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Abstract. For every regular graph, we define a sequence of integers, using the recursion of
the Martin polynomial. We prove that this sequence counts spanning tree partitions and thus
constitutes the diagonal coefficients of powers of the Kirchhoff polynomial. We also prove
that this sequence respects all known symmetries of Feynman period integrals in quantum
field theory. We show that other quantities with this property, the c2 invariant and the ex-
tended graph permanent, are essentially determined by our new sequence. This proves the
completion conjecture for the c2 invariant at all primes, and also that it is fixed under twists.
We conjecture that our invariant is perfect: Two Feynman periods are equal, if and only if,
their Martin sequences are equal.
Keywords. Martin polynomial, transitions, spanning trees, point counts, Feynman integrals,
integer sequences, permanent, Prüfer sequence
Mathematics Subject Classifications. 81Q30, 05C70, 05C45

1. Introduction

In this paper, graphs are undirected and allowed to have self-loops (edges that connect a vertex
to itself) and multiedges (several edges connecting the same pair of vertices).

Let G be a 2k-regular graph, that is, every vertex has the same, even degree 2k > 0. Fol-
lowing [Jae90, FGJ07], a transition at a vertex v is a partition τ(1) ⊔ . . . ⊔ τ(k) of the 2k
half-edges ei = vwi at v into pairs τ(i) = {eτ ′(i), eτ ′′(i)} (made precise in Definition 2.1). Given
a transition, we can transform G into a smaller graph, which is again 2k-regular:

Gτ = (G \ v) + wτ ′(1)wτ ′′(1) + · · ·+ wτ ′(k)wτ ′′(k)
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†supported by an NSERC Discovery grant and the Canada Research Chairs program.

https://www.combinatorial-theory.org
mailto:erik.panzer@maths.ox.ac.uk
mailto:kayeats@uwaterloo.ca


2 Erik Panzer, Karen Yeats

is obtained by removing v together with its edges ei, and then adding k new edges to match the
neighbours wi of v. Let T (v) denote the set of all (2k − 1)!! transitions at v.

In this paper, we study invariants of graphs that solve the recursion

M(G) =
∑

τ∈T (v)

M(Gτ ). (1.1)

Such invariants are interesting both as pure combinatorics and because they provide a unifying
perspective on previously disparate invariants that are interesting in quantum field theory on
account of them having the key symmetries of Feynman period integrals.

This recursion was introduced by Martin [Mar77] to define a polynomial that counts circuit
decompositions. He considered in particular the 3-term recurrence

M

( )
= M

( )
+M

( )
+M

( )
(1.2)

for 4-regular graphs, and Las Vergnas [Las83] extended Martin’s considerations to arbitrary
even degrees. For matroid theorists, these polynomials can be interpreted as a kind of chromatic
polynomial for the transition matroid [Tra15], instead of the usual cycle matroid. Our focus lies
on a certain derivative of Martin’s polynomial (see Definition 2.5) which, for graphs with 3 or
more vertices, can also be defined as follows:

Definition 1.1. The Martin invariant M(G) of a regular graph G with even degree and at least
3 vertices, is the non-negative integer defined by the rules:

1. If G has a self-loop, then M(G) = 0.

2. If G has three vertices (and no self-loop), then M(G) = 1.

3. Otherwise, pick any vertex v, and define M(G) recursively by (1.1).

It follows from [Las83] that all choices of v in rule 3. produce the same result, so M(G) is
well-defined. The situation for graphs with fewer than 3 vertices and justification for our nor-
malization is explained in Definition 2.5 and subsequent discussion; it is not crucial at present.
To illustrate the definition, the Martin invariant of the complete graph K5 is

M(K5) = 3M

( )
= 3M

( )
+ 6M

( )
= 3 · 0 + 6 · 1 = 6.

In the first expansion, all 3 transitions produce isomorphic graphs: a perfect matching added
to K4 = K5 \ v. The second expansion produces a self-loop when the transition pairs the
parallel edges with each other; the other 2 transitions create .

For 4-regular graphs, the Martin invariant was introduced in [BG96]. It was shown in partic-
ular that M(G) > 0 if and only if G is 4-edge connected, and that M(G) simplifies into a product
if G has a 4-edge cut. We generalize these properties to higher degrees:
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Theorem 1.2. Let G be a 2k-regular graph. Then:

1. If G has an edge cut of size less than 2k, then M(G) = 0.

2. If G has no edge cut of size less than 2k, then M(G) > 0.

3. If G has an edge cut of size equal to 2k, then M(G) = k! ·M(G1) ·M(G2) for the graphs
G1 and G2 obtained by replacing one side of the cut with a single vertex:

M

(
.

.

.

)
= k! ·M

(
.

.

.

)
·M

(
.

.

.

)
. (1.3)

These results are proved in Lemma 3.1, Corollary 3.3, and Lemma 3.4. In Section 3.1 we
prove further results, including a lower bound on non-zero Martin invariants and a characteri-
zation of precisely when the lower bound is achieved in terms of total decomposability (Theo-
rem 3.5) and we prove uniqueness of these decompositions (Proposition 3.8).

Note that if one side of the cut in case 3 is just a single vertex, then G1 = G. This is
consistent with the full definition of M(G), Definition 2.5, where we find that M(G2) = 1/k! for
the graph G2 consisting of two vertices with 2k edges between them.

The computation of M(G) therefore reduces to graphs G that are cyclically (2k + 2)-edge
connected.1 This means that G is 2k-edge connected, and requires in addition that the only edge
cuts of size 2k are the trivial ones that separate a single vertex from the rest of the graph. It
is easy to see that such graphs cannot have any 1- or 2-vertex cuts. Our following two results
(proven in Section 3.2) give relations from 3- and 4-vertex cuts:

• Let G be 2k-regular and 2k-edge connected, with a 3-vertex cut. Then the two sides of the
cut can be turned into 2k-regular graphs G1 and G2, by adding edges (but no self-loops)
between the cut vertices. Furthermore, we have

M(G) = M(G1) ·M(G2). (1.4)

• If two regular graphs of even degree are obtained from each other by a double transposition
on one side of a 4-vertex cut, then their Martin invariants agree:

M

( )
= M

( )
. (1.5)

These operations on graphs are called product and twist in [Sch10]. For an example of the
product identity, consider the 3-vertex cut highlighted in red (the 3 vertices stacked vertically)
in the following graph:

M

( )
= M

( )
·M

( )
= M(K5) ·M(K5) = 36.

1In our context of 2k-regular graphs, the notions of cyclically (2k+2)-edge connected, essentially (2k+2)-edge
connected, and internally (2k + 2)-edge connected are all equivalent since the properties of each side of the cut
having at least one cycle, having at least one edge, and having at least two vertices are equivalent for 2k-edge cuts
of 2k regular graphs.
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1.1. Spanning trees and diagonals

The Martin invariant has another combinatorial description, in terms of spanning trees. Given
a graph G with n vertices, a spanning tree T of G is a subset of the edges of G such that T
has n− 1 elements and forms a connected subgraph. We prove (see Section 5):

Theorem 1.3. For every vertex v in a 2k-regular graph G with at least 3 vertices, the number
of partitions of the edge set of G \ v into k spanning trees is equal to M(G). In particular, the
number of such partitions is independent of v.

