing methods used by

[GS00, DR06], and we were inspired by these papers. However, while they showed

that this is sufficient in the unique decoding regime (where the algorithm is com-

puting the direct product with high probability), we were surprised that this one

idea sufficed in the list-decoding case as well. Our derandomized subspace con-

struction was also inspired by [RS97, AS03], who list-decode functions correlated

to multi-variable polynomials by using consistency checks on small dimensional

subspaces.

While our results were inspired by similar results on direct-product test-

ing, we have not found any formal connection between the testing and decoding

problems. In particular, passing the consistency test with non-negligible probabil-

ity is not sufficient to test non-negligible correlation with a direct-product function.

It would be very interesting to find such a connection.

Remainder of the paper. Section III.B contains some background facts, and

basic sampling properties of graphs used in decoding of intersection codes. The

analysis of our algorithm A is given in Section III.C. where we state the condi-

tions on the pair (S, T) that are sufficient for A to produce a good circuit CA,v.

Section III.D contains the proofs of Theorems III.A.4, III.A.5, and III.A.6. Theo-

rem III.A.7 is proved in Section III.E. Section III.F contains concluding remarks

and open questions.

56

III.B Preliminaries

III.B.1 Concentration bounds

The standard form of the Hoeffding bound [Hoe63] says that, for any

finite subset F of measure α in some universe U , a random subset R of size t

is very likely to contain close to αt points from F . The following is a natural

generalization for the case where F is any [0, 1]-valued function over U .

Lemma III.B.1 (Hoeffding [Hoe63]). Let F : U → [0, 1] be any function over a

finite universe U with the expectation Expx∈U [F (x)] = α, for any 0 ≤ α ≤ 1. Let

R ⊆ U be a random subset of size t. Define a random variable X =
∑

x∈R F (x).

Then the expectation of X is µ = αt, and for any 0 < γ ≤ 1, Pr [|X − µ| ≥ γµ] ≤

2 · e−γ2µ/3.

Lemma III.B.2. Let X1, . . . , Xt be random variables taking values in the interval

[0, 1], with expectations µi, 1 ≤ i ≤ t. Let X =
∑t

i=1 Xi, and let µ =
∑t

i=1 µi be

the expectation of X. For any 0 < γ ≤ 1, we have the following:

• [Chernoff-Hoeffding] If X1, . . . , Xt are independent, then Pr[|X − µ| ≥

γµ] ≤ 2 · e−γ2µ/3.

• [Chebyshev] If X1, . . . , Xt are pairwise independent, then Pr[|X − µ| ≥

γµ] ≤ 1/(γ2µ).

III.B.2 Pairwise independence of subspaces

Let U = Fmq be an m-dimensional linear space over a finite field Fq.

An affine d-dimensional subspace A of U is specified by a collection of d linearly

independent vectors a1, . . . , ad ∈ U and an arbitrary vector b ∈ U so that A =

{b +
∑d

i=1 αiai | αi ∈ Fq, 1 ≤ i ≤ d}. Thus the elements of A are in one-to-one

correspondence with d-tuples of scalars (α1, . . . , αd).

We will use the following easy fact.

57

Claim III.B.3. A sequence of all qd elements of a randomly chosen d-dimensional

affine subspace of U are pairwise independent and uniform over U .

A linear d-dimensional subspace A of U is specified by a collection of

d linearly independent vectors a1, . . . , ad ∈ U so that A = {
∑d

i=1 αiai | αi ∈

Fq, 1 ≤ i ≤ d}. It is no longer the case that all elements of a random linear

subspace A are pairwise independent. For example, if vectors ᾱ = (α1, . . . , αd) and

β̄ = (β1, . . . , βd) are scalar multiples of each other (i.e., are linearly dependent),

then in every random subspace A the two corresponding elements of A will also

be scalar multiples of each other.

However, if we restrict our attention to any sequence ᾱ1, . . . , ᾱt of d-

tuples ᾱi ∈ Fdq such that every two of ᾱi’s are linearly independent, we get that the

corresponding elements in a random d-dimensional linear subspace A are pairwise

independent and uniform over U . It is easy to see that one can choose t = (qd −

1)/(q−1) nonzero vectors ᾱ1, . . . , ᾱt ∈ Fdq such that every two of them are linearly

independent. Thus we get the following.

Claim III.B.4. For t = (qd − 1)/(q − 1), let ᾱ1, . . . , ᾱt ∈ Fdq be pairwise lin-

early independent vectors. Let A be a random d-dimensional linear subspace of U .

Then the t vectors of A that correspond to ᾱ1, . . . , ᾱt are pairwise independent and

uniform over U .

III.B.3 Graphs

We will consider bipartite graphs G = G(L,R) defined on a bipartition

L ∪ R of vertices; we think of L as left vertices, and R as right vertices of the

graph G. For a vertex v of G, we denote by NG(v) the set of its neighbors in G; if

the graph G is clear from the context, we will drop the subscript and simply write

N(v). We say that G is bi-regular if the degrees of vertices in L are the same, and

the degrees of vertices in R are the same.

58

Auxiliary graphs for (S, T)-codes

The following three graphs will be useful for the analysis of our intersec-

tion codes. Let U be any finite set. Let T be a family of k-subsets of U , and let

S be a family of s-subsets of U , for some s < k.

Definition III.B.5 (inclusion graph). The inclusion graph I(S, T) is the bipartite

graph that has an edge (A,B) for every A ∈ S and B ∈ T such that A ⊆ B.

The inclusion graph I(S, T) is called transitive if, for every B,B′ ∈ T ,

there is a permutation π of U which moves B to B′ and induces an isomorphism

of I, and similarly, for every A,A′ ∈ S, there is a permutation σ of U which moves

A to A′ and induces an isomorphism of I.

Definition III.B.6 (S-graph). For every B ∈ T , the S-graph H(B,NI(B)) is the

bipartite graph that has an edge (x,A) for every x ∈ B and A ∈ NI(B) such that

x ∈ A.

Definition III.B.7 (T -graph). For every A ∈ S, the T -graph G(U \A,NI(A)) is

the bipartite graph that has an edge (x,B) for every x ∈ U \ A and B ∈ NI(A)

such that x ∈ B \ A.

Note that if I(S, T) is transitive, then the structure of the S-graph

H(B,N(B)) is independent of the choice of B, and similarly, the structure of

the T -graph G(U \A,N(A)) is independent of the choice of A. This will simplify

the analysis of the properties of these graphs. One can easily check that the in-

clusion graph I for both of our running examples of families (S, T), Independent

and Subspaces, is transitive.

Samplers

Let G = G(L,R) be any bi-regular bipartite graph. For a function λ :

[0, 1]→ [0, 1], we say that G is a (µ, λ(µ))-sampler if, for every function F : L→

59

[0, 1] with the average value µ
def
= Expx∈L[F (x)], there are at most λ(µ)·|R| vertices

r ∈ R where ∣∣Expy∈N(r)[F (y)]− µ
∣∣ ≥ µ/2.

Note that the case of a Boolean function F : L→ {0, 1} with the average

µ corresponds to the property that all but λ(µ) fraction of nodes r ∈ R have close

to the expected number of neighbors in the set {x | F (x) = 1} of measure µ. The

sampler defined above is a natural generalization to the case of [0, 1]-valued F ;

it is also a special case of an oblivious approximator [BGG93] or approximating

disperser [Zuc97].

For the analysis of intersection codes Code(S, T) based on families S and

T , we will need that the corresponding S-graphs and T -graphs be samplers. We

show that this is true for both of our running examples. Since both our inclusion

graphs (for Independent and Subspaces cases) are transitive, the structure of the

S-graphs and T -graphs is independent of the choices of B ∈ T and A ∈ S,

respectively.

Lemma III.B.8. For both Independent and Subspaces families (S, T), the S-graph

H is (α, ν(α))-sampler, where

• Independent: ν(α) = 2 · e−αk/24,

• Subspaces: ν(α) = 4/(α
√
k).

Proof. For Independent, we use the Hoeffding bound of Lemma III.B.1. For Sub-

spaces, we use the fact that points in a random affine subspace of a given affine

space are uniformly distributed and pairwise independent (cf. Claim III.B.3), and

then apply Chebyshev’s bound of Lemma III.B.2.

Lemma III.B.9. For both Independent and Subspaces families (S, T), the T -graph

G is (β, λ(β))-sampler, where

• Independent: λ(β) = 2 · e−βk/24,

60

• Subspaces: λ(β) = 4q2/(β
√
k).

Proof. For Independent, we use the Hoeffding bound of Lemma III.B.1.

For subspaces, we use pairwise independence and the Chebyshev bound.

Fix an affine subspace A of dimension r. Suppose A is V + v, for some r-

dimensional linear subspace V of U = Fmq , and a vector v ∈ U . To choose a

random d = 2r-dimensional affine subspace B containing A, we choose a random

r-dimensional subspace W of U such that W is orthogonal to V , and define our

affine 2r-dimensional subspace B = A+W .

Note that all of U \ A can be represented as the disjoint union of cosets

A+u, over all distinct nonzero vectors u in the orthogonal subspace V ⊥. A function

F : (U \A)→ [0, 1] with the expectation β yields [0, 1]-valued functions Fu where

Fu is the restriction of F to the coset A+ u, for every nonzero vector u ∈ V ⊥. Let

βu denote the average value of Fu over the points in A+ u. Clearly, the average of

βu’s is exactly β.

If we pick t nonzero vectors u1, . . . , ut ∈ V ⊥ independently at random, we

would obtain by the Chernoff-Hoeffding bound that the average (1/t)
∑t

i=1 βui is

very likely to be close to β. Similarly, if these t vectors were chosen pairwise inde-

pendently, we could argue the concentration around the expectation β by Cheby-

shev’s bound. The intuition is that vectors in a random r-dimensional subspace

W are essentially pairwise independent, and hence we can argue that our random

affine subspace B is likely to be a good sample for estimating the average of F .

More precisely, let w1, . . . , wt ∈ Frq be any fixed collection of t = (qr −

1)/(q − 1) nonzero vectors such that every two of them are linearly independent.

By Claim III.B.4, in a random W the t corresponding vectors of W are pairwise

independent and uniform over V ⊥. Let us denote by ωi, 1 ≤ i ≤ t, the element of

W corresponding to wi (i.e., ωi is a linear combination of the basis vectors of W

with scalar coefficients being the r field elements of wi).

For each field element i ∈ Fq, define Bi = ∪tj=1(A + i · ωj). Note that

B = ∪i∈FqBi. Fix any nonzero i ∈ Fq. For a random W , the vectors i ·ω1, . . . , i ·ωt

61

are pairwise independent. By Chebyshev’s bound of Lemma III.B.2, the proba-

bility that (1/|Bi|) ·
∑

x∈Bi F (x) is less than β/2 or more than 3β/2 is at most

4/(βt). By the union bound, the probability that at least one of Bi’s deviates

from the expectation is at most 4(q − 1)/(βt). Thus, with probability at least

1− 4/(βqr−2) = 1− 4q2/(βs), a random affine subspace B containing A is a good

sample for estimating the expectation of F . Since s =
√
k for Subspaces, we get

the desired claim.

Properties of samplers and their subgraphs

Here we prove two properties of samplers, which will be useful for the

analysis of our decoding algorithm. These properties basically show that samplers

are “robust” to deletions of vertices.

The first property says that for any two large vertex subsets W and F of

a sampler, the fraction of edges between W and F is close to the product of the

densities of W and F .

Lemma III.B.10. Suppose G = G(L,R) is a (β, λ)-sampler. Let W ⊆ R be any

set of measure ρ, and let F ⊆ L be any set of measure β. Then we have

Prx∈L,y∈N(x)[x ∈ F & y ∈ W] ≥ β(ρ− λ)/2.

Proof. We need to estimate the probability of picking an edge between F and W in

a random experiment where we first choose a random x ∈ L and then its random

neighbor y. Since the graph G is assumed to be bi-regular, this probability remains

the same in the experiment where we first pick a random y ∈ R and its random

neighbor x ∈ N(y). The latter is easy to estimate using the sampling property of

the graph G, as we show next.

Let F ′ ⊆ F be of density exactly β. Let W ′ ⊆ W be the subset of

vertices that have at least β/2 fraction of their neighbors in F . Since G is a (β, λ)-

sampler and W is of measure ρ, we get that W ′ is of measure at least ρ− λ. Then

62

conditioned on picking a vertex y ∈ W ′, the probability that its random neighbor

is in F is at least β/2. The lemma follows.

The second property deals with edge-colored samplers. Suppose that all

edges in a bi-regular graph G = G(L,R) are colored with two colors, red and

green, so that the number of red edges is at most t, for some t ≥ 0. Since G is

bi-regular, picking a random vertex x ∈ L and its random incident edge is the

same as picking a random y ∈ R and its random incident edge, and clearly, the

probability of getting a red edge in both cases is t/|E|, where E is the edge set of

G. Now suppose that we are given a subgraph G′ obtained from G by removing

some vertices from R (and all the edges incident upon the removed vertices). Let

W ⊆ R be a subset of the remaining vertices in G′, and suppose that G′ has at

most t red edges. Since G′ is still right-regular (i.e., all vertices w ∈ W have the

same degree), sampling a random incident edge of a random vertex w ∈ W still

yields a red edge with probability at most t/|E ′|, where E ′ is the edge set of G′. For

general graphs G, we can’t say that the probability of getting a red edge remains

the same when we pick a random incident edge of a random vertex x ∈ L (since G′

may not be bi-regular). However, we prove that this is approximately true when

G is a sampler.

Lemma III.B.11. Suppose G = G(L,R) is a (β, λ)-sampler, with the right degree

D. Let W ⊆ R be any subset of density ρ, and let G′ = G(L,W) be the induced

subgraph of G (obtained after removing all vertices in R \W), with the edge set

E ′. Let Col : E ′ → {red, green} be any coloring of the edges of G′ such that at

most αD|W | edges are colored red, for some 0 ≤ α ≤ 1. Then

Prx∈L,y∈NG′ (x)[Col({x, y}) = red] ≤ max{2α/(1− λ/ρ), β}.

Proof. We need to estimate the probability of picking a red edge in G′ when we first

pick a random x ∈ L and then pick its random neighbor y in G′. For every x ∈ L,

let dx be the degree of x in G′, and let ξ(x) be the fraction of red edges incident

63

to x in G′. The probability we want to estimate is exactly µ = Expx∈L[ξ(x)]. If

µ ≤ β, then we are done. So for the rest of the proof, we will suppose that µ > β.

Let W ′ ⊆ W be the subset of those vertices w where Expx∈N(w)[ξ(x)] ≥

µ/2. (Here we use N(w) to denote the neighborhood NG′(w) of w in G′, which is

the same as NG(w) by the definition of G′.) Since G is a (β, λ)-sampler and W

has measure ρ in G, we get that W ′ has measure at least ρ − λ in G, and hence

measure 1− λ/ρ in G′. Hence, we have∑
y∈W

Expx∈N(y)[ξ(x)] ≥
∑
y∈W ′

Expx∈N(y)[ξ(x)] ≥ |W |(1− λ/ρ)µ/2. (III.1)

On the other hand,
∑

y∈W
(
D · Expx∈N(y)[ξ(x)]

)
is simply the summation

over all edges (x, y) in G′ where each edge (x, y) with x ∈ L contributes ξ(x) to

the sum. Since the degree of each x is dx, each x ∈ L contributes exactly dxξ(x),

which is the number of incident red edges at x. Hence, the total sum is exactly

the number of red edges in G′, which is at most αD|W | by assumption. It follows

that ∑
y∈W

Expx∈N(y)[ξ(x)] = (1/D)
∑
x∈L

dxξ(x) ≤ |W |α. (III.2)

Finally, comparing the bounds in Eqs. (V.1) and (V.2), we conclude that

µ ≤ 2α/(1− λ/ρ).

III.C Decoding intersection codes

Let (S, T) be a pair of families of subsets of U , and let Code(S, T) be

the intersection code defined for these families. Fix a function f : U → R. Let

C ′ be a circuit that ε-computes Code(f). We will show how to compute from C ′

a deterministic circuit C that (1 − δ)-computes f , for δ > 0 being the parameter

that depends on ε and (S, T).

Our decoding algorithm A for Code(S, T) can be defined in terms of the

inclusion and T -graphs. Fix any edge (A,B) of the inclusion graph I(S, T). Let

v = C ′(B)|A be the values that the circuit C ′(B) gives for the elements in A.

64

Let G = G(U \ A,N(A)) be the T -graph for A. Let Cons ⊆ N(A) be

the subset of those B′ ∈ N(A) for which C ′(B′)|A = v. We will say that such sets

B′ are consistent with B.

Define the circuit CA,v:

“On input x ∈ U , if x ∈ A, then output the corresponding value vx. Otherwise,

repeatedly sample random neighbors B′ of x in the T -graph G, discarding any

B′ 6∈ Cons, until the first B′ ∈ Cons is obtained. For this B′ ∈ Cons, output the

value C ′(B′)|x. Produce the default (error) output if no B′ ∈ Cons is found even

after O((ln 1/δ)/ε) steps.”

Define the decoding algorithm A:

“On an input circuit C ′, pick a random edge (A,B) of the inclusion graph I(S, T),

set v = C ′(B)|A, and output the circuit CA,v.”

Remark III.C.1. For the described algorithm CA,v to be efficient, we need an

efficient procedure for sampling random neighbors of a given left vertex in the

T -graph G(U \A,N(A)). For both of our running examples, one can easily argue

that such efficient sampling is possible.

We now state the main technical result of our paper: the conditions on

(S, T) under which the decoding algorithm A produces a good circuit CA,v. For

the rest of this section, we set ε′ = ε/2.

Theorem III.C.2. Suppose that the inclusion graph I(S, T) is transitive (and

hence also bi-regular), the S-graph H is a (µ, δε′2/(128µ))-sampler for every µ >

δ/64, and the T -graph G is a (δ/16, ε′/2)-sampler. Then the algorithm A produces

with probability ε′/2 a randomized circuit CA,v satisfying

Pr[CA,v computes f] ≥ 1− δ/4,

where the probability is over the inputs and the internal randomness of CA,v.

65

Remark III.C.3. Note that if a randomized circuit CA,v satisfies the conclusion

of Theorem III.C.2, then by randomly fixing its internal randomness we get (with

probability at least 3/4) a deterministic circuit C that (1− δ)-computes f .

We postpone the proof of Theorem III.C.2, and use it to prove Theo-

rem III.A.3.

Proof of Theorem III.A.3. For Independent, we get by Lemmas III.B.8 and III.B.9

that both H and G are (µ, λ(µ))-samplers for λ(µ) ≤ e−Ω(µk). For µ > δ/64, write

µ = cδ where c = µ/δ > 1/64. For the graph H, we get that µ · λ(µ) ≤ cδe−Ω(cδk).

For δ = d log(1/ε)/k for large enough constant d, we get e−Ω(cd log 1/ε) = εΩ(cd) ≤

ε′2εcd
′
, for some large constant d′ dependent on d. Assume that ε < 0.9 (if a

circuit C ′ ε-computes fk for ε ≥ 0.9, it obviously 0.9-computes fk).3 Choosing

sufficiently large constant d, we can ensure that εcd
′
< 2−c/128, and so cδe−Ω(cδk) ≤

cδε′22−c/128 ≤ δε′2/128. Thus H satisfies the assumptions of Theorem III.C.2.

Setting δ = d(log 1/ε)/k for a large enough d ∈ N will also make the T -graph G

satisfy the assumptions of of Theorem III.C.2.

For Subspaces, Lemma III.B.8 gives us that H is (µ, λ(µ))-sampler for

λ(µ) = 4/(µ
√
k). Hence, µ · λ(µ) ≤ 4/

√
k. The latter is at most δε′2/128 for

δ ≥ 512/ε′2
√
k. Lemma III.B.9 says that the graph G is (δ/16, ε′/2)-sampler for

δ ≥ 128q2/(ε′
√
k). Thus, to satisfy the conditions of Theorem III.C.2, we can set

δ ≤ 512q2/(ε′2
√
k)), which is O(1/(ε′2k1/4)) for q ≤ k1/8.

By Remark III.C.3, we get in both cases a required deterministic circuit

(1− δ)-computing f .

III.C.1 Why CA,v works

Here we describe the conditions on our auxiliary graphs (inclusion, S-

and T -graphs) and an edge (A,B) of the inclusion graph, which are sufficient

3In fact, if a circuit C′ ε-computes fk for ε ≥ 0.9, then for k > 1/δ, there is a single algorithm that
(1 − δ)-computes f : “Given input x, sample O(log 1/δ) random k-sets B containing x, and output the
majority answer of C′(B)|x.” For the analysis, it suffices to show that for each but δ/2 fraction of inputs
x, there are at least 2/3 sets B containing x such that C′(B) = fk(B), which is easy to argue.

66

for the circuit CA,v described above to satisfy the conclusion of Theorem III.C.2.

Intuitively, we are using (A, v) as a consistency check to see whether to believe

C ′(B′). To be useful as a consistency check, we should have:

• v = f(A), so if C ′(B′) is correct, it will always be consistent with v on A.

• There are many B′ for A where C ′(B′) is correct.

• On average over B′ where C ′(B′) is consistent with A, C ′(B′) is correct for

most x ∈ B′ \ A.

We show that these conditions suffice, and that many such sets A exist.

We need the following definitions. For a set B ∈ T , let Err(B) denote

the subset of those x’s in B where C ′(B) disagrees with fk(B), and let err(B) =

|Err(B)|/|B|. A set B ∈ T is called correct if err(B) = 0. A set B ∈ T is called

α-incorrect if err(B) ≥ α. For the inclusion graph I(S, T), we call an edge (A,B)

correct if B is correct. As before, we set ε′ = ε/2. Call an edge (A,B) good if it

is correct and at least ε′-fraction of all edges (A,B′) incident to A are correct. An

edge (A,B) of the inclusion graph is called α-excellent if it is good, and moreover,

ExpB′∈Cons[err(B
′)] ≤ α,

where the expectation is over uniformly random B′ that are consistent with B.

In words, for an excellent edge (A,B), we have at least ε′ of correct edges

(A,B′) (and so these B′ ∈ Cons), and at the same time, the average fraction

of errors in the neighbors of A that are consistent with B is less than α. So,

conditioned on sampling a random B′ ∈ Cons, we expect to get a B′ such that

C ′(B′)|x = f(x) for most x ∈ B′.

Our circuit CA,v is defined so that it only considers random B′ ∈ Cons.

This circuit will agree with f well on average, assuming that A, v came from some

excellent edge (A,B), and assuming that the T -graph is a sampler.

