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ABSTRACT OF THE DISSERTATION

Data-Driven Object Segmentation in Single Images with Random Field Models

by

Jimei Yang

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, 2015

Professor Ming-Hsuan Yang, Chair

As humans, we have a remarkable ability of telling objects apart from cluttered back-

ground and tracing their contours even with occlusions. This ability has long fascinated

computer vision researchers to study the principles and algorithms for object segmenta-

tion. Object segmentation has both theoretical and practical interests as it is an essential

step towards 3D image understanding and intelligent image editing.

To segment an object, we have to recognize it in order to obtain knowledge of what

parts should be grouped together. In this thesis, we formulate object segmentation as an

image labeling problem in random field models to facilitate integrating top-down recog-

nition knowledge with bottom-up image cues. The integration can be driven by either

bottom-up segmentation or top-down recognition. The segmentation-driven process re-

quires object-level segmentation hypotheses drawn from bottom-up cues while the recognition-

driven process needs shape and context to be effectively represented. This thesis addresses

these issues in a data-driven approach. First, we propose to generate object segmentation

proposals from segmentation trees using exemplars. Compared to previous parametric

methods, our data-driven method takes advantage of both diversity and informativeness

of exemplars and thus produce a compact set of highly plausible proposals. Second, we

propose novel random field models that enjoy joint learning of shape representation and

xi



object segmentation. Different from previous works that use shape representation as prior,

our model emphasizes the structured prediction from the recognition model to the shape

model. This difference ensures the the shape is well preserved in the resulting segmenta-

tion masks with robustness to partial occlusions. Third, we develop a novel nonparametric

method based on multiscale shape transfer, which in turns forms a higher-order random

field. Compared to previous works that transfer rigid or deformable masks in image sub-

windows, our method explores shape masks in multiple granularities and is able to produce

high quality segmentations in an efficient way. The last but not least, we develop a novel

scene parsing system where small objects are segmented in context. With extensive use of

context in multiscale and particular care to the long-tailed label distribution, our system

demonstrates state-of-the-art results in large-scale problems.
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Chapter 1

Introduction

1.1 Problem Definition

Object segmentation is a computational process of separating objects of interest from

background with clear boundaries/contours in images. It has long been an active research

area in computer vision due to its theoretical and practical interests. With the extracted

contours, object segmentation provide visual cues for pose estimation, 3D reconstruction

and occlusion reasoning, and thus considered as a critical intermediate step that lifts 2D

scene understanding to 3D physical world recovery. In the areas of photography and artis-

tic design, there is a demand for modifying the color and shape of one particular object,

deleting distractive objects in a photograph and composing new images from existing pho-

tographs. Selecting objects with accurate contours is the key function to enable effective,

fast and intelligent editing [2]. This thesis is motivated by these potential impacts object

segmentation could make to science, art and society.

Bottom-up image segmentation vs. object segmentation. Bottom-up image segmen-

tation aims at grouping pixels into local regions that have consistent colors and textures.

There are roughly three kinds of bottom-up image segmentation based on the trade-off be-

tween region locality and consistency. First, regions are small and spatially regular, usually

1
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referred as superpixels, such as SLIC [1]. Second, regions are more adaptive to image col-

ors and textures, such as graph-based segmentation [35] and normalized cuts [93]. Third,

regions are organized into a tree structure with growing sizes from leaves to root, such

the gPb-owt-ucm algorithm [7]. Bottom-up algorithms are closely related to image edge

detection [26]. In contrast, object segmentation also requires regions to be consistent with

object appearances and shapes of pre-defined classes. For example, human segmentation

needs to group pixels of different colors due to dressing. Thus, object segmentation is

a process of integrating bottom-up image cues (boundaries) and top-down object knowl-

edge (appearance and shape). Since boundary cues can be preserved in bottom-up regions

(superpxiels) or detected edges, object segmentation can operate in pixel-level or region-

level.

Single-image vs. multi-image vs. video. Single-image object segmentation is a classic

computer vision problem and deeply related to object recognition. Recently, object seg-

mentation is extended to multi-image scenarios, referred as object co-segmentation [107,

88]. Those multiple images can be different views of one object instance [9] or random

samples of particular object category [88]. In most of the co-segmentation algorithms the

object category is unknown and thus it is of primary interest to discover object knowl-

edge based on appearance or shape consistencies across different images. Compared to

image based methods, video object segmentation involves motion as another important

cue. Thus, video object segmentation is often coupled with optical flow estimation or

tracking [19, 69]. This thesis focuses on object segmentation in a single image.

1.2 Solution

Early efforts are devoted to active contour models [48, 13]. The basic idea is to evolve

a curve around one target object to fit its boundary. The evolution is driven by minimiz-

ing an energy function that controls the smoothness of the contour and at the same time

attracts the contour to image edges. Although the success in medical imaging [115], ac-
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tive contours face challenges when applied to complex natural images due it their limited

capacity of representing irregular shapes and their vulnerability to cluttered background.

1.2.1 Random Field Models

In this thesis, we pose object segmentation as an image labeling problem in random

field models [52] that assigns every pixel or region a binary label of being object or non-

object. Compared to active contours, labeling masks are more flexible shape representa-

tions and compatible with classification models for object recognition. Random fields are

a general class of undirected probabilistic models that represent joint distributions of input

image, labels and possible hidden variables. Image labeling is thus solved by maximum

a posteriori (MAP) inference. Markov Random Fields (MRFs) [5] and Conditional Ran-

dom Fields (CRFs) [62] are commonly used for object segmentation [58, 59, 36, 11, 63].

Both MRFs and CRFs can be represented as energy functions with potentials of different

orders. Their difference lies in that all the factors in CRFs are data-dependent while some

of factors in MRFs are data-independent priors. The advantages of MRFs and CRFs are

twofold.

1. Different object recognition models, bottom-up image cues and labeling priors can

be easily integrated into a single energy function.

2. There exist efficient combinatorial optimization algorithms [16, 54] for minimizing

labeling energy functions given submodular assumption.

Random field models are not limited to MRFs and CRFs. Restricted Boltzmann Ma-

chines (RBMs) [90] and Conditional Boltzmann Machines (CBMs) [79] are another group

of random field models with extensive hidden variables that facilitate distributed represen-

tation learning. We will discuss how to apply RBMs and CBMs to object segmentation in

Chapter 4.
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1.2.2 Data-Driven Approach

Many works in object segmentation focus on the design of generic higher-order poten-

tials to improve the robustness of labeling or to endows the labeling with certain proper-

ties [81, 51, 86, 91]. At the same time, some works apply hand-crafted models [58, 18,

108] to segment objects of particular category, e.g. humans. Both of these two approaches

are confronted with performance limitations when generalized to arbitrary object cate-

gories. On one hand, it is very hard for one designed higher-order potential to deal with all

the object variations and background clutters. On the other hand, it is almost not realistic

to hand-craft a model for every object class.

An alternative is leveraging big data to overcome above-mentioned limitations. Nowa-

days image capturing becomes much easier with various cameras. As a result, there are

a tremendous amount of images available in the internet and the size is still growing. At

the same time, one can easily collect segmentation annotations at a reasonable price with

Mechanic Turk [4]. Large-scale data collections usually cover a wide range of image

variations, and thus offer a great opportunity to directly learn object segmentation mod-

els [97, 66] or to explore nonparametric methods for label transfer [73, 57]. This thesis

considers both learning-based and nonparametric methods for data-driven object segmen-

tation.

1.2.3 Challenges

Since recognition plays an important role in object segmentation models, the perfor-

mance of object segmentation methods is indeed bounded by the recognition models. In

early stage of object segmentation, most of the algorithms are mainly concerned with sim-

ple images and their performance also depends on effective interaction with human users.

When SIFT [74] and HoG [25] features are successfully applied to object recognition

(categorization and detection), automatic object segmentation methods demonstrate the

promise of applying to complex natural images, e.g. PASCAL VOC datasets [31]. Recent



5

fast progress of deep learning significantly improve the performance of object recognition

due to the rich features learned from massive data [56]. Object segmentation thus faces

a new round of revolution. A thorough discussion about object recognition methods is

beyond the scope of this thesis.

Regardless of what recognition models are used, object segmentation faces several fun-

damental challenges. An immediate one is how to integrate global recognition models with

image boundary cues. Object recognition is usually based on holistic representations [64],

although sometimes supported by parts [34], which leads to incompatibilities with pixel or

region representations in random field models. One solution is to design higher-order or

global potentials in random fields that host the output from object categorization or detec-

tion [61, 95]. Although solvable by efficient combinatorial optimization, higher-order ran-

dom fields are difficult to learn and thus often use pre-trained recognition models. Another

solution is to decompose object segmentation into two stages: 1) generating object-level

segmentation proposals from random fields [20, 28, 49] and 2) evaluating proposals with

recognition models [68, 103]. As one can easily access to various recognition models, the

focus of this solution is to generate object proposals. The key to its success is to maintain

a high recall rate of segmentation proposals, because the true positive can not be recovered

in the recognition stage once missed at the first place.

In addition to appearance and boundary, shape serves as another important cue for ob-

ject segmentation by providing regularizations for pixel/region grouping, especially when

handling object instance segmentation with occlusions. However, how to build effective

shape representations for segmentation is still an open question. Most of works use tem-

plates as shape representations that are either learned from training data [15, 67, 118] or

simply a set of exemplars [37, 57, 114]. Boltzmann machines are recently used to learn

distributed shape representations and have demonstrated their generalization performance

and robustness to occlusions [29]. However, new challenges arise for learning large-size,

fine-grained shape models and for applying them to object segmentation.

The discussions so far are based on the object-centric assumption that objects are
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brought into focus of the camera. If we take a zoom-out view of scene, the background

become dominant and the small size of objects make recognition very challenging. On

the other hand, objects are usually occluded with each other in both indoor and outdoor

scenes. Therefore, challenges for object segmentation in scenes lie in modeling contexts,

i.e. object-object [60, 33] and object-scene [102, 94, 96] relationships.

1.3 Thesis Outline and Contributions

In Chapter 3, we present a hybrid parametric and nonparametric algorithm, exemplar

cut, for generating class-specific object segmentation hypotheses. For the parametric part,

we train a pylon model on a hierarchical region tree as the energy function for segmenta-

tion. For the nonparametric part, we match the input image with each exemplar by using

regions to obtain a score which augments the energy function from the pylon model. Our

method thus generates a set of highly plausible segmentation hypotheses by solving a se-

ries of exemplar augmented graph cuts. Experimental results on the Graz and PASCAL

datasets show that the proposed algorithm achieves favorable segmentation performance

against the state-of-the-art methods in terms of visual quality and accuracy.

In Chapter 4, we present Max-Margin Boltzmann Machines (MMBMs) for object

segmentation. MMBMs are essentially a class of Conditional Boltzmann Machines that

model the joint distribution of hidden variables and output labels conditioned on input

observations. In addition to image-to-label connections, we build direct image-to-hidden

connections to facilitate global shape prediction, and thus derive a simple Iterated Con-

ditional Modes algorithm for efficient maximum a posteriori inference. We formulate a

max-margin objective function for discriminative training, and analyze the effects of dif-

ferent margin functions on learning. We evaluate MMBMs using three datasets against

state-of-the-art methods to demonstrate the strength of the proposed algorithms.

In Chapter 5, we propose a nonparametric method for generic object segmentation.

As similar objects tend to share similar local shapes, we match query image patches with
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example images in multiscale to enable local shape transfer. The transferred local shape

masks constitute a patch-level segmentation solution space and we thus develop a novel

cascade algorithm, PatchCut, for coarse-to-fine object segmentation. In each stage of the

cascade, local shape mask candidates are selected to refine the estimated segmentation of

the previous stage iteratively with color models. Experimental results on various datasets

(Weizmann Horse, Fashionista, Object Discovery and PASCAL) demonstrate the effec-

tiveness and robustness of our algorithm.

In Chapter 6, we presents a scalable scene parsing algorithm based on image retrieval

and superpixel matching. We focus on rare object classes, which play an important role

in achieving richer semantic understanding of visual scenes, compared to common back-

ground classes. Towards this end, we make two novel contributions: rare class expansion

and semantic context description. First, considering the long-tailed nature of the label

distribution, we expand the retrieval set by rare class exemplars and thus achieve more

balanced superpixel classification results. Second, we incorporate both global and local

semantic context information through a feedback based mechanism to refine image re-

trieval and superpixel matching. Results on the SIFTflow and LMSun datasets show the

superior performance of our algorithm, especially on the rare classes, without sacrificing

overall labeling accuracy.

We conclude this thesis in Chapter 7 and discuss future work.



Chapter 2

Literature Review

In this chapter, we review the literature related to the research work presented in the

following chapters.

2.1 Generating Multiple Proposals

Parametric Min Cut. The parametric min cut algorithm [53] introduces a constant value

to the node potentials of the graph cut energy function, which changes the decision thresh-

old of classifying the nodes into foreground and background. By varying the constant

value, a series of graph cuts are solved to produce a set of segmentation hypotheses. This

technique has been used in [20, 49] for category independent object segmentation hypothe-

ses. As the classification thresholds are changed uniformly for all the nodes, the parametric

min cut usually produces noisy segmentation results where good segments are companied

by false negatives.

M-Best Solutions. When the single MAP solution becomes less satisfactory, it is benefi-

cial to find M best solutions. A potential issue is that the top M most probable solutions

may be similar to each other if many noisy local minimal solutions exist close to the MAP

one [119]. To address that, Batra et al. [10] propose to explore different local modes of

8
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the energy function by enforcing the solution diversity. In their work, the energy function

is augmented with dissimilarity constraints that isolate the current solution from previous

ones by a pre-defined threshold. This strategy entails a greedy algorithm to find solutions

sequentially.

Multiple Choice Learning. This approach aims to generate multiple structured out-

puts [39] by learning a set of sub-models simultaneously, rather than inferring multiple

solutions from a single model. Recall that we need a diverse set of segmentation hypothe-

ses. It is thus essential to enforce sub-models as different as possible. In fact, the multiple

choice learning approach realizes this objective in the training phase by discriminative

clustering. It assigns the training exemplars to sub-models by evaluating their segmenta-

tion errors so that a sub-model is eventually optimized towards a subset of exemplars. This

approach is constrained by the clustering structure of training exemplars and sensitive to

the initialization. When the number of sub-models is not properly chosen, the segmenta-

tion capabilities of learned sub-models may be imbalanced (some too strong and others

too weak) so that the weak predictor degenerates in the training phase.

2.2 Learning Shape Representations

Combining RBMs with CRFs. Recent work [47, 71] on object segmentation realizes the

power of Boltzmann Machines to represent high-order interactions in combining RBMs

with CRFs. Li et al. [71] combine pairwise, data-dependent potentials with a one-layer

RBM prior in CRFs (referred as Compositional High Order Pattern Potentials (CHOPPs)

in Figure 4.1(b)), and show the relationship between the marginalized RBM free energy

and high-order potentials [86]. Kae et al. [47] augment CRFs with an RBM shape prior

in a two-layer model for image labeling. Their lower layer has nodes for every superpixel

of the image, with pairwise weights connecting them. The labels for this layer are then

pooled into a raster structure, enabling them to use a RBM to provide shape priors.

Combining DBMs with variational models. Another attempt is to combine Deep Boltz-
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mann Machines shape prior with a variational segmentation model [23], showing the ef-

fectiveness of strong shape priors for simple object segmentation. In all of the above

approaches, the only inference pathway between the image features x and the hidden vari-

ables h representing shapes leads through the labels assigned to image pixels y while the

shape only works as a prior. To perform inference and learning, the hidden variables are

usually marginalized through an EM-like procedure. The shape information is thus not

fully explored.