It is worth emphasizing that this is quite surprising: the Martin polynomial, by its nature,
counts circuit partitions, but it is not at all apparent at the outset that it can also be used to count
spanning tree partitions.2

As an example of the theorem, consider the 4-regular complete graph G = K5. Then the 6
edges of K5 \ v ∼= K4 allow precisely M(K5) = 6 partitions into pairs of spanning trees:

= ∪ = ∪ = ∪

= ∪ = ∪ = ∪
(1.6)

The theorem implies that M(G) is determined by the cycle matroid of G \ v.3 We can also view
the theorem as a relation between M(G) and certain coefficients of a polynomial:

Definition 1.4. Given a formal power series F =
∑

n cnx
n in several variables xi, we

write [xn]F = cn for the coefficient of any monomial xn =
∏

i x
ni
i .

The Symanzik or dual Kirchhoff polynomial4 ΨG of any graph G is the sum

ΨG =
∑
T

∏
e/∈T

xe ∈ Z[x1, . . . , xm] (1.7)

over all spanning trees T of G. The variables xe are labelled by the m edges of G. Applied to
the complement of a vertex in a 2k-regular graph G, we can restate Theorem 1.3 as[

xk−1
1 · · ·xk−1

m

]
Ψk

G\v = k! ·M(G)

(see Theorem 5.17 for the proof). We will use this identity to show the following symmetry
under planar duality (see Section 5.3):

Theorem 1.5. Suppose that G1 and G2 are 4-regular graphs that have vertices v1, v2 such
that G1 \ v1 is a planar dual of G2 \ v2. Then M(G1) = M(G2).

2Thanks to a referee for drawing attention to the unexpected nature of this connection.
3However, the Martin invariant is not determined by the Tutte polynomial (see Section 7.1).
4This is sometimes called graph polynomial, e.g. in [BS12, BEK06].
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1.2. Residues

By linearity, the residues M(G) mod q, for a fixed integer q, also solve the recursion (1.1). Two
such residues coincide with invariants of graphs that have been studied previously: the graph
permanent and the c2-invariant. These two invariants are quite different in character but both
were introduced because they have key symmetries of Feynman period integrals and so should
carry some quantum field theoretic information despite their purely combinatorial nature.

Let G be a 2k-regular graph and choose two vertices v ̸= w such that v has no self-loop. Call
the remaining vertices 1, . . . , n and pick an orientation of the kn edges of G \ v. Their n× kn
incidence matrix A has entries Aie = ±1 if vertex i ∈ {1, . . . , n} is the head or tail of edge e,
and Aie = 0 otherwise. Stacking k copies of A, we get a square kn× kn matrix, denoted A[k].
It was shown in [CDY16] that the square of the permanent

Perm(G) = permA[k] ∈ Z

has a well-defined residue modulo k + 1: this residue does not depend on the edge orientations
or the choices of v and w. When k + 1 is composite, then Perm(G) ≡ 0 mod (k + 1), so the
permanent is interesting only when k + 1 is prime. We prove (see Theorem 4.1)

Theorem 1.6. Let G be a 2k-regular graph G with n vertices. If k + 1 is prime, then

M(G) ≡ (−1)n−1 Perm(G)2 mod (k + 1). (1.8)

This implies that the permanent inherits all identities of the Martin invariant mentioned
above, explaining all properties of the permanent obtained in [CDY16] using different meth-
ods.

The permanent of a graph was enriched in [Cru17b] to an infinite sequence of residues.
Let G[r] denote the 2kr-regular graph obtained from G by replacing each edge with a bundle
of r parallel edges. The extended graph permanent [Cru17b] consists of the permanents of G[r]

where kr + 1 is prime. For example, for a 4-regular graph G, it is the sequence(
Perm(G),Perm(G[2]),Perm(G[3]),Perm(G[5]), . . .

)
∈ F3 × F5 × F7 × F11 × · · ·

of residues in Fp = Z/pZ of the permanents of G[(p−1)/2] for all odd primes p.

Definition 1.7. The Martin sequence of a regular graph G is the list of integers M(G[r]), indexed
by all positive integers r. We denote this sequence as

M(G•) =
(
M(G[1]),M(G[2]),M(G[3]), . . .

)
. (1.9)

By Theorem 4.1, the Martin sequence determines the extended graph permanent.5

The c2-invariant was introduced in [Sch11]. It is a sequence of residues c
(q)
2 (G) ∈ Z/qZ

indexed by all prime powers q and defined by

JΨGKq ≡ q2 · c(q)2 (G) mod q3

5Without squaring, the residues Perm(G[r]) mod (rk+1) are only defined up to sign. These signs depend on
the choices of v and w and the orientation of the edges.
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where JΨGKq =
∣∣{x ∈ FN

q : ΨG(x) = 0
}∣∣ denotes the number of points on the hypersur-

face {ΨG = 0} over the finite field Fq with q elements. In particular, the restriction of c2 to
primes (q = p) determines a sequence of residues in F2 × F3 × F5 × F7 × · · · . We will only
consider c2 restricted to primes as this is where our techniques are effective.

In many examples, the c2-invariant at primes (q = p) appears to be congruent to coefficients
of modular forms [BS13, Sch21], which has been established rigorously in a few cases [BS12,
Log18]. This connection hints at the deep geometric and number theoretic nature of the c2-
invariant.

We prove (see Theorem 6.2):

Theorem 1.8. For every 4-regular graph G with at least 6 vertices, and every prime p, and any
vertex v,

c
(p)
2 (G \ v) ≡ M(G[p−1])

3p
mod p.

This shows that the c2-invariant at primes is also determined by the Martin sequence. Putting
these two relations side by side we have that the extended graph permanent and the c2-invariant
capture different residues of the Martin invariants: If G is 4-regular, then

M(G[r]) ≡ (−1)n−1 Perm(G[r])2 mod (2r + 1) if 2r + 1 is prime, and

M(G[r]) ≡ 3p · c(p)2 (G \ v) mod p2 if p = r + 1 is prime.

For the c2 invariant this operation of removing a vertex from a 4-regular graph is quite im-
portant. If H is obtained from a 4-regular graph G by removing a vertex we say that H is a
decompletion of G and G is the completion of H . Note that the completion is unique but a graph
may have many non-isomorphic decompletions. The extended graph permanent also implicitly
involves the decompletion since it works with the incidence matrix of G \ v rather than with G
directly.

The c2 invariant, like the extended graph permanent, inherits the symmetries of the Martin
invariant from Theorem 6.2, some of which were not previously known (e.g. the twist). Most
interestingly, although the left-hand side of the theorem involves G \ v, note that the right-hand
side depends only on G but not v. Thus Theorem 1.8 implies:

Corollary 1.9 (Completion invariance at primes). For all primes p and any two vertices v, w of
a 4-regular graph G, we have c(p)2 (G \ v) ≡ c

(p)
2 (G \ w) mod p.

This was conjectured by Brown and Schnetz in 2010, see [BS12, Conjecture 4]. It is indica-
tive of a relation between the highest weight parts of the cohomology groups of the two graph
hypersurfaces {ΨG\v = 0} and {ΨG\w = 0}, as studied in [BEK06, BD13].

Over the last thirteen years, this conjecture was attacked by techniques from algebraic ge-
ometry, combinatorics and physics, but with very little to show for these efforts until the proof
of the conjecture for p = 2, first only for graphs G with an odd number of vertices [Yea18] and
then for all graphs [HY23] by the second author with Hu. These proofs used the combinatorial
interpretation of diagonal coefficients that will figure prominently in Section 5 and Section 6
along with some intricate involutions. The connection with the Martin invariant proved in the
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Figure 1.1: The periods and Martin invariants of primitive ϕ4 graphs [Sch10] with 9 vertices (7
loops decompleted). The dashed curve is a fit P(G \ v) ≈ 32150 ·M(G)−3.015.

present paper provides the missing piece to finally settle this conjecture from over a decade ago,
for all primes. In full, [BS12, Conjecture 4] also covers c2 at prime powers q = pn with n > 1,
and these cases remain open.