Lemma III.C.4. Let an edge (A,B) of the inclusion graph I be α-excellent, and let

the T -graph G(U \A,N(A)) be a (β, λ)-sampler. Suppose that λ ≤ ε′/2, α ≤ β/2,

67

and β ≤ δ/16. Then Pr[CA,v computes f] ≥ 1− δ/4, where the probability is over

uniform x’s and the internal randomness of CA,v.

To prove Lemma III.C.4, we consider two cases. First we consider the set

F ⊆ U \ A of x’s that have too few edges (x,B′) with B′ ∈ Cons in the T -graph

G(U \A,N(A)). These are the x’s for which CA,v is unlikely to produce any answer

and hence fails. Secondly, we bound the average conditional probability of CA,v

producing an incorrect answer given that the circuit produces some answer. Note

that for every x ∈ U \ A this conditional probability is the same for all sampling

steps of CA,v. So, we can just analyze this conditional probability for one sampling

step.

First, we bound the size of F .

Lemma III.C.5. Suppose an edge (A,B) of I is good, and the T -graph G(U \

A,N(A)) is a (β, λ)-sampler. Let F be the subset of U \A with less than µ fraction

of their edges into Cons, where µ = (ε′ − λ)/2. Then the measure of F is at most

β.

Proof. Suppose that F has density at least β. Let F ′ ⊆ F be of density exactly

β. By the assumption of the lemma, we have that Prx∈U\A,y∈N(x)[x ∈ F ′ & y ∈

Cons] < βµ = β(ε′ − λ)/2.

On the other hand, we know that Cons has density at least ε′ (by the

definition of goodness of (A,B)). By Lemma V.E.2, the fraction of edges in G that

go between F and Cons is at least β(ε′−λ)/2, which contradicts our earlier upper

bound.

For a given x ∈ U \ A, let h(x) denote the conditional probability that

CA,v produces an incorrect answer, given that it produces some answer. We will

show that the expectation Expx∈U\A[h(x)] is small.

Lemma III.C.6. Suppose (A,B) is α-excellent, and the T -graph G is a (β, λ)-

sampler. Further suppose that α ≤ β/2 and λ ≤ ε′/2. Then Expx∈U\A[h(x)] ≤ β.

68

Proof. Since CA,v produces an answer on a given input x only if it samples a

consistent neighbor B′ of x in the T -graph G(U \ A,N(A)), we can view h(x) as

follows. Let G′ = G(U \A,Cons) be the induced subgraph of G where we remove

all inconsistent vertices from N(A). For each edge (x,B′) of G′, we color it red if

x ∈ Err(B′), and color it green otherwise. Then h(x) is the fraction of red edges

incident to x in the graph G′.

Let ρ be the measure of Cons in G. We know that ρ ≥ ε′. Let D = |B|

be the right degree of the T -graph G (and hence also of G′). The total number of

red edges in G′ is at most αD|Cons|, by the definition of α-excellence.

By Lemma V.E.3, we conclude that Prx∈U\A,B′∈NG′ (x)[x ∈ Err(B′)] ≤

max{2α/(1− λ/ρ), β}. By assumptions, 1− λ/ρ ≥ 1− λ/ε′ ≥ 1/2, and so α/(1−

λ/ε′) ≤ 2α ≤ β.

Now we can finish the proof of Lemma III.C.4.

Proof of Lemma III.C.4. Lemma III.C.5 implies for every x ∈ U \(A∪F), where F

is of measure at most β, there are at least ε′/4 fraction of edges into Cons. Hence

the probability of CA,v not producing any answer in t = d(log 1/δ)/ε′ sampling

steps for such an x is at most δ/8 for some constant d, e.g., d = 100. For each

such x, the probability that CA,v is wrong, given that CA,v produces an answer,

is h(x). Hence, the overall probability (over random x and internal randomness)

that CA,v is wrong is at most β + δ/8 + Expx∈U\A[h(x)]. By Lemma III.C.6, the

last summand is at most β, and so the total is at most 2β + δ/8 ≤ δ/4 (since

β ≤ δ/16).

III.C.2 Choosing an excellent edge (A,B)

Here we show that if the inclusion graph I is bi-regular and if the S-graph

H is a sampler, then a random edge (A,B) of I will be excellent with probability

Ω(ε).

69

Lemma III.C.7. Suppose the inclusion graph I is bi-regular, and the S-graph H

is an (µ, ν(µ))-sampler4. Moreover, assume that 0 ≤ α ≤ 1 is such that, for every

α/2 < µ ≤ 1, we have µ · ν(µ) ≤ αε′2/4. Then a random edge (A,B) of I is

α-excellent with probability at least ε′/2.

First, we argue the following.

Lemma III.C.8. A random edge (A,B) of a bi-regular inclusion graph I is good

with probability at least ε′.

Proof. Choosing a random edge (A,B) of the inclusion graph I is equivalent to

choosing a random B ∈ T and then choosing a random A ∈ N(B). By the

assumption on C ′, a random B ∈ T is correct with probability at least ε. Thus we

have PrA∈S,B∈N(A)[(A,B) is correct] ≥ ε.

For A ∈ S, let P (A) be the event (over a random choice of A ∈ S) that

PrB′∈N(A)[B
′ is correct] < ε/2. Observe that, conditioned on A ∈ S such that

P (A), we get

PrA∈S,B∈N(A)[(A,B) is correct | P (A)] < ε/2,

and so,

PrA∈S,B∈N(A)[((A,B) is correct) & P (A)] < ε/2.

Finally, the probability that a random edge (A,B) is good is equal to

PrA,B[(A,B) is correct]−PrA,B[((A,B) is correct) & P (A)] > ε− ε/2 = ε/2,

which is equal to ε′, as required.

Now we can prove Lemma III.C.7.

Proof of Lemma III.C.7. To show that an edge (A,B) is α-excellent, it suffices to

argue that ∑
B′∈Cons: err(B′)>α/2

err(B′) ≤ (α/2)|Cons|,

4Here we only need that, for any measure µ subset F of left vertices of H, the fraction of right vertices
with no incident edges into F is at most ν.

70

where Cons is the set of all B′ ∈ N(A) that are consistent with B. This expression

can be equivalently rewritten as

PrB′∈Cons,x∈B′ [err(B
′) > α/2 & x ∈ Err(B′)] ≤ α/2. (III.3)

For independent random A ∈ S and B ∈ N(A), let E1(A,B) be the event

that (A,B) is good, but the inequality (III.3) does not hold (i.e., the probability

in (III.3) is greater than α/2).

For independent random A ∈ S, B ∈ N(A), B′ ∈ N(A), and x ∈ B′, let

E(A,B,B′, x) be the event that

(A,B) is correct & B′ ∈ Cons & err(B′) > α/2 & x ∈ Err(B′).

The probability of E is the average over all B′ ∈ T of the conditional probabilities

of E given B′. Consider any fixed B′ with err(B′) > α/2. For each such B′,

the set A is a uniform element of N(B′) in the inclusion graph. By the sampling

property of the S-graph H(B′, N(B′)), the probability that a random A ∈ N(B′)

completely misses the subset Err(B′) is at most ν(err(B′)). If A has nonempty

intersection with Err(B′), then it cannot be the case that both (A,B) is correct

and B′ ∈ Cons. Hence, given B′, the conditional probability of the event E is at

most ν(err(B′)) · err(B′), and so,

Pr[E] ≤ 1

|T |
∑

B′∈T :err(B′)>α/2

err(B′) · ν(err(B′)),

which is at most αε′2/4 by the assumption of the lemma.

We have

Pr[E | E1] > (α/2)PrB′∈T [B′ ∈ Cons | E1] ≥ αε′/2, (III.4)

where the first inequality is by the definition of the event E1, and the second

inequality by the definition of goodness of (A,B). On the other hand, Pr[E |

E1] = Pr[E & E1]/Pr[E1] ≤ Pr[E]/Pr[E1]. Combined with (III.4), this implies

that Pr[E1] ≤ Pr[E] · 2/(αε′) ≤ ε′/2.

71

Clearly, PrA∈S,B∈N(A)[(A,B) is α-excellent] is at least

PrA∈S,B∈N(A)[(A,B) is good]−PrA∈S,B∈N(A)[E1].

By Lemma III.C.8, the first probability in the difference above is at least ε′, and,

by what we showed earlier, the second probability is at most ε′/2. The lemma

follows.

Proof of Theorem III.C.2. The proof follows easily from Lemmas III.C.4 and III.C.7.

We simply set β = δ/16, λ = ε′/2, α = β/2 = δ/32, and ν(µ) = αε′2/(4µ) =

δε′2/(128µ).

III.D Extensions

III.D.1 Approximate version of the Uniform Direct-Product Theorem

In this section, we prove Theorem III.A.4. The proof is along the same

lines as that of Theorem III.A.3 given in the previous section. We just need to

make the following modifications in our definitions. Before, if C ′(B) was correct,

it was correct on the subset A. Here, we need to bound the chance that, even if

C ′(B) is almost correct, its number of mistakes on A is disproportionately high.

We include this in the definition of “correct edge”, so that two correct edges for

A will be (mostly) consistent on A. Second, before, we had the correct values

for A, and any deviation from these values could be used to rule out C ′(B′) as

inconsistent. Now, our values for even good A and B′ are somewhat faulty, and so

could be somewhat inconsistent. We need to redefine consistency to allow a small

number of contradictory values, and then show that any very incorrect C ′(B′) will

have too many inconsistent values with high probability.

Recall that for B ∈ T , Err(B) is the set of those x ∈ B where C ′(B)|x 6=

f(x), and err(B) = |Err(B)/|B|. We say that a set B ∈ T is δ′-correct if err(B) ≤

δ′ (i.e., C ′(B) and fk(B) disagree on at most δ′ fraction of elements of B). An

72

edge (A,B) of the inclusion graph I is called δ′-correct if B is δ′-correct and

|A ∩ Err(B)| ≤ 2δ′|A|.

For this section, we set ε′ = ε/4. Call an edge (A,B) of I good if it is

δ′-correct and at least ε′-fraction of all neighbors B′ of A are δ′-correct.

The definition of consistency changes as follows. Two neighbors B,B′ of

A are called consistent if C ′(B)|A and C ′(B′)|A disagree on at most 4δ′ fraction

of elements in A. Note that for any two δ′-correct edges (A,B) and (A,B′), we

have that B and B′ are consistent. As before, for a given edge (A,B), we denote

by Cons the set of all B′ that are consistent with B. Finally, the definition of

an excellent edge is as before: An edge (A,B) is α-excellent if it is good, and

moreover, ExpB′∈Cons[err(B
′)] ≤ α.

Next we need to verify that with these modifications in the definitions,

all lemmas of the previous section go through. It is straightforward to check that

all lemmas in Section III.C.1 continue to hold (with the same proofs) with respect

to these new definitions.

For lemmas of Section III.C.2, we need to argue that a random edge (A,B)

is excellent with probability Ω(ε). For this, we need an analogue of Lemma III.C.8.

Lemma III.D.1. Suppose the inclusion graph I is bi-regular, and the S-graph H

is (δ′, 1/2)-sampler. Then a random edge (A,B) of the inclusion graph I is good

with probability at least ε′.

Proof. We choose a random edge (A,B) of I by choosing a random B ∈ T first, and

choosing a random A ∈ N(B). By the assumption on the circuit C ′, the probability

that a random B ∈ T is δ′-correct is at least ε. For every fixed δ′-correct set B, the

sampling property of the S-graph implies that PrA∈N(B)[|A∩Err(B)| > 2δ′|A|] ≤

1/2. It follows that a random edge (A,B) is δ′-correct with probability at least

ε/2.

Similarly to the proof of Lemma III.C.8, let P (A) be the event that

73

PrB′∈N(A)[(A,B
′) is δ′-correct] < ε/4. We get that

PrA∈S,B∈N(A)[((A,B) is δ′-correct) & P (A)] < ε/4.

Finally, the probability that (A,B) is good is equal to the probability

that it is δ′-correct, minus the probability that it is δ′-correct and the event P (A)

happens. The former is ε/2, and the latter is is less than ε/4. Thus (A,B) is good

with probability at least ε/4, as required.

We have the following analogue of Lemma III.C.7.

Lemma III.D.2. Suppose the inclusion graph I is bi-regular, and the S-graph H

is (µ, ν(µ))-sampler. Assume that 1 ≥ α ≥ 24δ′ is such that for every 1 ≥ µ > α/2,

µ · ν(µ) < αε′2/4. Then a random edge (A,B) of I is α-excellent with probability

at least ε′/2.

Proof sketch. Compared with the proof of Lemma III.C.7, the only change is in

the argument to upperbound Pr[E(A,B,B′, x)]. This is modified as follows. Con-

dition on any set B′ ∈ T that is µ-incorrect, for µ > α/2. By the sampling

property of the S-graph, the probability that a random neighbor A ∈ N(B′) has

less than µ/2 fraction of elements from Err(B′) is at most ν(µ). Consider any

fixed A that has more than µ/2 fraction of elements from Err(B′). For any neigh-

bor B of A such that B is consistent with B′, we have that A contains more than

(µ/2−4δ′)|A| elements from Err(B), which is more than 2δ′|A| for µ > α/2 ≥ 12δ′,

and so the edge (A,B) is not δ′-correct. This implies that the conditional proba-

bility Pr[E(A,B,B′, x) | B′] ≤ µ · ν(µ). The rest of the proof is exactly the same

as that of Lemma III.C.7.

With the lemmas above, we get the proof of Theorem III.A.4 in the same

way as the proof of Theorem III.A.3, for δ′ ≥ Ω(δ).

III.D.2 Derandomized Direct-Product Theorems

Here we will prove Theorem III.A.5. For K = poly(1/ε) and k =

O(log 1/ε), let K denote the collection of all k-subsets of {1, . . . , K}. We need

74

to analyze the function h : T ×K → {0, 1}k mapping (T, i1, . . . , ik) to g(T)|i1,...,ik ,

where T is a collection of affine d-dimensional subspaces of Fmq .

First we analyze the input size of h. It consists of O(n) bits to describe a

constant-dimensional affine subspace T , plus k logK = O((log 1/ε)δ−1 · (log 1/ε +

log 1/δ)) = O((log 1/ε)2) bits to specify the k-subset of {1, . . . , K}, for constant δ.

For ε ≥ e−Ω(
√
n), we get that the total input size is O(n).

Suppose h is ε-computable in BPTIME(t1/c)//(1/c) log t. Given a cir-

cuit ε-computing h, we will show how to efficiently compute a list of circuits one

of which (1 − δ)-computes f . This will imply that f is (1 − δ)-computable in

BPTIME(t)// log t, contrary to the assumption of the theorem.

Our argument follows along the lines of a standard analysis of code con-

catenation (see, e.g., [STV01]). Suppose we have a circuit C ′ that ε-computes

h. By averaging, we get that for at least ε/2 fraction of T ∈ T , the equality

C ′(T, κ) = g(T)|κ holds for at least ε/2 fraction of k-subsets κ ∈ K. Call Tgood the

set of such good T s.

By Theorem III.A.3, we know that the Independent intersection code

is δ′-approximately (ε/2, O(1/ε))-list decodable. So, for every T ∈ Tgood, we can

efficiently recover a list of ` = O(1/ε) length-K strings, one of which (1−δ′)-agrees

with g(T).

For each T ∈ T , let us order the strings returned by our approximate

list-decoding algorithm on input C ′(T, ·). Define a list of ` circuits C ′′1 , . . . , C
′′
` for

g(T), where C ′′i (T) outputs the ith K-bit string on the list corresponding to T . By

averaging, there is some 1 ≤ i ≤ ` such that C ′′i (T) will (1 − δ′)-agree with g(T)

for at least 1/` fraction of inputs T ∈ Tgood, which is at least Ω(ε2) fraction of all

inputs T to g. Let us call such a circuit C ′′i approximately good for g.

By Theorem III.A.4, the Subspaces intersection code is (δ, δ′) - approxi-

mately (Ω(ε2), O(1/ε2))-list-decodable. Thus, for each of our ` circuits C ′′1 , . . . , C
′′
` ,

we efficiently get O(1/ε2) new circuits such that, if C ′′i is an approximately good

circuit for g, then the list of circuits obtained from that C ′′i will have a circuit

75

(1− δ)-computing f . Overall, we efficiently construct a list of O(`/ε2) = O(1/ε3)

circuits for f , one which will (1 − δ)-compute f . Hence, f is not δ-hard for

BPTIME(t)// log t. A contradiction.

III.D.3 Hardness condensing

In this subsection, we reinterpret the results of the previous section to

give a version of hardness condensing for the semi-uniform model, proving Theo-

rem III.A.6.

Imagine the sets B before as being exponentially large but succinctly

representable (as in the subspace construction for large values of k = qd). The

idea is that, instead of C ′(B) explicitly giving the values of f on B, we could

replace C ′(B) with a meta-algorithm that produces a circuit that computes f |B.

We could still estimate the agreement of two such circuits on A. Thus, if f is hard,

the restricted function f |B is hard for almost all B.

To get a precise statement of this idea, consider a family of functions

fh(x) = F (h, x) where h ∈ H and x ∈ U = {0, 1}n. Call the family fh (1 − ε)-

hard to δ-compute in semi-uniform time t if, for any time t(|h| + n) probabilis-

tic algorithm A(h, r) which produces a circuit Ch,r on n bit inputs x, we have

Prh,r[Ch,r δ-computes fh] ≤ ε. 5

Assume S and T meet the conditions of Theorem III.C.2, and that fur-

thermore, we can describe B ∈ T and A ∈ S as strings of length n1, and sample

uniformly from either, using at most n2 random bits, in time polynomial in n1 +n2.

For x of length n2, let fB(x) be f applied to the random element of B obtained

by using string x in the sampling algorithm. (For example, in the case B is a d-

dimensional affine subspace of (Fq)m, we can represent B by its basis and skew vec-

tors b1, . . . , bd, v, with n1 = (d+ 1)m log q bits. Then with n2 = d log q bits, we can

sample from B by picking random α1, . . . , αd and letting y = α1b1 + · · ·+αdbd + v.

5Note that this definitions is a generalization of hardness of a single function in the semi-random
model: f being δ-hard for BPTIME(t(n))//l(n) is the same as the function family with single member f
being (1− 1/2l(n))-hard to (1− δ)-compute in semi-uniform time t(n).

76

Then fb1,...,bd,v(α1, . . . , αd) = f(α1b1 + · · ·+ αdbd + v).)

Then by altering the previous proof of Theorem III.A.4 as specified above,

we have:

Theorem III.D.3. Let S, T , δ, ε meet the conditions of Theorem III.C.2, and

be efficiently describable and sampleable as above. There is a constant c so that if

f is δ-hard for BPTIME(t(n))// log t(n), and ε > t(n)−1/c, then the family fB is

(1− ε)-hard to (1− Ω(δ))-compute in semi-uniform time t(n)1/c.

The only difference is that the algorithm C ′, on set B, generates a circuit

VB rather than values v. The advice becomes (A, VB), and when we generate B′

with A ∪ x ⊆ B′, we use the algorithm to compute the circuit VB′ , and then

estimate consistency by randomly sampling O((log 1/ε)/δ2) elements a ∈ A and

seeing for how many VB(a) 6= VB′(a).

Theorem III.A.6 is equivalent to the following corollary of Theorem III.D.3.

Corollary III.D.4. Let T be the family of random affine subspaces of dimen-

sion d of Fmq , where d ≥ 8. For some absolute constant c, if f is δ-hard for

BPTIME(t(n))// log t(n) then the family f |B for B ∈ T is (1−ε)-hard to (1−Ω(δ))-

compute in semi-uniform time t(n)1/c, for ε = max{q−d/16, t(n)−1/c}. Moreover,

each f |B is equivalent to a function on d log q bit inputs.

Finally, we observe that Corollary III.D.4 can be used to prove the fol-

lowing derandomized hardness amplification result.

Theorem III.D.5. Let δ > 0, 2
√
n+1 ≥ q ≥ 2

√
n, and let T be the family of random

affine subspaces of dimension d = 8 of Fmq , let k(n) = O(
√
n/δ), and let t(n) ≤ 2

√
n.

For some absolute constant c, if f is δ-hard for BPTIME(t(n))// log t(n) then the

function g(B, y1, . . . , yk) = (f |B)k(y1, . . . , yk) for B ∈ S and y1, . . . , yk ∈ B, is

1− t(n)−1/c hard for BPTIME(t(n)1/c)//(1/c) log t(n). Moreover, g is equivalent to

a function on O(n) bits.

Proof. Assume we have an algorithm that with probability ε > t(n)1/c > e−k(n)δ/c

produces a circuit that ε-computes g = (f |B)k in time t′(n) = t(n)1/c. Then for

77

each of the ε/2 B’s where the conditional probability of success for the circuit is

at least ε/2, we can use the list decoder for our Independent code to get a circuit

1 − Ω(δ) computing fB in time t′(n)/poly(ε). In other words, the family f |B has

a semi-uniform algorithm that 1− Ω(δ) computes it with probability poly(ε). By

Theorem III.D.3, f has a semi-uniform time t′(n)/poly(ε) algorithm that (1− δ)-

computes f with poly(ε) success, a contradiction to the assumed hardness.

III.E k-XOR code

Here we prove Theorem III.A.7. We first list-decode a code which is a

concatenation of our Independent code and the standard Hadamard code.

Let Indk be Independent k-wise direct-product code. Let Hadk be the

Hadamard code on messages of size k, i.e., for every message msg ∈ {0, 1}k, the

encodingHadk(msg) is a function mapping a string r ∈ {0, 1}k to the inner product

〈msg, r〉 over the binary field F2. Define Codek to be the concatenation of Indk

and Hadk, i.e., Codek(f) is a function mapping (x1, . . . , xk; r) to
∑k

i=1 f(xi) · ri
mod 2, for xi ∈ {0, 1}n and r ∈ {0, 1}k.

We will list-decode this code, using the algorithm of [GL89] for the

Hadamard code, and our algorithm A for the Independent code. First we state

the result of Goldreich and Levin.

Theorem III.E.1 ([GL89]). There is a probabilistic algorithm A with the following

property. Let h ∈ {0, 1}k be any string , and let B : {0, 1}k → {0, 1} be any

predicate such that |Prr∈{0,1}n [B(r) = 〈h, r〉] − 1/2| ≥ γ, for some γ > 0. Then,

given oracle access to B and given γ, the algorithm A runs in time poly(k, 1/γ),

and outputs a list of size l = O(1/γ2) such that with high probability the string h

is on this list.

Using this GL algorithm of Theorem III.E.1, we will show the following.

Theorem III.E.2. The code Codek is efficiently, locally, δ-approximately (1/2 +

ε, O(1/ε2))-list decodable, for δ = O(log 1/ε/k).