2.3 Transferring Shape Masks

Rigid window masks. In [57], the test image is matched with example images by window

proposals. By adding up the matched window masks, the estimated segmentation prior

contains more information about object location but less information about object shape.

As a result, its segmentation performance largely depends on the final iterative GraphCut

refinement step.

Deformable window masks. The algorithm in [3] involves two-step image matching.

The window proposals of the test image are first localized on example images and then

each localized image window is aligned using SIFT flow [73] with its corresponding test

window proposal to achieve deformable mask transfer. Although a better shape prior could

be obtained this way, running SIFT flow for thousands of window proposals with tens of

examples inevitably results in considerable computational cost.

2.4 Putting Objects in Context

Context-driven maching. Context has been investigated in various semantic segmenta-

tion algorithms from co-occurrence statistics to scene categories [60, 27, 96, 42]. The

key idea is to first label the input image only using appearance information, and then ex-

tract context information from initial semantic labels. Eigen and Fergus [27] investigate
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context information in superpixel neighborhoods. By observing that the initial labeling

usually produces reliable results on background classes, they build a context index for

each superpixel using background labels in its four-directional neighborhood. Therefore,

in additional to image retrieval, their method is able to find more relevant superpixels

for matching. However, in large scale, even similar background (indoor) can encapsulate

many object categories, which will result in the uncontrollable size of retrieved superpix-

els. Singh and Kosecka [96] instead focus on global semantic context. They construct

a semantic label descriptor for each image in a three-layer spatial pyramid to refine im-

age retrieval. Compared to appearance image descriptors, semantic label descriptors are

much lower dimensional and allow fast image matching, but also more vulnerable when

the initial labeling fails.

Context-driven classification. Tu and Bai [105] exploits local context in an iterative man-

ner. They pose object segmentation as a pixel-wise classification problem. A classifier is

first trained only using appearance features to predict a label for each pixel. The classifica-

tion likelihood maps are then used as context features to train a second classifier together

with appearance features. This procedure iterates until convergence. Labeling is improved

gradually as each iteration will bring more local semantic information (context) into local

prediction.



Chapter 3

Generating Object Segmentation

Proposals with Exemplar Cut

3.1 Introduction

Category level object segmentation is one of the core problems in computer vision. Its

main challenges lie in that small visual elements (pixels or superpixels) contain insufficient

information that admits category level object recognition. One line of research aims at ef-

fectively propagating high level recognition results back to low level segmentation through

superpixel neighborhood [36], high-order Conditional Random Fields (CRFs) [59] or ob-

ject detector outputs [6, 114]. Another line makes efforts to generate object segmentation

hypotheses so that recognition can be achieved more efficiently by classification or rank-

ing [68].

Object segmentation hypotheses could be category independent or category specific.

Recent work for category independent object segmentation [28, 20, 49] exploit hierar-

chical image segmentations, grouping strategies and cross-category shape priors in order

to increase the chance of recovering true object regions. As a result, such methods are

likely to generate thousands of instance-level object region hypotheses which entail la-

12
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(a) Input (b) Exemplar A (c) Exemplar B

(d) MAP solution (e) Hypothesis A (f) Hypothesis B

Figure 3.1: Generating class-specific segmentation hypotheses from exemplars (person in this ex-

ample).

borious post-processing to filter out low-quality solutions. Category specific approaches

instead, [15, 58, 11] generate single object segmentation by using efficient maximum a

posteriori (MAP) inference tools (e.g., graph cut [54]), which perform well when target

objects appear dominantly in the images with simple backgrounds. In real-world appli-

cations, however, target objects more often appear in cluttered backgrounds with large

appearance variations and interact with the objects of other categories (e.g., PASCAL

VOC datasets [31]). In these cases, the single MAP solution becomes less satisfactory

(Figure 3.1(d)) due to the limited model capacity and training errors. A natural choice

to resolve this issue is to generate multiple object segmentation hypotheses from class-

specific models [10, 39] (Figure 3.1(e)(f)). This choice not only benefits from learning but

also increases the probability of finding all the target objects.

In this chapter, we propose a hybrid parametric and nonparametric model for gener-

ating a small set of highly plausible class-specific object segmentations, thereby reducing
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ambiguities and computational loads for sequential classification or ranking. Towards that,

we first learn a pylon model [66] to obtain the parametric object segmentation energy func-

tion. Building on a bottom-up hierarchical segmentation [7], the pylon model combines

a flat CRF with a region tree. The resulting energy function remains submodular and ad-

mits efficient inference by graph cut, which brings conveniences to max-margin learning.

Second, we match the test image with each exemplar by regions. For each region in the

test image, we retrieve k nearest neighbors (K-NN) from the matching exemplar, so that

the node potentials of the pylon model are augmented by K-NN matching scores. There-

fore, an object segmentation hypothesis can be generated by solving a graph cut with the

exemplar augmented energy function, which we refer as exemplar cut.

Our method leverages both the generalizability of parametric models and the flexi-

bility of nonparametric models. Parametric models usually make assumptions on image

segmentations. For example, CRFs and pylons assume that regions are classifiable in the

node potentials, and labels between adjacent regions are consistent up to the Potts pair-

wise potentials. Under these assumptions, the MAP inference usually produces reason-

ably smooth labeling around the target (Figure 3.1(d)). The reason of missing some parts

and predicting a false negative lies in that the node classifiers are less effective in handling

heterogeneous appearance in complex background.

On the other hand, the nonparametric segmentations [99, 73, 57, 85] are more flexi-

ble to model assumptions. These methods are able to segment an image by transferring

prior knowledge (e.g., labels and shape masks) from retrieved exemplars or regions in a

database of segmentation exemplars. However, considering the statistical instability of

using exemplars, challenges arise from integrating the retrieved or matched segmentation

results into a single solution. Our method avoids such issue and instead queries each ex-

emplar to generate one segmentation hypothesis. By adjusting the pylon energy function

by the exemplar matching score, we fuse the parametric and nonparametric classifiers [22]

on the node potentials and still take advantage of the label consistency assumption and

learned parameters on the pairwise potentials. Consequently, we increase the possibili-
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ties of correcting the mistakes of parametric models and prevent segmentation from noisy

labeling.

We carry out experiments on the Graz-02 [82] and PASCAL VOC 2010 datasets [31].

We use the intersection/union overlap scores [31] to evaluate the upper bound performance

of segmentation hypotheses. The results show that the proposed exemplar cut algorithm

generates better segmentation hypotheses than the MAP solution and performs favorably

against the state-of-the-art methods based on parametric min cut [53], diverse M-Best

solutions [10] and multiple choice learning [39]. We also analyze the performance of

hypotheses at different MAP quality levels. The results on the Graz-02 dataset suggest

that exemplar cut maintains high recall rates when MAP solutions miss the target objects.

3.2 Exemplar Cut

In this section, we present the proposed exemplar cut algorithm for class-specific object

segmentation in details. We first introduce the underlying segmentation model and then

present our approach of generating multiple segmentation hypotheses with exemplars.

3.2.1 Category Specific Object Segmentation

Pylon Model. We use the two-class pylon model [66] as the underlying mechanism for

category specific object segmentation. We first segment an image I into a hierarchical

region tree S = {S1, S2, ..., S2L−1} by the gPb contour detector [7]. We index the leaf

segments from 1 to L, the intermediate segments from L + 1 to 2L − 2 and the root

segment (the entire image) as the last one, 2L− 1. We also denote a(i) as the ancestor of

segment i and p(i, j) as the shortest path from segment i to segment j. Note that segment

i and its ancestor a(i) are overlapped, so we only need to keep one of them to explain the

image. Each segment Si ∈ S thus could be assigned a label fi ∈ {0, 1, 2}, where fi = 1

indicates the foreground, fi = 2 the background, and fi = 0 not being used for explaining
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the image. To produce a consistent labeling f = {f1, ..., f2L−1}, the pylon model requires

that for any leaf segment, there is only one non-zero label along its path to the root node

in the tree,

∀i = 1, ..., L, ∀j ∈ p(i, 2L− 1), fj > 0 ∧ fj · fa(j) = 0. (3.1)

This constraint guarantees the complete and non-overlapping labeling. We present a sim-

plified two-class pylon model in Figure 3.2. Each node represents a segment at a different

Figure 3.2: A two-class pylon model illustration.

level and its figure/ground assignment energy is given by U(fi) in (3.3). The edges be-

tween the leaf nodes V (fi, fj) in (3.4) denotes the pairwise smoothness term. The edge be-

tween a segment and its ancestor represents the consistency constraint C(fi, fa(i)) in (3.1).

A labeling of the image is visualized by colored bounding boxes around the segments. The

red box indicates the figure label (fi = 1) while the blue box indicates the ground label

(fi = 2). The dashed box indicates the segment is not being used to explain the image

(fi = 0) and all the solid boxes constitute a complete image.
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We formulate an energy function for the pylon model similar to a conventional CRF,

E(f) =
2L−1∑
i=1

U(fi) +
∑

(i,j)∈N

V (fi, fj), (3.2)

where the unary term U(fi) specifies the cost of assigning a label fi for the segment i, and

the pairwise term V (fi, fj) instantiates the non-negative boundary cost between any two

adjacent segments (i, j) ∈ N . The set of adjacent segments is denoted byN . In particular,

we define the unary term as linear models,

U(fi) =


|Si| ·<w1,h(Si)>, for fi = 1,

|Si| ·<w2,h(Si)>, for fi = 2,

0, for fi = 0,

(3.3)

where h(Si) denotes the feature vector extracted from the segment Si and w1,w2 denotes

the unary parameter vectors. We use the size of segment |Si| as a weighting factor to

encourage the pylon inference to select larger segments. The pairwise term is defined by

a weighted Potts model,

V (fi, fj) = <w3,b(Si, Sj)> · δ[fi 6= fj], (3.4)

where b(Si, Sj) is a vector of exponentiated boundary strength with different bandwidths

and w3 is the smoothness parameter vector.

Inference. It is not trivial to infer the pylon model with both semantic labels fi = 1, 2 and

exclusive label fi = 0. In order to leverage the strength of graph cut for optimal inference

on binary Markov random fields, Lempitsky et al. [66] decompose the target label fi of

each segment into a pair of equivalent binary variables x1
i and x2

i , which indicate whether

any of the segments along the path p(i, 2L − 1) falls entirely into the regions of class 1

or 2. Based on this re-parametrization technique, both the unary terms (except the root)

and consistency constraint in (3.1) are absorbed into a new energy function E(x1,x2) as

pairwise terms. With some manipulations, this new energy function becomes sub-modular



18

Figure 3.3: Exemplar cut algorithm diagram.

and can be minimized by graph cut. To recover the target labeling f from equivalent

labelings (x1,x2), we can simply examine if its ancestors up the tree are assigned non-

zero labels. More details about this re-parametrization method can be found in [66].

Max-Margin Learning. The pylon model can be learned in a max-margin fashion. The

optimization is formulated as,

min
w

1

2
‖w‖2 +

C

N

∑
n

ξn, s.t. ∀ξn ≥ 0

max
x

[∆(x(n),x)−E(x,y(n);w)+E(x(n),y(n);w)] ≤ ξn

w3 ≥ 0

(3.5)

where x denotes all the binary variables {x1,x2}, y represents all the feature vectors

{hi;bij} and w is the full parameter vector [w1;w2;w3]. We develop a stochastic gra-

dient (sub-gradient) descent algorithm for efficiently optimizing the max-margin learning

objective in (4.18).

3.2.2 Hybrid Parametric/Nonparametric Model

Pylon models have been demonstrated to be effective for figure/ground segmentation

and semantic scene parsing [66], due to their ability of selecting larger regions in the



19

segmentation tree to reduce the classification ambiguity. When the pylon models are ap-

plied to object class segmentation, their MAP solution becomes less effective in dealing

with complex object appearance and their interactions. On one hand, the Markov random

field assumption about image structures may be invalid for the objects with heterogeneous

appearance. For example, the strong edges between different body parts and partial oc-

clusions break the smoothness assumption while the cluttered background violates the

discontinuity assumption around object boundaries. On the other hand, the max-margin

objective and the use of slack variables in (4.18) usually introduce bias to the process

of model learning, although they improve the generalizability to unseen images and the

resistance to noises.

On the contrary, exemplar based nonparametric approaches, which involve no model

assumptions and training process, can generate segmentations by image matching and

prior transfer. Although they are flexible of exploiting prior knowledge contained in ex-

emplars, the nonparametric approaches still face the challenge of filtering the matching

results due to the large variance of exemplars.

We herein present a hybrid method by integrating the pylon model with exemplars.

Figure 3.3 illustrates the proposed algorithm. The goal is to segment an input image in the

center into the foreground object and the background. We construct a pylon graph [66]

on the regions generated by [7]. The node energies (orange links) are constructed by the

pre-learned person and background models (orange nodes). The pairwise energies are con-

structed on the adjacent regions by measuring their shared boundaries (white lines in the

image) and compatibilities. Note that we omit the hierarchical structure for ease of illus-

tration. On the left are an exemplar image (top) and its segmentation mask (bottom). The

exemplar is also segmented into regions by [7] and each region is assigned a label based

on the mask. We find the best match (blue links) in the exemplar image for each region

of the test image. Based on their labels, we incorporate the node energy of each region

with the matching similarities. We solve a graph cut to this augmented energy function

for generating an exemplar cut solution, which is shown on the bottom right. As the test
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image shares similar appearance with the exemplar image, the resulting segmentation has

a very high accuracy. The original MAP solution on the top right instead misses many

small targets and one occluded person. To segment an input image I , we first compute

its parametric energy from the learned pylon model through (3.2), which provides a basis

of generating smooth segmentations close to the ground truth. The exemplars are then

used to generate segmentation hypotheses different from the MAP solution, through re-

gion matching. We represent an exemplar by an image I(n) and its segmentation f (n), and

denote the matching energy by ∆(f , f (n); I, I(n)). Therefore, a segmentation hypothesis

can be generated by solving graph cut to the augmented energy function,

Ẽ(f , f (n)) = (1− λ)U(f) + λ∆(f , f (n)) + V (f), (3.6)

where λ ∈ [0, 1] controls the tradeoff between the parametric and nonparametric energies.

In this exemplar cut energy function (3.6), we actually resolves the learning bias of pylon

model by the matching variance with exemplars.

3.2.3 K-Nearest Neighbor Region Matching

In this work, we compute the nonparametric matching energy function ∆(f , f (n)) by

using the K-NN matching algorithm. We parse an exemplar image I(n) into a set of hierar-

chical regions S(n). For each region, we extract a feature vector h(n)
i and assign a ground

truth label f (n)
i from its annotated object masks. The exemplar is thus represented by a

set of feature-label pairs {(h(n)
i , f

(n)
i )}i=1,2,...,2L−1. Note that we assign non-zero labels

to regions that fall entirely into ground truth foreground, which increases the chance of

recovering object parts. We assume that segments are independent of each other so that

we approximate the matching energy by

∆(f , f (n)) =
2L−1∑
i=1

∆(fi, f
(n)). (3.7)



21

For each region i in the test image, we retrieve K best segments in the exemplar based on

their feature similarities,

(h
(n)
k , f

(n)
k )k=1,2,...,K ← K-NN(hi, {(h(n)

j , f
(n)
j )}). (3.8)

We define the matching energy of region i by the K-NN output,

∆(fi) = − 1

K

K∑
k=1

<hi,h
(n)
k > · δ[fi = f

(n)
k ]. (3.9)

This matching energy can be easily merged into the parametric unary term (3.3) so that

the augmented energy function (3.6) remains the same form as the original energy func-

tion (3.2) and can be solved by the inference algorithm developed in [66]. Figure 3.4 shows

(a) Input (b) Exemplar

(c) Pylon confidence map (d) K-NN confidence map

Figure 3.4: Foreground confidence maps of the pylon model and K-NN matching method.