1.3. Feynman integrals

The product and twist identities discussed above (see also Propositions 3.10 and 3.12 for precise
statements) were introduced for 4-regular graphs by Schnetz [Sch10]. However, these identities
were discovered not for the Martin invariant, but for a completely different function of graphs:
The period of G is defined as the (Feynman) integral

P(G) =

(
m∏
e=2

∫ ∞

0

dxe

)
1

Ψ2
G

∣∣∣∣
x1=1

(1.10)

whenever this converges [BEK06]. The motivation to study these numbers comes from quantum
field theory, where they give contributions to the beta function that drives the running of the
coupling constant. Systematic calculations of these periods go back to [BK95, Bro85].

Schnetz showed in [Sch10] that if G is 4-regular and cyclically 6-connected, then for any
vertex of v, the period P(G\v) is well-defined (convergent) and independent of the choice of v.
The period therefore defines a function

G 7→ P(G \ v)

on the set of cyclically 6-connected 4-regular graphs. It satisfies the product, twist and duality
identities [Sch10], which suggests a relation between the period and the Martin invariant. Indeed,
we find two such connections.

Firstly, the Martin invariant and the period are correlated numerically. Graphs with
smaller M(G) tend to have larger periods. This approximate relation is illustrated in Figure 1.1
for the 4-regular graphs with 9 vertices. As the plot shows, the period can be estimated surpris-
ingly well from M(G) and a simple power law. It is remarkable that the period integral (1.10) is
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so strongly correlated with the number of partitions into spanning trees (Theorem 1.3). Further-
more, the period, and hence the Martin invariant, are also correlated to the Hepp bound [Pan23],
which is a tropical version of the period.

Secondly, even though the correlation just mentioned is only approximate, we find that the
Martin sequence can detect precisely when two graphs have the same period. We calculated
Martin invariants for a large number of 3- and 4-regular graphs (Section 7). Comparing with the
known periods [PS17, BS22] and the Hepp bound, supports the following conjecture (we state
a 3-regular version in Conjecture 7.2).

Conjecture 1.10. Cyclically 6-connected 4-regular graphs G1 and G2 have equal period
P(G1 \ v1) = P(G2 \ v2) if and only if they have equal Martin sequences M(G•

1) = M(G•
2).

Via Theorem 1.8, our conjecture implies that the c2 invariants of graphs with equal periods
agree at all primes. This is expected, also at prime powers, according to [Sch11, Remark 2.11].
Our conjecture thus implies the case q = p of [BS12, Conjecture 5].

Conjecture 1.10 also suggests that the period (and Hepp bound) of a graph should be com-
putable from the Martin sequence. Indeed, this is proved in forthcoming work with Francis
Brown. One important observation towards this is that Martin sequences are P-recursive (equiv-
alently, their generating series are D-finite), as we prove in Corollary 5.22.

There is another, in fact classical, connection between the Martin polynomial and quantum
field theory: the Martin polynomial appears as the symmetry factor SN in O(N) vector models.
Only very recently, however, also the Martin invariant was noted to have a physical meaning in
this context, namely it emerges at N = −2 for loop-erased random walks [WF19, SW20]. We
summarize this connection in Section 2.1.

1.4. Origin

In fact, it was in this physics context that we discovered the Martin invariant:
The need to compile a table of symmetry factors for the calculation [KP17] triggered an,

at first experimental, study of structural properties of the polynomial SN and its correlation
with the period P(G). Trying different values for N produced the remarkable discovery in
Figure 1.1, namely that for N = −2, not only is the correlation strong, but the pairs {P7,4, P7,7}
(see Figure 5.4) and {P7,5, P7,10} of graphs with the same periods also have exactly (and not just
approximately) equal symmetry factors SN . Even graphs with unknown periods supported this
connection, via the Hepp bounds computed in [Pan23] which are a very good proxy for periods.
The paper [BG96] suggested focusing on the recursive Definition 1.1 which we used to prove the
relations betweenM(G), Perm(G) mod 3, and c(2)2 mod 2 (the argument after Example 6.15).
We then applied the idea of duplicating edges from [Cru17b] to upgrade the Martin invariant
to the Martin sequence, and found the proofs of Theorems 1.6 and 1.8 given in Sections 4.3
and 6.3. Only in hindsight did we note that a simpler version of our proof technique relates
the Martin invariant to spanning tree partitions (Theorem 1.3), triggered by Francis Brown’s
suggestion to relate c2 to the diagonal coefficients of the Symanzik polynomial—rather than the
third denominator.
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1.5. Conclusions

We unified the theory of several invariants of graphs that were motivated by Feynman integrals
in particle physics, by relating them to a single, combinatorial invariant counting spanning tree
partitions:

• All known invariants of graphs that respect the identities of the Feynman period (i.e. the c2
invariant, the extended graph permanent, the Hepp bound, and the period integral itself)
are determined by the Martin sequence.

In this paper, we prove this for the extended permanent and for the c2-invariant at primes. The
determination of c2 at prime powers, the Hepp bound, and the period integral, all in terms of
only the Martin sequence, are work in progress with Francis Brown.

Secondly, we have learned that this integer sequence has a rich theory and satisfies a number
of interesting relations. Most importantly:

• The number of spanning tree partitions fulfils Martin’s recursion at a vertex.

Guided by applications in physics, we focused on regular graphs, where this observation can be
interpreted as a relation between spanning tree partitions and circuit partitions (via the Martin
polynomial). However, note that the sequence of spanning tree partitions, i.e. the diagonal of
the Symanzik polynomial, is defined for arbitrary graphs—not just for decompletions of regular
graphs. Our proof of Theorem 5.17 shows directly a recurrence relation for this diagonal, without
any assumptions on regularity. Hence in hindsight, we could define the Martin sequence as
this diagonal, and much will generalize to arbitrary graphs, or even matroids (see Remarks 4.6
and 5.25).

Apart from generalizing degrees, the Martin polynomial is also defined for directed Eulerian
graphs, where transitions are restricted to pair incoming half-edges with outgoing half-edges.
For regular digraphs with k incoming and k outgoing edges at every vertex, this polynomial
is divisible by x(x + 1) · · · (x + k − 2), see [Las83, Téorème 3.2]. By analogy, the deriva-
tive at x = 2 − k will have similar structural properties as our unoriented case (derivative
at x = 4− 2k). It is tempting to wonder if this invariant of digraphs is related to counting par-
titions into arborescences, i.e. the diagonal of an oriented version of the Symanzik polynomial,
and hence oriented versions of permanents and period integrals.

Another natural question is to identify the minimal and maximal values that M(G) can take,
for primitive regular graphs with a fixed degree and loop order; and to characterize the graphs
that achieve those values. Proposition 7.1 for 4-regular graphs and Conjecture 7.4 for 3-regular
graphs suggest that the minimizers are highly structured and could perhaps be identified for all
degrees. There also appears to be a unique graph at each degree and loop order that maximizes
the Martin invariant, see Tables 7.2 and 7.5. Those are harder to describe, but the same graphs
appear to also maximize the number of connected sets [CGJ25], and they are also the unique
minimizers of the Hepp bound.