78

Proof. Let C ′ be the circuit which (1/2 + ε)-computes Codek(f). For a given k

subset x̄ = (x1, . . . , xk), define γx̄ = Prr[〈fk(x̄), r〉 = C ′(x̄; r)] − 1/2. Clearly, we

have Expx̄[γx̄] ≥ ε (since C ′ (1/2 + ε)-computes Codek(f)).

For a given x̄ = (x1, . . . , xk), we set h = fk(x̄) and B(r) = C ′(x̄; r), and

run the GL algorithm with γ = ε/2. For every x̄ with |γx̄| ≥ ε/2, the GL algorithm

will return a list h1, . . . , hl of size l = O(1/ε2) that, with high probability, contains

h.

For each hi on the list, define γx̄,i = Prr[〈hi, r〉 = C ′(x̄; r)] − 1/2. By

random sampling, we can efficiently estimate each γx̄,i to within a constant factor,

with high probability. Let γ̃x̄,i denote the corresponding approximation. We will

choose string hi with probability proportionate to (γ̃x̄,i)
2, i.e., with probability

(γ̃x̄,i)
2/
∑l

j=1(γ̃x̄,j)
2.

For the analysis, first observe that 2γx̄,i is the discrete Fourier coefficient

at hi of the Boolean function C ′(x̄, ·). By Parseval’s identity, we have
∑l

j=1 4·γ2
x̄,i ≤

1. Assuming that we have constant-factor approximations of all γx̄,i’s and that h

was on the list, we conclude that the described algorithm outputs h with probability

Ω(γ2
x̄). Since the assumed two events happen with high probability, we get that

the probability of producing h is at least α · γ2
x̄ for some absolute constant α > 0.

Denote by X the set of all inputs x̄, and by G the set of those x̄ where

|γx̄| ≥ ε/2. The probability (over a random x̄ and internal randomness) that the

described algorithm outputs the correct string fk(x̄) is

(1/|X|)
∑
x̄∈G

α · γ2
x̄ ≥ (1/|X|)

∑
x̄∈X

α · γ2
x̄ −

∑
x̄∈X\G

α · γ2
x̄

 .

The first term is α times Expx̄[γ
2
x̄] ≥ (Expx̄[γx̄])

2 ≥ ε2, by Cauchy-Schwarz and the

lower bound Expx̄[γx̄] ≥ ε. The second term is at most α · ε2/4 by the definition

of G. So the overall success probability of the described algorithm at computing

fk is at least Ω(ε2).

Finally, we apply Theorem III.A.3 to the described algorithm for fk,

concluding that the code Codek is efficiently, locally, δ-approximately (1/2 +

79

ε, O(1/ε2))-list decodable, for δ = O((log 1/ε)/k).

To prove Theorem III.A.7, we will show how to list-decode the code ob-

tained by concatenating Ind2k with the truncated Hadamard code Had2k,k where

the given 2k-bit message msg is encoded by the string of inner products 〈msg, r〉

mod 2, over all 2k-bit strings r of Hamming weight exactly k. More precisely,

we consider the following code Code(x1, . . . , x2k; r) =
∑2k

i=1 f(xi)ri mod 2, where

r ∈ {0, 1}2k have Hamming weight exactly k.

First we observe that given a circuit C which (1/2 + ε)-computes the k-

XOR encoding of f , the following circuit C ′ will (1/2 + ε)-compute the encoding

Code defined above: “Given (x1, . . . , x2k; r), for xi ∈ {0, 1}n and r ∈ {0, 1}2k of

Hamming weight k, let y1, . . . , yk be the subset of (x1, . . . , x2k) corresponding to

the k positions i where ri = 1. Output the value C(y1, . . . , yk).”

Indeed, for uniformly random 2k-subsets (x1, . . . , x2k) and a random string

r ∈ {0, 1}2k conditioned on having Hamming weight exactly k, our circuit C ′ runs

the circuit C on a uniformly random k-subset (y1, . . . , yk), and hence outputs the

value ⊕ki=1f(yi) = Code2k(f)(x1, . . . , x2k; r) with probability at least 1/2 + ε.

We can also get a circuit C ′′ that (1/2 + Ω(ε/
√
k))-computes the code

Codek defined earlier: Given (x1, . . . , x2k; r), for xi ∈ {0, 1}n and r ∈ {0, 1}2k,

output a random bit if the Hamming weight of r is not k. Otherwise, let y1, . . . , yk

be the subset of (x1, . . . , x2k) corresponding to the k positions i where ri = 1.

Output the value C(y1, . . . , yk).” For the analysis, simply observe that a random

2k-bit string will have Hamming weight k with probability Ω(1/
√
k). Conditioned

on r being of weight k, we get a correct answer with probability 1/2+ ε; otherwise,

we are correct with probability 1/2.

Applying Theorem III.E.2 to the circuit C ′′ will yield a list of O(k/ε2)

circuits, one of which (1− δ)-computes f .

To get the optimal O(1/ε2) list size, we will approximately list-decode the

inner, truncated Hadamard code in Code. The idea is as follows. We will mimic

the proof of Theorem III.E.2 to argue that with probability Ω(ε2) over random

80

2k-tuples (x1, . . . , x2k) and internal randomness, one can produce a 2k-tuple of

bits (b1, . . . , b2k) such that for all but O(δ) fraction of indices i ∈ [2k], we have

f(xi) = bi. Running the approximate list-decoder of Theorem III.A.4, we then get

a list of O(1/ε2) algorithms, one of which (1− δ)-computes f .

We need the following.

Lemma III.E.3. Let a = (a1, . . . , a2k) be any 2k-bit string, and let B be a function

mapping 2k-bits strings r of Hamming weight k to {0, 1} such that Prr[〈a, r〉 =

B(r)] = 1/2 + η, for some unknown η. Suppose we are given γ > 0 such that

|η| ≥ γ. Then there is an algorithm that, given γ and oracle access to B, runs in

time poly(k, 1/γ) and, with probability Ω(η2), outputs a 2k-bit string that agrees

with a in all but at most δ′ fraction of positions, for δ′ = O((log 1/γ)/k).

Proof. Given B, we define the following randomized algorithm B′ mapping 2k-bit

strings to {0, 1}: “On a given r, if the Hamming weight of r is k, output B(r);

otherwise, output a random bit.”

It is easy to see that B′(r) will agree with the Hadamard encoding

Had2k(a) at r for at least 1/2 + Ω(η/
√
k) fraction of 2k-bit strings r. Running

the Goldreich-Levin list-decoding algorithm on this B′ with the agreement param-

eter Ω(γ/
√
k), we get with high probability a list of at most ` = O(k/γ2) strings

h1, . . . , h` which contains our string a. Next we describe an algorithm for producing

a string approximately equal to a, with probability Ω(η2).

For each i ∈ [`], define ηi = Prr[〈hi, r〉 = B(r)] − 1/2, where the proba-

bility is over 2k-bit strings r of Hamming weight k. By random sampling, we can

estimate each ηi to within a constant factor, with high probability. Let η̃i denote

the respective approximations.

Let us order |η̃i|’s from largest to smallest, and let us discard all those

strings hi where |η̃i| < γ/2. For the remaining strings, assume w.l.o.g. that

|η̃1| ≥ · · · ≥ |η̃`′|. We partition the strings hi’s into groups as follows: Let B1 be

the set of all strings of Hamming distance at most δ from h1; we call h1 a leader

of cluster B1. Remove all strings B1 from our list. Let hj be the first remaining

81

string (according to the order on η̃i’s). Define B2 to be the set of all remaining

strings of Hamming distance at most δ from hj; here hj is a leader of B2. Remove

B2 from the list, and continue until all strings are partitioned into disjoint clusters

B1, B2, . . . , Bt. For simplicity of notation, assume that the leaders of these clusters

are h1, h2, . . . , ht.

Finally, output a leader hi with probability η̃2
i /
∑t

j=1 η̃
2
j .

For the analysis, we will need the following

Claim III.E.4.
∑t

i=1 η
2
i ≤ 1/2.

Proof. The idea of the proof is the following. The truncated Hadamard code

Had2k,k maps any two far-apart messages msg1 and msg2 to the codewords code1

and code2 that are almost Hamming distance 1/2 apart. Switching from the {0, 1}

alphabet to the {1,−1} alphabet, the previous statement means that the normal-

ized inner product Expr[code1(r) · code2(r)] of the vectors code1 and code2 is close

to 0, where the expectation is over 2k-bit strings of weight k.

Thus the encodings y1, . . . , yt of the leaders h1, . . . , ht, respectively, are

pairwise almost orthogonal. It is also easy to see that 2ηi = Expr[yi(r) ·B(r)], and

so ηi’s are the projections of the vector B onto vector yi. If the yi’s were pairwise

orthogonal, we would get that B =
∑t

i=1(2ηi) · yi + B⊥, where B⊥ is orthogonal

to every yi, for i ∈ [t]. Taking the normalized inner product of B with itself, we

would get Expr[(B(r))2] =
∑t

i=1(2ηi)
2 + Expr[(B

⊥(r))2]. Since (B(r))2 = 1 for

every r, we conclude that
∑t

i=1(2ηi)
2 ≤ 1.

In reality, the vectors yi’s are pairwise almost orthogonal, and so the

calculations will be slightly more complicated, but will follow the same idea. For

notational convenience, denote αi = 2ηi. Let us write the vector B = (
∑t

i=1 αi ·

yi) + (B −
∑t

i=1 αi · yi). Also for notational convenience in the rest of the proof,

82

let us denote by 〈B, yi〉 the normalized inner product Expr[B(r) · yi(r)]. We have

1 = 〈B,B〉 =
∑
i,j

αiαj · 〈yi, yj〉+ 2〈
t∑
i=1

αi · yi, B −
t∑
i=1

αi · yi〉

+〈B −
t∑
i=1

αi · yi, B −
t∑
i=1

αi · yi〉.

The last term on the right-hand side is nonnegative, and after dropping it we get

the following:

1 ≥ 2
∑
i

α2
i −

∑
i,j

αiαj · 〈yi, yj〉 =
∑
i

α2
i −

∑
i 6=j

αiαj · 〈yi, yj〉.

Hence,
∑

i α
2
i ≤ 1 +

∑
i 6=j αiαj · 〈yi, yj〉. Since |αi| ≤ 1 for all i, the latter is at

most 1 + t2 ·maxi 6=j{〈yi, yj〉}.

To finish the proof, we need to upperbound t and maxi 6=j{〈yi, yj〉}. We

start with the latter. Consider any two 2k-bit messages msg1 and msg2 that

differ in at least δ′ fraction of positions. Then the normalized inner product of

their respective encodings (in the {1,−1} alphabet) will be Expr[(−1)〈msg1⊕msg2,r〉],

where r ranges over all 2k-bits strings of Hamming weight k. Using the Chernoff-

Hoeffding bounds, this expectation can be upperbounded by e−Ω(δ′k).

The bound on t can be obtained by the Johnson bound: if y1, . . . , yt have

pairwise inner products at most e−Ω(δ′k) in absolute value, and each |〈yi, B〉| ≥ γ,

for i ∈ [t], then t ≤ 1/(γ2 − e−Ω(δ′k)) (see,e.g., [IJK06]). For δ′ = d(log 1/γ)/k

for a large enough constant d, we get that t2 · maxi 6=j{〈yi, yj〉} ≤ 1. The claim

follows.

Suppose that our string a was put in a cluster with a leader hi. This means

that the (approximation of the) agreement of the truncated Hadamard encoding

of hi with B(r) is at least as big as that of a with B(r) (in absolute values), and

that a and hi are at most δ′ Hamming distance apart. We get by the claim above

that hi is output with probability Ω(η2), as required.

Proof of Theorem III.A.7. Let Code be the concatenation of Ind2k and the trun-

cated HadamardHad2k,k. As explained earlier, from a circuit C (1/2+ε)-computing

83

f⊕k, we can get C ′ that (1/2 + ε)-computes Code. For each 2k-subset x̄ =

(x1, . . . , x2k), let εx̄ = Prr[〈fk(x̄), r〉 = C ′(x̄, r)]− 1/2. Clearly, Expx̄[εx̄] ≥ ε.

For a given x̄, let a = f 2k(x̄) and let B(r) = C ′(x̄, r). Run the algorithm

of Lemma III.E.3 on this B(r), with the parameter γ = ε/2. If |εx̄| ≥ γ, then we

will get with probability Ω(ε2x̄) a 2k-bit string that agrees with a in all but at most

δ′ positions, for δ′ = O((log 1/ε)/k).

As in the proof of Theorem III.E.2 above, we then obtain a randomized

algorithm for Ind2k that with probability at least Ω(ε2) (where the probability

is over x̄ and the internal randomness of the algorithm) outputs a string that is

at most δ′ distance away from f 2k(x̄). Running the approximate list-decoding

algorithm for Ind2k from Theorem III.A.4, we obtain a list of O(1/ε2) circuits, one

of which (1− δ)-computes f , for δ ≤ O(δ′).

III.F Conclusions

We gave an efficient, approximate, local list-decoding algorithm for the

direct-product code, with information-theoretically optimal parameters (to within

constant factors). Our new decoding algorithm is also very efficient (is in uniform

randomized AC0), and has a simple analysis. We also defined a natural general-

ization of direct-product codes, intersection codes, for families of subsets (S, T),

and gave the conditions on (S, T) that suffice for efficient (approximate, local)

list-decoding of these generalized codes. Finally, we gave a derandomized version

of the direct-product code with an efficient decoding algorithm.

An interesting remaining open question is to get a derandomized uniform

direct-product theorem with better parameters (pushing the error ε to e−Ω(n), while

keeping the new input size linear in the original input size). Another question is to

improve the parameters of our approximate version of the uniform direct-product

theorem (Theorem III.A.4), ideally achieving a uniform version of the “Chernoff-

type” direct-product theorem in the spirit of [IJK07]. Finally, it is interesting to

84

see if the ideas from our new list-decoding algorithm can help in improving the

known uniform hardness amplification results for NP of [Tre05].

Acknowledgements : A summary of the results in this Chapter appeared in

the paper “Uniform Direct Product Theorems: Simplified, Optimized, and De-

randomized” co-authored with Russell Impagliazzo, Valentine Kabanets and Avi

Wigderson. In Proceedings of the Fortieth Annual ACM Symposium on Theory

of Computing (STOC’08), pages 579–588, 2008.

IV

Uniform Hardness Amplification

IV.A Introduction

In the first chapter we briefly discussed Average-case complexity. In con-

trast with classical complexity theory, here we are interested in solving problems

on the average (that is many instances) rather than in the worst case (all in-

stances). The motivation for this is that worst-case analysis might be too strong

a requirement as far as problem solving is concerned. For most practical cases we

might be only interested in solving problems on instances which occur frequently.

Furthermore, there are classes of problems like NP for which it is unknown if there

are efficient algorithms which solve these problems in the worst-case and is even

difficult to prove/disprove the same. Analyzing these problems in the average case

is one of the ways to make progress on these problems. One question that we re

interested in is how the degrees of average case hardness within some complexity

class, say NP, are related with respect to some fixed model of computation (e.g.

circuits, randomized turing machines). For example, if there is a language within

NP which is hard on the average for polynomial size circuits, then is there another

language within NP which is even harder for polynomial size circuits? What about

the same question with respect to randomized turing machines running in polyno-

mial time? This question is referred to as “uniform hardness amplification within

85

86

NP”.

In the previous chapters, we have already seen similar hardness amplifi-

cation results and it would be natural to try to extend these results to resolve some

of the above questions. Let us start by setting up the basic definitions. Firstly,

language recognition can be interpreted as function computation if we consider the

characteristic function of a language L.

Definition IV.A.1 (Characteristic of a Language). Let L be a language. The

characteristic of L is a mapping L : {0, 1}∗ → {0, 1} defined as L(x) = 1 iff x ∈ L.

Given this, we can talk about hardness of computing L,Lk, L⊕k on the

average. Note that we cannot use our direct product theorems since Lk is not

a boolean function but we can use our analogous XOR lemmas. Let us now see

some of the problems we might encounter in resolving questions related to hardness

amplification within NP.

1. XOR construction: We can show that for any NP function L 1, if L is hard

to compute on average then L⊕k is even harder. However we cannot use this

for proving hardness amplification results within NP. The simple reason is

that for any NP function L, L⊕ L is not an NP function unless NP = coNP.

Remember that our proof of the xor lemma was through the direct product

theorem. Given that L is hard on the average, we showed that Lk becomes

even harder and then extended the hardness result to L⊕k. Instead of using ⊕

as the combination function we can use a combination function g : {0, 1}k →

{0, 1} which ensures that g(L(.), ..., L(.)) is also an NP function. Monotone

functions which are defined as follows satisfy this property.

Definition IV.A.2 (Monotone Function). Let k ∈ N. A function g :

{0, 1}k → {0, 1} is called monotone if for any pair of strings x, y ∈ {0, 1}k, x ≺

y, g(x) = 1 iff g(y) = 1. Here x ≺ y denotes that ∀i ∈ {1, ..., k}, x[i] = 1 ⇒

y[i] = 1.

1by NP function we mean the characteristic function of a language in NP

87

So, then the question is can we can extend the hardness result for Lk to

g(L(.), ..., L(.)) as we did for L(.) ⊕ ... ⊕ L(.)? There also might be an

independent way to prove the this than going through the direct product

construction.

2. Uniformity: Another issue that comes up when using direct product theorems

and the xor lemma to show hardness amplification within some complexity

class is that of uniformity. In Chapter 2 we saw how a certain minimum

amount of nonuniformity was necessary for proving direct product theorems

and xor lemma. That is, if we wanted to show that for a function f :

{0, 1}∗ → {0, 1}, fk is very hard to compute for probabilistic turing machines,

then we have to start with the assumption that f is hard to compute for

probabilistic turing machines which take some amount of advice. This poses

a problem when we are interested in uniform hardness amplification where

we want to show that if there is a language which is hard with respect to

BPP algorithms then there is another language in the same complexity class

which is even harder with respect to BPP algorithms.

For certain complexity classes like NP small amount of advice can be removed.

More specifically, if there is a language in NP which is hard with respect to

BPP algorithms with small amount of advice, then there is another language

which is hard with respect to BPP algorithms with no advice. We will discuss

these results in the later section of this Chapter.

In a nice paper, Ryan O’ Donnell used monotone combination functions

to show hardness amplification within NP with respect to polynomial size circuits.

The parameters were greatly improved by Healy, Vadhan, and Viola though for

languages which are balanced. Below we give the main theorems of both these

works.

Theorem IV.A.3 ([O’D04]). For any polynomial p, if there is a language in NP

which is (1/p(n))-hard for polynomial size circuit families, then there is another

88

language in NP which is (1/2− 1/n0.33)-hard for polynomial size circuit families.

Theorem IV.A.4 ([HVV04]). For any polynomials p and q, if there is a bal-

anced language2 in NP which is (1/p(n))-hard for polynomial size circuit families,

then there is another balanced language in NP which is (1/2 − 1/q(n))-hard for

polynomial size circuit families.

Trevisan proved hardness amplification results with respect to uniform

algorithms. The bounds that were obtained were worse compared to the above

results and it was mainly due to large amount of nonuniformity required in the

proofs of these hardness amplification results. Here is the theorem that was proved.

Theorem IV.A.5 ([Tre05]). For any polynomial p, if there is a language in NP

which is (1/p(n))-hard for probabilistic polynomial time algorithms, then there is

another language in NP which is (1/2−1/(log n)α)-hard for probabilistic polynomial

time algorithms. Here α > 0 is a small absolute constant.

In our study of uniform direct product theorems and uniform XOR lemma,

we have obtained the optimal bounds for the nonuniformity required in such argu-

ments. The only drawback when using our results to show hardness amplification

within complexity class NP is that we use XOR as the combination function (as

opposed to some monotone function). In the next section, we use our results to

show hardness amplification within a complexity class where XOR’s of multiple

languages is still in the same complexity class.

IV.B Uniform hardness amplification in PNP‖

In this section, we show uniform hardness amplification within the com-

plexity class PNP‖ , the class of problems reducible to NP through one round of

parallel oracle queries. More specifically, we prove the following theorem.

2a language such that its characteristic function is balanced for each input size.

89

Theorem IV.B.1 (Hardness amplification within PNP‖). For all sufficiently large

n and any constants c, d, if there is a function f ∈ PNP‖ which is (1/nc)-hard for

probabilistic polynomial time algorithms then there is another function g ∈ PNP‖

which is (1/2− 1/nd)-hard for probabilistic polynomial time algorithms.

Our Uniform XOR Lemma, Lemma III.A.2 immediately gives us hardness

amplification for probabilistic algorithms with small amount of advice.

Lemma IV.B.2. Let f : {0, 1}∗ → {0, 1} be a Boolean function. For all suffi-

ciently large n and any constants c, d, if f is 1/nc-hard for probabilistic polynomial-

time algorithms with O(log n)-size (randomness dependent) advice. Then the func-

tion f⊕k, for k = Ω(n2c), is (1/2 − 1/nd)-hard for probabilistic polynomial-time

algorithms.

First, we observe that our Lemma III.A.2 immediately gives us hardness

amplification in the nonuniform setting with very small amount of advice.

Lemma IV.B.3. Let δ, ε : N → [0, 1] and f : {0, 1}∗ → {0, 1} be functions. For

all sufficiently large n, if there is a probabilistic polynomial-time algorithm that

agrees with the function f⊕k on at least 1/2 + ε(n) fraction of inputs, then there is

a probabilistic polynomial-time algorithm that, given advice of size O(log 1/ε(n)),

agrees with f on at least 1 − δ(n) fraction of inputs, where δ(n) ≥ c log 1/ε(n)
k

for

some constant c.

Proof. On an input x, we do the following. Given a probabilistic algorithm (1/2 +

ε)-computing the XOR function f⊕k, we apply to it the algorithm of Lemma III.A.2

from the previous chapter for some poly(1/ε) number times. This gives us a list of

poly(1/ε) Boolean circuits such that, with probability exponentially close to 1, at

least one of the circuits on the list (1 − δ)-computes f . The advice string of size

log(poly(1/ε)) = O(log 1/ε) can then be used to identify the correct circuit on the

list. We output the result of running this circuit on the input x.

Now Lemma IV.B.2 is an immediate corollary of Lemma IV.B.3 above.

90

Logarithmic advice can sometimes be eliminated. For functions in NP,

we can use the average-case search-to-decision reduction due to Ben-David, Chor,

Goldreich, and Luby [BDCGL92] to obtain the following lemma.

Lemma IV.B.4. Suppose there is a language L ∈ NP and a constant c such that

L is 1/nc-hard with respect to probabilistic polynomial-time algorithms. Then there

is a language L′ ∈ NP and a constant d such that L′ is 1/nd-hard with respect to

probabilistic polynomial-time algorithm taking O(log n) bits of advice.