22

the foreground confidence maps of pylon model and K-NN matching, and their comple-

mentary effects. The confidence maps are computed from the node energy. The K-NN

matching recovers small targets at a distance and a partial figure near the right boundary,

which is missed by the pylon model. The pylon model removes the false positives of the

K-NN matching method around the tree region.

3.3 Experiments

We present the experimental results using the Graz-02 [82] and PASCAL VOC 2010

datasets [31] with evaluations of the proposed algorithm against several state-of-the-art

class-specific methods for generating segmentation hypotheses, i.e., the parametric min

cut (PMCut) method, the diverse M Best solutions (MBest) [10] and the multiple choice

learning (MCL) approach [39]. We implement these three algorithms based on the learned

pylon model. We use the intersection/union overlap scores to evaluate the upper bound

performance of these segmentation algorithms.

3.3.1 Graz-02

Setup. The Graz-02 dataset includes 3 object classes (bike, car and person) and back-

ground images, which is challenging for object segmentation due to large pose variations,

scale changes and partial occlusions. Each class consists of 300 images I(n) of 640× 480

pixels and all the images are annotated by foreground masks. The odd-numbered images

per class are used for training pylon models and for exemplars, and the rest for evaluation.

We set the parameter λ = 0.9 as the tradeoff of parametric and nonparametric energy, and

the parameter K = 7 as the number of nearest neighbors in the K-NN matching method1.

Representations. We represent an image by a bottom-up segmentation tree using the gPb

algorithm [7]. The number of segments is around 7000 on average. Each segment Si is

1We empirically determine these values by evaluating λ ∈ [0.7, 1.0] and K = [5, 9].
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represented by three kinds of features hi = [hSIFT
i ;hcolor

i ;hshape
i ]. We extract dense SIFT

descriptors using the VLFeat toolbox [106] and train a codebook of size 512 using all

the training images of three classes. The SIFT histogram hSIFT
i is computed using the

locality constrained linear coding method [109] and max pooling. The color histogram

hcolor
i is computed from a color codebook of size 128 by assigning each RGB pixel to its

closest codeword. The contour shape descriptor hshape
i is extracted from a spatial pyramid

of oriented gPb edge responses [38]. We map the concatenated feature vectors to a high-

dimensional space with the explicit χ2 kernel [106].

Ground truth labeling. To train the pylon models and use exemplars, we need to de-

termine the ground truth labels for each region in a training image, generated by the gPb

algorithm. Due to the errors from the gPb contour detection and blurred boundaries of

annotated masks, the average overlap score of the pylon ground truth segmentations with

annotated masks is 87.8%.

Results. We use the learned pylon models of each class to generate MAP segmentations

of test images. For the diverse MBest approach, we observe that its performance improves

slightly when the number of solutions is close to 30, thereby its overlap scores are reported

by using 30 solutions per image. For the MCL method, we train up to 5 sub-models

for each class and observe some sub-models are underutilized (as no training exemplars

belong to some sub-models). For the PMCut, we follow the method in [49] and draw 41

samples by varying the constant parameter from -2.0 to 2.0 with the increment 0.1. By

using exemplar cuts, we generate 150 raw segmentation hypotheses per test image. Note

that all these methods generate redundant segmentations. We evaluate their performance

from raw results without considering post-processing to merge the duplicates and remove

the low quality ones. Table 3.1 shows the overlap scores of segmentation approaches by

using the “oracle” evaluation protocol [10]. The exemplar cut algorithm outperforms the

MAP solution by 15.3% on average and the second best MCL approach by 5.1%.
We present some qualitative results in Figure 3.5. Bikes, cars and people are high-

lighted by green, blue and red masks, respectively. From left to right, the segmentations
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Table 3.1: “Oracle” overlap scores in the Graz-02 dataset.

overlap Bicycle Car Person mean
MAP 66.4 61.4 60.6 62.8
MBest 69.8 67.3 66.0 67.7
PMCut 73.9 70.6 70.7 71.7
MCL 73.1 75.1 71.0 73.0

ExemplarCut 77.4 78.9 78.0 78.1

are generated by (a) MBest, (b) MCL, (c) PMCut and (d) ExemplarCut. It shows that the

segmentation hypotheses generated by exemplar cut are usually able to deal with occlu-

sions, suppress the background clutters and recover the missing targets.

We generate up to 150 segmentations per test image. Moreover, we are interested in

the performance of exemplar cut segmentations when the MAP solutions fail to detect the

targets. We consider the hypotheses as true positives if their overlap with ground truth are

greater than 50%; otherwise as false positives. In Figure 3.6, we compare the recall rates

of segmentation hypotheses at different MAP quality levels. From the left to the right,

we compare the evaluated four algorithms for bike, car and person, respectively. When

the MAP overlap score is smaller than 10%, almost losing the targets, the hypotheses

generated by exemplar cut (red curves) achieve recall rates 75.0%, 52.6% and 46.7% for

bike, car and person datasets. The overall recall rates are 97.3%, 88.7% and 90.0% for

bike, car and person datasets, respectively.

3.3.2 PASCAL VOC 2010

Setup. In the PASCAL VOC 2010 dataset, each of the training, validation and test sets

includes 964 annotated images from 20 object categories and one background class. The

images in this dataset may include multiple objects from several categories. We use the

training set to learn pylon models, and evaluate the proposed algorithm on the validation

set. For class-specific object segmentations, we first parse the multi-class segmentation

masks into class-specific object masks, and then train a pylon model on the positive exem-
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(a) MBest (b) MCL (c) PMCut (d) ExemplarCut

Figure 3.5: Segmentation results on the Graz-02 test set.
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Figure 3.6: Recall rates at different MAP quality levels on the Graz-02 datasets.

plars for each class.

Implementations. Similar to the Graz-02 experiments, we represent an image with a

bottom-up segmentation tree using the gPb method and represent each segment by SIFT,

color and shape features. Considering the large appearance variations, we train a SIFT

codebook of size 8096. We use the same method in the Graz-02 experiments to obtain

ground truth pylon labelings and use the same values for the parameter λ and K. For

exemplar cut of each class, we use the positive training images as exemplars and thus gen-

erate about 50 segmentation hypotheses per class on average. We implement the PMCut

method by varying the parameter from -2 to 2 by increasing 0.1 each step. For the MCL al-

gorithm, we choose to initialize one predictor per 10 images since each class has different

training images. We segment one test image using the models from 20 classes, because we

have no information about the object categories before running segmentation algorithms.

Results. We evaluate the quality of segmentation hypothesis sets by “oracle” overlap

scores in Table 3.2. In the top panel, we present the overlap scores for class-specific object

segmentation hypotheses. The exemplar cut performs the best on 18 of 20 classes, and

achieves 60.8% average overlap score, with an improvement over the second best, PMCut,

by 9.7%. To elucidate the quality of our segmentation hypotheses, we present one image

per class and compare its exemplar cut and the second best segmentation in Figure 3.7. In

each panel of Figure 3.7, the left image is produced by exemplar cut and the right image
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Table 3.2: “Oracle” class-wise overlap scores on the VOC 2010 validation set.
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is produced by the most competing algorithm (MCL or PMCut). For the bicycle image,

we present a case that exemplar cut is slightly worse than MCL. For the sheep image, we

present a failure case of exemplar cut where PMCut performs the best. The masks for

different classes follow the VOC color codes.

In order to see the potentials of class-specific hypotheses for category level object seg-

mentation, we compute the upper bound overall overlap score in Table 3.3. For a test im-

Table 3.3: “Oracle” multi-class overlap scores on the VOC 2010 validation set.

MAP MBest [10] MCL PMCut ExemplarCut
overlap 44.86 48.0 54.3 58.8 68.7

age, we select the best segmentation from each class as its category confidence map. The

class segmentation is thus given by the maximum confidence score from all the classes at

pixels. Intuitively, if there is an oracle segmentation selector, we can achieve 68.7% over-
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Figure 3.7: Comparing segmentations for 20 classes on the VOC 2010 evaluation datasets.
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lap accuracy on the PASCAL VOC 2010 validation set. This result suggests the potential

of exemplar cut for category level object segmentation. Note that the MBest result [10],

is computed from a multi-class CRF model [59]. We do not present the MBest result by

the pylon model because we find it difficult to tune a single dissimilarity parameter for all

the classes. The number of segmentation hypotheses for exemplar cut equals the number

of exemplars (i.e., 50). In both Graz-02 and VOC 2010 datasets, exemplars are limited

for each class. Thus it is convenient to use all of them to generate hypotheses. When the

number of exemplars is large, it will be infeasible to use all the exemplars. Similar to

the algorithms for scene parsing [73, 99], we can also use image retrieval techniques to

find the most relevant exemplars for hypothesis generation. The segmentation results in

this work may include some isolated false negatives in the background area and duplicate

segments from different hypotheses. It will be worthwhile developing segment filters to

remove noise and [20] before using them for classification purposes.

3.4 Summary
We present a novel exemplar cut algorithm for generating class-specific object seg-

mentation hypotheses. It combines a learning based parametric segmentation model and a

matching based nonparametric segmentation algorithm in a principled way. Experimental

results on the Graz-02 and PASCAL VOC 2010 datasets demonstrate that the proposed

exemplar cut algorithm achieves favorable results in terms of visual quality and accuracy.

In addition, the results show that the proposed algorithm is especially effective when the

MAP approaches fail to generate good segmentation results on images with complicated

scenes.



Chapter 4

Learning Shape Representations for

Object Segmentation with Max-Margin

Boltzmann Machines

4.1 Introduction

Object segmentation can be formulated as a structured output problem that involves

making predictions collectively over correlated output labels y ∈ Y from input observa-

tions x ∈ X . One of the core issues in structured output prediction problems is how to

represent complex output variable interrelations effectively while carrying out inference

and learning efficiently.

In Markov Random Fields (MRFs), output structures are represented by pairwise and

high-order potential functions p(y) =
∏

yi⊂y φ(yi)/Z where Z is the partition function.

The prediction from the observations x to the labels y is usually realized in the conditional

models p(y|x), i.e., Conditional Random Fields (CRFs) [62], which allow flexible use

of various long-range features from observations x. Pairwise potentials [97], although

admitting efficient inference, can only capture limited local structure, such as smoothness

30
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and edges. High-order potentials are able to capture long-range interactions between pixel

labels through bottom-up segmentation [51], pattern-based priors [86, 91]. Beyond the

generic high-order priors, the ObjCut algorithm [58] introduces category-specific object

models into MRFs and has shown good segmentation performance on articulated objects.

In ObjCut, the hidden variables of pictorial structures encode the positions of object parts,

but their interactions with pixel labels are manually designed.

Alternatively, Restricted Boltzmann Machines (RBMs) render more flexible models

for structured output representation that learn high-order interrelations through a joint

distribution of labels and a set of hidden (latent) variables h in p(y,h). By omitting

lateral connections in a single layer, RBMs admit efficient inference and sampling from

conditional probabilities. When operating with a small number of training samples, lay-

ered architectures [89] have been shown more effective in terms of model expressive-

ness and learning efficiency. Eslami et al. [29] propose a two-layer Boltzmann Machine

p(y,h1,h2) (where h1 and h2 denote hidden variables in two layers) for modeling ob-

ject shapes (ShapeBMs), and apply it onto object segmentation in a generative model

p(y,h1,h2,x) [30].

In this chapter, we present a general class of Conditional Boltzmann Machines (CBMs)

for object segmentation in the form of p(y,h|x) and p(y,h1,h2|x). In addition to the

connections from image to labels, our models also include the connections from the image

to hidden variables, which allows direct shape inference from image features. Based on

layer-wise conditional independence of BMs, we derive a simple but efficient Iterated

Conditional Modes [12] algorithm for maximum a posteriori (MAP) inference.

Learning with CRFs and CBMs is challenging as it requires handling exponentially

large numbers of output combinations in data-dependent partition functions. Approximate

learning algorithms are easily trapped in local optima, thereby limiting their generaliza-

tion performance. Another line of research for structured output prediction is developed

on max-margin formulations [98, 104, 46], that facilitates model generalizability to un-

seen test data. This technique has been applied to CRFs for object segmentation [97, 11].
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In a similar spirit, we propose a max-margin formulation of CBMs, referred as MMBMs,

and develop an online Concave-Convex Procedure (CCCP) [120] algorithm for learning

efficiently with hidden variables. Note that large margin BMs have been proposed in [78]

with a focus on theoretical analysis while our max-margin method is proposed for training

a particular class of CBMs with applications to object segmentation. We investigate the

effects of four kinds of margin functions on discriminative training, and demonstrate the

importance of combined hidden and visible margin functions. We study two variants of

MMBMs with a single hidden layer p(y,h|x) as well as two hidden layers p(y,h1,h2|x),

and compare them with two state-of-the-art models: superpixel based CRFs [7] and Com-

positional High Order Pattern Potentials [71]. We carry out experiments on the Weizmann

horse [15], Penn-Fudan pedestrian [14] and Caltech-UCSD birds 200 [112] datasets. Ex-

perimental results show that the proposed MMBMs perform better than existing methods

both quantitatively and qualitatively.

4.2 Models

In this section, we first introduce two variants of Boltzmann Machines, RBMs and

ShapeBMs, for modeling object shapes, and then describe the proposed conditional models

and the maximum a posteriori inference algorithm.

4.2.1 Boltzmann Machines

Given a labeled image of an object, we represent the mask as a set of visible variables

y ∈ {0, 1}n. RBMs use one layer of hidden variables h ∈ {0, 1}m to capture global

dependencies between visible variables (See Figure 4.1(a))

p(y,h) = exp(−E(y,h))/Z, (4.1)

where Z is the partition function. RBMs do not have lateral connections within visible and

hidden layers so that the energy function takes the form,
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E(y,h) = −y>Wh− b>y − c>h, (4.2)

parametrized by b, c and W. One attractive property of RBMs is that visible variables are

conditionally independent given hidden variables and vice versa. The conditional proba-

bility of each variable is essentially the sigmoid function σ(y) = 1/(1 + exp(−y)),

p(yi = 1|h) = σ(
∑
j

wijhj + bi), (4.3)

p(hj = 1|y) = σ(
∑
i

wijyi + cj), (4.4)

which facilitates efficient inference.