The unexplained identities M(P
[r]
8,30) = M(P

[r]
8,36) and M(P

[r]
8,31) = M(P

[r]
8,35) of the graphs in

Figure 7.1 remain an intriguing open problem. We verified these equalities for r ⩽ 8, but we
cannot explain why these pairs of graphs share the same number of spanning tree partitions. The
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currently known set of Martin sequence identities (twist, product, duality, and Fourier-split) does
not connect these graphs. This strongly suggests that there exist further mechanisms that relate
Martin sequences (and thus Feynman periods), and it would be interesting to discover such new
symmetries of Feynman integrals.

The sections of this paper are largely independent of each other.

2. The Martin polynomial

Let G be an undirected graph where every vertex has even degree. Multiple edges between the
same pair of vertices are allowed. At each vertex, we may also have any number of self-loops,
that is, edges connecting the vertex to itself.

It will be helpful to think of graphs in terms of half-edges. The edges of the graph define
a perfect matching of the half-edges of the graph, each half-edge is incident with exactly one
vertex, and every vertex v has a corolla of incident half-edges. The set of the other halves of
the edges incident to v will be called the h-neighbourhood of v. The size of this set is always
equal to the degree of v; in particular, a self-loop at v contributes both of its half-edges to the h-
neighbourhood of v. The neighbourhood in the traditional graph theory sense, namely the set of
vertices adjacent to v, can be recovered from the h-neighbourhood by replacing each half-edge
in the h-neighbourhood with the vertex incident to that half-edge. When helpful for clarity we
will call the graph theory notion of neighbourhood the v-neighbourhood. Whenever there are
self-loops or multiedges at v, then the size of the v-neighbourhood is less than the degree of v.

Definition 2.1. A transition at a vertex v is a perfect matching of the half-edges of the h-
neighbourhood of v. We write TG(v) or simply T (v) for the set of all transitions at v. A transition
system P is a choice of one transition P (v) ∈ T (v) for every vertex of G.

Note that the notion of transition could equally well be defined as a perfect matching of the
corolla at v. The benefit of working with the h-neighbourhood is that for v with no self-loops,
and τ a transition at v, the graphGτ (see the beginning of Section 1) can be defined very naturally
to be the graph obtained from G by removing v and its corolla and matching the half-edges of
the h-neighbourhood of v into new edges according to τ .

Since the degree of every vertex v is even, the sets T (v) are non-empty and transition systems
exist. Concretely, a v of degree d has precisely

|T (v)| = (d− 1)!! =
d!

(d/2)! · 2d/2
(2.1)

transitions, and the graph G has
∏

v(dv − 1)!! transition systems. A transition τ ∈ T (v) can
be interpreted as a traffic sign that forces anyone who enters v from half-edge e, to leave by
half-edge e′ where e′ is the partner of e in the matching τ . Traversed in this way, a transition
system P determines a partition of the edges of G into circuits (closed trails). We write |P | for
the number of these circuits. For an example see Figure 2.1. A detailed description of circuits
in terms of half-edges can be found on [Tra15, page 181].
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P ∈

{
, ,

}
m

(
, x

)
= 1 + (x− 2) + 1 = x

Figure 2.1: The three circuit partitions of a 2-rose and its Martin polynomial.

Definition 2.2. The Martin polynomial6 is a sum over all transition systems, given by

m(G, x) =
∑
P

(x− 2)|P |−1 ∈ Z[x]. (2.2)

See Table 2.1 for some examples. This polynomial was introduced by Martin [Mar77] and
extended by Las Vergnas [Las83].7 In more recent literature, results for the Martin polynomial
are often stated in terms of the circuit partition polynomial, defined as8

J(G, x) = x ·m(G, x+ 2) =
∑
P

x|P | ∈ Z[x]. (2.3)

The coefficients of J(G, x) =
∑

k rk(G)xk count the edge partitions into k circuits. For exam-
ple, the linear coefficient r1(G) = J ′(G, 0) = m(G, 2) counts the Eulerian circuits of G. The
precise notion of circuit here is based on half-edges, see [Bol02, p. 262] or [EM99] for details.
Further evaluations of these polynomials can be found in [Bol02, Ell98]. There is also an integral
representation [MR11] for the values of J(G, x) at positive integers x.

It is clear from Definition 2.2 that m(G, x) solves the recursion (1.1). Note however that if
one applies a transition τ that pairs both ends of a self-loop, then Gτ will have a free loop, that
is, a loop not connected to any vertex, which must still be counted. This can be avoided with the
following lemma.

Lemma 2.3. If e is a self-loop at a vertex v which has even degree d ⩾ 2, then

m(G, x) = (x+ d− 4) ·m(G \ e, x). (2.4)

Proof. Given any transition τ ′ ∈ TG′(v) of G′ = G \ e, we can pair the half-edges e′, e′′ of e
to obtain a transition τ = τ ′ ∪ {e′, e′′} ∈ TG(v) in G. We can also pick one of the d/2 − 1
pairs {i, j}∈τ ′ and interlace e in either direction, to obtain two further transitions τij, τji∈TG(v)
of the form τij = τ ′ \ {{i, j}}∪{{i, e′} , {j, e′′}}. These constructions produce every transition
in TG(v) exactly once.

We can thus group the sum (2.2) by transition systems of P ′ of G′. For each P ′, we find one
transition system P of G with |P | = |P ′| + 1, and d − 2 with |P | = |P ′|. Hence we conclude
the claim, with the prefactor (x− 2) + (d− 2).

We can iterate Lemma 2.3 to remove all self-loops [Las83, Proposition 4.1]. Hence we can
compute m(G, x) without ever creating free loops. As a special case, we find

m(C
[k]
1 , x) = x(x+ 2) · · · (x+ 2k − 4) (2.5)

6In the very degenerate case where G has no edges, m(G, x) = 1/(x− 2) is not a polynomial.
7Our notation follows [Las83]; Martin writes P (G, x).
8In [Bol02, ABS00] this is denoted rG(x), we use J(x) following [Ell98, EM04, EM99].
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G

m(G, x) x 3x x2 x2 + 6x 3x2 5x2 + 12x 15x2 + 36x

Table 2.1: Martin polynomials of some 4-regular graphs.

for the graph C
[k]
1 consisting of a single vertex with k > 1 self-loops. This graph is called the

k-rose. Induction via (1.1) with a rose as the base case shows that m(G, x) is divisible by the
right-hand side of (2.5) whenever G has a vertex of degree 2k or more.

Corollary 2.4. If G is 2k-regular, has at least two vertices, and at least one self-loop,
then m(G, x) is divisible by (x+ 2k − 4)2.

Proof. The self-loop e gives one factor of x + 2k − 4 directly in (2.4). Since G \ e still has at
least one vertex of degree 2k, we get a second factor from m(G \ e, x).

The Martin polynomial has numerous further interesting properties, however for our pur-
poses we only use the above. Mainly, we conclude that the Martin invariant as defined in the
introduction, Definition 1.1, makes sense: the number M(G) is uniquely determined, because
we can obtain it from m(G, x). Using this insight we give a new direct definition of the Martin
invariant and then observe its equivalence with Definition 1.1.