We will need the average-case “search-to-decision” reduction for NP from

[BDCGL92]; we state this result in the form it was stated in [Tre05].

Lemma IV.B.5 ([BDCGL92]). Let L ∈ NP be any language, and let R(·, ·) be

the polynomial-time relation defining L, where |y| ≤ w(|x|) for some polynomial

function w(·). Then there exist a language L′ ∈ NP, a polynomial l(·), and a

probabilistic polynomial-time algorithm A such that the following holds. Given

a circuit C ′ that (1 − δ′)-computes L′ on inputs of length l(n), the algorithm A

outputs, with probability at least 1 − 2−poly(n), a circuit C that solves the search

version of L (with respect to R) on at least 1 − δ fraction of inputs of size n, for

δ = O(δ′w2(n)).

Proof of Lemma IV.B.4. Let L be a given δ = 1/nc-hard language in NP, let R be

its defining relation, and let w(n) = na be the upper-bound on the witness size for

n-bit inputs in L. We claim that the language L′ ∈ NP given in Lemma IV.B.5 is

δ′ = Ω(δ/w2(n))-hard, on l(n)-bit inputs, with respect to probabilistic polynomial-

time algorithms with O(log n) bits of advice.

Indeed, suppose there is an advice-taking probabilistic polynomial-time

algorithm that (1 − δ′)-computes L′. Enumerate all polynomially many advice

strings used by this algorithm, getting a list of polynomially many circuits such

that, with probability exponentially close to 1, at least one of the circuits on the

list will (1− δ′)-compute L′. Apply the probabilistic polynomial-time algorithm A

of Lemma IV.B.5 to each of the circuits on the list. This yields a list of circuits

91

such that, with high probability, at least one of them solves the search version of

L (with respect to R) for at least 1− δ fraction of inputs. Simulate each of these

circuits on a given input x, and accept iff at least one of them produces a witness

y such that R(x, y) holds. It follows that we have a probabilistic polynomial-time

algorithm (1− δ)-computing L, contradicting the assumed hardness of L.

Combining Lemma IV.B.2 and Lemma IV.B.4, we obtain the following.

Theorem IV.B.6. Suppose there is a Boolean function family f ∈ NP and a

constant c such that f is 1/nc-hard with respect to probabilistic polynomial-time

algorithms. Then there is a Boolean function family g ∈ PNP‖ that cannot be

computed by any probabilistic polynomial-time algorithm on more that 1/2 + 1/nd

fraction of inputs, for any constant d.

Finally, we observe that the existence of a hard function in PNP‖ implies

the existence of a hard function in NP, and so Theorem IV.B.6 can be used to

achieve uniform hardness amplification in PNP‖ claimed in Theorem IV.B.1.

Proof of Theorem IV.B.1. Let f be computed by a SAT-oracle Turing machine M

in time ne, for some constant e. Define a new Boolean function h as follows: For

x ∈ {0, 1}n and i ∈ [ne], h(x, i) = 1 iff M on input x makes at least i SAT-oracle

queries and the ith SAT-oracle query is a satisfiable formula.

Clearly, the function h is in NP: Given x and i, we simulate the oracle

machine M on x, recording all SAT-oracle queries asked by M — this can be done

since M asks all its queries in parallel. If the number of queries is less than i, we

reject. Otherwise, we nondeterministically check that the ith SAT-oracle query is

a satisfiable formula.

Next we argue that the function h is at least 1/(ncne)-hard with respect

to probabilistic polynomial-time algorithms. Indeed, suppose this is not the case.

Then there is a probabilistic polynomial-time algorithm A such that for each of

at least 1− 1/nc fraction of xs the algorithm A errs on less than 1/ne fraction of

inputs (x, i). Since, for each such x, the number of different inputs (x, i) is at most

92

ne, we conclude that A is correct on all SAT-oracle queries made by the machine M

on input x. Hence, using this algorithm A to answer SAT-oracle queries, we get a

probabilistic polynomial-time algorithm (1−1/nc)-computing f , which contradicts

the assumed hardness of f .

Applying Theorem IV.B.6 to the NP-function h, we get the required hard

function g ∈ PNP‖ .

Trevisan [Tre05] gives uniform hardness amplification for NP: If NP con-

tains a language that is 1/poly(n)-hard with respect to probabilistic polynomial-

time algorithms, then NP contains a language that is (1/2 − 1/ logα n)-hard, for

some constant α. Our Theorem IV.B.1 achieves much better hardness amplifica-

tion: from 1/poly(n)-hardness to (1/2 − 1/nd)-hardness for any d. However, it

only applies to the class PNP‖ rather than NP.

Acknowledgements This Chapter is, in part, based on the paper “Approxi-

mately List-decoding Direct Product Codes and Uniform Hardness Amplication”

co-authored with Russell Impagliazzo and Valentine Kabanets. In Proceedings of

the Forty-Seventh Annual IEEE Symposium on Foundations of Computer Science

(FOCS’06), pages 187–196, 2006.

V

Chernoff-type Direct Product

Theorems

(This Chapter a joint work with Russell Impagliazzo and Valentine
Kabanets.)

V.A Introduction

We studied direct product theorems which were formal statement of the

intuition: “if solving one instance of a problem is hard to solve, then solving

multiple instances of the problem is even harder”. Intuitively, if a problem is

hard to solve on the average, then solving more than the expected number of

problem instances from a pool of given instances should be very hard. We call such

statements “Chernoff-type direct product theorems”. We discuss such results in

this Chapter. As in the traditional direct product theorems, we start by looking at

a simple scenario of boolean functions with fixed input length computed by boolean

circuits. Here we will show that if a boolean function f is hard to solve on the

average, then not only is the direct product function fk become harder to compute

(previous direct product theorems) but it also becomes harder to approximate fk

(Chernoff-type direct product theorem). We discuss this in the next section.

93

94

V.B A Simple Chernoff-type Direct Product Theorem for

Boolean Functions

In this section we look at a simple Chernoff-type direct product theorem

with respect to boolean functions against boolean circuits. We will see how the

proof is a mere generalization of the Trust Halving Strategy that was used to prove

traditional direct product theorem in the first Chapter. We will need the following

definition for the approximate hardness of direct product of functions.

Definition V.B.1 (Approximate hardness of direct product of functions). Let

f : {0, 1}n → {0, 1} be a boolean function, k, s ∈ N, and ν, ε be constants. We call

the direct product function fk, ν-approximately ε-hard for circuits of size s if any

circuit C of size at most s, we have

Pr(x1,...,xk)[|{i : C(x1, ..., xk)[i] 6= f(xi)}| ≤ ν · k] ≤ ε

Theorem V.B.2 (Chernoff-type Direct Product Theorem for Boolean Functions).

Let f : {0, 1}n → {0, 1} be a boolean function, k, s ∈ N, and γ, δ be constants. If f

is δ-hard for circuits of size s, then fk is (1−γ)δ-approximately ε-hard for circuits

of size s′, where ε = (8/γ) · e−γ2δk/4 and s′ = s · poly(ε, δ, γ, 1/n, 1/k).

Proof. The proof is using a generalization of the trust halving strategy that we

saw in the first Chapter. For the sake of contradiction let us assume that there is

a circuit C such that Pr(x1,...,xk)[|{i : C ′(x1, ..., xk)[i] 6= f(xi)}| ≤ (1 − γ)δk] > ε.

For any k-tuple (x1, ..., xk), let t(x1, ..., xk) denote the subset of indices at which

C makes an error when computing fk for (x1, ..., xk), that is, t(x1, ..., xk) = {i :

C(x1, ..., xk)[i] 6= f(xi)}.

For any fixed subset H ⊆ {0, 1}n such that |H| = 2δ2n, let l(x1, ..., xk)
def
=

{i : xi ∈ H}. Using Chernoff bounds we know that

Pr(x1,...,xk)[|l(x1, ..., xk)| ≤ (1− γ/2)2δk] ≤ e−γ
2δk/4 ≤ γε/8

Consider the following circuit C ′ for computing the function f on uniformly chosen

inputs in H.

95

Given a uniformly chosen input x ∈ H, C ′ chooses x1, ..., xk−1 ∈
{0, 1}n and i ∈ {1, ..., k} uniformly at random. It constructs a k-tuple

(y1, ..., yk)
def
= (x1, ..., xi−1, x, xi, ..., xk−1). It then queries the circuit C

on this k-tuple. If |t(y1, ..., yk)| ≤ (1−γ)δk, then output C(y1, ..., yk)[i],
else output C(y1, ..., yk)[i] with probability (1 − γ/2)|t(y1,...,yk)|−(1−γ)δk

and with remaining probability it repeats. Finally if no output is pro-
duced in O(n/ε) steps, a null answer ⊥ is produced.

Let us now analyze the advantage of C ′ over uniform inputs in H. The

manner in which an input for the circuit C is constructed induces a distribution over

the k-tuples. The probability that a (y1, ..., yk) is constructed is precisely |l(y1,...,yk)|
2δk

times the probability of sampling this tuple from the uniform distribution over

{0, 1}nk. Given this, we can analyze the advantage of the circuit by evaluating the

advantage conditioned on sampling the following subset of tuples:

1. S1 = {(y1, ..., yk) : |l(y1, ..., yk)| ≤ (1 − γ/2)2δk} Since |S1|/2nk ≤ γε/8, the

contribution of S1 to the total advantage is not smaller than −γε/8.

2. S2 = {(y1, ..., yk) : |l(y1, ..., yk)| > (1 − γ/2)2δk, |t(y1, ..., yk)| ≤ (1 − γ)δk}

The conditional advantage of the C ′ on these tuples is
(

1− 2|t(y1,...,yk)|
|l(y1,...,yk)|

)
≥(

1− 1−γ
1−γ/c2

)
. Furthermore, |S2| ≥ ε − ε/8 and each tuple in S2 is sampled

with probability (1 − γ/2)2−nk. So the contribution of S2 in the overall

advantage is at least γ(1− 1/2)(7ε/8) = 7γε/16.

3. S3 = {(y1, ..., yk) : |l(y1, ..., yk)| > (1 − γ/2)2δk, (1 − γ)δk < |t(y1, ..., yk)| ≤

(1− γ/2)δk} The conditional advantage of the C ′ on these tuples is(
1− 2|t(y1,...,yk)|

|l(y1,...,yk)|

)
which is positive. So the total contribution is positive.

4. S4 = {(y1, ..., yk) : |l(y1, ..., yk)| > (1− γ/2)2δk, |t(y1, ..., yk)| > (1− γ/2)δk}

The conditional advantage of C ′ is not smaller than−(1−γ/2)(1−γ/2)δk−(1−γ)δk

≥ −e−(1/2)·(1−1/2)γ2δk ≥ −γε/8.

So the net advantage of the circuit C ′ over inputs inside H is at least (7γε/16 −

γε/8− γε/8) = 3γε/16.

96

Now applying the hard-core Theorem I.C.1 from Chapter I we get that

there is a circuit C ′′ of size |C ′′| = |C ′| · O
(

1
δ2γ2ε2

)
which computes f on at least

(1− δ) fraction of the inputs.

One should note that the same proof argument works if we replace boolean

function with a non-boolean function. This is because what we have essentially

shown in the above proof is that for any subset of size at least 2δ there is a circuit

which achieves a non-negligible advantage over uniformly chosen elements from

this subset. The hard-core theorem says that we can “stitch together” such circuits

using majorities and argue that for most inputs the correct answers outnumbers

the incorrect answers and so we get a circuit which computes f on almost all

inputs. The argument breaks down when we try to generalize the results further

to multi-valued functions of relations which allows multiple correct answers for the

same input.

So, the next question we should ask is whether we can get a Chernoff-type

direct product theorem in such scenarios. Such a theorem would be interesting as

such scenarios indeed arise in cryptographic settings which we discuss in the next

sections.

V.C Cryptographic Setting

Until now in this Dissertation, we have looked at positive and negative

results about direct product theorems. We considered problems which were either

computing functions or recognizing languages in uniform and nonuniform compu-

tational settings. At this point, we would like to generalize and strengthen our

results even further and consider such theorems for an even wider range of prob-

lem settings. One interesting direction is to consider a setting where solving a

problem involves interaction between multiple parties. In classical complexity the-

ory, we have seen how adding such interaction significantly increases the power of

computation. So the question for us is in what ways does such interactive settings

97

effect direct product theorems. Are there interactive settings where direct product

theorems cannot be proved? In that case can we qualitative/quantitatively find

reasons for the same? In the positive direction, what are the circumstances under

which we can prove direct product theorems? Such interactive settings occur in

cryptography (e.g. Identification) and a positive or negative result about direct

product theorems would imply interesting consequences there. So, in this Disserta-

tion we study direct product theorems in interactive settings from the perspective

of cryptography. More, specifically we would be interested in challenge-response

protocols.

V.C.1 Challenge Response Protocols

These are cryptographic protocols involving two parties, a prover P and

a verifier V . We will be interested in the case where both prover and the verifier

are efficient, that is, they run in polynomial in some security parameter. Starting

with a common input x, the prover and verifier exchange messages in multiple

rounds using randomness. Finally, after the end of interaction the verifier either

accepts (outputs 1) or rejects (outputs 0). There could be two different kinds

of provers, a cheating prover and an honest prover and the goal is to construct

a protocol such that a cheating prover has very small probability of making the

verifier accept (where the probability is over the input and randomness involved

in the protocol). On the other hand an honest prover should almost always make

the verifier accept. The first property is called the soundness while the second

property is called completeness.

Such interactive protocols in general are called Interactive arguments and

have been studied in the cryptography literature. For instance, consider an iden-

tification protocol where a system is trying to distinguish between a human user

and a computer program. In this setting the system might generate a random

visual challenge (e.g. CAPTCHA) for the user to solve. The assumption is that a

computer program would not be able to solve a visual challenge making the pro-

98

tocol sound. The question that we are interested in for such interactive arguments

is whether it is possible to amplify the soundness error of a cheating prover by

running multiple instances of the protocol in parallel. This is essentially asking

if a direct product theorem can be proved in general for interactive protocols.We

discuss this issue in the next subsection.

V.C.2 A Cryptographic Scenario where Direct Product Theorem Fails

In this section, we will see a simple protocol where parallel repetition

fails to to amplify the soundness error. This shows that we cannot hope to prove a

general direct product theorem for interactive arguments. However, we also show

that if we restrict ourselves to a subclass of protocols then general direct product

theorems can be proved.

More specifically, we will informally discuss a 4-round protocol where

parallel repetition fails to amplify the soundness error. However we note that

parallel repetition does amplify the soundness error in any 2 or 3 round protocol

which was shown in [BIN97] and improved by [CHS05]. We then informally discuss

the reasons for this gap. Finally, we start discussing the direct product theorems

with respect to 2, 3 round protocols.

Consider an public key encryption scheme AE defined by the triple

(K, E ,D). Here K is the key generation alorithm, E is the encryption algorithm

and D is the decryption algorithm. K generates a pair of keys (pk, sk), where pk is

called the public key while sk is called the private key. Given any message M , the

encryption of M under the public key is denoted by C ← Epk(M). The encrypted

message C can be decrypted given the secret key, that is, M ← Dsk(C). For our

purposes let us assume that the encryption scheme is perfect. Which means that

for any pair of (pk, sk) generated by K and any message M , the encryption of

M can be decrypted iff we are given access to the secret key sk. We will need a

stronger property about randomized encryption of a single bit of message known

as non-malleability. The property says that for any pair of keys (pk, sk) and any

99

bit b ∈ {0, 1}, given C1 ← Epx(b, r1) for any random string r1, it is not possible to

produce a randomized encryption of (1 − b), that is, C2 ← Epk(1 − b, r2) for any

random string r2 than with probability 1/2 unless given sk. Note that this is a very

strong property, since the bit b can be guessed with probability 1/2. Given a non-

malleable randomized encryption scheme AE = (E ,D,K), consider the following

four round protocol between a prover P and verifier V. For (pk, sk)← K, let pk be

the common input for P and V.

Round 1: V randomly picks a bit b and a random string r and sends Epk(b, r).

Round 2: P sends a ciphertext C to V.

Round 3: V sends b and r to P.

Round 4: P sends a bit c and a string s to V.

Finally, V accepts if C = Epk(c, s) and c = 1− b. Due to non-malleable property of

the ecryption scheme, the verifier has probability 1/2 of succeeding. Now consider

a two fold parallel repetition of the above protocol.

Round 1: V randomly picks pair of bits (b1, b2) and pair of random strings (r1, r2)

and sends Epk(b1, r1), (Epk(b2, r2)).

Round 2: P sends ciphertext (C1, C2) to V.

Round 3: V sends (b1, b2) and (r1, r2) to P.

Round 4: P sends a bit (c1, c2) and a string (s1, s2) to V.

Finally, V accepts if ∀i ∈ {1, 2}, Ci = Epk(ci, si) and ci = 1 − bi. In this case

there is a simple strategy for the verifier which succeeds with probability 1/2, thus

showing that we cannot get amplification by parallel repetition. The strategy for

the prover is to send (Epk(b2, r2), Epk(b1, r1)) in the second round and send (c2, c1),

(s2, s1) in the fourth round.

As we have seen before, the proofs of the direct product theorems have the

following structure: given a challenge or a problem instance, the solver constructs

a number challenges for the direct product version of the problem which includes

the given challenge and then uses the answers to these parallel challenges to answer

the given challenge. This breaks down in four round protocols since challenges and

100

answers in the third and fourth round might be dependent on the challenges and

answers of the first two rounds of the parallel version of the protocol. In that

case, the prover cannot use the answers of the parallel version of the protocol to

construct an answer to single round of challenges.

V.D Chernoff-type Direct Product Theorem for Weakly

Verifiable Puzzles

Cryptographic protocols require problems that easy for legitimate users

but hard for attackers. The hardness of a problem may be either computational

(when attackers are assumed computationally bounded) or information-theoretic

(when attackers are computationally unbounded). Ideally, a problem should be

reliably easy for legitimate users (i.e., the chance of failure for legitimate users

should be negligible), but reliably hard for attackers (i.e., the chance of the at-

tacker’s success is negligible). In reality, one may have a problem which is only

somewhat easier for legitimate users than for attackers, i.e., the gap between the

ability of legitimate users to solve the problem and that of attackers is relatively

small. It is thus important to have a method for increasing this gap, thereby

improving the security of cryptographic protocols based on such problems.

Direct product theorems provide one such method for making problems

reliably hard for attackers. The idea is that if an attacker has some chance of

failing on a single challenge, the chance of solving multiple independent challenges

should drop exponentially fast with the number of challenges. Examples of such

theorems in cryptography include Yao’s theorem that weak one-way functions im-

ply strong one-way functions [Yao82] and the results of [BIN97, CHS05] showing

similar drops even when an attacker cannot know for certain whether a response to

a challenge is correct. Direct product theorems are also important in average-case

complexity, circuit complexity, and derandomization. While intuitive, such results

are frequently non-trivial to establish. Moreover, there are settings where the in-

101

tuition is incorrect, and many instances are not proportionally harder; examples

where direct products fail are parallel repetition for multiple round protocols and

for non-verifiable puzzles [BIN97, CHS05, PW07].

A standard direct product theorem can only be used to amplify the gap

between legitimate users and attackers if legitimate users are successful with high

probability. Indeed, the legitimate user’s chance of solving k independent chal-

lenges also drops exponentially fast with k. So unless the legitimate user’s prob-

ability of failure isn’t much more than 1/k to start, both legitimate users and

attackers will almost certainly fail to solve all of the problems.

Suppose that a legitimate user has probability α of solving a randomly

generated challenge, while an attacker has probability β < α. For k independent

random challenges, we expect the legitimate user to be correct on αk of them. By

Chernoff bounds, the actual number of correct answers will be very close to αk,

with high probability. On the other hand, the expected number of correct answers

by the attacker is βk. Intuitively, it should be unlikely that the actual number of

correct answers is much larger than the expected number. That is, by analogy with

Chernoff bounds, the attacker’s probability of answering correctly on significantly

more that the expected number βk of random k challenges should be exponentially

small in the expectation βk.

This intuition turns out to be correct. The main result of our paper

is such a strengthening of the direct product theorem for a very general class of

problems, weakly verifiable puzzles, introduced in [CHS05].

V.D.1 Example: CAPTCHA

Before defining the class of weakly verifiable puzzles, we consider an ex-

ample of a cryptographic protocol where our results apply. A CAPTCHA protocol

is meant to distinguish between humans and programs, usually using a visual chal-

lenge based on distorted text with extraneous lines [ABHL03]. While there seems

to be a large gap between the abilities of typical humans and the best current vision

102

algorithms to solve these challenges, algorithms can solve a non-negligible fraction

of the puzzles, and many humans (including us) fail a non-negligible fraction of

the puzzles.

An obvious, intuitive way to increase the gap is to issue many independent

challenges, and accept if the solver is successful on a larger fraction than expected

for an attacker, even if the solver does not succeed on all challenges. The fact that

sequential repetition improves the gap was observed by [ABHL03]. The authors

of [ABHL03] also imply that parallel repetition improves the gap, referring to the

results in [BIN97] for this “more complicated” case. Indeed, the direct product

theorem of [BIN97] (improved by [CHS05]) does apply to parallel repetition of

CAPTCHA protocols, but it only shows that the probability of algorithmic success

decreases with repetitions, not that the gap improves. Our stronger version of the

direct product theorem gives the first proof that the parallel repetition protocol

suggested in [ABHL03] does indeed improve the gap between legitimate users and

attackers.

A CAPTCHA protocol issues a puzzle (e.g., distorted text) such that the

correctness of a solution to the puzzle is easy to verify by the generator of the

puzzle (who knows the text that was distorted), but not by the attacker (who is

just given the puzzle, not the way it was generated). Such puzzles are called weakly

verifiable in [CHS05].

V.D.2 Weakly verifiable puzzles: Definition and examples

Our result holds for weakly verifiable puzzles defined by [CHS05]. A

weakly verifiable puzzle has two components:

• a distribution ensemble D = {Dn}n≥1 on pairs (x, α), where x is called the

puzzle and α the check string (n is the security parameter); and

• a polynomial-time computable relation R((x, α), y), where y is a string of a

fixed polynomially-related length.

103

The puzzle is thought of as defining a type of challenge x, with y being

the solver’s response. However, the correctness of the response is not easily verified

(and may not be well-defined) given just x. On the other hand, the party generating

the puzzle x also knows α, so can verify correctness.

In [CHS05], the distribution D is restricted to be polynomial-time sam-

pleable. In this case, without loss of generality, we can assume that α is the n-bit

random tape used to generate the puzzle and check string (if not, we can redefine

R as R′ which first generate the check string from the random tape, then verifies

R). Thus, to simplify the notation in our proofs, we usually assume that α is a uni-

formly generated n-bit string, and that x is a function of α. A version of our result

also holds when D is not polynomial-time sampleable, but only for non-uniform

adversaries (since many samples from D are required as advice.)