Although RBMs have the capacity of modeling complex distributions, they require a

large set of hidden variables and numerous training examples. For object segmentation, it

is labor intensive to collect a large number of training examples with ground truth masks,

and challenging to train RBMs with a large set of variables. It is, however, possible to

ameliorate this problem by considering the spatial structure of images. Eslami et al. [29]

propose a particular form of Boltzmann Machine with two hidden layers p(y,h1,h2) (

referred as ShapeBM ) for object shape modeling. The first layer of hidden variables

h1 is partitioned into several disjoint subsets {h1
k = h1(Jk)}k∈G of same size m1

k, where

Jk ∈ {0, 1}m denotes the subset indexing. Each of them has a restricted receptive field and

only connects to a local patch of the object mask. The local patches {yk = y(Ik)}k∈G have

the same size nk and they overlap each other along the boundaries, where Ik ∈ {0, 1}n

denotes the patch index. Therefore, the pairwise potentials between visible variables y and

the first layer hidden variables h1 can be represented by
∑

k∈G y>k W
1
kh

1
k. Furthermore,

different patches can share the same weights W1 = W1
k, k ∈ G. The second layer of

hidden variables h2 connects to all the variables h1 of the first layer. Similar to RBMs,

there are no lateral connections between variables within any single layer. The energy

function can be thus described by

E(y,h1,h2) = −
∑
k∈G

y>k W
1h1

k − b>y−

c1>h1 − h1>W2h2 − c2>h2.

(4.5)
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The pairwise term of the first layer can be rewritten in the same form as RBMs by some

matrix manipulation: ∑
k∈G

y>k W
1h1

k = y>W̃1h1,

where W̃1(Ik,Jk) = W1.

(4.6)

Due to its structure, ShapeBM uses much fewer parameters than conventional two-layer

RBMs [89], thereby facilitating efficient learning for smaller datasets. The pairwise term

y>W̃1h1 models the compatibility between pixels and parts while the term h1>W2h2

defines the possible configuration of parts. Thus, when an unit of h1 is activated, a template

stored in W1 is selected to enforce the group of pixels to obey a binary image pattern.

Also, when an unit of h2 is activated, it triggers a particular configuration of parts (due

to varying pose or viewpoint). The ShapeBM architecture also enjoys the property of

conditional independence p(y|h1), p(h1|y,h2) and p(h2|h1), although exact inference is

not tractable for this model.

4.2.2 Conditional Boltzmann Machines

While generative RBMs and ShapeBMs are capable of modeling object shape priors,

it is still challenging to efficiently infer a binary object mask y from an image x. Intu-

itively, we can construct a fully generative model for object images and their binary masks

p(y,x) such that object shape can be inferred from an image by the conditional distribu-

tion p(y|x), and an image generated from a shape mask by p(x|y). As an example, Eslami

et al. [30] present a generative multinomial joint model of appearance (object images) and

shape (parts-based segmentation).

Nevertheless, constructing a joint model of object images and shape masks poses sig-

nificant difficulties as the conditional distribution of images given the shape masks are

intrinsically multimodal and full of ambiguities. In order to estimate the object mask y

from an image x, we instead propose to directly train the conditional models p(y,h|x)

for RBMs (MMBM1, Figure 4.1(c)) and p(y,h1,h2|x) for ShapeBMs (MMBM2, Fig-



35

y

x
h

y
x

(a) CRF (b) CHOPP

h

y

x
1h

2hx

y
(c) MMBM1 (d) MMBM2

Figure 4.1: Comparing graphical models of MMBMs ((c) and (d)) with pairwise CRF (a) and

CHOPP [71].

ure 4.1(d)). In these conditional models, the activations of variables depend on the ob-

servations or image features, so the energy function of p(y,h|x) can be represented by

E(y,h,x) = −y>Wh− h>(V1x1 + c)− y>(V0x0 + b), (4.7)

while the energy function of p(y,h1,h2|x) takes the form,

E(y,h1,h2,x) = −y>W̃1h1 − h1>W2h2

− h1>(V1x1 + c1)− h2>(V2x2 + c2)− y>(V0x0 + b).
(4.8)

In the above equations, x0 represents low-level image features that indicate foreground

and background assignments. The variable x1 represents features of object parts and V1

contains templates of object parts. The variable x2 describes the holistic object features,

and V2 is composed of object templates of different poses and viewpoints. In these two

models, we connect the observations x to both visible and hidden layers, which enables

the direct inference pathway from image features to shapes.
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4.2.3 MAP Inference

Given a set of image features x, the most likely configuration of y is computed from

ŷ = arg max
y∈Y

p(y|x). (4.9)

In the proposed MMBM with single hidden layer, the marginal distribution p(y|x) =∑
h p(y,h|x) can be represented by its free energy form exp(−F (y,x))/Z), and

−F (y,x) =y>(V0x0 + b)+∑
j

log(1 + exp(cj + y>W.j + V1
j.x

1)).
(4.10)

where W.j and Wj. denote j-th column and row of W, respectively. As the partition func-

tion Z is constant given x, the MAP inference in (4.9) is exactly equivalent to optimizing

the free energy function
ŷ = arg max

y∈Y
−F (y,x). (4.11)

Note that the free energy F (y,x) is not a linear function of y, and we need to take gradients

to find the optimal ŷ. However, the analytic free energy is not available in the MMBM

with two hidden layers. We instead optimize the variational upper bound of log-likelihood

log p(y|x) using the EM algorithm in spirit similar to techniques that have been effectively

applied to training generative BMs. However, in MMBMs, both visible y and hidden

variables are conditioned on input variables x. The conditional distributions p(y|h1,x),

p(h1|y,h2,x) and p(h2|h1,x) are likely highly peaked, if not unimodal, and thus they can

be approximated by optimizing

{ŷ, ĥ1, ĥ2} = arg max p(y,h1,h2|x). (4.12)

Similar to the block Gibbs sampling method, the independent property of conditional dis-

tributions induces an efficient Iterated Conditional Modes (ICM) algorithm (See Algo-

rithm 1). The ICM algorithm also provides a good approximate solution to the free energy

optimization problem in (4.11) and (4.10) for single layer MMBMs. Essentially, the sec-

ond term in (4.10) can be approximated by
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Algorithm 1 MAP inference by the ICM algorithm.

1: Initialize h1

2: while do not converge do

3: h2 ← max p(h2|h1,x)

4: y← max p(y|h1,x)

5: h1 ← max p(h1|y,h2,x)

6: end while

∑
j

log(1 + exp(cj + y>W.j + V1
j.x

1)) ≈

max
h

(c>h + y>Wh + h>V1x1),

(4.13)

which can be solved by the ICM algorithm.

4.3 Learning

Given a training set of object image-mask pairs {(x1,y1), ..., (xn,yn)}, we learn MMBMs

for object segmentation. As the proposed learning algorithm can be applied to both

MMBMs with single (p(y,h|x;ω)) or two hidden layers (p(y,h1,h2|x;ω)), we denote

the MMBM by a general form p(y,H|x;ω) where H = h for one single hidden layer

or H = {h1,h2} for two hidden layers, and ω = {W1,2,V0,1,2, c1,2,b} are the model

parameters. The MMBMs consist of image-independent and image-dependent parts. We

first initialize the image-independent part by generative pre-training, and then reformulate

the joint learning problem into a max-margin optimization task which is solved effectively

by a CCCP algorithm.

4.3.1 Pre-training

Generative pre-training p(y,H) is of crucial importance for the MMBM models. It

provides the MMBM models with proper regularization between output and hidden vari-
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Algorithm 2 Stochastic Gradient Descent algorithm for max-margin learning MMBMs.
1: Set t = 0, initialize ω0, α0 and define γ

2: while t < T do

3: Randomly select a training instance (xi,yi)

4: Solve (4.16): H∗i ← max
H

[−E(yi,H,xi;ωt)]

5: Solve (4.17): ŷi, Ĥi ← max
y,H

[−E(y,H,xi;ωt) + ∆(y,yi,H,H
∗
i )]

6: Update ωt+1 ← (1− αtγ)ωt + αt(
∂E(ŷi,Ĥi,xi;ω)

∂ω
− ∂E(yi,H

∗
i ,xi;ω)

∂ω
)

7: Decrease αt

8: end while

ables, and feed sensible hidden variables to discriminative learning in the following stage.

By omitting image-dependent components, the MMBM with one single hidden layer re-

duces to the RBM while the one with two hidden layers reduces to the ShapeBM. We thus

can utilize the generative training algorithms of these methods. Indeed, the general train-

ing procedure of BMs requires minimizing the differences between the data-dependent

and model-dependent expectations. We train the RBM by minimizing contrastive diver-

gence [41]. For the ShapeBM, each layer is greedily trained.

4.3.2 Max-Margin Learning

To generate accurate prediction on test images, we seek for the parameters ω that assign

training labels yi a greater than or equal log-likelihood of any other labeling y for instance

i,
log p(yi,H|xi;ω) ≥ log p(y,H|xi;ω), ∀H, ∀y,∀i. (4.14)

We can cancel the partition function Z for both sides of (4.14), and express the constraints

by energies,
− E(yi,H,xi;ω) ≥ −E(y,H,xi;ω),∀H,∀y,∀i. (4.15)

We refer the left term of (4.15) as data-dependent energy and the right term as model-
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dependent energy. Since the number of constraints in (4.15) is exponentially large, we

look for the hidden variables H∗i that best explain the training instance (xi,yi) in the data-

dependent energy
H∗i = arg max

H
− E(yi,H,xi;ω). (4.16)

For the model dependent energy, we compute the best prediction from xi by augmenting

an energy margin ∆(y,yi,H,H
∗
i ),

{ŷi, Ĥi} = arg max
y,H
− E(y,H,xi;ω) + ∆(y,yi,H,H

∗
i ). (4.17)

These two decoding problems (4.16) and (4.17) can be solved efficiently by the ICM al-

gorithm in Algorithm 1 where the only difference is to initialize with random H.

To deal with noisy training image data, we relax the margin constraints by introducing

slack variables ξi. Thus, we formulate the MMBM learning with the following max-

margin objective function,

min
ω

γ

2
‖ω‖2 +

∑
i

ξi, s.t.

−E(yi,H
∗
i ,xi;ω) ≥max

y,H
[∆(yi,y,H

∗
i ,H)−E(y,H,xi;ω)]

− ξi, ξi ≥ 0,∀i,

where H∗i = arg max
H
− E(yi,H,xi;ω).

(4.18)

This formulation is equivalent to minimizing the loss function,

min
ω

γ

2
‖ω‖2 +

∑
i

max
y,H

[∆(yi,y,H
∗
i ,H)−E(y,H,xi;ω)+

E(yi,H
∗
i ,xi;ω)].

(4.19)

To optimize the loss function (4.19), we initialize the parameters ω0 with pre-trained

W1,2, c1,2,b and random matrices V1,2. We develop a stochastic gradient descent al-

gorithm (See Algorithm 2) for optimizing (4.19) by applying the Concave-Convex Proce-

dure [120]. Note that it is easy to compute the gradients of energy functions with respect

to ω as both data energy E(ŷi, Ĥi,xi;ω) and model energy E(yi,H
∗
i ,xi;ω) are linear

functions of parameters ω given fixed hidden and output variables.
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Comparing Margin Functions. Choosing a proper margin penalty function ∆(·) is cru-

cial to effective learning. Taking the single layer MMBM as an example, we find its energy

function consists of three components: hidden-visible interaction (H-V), hidden-image in-

teraction (H-I) and visible-image interaction (V-I), which correspond to the three kinds of

edges in the graphical model of MMBMs,

E(y,h,x) = −y>Wh︸ ︷︷ ︸
H-V

−h>(V1x1 + c)︸ ︷︷ ︸
H-I

−y>(V0x0 + b)︸ ︷︷ ︸
V-I

, (4.20)

We analyze four cases of ∆(·) and evaluate their performance in the experiments.

Case 1: ∆(·) = 0. If we set ∆(·) = 0, then the loss function in (4.19) reduces to

the perceptron loss used in [79]. As the data-dependent and model-dependent energies

remain the same form, there exist several possibilities that can explain the perceptron loss,

considering the potential combinations of three components. For example, learning with

∆ = 0 may end up with a strong H-V component but weak H-I and V-I components, as

the H-V component is pre-trained. This result is clearly deficient for prediction.

Case 2: ∆(·) = ∆(y,yi). If we set ∆(·) = ∆(y,yi), then the loss function in (4.19)

is closely related to the one used in latent Structured SVM [120]. The energy margin

∆(y,yi) only depends on y so that the V-I component will be better constrained to domi-

nate the energy loss between the data energy and the augmented model energy. Consider-

ing the pre-trained H-V component, we may obtain strong H-V and V-I components but a

weak H-I component. However, the H-I and V-I components take different input features

and should be complementary to each other. The unoptimized H-I component very likely

constrains the model generalizability to unseen data.

Case 3: ∆(·) = ∆(H,H∗i ). If we set ∆(·) = ∆(H,H∗i ), then the loss function in (4.19)

indirectly corresponds to the output through hidden variables. That is, the H-V component

functions as clustering. The margin on hidden variables essentially encourages the H-I

component to correctly predict the cluster labels H∗i , i.e., the hidden variables that best

explain the training instance (xi,yi). Thus, the energy difference is likely dominated

by the H-I and H-V components, which leaves the V-I component unoptimized. This
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Figure 4.2: Comparing margin functions.

approach has the same generalizability problem as Case 2.

Case 4: ∆(·) = ∆(y,yi) + ∆(H,H∗i ). Based on the above analysis, we use ∆(·) =

∆(y,yi) + ∆(H,H∗i ) as the margin penalty function. Since ∆(y,yi) and ∆(H,H∗i ) are

absorbed into the V-I component and H-I component, respectively, all three components

are optimized during learning.

Figure 4.2 illustrates learning single-layer MMBMs with four kinds of margin func-

tions. The particular margin functions induce the red connections between any two layers

dominate the energy loss during learning while leaving the green connections unoptimized.

4.4 Experiments

4.4.1 Datasets

Penn-Fudan Pedestrians This dataset [111] consists of 170 images with bounding box

annotations and ground truth foreground-background segmentation masks. The images

all include one or more pedestrians. For our experiments we extracted 423 patches, each

adjusted to include one person only. We resize the patches to an uniform size of 32 × 64
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pixels, cropping the original image so that we can keep the original aspect ratio while

resizing them.

In order to increase the number of training and test samples, we subsequently mirror all

patches, resulting in 846 samples, some of which with severe occlusions. We then select

400 samples for training and use the rest for tests. The training-test split is done randomly

except for keeping original images in the same set as their mirrored pairs.

Weizmann Horses. This dataset [15] contains 328 horse images, with a high variability of

poses and scales. Before processing, we resize every image to 128x128, padding images

with different aspect ratios with mirrored versions of the image itself. To get comparable

results to [71], we calculate 32x32 foreground-background segmentation masks with all of

our models. Also, we use their training-test split (into 200 training and 128 test images).

Caltech-UCSD Birds 200. The dataset [112] includes 6033 images of 200 bird species,

each image usually including one dominant bird in the scene. The images are annotated

with a bounding box and a coarse-grained segmentation mask. As the accuracy of this isn’t

sufficient to evaluate our segmentation methods, we manually annotate these images with

accurate masks (available on the website https://eng.ucmerced.edu/people/

jyang44). We crop 6033 bird patches and the corresponding segmentation masks from

bounding boxes, and resize the image patches to 128 × 128 pixels. We use the same

training/test partition as in [112], i.e., 3000 samples for training and the rest for tests.

4.4.2 Implementations

Architectures. For the MMBM with a single hidden layer (MMBM1) and RBM, we use

500 hidden units h ∈ {0, 1}500. For the MMBM with two hidden layers (MMBM2), we

use 500 hidden units in the first layer h1 ∈ {0, 1}500, and 200 hidden units in the second

layer h2 ∈ {0, 1}200. For the birds and the horses, each mask is partitioned into 2 × 2

four patches {y=∨yk, k=1, . . . , 4,yk ∈ {0, 1}36×36} with 8 pixels overlapping between

adjacent patches, such that each part is connected to 125 hidden units in the first layer h1.

https://eng.ucmerced.edu/people/jyang44
https://eng.ucmerced.edu/people/jyang44
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For the pedestrians, we also use four patches {y = ∨yk, k = 1, . . . , 4,yk ∈ {0, 1}22×32}
but in a 4x1, vertical organization with 14 pixel overlaps between neighbors.