Definition 2.5. The Martin invariant of a 2k-regular graph (k ⩾ 1) is the derivative

M(G) =
4 · (−1)k

(k − 2)! · (2k)!
m′(G, 4− 2k) ∈ Q. (2.6)

Since taking a derivative is a linear map, any derivative of m inherits the recursion (1.1).
Note also that m′(G, 4− 2k) vanishes for every 2k-regular graph with a self-loop and more than
one vertex, by Corollary 2.4. Therefore, this derivative fulfils 1. and 3. of Definition 1.1. Our
choice of normalization (part 2. of Definition 1.1) determines the prefactor in (2.6). Indeed,
(2.6) gives

M(C
[k]
1 ) =

2k

(2k)!
and M(C

[k]
2 ) =

1

k!
(2.7)

for the rose and dipole graphs. The dipoleC [k]
2 = K

[2k]
2 is a 2k-fold edge, and its Martin invariant

reduces to (2k − 1)!! times that of the rose by (1.1) and (2.1). For the rose itself, use (2.5). At
three vertices, the only 2k-regular graph without self-loops is the k-fold triangle, and expanding
it at a vertex shows that, as claimed in part 2. of Definition 1.1,

M(C
[k]
3 ) = k! ·M(C

[k]
2 ) = 1. (2.8)

Note that only k! transitions produce a dipole; all other transitions produce self-loops and can
hence be discarded for the computation of the Martin invariant.
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Remark 2.6. Our normalization (2.8) simplifies the 3-vertex cut product of Proposition 3.10.
This maximizes the analogy between M and the Feynman period P , because the latter also fulfils
this product without extra factors [Sch10, Theorem 2.1]. The downside is that we move outside
of integers for the Martin invariants of C [k]

1 and C
[k]
2 (though all graphs with at least 3 vertices

have integer Martin invariant) and have an explicit factor k! in the 2k-edge cut product (1.3),
which however has no direct analogue for Feynman periods, because graphs with such a cut
have divergent Feynman integrals.

The Martin invariant was introduced for 4-regular graphs in [BG96]. In that paper, it is
called β4, and a different normalization is used. If G has n vertices, then

M(G) = β4(G) · 2n−3. (2.9)

The normalization of β4 ensures that the totally decomposable graphs (see Theorem 3.5) are pre-
cisely the graphs with β4(G) = 1, in analogy to how the series-parallel graphs are precisely the
graphs with β(G) = 1 for Crapo’s β invariant [Cra67, Proposition 8]. But in contrast to M(G),
for most graphs the number β4(G) is not an integer.

Apart from the paper [BG96], the only other result on the Martin invariant that we could find
is [Ell00, Theorem 4.6]. For 4-regular graphs, it states that

6M(G) = m′(G, 0) =
J ′(G,−2)

−2
=
∑
C

r1(G \ C) · (−2)κ(C)−1 (2.10)

is a sum over all subsets C of edges such that every vertex of G has degree 0 or 2 in C. In other
words, C is a vertex-disjoint union of cycles. We write κ(C) for the number of these cycles,
and r1(G) = m(G, 2) = J ′(G, 0) denotes the number of Eulerian circuits.

2.1. Vector model

In theoretical physics, the Martin polynomial appears as the symmetry factor SG in the O(N)
vector model. For details, see [KSF01, Chapter 6]. In brief, this is the theory of N real scalar
fields ϕ = (ϕ1, . . . , ϕN) with Euclidean Lagrangian density

L =
1

2

N∑
i=1

(
∥∇ϕi∥2 +m2ϕ2

i

)
+

g

4!

(
∥ϕ∥2

)2
.

The first term describes free scalars with equal mass m. The second term with the coupling
constant g encodes their interaction. This density is invariant under orthogonal transforma-
tions ϕ 7→ Tϕ with T ∈ O(N). In terms of the symmetric tensor

λijkl =
1

3
(δijδkl + δikδjl + δilδjk) , (2.11)

the quartic interaction can be written as

(
∥ϕ∥2

)2
= (ϕ2

1 + . . .+ ϕ2
N)

2 =
N∑

i,j=1

ϕ2
iϕ

2
j =

N∑
i,j,k,l=1

λijklϕiϕjϕkϕl.
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The perturbation theory of theO(N)model thus differs from ϕ4 theory (N = 1) only through
a prefactor SG for each Feynman graph G. This factor counts all possible assignments of the
field labels {1, . . . , N} to each edge compatibly with the expression for the interaction. Let V
and E denote the sets of vertices and edges of G, and write e1v, . . . , e

4
v for the four edges at a

vertex. Then
SG(N) =

∑
c : E→{1,...,N}

∏
v∈V

λc(e1v),c(e
2
v),c(e

3
v),c(e

4
v)

(2.12)

for every 4-regular (“vacuum”) graph G. Expanding each tensor in this product into the three
terms in (2.11) corresponds to a sum over transition systems. The number of parts of the corre-
sponding circuit partition gives the number of freely choosable field labels.

For a 4-regular graph with n vertices, we can therefore identify

SG(N) = 3−n · J(G,N). (2.13)

Corrections to the coupling constant are determined by graphs of the form G \ v, which have 4
free (“external”) half-edges. Their symmetry factor is [KSF01, eq. (6.77)]

SG\v(N) =
3SG(N)

N(N + 2)
=

m(G,N + 2)

3n−1(N + 2)
.

Since m(G, x) is a multiple of x by (2.5), it follows from (2.3) that J(G,N) is a multiple
of N(N + 2). Therefore, SG\v(N) is a polynomial in N . One can therefore formally con-
sider arbitrary values for N , even though the O(N) vector model was defined above only for
positive integers N . Upon setting N = −2, we obtain the Martin invariant:

SG\v(−2) = 31−n ·m′(G, 0) = 2 · 32−n ·M(G). (2.14)

This was how we discovered the connection between the Martin invariant and Feynman sym-
metries: analyzing the symmetry factors for graphs with up to 13 vertices, we found thatN = −2
is the only value for which identities like twist and duality hold.

Strikingly, the formal value N = −2 in the O(N) vector model also describes a meaning-
ful physical system. It was recently discovered [WF19, SW20] that the formal “O(−2)” model
describes loop erased random walks (LERW). The value N = −2 is therefore distinguished not
only by the additional mathematical properties of the Martin invariant (the full Martin polyno-
mial does not fulfil identities like twist or duality), but it also corresponds to an exceptional field
theory.

3. Connectivity

We say that a graph G is d-regular if every vertex of G has degree d. Except for Proposition 3.8,
we always assume that the degree is even, and hence denote it as 2k.

Lemma 3.1. If G is 2k-regular but not 2k-edge connected, then M(G) = 0.
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G =
v

a

b

7→ G′ =
v

a

b

Figure 3.1: Splitting off a pair (va, vb) of edges.

Proof. Consider a minimal edge cut C of G, with size |C| = 2s < 2k. Let G1 and G2 denote
the two sides of the cut, so that G \ C = G1 ⊔ G2. If G1 consists of only one vertex, then this
vertex has k− s > 0 self-loops, and therefore M(G) = 0. Otherwise, if G1 has several vertices,
pick one and call it v. For every transition τ at v, the edges of C in Gτ define a (not necessarily
minimal) edge-cut of Gτ , hence Gτ is at most 2s-edge connected. By induction over the total
number of vertices, we may assume that M(Gτ ) = 0, and therefore conclude the induction step
that M(G) = 0 as well, by (1.1).

Theorem 3.2. If G is 2k-regular and 2k-edge connected, and v denotes any vertex, then there
exists a transition τ ∈ T (v) such that Gτ is 2k-edge connected.