Here we summarize some important properties of weakly verifiable puz-

zles. The generation and verification procedures for the puzzles are polynomial-

time algorithms. A puzzle may have multiple correct answers (since an answer to

a puzzle is verified using a relation). The same puzzle may be generated using

multiple random tapes; we call such puzzles ambiguous. Moreover, since the veri-

fication procedure takes as input the random tape α used to generate a puzzle x,

the set of correct answers for x depends on α, and these sets of corrects answers

may be different (even disjoint) for different random tapes α and α′ that generate

the same puzzle x.

Some examples of how weakly verifiable puzzles arise in different settings

include:

1. A challenge-response protocol where a prover is trying to get a verifier to

accept them as legitimate (e.g., a CAPTCHA protocol where the prover is

trying to convince the verifier to accept them as human.) We assume that the

verifier is polynomial time with no secret inputs (although an honest prover

may have secret inputs). Let α be the random bits used by the verifier. In

the first round, the verifier sends a challenge x = g(α), and the prover sends a

104

response y. The verifier then decides whether to accept by some polynomial

time algorithm, R(α, y). Our results are interesting if there is some chance

that the honest prover will be rejected, such as an honest human user failing

a CAPTCHA challenge based on visual distortion.

2. A secret-agreement protocol with a passive eavesdropper. Let rA be the

random tape used by one party, and rB that by the other party. Then the

conversation C is a function of both rA, rB, as is the message m agreed

upon. The eavesdropper succeeds if she computes m given C. Then consider

α = (rA, rB), x = C, and R(C, (rA, rB), y) if y is the message agreed upon

by the two parties using rA and rB. Note that there may be some tapes

where the parties fail to agree, and thus have no success. Our result shows

that, if the parties agree more probably than the eavesdropper can guess the

secret, then by running the protocol several times they will almost certainly

have more shared secrets than the eavesdropper can guess. Note that, unlike

for challenge-response protocols, here there is no restriction on the amount

of interaction between the legitimate parties (as long as the eavesdropper is

passive).

3. Let f be a (weak) one-way function, and b a (partially-hidden) bit for f , in

the sense that it is sometimes hard to always predict b from x = f(z). Since

f may not be one-to-one, b may be hard to predict for either information-

theoretic or computational reasons. Here, we let α = z, x = f(α), and

R(x, α, b′) if b′ = b(α). Our results say that no adversary given an n tuple

of xi = f(zi) can produce a string closer in relative Hamming distance to

b(α1) . . . b(αn) than the hardness of prediction.

4. In the non-uniform setting, our results apply to any function. If f is a

function (possibly non-Boolean, or even multi-valued, as long as it takes on

at most a polynomial number of values), we can define α to be (the set of all

elements in) f(x). Then y ∈ f(x) if and only if y ∈ α, so this is testable in

105

polynomial-time given α. This distribution isn’t necessarily polynomial-time

sampleable, so our results would only apply for non-uniform adversaries (e.g.,

Boolean circuits.)

Note that in some examples, success may be ill-defined, in that x may

not uniquely determine α, and so it may not be information-theoretically possible

to know whether R((x, α), y) given only x.

V.D.3 Our main result

Before stating our main theorem, we need several definitions. For a

weakly verifiable puzzle P and a natural number k, we denote by P k the k-wise

direct product of P , i.e., P k is the puzzle that asks k independent challenges from

P 1. For a parameter 0 ≤ δ ≤ 1, we say that P is δ-hard for time t if every

randomized algorithm running in time t(n) has probability at least δ of answering

incorrectly a randomly generated challenge from P (where the probability is both

over input challenges from P and the internal randomness of the algorithm), for

sufficiently large input size n. Finally, for parameters k ∈ N and 0 ≤ ν, δ ≤ 1, we

say that the k-wise direct product puzzle P k is ν-approximately δ-hard for time

t if every randomized algorithm running in time t(n) has probability at least δ

(over k-tuples of challenges from P k, and its internal randomness) of answering

incorrectly at least νk of the input k challenges.

Our main theorem states that for δ-hard puzzle P , its k-wise direct prod-

uct P k is, essentially, δ-approximately (1 − o(1))-hard. That is, not only is it

impossible to solve all k challenges for a non-negligible fraction of k-tuples from

P k, but also it is impossible to make significantly fewer than the expected number

δk of mistakes on the input k challenges. More precisely, we have the following.

Theorem V.D.1 (Main Theorem). Let P be a weakly verifiable puzzle that is δ-

hard for time t. Let k ∈ N and γ > 0 be arbitrary, and let ε ≥ (100/γδ) · e−γ2δk/40.

1we consider distribution ensemble Dk on pairs ((x1, ..., xk), (α1, ..., αk)), where (xi, αi)’s are chosen
independently from D. Given that (y1, ..., yk) is an answer to this “direct product” version of the puzzle
P , P k is verified by using the relation R individually on the puzzles, i.e., checking R((xi, αi), yi).

106

Then the direct product puzzle P k is (1− γ)δ-approximately (1− ε)-hard for time

t′ = t(n) · poly(ε, 1/n, 1/k).

We call this a Chernoff-type direct product theorem, since it shows that

the “tail bound” on the number of correctly solved puzzles drops exponentially in

the region beyond its expectation.

Standard Chernoff bounds show that, if the legitimate user can solve the

problem with probability of failure less than, say, (1−2γ)δ, then they will succeed

in solving all but (1− γ)δk of the input k challenges, for almost all k-tuples from

P k. Thus our Chernoff-type direct product theorem indeed provides a way to

amplify any gap between legitimate users and attackers.

Finally, we should also note that for direct products with threshold it is

impossible to get the bound ε = (1 − δ)k, which is possible for standard direct

products [CHS05]. Indeed, consider the case of a puzzle P such that P is easy for

(1 − δ) fraction of inputs, but is information-theoretically impossible to solve on

the remaining δ fraction of inputs. Then the probability of making fewer than δk

mistakes on a given random k-tuple of challenges is the tail bound for the binomial

distribution where one flips k independent coins with the “heads” probability δ.

When δk is sufficiently far from 0 and far from k (e.g., for constant 0 < δ < 1),

then the Chernoff bound provides a tight estimate for this tail bound. Thus the

bound of our main theorem cannot be significantly improved, except possibly for

making the constant in the exponent of ε in Theorem V.D.1 (currently 40) closer

to that of the Chernoff bound (which can be as low as 2).

V.D.4 Related work

The notion of a direct product theorem, where solving multiple instances

of a problem simultaneously is proven harder than a single instance, was introduced

by Yao in [Yao82]. Due to its wide applicability in cryptography and computational

complexity, a number of different versions and proofs of such theorems can be found

in the literature; see, e.g., [GNW95] for a good compilation of such results.

107

In this paper, we use some of the proof techniques (namely the trust

halving strategy) introduced by Impagliazzo and Wigderson in [IW97]. Such tech-

niques were also used to prove a version of the direct product theorem in a more

general cryptographic setting by Bellare, Impagliazzo and Naor in [BIN97]. It is

shown in [BIN97] that the soundness error decreases exponentially with parallel

repetition in any 3-round challenge-response protocol, but such error amplification

might not be possible for a general (> 3)-round protocol. Pietrzak and Wikstrom

in [PW07] extend this negative result. On the positive side, Canetti, Halevi and

Steiner in [CHS05] used ideas from [BIN97] to define a general class of weakly

verifiable puzzles for which they show parallel repetition amplifies hardness, also

giving a quantitative improvement over [BIN97]. More recently, Pass and Venkita-

subramaniam [PV07] show similar positive results for constant round public coin

protocols.

All the previous results mentioned above consider parallel repetition with-

out threshold, i.e., they consider the hardness of answering all the instances of the

parallel repetition question simultaneously.

Comparing the techniques of [BIN97] and those of [CHS05]. Our con-

struction uses a version of the trust-reducing strategy from [IW97, BIN97]. In a

trust-reducing strategy, the input puzzle is hidden among (k − 1) randomly gen-

erated puzzles, and the number of mistakes the attacker makes on the random

puzzles is used to compute the probability with which the algorithm trusts the

attacker’s answer for the input puzzle.

A different approach was used in [CHS05]. Their proof strategy (similar to

that of Goldreich, Nisan and Wigderson [GNW95]) is roughly as follows. Suppose

that some attacker C̄ correctly answers all k challenges for at least ε fraction of

k-tuples from some direct product puzzle P k, where P is δ-hard. Then (arguing

by induction) one shows that there exists a position 1 ≤ i ≤ k and fixed inputs

x1, . . . , xi−1 for the positions before i such that the probability of getting a correct

108

answer for the ith input in a given k-tuple, conditioned on the attacker’s answers

for the positions i + 1, . . . , k being correct, is at least 1 − δ. Thus, to answer

a challenge x, one places x into position i, randomly generates challenges for the

positions higher than i, runs the attacker C̄ on the constructed k-tuple, and outputs

the answer of C̄ for x if the answers of C̄ on all the k − i random challenges are

correct; otherwise one repeats with new k − i random challenges.

The argument of [CHS05] allows one to conclude that ε = (1− δ)k, which

is information-theoretically the best possible bound, and is a quantitative improve-

ment on the bound on ε shown in [BIN97]. While the techniques of [CHS05] yield

stronger (optimal) bounds for the direct product than those of [BIN97], we do

not see how to use the techniques of [CHS05] for the case of direct products with

threshold that we consider in the present paper. In our case, we need to deal with

a variable number of mistakes even for “good” k-tuples, and we manage to adapt

the techniques of [BIN97] to handle such mistakes.

V.D.5 Our techniques

As in [IW97, BIN97], our proof of the main theorem is constructive:

we show how to use a breaking strategy that solves the threshold puzzle with

probability ε as a subroutine in an algorithm that solves a single puzzle with

probability greater than 1− δ. However, we need to deviate substantially from the

previous analysis.

The way it is argued in [IW97, BIN97] that all but δ fraction of inputs

are easy is as follows. Suppose an algorithm A succeeds on a significant fraction

of k-tuples of random puzzle instances. Then one constructs another algorithm A′

such that, for every subset of puzzle instances H of density at least δ, algorithm

A′ succeeds almost surely on a random instance in H. Now consider the set of all

puzzle instances where A′ gives a wrong answer. By the above, this set must have

density less than δ (or else A′ would succeed almost surely on a random element

in the set).

109

In contrast, in the threshold scheme, it is not possible to construct an

algorithm A′ with the similar guarantee that A′ succeeds almost surely on a random

instance in H, for every subset H of density at least δ. Indeed, for a given puzzle P ,

there may be a subset H ′ of density (1−γ)δ of input instances where no algorithm

can succeed with non-negligible probability, while all the other instances outside

H ′ are easy to solve. In this case, there is an algorithm that solves almost all

k-tuples of puzzle instances, if we allow up to about (1−γ)δk errors. However, for

any set H of density δ such that H ′ ⊆ H, no algorithm A′ can succeed on more

than γ fraction of elements of H.

In order to get around this obstacle, we need a more global way of analyz-

ing the trust-reducing strategy. Our main tools for doing this are sampling lemmas

from [IJKW08]. The high-level idea is as follows. Let G be the set of k-tuples of

puzzle instances where some algorithm A is correct in all but (1− γ)δk positions.

Suppose that G has density ε. The trust-reducing strategy essentially allows us to

construct an efficient oracle for testing membership in G. The overall strategy for

solving a puzzle instance x is then to sample random k-tuples containing x, until

getting the tuple that falls into G; for such a tuple, we output the value A gives

for the xth position in the tuple.

Since G has density ε, we are almost sure to sample a tuple from G

within poly(1/ε) iterations. We use a sampling lemma to argue that, conditioned

on sampling a random k-tuple from G, the position of the input x is distributed

almost uniformly within the tuple. Hence, in that case, we get the correct answer

for x with probability at least 1− (1−γ)δ = 1− δ+γδ (since every tuple in G has

at most (1−γ)δk bad positions). Accounting for possible errors of our membership

oracle for G, the probability of our sampling procedure missing the set G, and the

fact that the xth positions is only almost uniform within the tuple, we conclude

that our algorithm succeeds on at least 1− δ fraction of inputs x.

110

V.E Preliminaries

V.E.1 Basics: Hoeffding bound

For a natural number k, we will denote by [k] the set {1, . . . , k}.

Lemma V.E.1 (Hoeffding bound). Let X1, . . . , Xt be independent identically dis-

tributed random variables taking values in the interval [0, 1], with expectation µ.

Let χ = (1/t)
∑t

i=1Xi. For any 0 < ν ≤ 1, we have Pr[χ < (1− ν)µ] < e−ν
2µt/2.

V.E.2 Samplers

We will consider bipartite graphsG = G(L∪R,E) defined on a bipartition

L∪R of vertices; we think of L as left vertices, and R as right vertices of the graph

G. We allow graphs with multiple edges. For a vertex v of G, we denote by NG(v)

the multiset of its neighbors in G; if the graph G is clear from the context, we will

drop the subscript and simply write N(v). Also, for a vertex x of G, we denote by

Ex the set of all edges in G that are incident to x. We say that G is bi-regular if

the degrees of vertices in L are the same, and the degrees of vertices in R are the

same.

Let G = G(L ∪ R,E) be any bi-regular bipartite graph. For a function

λ : [0, 1] × [0, 1] → [0, 1], we say that G is a λ-sampler if, for every function

F : L→ [0, 1] with the average value Expx∈L[F (x)] ≥ µ and any 0 < ν < 1, there

are at most λ(µ, ν) · |R| vertices r ∈ R where Expy∈N(r)[F (y)] ≤ (1− ν)µ.

We will use the following properties of samplers (proved in [IJKW08] for

the special case of ν = 1/2); for completeness, we state them with the proofs. The

first property says that for any two large vertex subsets W and F of a sampler,

the fraction of edges between W and F is close to the product of the densities of

W and F .

Lemma V.E.2 ([IJKW08]). Suppose G = G(L∪R,E) is a λ-sampler. Let W ⊆ R

be any set of measure at least τ , and let V ⊆ L be any set of measure at least β.

Then, for all 0 < ν, β < 1 and λ0 = λ(β, ν), we have Prx∈L,y∈N(x)[x ∈ V & y ∈

111

W] ≥ β(1− ν)(τ − λ0), where the probability is for the random experiment of first

picking a random node x ∈ L uniformly at random, and then picking a uniformly

random neighbor y of x in the graph G.

Proof. We need to estimate the probability of picking an edge between V and W in

a random experiment where we first choose a random x ∈ L and then its random

neighbor y. Since the graph G is assumed to be bi-regular, this probability remains

the same in the experiment where we first pick a random y ∈ R and its random

neighbor x ∈ N(y). The latter is easy to estimate using the sampling property of

the graph G, as follows. Consider the function F : L→ [0, 1] defined as

F (x) =

1 if x ∈ V ;

0 otherwise.

Since the measure of V is at least β, we have Expx∈L[F (x)] ≥ β. Let W ′ ⊆ W

be the subset of vertices that have at least (1− ν)β fraction of their neighbors in

V . In other words, W ′ contains those vertices r ∈ R such that Expy∈N(r)[F (y)] ≥

(1 − ν)β. Since G is a λ-sampler and W is of measure at least τ , we get that

W ′ is of measure at least τ − λ0. Then, conditioned on picking a vertex y ∈ W ′,

the probability that its random neighbor is in V is at least (1− ν)β. The lemma

follows.

The second property deals with edge-colored samplers. It basically says

that removing some subset of right vertices of a sampler yields a graph which

(although not necessarily bi-regular) still has the following property: Picking a

random left node and then picking its random neighbor induces roughly the same

distribution on the edges as picking a random right node and then its random

neighbor.

Lemma V.E.3 ([IJKW08]). Suppose G = G(L ∪ R,E) is a λ-sampler, with the

right degree D. Let W ⊆ R be any subset of density at least τ , and let G′ =

G(L∪W,E ′) be the induced subgraph of G (obtained after removing all vertices in

112

R \W), with the edge set E ′. Let Col : E ′ → {red, green} be any coloring of the

edges of G′ such that at most ηD|W | edges are colored red, for some 0 ≤ η ≤ 1.

Then, for all 0 < ν, β < 1 and λ0 = λ(β, ν), we have

Prx∈L,y∈NG′ (x)[Col({x, y}) = red] ≤ max{η/((1− ν)(1− λ0/τ)), β},

where the probability is for the random experiment of first picking a uniformly

random node x ∈ L, and then picking a uniformly random neighbor y of x in the

graph G′.

Proof. For every x ∈ L, let dx be the degree of x in G′, and let ξ(x) be the fraction

of red edges incident to x in G′. The probability we want to estimate is exactly

µ = Expx∈L[ξ(x)]. If µ ≤ β, then we are done. So for the rest of the proof, we

will suppose that µ > β.

Let W ′ ⊆ W be the subset of those vertices w where Expx∈N(w)[ξ(x)] ≥

(1−ν)µ. (Here we use N(w) to denote the neighborhood NG′(w) of w in G′, which

is the same as NG(w) by the definition of G′.) Since G is a λ-sampler and W

has measure at least τ in R, we get that W ′ has measure at least 1− λ0/τ in W .

Hence, we have∑
y∈W

Expx∈N(y)[ξ(x)] ≥
∑
y∈W ′

Expx∈N(y)[ξ(x)] ≥ |W |(1− λ0/τ)(1− ν)µ. (V.1)

On the other hand,
∑

y∈W
(
D · Expx∈N(y)[ξ(x)]

)
is simply the summation

over all edges (x, y) in G′ where each edge (x, y) with x ∈ L contributes ξ(x) to

the sum. Since the degree of each x is dx, each x ∈ L contributes exactly dxξ(x),

which is the number of incident red edges at x. Hence, the total sum is exactly

the number of red edges in G′, which is at most ηD|W | by assumption. It follows

that ∑
y∈W

Expx∈N(y)[ξ(x)] = (1/D)
∑
x∈L

dxξ(x) ≤ |W |η. (V.2)

Finally, comparing the bounds in (V.1) and (V.2), we conclude that µ ≤

η/((1− ν)(1− λ0/τ)).

113

We shall also need a generalization of Lemma V.E.3 for the case of

weighted graphs. Here we consider bipartite graphs G = G(L ∪ R,E) whose

edges are assigned weights in the interval [0, 1] satisfying the following property:

for every right vertex y ∈ R, all the edges incident on y are assigned the same

weight. Let w0, w1, . . . be the distinct weights of the edges of G, in decreasing

order. The vertex set R of such a weighted graph is naturally partitioned into sub-

sets W0,W1, . . . , where Wi is the subset of all those vertices in R whose incident

edges have weight wi. Intuitively, such a partitioning of R defines a new induced

graph G′ where a vertex in Wi is present in G′ with probability wi. (In the setting

of Lemma V.E.3, there are two sets W0 = W and W1 = R \W , with w0 = 1 and

w1 = 0.)

Suppose the edges of G are partitioned into red and green edges. Let Red

denoted the set of all red edges, and, for every x ∈ L, let Redx denote the set of

all red edges incident to x.

First, consider the experiment where one picks a vertex y ∈ R with

probability proportinate to wi, where y ∈ Wi, and then picks a uniformly random

edge incident to y. What is the probability of picking a red edge?

Let wt : E → [0, 1] be the edge weight function for our graph G =

G(L ∪ R,E), and let D be the right degree of the graph G. For a fixed red edge

e of G, the probability of choosing this edge in the random experiment described

above is
wt(e)∑
i≥0 |Wi|wi

· 1

D
,

where wt(e)/(
∑

i≥0 |Wi|wi) is the probability of choosing the vertex y ∈ R that is

the end vertex of the edge e, and 1/D is the probability of picking one of the D

edges incident to y. The probability of picking some red edge is then simply the

sum of the probabilities of picking an edge e over all red edges e of G.

Next consider the following experiment. Pick a vertex x ∈ L uniformly

at random, then pick an edge e incident to x with probability proportinate to

wt(e) (i.e., the probability wt(e)/(
∑

e′∈Ex wt(e
′))). The probability ξ(x) of picking

114

a red edge incident to x is then the sum of the probabilities of choosing an edge e

incident to x, over all red edges e incident on x. Finally, the overall probability of

picking a red edge in this experiment is simply the average Expx∈L[ξ(x)].

The next lemma basically says that, for sampler graphs G, the probabil-

ities of picking a red edge in the two experiments described above are almost the

same. More precisely, we have the following.

Lemma V.E.4. Suppose G = G(L∪R,E) is a λ-sampler with the right degree D.

Let wt : E → [0, 1] be the weight function over the edges of G such that, for each

y ∈ R, the weights of the edges e ∈ Ey incident to y are the same. Let w0, w1, . . .

be the distinct weights of the edges of G, in decreasing order, and let W0,W1, . . .

be the partitioning of the vertex set R so that each Wi is the subset of all those

vertices in R whose incident edges have the weight wi. Suppose that W0 has the

measure at least τ in the set R.

Let Col : E → {red, green} be any coloring of the edges of G. For each

x ∈ L, let Redx be the set of all red edges incident to x, and let Red be the set of

all red edges in G. Suppose that the total weight of red edges
∑

e∈Redwt(e) is at

most ηD|R|, and let ξ(x) = (
∑

e∈Redx wt(e))/(
∑

e∈Ex wt(e)).

Then, for any 0 < ν < 1 and λ0 = λ(β, ν), we have

Expx∈L[ξ(x)] ≤ max

{
η|R|

(1− ν)(1− λ0/τ)
∑

i≥0 |Wi|wi
, β

}
.

Proof. Let µ = Expx∈L[ξ(x)]. If µ ≤ β, then we are done. So for the rest of the

proof, we will suppose that µ > β. We will bound the following sum from below,

and from above: ∑
i≥0

∑
y∈Wi

wi · Expx∈N(y)[ξ(x)]. (V.3)

To bound it from below, let Bad ⊆ R be the subset of those vertices u

where Expx∈N(u)[ξ(x)] < (1 − ν)µ. Since G is a λ-sampler, we get that Bad has

measure at most λ0 in R. Each vertex y outside the set Bad contributes at least

wi(1 − ν)µ to the sum (V.3) for y ∈ Wi. Since w0 ≥ w1 ≥ . . . , the sum of such

115

contributions is minimized when all the bad vertices are in W0, i.e., Bad ⊆ W0

(otherwise, we can always make the sum smaller by placing a bad vertex into W0

and creating a good vertex in some Wi for i > 0). Since W0 has measure at least

τ , we get that Bad has measure at most λ0/τ in W0, and so∑
i≥0

∑
y∈Wi

wi · Expx∈N(y)[ξ(x)] ≥ (1− λ0/τ)|W0|w0(1− ν)µ+
∑
i≥1

|Wi|wi(1− ν)µ

≥ (1− λ0/τ)(1− ν)µ
∑
i≥0

|Wi|wi.