Features. One of the advantages of the proposed method is that it can handle a diverse set

of features: local descriptors can be connected to the visible layer while features covering

larger image areas are better suited as conditionals for one of the hidden layers.

For MMBM1, we use two sets of features: x0 for the visible and x1 for the hidden

layer. For x0, we first segment the image into superpixels using the gPb algorithm [7]. For

each superpixel, we compute dense SIFT, color and contour histograms. The histograms

of densely sampled SIFT words are computed by using a codebook of size 512 and the

locality-constrained linear coding method [109]. The color histograms of RGB values are

computed from a codebook of size 128, and finally, the contour histograms are computed

from the oriented gPb edge detector responses [7]. For per-pixel visible features we simply

use those of the superpixel containing the pixel in question.

For the hidden layers of MMBM1, we use the HOG descriptors for the entire input

image as x1. For MMBM2, the features x2 for the top layer is calculated the same way,

while for the middle layer feature vector x1 we use the HOG descriptors for the four

patches.

Training. For the MMBM1, we run 2000 epochs with 100-sample mini-batches in the

generative training phase (RBM training). For the MMBM2, we run 2000 epochs for

the first layer pre-training in the generative training phase (ShapeBM training) and 1000

epochs for the second layer pre-training. In addition, we run 5 cycles in the max-margin

training phase in both cases. We set the learning rate α0 = 0.001 and the constant γ = 0.01

for all the experiments. The MATLAB source code and the labeled datasets will be made

available for research purposes.

Baseline. We study two discriminative models for comparison: a superpixel based CRF

model using bottom-level features x0 and Compositional High Order Potentials (CHOPPs) [71].

For the CRF model p(y|x0), we use the implementation in [71].

For CHOPPs, we used the code provided by the authors for the inference but we didn’t
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get the same results, likely due to differences in our unary / pairwise potential generation

code. To make the comparison fair, in the experiments we used the same unary features

as in our MMBM implementation instead. As Table 5.2 shows, this improved their results

compared to the original published in [71].

Since, unlike the combined RBM-CRF models of [71] and [47], our model doesn’t

have pairwise weights in the visible layer. For a better comparison with these models, we

also ran Graph Cut on the output mask, using the probabilities given by the model as unary

potentials and a pairwise term taken from [17], based on the magnitude of the gradients of

color channels. We report results for both the original and refined masks.

4.4.3 Results

We use two metrics for performance evaluation: the average pixel accuracy (AP)

of foreground and background classification and the foreground intersection-over-union

score (IoU) of entire test set 1. We first present segmentation results on the Penn-Fudan

Pedestrians in Table 4.1. Overall, the MMBM1 (76.92% IoU, Case 4) and MMBM2

(77.30% IoU, Case 4) outperform the CRF (68.35% IoU) and CHOPPs (71.33% IoU)

algorithms. The results show that the MMBMs are effective models for object segmenta-

tion by integrating image features and a strong shape prior. Also, as the last two rows of

the table indicate, introducing pairwise constraints further improves results.

Our results for Weizmann horses are shown in Table 5.2. Again, both the advantage of

augmenting the loss function with multiple margins and the benefits of using a two-layered

architecture are demonstrated. Also, comparisons using different margin functions (Cases

1-4) for the MMBM1 model demonstrate the importance of a max-margin formulation

with multiple margins for output prediction. By using margin functions (MMBM1 Cases

2-4), we obtain 19% AP improvement and more than 30% IoU improvement over the

1The IoU score is defined as |Y
⋂

Ŷ|
|Y

⋃
Ŷ| , where Y and Ŷ are the sets of ground truth and predicted fore-

ground pixels.
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Table 4.1: Quantitative results on the Penn-Fudan Pedestrians dataset.

AP IoU
CRF 84.87 68.35
CHOPPs [71] 86.55 71.33

MMBM1

Case 1 82.66 64.80
Case 2 85.27 69.20
Case 3 83.35 65.78
Case 4 89.91 76.92

MMBM2 89.74 77.30
MMBM1 Case 4 w/ GC 90.42 77.97
MMBM2 Case 4 w/ GC 90.77 79.42

non-margin (perceptron loss) algorithm in Case 1 of the MMBM1. The best results for

the MMBM1 (89.43% AP, 69.59% IoU) from Case 4 indicate that the combining multiple

margin functions ∆(·) = ∆(y,yi) + ∆(H,H∗i ) alleviates degenerating effects by pro-

viding stronger constraints. Our results on other datasets also strengthen this observation.

The two-layer hierarchical hidden architecture also helps generating better results than a

single hidden layer, as shown in the Case 4 of MMBM2 (89.80%AP, 72.09% IoU) over

MMBM1.

In addition to the comparison to CRF and CHOPPs, for this dataset we also added the

results from [14]. Their aim was to identify body parts and got the foreground-background

segmentation as a byproduct.

Finally, the segmentation results on the Caltech-UCSD Birds 200 dataset are presented

in Table 4.3. Different from pedestrians and horses, this dataset has large shape variations

but more distinct appearances (e.g., color, textures). Thus, the appearance-based CRF

model performs less well. Similar is the case of CHOPP: as its hidden nodes are not

directly connected to image features, so they can only refine and correct the shape of

results that are mostly right just based on local, visible-layer features, which is hard to

accomplish on this dataset. In contrast, the features-to-hidden connections in the MMBM

models make it possible to exploit global shape information even without reliable local
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Table 4.2: Quantitative results on the Weizmann Horses dataset.

AP IoU
CRF 87.46 67.44
Bo and Fowlkes [14] 77.2 N/A
CHOPPs [71] 88.67 71.60 (69.90 in [71])

MMBM1

Case 1 70.59 38.01
Case 2 85.87 62.97
Case 3 85.37 59.35
Case 4 89.43 69.59

MMBM2 89.80 72.09
MMBM1 Case 4 w/ GC 90.62 74.12
MMBM2 Case 4 w/ GC 90.71 75.78

Table 4.3: Quantitative results on the Caltech-UCSD Birds 200 dataset.

AP IoU
CRF 83.50 38.45
CHOPPs [71] 74.52 48.84

MMBM1

Case 1 80.96 60.37
Case 2 87.73 72.45
Case 3 75.73 63.22
Case 4 88.07 72.96

MMBM2 86.38 69.87
MMBM1 Case 4 w/ GC 90.42 75.92
MMBM2 Case 4 w/ GC 90.77 72.40

features. The results, similar to the observations on the other two datasets for evaluating

different margin functions demonstrate the significance of max-margin formulation and

combining margin functions (Case 4). In the bird data, we observe better performance by

using just one hidden layer compared to using the two-layered MMBM2 model. A possible

reason is that while the weight replication for the four windows in MMBM2 is beneficial

when given a small number of training samples (such as for horses and pedestrians), but

for larger datasets we can learn a better prior using simple architectures (RBMs) with more

parameters from the data.
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(a) GT (b) CRF (c) CHOPP (d) MMBM1 (e) MMBM2

Figure 4.3: Qualitative results on the Penn-Fudan Pedestrians, Caltech-UCSD Birds 200 and Weiz-

mann horse datasets.
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We present some qualitative results in Figure 4.3, from which we can see more directly

the importance of features-to-hidden connections for shape prediction. For example, CRF

finds the most colorful parts of birds, which is corrected by CHOPP to be shaped more

birdlike, but it’s only MMBMs that discover the entire bird well.

4.5 Summary and Future Work

In this chapter, we propose MMBMs for structured output prediction problems and

investigate two variants of MMBMs with single and two hidden layers for object seg-

mentation. Instead of using BMs as shape priors, we build connections between input

observations with hidden variables that opens an inference pathway from image features

to object shapes. We derive a simple yet efficient ICM algorithm for MAP inference. We

formulate MMBMs with a max-margin objective function for discriminative training, and

discuss four margin functions as well as their effects on learning performance. The results

on horses, pedestrians, birds datasets show that our algorithms perform favorably against

the state-of-the-art methods.

In experiments, we have found that the pairwise edge potentials can after all improve

the segmentation quality, given the predicted shapes from our models. In the future, we

plan to extend MMBM models by adding pairwise potentials to the visible layer. Con-

sidering the alternating procedure of the MAP inference algorithm, this extension will not

significantly increase the complexity of inference and learning because we only need to

replace Line 4 in Algorithm 1 with Graph Cut. We are also interested in integrating object

detection with segmentation in MMBM models.



Chapter 5

Local Shape Transfer for Generic

Object Segmentation

5.1 Introduction

Object segmentation, separating a foreground object from its background with a clear

boundary, has long been an important challenge for computer vision. It not only pro-

vides mid-level representations for high-level recognition tasks [20] but also has imme-

diate applications to image editing [2]. Object segmentation is typically formulated as a

binary labeling problem on Markov Random Fields (MRFs) with foreground/background

appearance models [17].

Recent methods [87, 65] show that object segmentation can be solved efficiently with

a carefully prepared bounding box around the target and further refined by user inputs. In

these interactive algorithms [17, 87, 65], color is commonly used to separate foreground

from background. Although more complex image cues such as textures are shown to be

useful to improve segmentation performance [113], a critical source of information, object

shape, is clearly missing in these algorithms. Similar situations exist in salient object

segmentation [83, 76, 24] in that most of algorithms work well when the images have high

49
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foreground-background color contrast, but work poorly in cluttered images. A notable

exception is Li et al.’s latest work [70] that achieves impressive object segmentation results

on the PASCAL images [31] by integrating shape sensitive object proposals [20] with a

classic saliency map [40]. On the other hand, in model-based algorithms [15, 63, 58,

11, 117], shape is always the major driving force for segmentation. Category-specific

shape models are usually designed [58] based on prior knowledge or learned offline from

training data [67, 117]. This category-specific nature limits the generalizability of model

based algorithms to handle unseen objects.

In this chapter, we propose a data-driven object segmentation algorithm that addresses

the problems mentioned above by using a database of existing segmentation examples.

Our algorithm requires neither offline training of category-specific shape models nor prior

knowledge of object shapes. Instead we transfer shape masks from similar segmentation

examples to the test images by image retrieval and matching. Compared to user- and

saliency-driven algorithms, the transferred shape cues help resolve segmentation ambigu-

ities from appearance models.

Existing data-driven object segmentation algorithms [57, 3, 49, 100] mostly focus

on transferring entire shape masks by either window based or local features based im-

age matching. In this chapter, however, we investigate a patch-level local shape transfer

scheme that finds candidate local shape masks for each patch of a test image in multiple

scales through dense correspondences between query and example images built by the

PatchMatch algorithm [8]. Those candidate local shape masks indeed constitute an on-

line structured label space where object segmentation solutions can be found. We thereby

develop a novel cascade algorithm for coarse-to-fine object segmentation. At each stage,

we define a color based MRF energy function with the coarse shape mask estimated in

the previous stage, and select the local shape mask for each patch independently with the

minimum MRF energy to estimate a new shape mask with finer details. This patch-wise

segmentation provides an approximate solution to global energy minimization, but a solu-

tion which is easier to solve in parallel. We carry out local shape mask selection iteratively
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while updating the foreground/background color models. This iterative procedure shares

a similar idea with GrabCut [87], but it operates patch-wise in a structured label space.

Thus we name our method PatchCut.

Our proposed idea of using local masks as solution space is inspired by recent struc-

tured forest based image labeling algorithms [55, 26]. In the training stage, the clustering

structure of label patches is exploited in branching functions so that each leaf node stores

one example label patch. The label patches in all the leaf nodes constitute a structured

label space for edge detection [26] and semantic labeling [55]. In our algorithm, the local

shape masks transferred from examples constitute another kind of structured label space

for object segmentation. In spirit, both structured forests and our algorithm aim at pre-

serving output structures (local context and shape) when making predictions. However,

an important difference is that the structured label space in our algorithm is constructed

online by matching with examples, which is more flexible and easier to generalize than

offline training in structured forests [55, 26]. We carry out experiments on various object

segmentation benchmark datasets with comparisons to leading example-, learning- and

saliency-based algorithms.

The contributions of this chapter are summarized below:

• a novel nonparametric high-order MRF model via patch-level label transfer for ob-

ject segmentation;

• an efficient iterative algorithm (PatchCut) that solves the proposed MRF energy

function in patch-level without using graph cuts;

• state-of-the-art performance on various object segmentation benchmark datasets.

5.2 Our Algorithm

Given a test image I, our goal is to estimate its segmentation Ŷ by using example im-

ages {Im,m = 1, 2, ...,M} and their segmentation ground truth {Ym,m = 1, 2, ...,M}.
Figure 5.1 presents an overview of the proposed algorithm.
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Figure 5.1: Overview of proposed object segmentation algorithm using examples.

5.2.1 Local Shape Transfer

Our algorithm performs image matching to achieve shape transfer from examples like

most data-driven algorithms. However, transferring entire masks in large image windows

may result in poor boundary quality [57], while alignment, although improving the bound-

ary quality, significantly increases the computational cost [3]. In this work, we propose

transferring local shape masks from multiple scales. We build three-layer image pyramids

Figure 5.2: Local shape transfer with multiscale PatchMatch.
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by downsampling both the test {Is, s=1, 2, 3} and example images {Ism,Ys
m, s=1, 2, 3}.

If the size of image I is [h,w], the size of downsampled image in the sth layer is [ h
23−s ,

w
23−s ].

For all three scales, we use image patches of the same size to perform matching and mask

transfer as demonstrated in Figure 5.2. In each scale (s = 1, 2, 3), we densely sample im-

age patches of 16 × 16 at every 2 pixels {∆s
k, k = 1, 2, ..., K}, where K = h×w

4×26−2s
1.

For each patch of the test image ∆s
k (green boxes in Figure 5.2), we extract a SIFT

descriptor xs
k from its extended 32 × 32 patch (red boxes in Figure 5.2). Therefore,

the matching problem between the test I and the mth example Im can be described by

arg mink′ ‖xs
k − xs

k′m‖1,∀k = 1, 2, ..., K, where xs
k′m is the SIFT descriptor extracted

from the k′th patch ∆s
k′ of the mth example. This nearest neighbor field problem is solved

efficiently by the PatchMatch algorithm [8]. As a result, the test patch ∆s
k finds its match

∆s
k∗ in the mth example with the cost dskm = ‖xs

k − xs
k∗m‖1.

We denote the local segmentation masks from the matched patches in mth example as

zskm = Ys
m(∆s

k∗), which provide location and shape information for segmenting the test

image. We argue that those local masks zskm constitute a patch-wise segmentation solution

space for the test image; in other words, the segmentation mask of test image Y can be well

approximated by zskm. Note that different methods for image dense correspondences have

been explored in [73, 50] to enable pixel-wise label transfer, but their results are either

constrained by the local flow [73] or contaminated by relaxation noise [50]. Compared

to [73, 50], our method achieves structured label transfer (local masks) through a more

flexible matching algorithm.

To examine the quality of local shape masks zskm, for each patch ∆s
k we calculate the

mean of its local masks z̄sk = 1
M

∑
m zskm, and also find the best possible z̃sk using the

ground truth as reference. Note that z̃sk actually defines the upper bound for local shape

transfer. Obviously, the mean shape prior mask Q̄s can be immediately estimated by

adding up z̄sk similar to [57]. Similarly, we can estimate the oracle shape prior mask Q̃s

from z̃sk.