Proof. Let λG(x, y) denote the maximal number of edge-disjoint walks in G, with endpoints at
vertices x ̸=y. By Menger’s theorem, the 2k-edge connectedness ofG implies that λG(x, y)⩾2k
for all pairs x ̸= y. In fact, since G is 2k-regular, equality holds. Lovász’ vertex splitting-off
lemma [Lov76, Theorem 1] shows that at any vertex v in any Eulerian9 graph G, one can find
two different edges va and vb, such that the graph G′ = G− va− vb+ ab (see Figure 3.1) has
the following property: for every pair x ̸= y of vertices different from v, one has

λG(x, y) = λG′(x, y).

Iterating this lemma k times produces a transition τ with λGτ (x, y) = λG(x, y) = 2k, there-
fore Gτ is 2k-edge connected.

Corollary 3.3. If G is 2k-regular and 2k-edge connected, then M(G) > 0.

Proof. By (1.1), we haveM(G) ⩾ M(Gτ ) for any transition ofG. Choosing τ as in Theorem 3.2,
we can ensure that Gτ is 2k-edge connected. Induction over the number of vertices thus reduces
the proof to the case where G is a rose; then M(G) > 0 by (2.7).

Together with Lemma 3.1, Corollary 3.3 proves that for a graph G that is 2k-regular,
M(G) > 0 if and only if G is 2k-edge connected. This settles parts 1 and 2 of Theorem 1.2.
We now show part 3:

Lemma 3.4. Let G be 2k-regular and C a 2k-edge cut of G. Let G′
1 ⊔G′

2 = G \ C denote the
two sides of the cut, and write Gi for the graph obtained from G′

i by adding a vertex connected
to the ends of C in G′

i, see (1.3). Then M(G) = k! ·M(G1) ·M(G2).
9While not needed here, we note that vertex splitting-off generalizes to non-Eulerian graphs [Mad78, Fra92].
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7→ , 7→ , , 7→ , 7→

Figure 3.2: Decomposition of two totally decomposable graphs into 3 copies of C [2]
3 .

Proof. We proceed by induction over the number of vertices of G′
2. If G′

2 has only one
vertex, then G2 is a 2k-fold edge and G1 = G. The claim is thus trivial, M(G) = M(G),
because M(G2) = M(K

[2k]
2 ) = 1/(k!). If G′

2 has more than one vertex, pick any vertex v in G′
2.

Using the induction hypothesis, expanding at v yields

M(G) =
∑

τ∈T (v)

M(Gτ ) = k!
∑

τ∈T (v)

M((Gτ )1) ·M((Gτ )2),

because the edges of C define a 2k-edge cut in every Gτ . If τ pairs any edges in C with each
other, then C induces in Gτ an edge-cut of size less than 2k, hence such transitions can be
dropped from the sum by Lemma 3.1. The remaining transitions commute with the cut: the
side (Gτ )1 = G1 is the same for all τ , and (Gτ )2 = (G2)τ . Hence the right-hand side sums to
the claim. Note that the dropped τ are precisely those that produce a self-loop in (G2)τ at the
extra vertex, hence their absence causes no error to M(G2).

3.1. Decompositions and lower bounds

We saw above that M(G) > 0 if G is 2k-regular and 2k-edge connected. In this subsection,
we give a combinatorial description of all such graphs which, at a given number of vertices,
minimize the Martin invariant. This is closely related to factorizations with respect to the 2k-
edge cut product from Lemma 3.4, for which we prove uniqueness (Proposition 3.8).

By repeated replacements G 7→ G1, G2 along 2k-edge cuts, we can decompose every 2k-
edge connected 2k-regular graph with ⩾ 3 vertices into a sequence of graphs G1, . . . , Gp until
each graph in the sequence is cyclically (2k + 2)-connected and has at least 3 vertices. Follow-
ing [BG96, FT93], we call such a sequence a decomposition of G. Iterating (1.3), note that

M(G) = (k!)p−1 ·M(G1) · · ·M(Gp). (3.1)

We call G totally decomposable [BG96] if it has a decomposition such that all Gi have only 3
vertices, see Figure 3.2. By (3.1), such a graph, with n vertices, has M(G) = (k!)n−3. By
induction one sees easily that any totally decomposable graph has at least two edges with multi-
plicity k. Decomposing by cutting off such an edge at each step we end with the k-fold triangle.
Therefore, reversing this we get that totally decomposable graphs can be constructed from the
k-fold triangle by repeatedly replacing a vertex with a k-fold edge.

For example, cutting off i ⩾ 2 consecutive vertices from a k-fold cycle,

C [k]
n 7→ C

[k]
i+1, C

[k]
n−i+1

terminates in a decomposition of C [k]
n into n− 2 copies of the k-fold triangle C [k]

3 = K
[k]
3 .

The totally decomposable graphs minimize the Martin invariant:
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Theorem 3.5. A 2k-regular, 2k-edge connected graphGwithn⩾2 vertices hasM(G)⩾(k!)n−3,
and equality holds if and only if G is totally decomposable.

The 4-regular case of this result was known previously [BG96, Corollary 5.6]. To prove
Theorem 3.5, we first establish the lower bound, which strengthens Corollary 3.3:

Proposition 3.6. Suppose that the graph G is 2k-regular, 2k-edge connected, and that it
has n ⩾ 2 vertices. Then M(G) ⩾ (k!)n−3.

Proof. As in the proof of Theorem 3.2, let λG(x, y) denote the maximum number of edge-
disjoint paths between vertices x and y ̸= x. Given G and fixing a vertex v, we call a
pair (va, vb) of edges at v admissible if λG′(x, y) ⩾ 2k for all x ̸= y with x, y ̸= v, in the
graph G′ = G− va− vb+ ab.

It was shown in [BJGJS99, Theorem 2.12] that if v has even degree d and λG(x, y) ⩾ 2k for
all x ̸= y different from v, then for any edge va, there are at least d/2 other edges vb such that
the pair (va, vb) is admissible. Applying this argument to G′, where v has degree 2k − 2, and
iterating, we conclude that there are at least

2k

2
· 2k − 2

2
· · · 2

2
= k!

transitions τ ∈ T (G) such that Gτ is 2k-edge connected. So if cn denotes the minimum value
of M(G) over all 2k-regular, 2k-edge connected graphs G with n vertices, then taking only those
transitions into account, the sum (1.1) shows that

cn ⩾ k! · cn−1.

We conclude that cn ⩾ (k!)n−3 by induction over n and c3 = 1.

To finish the proof of Theorem 3.5, recall that M(G) = (k!)n−3 if G is totally decomposable.
If G is not totally decomposable, then any decomposition G1, . . . , Gp has at least one factor with
at least 4 vertices. Let G1 be such a factor, and let ni denote the number of vertices in Gi. Then
by (3.1) and Proposition 3.6,

M(G) ⩾ (k!)p−1 ·M(G1) · (k!)n2−3 · · · (k!)np−3 = (k!)n−3 · M(G1)

(k!)n1−3

because n1+ . . .+np = n+2(p−1). Therefore, M(G) > (k!)n−3 follows from our next lemma.

Lemma 3.7. If G is 2k-regular and cyclically 2k + 2 connected, with n ⩾ 4 vertices,
then M(G) > (k!)n−3.

Proof. Pick any vertex v in G. Consider two edges va, vb at v with different endpoints a ̸= b.
We first show that such a pair (va, vb) is admissible:

Suppose that (va, vb) is not admissible.
Then G′ = G − va − vb + ab has an edge cut C ′ of size |C ′| < 2k, with at least one

vertex x ̸= v and at least one vertex y ̸= v on each side of C ′. Let V (G) = X ⊔ Y denote the
vertex bipartition corresponding to C ′, with v, x ∈ X and y ∈ Y . We show that the cut C of G
with this bipartition contradicts the cyclic 2k + 2 connectivity of G:
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G =

v
a

b

X Y

x

C

G′ =

v
a

b

X Y

x C ′

Figure 3.3: Illustration for the proof of Lemma 3.7: A non-admissible pair (va, vb) implies the
existence of a forbidden cut C in G.