For the upper bound on the sum in (V.3), we use the definition of the

ξ(x), change the order of summation, and finally use the definition of η to obtain

the following:∑
i≥0

∑
y∈Wi

wi · Expx∈N(y)[ξ(x)] = (1/D)
∑
y∈R

∑
x∈N(y)

ξ(x)wt((x, y))

= (1/D)
∑
x∈L

ξ(x)
∑
e∈Ex

wt(e)

= (1/D)
∑
x∈L

∑
e∈Redx

wt(e)

= (1/D)
∑
e∈Red

wt(e)

≤ |R|η.

Comparing the obtained lower and upper bounds, we conclude that

µ ≤ |R|η
(1− ν)(1− λ0/τ)

∑
i≥0 |Wi|wi

,

completing the proof of the lemma.

We conclude this section by showing that the direct product gives rise

to a sampler. Consider the following bipartite graph G = G(L ∪ R,E): the set

of left vertices L is the set of n-bit strings {0, 1}n; the right vertices R are all

k-tuples of n-bit strings {0, 1}nk; for every y = (u1, . . . , uk) ∈ R, there are k edges

(y, u1), . . . , (y, uk) ∈ E.

116

Lemma V.E.5. The graph G defined above is a λ-sampler for λ(µ, ν) = e−ν
2µk/2.

Proof. This is immediate from Lemma V.E.1.

V.F Proof of the Main Theorem

The proof is by contradiction. Suppose a solver C̄ solves the direct prod-

uct puzzle P k with fewer than (1−γ)δk mistakes for more than ε fraction of k-tuples

of puzzle instances. We will describe a solver C which solves the puzzle P with

probability at least 1− δ, where the probability is over the internal randomness of

the solver and uniformly chosen α ∈ {0, 1}n.

We first give the proof under the simplifying assumptions that all puzzles

are non-ambiguous (i.e., a puzzle x uniquely determines the random tape α that

generated x), and that we can test if a given k-tuple of puzzle instances (x1, . . . , xk)

is such that C̄(x1, . . . , xk) makes fewer than (1− γ)δk mistakes. Later we remove

these assumptions.

V.F.1 Proof under simplifying assumptions

Let Good be the subset of k-tuples of puzzle instances where C̄ makes

few mistakes. More precisely, Good is the set of those k-tuples of random tapes

(α1, . . . , αk) such that, for the corresponding k-tuple of puzzles (x1, . . . , xk), the

solver C̄ makes fewer than (1 − γ)δk mistakes. Since we assume that all puzzles

are non-ambiguous, we can define the set Good′ of all those k-tuples of puzzles

(x1, . . . , xk) such that the k-tuple of corresponding random tapes (α1, . . . , αk) is in

G. That is, Good′ is the set of all k-tuples of puzzle instances where the solver C̄

makes fewer than (1− γ)δk mistakes.2 Our second assumption is that we have an

oracle for testing membership in the set Good′.

Consider the following algorithm C:
2Note that the set Good′ does not make sense if one allows ambiguous puzzles, as the same instance

x may be considered solved correctly or incorrectly by C̄ depending on the particular random tape α
used to generate that x.

117

“On input x, choose k−1 random tapes α1, . . . , αk−1 uniformly at ran-
dom. Let x1, . . . , xk−1 be the puzzles corresponding to the chosen ran-
dom tapes. Pick i ∈ [k] at random, and set x̄ = (x1, . . . , xi−1, x, xi, . . . ,
xk−1). Test if x̄ ∈ Good′ (using the assumed membership oracle for
Good′). If x̄ ∈ Good′, then output C̄(x̄)i; otherwise repeat with new
random α’s and i. If no output is produced within 4 ln(20/γδ)/ε iter-
ations, then output the error symbol ⊥.”

We want to analyze the success probability of solver C on a given input

x. To this end, we need to argue that (1) the probability of the timeout is small,

and (2) conditioned on the output being different from ⊥, it is a correct output

with high probability (greater than 1− δ).

Recall the λ-sampler G defined at the end of Section V.E.2. It has as its

left vertices all possible n-bit random tapes α, and as its right vertices all possible

k-tuples of such tapes. For a left vertex α, its neighbors in G correspond to all

possible ways of embedding this α in a k-tuple, as done by our algorithm C. The

algorithm C times out on an input x corresponding to the random tape α iff it never

samples a neighbor w of α in G such that w ∈ Good. To bound the probability of

timeout, we consider the set H ⊆ {0, 1}n of all those left vertices α of G such that

α has less than ε/4 fraction of its neighbors fall into the set Good.

Claim V.F.1. The set H has density at most γδ/5.

Proof. Suppose that the density of H is greater than β = γδ/5. Let H ′ ⊆ H

be any subset of H of density exactly β. By our assumption, we have that

Prα∈L,w∈N(α)[α ∈ H ′ & w ∈ Good] < βε/4. On the other hand, by Lemma V.E.2

we get that the same probability is at least β(ε− λ0)/3 for λ0 = λ(β, 2/3). This is

a contradiction since λ0 ≤ ε/4 from the assumption of the theorem.

Claim V.F.2. For every α 6∈ H and the puzzle x corresponding to that random

tape α, we have Pr[C(x) = ⊥] ≤ γδ/20, where the probability is over the internal

randomness of C.

Proof. By the definition of H, we get that the probability of timeout on any given

α 6∈ H is at most (1− ε/4)4 ln(20/γδ)/ε ≤ γδ/20.

118

Next we bound the probability of C making a mistake, conditioned on C

outputting something other than ⊥. First we observe that C produces a definite

answer on an input x corresponding to the random tape α exactly when it samples

a neighbor w of α in the graph G such that w ∈ Good. Consider the subgraph G′ of

G induced by removing all right vertices of G except those in Good. For each edge

in G′ between w = (α1, . . . , αk) ∈ R and αi ∈ L, color this edge red if C̄(x1, . . . , xk)i

is wrong, and color it green otherwise. Then the requisite conditional probability

of C making a mistake is exactly Prα∈L,w∈NG′ (α)[(α,w) is red].

Claim V.F.3. Prα∈{0,1}n [C(x) is wrong | C(x) 6= ⊥] ≤ δ − γδ/4, where x is the

puzzle corresponding to the random tape α.

Proof. By the discussion above, the required conditional probability is exactly

Prα∈L,w∈NG′ (α)[(α,w) is red]. Observe that, by the definition of the set Good, the

number of red edges in the graph G′ is at most (1− γ)δk|Good|. By Lemma V.E.3

applied to G′ with η = (1−γ)δ, β = δ/2, and ν = γ/2, we get that this probability

is at most max{(1− γ)δ/((1− γ/2)(1−λ0/ε)), δ/2}, where λ0 = λ(δ/2, γ/2). This

is at most δ − γδ/4 if λ0/ε < γ/4.

Finally, we have

Prα∈{0,1}n [C(x) is wrong] =
1

2n

∑
α∈H

Pr[C(x) is wrong] +
1

2n

∑
α 6∈H

Pr[C(x) is wrong].

(V.4)

The first term on the right-hand side of (V.4) is at most γδ/5 by Claim V.F.1.

For the second term, we upperbound Pr[C(x) is wrong] by Pr[C(x) is wrong |

C(x) 6= ⊥] + Pr[C(x) = ⊥]. We know by Claim V.F.2 that, for each α 6∈ H,

Pr[C(x) = ⊥] ≤ γδ/20. Thus we get that Prα∈{0,1}n [C(x) is wrong] is at most

γδ/5 + γδ/20 +
1

2n

∑
α 6∈H

Pr[C(x) is wrong | C(x) 6= ⊥] ≤ γδ/4

+Prα∈{0,1}n [C(x) is wrong | C(x) 6= ⊥],

which is at most δ by Claim V.F.3.

119

V.F.2 Proof without simplifying assumptions

Here we explain how to prove our main theorem without any simplifying

assumptions. Since we cannot test membership in the set Good of k-tuples where

C̄ makes fewer than (1−γ)δk errors, we will make a “soft” (probabilistic) decision

of how likely a given k-tuple x̄ is in Good based on the number of correct answers

of C̄(x̄) in those k − 1 positions where we know the α’s (since we have generated

them ourselves). The fewer errors we see, the more likely we are to believe the

answer of C̄(x̄) for the position where the real input x was placed.

More precisely, we will use the following subroutine TRS (Trust Reducing

Strategy):

“On inputs x̄ = (x1, . . . , xk), i ∈ [k], and αj’s corresponding to the xj’s
for j ∈ [k]\{i}, compute the number err of errors made by C̄(x̄) in po-
sitions other than i, that is, err = |{j ∈ [k]\{i} | ¬R((xj, αj), C̄(x̄)j)}|.
Set ∆ = err − (1 − γ)δk. If ∆ ≤ 0, then output C̄(x̄)i with probabil-
ity 1. Otherwise, for the parameter ρ = 1 − γ/10, output C̄(x̄)i with
probability ρ∆, and output ⊥ with probability 1− ρ∆.”

Now our new randomized algorithm C is as follows:

“On input x, choose k − 1 random tapes α1, . . . , αk−1 ∈ {0, 1}n uni-
formly at random. Let x1, . . . , xk−1 be the puzzles corresponding to
the chosen random tapes. Pick i ∈ [k] at random, and set x̄ =
(x1, . . . , xi−1, x, xi, . . . , xk−1). Run the subroutine TRS on the inputs
x̄, i, and α1, . . . , αk−1. If TRS returns a value y 6= ⊥, then output y;
otherwise repeat with new random α’s and i. If no output is produced
within 4 ln(20/γδ)/ε iterations, then output ⊥.”

We will analyze this algorithm C using the λ-sampler G defined at the end

of Section V.E.2. Recall that G has as its left vertices all possible n-bit random

tapes α, and as its right vertices all possible k-tuples of such tapes. For a left

vertex α, its neighbors in G correspond to all possible ways of embedding this α

in a k-tuple.

First we will bound the probability of timeout of C. Let x be an input

corresponding to the random tape α. The k-tuple x̄ = (x1, . . . , xi−1, x, xi, . . . , xk−1)

120

of puzzles constructed by the algorithm C corresponds to the k-tuple ᾱ = (α1, . . . ,

αi−1, α, αi, . . . , αk−1) of random tapes. If ᾱ ∈ Good, then the TRS subroutine will

return C̄(x̄)i 6= ⊥ with probability 1. Hence, the probability of timeout on x is at

most the probability that C never samples a neighbor ᾱ ∈ Good of α in the graph

G. As in the previous subsection, we consider the set H ⊆ {0, 1}n of all those left

vertices α of G such that α has less than ε/4 fraction of its neighbors fall into the

set Good. We get the following analogs of Claims V.F.1 and V.F.2, with exactly

the same proofs.

Claim V.F.4. The set H has density at most γδ/5.

Claim V.F.5. For every α 6∈ H and the puzzle x corresponding to that random

tape α, we have Pr[C(x) = ⊥] ≤ γδ/20, where the probability is over the internal

randomness of C.

Next we analyze the probability of C outputting a wrong answer, condi-

tioned on its output being something other than ⊥. For each edge ((α1, . . . , αk), αi)

of the graph G, we color this edge green if C̄(x1, . . . , xk)i is correct, and we color

it red otherwise.

Consider the following random experiment E :

“Pick a random α ∈ L, and its random incident edge e = (α, ᾱ) in G,
for ᾱ containing α in position i ∈ [k]. Let err be the number of errors
made by C̄(x̄) in positions other than i, and let ∆ = err − (1− γ)δk.
If ∆ ≤ 0, output the edge e. Otherwise, output e with probability ρ∆

(for ρ = (1− γ/10)), and output ⊥ with probability 1− ρ∆.”

For each α ∈ {0, 1}n and the puzzle x corresponding to the random tape

α, we have

Pr[C(x) is wrong | C(x) 6= ⊥] = Pr[E outputs red edge incident to α

| E outputs some edge incident to α],

(V.5)

121

where the first probability is over internal randomness of C, and the second prob-

ability is over the random choices of E for the fixed α (i.e., over the random choice

of an edge e incident to α, and the random choice whether e is output).

Rather than analyzing the experiment E , however, we will consider an-

other experiment that is the same as E except that err is defined as the total

number of errors made by C̄(x̄) in all positions (i.e., including the position i).

That is, we consider the following experiment E ′:

“Pick a random α ∈ L, and its random incident edge e = (α, ᾱ) in
G, for ᾱ containing α in position i ∈ [k]. Let err be the number of
errors made by C̄(x̄) in all positions, and let ∆ = err − (1 − γ)δk. If
∆ ≤ 0, output the edge e. Otherwise, output e with probability ρ∆

(for ρ = (1− γ/10)), and output ⊥ with probability 1− ρ∆.”

Claim V.F.6. For each edge e of G, we have

Pr[E ′ outputs e] ≤ Pr[E outputs e] ≤ (1/ρ)Pr[E ′ outputs e].

Proof. Let p = Pr[E outputs e], and let p′ = Pr[E ′ outputs e]. If edge e is green

or ∆ ≤ 0, then p′ = p. If e is red and ∆ > 0, then p′ = ρp. In either case, we have

p′ ≤ p and p ≤ (1/ρ)p′, as required.

As a corollary of Claim V.F.6, we get the following.

Claim V.F.7. For each α ∈ {0, 1}n and the puzzle x corresponding to α, we have

that

Pr[E outputs red edge incident to α | E outputs some edge incident to α] ≤

(1/ρ) ·Pr[E ′ outputs red edge incident to α | E ′ outputs some edge incident to α].

Proof. The proof is by Claim V.F.6 and the definition of conditional probability.

Now we can prove the following analog of Claim V.F.3.

Claim V.F.8. Prα∈{0,1}n [C(x) is wrong | C(x) 6= ⊥] ≤ δ − γδ/4.

122

Proof. By (V.5) and Corollary V.F.7, we get that Prα∈{0,1}n [C(x) is wrong | C(x) 6=

⊥] is at most

(1/ρ)· Expα∈L[Pr[E ′ outputs red edge incident to α

| E ′ outputs some edge incident to α]]. (V.6)

To upperbound the conditional probability of getting a red edge in the

experiment E ′, we assign weights to the edges of our graph G = G(L ∪ R,E) as

follows: An edge (α, ᾱ) ∈ E between α ∈ L and ᾱ ∈ R gets the weight wt(e) = ρ∆,

where ∆ is as in the definition of the experiment E ′ (i.e., ∆ is the total number of

errors of C̄(x̄) minus (1− γ)δk).

For each α ∈ L, let Redα denote the set of all red edges incident to α,

and let

ξ(α) =

∑
e∈Redα wt(e)∑
e∈Eα wt(e)

,

where Eα denotes the set of all edges incident to α. The expectation in (V.6) is

exactly µ = Expα∈L[ξ(α)].

LetRed be the set of all red edges inG, and let η = (1/k|R|)
∑

e∈Redwt(e).

Let us partition the set ({0, 1}n)k of k-tuples into the subsets Goodi, for i ≥ 0,

where Good0 = Good, and for each i ≥ 1, Goodi contains all those k-tuples ᾱ ∈ R

where C̄(x̄) makes exactly ((1− γ)δk + i) errors.

Apply Lemma V.E.4 to G, the partitioning R = ∪i≥0Goodi with the

corresponding weights ρ0, ρ1, . . . , and the measure τ of Good0 being at least ε. For

a parameter β (to be determined later) and λ0 = λ(β, ν), we get that µ is at most

the maximum of β and the following expression:

|R|η
(1− ν)(1− λ0/ε)

∑
i≥0 |Goodi|ρi

, (V.7)

By the definition of the sets Goodi, we get that

η ≤ (1/k|R|)
∑
i≥0

|Goodi|((1− γ)δk + i)ρi.

123

Using this bound on η, we can upperbound the expression in (V.7) by∑
i≥0 |Goodi|((1− γ)δ + (i/k))ρi

(1− ν)(1− λ0/ε)
∑

i≥0 |Goodi|ρi
. (V.8)

For t = γδk/4, let us split the sum in the numerator of (V.8) into two sums: for

0 ≤ i ≤ t and for i > t. We can bound each of these two sums as follows:

t∑
i=0

|Goodi|((1− γ)δ + (i/k))ρi ≤ ((1− γ)δ + t/k)
t∑
i=0

|Goodi|ρi

≤ (1− 3γ/4)δ
∑
i≥0

|Goodi|ρi,

and ∑
i>t

|Goodi|((1− γ)δ + (i/k))ρi ≤ ρt|R|.

Plugging these bounds into (V.8), and recalling that |Good0| ≥ ε|R|, we upper-

bound (V.8) by

1

(1− ν)(1− λ0/ε)

(
(1− 3γ/4)δ +

ρt|R|∑
i≥0 |Goodi|ρi

)
≤ (1− 3γ/4)δ + ρt/ε

(1− ν)(1− λ0/ε)
.

Finally, by (V.6), we get

Prα∈{0,1}n [C(x) is wrong | C(x) 6= ⊥] ≤ max

{
(1− 3γ/4)δ + ρt/ε

ρ(1− ν)(1− λ0/ε)
,
β

ρ

}
,

which is at most δ−γδ/4, for ρ = 1−γ/10, β = (27/40)δ, ν = (3/10)γ, λ0/ε ≤ γ/20

and ρt/ε ≤ γδ/100.

Now we finish the proof of our main theorem.

Proof of Theorem V.D.1. The proof follows from Claims V.F.4, V.F.5, and V.F.8

in exactly the same way as the proof of the main theorem under the simplifying

assumptions, given at the end of Section V.F.1.

V.G Open problems

While the results here are fairly general, there are some obvious possible

extensions. First, can similar results be proved for other domains, such as public-

coin protocols [PV07]. Also, our bounds on the adversary’s success probability,

124

although asymptotically exponentially small, are quite weak when applied to con-

crete problems such as actual CAPTCHA protocols with reasonable numbers of

repetitions. Can the bounds be improved quantitatively (getting smaller constant

in the exponent for ε in Theorem V.D.1)? Finally, we would like to find more

applications of our results, for example, to such problems as making strong secret

agreement protocols from weak ones [Hol05].

Acknowledgements : This Chapter is, in part, based on the paper “Chernoff-

type Direct Product Theorems” co-authored with Russell Impagliazzo and Valen-

tine Kabanets. In Advances in Cryptology - CRYPTO 2007, Twenty-Seventh

Annual International Cryptology Conference, pages 500–516, 2007.

VI

Applications of Direct Product

Theorems in Cryptography

VI.A Introduction

The security of most of the cryptograhic primitives is based on a class of

functions called one-way functions. These are functions which are easy to compute

but hard to invert on the average. This essentially means that for most inputs x,

given f(x), it is hard to compute any element of f−1(f(x)). So, the parameter

of interest is the fraction of inputs for which a function cannot be inverted by

efficient algorithms. Given this, a natural question to ask is whether there is a

generic method to amplify this parameter. That is, if there is a one-way function

which is weak in the sense that it is hard to invert the function for some non-

negligible number of inputs for efficient algorithms, then does that imply that

there is a strong one-way function with respect to efficient algorithms (hard to

invert on almost all inputs)? Moreover, is there a generic way to construct a

strong one-way function from weak ones? direct product theorems play a major

role in showing that if a one-way function exists with weak parameters, then one

way functions exist with stronger parameters.

As we have seen in the previous Chapter, direct product theorems have

125

126

more immediate use in many cryptographic problems. In this Chapter we will look

at more example where the ideas in this Dissertation are useful in solving some

cryptographic problems.

VI.B Security Amplification for Cryptographic Primitives

We discuss how techniques from the previous sections can be used to

amplify security properties of Message Authentication Codes (MAC) and Digital

Signatures (DS). We also discuss security amplification of Pseudorandom Gener-

ators (PRG), and Pseudorandom Functions (PRF). In the following subsections,

we discuss these primitives in detail. Most of the definitions and terminology used

in this section are part of the standard cryptographic literature. Much of the ter-

minology and definition used in this section have been borrowed from [GB01] and

[Gol01].

Before we start looking at the specific constructions and proof arguments

let us try to understand why such constructions are interesting and useful. Apart

from the fact that the details of each of the constructions is different, these are

interesting because the proof of security involves showing that an adversary has

small chance of success after multiple rounds of interaction with a verifier. In the

previous Chapter, we have seen cases where a direct product construction failed to

amplify the security of a protocol that involved more than 3 rounds of interaction.

So, direct product constructions cannot be used to show security amplification in

general. Instead, we have to show this individually for the specific type of protocol.

VI.B.1 Message Authentication Codes (MACs)

The goal of Message Authentication Scheme is to allow a sender to send

a message to a receiver such that if the message is corrupted in the route, then

the receiver will almost certainly detect this. A Message Authentication Code

(MAC) is a special case of Message Authentication Scheme where the sender,

127

given a message, generates a “tag” for the message which is sent along with the

message and which serves as the authentication check. More specifically, here is

the definition of MAC that we will be working with.

Definition VI.B.1 (MAC, [GB01]). A message-authentication code Π consists of

three algorithms, Π = (K;MAC;V F), as follows:

• The randomized key generation algorithm K generates a string K. We let

Keys(Π) denote the set of all strings that have non-zero probability of being

output by K. The members of this set are called keys. We write K
$← K for

the operation of executing K and letting K denote the key returned.

• The MAC-generation algorithm MAC, which might be randomized 1, takes

a key K ∈ Keys(Π) and a plaintext M ∈ {0, 1}∗ to return a tag Tag ∈

{0, 1}∗ ∪ {⊥}. We write Tag
$← MACK(M) to denote the operation of

executing MAC on K and M and letting Tag denote the tag returned.

• The deterministic MAC-verification algorithm VF takes a key K ∈ Keys(Π),

a message M ∈ {0, 1}∗ and a candidate tag Tag ∈ {0, 1}∗ to return either 1

(accept) or 0 (reject). We write d← V FK(M,Tag) to denote the operation

of executing VF on K, M and Tag and letting d denote the decision bit

returned.

We require that for any key K ∈ Keys(Π) and any message M ∈ {0, 1}∗

Pr[Tag = ⊥ OR V FK(M,Tag) = 1 : Tag
$←MACK(M)] = 1.

A number τ ≥ 1 is called the tag − length associated to the scheme if for any key

K ∈ Keys(Π) and any message M ∈ {0, 1}∗

Pr[Tag = ⊥ OR |Tag| = τ : Tag
$←MACK(M)] = 1.

A number 0 < ν < 1 is called the failure probability associated to the scheme if for

any key K ∈ Keys(Π) and any message M ∈ {0, 1}∗

Pr[Tag = ⊥] < ν.