1Padding is needed to ensure [ h
23−s ,

w
23−s ] divisible by 2.
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Figure 5.3 demonstrates the mean and oracle shape prior masks of different scales.

The masks are upsampled to the size of original image for better visualization. At the

Figure 5.3: Shape prior masks estimated from mean masks (top row) and best masks (bottom row)

at different scales.

coarse scale, the object is well located but its boundary is blurry in the mean shape prior

masks. Moving towards finer scales, although some parts of mean shape prior (legs) be-

come clearer, other parts (head and shoulder) turn out to be very noisy. This is because the

very local structures of image patches at the finer scales preserve well the edge patterns

during matching, but local masks may have inconsistent foreground/background relation-

ship. Meanwhile, both location and boundary qualities of oracle shape prior masks keep

getting better from coarse to fine scales. This divergent result indicates that good segmen-

tation solutions can be obtained if we find the right label patches at a fine scale, but without

that knowledge, the average results are far from satisfactory. The above observations mo-

tivate the coarse-to-fine strategy where we start with a good approximation at the coarse

scale which then leads us to choose the right label patches at the fine scale.
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5.2.2 PatchCut

In this section, we introduce a novel algorithm to gradually estimate the shape prior

Q̂s in a coarse-to-fine manner. In particular, at the sth scale, given the shape prior from

the previous scale Q̂s−1, the finer shape prior Q̂s is estimated using candidate local shape

masks zskm. At the end, the binary segmentation Ŷ can be computed by thresholding the

shape prior at the finest scale.

MRF with shape prior. We start with reviewing a typical object segmentation method

based on shape prior, which provides the fundamentals for our algorithm. Note that we

temporarily omit the scale index s to keep the description clean. Object segmentation with

shape prior is commonly formulated as a MRF energy function [57, 3],

E(Y) =
∑
i∈V

U(yi) + γ
∑
i,j∈E

V (yi, yj) + λ
∑
i∈V

S(yi, qi). (5.1)

where yi is the binary label at pixel i, qi is the probability at pixel i of shape prior Q.

The unary term for each pixel U(yi) is the negative log probability of the label yi given

the pixel color ci and Gaussian Mixture Models (GMMs) A1 and A0 for foreground and

background color,

U(yi) = − logP (yi|ci,A1,A0). (5.2)

The pairwise term V (yi, yj) measures the cost of assigning different labels to two adjacent

pixels, which is usually based on their color difference,

V (yi, yj) = exp(−α‖ci − cj‖2)I(yi 6= yj), (5.3)

where the parameter α is estimated by the mean color difference over the image and I(·)
is an indicator function. The shape term S(yi, qi) measures the inconsistency with shape

prior Q,

S(yi, qi) = − log qyii (1− qi)1−yi . (5.4)

This energy function can be solved by alternating two steps in a way similar to the GrabCut

algorithm [87]: 1) updating GMM color models in (5.2) from the current segmentation
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{A1,A0} ← Y; 2) solving the MRF energy function in (6.3) with updated color models

by GraphCut: Y ← {A1,A0}. However, this method is too sensitive to the parameter λ.

On one hand, if the λ is large, the color models cannot correct the mistakes in the shape

prior; on the other hand, if the λ is small, the segmentation may deviate from the good

shape prior.

High order MRF with local shape transfer To use candidate local shape masks to re-

solve segmentation ambiguities, we can naturally extend (6.3) to include a patch likelihood

Pcand(Y(∆k)) that encourages the label patch Y(∆k) for image patch I(∆k) to be similar

to some candidate local shape mask zkm = Ym(∆km) for database image patch Im(∆km):

E ′(Y) = E(Y)−
∑
k

log(Pcand(Y(∆k))). (5.5)

The last term is the negative Expected Patch Log Likelihood (EPLL), a formulation that

Zoran and Weiss [121] use for image patches to produce state-of-the-art results on inverse

problems such as deblurring. Here we define the patch likelihood on local shape masks by

marginalizing out over a hidden variable m∗k that indicates which database patch ∆km is

selected for transfer to the output patch Y(∆k):

Pcand(Y(∆k)) =
M∑

m=1

P (Y(∆k),m∗k = m)

=
M∑

m=1

P (Y(∆k)|m∗k = m)P (m∗k = m)

=
M∑

m=1

exp(−η||Y(∆k)− zkm||22)

Z1

exp(−τdkm)

Z2

,

where the second term expresses the probability by image appearance that we want to

transfer the mth candidate label patch and the first term expresses that the output label

patch should be similar to the transferred patch. Note that Z1, Z2 are normalization terms,

and dkm is the match cost introduced in the previous section. We assume that η is large
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to encourage the output label patches Y(∆k) to be as similar to the selected candidate

patches zkm∗k as possible. For large η and distinct zkm, we have

Pcand(Y(∆k)) ≈

{
exp(−τdkm)/Z2 if Y(∆k) = zkm

0 otherwise
(5.6)

and

E ′(Y) ≈ E(Y) + τ
∑
k

H(Y(∆k)), (5.7)

where

H(Y(∆k)) =

{
dkm if Y(∆k) = zkm

∞ otherwise
. (5.8)

Note that this approximate energy (5.7) is related to the Non-parametric Higher-order Ran-

dom Field (NHRF) introduced in [77] that considers top-down local appearance match-

ing (5.8) but not the bottom-up global image cues (6.3).

Approximate optimization on patches. The high order term H(Y(∆k)) actually en-

forces label patch selection among all the local shape masks zkm, and thus the solutions

of energy function E ′(Y) do not exist when selected label patches disagree in any over-

lapping areas. To address this issue, we introduce an auxiliary variable zk to indicate the

selected label patch zk ∈ {zk1, zk2, ..., zkM} on the kth patch ∆k and thus rewrite the

energy (5.7) by

E ′(Y, {zk}) ≈ E(Y) + τ
∑
k

H(zk), s.t. Y(∆k) = zk.

We notice that the energy E(Y) can be further decomposed into a summation of local

energies on Y(∆k) = zk

E ′(Y, {zk}) ≈ κ
∑
k

E(zk) + τ
∑
k

H(zk), s.t. Y(∆k) = zk,

where the constant κ is inversely proportional to the number of patches superimposing on

a single pixel. To tolerate the inconsistency between Y(∆k) and zk, we convert it into an
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unconstrained problem by introducing a quadratic penalty on each patch

E ′(Y, {zk}) ≈
∑
k

(κE(zk) + τH(zk) +
β

2
‖Y(∆k)− zk‖2). (5.9)

In a similar spirit with the dual decomposition method [108], this quadratic penalty energy

function (5.9) can be minimized by alternatively solving a series of independent slave

problems on patch zk and a master problem on Y. However, for sufficiently large β, we

can approximately solve (5.9) by a simple two-step minimization:

ẑk = arg min
zk

κE(zk) + τH(zk),∀k (5.10)

Ŷ = arg min
Y

∑
k

1

2
‖Y(∆k)− ẑk‖2. (5.11)

Note that (5.10) can be immediately solved by evaluating the energies of all the local

mask candidates in parallel. To solve (5.11), we need to consider the inconsistency of

overlapping ẑk. By introducing a soft segmentation mask (shape prior) 0 ≤ Q ≤ 1 for Y,

we first solve Q̂ = arg minQ

∑
k ‖Q(∆k)− ẑk‖2 by averaging all the selected candidates

ẑk and then compute Ŷ by thresholding Q̂ at 0.5.

Algorithm 3 The single scale PatchCut algorithm.
1: while not converged do

2: for each patch ∆k, select the candidate local shape mask ẑk by (5.10)

3: estimate the shape prior Q̂ by averaging ẑk and the segmentation Ŷ by (5.11)

4: update the foreground and background GMM color models {A1,A0} by (5.2).

5: end while

Given the current segmentation Ŷ, we further update the color models {A1,A0}
in (5.2). Iteratively, the high-order MRF energy (5.7) is minimized using local shape

mask candidates. We summarize this procedure, dubbed as PatchCut, in Algorithm 3.

Cascade. Using the PatchCut algorithm at a single scale, we assemble the cascade object

segmentation algorithm in Figure 5.4. The cascade is initialized by averaging the global
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shape masks transferred from examples at the coarsest scale Q̂0 = 1
M

∑
m Y1

m. Note that

other soft segmentation methods can also be used for initialization [40, 70]. At each scale,

we run Algorithm 3 with the previously estimated shape prior Q̂s−1, color models A1,A0

and candidate local shape masks zskm. The algorithm proceeds untill the scale s = 3 is

reached. The final object segmentation is inferred by thresholding the shape prior Q̂3,

denoted as Ŷt, or further refined by iterative graph cuts in (6.3), denoted as Ŷr.

Figure 5.4: PatchCut cascade for coarse-to-fine object segmentation.

5.3 Experimental Results

We present experimental results on various object segmentation datasets (Fashion-

ista [116], Weizmann Horse [15], Object Discovery [88], and PASCAL [31]). More results

can be found in our website https://eng.ucmerced.edu/people/jyang44.

https://eng.ucmerced.edu/people/jyang44
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The term PatchCut soft denotes the shape mask Q̂3, PatchCut thres denotes the binary

segmentation after thresholding Ŷt, and PatchCut denotes the binary segmentation after

refinement Ŷr.

Implementation Details. To perform our algorithm, we retrieve relevant examples from

a database of existing segmentations. We use Bag-of-Words (BoW) features [92] on

category-specific datasets such as Fashionista, Weizmann Horse and Object Discovery, and

use image features extracted from the 7th layer of convolutional networks (ConvNet 2) [44]

on the PASCAL dataset for nearest neighbor image search. The number of retrievals is set

to M = 16. We set γ = 0.5 for the pairwise term, λ = 0.5 for the shape term in (6.3),

τ = 1.0 for the match cost term in (5.7), the number of Gaussian components to 5 for

both foreground and background GMM color models in (5.2). We use the same set of

parameters in all the experiments.

5.3.1 Fashionista

This dataset [116] consists of 700 street shots of fashion models with various poses,

cluttered background and complex appearance. All the images have the same size of

600x400 pixels. We run leave-one-out tests on this dataset, which means that for each im-

age, we run object segmentation by using the remaining 699 images as the database. We

present some segmentation results in Figure 5.5. In this experiment, we compare our al-

gorithm with the widely used GrabCut baseline [87]. We use the OpenCV implementation

for GrabCut by providing a bounding box with 8 pixels from the image borders at each

side. We evaluate the object segmentation performance by mean Jaccard (Intersection-

Over-Union) score (|Ŷ∩Y|/|Ŷ∪Y|) in Table 5.1. By simply thresholding the estimated

shape masks, the PatchCut algorithm significantly outperforms (by more than 20%) the

GrabCut baseline, and the results can be further improved by GrabCut refinement from

86.25% to 88.33%. Figure 5.5 shows that the refinement mainly occurs around the object

2The ConvNet is pre-trained on the ImageNet dataset [56].
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Image GT PatchCut soft PatchCut

Figure 5.5: Qualitative results on Fashionista.

Table 5.1: Segmentation performance on Fashionista.

Jaccard (%)
GrabCut 64.23

PatchCut thres 86.25
PatchCut 88.33

PatchCut thres upper bound 95.72
PatchCut upper bound 95.20
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contours. To take a closer look at the PatchCut performance, we calculate the segmenta-

tion success rate as the percentage of tests that achieve Jaccard scores above certain levels.

Figure 5.6 shows that about 58% of tests achieve more than 90% Jaccard score while about

22% of tests achieve more than 95% Jaccard score.

Figure 5.6: Segmentation success rates on Fashionista.

Upper bound performance. We also evaluate the upper bound performance of the Patch-

Cut algorithm. For each test image, we estimate the oracle shape prior masks Q̃ using the

ground truth segmentation Y, and thus produce segmentation results. The mean Jaccard

scores from the upper bound segmentation results are as high as 95.72% without refine-

ment (Table 5.1) and the segmentation success rate at Jaccard score level 95% is near 70%

(Figure 5.6). These upper bound results prove that the transferred local shape masks from

examples constitute a valid structured label space for object segmentation.

5.3.2 Weizmann Horse

Th Weizmann Horse dataset [15] is widely used for benchmarking object segmentation

algorithms. This dataset consists of 328 horse images with side views. We follow a typical
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evaluation protocol that uses 200 images for the database and the remaining 128 for the test

set. We present some qualitative results in Figure 5.7. We evaluate object segmentation

Image GT PatchCut soft PatchCut

Figure 5.7: Qualitative results on Weizmanm Horse.

performance in terms of mean Jaccard score and overall pixel-wise classification accuracy

(Acc = |Ŷ == Y|/|Y|). In Table 5.2, we compare PatchCut algorithm with state-of-

the-art example based algorithm using Window Mask Transfer [57], and various leading

learning based algorithms based on Kernelized Structured SVM [11], CRFs [71, 67] and

Margin-Margin Boltzmann Machines (BMs) [117]. Our algorithm performs better in terms

of both mean Jaccard score and Accuracy. Especially, our algorithm improves about 4%

on mean Jaccard score. For horse images, our algorithm usually generates high quality

shape prior around legs (Figure 5.7), but the iterated graph cuts refinement tends to cut off

the legs because of the shrinking bias towards shorter boundaries.
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Table 5.2: Performance evaluation on Weizmann Horse.

Jaccard (%) Acc (%)
PatchCut thres 80.33 94.78

PatchCut 84.03 95.81
Kernelized Structured SVM [11] 80.10 94.60

Fragment-based CRFs [67] N/A 95.0
High-Order CRFs [71] 69.90 N/A

Max-Margin BMs [117] 75.78 90.71
Window Mask Transfer [57] N/A 94.70

5.3.3 Object Discovery

This dataset consists of three object categories: airplane, car and horse and their

images are collected from Internet. It is originally designed for evaluating object co-

segmentation [88] and recently used for object segmentation by Ahmed et al. [3]. This

dataset is more challenging because the images generally have more complex appearance.

Some images include more than one small target and some images are outliers. For each

category, we use the same 100 test images as in [88, 3] and the rest as the database. Fig-

ure 5.8 shows some qualitative results.

We compare our algorithm with the GrabCut baseline (same implementation as Fash-

ionista), a state-of-the-art co-segmentation algorithm [88] and the latest example based

method [3] in Table 5.3. In the Airplane and Horse experiments the refinement step im-

Table 5.3: Jaccard scores on Object Discovery.

Jaccard (%) Airplane Car Horse
GrabCut 63.29 67.63 50.32

Co-segmentation [88] 55.81 64.42 51.65
Ahmed et al. [3] 64.27 71.84 55.08
PatchCut thres 70.44 86.40 63.19

PatchCut 70.49 84.52 64.80

prove the results only slightly while in the Car experiment our algorithm achieves better

results without using refinement. The possible reason is that the pixel-wise color models

may confuse the shadows with the bottom of the car while the shape prior estimated from
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Figure 5.8: Qualitative results on Object Discovery.
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Figure 5.9: Comparing soft segmentation results at different saliency levels in terms of precision-

recall curves. The dot on each curve indicates the operating point that gives the best F-score.

local masks better preserves high-level structures.

5.3.4 PASCAL

In this experiment, we present results for salient object segmentation using the PAS-

CAL VOC 2010 dataset [31]. This dataset is more challenging because the images are

from 20 object classes with large pose, shape and appearance variations and occlusions.