• If a, b ∈ X , then C = C ′ has size |C| = |C ′| < 2k.

• If a ∈ X and b ∈ Y , then ab ∈ C ′ and C = C ′ − ab+ vb has size |C| = |C ′| < 2k.

• If a, b ∈ Y (see Figure 3.3), then C = C ′ + va + vb has size |C| = |C ′| + 2 ⩽ 2k + 1.
Since all vertices have even degree, |C| must be even, thus |C| ⩽ 2k. Note that neither
side of C is a single vertex: |X| ⩾ |{v, x}| = 2 and |Y | ⩾ |{a, b}| = 2.

The third point directly contradicts cyclic 2k + 2 connectivity while the first two either contra-
dict 2k regularity if one side of the cut is a single vertex and cyclic 2k+2 connectivity otherwise.

Now pick any neighbour a of v. The number s of edges between a and v is at most k− 1, as
otherwise, the subgraph induced by a and v would constitute a cut of size 2·2k−2s ⩽ 2k with at
least 2 vertices on each side since G has n ⩾ 4 vertices. Therefore, at least 2k− (k−1) = k+1
edges at v have endpoints b ̸= a. Since such pairs (va, vb) are admissible as we showed above,
we find at least k + 1 admissible pairs containing va. After splitting off such a pair, we invoke
[BJGJS99, Theorem 2.12] repeatedly, as in the proof of Proposition 3.6, to conclude that there
are at least

(k + 1) · (k − 1)!

transitions τ ∈ T (v) such that Gτ is 2k-edge connected. Considering only those summands and
using (1.1), we learn that M(G) ⩾ (k + 1) · (k − 1)! · (k!)n−4 > (k!)n−3.

According to our definition earlier, a decomposition of a d = 2k-regular graph is obtained
after a maximal sequence of d-edge cuts. Such a sequence of cuts is rarely unique. For example,
to decompose a k-fold cycle on 6 vertices, we can choose to cut off either 2 or 3 vertices in the
first step, which leads to two different sequences of cuts:

a) C
[k]
6 7→ C

[k]
5 C

[k]
3 7→ C

[k]
4 C

[k]
3 C

[k]
3 7→ C

[k]
3 C

[k]
3 C

[k]
3 C

[k]
3

b) C
[k]
6 7→ C

[k]
4 C

[k]
4 7→ C

[k]
4 C

[k]
3 C

[k]
3 7→ C

[k]
3 C

[k]
3 C

[k]
3 C

[k]
3

However, note that the resulting decomposition is the same: we obtain four times the k-fold
triangle, even though we constructed those triangles by different sequences of cuts.

We close this section by showing that decompositions G 7→ G1 · · ·Gp are always unique.
Here, unique is meant in the sense of multisets (lists up to reordering) of isomorphism classes of
graphs.10 Our proof works for arbitrary degrees. For the cubic case d = 3, a proof of uniqueness
was given in [FT93, Theorem 3.5].

10In the cubic case, Wormald’s [Wor85, Theorem 3.1] shows uniqueness in a stronger sense, accounting also for
how the Gi are arranged in G.
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G G′
12 G′

3 G′
23 G′

1 G′
2

G1G2

G3 D

C

G1G2

C
G3

G2

G3 D

G1

G2

Figure 3.4: Graphs that arise in the decomposition for two cuts C and D with G4 = ∅.

Proposition 3.8. Decompositions of d-edge connected graphs are unique.

Proof. Let two decompositions A = A1 · · ·Ap and B = B1 · · ·Bq of G be given. We call an
edge cut trivial if one side of it consists of a single vertex. If G does not have any non-trivial
d-edge cut, then we must have p = q = 1 and A1 = B1 = G is indeed unique.

If G does have a non-trivial d-edge cut, then G is not cyclically d + 1 connected, hence we
must have p, q ⩾ 2. Let C and D denote the d-edge cuts used in the first step of a construction
of the decompositions A and B, respectively, such that

A = A′A′′ and B = B′B′′

where A′ and A′′ are decompositions of the two sides of C, and similarly B′, B′′ for D. By
induction over the size of G, we may use that A′, A′′, B′, B′′ are unique.

The two cuts determine a partition of G\ (C∪D) = G1⊔G2⊔G3⊔G4 into four subgraphs,
such that C = [G1 ∪G4, G2 ∪G3] and D = [G1 ∪G2, G3 ∪G4], where [X, Y ] denotes all edges
of G with one end in X and the other end in Y . Let mij = |[Gi, Gj]| denote the number of edges
in G between Gi and Gj . Note that

m12 +m13 +m24 +m34 = |C| = d and m13 +m14 +m23 +m24 = |D| = d. (♯)

If two of the subgraphs Gi are empty, we have C = D and therefore A′ = B′ and A′′ = B′′

by induction, hence A = B.
If only one of the subgraphs is empty, say G4 = ∅, then A′ and A′′ are by definition de-

compositions of the graphs G′
1 and G′

23 obtained from G1 and G2 ∪G3 ∪ [G2, G3], respectively,
by reconnecting the edges C to an extra vertex. Similarly, B′ and B′′ are decompositions of the
graphs G′

3, G
′
12 obtained from G3 and G1 ∪ G2 ∪ [G1, G2], see Figure 3.4. Note that C defines

a cut G′
12 7→ G′

1G
′
2 and D defines a cut G′

23 7→ G′
3G

′
2, such that

A′′ = OB′ and B′′ = OA′

in terms of a decomposition O of the graph G′
2 obtained from G by replacing G1 and G3 by

single vertices. Here we exploited the uniqueness of A′′ and B′′ (induction hypothesis), which
allows us to compute them using any cut we like. We conclude that A′A′′ = A′OB′ = B′B′′,
up to order.

Finally, consider the case when all four subgraphs Gi are non-empty. Since G is d-edge
connected, we have the lower bounds

m12 +m13 +m14 ⩾ d, m12 +m23 +m24 ⩾ d,

m13 +m23 +m34 ⩾ d, m14 +m24 +m34 ⩾ d.
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G G′
23 G′

14 G′
1 G′

2 G′
3 G′

4

G1G2

G3

D

C

G4

G2

G3

G1

G4

G1 G2

G3 G4

Figure 3.5: Graphs that arise in the decomposition of two cuts C,D with all Gi ̸= ∅.

Combined with (♯), this system has a unique solution, given by m13 = m24 = 0
and m12 = m14 = m23 = m34 = d/2. Therefore, d must be even, and the edges [G1, G2 ∪ G4]
constitute a cut of size m12 +m14 = d that separates G1 from the rest of G. Analogously, the
other Gi each can be cut out along d edges. Let G 7→ G′

14G
′
23 denote the graphs created by the

cut C, so that A′ and A′′ are decompositions of G′
14 and G′

23, respectively. Here, Gij is obtained
from Gi ∪ Gj ∪ [Gi, Gj] by joining the cut edges to a new vertex (see Figure 3.5). Using the
cuts [G2, G1 ∪G3] and [G3, G1 ∪G4] of G′

23, we can decompose

G′
23 7→ G′

2G
′
3C

[d/2]
3 and thus find A′ = O2O3C

[d/2]
3

where Oi denotes a decomposition of the graph G′
i obtained from Gi (see Figure 3.5). Again,

we use here inductively that the decomposition of G′
23 is unique. In the same manner, we

find A′′ = O1O4C
[d/2]
3 and therefore

A′A′′ = O1O2O3O4C
[d/2]
3 C

[d/2]
3 .