1we cannot consider stateful MACs for reasons which will be clear while we discuss the proof

128

We use the following notion of security for MACs: an adversary A at-

tacking a MAC is said to succeed if it is able to produce a correct message-tag pair

after obtaining a number of correct tags for messages of its choice. The probability

of success is computed over the random choice of keys. The adversary is allowed

bounded number of “signing queries” which means that it is allowed a bounded

number of correct tags for messages of its choice (the choice of messages can be

adaptive). Furthermore, it is allowed a bounded number of “verification queries”

which means that the adversary is allowed a bounded number of attempts to pro-

duce a correct message-tag pair with the restriction that this message was not a

part of the signing query. Here is a more formal definition of security for message

authentication codes.

Definition VI.B.2 (MAC Security, [GB01]). Let Π = (K,MAC, V F) be a mes-

sage authentication code, and let A be an adversary. We consider the following

experiment:

Experiment Expuf−cmaΠ (A)

K
$← K

Run AMACK(.),V FK(.,.)

If A made a verification query (M,Tag) such that the following are true

- The verification oracle returned 1

- A did not, prior to making verification query (M,Tag), make signing query M

Then return 1 else return 0

The uf-cma advantage of A is defined as

Advuf−cmaΠ (A) = Pr[Expuf−cmaΠ (A) = 1].

Given a Message Authentication Code Π = (K,MAC, V F), we consider

the following repeated MAC Πn = (Kn,MACn, V Fn).

129

Algorithm Kn Algorithm MACn
K(M)

K1
$← K Parse K as (K1, . . . , Kn)

... T1
$←MACK1(M)

Kn
$← K ...

K ← (K1, . . . , Kn) Tn
$←MACKn(M)

return K Tag ← (T1, . . . , Tn)
return Tag

Algorithm V F n
K(M,Tag)

Let Θ = (1− γ)δn
Parse K as (K1, . . . , Kn)
Parse Tag as (T1, . . . , Tn)
b1 ← V FK1(M,T1)
...
bn ← V FKn(M,Tn)
m← |{i : bi = 1}|
If (m ≥ n−Θ) then return 1
else return 0

The following Theorem gives the security amplification for the repeated

MAC.

Theorem VI.B.3. Let A be any adversary attacking Πn such that

Advuf−cmaΠn
(A) ≥ ε,where ε = 16 · qs · e−γ

2δn/40,

while making qs MAC generation queries, qv MAC-verification query, and having

running time t. Then there exists an adversary B attacking Π such that

Advuf−cmaΠ (B) ≥ (1− δ),

while making O(q2
s/ε) MAC-generation queries, qv MAC-verification queries, and

having a running time of O ((t+ nωqs) · (qs/ε) · log (1/γδ)).2

2ω denotes the maximum time to generate a tag given a message and a key for the MAC Π.

130

Consider the following adversary B which attacks Π using the adversary

A:

Adversary BMACK(.)

00. Let ρ = (1− γ/10) and Θ = (1− γ)δn

01. h← Pick-h

02. Let Ph denote the subset of all messages M such that h(M) = 0

03. Repeat for at most timeout = O((qs/ε) · log (1/γδ)) steps:

04. Pick K1, . . . , Kn−1
$← Keys

05. Pick i
$← [1..n]

06. Sv ← φ

07. Run A

08. When A asks its signing oracle some query M

09. If M ∈ Ph then return ⊥

10. B makes a signing query M to get the tag T

11. T ← (MACK1(M), ..,MACKi−1
(M), T, ..,MACKn−1(M))

12. return T to A

13. When A asks its verification oracle some query (M,Tag)

14. Sv ← Sv ∪ (M,Tag)

15. return 0 to A

16. After A has made all its queries

17. For each (M,Tag) ∈ Sv
18. If (M /∈ Ph) then skip this (M,Tag) pair

19. Parse Tag as (T1, . . . , Tn)

20. m← |{j : V FKj(M,Tj) = 1, j 6= i}|

21. If (m ≥ n−Θ) then

22. with prob. 1, B makes a verification query (M,Ti)

23. else

24. with prob. ρm−Θ, B makes a verification query (M,Ti)

25. If a verification query has already been made then abort

131

26. return ⊥

Pick-h

00. Let H be a pairwise independent family of hash functions

which maps the message space into {0, 1, ..., (2qs − 1)}.

01. Repeat for at most 64q2
s/ε

2 times:

02. h
$← H

03. Let Ph denote the subset of all messages M such that h(M) = 0

04. count← 0

05. Repeat for at most 64q2
s/ε

2 times:

06. Pick K1, ..., Kn
$← Keys

07. Run A

08. When A asks a signing query M

09. If (M ∈ Ph), then abort and continue with step 5

10. else return Tag ← (MACK1(M), ...,MACKn(M)) to A

11. When A asks a verification query (M,Tag)

12. If V F(K1,...,Kn)(Tag) = 1 and M ∈ Ph
13. increase count by 1 and continue at step 5

14. If (count ≥ 4qs/ε) then return h

Intuition behind the proof The proof of the Theorem follows by realizing

that the above adversary attacking Π (while using adversary attacking Πn as an

Oracle) is defined on the same lines as the solver for the weaker puzzle (which

uses the solver for the harder puzzle as an Oracle) in the proof of Theorem V.D.1

of the previous Chapter. That is, it uses k − 1 self-generated MAC’s to measure

the “quality” of attack by A and then use this to make a probabilistic decision

for attacking the given MAC. There is just one change in the proof argument. In

this case, the adversary B can possibly make “multiple attempts”, that is, if it is

not able to produce any verification queries with one fixed choice of K1, . . . , Kn−1,

132

then it tries another choice. Let

M1
1 , . . . ,M

1
qs , (M

′1
1 , Tag

1
1), . . . , (M

′1
qs , Tag

1
qs),

M2
1 , . . . ,M

2
qs , (M

′2
1 , Tag

2
1), . . . , (M

′2
qs , Tag

2
qs),

...

be the queries by the adversary A, where each line above denotes the queries

corresponding to a choice of K1, . . . , Kn−1. The adversary B has to make sure

that a successful verification query should not be one of the signing queries in one

of the previous lines. This is handled by randomly partitioning the message space

M into the “attack” messages P , and “query” messages. Here P is a random

variable such that any message has probability 1/2qs of falling inside P .

The adversary B aborts its attack if a message that A wishes to sign

falls outside of P or if one of A′s verification queries falls in P . Due to this, we

lose on the success probability of B since there are additional cases where B could

abort and hence fail. This is where we lose by a factor of 4qs compared to the

Theorem V.D.1. The formal proof of the theorem follows.

Proof. First note that for a randomly chosen h
$← H (recall H is a pairwise inde-

pendent family of hash functions mapping the message space into [0, ..., (2qs−1)]),

Ph is random variable denoting the partition of the message space into two parts

which satisfies the following properties:

∀M1,M2, Pr[M1 ∈ Ph |M2 ∈ Ph] = Pr[M1 ∈ Ph] = 1/2qs (VI.1)

For any fixed choice of K̄ = (K1, ..., Kn), let (M K̄
1 , Tag

K̄
1), ..., (M K̄

qs , Tag
K̄
qs)

denote the signing queries of A. Also, let (M K̄
V , Tag

K̄
V) denote the first successful

verification query, in case A’s attack succeeds, and let it denote the last verification

query in the case A’s attack fails. Furthermore, let EK̄ denote the event that

M K̄
1 , ...,M

K̄
qs /∈ Ph and M K̄

V ∈ Ph. Next, we bound the probability of the event EK̄ .

Lemma VI.B.4. ∀K̄ ∈ G, PrP [EK̄] ≥ 1/(4qs).

133

Proof. We have

Pr[EK̄] = Pr[M K̄
V ∈ Ph & ∀i ∈ [qs],M

K̄
i /∈ Ph]

= Pr[M K̄
V ∈ Ph] ·Pr[∀i ∈ [qs],M

K̄
i /∈ Ph | M K̄

V ∈ Ph]

≥ (1/2qs) · (1−Pr[∃i ∈ [qs],M
K̄
i ∈ Ph | M K̄

V ∈ Ph])

≥ (1/2qs) ·

(
1−

∑
i

Pr[M K̄
i ∈ Ph | M K̄

V ∈ Ph]

)

= (1/2qs) ·

(
1−

qs∑
i

Pr[M K̄
i ∈ Ph]

)
(from (VI.1))

= 1/4qs (from (VI.1))

Let G denote the “good” set corresponding to A’s attack, that is, G =

{(K1, . . . , Kn) : A′s attack succeeds}. We have Pr[(K1, . . . , Kn) ∈ G] ≥ ε. Given

K̄ ∈ G, in our construction of adversary B, we abort the attack when event EK̄

does not occur. Consider the following random variable:

GPh = {(K1, ..., Kn)|(K1, ..., Kn) ∈ G and E(K1,...,Kn)}

For our analysis, GP denotes the “good” set. Furthermore, we have the following

ExpPh [Pr(K1,...,Kn)[(K1, ..., Kn)] ∈ GPh] ≥ ε/(4qs)

By averaging, we get that with probability at least ε/(8qs) over the randomness of

Ph there is at least ε/(8qs) chance that a randomly chosen (K1, ..., Kn) ∈ GPh . Let

us call such Ph’s “good”. The subroutine Pick-h with high probability returns an

h such that Ph is good. For a fixed good Ph, let Good denote the set GPh . The rest

of the analysis is on the lines of the proof of the Theorem V.D.1. So, we define

a bipartite graph and then study the special properties of this graph to prove the

theorem.

Consider the following bipartite graph G = G(L ∪ R,E): the set of left

vertices L is the set of keys K ∈ Keys(Π); the right vertices R are all n-tuples

134

of keys K̄ = (K1, ..., Kn); for every y = (u1, . . . , uk) ∈ R, there are n edges

(y, u1), . . . , (y, un) ∈ E. Next, we show that this graph is a sampler, which we

defined formally in the previous Chapter.

Lemma VI.B.5. The graph G defined above is a λ-sampler for λ(µ, ν) = e−ν
2µk/2.

Proof. This is immediate from Lemma V.E.1.

Given K̄ = (K1, ..., Kn) such that EK̄ , let (M1, Tag1),, (Mqv , Tagqv) be

the verification queries of A. Let (Amessage
K̄

, Atags
K̄

) be the first correct message-tag

pair in the above sequence provided that A makes at least one correct verifica-

tion query. Otherwise, (Amessage
K̄

, Atags
K̄

) is set to be the last (mi, Tagi) pair that

A produces. In the case that event EK̄ does not occur for a given K̄, we set

(Amessage
K̄

, Atags
K̄

) as (⊥,⊥). Note that an adversary can make adaptive verification

queries and since we return 0 to all the verification queries of A, we analyze B

returning Amessage
K̄

and a random element of Atags
K̄

as its verification query. For

further analysis, we denote this output of B as outB.

First we will bound the probability of timeout of B, that is, outB is always

⊥. Let K be the secret key. Let K̄ = (K1, . . . , Ki−1, K,Ki, . . . , Kn−1) be the k-

tuple of keys constructed by the adversary B. If K̄ ∈ Good, then loop 6–25 will

return a message-tag pair with probability 1. Hence, the probability of timeout is

at most the probability that B never samples a neighbor K̄ ∈ Good of K in the

graph G. As in the previous subsection, we consider the set H of all those left

vertices K of G such that K has less than ε′/4 fraction of its neighbors fall into the

set Good. We get the following analogs of Claims V.F.1 and V.F.2, with analogous

proofs.

Claim VI.B.6. The set H has density at most γδ/5.

Proof. Suppose that the density of H is greater than β = γδ/5. Let H ′ ⊆ H

be any subset of H of density exactly β. By our assumption, we have that

PrK∈L,w∈N(K)[K ∈ H ′ & w ∈ Good] < βε′/4. On the other hand, by Lemma V.E.2

135

we get that the same probability is at least β(ε′ − λ0)/3 for λ0 = λ(β, 2/3). This

is a contradiction if λ0 ≤ ε′/4.

Claim VI.B.7. For every K 6∈ H, we have Pr[outB = ⊥] ≤ γδ/20, where the

probability is over the internal randomness of B.

Proof. By the definition of H, we get that the probability of timeout on any given

K 6∈ H is at most (1− ε′/4)4 ln(20/γδ)/ε′ ≤ γδ/20.

Next we analyze the probability of V FK(outB) = 0, conditioned on the

fact that outB 6= ⊥.

For each edge ((K1, . . . , Kn), Ki) of the graph G, we color this edge green

if the ith tag in Atags
K̄

is the correct tag for the message Amessage
K̄

, and we color it

red otherwise.

Consider the following random experiment E :

“Pick a random K ∈ L, and its random incident edge e = (K, K̄) in
G, for K̄ containing K in position i ∈ [n]. Let err be the number of
incorrect tags in Atags

K̄
for the message Amessage

K̄
in positions other than

i, and let ∆ = err− (1−γ)δn. If ∆ ≤ 0, output the edge e. Otherwise,
output e with probability ρ∆ (for ρ = (1− γ/10)), and output ⊥ with
probability 1− ρ∆.”

For each K, we have

Pr[V FK(outB) = 0 | outB 6= ⊥] =

Pr[E outputs red edge incident to K | E outputs some edge incident to K],

(VI.2)

where the first probability is over internal randomness of B, and the second prob-

ability is over the random choices of E for the fixed K (i.e., over the random choice

of an edge e incident to K, and the random choice whether e is output).

Rather than analyzing the experiment E , however, we will consider an-

other experiment that is the same as E except that err is defined as the total

number of incorrect tags of Amessage
K̄

in Atags
K̄

in all positions (i.e., including the

position i). That is, we consider the following experiment E ′:

136

“Pick a random K ∈ L, and its random incident edge e = (K, K̄) in
G, for K̄ containing K in position i ∈ [n]. Let err be the number of
incorrect tags in Atags

K̄
in all positions, and let ∆ = err − (1 − γ)δn.

If ∆ ≤ 0, output the edge e. Otherwise, output e with probability ρ∆

(for ρ = (1− γ/10)), and output ⊥ with probability 1− ρ∆.”

Claim VI.B.8. For each edge e of G, we have

Pr[E ′ outputs e] ≤ Pr[E outputs e] ≤ (1/ρ)Pr[E ′ outputs e].

Proof. Let p = Pr[E outputs e], and let p′ = Pr[E ′ outputs e]. If edge e is green,

then p′ = p. If e is red, then p′ = ρp. In either case, we have p′ ≤ p and p ≤ (1/ρ)p′,

as required.

As a corollary of Claim VI.B.8, we get the following.

Claim VI.B.9. For each K, we have that

Pr[E outputs red edge incident to K | E outputs some edge incident to K] ≤

(1/ρ) ·Pr[E ′ outputs red edge incident to K | E ′ outputs some edge incident to K].

Proof. The proof is by Claim VI.B.8 and the definition of conditional probability.

Claim VI.B.10. PrK [V FK(outB) = 0 | outB 6= ⊥] ≤ δ − γδ/4.

Proof. By (VI.2) and Corollary VI.B.9, we get that PrK [V FK(outB) = 0 | outB 6=

⊥] is at most

(1/ρ)· ExpK∈L[Pr[E ′outputs red edge incident to K |

E ′ outputs some edge incident to K]]. (VI.3)

To upperbound the conditional probability of getting a red edge in the

experiment E ′, we assign weights to the edges of our graph G = G(L ∪ R,E)

as follows: An edge (K, K̄) ∈ E between K ∈ L and K̄ ∈ R gets the weight

wt(e) = ρ∆, where ∆ is as in the definition of the experiment E ′ (i.e., ∆ is the

total number of incorrect tags of Amessage
K̄

in Atags
K̄

minus (1− γ)δn).

137

For each K ∈ L, let RedK denote the set of all red edges incident to K,

and let

ξ(K) =

∑
e∈RedK wt(e)∑
e∈EK wt(e)

,

where EK denotes the set of all edges incident to K. The expectation in (V.6) is

exactly µ = ExpK∈L[ξ(K)].

LetRed be the set of all red edges inG, and let η = (1/n|R|)
∑

e∈Redwt(e).

Let us partition the set the n-tuple of keys into the subsets Goodi, for i ≥ 0, where

Good0 = Good, and for each i ≥ 1, Goodi contains all those n-tuples K̄ ∈ R where

there are exactly ((1− γ)δn+ i) incorrect tags of Amessage
K̄

in Atags
K̄

.

Apply Lemma V.E.4 to G, the partitioning R = ∪i≥0Goodi with the

corresponding weights ρ0, ρ1, . . . , and the measure τ of Good0 being at least ε′. We

get that µ is at most the maximum of β and the following expression:

|R|η
(1− ν)(1− λ0/ε′)

∑
i≥0 |Goodi|ρi

, (VI.4)

where λ0 = λ(β, ν).

By the definition of the sets Goodi, we get that

η ≤ (1/n|R|)
∑
i≥0

|Goodi|((1− γ)δn+ i)ρi.

Using this bound on η, we can upperbound the expression in (VI.4) by∑
i≥0 |Goodi|((1− γ)δ + (i/n))ρi

(1− ν)(1− λ0/ε′)
∑

i≥0 |Goodi|ρi
. (VI.5)

For t = γδn/4, let us split the sum in the numerator of (VI.5) into two sums: for

0 ≤ i ≤ t and for i > t. We can bound each of these two sums as follows:

t∑
i=0

|Goodi|((1− γ)δ + (i/n))ρi ≤ ((1− γ)δ + t/n)
t∑
i=0

|Goodi|ρi

≤ (1− 3γ/4)δ
∑
i≥0

|Goodi|ρi,

and ∑
i>t

|Goodi|((1− γ)δ + (i/n))ρi ≤ ρt|R|.

138

Plugging these bounds into (VI.5), and recalling that |Good0| ≥ ε′|R|, we upper-

bound (VI.5) by

1

(1− ν)(1− λ0/ε′)

(
(1− 3γ/4)δ +

ρt|R|∑
i≥0 |Goodi|ρi

)
≤ (1− 3γ/4)δ + ρt/ε′

(1− ν)(1− λ0/ε′)
.

Finally, by (V.6), we get

PrK [V FK(outB) = 0 | outB 6= ⊥] ≤ max

{
(1− 3γ/4)δ + ρt/ε′

ρ(1− ν)(1− λ0/ε′)
,
β

ρ

}
,

which is at most δ − γδ/4, for ρ = 1 − γ/10, β = (27/40)δ, ν = (3/10)γ, λ0/ε
′ ≤

γ/20 and ρt/ε′ ≤ γδ/100.

Now we finish the proof of our main Theorem VI.B.3. We have

PrK [V FK(outB) = 0] =
1

|Keys(Π)|
∑
K∈H

Pr[V FK(outB) = 0] +

1

|Keys(Π)|
∑
K 6∈H

Pr[V FK(outB) = 0]. (VI.6)

The first term on the right-hand side of (VI.6) is at most γδ/5 by Claim VI.B.6.

For the second term, we upperbound Pr[V FK(outB) = 0] by Pr[V FK(outB) = 0 |

outB 6= ⊥] + Pr[outB = ⊥]. We know by Claim VI.B.7 that, for each K 6∈ H,

Pr[outB = ⊥] ≤ γδ/20. Thus we get that PrK [V FK(outB) = 0] is at most

γδ/5 + γδ/20 +
1

|Keys(Π)|
∑
K 6∈H

Pr[V FK(outB) = 0 | outB 6= ⊥] ≤

γδ/4 + PrK [V FK(outB) = 0 | outB 6= ⊥],

which is at most δ by Claim VI.B.10.

Discussion Following are some important things one should note about security

amplification arguments for MACs presented in this section:

1. Note that in the repeated MAC Πn, the length of the tag as well as the key

grows by a factor of n. Ideally, we would like to obtain a security amplification

without increasing either of these parameters too much. We hope to address

this issue in the future.

139

2. Another issue to note is that for the case of the deterministic MAC Π, it does

not make much sense to use a threshold construction because the receiver

always accepts an authenticated message generated by a valid sender. We use

threshold construction because apart from being a stronger result, it can be

used to show security amplification for the case when the MAC is randomized

and there is a small chance that an authenticated message originating from

the valid sender is rejected by the receiver.

3. Finally, we note that our arguments do not apply for stateful MACs. This

is because we use the attack on Πn to construct an attack on Π. Here, we

use the assumption that for a random choice of keys (K1, ..., Kn) for Πn,

there is an adversary which succeeds with probability at least ε and then we

use a bunch of independently chosen keys for Πn in sequence until we get

a good attack on Π. The assumption implicit in this argument is that the

probability of success of the adversary attacking Πn remains at least ε for

randomly chosen keys for Πn in a sequence. This might not be true for a

stateful MAC.

VI.B.2 Digital Signatures (DSs)

A Digital Signature Scheme is almost the same as Message Authentication

Scheme except for the fact that it is a Public Key protocol in contrast with the

Message Authentication Scheme which is a Private Key protocol. More specifically,

here is a formal definition of a Digital signature Scheme.

Definition VI.B.11 (DS, [GB01]). A digital signature schemeDS = (K, Sign, V F)

consists of three algorithms as follows:

• The randomized key generation algorithm K (takes no inputs and) returns

a pair (pk, sk) of keys, the public key and matching secret key, respectively.

We write (pk, sk)
$← K for the operation of executing K and letting (pk, sk)

be the pair of keys returned.

140

• The signing algorithm Sign takes the secret key sk and a messageM to return

a signature or tag σ ∈ {0, 1}∗ ∪ {⊥}. The algorithm may be randomized.

We write σ
$← Signsk(M) or σ

$← Sign(sk,M) for the operation of running

Sign on inputs sk,M and letting σ be the signature returned.

• The deterministic verification algorithm V F takes a public key pk, a message

M , and a candidate signature σ for M to return a bit. We write d ←

V Fpk(M,σ) or d← V F (pk,M, σ) to denote the operation of running V F on

inputs pk,M, σ and letting d be the bit returned.

We require that V Fpk(M,σ) = 1 for any key-pair (pk, sk) that might be output by

K, any message M , and any σ 6= ⊥ that might be output by Signsk(M). Finally,

number 0 < ν < 1 is called the failure probability associated to the scheme if

for any key pair (pk, sk) that might be output by K and any message, we have

Pr[σ = ⊥] < ν.

The security of digital signatures is defined in a very similar manner as

that of message authentication codes.

Definition VI.B.12 (DS, [GB01]). LetDS = (K, Sign, V F) be a digital signature

scheme, and let A be an algorithm that has access to an oracle and returns a pair

of strings. We consider the following experiment:

Experiment Expuf−cmaDS (A)

(pk, sk)
$← K

(M,σ)← ASignsk(.)(pk)

If the following are true return 1 else return 0:

- V Fpk(M,σ) = 1

- M ∈Messages(pk)

- M was not a query of A to its oracle

The uf-cma-advantage of A is defined as

Advuf−cmaDS (A) = Pr[Expuf−cmaDS (A) = 1].