Li et al. [70] collect salient object segmentation masks from human subjects for 850 im-

ages in the validation set. We use these images as the test set. Note that salient object

segmentation masks may not be binary as subjects may disagree on the choice of salient

objects as shown in Figure 5.10.

On the other hand, we use all the images in the training set to build our example

database, and collect salient object segmentation ground truth in a similar way as in [70].

Basically, for each image, we use the semantic labeling provided by [80] as full segmen-

tation, and ask 6 subjects to select the salient object regions by clicking on them, so the

saliency value for each segment is defined as the number of clicks it receives divided by the

number of subjects. Differently from previous experiments, we initialize the PatchCut al-

gorithm with the saliency maps generated by the GBVS algorithm [40], and its results are

denoted as GBVS PatchCut soft, GBVS PatchCut thres and GBVS PatchCut. We mainly
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compare with the state-of-the-art algorithm, CPMC GBVS, presented in [70] which also

uses the GBVS saliency maps. Figure 5.10 shows some qualitative results from PatchCut

and CPMC GBVS for comparisons.

Quantitative evaluation. We convert the ground truth segmentation saliency maps into

binary masks with three thresholds: 0.1, 0.3, 0.5. Larger threshold means that less objects

with higher saliency values are selected in the ground truth. We first evaluate the soft

segmentation masks (saliency maps) in terms of precision-recall curves. We compare

the GBVS PatchCut soft results with CPMC GBVS and three recent saliency algorithms,

SF [83], GC [24] and PCAS [76]) in Figure. 5.9. Our algorithm (GBVS PatchCut soft)

performs favorably against CPMC GBVS and clearly above other saliency algorithms.

Second, we evaluate binary segmentation results in terms of mean Jaccard scores. We

convert the CPMC GBVS results into binary segmentation by tuning the threshold, and

find that its best mean Jaccard scores are obtained at the threshold 0.3. Table 5.4 shows that

our algorithm (GBVS PatchCut) performs slightly better than CPMC GBVS, especially at

low saliency levels. This result also means that our algorithm tends to select more objects

than CPMC GBVS (see examples in Figure 5.10).

Table 5.4: Jaccard scores on PASCAL.

Saliency level 0.1 0.3 0.5
GBVS GrabCut 45.84 45.25 44.90

CPMC GBVS [70] 59.43 60.58 60.75
GBVS PatchCut thres 60.08 60.22 59.27

GBVS PatchCut 62.02 62.15 61.14
CPMC PatchCut thres 61.37 62.64 62.76

CPMC PatchCut 63.74 64.92 64.97

We also initialize our PatchCut algorithm with the soft segmentation masks generated

by CPMC GBVS, and its results are denoted as CPMC PatchCut soft, CPMC PatchCut thres

and CPMC PatchCut. With this high quality initialization, PatchCut clearly outperforms

the state-of-the-art in terms of both precision-recall curve (CPMC PatchCut soft in Fig-

ure 5.9) and the mean Jaccard scores (CPMC PatchCut in Table 5.4).
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Figure 5.10: Comparing salient object segmentation results on PASCAL.
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5.4 Summary

In this chapter, we present a data-driven object segmentation algorithm using exam-

ples, which requires no offline training of category-specific models and generalizes well

to novel objects. Our algorithm constructs an online structured label space for object seg-

mentation by transferring local shape mask candidates from examples. The MRF labeling

problem is decomposed into a set of independent label patch selection sub-problems that

are easier to solve in parallel. Our algorithm operates in a coarse-to-fine manner and

achieves leading results in many object segmentation benchmarks with low computational

cost (about 10 seconds for segmenting a 200x200 image with unoptimized MATLAB code

on a typical desktop).



Chapter 6

Scene Paring: Object Segmentation in

Context

6.1 Introduction

The goal of scene parsing is to associate a semantic label such as sky, trees, cars, etc.

with every pixel in a still image. Such an image description has broad applications, e.g.

image editing, image search and autonomous vehicles. Considering potentially hundreds

or thousands of semantic labels in common outdoor environments and indoor scenes, it

is of great interest to endow the scene parsing system with the ability to operate in a

large scale. Large scale scene parsing faces two main challenges. First, the distribution

of objects in natural images tends to be heavy-tailed, with many pixels in the images

coming from common background classes (the sky, water, and sand in Figure 6.1) and

far fewer pixels coming from any given one of the thousands of possible object types.

The large number of rare object classes and their relatively small sizes in many images

make it difficult for algorithms to accurately segment important objects (the persons and

boat in Figure 6.1). In fact, when evaluating error on a per-pixel basis, the performance

of algorithms can often be improved by eliminating the rare classes altogether if their

70
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Figure 6.1: Given a query image (a), our method (d) recognizes small objects of rare classes (peo-

ple, boat) while state-of-the-art systems (c) tend to miss them. Note that our method also recognizes

the sand while the human annotator leaves it unlabeled (b).

sizes in the images are usually small, despite the rare classes being very important to

human observers. Secondly, it is expensive to optimize image labeling problems with

hundreds or thousands of labels. For example, given efficient optimization algorithms

such as graph-cut [16], it still takes minutes to solve a pairwise Markov Random Field

(MRF) on a 600× 800 image with 100 labels. These two challenges make learning based

algorithms [94, 59, 32] less applicable.

An alternative is to use nonparametric approaches [73, 27, 96, 101, 100]. To parse

an input image, these algorithms first retrieve a small set of similar images and their as-

sociated semantic labels from the database, and compute classification confidence maps

by matching the query with retrieved images in pixels or superpxiels. The final semantic

labeling is obtained by solving a pairwise MRF model. The core of these nonparametric al-

gorithms is motivated by two important observations. On one hand, a single image usually

contains very few labels that are constrained by the scene category of the image, compared

to the hundreds in total. For example, a photo taken at the beach usually contains sand, sea,

boat and person (Figure 6.1(a)). Image retrieval constrains the potentially large number of

candidate labels to the ones present in the similar scenes, which greatly reduce the labeling

efforts. On the other hand, segments usually capture different partial appearances of ob-

jects and are difficult to fit into unified category models. Matching-based algorithms break

the category barrier and recognition can be realized by transferring labels from matched
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segments to query segments. These nonparametric approaches [73, 27, 96, 101, 100]

achieve good performance on overall per-pixel labeling accuracy. However, by taking

a closer look at their semantic labeling results, we find that the overall performance is

in fact dominated by several common background classes, e.g. mountain, building, water,

road and wall, while the performance on interesting object classes is still lagging, e.g. peo-

ple, animals and man-made objects. To address this problem, Tighe and Lazebnik [100]

propose to augment their previous superpixel based parsing system [101] with pre-trained

exemplar SVMs [75]. Although per-exemplar detectors makes it possible to transfer ob-

ject shape masks, their training indeed requires considerable amounts of computational

resources and their output also needs to be calibrated with superpixel parsing output in

a complicated post-classification step. This hybrid system shows state-of-the-art labeling

performance in general, but is still constrained by the quality of per-exemplar detectors

and the over-smoothing property of post-processing.

In this chapter, we propose a novel context-driven scene parsing system. Different from

previous approaches, we focus more on rare object classes aiming at generating richer and

more structured semantic labelings. Beyond the three basic components of nonparametric

algorithms, i.e. image retrieval, superpixel matching and MRF labeling, we make two

novel contributions:

1. We propose to regularize the retrieval set by a dictionary of rare class superpixels,

since the semantic labels of retrieval images usually follow a long-tailed distribution.

Therefore, we obtain more balanced classification results.

2. Visual context plays an important role in scene parsing [84]. Beyond the traditional

co-occurrence statistics, we bring local and global spatial context into superpixel

scoring process to refine image retrieval and superpixel classification, which gives

us more contextually sensible parsing results.

We demonstrate our system on the SIFTflow dataset (2688 images, 33 labels) and the

LMSun dataset [101] (45576 images, 232 labels). The results show that the proposed
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algorithm achieves superior labeling performance than the previous state-of-the-art algo-

rithms in terms of per-class accuracy and per-pixel accuracy on the rare classes, while still

achieving similar or superior results on all classes.

6.2 The Baseline System

Our base system consists of three components: image retrieval, superpixel matching

and MRF labeling.

6.2.1 Image Retrieval

Image retrieval is a critical step for our system. It determines the labels we use to

parse the input image. If the algorithm fails to retrieve relevant images and true labels,

we are not able to recover them in later steps. In this chapter, we use the method in [92]

to compute the spatially constrained image similarity m(Iq, Id) between the query image

Iq and database images Id, and retrieve top-K most similar images {I1
d , I

2
d , ..., I

K
d },where

m(Iq, I
k
d ) > m(Iq, I

k+1
d ). Based on the Bag-of-Words image matching algorithm, this

method incorporates spatial voting of local features (SIFT and RGB color) into image

scoring. Therefore, the retrieved images usually have similar scene layout to the query,

which is desirable for our parsing system. We use a SIFT vocabulary of 10,000 words and

a RGB color vocabulary of 1,000 words for local feature quantization. The retrieval top-K

images also determine a subset of candidate labels L′ ⊂ L for the query image, where L
is the overall label set. This method shares a similar spirit with commonly used spatial

pyramid matching [64], but favors scene retrieval more than scene classification in terms

of implementation.
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6.2.2 Superpixel Matching

We intend to assign semantic labels to every pixel of the query image, based on retrieval

images and their corresponding ground truth semantic labels (annotated by human). As a

single pixel alone does not contain sufficient information for recognition, we thus choose

to recognize pixels in their proper neighboring regions, i.e. superpixels. We use the fast

graph-based segmentation algorithm in [35] for producing superpixels for both query and

retrieved images. Different from traditional methods, we harvest superpixels of retrieved

images from multiple scales. This increases the chance to find good matches for the query

superpixel at a controllable computational cost. In experiments, we segment the retrieved

images in four scales by varying the k value k = 50, 100, 200, 400 in [35]. The smaller k

means fine-scale segmentation while the larger k means coarse-scale segmentation. Note

that many superpixels from multi-scale segmentation may include labels from different

classes, and cannot be assigned a single category label. We thus screen the superpixels by

checking their label purity, which is defined as the percent of label majority. We assign a

semantic label yi to a superpixel si if its label purity is greater than 95%; otherwise, we

remove it from retrieval set. For the query image, we segment it in the finest scale by

setting k = 50 to control their purity.

We represent each superpixel by four kinds of features, SIFT histogram, RGB his-

togram, location histogram and PHOG histogram. We extract SIFT descriptors of four

scales per 4 pixels by using VLFeat package [106] and encode them by 5 words from a

vocabulary of size 1024 using the LLC algorithm [110]. For each superpixel, we compute

a 128-dimensional color histogram by quantizing the RGB features from a vocabulary

of 128 color words, and a 36-dimensional location histogram by quantizing the (x,y)-

locations into a 6× 6 grid. In addition, the 168-dimensional PHOG histogram is extracted

from the bounding box of each superpixel in a 1×1, 2×2, 4×4 pyramid. To incorporate the

contextual features into the superpixel representation, we also dilate the superpixel masks

by 10 pixels and extract the same four kinds of features in the dilated superpixel regions.

We thus obtain a 2712-dimensional ((1024+128+36+168)×2) feature vector xi for each
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superpixel si.

We compute the classification cost of each input superpixel si ∈ Q by its k-nearest

neighbors Nk(i) in retrieval setR = {sj, xj, yj},

U(yi = c|si) = 1−
∑

j∈Nk(i),yj=cK(xi, xj)∑
j∈N k(i)K(xi, xj)

, (6.1)

where K(xi, xj) denotes the intersection kernel between two histogram feature vectors xi
and xj .

To reduce the computational complexity, we further map feature vectors into a high-

dimensional space φ(xi) where the inner product approximates the intersection kernel [106],

K(xi, xj) ≈< φ(xi), φ(xj) > (6.2)

6.2.3 MRF Labeling

We build a four-connected pairwise MRF for semantic labeling. The energy function

is given by

E(Y ) =
∑
p

U(yp =c) + λ
∑
pq

V (yp =c, yq =c′), (6.3)

where p, q are pixel indices, c, c′ are candidate labels that belong to retrieval label subset

C ′ and λ is the weight of pairwise energy. The unary energy of one pixel is given by its

superpixel,

U(yp = c) = U(yi = c|si), p ∈ si. (6.4)

The pairwise energy on edges is given by spatially variant label cost,

V (c, c′) = d(p, q) · µ(c, c′), (6.5)

where d(p, q) = exp(−‖I(p)−I(q)‖2/2σ2) is the color dissimilarity between two adjacent

pixels and µ(c, c′) is the penalty of assigning label c and c′ to two adjacent pixels. We

define µ(c, c′) by the log-likelihood of label co-occurrence statistics,

µ(c, c′) = − log[(P (c|c′) + P (c′|c))/2]× δ[c′ 6=c] (6.6)
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Figure 6.2: The long tailed superpixel label distribution on the SIFTflow training set with the

orange bar denotes the rare classes while the red bars denote the common classes.

which we estimate from the training images by calculating conditional probabilities P (c|c′)
of adjacent superpixels. We obtain the semantic labeling by performing MAP inference

on E(Y ) by alpha-beta swap algorithm [16].

6.3 Rare Class Expansion

In scene images, the salient regions usually capture the attention of human observers [43],

as they provide more information than generic background for scene understanding. It is

thus crucial to recognize these objects of interest for generating rich semantic description

of images. The saliency property of interesting objects also result in their insufficient rep-

resentations in the retrieval set. For example, in the “Before expansion” portion of the plot

in Figure 6.3, the superpixels of retrieved images are dominated by sky, sea and sand while

boat and people classes are in the very tail of the distribution. This fact brings challenges

to recognizing those objects of rare classes.

In this chapter, we propose to enrich the retrieved set of superpixels with exemplars

of rare classes from the entire database. The label distribution of the retrieval set could
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be noisy due to the possibly irrelevant images. It is thus difficult to tell if a class in the

tail part are interesting objects (boat and people) or simply outliers (building). We instead

define “rare” classes by examining the superpixel label distribution of the entire training

set. We partition this distribution into head and tail parts based on the 80%-20% Pareto

rule, and define the classes in the tail as “rare” Lr while the other classes in the head

as “common” Lc. In Figure 6.2, we present the superpixel distribution of the SIFT flow

training set [73], and our definition of rare and common classes. Given this definition,

we can partition the label subset of retrieval superpixels into two parts L′ = L′r
⋃
L′c

and populate the superpixels in the classes of L′r with exemplars. Note that the reduced

label set remains the same after expansion. In Figure 6.3, we expand 9 classes (road, field,

plant, grass, river, rock, sand, person, boat) and obtain a more balanced, noise resistant

superpixel distribution as shown in the “After expansion” portion of the plot.

Figure 6.3: Rare class expansion (orange bars).