141

Given a Digital Signature DS = (K, Sign, V F), we consider the following

repeated DS DSn = (Kn, Signn, V F n).

Algorithm Kn Algorithm SignnK(M)

K1 = (pk1, sk1)
$← K Parse K as (K1, . . . , Kn)

... σ1
$← Signsk1(M)

Kn = (pkn, skn)
$← K ...

K ← (K1, . . . , Kn) σn
$← Signskn(M)

return K σ ← (σ1, . . . , σn)
return σ

Algorithm V F n
K(M,Tag)

Let Θ = (1− γ)δn
Parse K as (K1, . . . , Kn)
Parse σ as (σ1, . . . , σn)
b1 ← V Fpk1(M,σ1)
...
bn ← V Fpkn(M,σn)
m← |{i : bi = 1}|
If (m ≥ n−Θ) then return 1
else return 0

The following Theorem gives the security amplification for the repeated

DS. The proof is almost the same as for MACs and we omit explicit details.

Theorem VI.B.13. Let A be any adversary attacking DSn such that

Advuf−cmaDSn (A) ≥ ε,where ε = 16 · qs · e−γ
2δn/40,

while making qs signing queries, qv verification queries, and having running time

t. Then there exists an adversary B attacking DS such that

Advuf−cmaDS (B) ≥ (1− δ),

while making O(q2
s/ε) signing queries, qv verification queries, and having a running

142

time of O ((t+ nωqs) · (qs/ε) · log (1/γδ)).3

VI.B.3 Pseudorandom Generators (PRGs)

Intuitively, pseudorandom generators are functions which expands a truly

random string into a random “looking” string. In this subsection we consider

Hardness Amplification for pseudorandom generators (PRGs). Given a weak pseu-

dorandom generator, we use it to construct a strong pseudorandom generator. We

start by defining these terms.

Definition VI.B.14 (pseudorandomness). An ensemble {Xn}n∈N is called δ(n)-

pseudorandom if for every probabilistic polynomial-time algorithm, D, and all

sufficiently large n’s

|Pr[D(Xn, 1
n) = 1]− Pr[D(Un, 1

n) = 1]| < δ(n).

We will use the following standard definition of a pseudorandom genera-

tor.

Definition VI.B.15 (pseudorandomness generator). A δ(n)-pseudorandom gen-

erator is a deterministic polynomial-time algorithm, G, satisfying the following two

conditions:

1. expansion: there exists a function l : N → N so that l(n) > n for all n ∈ N ,

and |G(s)| = l(|s|) for all s ∈ {0, 1}∗.

2. pseudorandomness: the ensemble {G(Un)}n∈N is δ(n)-pseudorandom.

Definition VI.B.16 (weak and strong PRGs). A δ(n)-pseudorandom generator

is called weak if δ(n) = constant for all sufficiently large n’s.

A δ(n)-pseudorandom generator is called strong if δ(n) < 1/p(n) for any

polynomial p(.) and all sufficiently large n’s.

3ω denotes the maximum time to sign a message.

143

Definition VI.B.17 (Unpredictability). An ensemble {Xn}n∈N is called δ(n) - un-

predictable in polynomial time if for every probabilistic polynomial time algorithm

A, all i ∈ [n], and all sufficiently large n’s

Pr
[
A(1|Xn|, Xn[1..i]) = Xn[i+ 1]

]
<

1

2
+ δ(n)

where Xn[n+ 1] denotes a uniformly chosen bit.

The following Theorem shows that under certain conditions, weak pseu-

dorandom generators imply strong ones.

Theorem VI.B.18 (weak PRG implies strong PRG). Given that there is a weak

pseudorandom generator with expansion factor l(n) = O(n2). Then there exists a

strong pseudorandom generator.

Proof. We start by looking at the construction of the strong generator. We denote

the seed of Gstrong by the tuple (s, r), where s is a string of length kn and r is a

string of length k (k = O(n)).

Gstrong(s, r)

Parse s into k(= O(n)) strings (s1, . . . , sk) of length n each.

p← 0...0

for i← 1 to k

if (r[i] = 1) then p← bitwiseXOR(p,Gweak(si))

Note that the the seed for the generator Gstrong has increased by a factor

of k. This is what imposes the constraint that l(n) > k(n + 1) = O(n2). We

show that the generator above is a strong generator using the following sequence

of arguments: (i) use the “pseudorandom versus unpredictability” reduction to

argue that Gweak(Un) is hard to predict, (ii) use direct product theorem to ar-

gue that the product of ensembles Gweak(Un) is even harder to predict, (iii) use

Goldreich-Levin theorem to argue that the bit-wise XOR of a random subset of

144

these ensembles remains hard to predict, and finally (iv) use the “pseudorandom

versus unpredictability” reduction to argue that Gstrong is a strong pseudorandom

generator. We present these four steps in the form of the following Claims.

We will need the following Theorem for some of the claims in this sub-

section.

Theorem VI.B.19 (pseudorandomness versus unpredictability). If an ensemble

{Xn}n∈N is δ(n)-unpredictable, then it is (n · δ(n))-pseudorandom. Also, if an

ensemble {Xn}n∈N is δ(n)-pseudorandom, then it is δ(n)-unpredictable.

Claim VI.B.20. {Gweak(Un)}n∈N is δ-unpredictable.

Proof. This follows from Theorem VI.B.19.

The next claim shows that simultaneously predicting the ith bit of k

independent instances of Gweak(Un) becomes very hard.

Claim VI.B.21. For every probabilistic polynomial-time algorithm A, for all i ∈

[n], for any polynomial q(.), and all sufficiently large n’s we have:

Pr[A(1|k·l(n)|, Gweak(Un,1)[1..i], . . . , Gweak(Un,k)[1..i]) =

(Gweak(Un,1)[i+ 1], . . . , Gweak(Un,k)[i+ 1])] <
1

q(n)
.

Proof. This follows from the fact that predicting the ith bit of a pseudorandom

generator can be modeled as a weakly verifiable puzzle and we can then apply the

direct product theorem for weakly verifiable puzzles. Here the secret string α is

the uniformly chosen string Un, the puzzle x is the string Gweak(α)[1...(i− 1)] and

the verification procedure for an answer b is V (α, b) = 1 if Gweak(α)[i] = b and 0

otherwise. We can then apply the Theorem V.D.1 of the previous chapter with

the value of γ = 1.

We will need the following version of the Goldreich-Levin Theorem for

our next claim.

145

Theorem VI.B.22 (GL89). There is a probabilistic algorithm A with the following

property. Let h ∈ {0, 1}k be any string , and let B : {0, 1}k → {0, 1} be any

predicate such that |Prr∈{0,1}n [B(r) = 〈h, r〉] − 1/2| ≥ γ for some γ > 0. Then,

given oracle access to B and given γ, the algorithm A runs in time poly(k, 1/γ),

and outputs a list of size l = O(1/γ2) such that with high probability the string is

on this list.

The following claim shows that predicting the bit given by taking the

inner product of the ith bit of k independent instances of Gweak(Un) with a random

string r ∈ {0, 1}k.

Claim VI.B.23. For every probabilistic polynomial-time algorithm B, all i ∈ [n],

for all polynomial q(.), for all sufficiently large n’s, and r ∈u {0, 1}k we have

Pr[A(1|k·l(n)|, Gweak(Un,1)[1..i], . . . , Gweak(Un,k)[1..i]) =

〈Gweak(Un,1)[i+ 1], . . . , Gweak(Un,k)[i+ 1], r〉] < 1

2
+

1

q(n)
.

Proof. The above theorem follows from the Claim VI.B.30 and Theorem VI.B.22.

Finally, we use the “unpredictability versus pseudorandomness” reduction

to show that Gstrong satisfies a stronger psedorandomness property.

Claim VI.B.24. Gstrong is a strong pseudorandom generator.

Proof. This follows from Theorem VI.B.19.

VI.B.4 Pseudorandom Functions (PRFs)

In this subsection, we talk about hardness amplification of Pseudorandom

functions. We will use the same set of ideas as in the previous section to show

that a weak pseudorandom function implies a strong one. Let us start defining

146

these terms. Consider the following definition of pseudorandom function ensemble

borrowed from [Gol01].

Definition VI.B.25 (Efficiently computable pseudorandom function). Let d, r :

N→ N. We say that

{fs : {0, 1}d(|s|) → {0, 1}r(|s|)}s∈{0,1}∗

is an efficiently computable generalized pseudorandom function ensemble if the

following two conditions hold

1. (efficient evaluation): There exists a polynomial time algorithm that on in-

puts s and x ∈ {0, 1}d(|s|) returns fs(x).

2. (pseudorandomness): For every probabilistic polynomial-time oracle machine

M , every polynomial p(.) and all sufficiently large n’s

|Pr[MFn(1n) = 1]−Pr[MHn(1n) = 1]| < 1/p(n)

where Fn is a random variable uniformly distributed over the multi-set

{fs}s∈{0,1}n , and Hn is uniformly distributed among all functions mapping

d(n)-bit long strings to r(n)-bit long strings.

Definition VI.B.26 (Weak and strong pseudorandom function). A weak pseudo-

random function is a pseudorandom function where the distinguishing probability

is 1/p(n) = 1/c for some constant c.

A strong pseudorandom function is a pseudorandom function where the

distinguishing probability is < p(n) for any polynomial p(.) and all sufficiently

large n’s.

Definition VI.B.27 (Unpredictability for pseudorandom functions). Let δ : N→

N. A pseudorandom function ensemble {Fn}n∈N is called a δ(n) unpredictable if

for all sufficiently large n and any polynomial time algorithm algorithm A we have

∀i,Prf∈Fn,x∈{0,1}d(n) [A(1n, f(x)[1...i− 1]) = f(x)[i]] < δ(n).

147

Theorem VI.B.28 (Weak PRF implies strong PRF). Given that there is a weak

pseudorandom function {Fn}n∈N, then there is a strong pseudorandom function

{F ′n}n∈N.

Proof. Here the description of the construction of the strong pseudorandom func-

tion from a weak one:

F ′n: Given s1, ..., sk, t ∈ {0, 1}k and x ∈ {0, 1}d(|si|) the value of the func-
tion f(s1,...,sk,t)(x) is defined as ∀i, f(s1,...,sk,t)(x)[i] = 〈(fs1(x)[i], ..., fsk(x)[i]), t〉

Note that the descirption length of the function has increased by a factor of k. We

show that the function above is a strong psedorandom function using the following

sequence of arguments: (i) use the “pseudorandom versus unpredictability” reduc-

tion to argue that fs(Ud(n)) is hard to predict, (ii) use direct product theorem to

argue that the product of ensembles f(s1,...,sk)(Ud(n)) is even harder to predict, (iii)

use Goldreich-Levin theorem to argue that the bit-wise XOR of these functions

remains hard to predict, and finally (iv) use the “pseudorandom versus unpre-

dictability” reduction to argue that Fn is a strong pseudorandom function. We

present these four steps in the form of the following Claims.

We will need the following Theorem for some of the claims in this sub-

section.

Claim VI.B.29. {Fn(Ud(n))}n∈N is δ-unpredictable for some constant δ.

Proof. This follows from Theorem VI.B.19.

The next claim shows that simultaneously predicting the ith bit of k

independent instances of Fn(Ud(n)) becomes very hard.

Claim VI.B.30. For every probabilistic polynomial-time algorithm A, for all i ∈

[r(n)], for any polynomial q(.), and all sufficiently large n’s we have:

Pr[A(1k·n, F 1
n(U1

d(n))[1..i], . . . , F
k
n (Uk

d(n))[1..i]) =

(F k
n (Uk

d(n))[i+ 1], . . . , F k
n (Uk

d(n))[i+ 1])] <
1

q(n)
,

148

where F 1
n ,, F

k
n denotes independent instances of Fn and U1

d(n), ..., U
k
d(n) denotes

independent instances of Ud(n).

Proof. This follows from the fact that predicting the ith bit of a pseudorandom

function can be modeled as a weakly verifiable puzzle and we can then apply

direct product theorem for weakly verifiable puzzles. Here the secret string α

is the uniformly chosen function f ∈ Fn plus uniformly chosen string w ∈ Un,

the puzzle x is the string f(w)[1...(i − 1)] and the verification procedure for an

answer b is V (α, b) = 1 if f(w)[i] = b and 0 otherwise. We can then apply the

Theorem V.D.1 of the previous chapter with the value of γ = 1 to obtain the above

Theorem.

Claim VI.B.31. For every probabilistic polynomial-time algorithm B, all i ∈ [n],

for all polynomial q′(.), for all sufficiently large n’s, we have

Pr[A(1k·n, F 1
n(U1

d(n))[1..i], . . . , F
k
n (Uk

d(n))[1..i]) =

Fn(U1
d(n))[i+ 1]⊕ ...⊕ Fn(Uk

d(n))[i+ 1]] <
1

2
+

1

q′(n)
,

where F 1
n ,, F

1
n denotes independent instances of Fn and U1

d(n), ..., U
k
d(n) denotes

independent instances of Ud(n).

Proof. The above theorem follows from the Claim VI.B.30 and Theorem VI.B.22.

Finally, we use the “unpredictability versus pseudorandomness” reduction

to show that F ′n satisfies a stronger psedorandomness property.

Claim VI.B.32. F ′n is a strong pseudorandom function.

Proof. This follows from Theorem VI.B.19.

VII

Conclusions and Open Problems

In this Dissertation, we have studied direct product theorems. We have

obtained a uniform version of the classical direct product theorem. We also studied

a stronger and more general direct product theorem statement which establishes

a concentration bound on the fraction of correctly solved problems instances from

a pool of independently chosen instances for a given average-case hard problem.

The showed this statement for a very generic setting which allowed us to extend

the techniques to show security amplification using parallel repetition in various

cryptographic protocols.

A number of interesting problems remain open. In Chapter III we ob-

tained a derandomized direct product theorem in the uniform setting but with

parameters which fell short of the ideal case. Can we obtain a derandomized ver-

sion of the theorem in the uniform setting with better parameters (getting the error

term ε = e−Ω(n) instead of the current ε = e−Ω(
√
n))? Another interesting ques-

tion is whether we can obtain a stronger “Chernoff-type” theorem in the uniform

setting? In Chapter V, we studied Chernoff-type direct product theorems. The

parameter ε (currently e−γ
2δk/40) fell short of the information-theoretically optimal

(e−γ
2δk/2). It would be interesting to see one can obtain the result with optimal

parameters. In Chapter VI, we looked at Security amplification for MACs by using

repetition. This, however, increases the length of the shared secret key as well as

149

150

the length of the MAC by a factor of k. Ideally, we would like to get security

amplification without too much increase in the size of the shared key or MAC.

Another very interesting and related area that we did not touch upon in

this Dissertation is direct product testing. Following is an informal description of

the problem. Given oracle access to a circuit C : {0, 1}nk → {0, 1}k, the goal is to

differentiate between the following two cases:

1. There exists a function f : {0, 1}n → {0, 1} such that C = fk, that is,

∀(x1, ..., xk) ∈ {0, 1}nk, C(x1, ..., xk) = fk(x1, ..., xk)
1

2. For any function f : {0, 1}n → {0, 1},

Pr(x1,...,xk)[C(x1, ..., xk) = fk(x1, ..., xk)] < ε

A q-query test for the above problem requires to differentiate between the above

two cases by querying the circuit C on at most q inputs. In a recent development

[DG08], an optimal two query test has been shown for ε = Ω(1/k). It would be

interesting to see a (> 2)-query test which achieves stronger error parameter ε.

1this can be relaxed to approximate computing.

Bibliography

[ABHL03] L. Vin Ahn, M. Blum, N.J. Hopper, and J. Langford. Captcha: Using
hard ai problems for security. In Advances of Cryptology - EURO-
CRYPT 2003, pages 294–311, 2003.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p.
Annals of Mathematics, 160(2):781–793, 2004.

[AS03] S. Arora and M. Sudan. Improved low-degree testing and its applica-
tions. Combinatorica, 23(3):365426, 2003.

[BDCGL92] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of
average-case complexity. Journal of Computer and System Sciences,
44(2):193–219, 1992.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subex-
ponential time simulations unless EXPTIME has publishable proofs.
Computational Complexity, 3:307–318, 1993.

[BGG93] M. Bellare, O. Goldreich, and S. Goldwasser. Randomness in inter-
active proofs. Computational Complexity, 3:319–354, 1993.

[BIN97] M. Bellare, R. Impagliazzo, and M. Naor. Does parallel repetition
lower the error in computationally sound protocols? Proceeding of the
38th Annual IEEE Symposium on Foundations of Computer Science,
pages 374–383, 1997.

[BOS06] J. Buresh-Oppenheim and R. Santhanam. Making hard problems
harder. In Proceedings of the 21st Annual IEEE Conference on Com-
putational Complexity, pages 73–87, 2006.

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity.
Found. Trends Theor. Comput. Sci., 2(1):1–106, 2006.

[CHS05] R. Canetti, S. Halevi, and M. Steiner. Hardness amplificatio of weakly
verifiable puzzles. In Theory of Cryptography (TCC 2005), pages 17–
33, 2005.

151

152

[DG08] Irit Dinur and Elazar Goldenberg. Locally testing direct products in
the high error range. FOCS’08 (to appear), 2008.

[DR06] I. Dinur and O. Reingold. Assignment testers: Towards a combi-
natorial proof of the pcp theorems. SIAM Journal on Computing,
36(4):975–1024, 2006.

[GB01] Shafi Goldwasser and Mihir Bellare. Lecture Notes in Cryptography.
2001.

[GGH+07] S. Goldwasser, D. Gutfreund, A. Healy, T. Kaufman, and G. N. Roth-
blum. Verifying and decoding in constant depth. In Proceedings of
the 39th Annual ACM Symposium on Theory of Computing, pages
440–449, 2007.

[GL89] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way
functions. In Proceedings of the Twenty-First Annual ACM Sympo-
sium on Theory of Computing, pages 25–32, 1989.

[GNW95] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR-Lemma.
Electronic Colloquium on Computational Complexity, (TR95-050),
1995.

[Gol01] O. Goldeich. Foundations of Cryptography: Volume 1, Basis Tools.
Cambridge University Press, 2001.

[GS00] O. Goldreich and S. Safra. A combinatorial consistency lemma with
application to proving the pcp theorem. SIAM Journal on Computing,
29(4):1132–1154, 2000.

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded random
variables. American Statistical Journal, pages 13–30, 1963.

[Hol05] T. Holenstein. Key agreement from weak bit agreement. In Proceed-
ings of the 37th Annual ACM Symposium on Theory of Computing,
pages 664–673, 2005.

[HVV04] A. Healy, S. Vadhan, and E. Viola. Using nondeterminism to amplify
hardness. In Proceedings of the Thirty-Sixth Annual ACM Symposium
on Theory of Computing, pages 192–201, 2004.

[IJK06] Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets. Ap-
proximately list decoding direct product codes and uniform hardness
amplification. In Proceeding of the 47th Annual IEEE Symposium on
Foundations of Computer Science, pages 187–196, 2006.

[IJK07] Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets.
Chernoff-type direct product theorems. In Advances of Cryptology

153

- CRYPTO 2007, 27th Annual International Cryptology Conference,
pages 500–516, 2007.

[IJKW08] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi
Wigderson. Uniform direct product theorems: simplified, optimized
and derandomized. In Proceedings of the 40th Annual ACM Sympo-
sium on Theory of Computing, pages 579–588, 2008.

[Imp95a] R. Impagliazzo. Hard-core distributions for somewhat hard problems.
In Proceedings of the Thirty-Sixth Annual IEEE Symposium on Foun-
dations of Computer Science, pages 538–545, 1995.

[Imp95b] Russell Impagliazzo. A personal view of average-case complexity. Pro-
ceeding of the Tenth Annual Structure in Complexity Theory Confer-
ence, pages 134–147, 1995.

[Imp02] Russell Impagliazzo. Hardness as randomness: a survey of universal
derandomization. Proceedings of the ICM, Beijing 2002, 3:659–672,
2002.

[IW97] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponen-
tial circuits: Derandomizing the XOR Lemma. In Proceedings of
the Twenty-Ninth Annual ACM Symposium on Theory of Comput-
ing, pages 220–229, 1997.

[Kab02] Valentine Kabanets. Derandomization: A brief overview. Bulletin of
the European Association for Theoretical Computer Science, 76:88–
103, 2002.

[Lev86] L. A. Levin. Average case complete problems. SIAM Journal on
Computing, 15(1):285–286, 1986.

[Lev87] L. A. Levin. One-way functions and pseudorandom generators. Com-
binatorica, 7(4):357–363, 1987.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of
Computer and System Sciences, 49:149–167, 1994.

[O’D04] R. O’Donnell. Hardness amplification within NP. Journal of Com-
puter and System Sciences, 69(1):68–94, 2004. (preliminary version
in STOC’02).

[PV07] R. Pass and M. Venkitasubramanium. An efficient parallel repetition
theorem for arthur-merlin games. In Proceeding of the 39th Annual
ACM Symposium on Theory of Computing, pages 420–429, 2007.

[PW07] K. Pietrzak and D. Wikstrom. Parallel repetition of computationally
sound protocols revisited. In Theory of Cryptography (TCC 2007),
pages 86–102, 2007.

154

[RS42] J. Riordan and C. E. Shannon. The number of two terminal series
parallel networks. Journal of Math. Physics, 21:83–93, 1942.

[RS97] R. Raz and S. Safra. A sub-constant error-probability low-degree
test, and a sub-constant error-probability pcp characterization of np.
In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, pages 475–484, 1997.

[STV01] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators
without the XOR lemma. Journal of Computer and System Sciences,
62(2):236–266, 2001. (preliminary version in STOC’99).

[Tre03] L. Trevisan. List-decoding using the XOR lemma. In Proceedings of
the Forty-Fourth Annual IEEE Symposium on Foundations of Com-
puter Science, pages 126–135, 2003.

[Tre05] L. Trevisan. On uniform amplification of hardness in NP. In Pro-
ceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, pages 31–38, 2005.

[TV02] L. Trevisan and S. Vadhan. Pseudorandomness and average-case com-
plexity via uniform reductions. In Proceedings of the Seventeenth An-
nual IEEE Conference on Computational Complexity, pages 103–112,
2002.

[Yao82] A. C. Yao. Theory and applications of trapdoor functions. In Proceed-
ings of the Twenty-Third Annual IEEE Symposium on Foundations
of Computer Science, pages 80–91, 1982.

[Zuc97] D. Zuckerman. Randomness-optimal oblivious sampling. Random
Structures and Algorithms, 11(4):345–367, 1997.