6.3.1 Building a Dictionary of Exemplar Superpixels

We build a dictionary Dc of exemplar superpixels for each class c ∈ L. We project

superpixel feature vectors xi into a low-dimensional space by PCA and cluster them into

1000 centers by using k-means. We select those superpixels which are closest to the cen-

ters as exemplars of particular class. Note that we use this method to build dictionaries for

its simplicity, although a more sophisticated algorithm such as in [72] could help to mine

more discriminative and diverse exemplars.
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6.3.2 Superpixel Classification

We classify the superpixels of query image si ∈ Q by using both the retrieval set

R and auxiliary set of rare class exemplars Dc, c ∈ L′r. Similar to our base system in

Section 6.2.2, we compute the classification cost of one query superpixel si by its κ-nearest

neighbors N ′k(i) ∈ {R
⋃
Dc, c ∈ L′r},

U1(yi = c|si) = 1−
∑

j∈N ′k(i),yj=cK(xi, xj)∑
j∈N ′k(i)K(xi, xj)

. (6.7)

We set κ = 37 through all the experiments. To increase the classification accuracy of

κ-NN, systems in [27, 96] learn weights for superpixels feature vectors. In this work,

we choose to hybridize the κ-NN classifier with an SVM classifier [22]. We train the

SVM classifier only using the exemplars in our dictionary. Given this small and balanced

set of training samples, we can train linear SVM classifiers {wc, bc}, c ∈ L in a very

efficient way [21]. The SVM classification cost for the query superpixel si ∈ Q is given

by U2(yi = c|si) = − < wc, φ(xi) > −bc. The total superpixel classification cost is thus

computed by combining the κ-NN cost and the SVM cost,

U(yi =c|si) = αU1(yi =c|si) + (1− α)U2(yi =c|si), (6.8)

where α is the combination coefficient.

6.4 Semantic Context

Context is an important source of information for scene labeling. Although there are

many ways to explore this information, we choose to a simply, yet effective feedback

mechanism based approach, inspired by [27, 96, 105]. In the base system with rare class

expansion, we transfer semantic labeling information from the database to the input image

through image retrieval and superpixel classification. In this feedforward process, we

obtain the initial semantic knowledge of the input image that are represented by the pixel-
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wise classification likelihood maps.

`(p, c) =
1

1 + exp(U(yp = c))
, c ∈ L′, (6.9)

where U(yp = c) is the cost of assigning label c to pixel p in (6.4) and L′ ⊂ L is the can-

didate label subset. These classification maps in the reduced label set grant us naturally

sparse representation of semantic information without an extra sparse coding step [45].

The question is how we can use this initial result as a feedback to reinforce the labeling

process, in particular the two key components, image retrieval and superpixel classifica-

tion. First, the likelihood maps in (6.9) can serve as global context, which has the potential

to improve the appearance based image retrieval with semantic scene description. Second,

we can generate local semantic descriptors from the likelihood maps for superpixels. To-

gether with local appearance descriptors, we can achieve more contextually consistent

classification results. We introduce the algorithms to construct both global and local con-

text descriptors from the likelihood maps in (6.9) below. Note that to compare semantic

context between the query and the database images, we compute the classification likeli-

hood maps for all the training images in a leave-one-out fashion.

6.4.1 Global Context Descriptor

We define the global context of an image as the spatial layout of semantic content in

multi-scale. To this end, we partition an image into a three-layer spatial pyramid {I =⋃
i Ωl

i, l = 1, 2, 3, i = 1, ..., 2l−1}, and for each cell Ωl
i, we compute its |L| × 1 sparse

context vector zli = [zlic]c=1,2,...,|L| by max pooling of classification likelihood maps,

zlic =

maxp∈Ωl
i
`(p, c) if c ∈ L′;

0, otherwise.
(6.10)

The global context descriptor is thus formed by concatenating the sparse vectors from

all the cells z = [zli]l=0,1,2,i=1,...,2l−1 . Figure 6.4 demonstrates the process of computing

the global context descriptor of one query image. We use global context descriptor z to
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Figure 6.4: Computing global and local context descriptors from the likelihood maps.

update the image similarity between the query image and database images, m′(Iq, Id) =

m(Iq, Id)+ < zq, zd > and obtain a new set of retrieved images.

6.4.2 Local Context Descriptor

We describe superpixels by their local context for robust matching. For each superpixel

si, we divide its neighborhood into left, right, top, bottom four cells {∆0
i ,∆

1
i ,∆

2
i ,∆

3
i } as

illustrated in Figure 6.4, and for each cell ∆j
i , we compute its |L|×1 sparse context vector

hj
i = [hjic], c = 1, 2, ..., |L| by the same operation as for global context descriptors,

hjic =

maxp∈∆j
i
`(p, c) if c ∈ L′;

0, otherwise.
(6.11)
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We represent the superpixel si by concatenating the visual feature vector xi and spatial

context descriptor hi = [h0
i ;h

1
i ;h

2
i ;h

3
i ]. Therefore, we can classify superpixels of the

query image using the same procedure described in Section 6.3, but with new feature

vectors φ([xi;hi]).

6.5 Experimental Results

6.5.1 SIFTflow

The SIFTflow dataset consists of 2488 training images and 200 test images. All the

images are 256×256 pixels from 33 semantic labels. We retrieve K = 40 images for each

query. By applying the 80%-20% rule to all the superpixels of training dataset, we iden-

tify 5 classes as common while 28 classes as rare (Fig. 6.2). We set α = 0.7 to combine

the κ-NN and SVM classifiers in (6.8), and set λ = 6 for the pairwise term of MRF en-

ergy function in (6.3). We compare our results with recent work in Table 6.1. Compared

Table 6.1: Comparing accuracy (%) on the SIFTflow dataset. Note that in our results,

Full=baseline+RCE+LCD+GCD.

SIFTflow Per-pixel Per-class
Liu et al. [73] 76.7 N/A

Farabet et al. [32] 78.5 29.5
Farabet et al. [32] balanced 74.2 46.0

Eigen et al. [27] 77.1 32.5
Singh and Kosecka [96] 79.2 33.8

Tighe and Lazebnik [101] 77.0 30.1
Tighe and Lazebnik [100] 78.6 39.2

Full 79.8 48.7
baseline + RCE + LCD 79.4 46.9

baseline + RCE 78.4 45.4
baseline 78.0 27.5

to nonparametric methods, our method (79.8%) outperforms the state-of-the-art per-pixel
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rate (79.2%) in [96], and per-class rate (39.2%) in [100] by a large margin (8.5%). The

state-of-the-art learning based method in [32] can achieve close per-class rate (46.0%) to

our system at a cost of more than 4% performance drop on per-pixel rate (74.2%). In

contrast, we achieve overall performance improvement using the proposed rare class ex-

pansion and semantic context descriptors. We present some qualitative results in Fig. 6.5.

In the bottom of Table 6.1, we evaluate the contributions of important components to our

system: rare class expansion (RCE), local context descriptors (LCD) and global context

descriptors (GCD). The results show that rare class expansion plays a central role on per-

class rates while semantic context boosts the system performance in general. To further

investigate the influence of the rare classes, we compare the performance of our full sys-

tem with [100] only on the 28 rare classes. Table 6.2 shows that our system outperforms

the state-of-the-art by more than 10% for both per-pixel and per-class rates on those rare

classes.

Table 6.2: Accuracy (%) on the 28 rare classes of SIFTflow dataset.

Rare classes Per-pixel Per-class
Tighe and Lazebnik [100] 48.8 29.9

Our full system 59.4 41.9

Runtime. For this dataset, it takes<1 sec. to retrieve relevant images,∼5 sec. for feature

loading,∼ 5 sec for superpixel classification, and< 1 sec. to solve the MRF. The use of

context descriptors doubles the classification time.

6.5.2 LMSun

The LMSun dataset consists of 45176 training images and 500 test images. The size

of images ranges from 256×256 pixels to 800×600 pixels. There are 232 semantic labels

in total. By using the same 80%-20% rule on all the superpixels in the training set, we

identify 47 common classes and 185 rare classes. Since this is more complex dataset, we

retrieve K = 120 images to cover large appearance variations. We set α = 0.9 to trade-off
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Figure 6.5: Some representative scene parsing results on the SIFTflow dataset
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the KNN and SVM classifiers, and set λ = 6 for the pairwise term in MRF energy function.

We compare our results with recent work in Table 6.3. As we focus on the rare classes,

our method indeed produces the superior per-class result 18.0% to the previous one 15.2%,

while remaining competitive on the per-pixel rate 60.6% vs. 61.4% in [100]. By looking

at the accuracy on outdoor (65.4 per-pixel, 17.7 per-class) and indoor (41.8 per-pixel, 16.1

per-class) separately, we observe our system loses the per-pixel performance mainly on

indoor images (4.5% lower than [100] vs. 0.1% lower than [100] for outdoor). In Table 6.4,

Table 6.3: Comparing accuracy (%) on the LMSun dataset.Note that in our results,

Full=baseline+RCE+LCD+GCD.

Per-pixel Per-class
Tighe and Lazebnik [101] 54.9 7.1
Tighe and Lazebnik [100] 61.4 15.2

Full 60.6 18.0
baseline + RCE + LCD 59.4 17.8

baseline + RCE 57.1 14.5
baseline 58.5 9.0

we present the results on the 185 rare classes. It turns out that our system outperforms

the state-of-the-art for both per-pixel and per-class rates, which further demonstrates our

contributions to rare class boosting. We present some qualitative results in Figure 6.6.

Runtime. Scene parsing is more expensive on the LMSun dataset than the SIFTflow

dataset. It takes<20 sec to retrieve relevant images,∼60 seconds for feature loading,∼60

sec for superpixel classification, and∼ 60 sec to solve MRF for an 600×800 image with

50-100 labels. Using context descriptors doubles the superpixel classification time.

Image retrieval has significant influence on our system. Superpixel matching and MRF

inference becomes much easier to solve within a compact set of relevant images to the

query; on the contrary, we notice most of the failure cases are caused by incorrect retrieval.

We plan to investigate more effective image retrieval techniques, such as convolutional

neural networks [56].

Our system faces challenges in indoor scenes. Indoor scenes are usually composed of
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Figure 6.6: Some representative scene parsing results on the LMSun dataset



86

Table 6.4: Accuracy (%) on the 185 rare classes of LMSun dataset.

Rare classes Per-pixel Per-class
Tighe and Lazebnik [100] 19.0 12.9

Our full system 26.4 14.4

many man-made 3D objects (bed, cabinet, table, chairs) and thus have more line structures

than textures. Our SIFT based superpixel representation becomes less applicable in this

scenario, compared to the HOG feature used in object detectors [100]. We plan to develop

better indoor object representations by exploring their 3D geometric structures.

The runtime efficiency is one of the most important factors in large scale problems.

On one hand, we plan to incorporate hashing algorithms to accelerate superpixel feature

loading and matching; on the other hand, we plan to investigate faster MRF inference

algorithms.

6.6 Summary

We have presented a novel scene parsing algorithm, which can operate in large scale.

By investigating the roles of rare classes in the database, we have proposed two novel

techniques: rare class expansion and local/global semantic context descriptors, which are

able to significantly boost the per-class performance of our system. Based on that, we have

achieved the state-of-the-art results on the SIFTflow and the large scale LMSun datasets.



Chapter 7

Conclusion

7.1 Summary of Contributions

We have investigated object segmentation problems in single images. We have made

several key contributions towards effective integration of top-down recognition and bottom-

up segmentation.

Generating proposals with exemplar cuts. In the segmentation driven process, object

segmentation is decomposed into two subproblems of grouping pixels or regions to form

object proposals and evaluating proposals using recognition models. We have developed

a novel proposal generation algorithm using exemplars. The algorithm is based on one

regularized CRF energy function built on a region tree. To generate multiple solutions

from the learned CRF energy function, our method introduces a nonparametric term that

varies when matching with different exemplars. Compared to previous works that re-

parameterize the energy function by a tuning parameter or an iterated penalty term our

data-driven method takes advantage of both diversity and informativeness of existing seg-

mentation exemplars and thus produce a compact set of highly plausible proposals. When

evaluating the proposals as a whole, our method significantly improves the upper-bound

performance on the PASCAL VOC dataset.
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Learning shape representations with max-margin Boltzmann machines. Shape plays

an important role on segmenting object instances with occlusions. Towards shape-guided

object segmentation, we have proposed a novel model that unifies the distributed shape

representation and bottom-up segmentation in a conditional Boltzmann machine. The pro-

posed model is jointly learned in a max-margin fashion. We compared the performance of

different margin functions and showed their relations to existing learning algorithms for

conditional RBMs and latent structured support vector machines. Different from previous

works that mainly use pre-trained Boltzmann machines as shape prior, our model empha-

sizes the structured prediction from recognition models to hidden variables of Boltzmann

machines. This difference ensures the the shape is well preserved in the resulting segmen-

tation masks. Evaluating on widely used pedestrian, horse and bird datasets, our algorithm

achieved state-of-the-art results and demonstrated robustness to partial occlusions.

Transferring multiscale shape masks with Patch Cut. In many interactive applications,

users would like to select an object of interest for segmentation. Since the selected ob-

ject could be from any category, learning class-specific models become not realistic. We

have proposed a novel nonparametric algorithm for generic object segmentation using a

database of examples. We analyzed the relation between image matching and shape trans-

fer in scale space and thus formulated a coarse-to-fine shape transfer scheme using multi-

scale dense matching. We combined the transferred local shape masks with image color

models in a higher-order MRF and developed a novel approximate inference algorithm by

alternating local mask selection and color model estimation, referred as Patch Cut. Com-

pared to previous works that transfer rigid or deformable masks in image sub-windows,

our method explores shape masks in multiple granularities and is able to produce high

quality segmentations in an efficient way. We evaluated the Patch Cut algorithm against

the state-of-the-art learning and nonparametric methods on various benchmarks and results

show its superior performance.

Putting objects in context for scene parsing. In scenic (indoor or outdoor) images, ob-

jects usually only take a small portion of pixels and the rest belongs to background. This
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phenomenon results in a fundamental ambiguity about object appearance. We have pro-

posed a novel data-driven scene parsing system that resolves this ambiguity by introducing

context from multiple levels into the recognition process. We also developed a novel tech-

nique to regularize the class distribution by expanding the statistically rare object classes

in the recognition process. Our system demonstrates state-of-the-art results in two large-

scale scene parsing dataset.

7.2 Future Work

Along with data-driven object segmentation, we are interested in the following ques-

tions for future investigation.

• How can object segmentation benefit from deep learning? Deep learning meth-

ods, e.g. convolutional networks, have made tremendous progress for object cate-

gorization. The learned rich feature hierarchy has shown its successful application

in detection with object proposals. What challenges its application to object seg-

mentation is an effective integration or unification of convolutional networks and

random fields, which is also a long-standing question in machine learning. Early

attempts include 1) learning potential functions of random fields with convolutional

networks; 2) re-interpreting inference iterations of random fields as new layers of

convolutional networks. Those pioneer methods, although improving the labeling

accuracies, still lack knowledge of representing individual objects and their occlu-

sion relationships.

• How can one learn object segmentation with rich semantics? For a human im-

age, its segmentation can be holistic ”human” and ”background”, by parts ”head”,

”arms”, ”torso” and ”legs”, by attributes ”jumping”, ”happy” and ”girl”. These dif-

ferent labelings may confuse the learning algorithms. Thus, it is of great interest to

integrate segmentation with language models so that one can collect training data
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from arbitrary annotations and interpret results in multiple semantic levels.

• How can object segmentation be done with humans in the loop? Most of state-

of-the-art object segmentation algorithms are data-hungry, but it is very challenging

to collect large-scale segmentation datasets.Different from categorization, manually

segmenting one image is a tedious task for humans and the quality decreases fast

when human annotators lose their patience. First of all, we need to develop more

advanced annotation tools. Second, instead of one-time data collection, it is more

interesting to close the loop from data collection, annotation to model learning. In

order to achieve that, we need an internet-scale platform where machines and hu-

mans can collaborate.
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