Clearly, applying the same procedure to D, i.e. decomposing G 7→ G′
12G

′
34 and

then G′
12 7→ G′

1G
′
2C

[d/2]
3 and G′

34 7→ G′
3G

′
4C

[d/2]
3 we obtain the same result for B′B′′.

3.2. Product and twist

For the product identity (1.4), consider a 3-vertex cut S = {v1, v2, v3} of a 2k-regular graph G.
More precisely, fix a bipartition E = E1⊔E2 of the edges of G such that the only vertices shared
by E1 and E2 are in S.11 Let di denote the number of edges at vi that belong to E1, then the
other 2k − di edges at vi belong to E2. Set

m12 =
d1 + d2 − d3

2
, m13 =

d1 + d3 − d2
2

, m23 =
d2 + d3 − d1

2
. (3.2)

These are integers, because d1 + d2 + d3 is the size of an edge cut and hence even. Note that in
any graph where every vertex has even degree, all edge cuts are even.

Lemma 3.9. If G is 2k-edge connected, then m12,m13,m23 ⩾ 0.

Proof. Suppose that m12 < 0. Then d1 + d2 < d3, hence d1 + d2 + (2k − d3) < 2k. So the
edges at v1, v2 in E1 together with the edges at v3 in E2 form a cut of G with size less than 2k,
contradicting the assumption on G.

11A part Ei is not required to touch any vertices other than S.
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Now we state and prove the product identity for the Martin invariant introduced in (1.4).
Proposition 3.10. Let G be 2k-regular and 2k-edge connected, with a 3-vertex cut. Then the
two sides of the cut can be turned uniquely into 2k-regular graphs G1 and G2, by adding edges
(but no self-loops) between the cut vertices. Furthermore, we have

M(G) = M(G1) ·M(G2).

Proof. With notation as above, Lemma 3.9 implies that we can construct a 2k-regular graph G2

from E2 by adding mij edges connecting vi and vj , for each of the three pairs ij = 12, 13, 23.
By a symmetric construction we get G1 from E1. This proves the first claim of Proposition 3.10.
In fact, (3.2) is the unique solution to the constraints mij + mik + di = 2k, so this is the only
way to add non-self loop edges to E2 that leaves a 2k-regular graph.

To complete the proof of Proposition 3.10, we exploit that the identity (1.4) is linear
in each factor. More precisely, for any vertex v /∈ S that belongs to G1, we can apply
transitions τ ∈ T (v) at v on both sides: in G and in G1. Since τ only glues edges from E1,
it leaves G2 unchanged and the cut S remains a cut of Gτ , such that (G1)τ = (Gτ )1
and (Gτ )2 = G2. The expansion (1.1) at v therefore reduces the claim to the statement
that M(Gτ ) = M((Gτ )1)M((Gτ )2). An induction over the number of vertices therefore reduces
the claim to trivial base cases:

• If G has a self-loop, then this self-loop is also a self-loop in G1 or G2, so the identity holds
trivially because both sides are zero.

• When only 3 vertices are left, namely the vertices S, and G has no self-loops, then all 3
graphs G, G1, and G2, are necessarily identical to the k-fold triangle. The identity then
holds due to our normalization M(C

[k]
3 ) = 1.

With the same induction principle, we now prove the twist identity (1.5). Suppose we are
given a graph G with a 4-vertex cut S = {v1, v2, v3, v4} and a bipartition E = E1 ⊔ E2 of the
edges, such that all vertices shared between E1 and E2 are contained in S. Let di denote the
number of edges at vi that belong to E1. Schnetz introduced the twist operation [Sch10, §2.6],
which is illustrated in (1.5).
Definition 3.11. If d1 = d2 and d3 = d4, then the twist of G is the graph G′ obtained from G by
replacing every edge e ∈ E1 with an endpoint in S, e = uvi, by uvσ(i), where σ = (1 2)(3 4) is
the double transposition that swaps v1 ↔ v2 and v3 ↔ v4.

At a 4-vertex cut with d1 = d2 = d3 = d4, one can construct 3 twists, by relabeling vi or,
equivalently, using the other double transpositions σ = (1 3)(2 4) and σ = (1 4)(2 3). If we
fix S and σ, then the twist is an involution: G is the twist of G′. Now we state and prove the
twist identity for the Martin invariant introduced in (1.5).
Proposition 3.12. If two regular graphs of even degree are obtained from each other by a double
transposition on one side of a 4-vertex cut, then their Martin invariants agree:

M

( )
= M

( )
.
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Proof. Let G,S,E, di be as above. As in the proof of Proposition 3.10 we can use the expan-
sion (1.1) into transitions at any vertex v /∈ S, to reduce the twist identity

M(G) = M(G′)

to the case where G has no vertices other than S. If G contains a self-loop, so does G′, and
the identity becomes trivial since both sides are zero. Hence we may assume that there are no
self-loops inG. In this situation, E1 is completely determined by the numbersmij of edges inE1

that connect vi with vj . Due to the constraints

m12 +m13 +m14 = d1 = d2 = m12 +m23 +m24 and
m13 +m23 +m34 = d3 = d4 = m14 +m24 +m34,

we must havem13 = m24 andm14 = m23. This shows thatG = G′, because the twist changesE1

into E ′
1 with m′

ij = mσ(i)σ(j). The base case of our induction for the proof of the twist identity
is therefore trivial.

4. Permanent

As our first case of a previously studied graph invariant with the same symmetries as the period
and which can now be explained in terms of the Martin invariant, we will study a permanent-
based invariant due to Iain Crump [CDY16, Cru17b]. Through Theorem 4.1 below, it inherits all
properties of the Martin invariant. We therefore obtain new proofs of the permanent’s invariance
under completion, twist and duality [CDY16, Theorem 17–Proposition 20]; its multiplicativity
for 3-vertex cuts and 2k = 4-edge cuts [CDY16, Corollary 23 and Theorem 24]; and the van-
ishing in presence of a triple edge [Cru17a, Proposition 69] (a special case of M(G) = 0 for a
2-edge cut). The same applies to the permanents of the graphs G[r] when kr+1 is prime, whose
invariance was first proved in [Cru17b] but now also follows from the properties of the Martin
invariant. The Fourier split was not yet discovered at the time of [CDY16] and [Cru17b] but also
holds for the permanent and is discussed in Remark 5.26.

Do define the graph permanent, let G be a 2k-regular graph with n + 2 vertices. Then G
has kn+2k edges. Pick two different vertices, called ∞ and 0, and orient each edge. We assume
that there are no self-loops at ∞. Then the directed graph G\∞ has n+1 vertices and kn edges.
Its reduced incidence matrix is the n× kn matrix

Ave =


+1 if e points to v,

−1 if e comes from v,

0 if e is not incident to v,
(4.1)

whose rows are indexed by the vertices v ̸= 0,∞ and whose columns are indexed by the edges e
of G that are not attached to ∞. Stacking k copies of A produces a kn × kn square matrix,
denoted A[k]. Its permanent defines an integer

Perm(G) := permA[k] = perm

A
...
A

 . (4.2)



combinatorial theory 5 (1) (2025), #10 23

G =

5 8

3

2

1

4

1

0

4

2 3

∞

6 7

A =


1 0 0 −1 1 0 0 0

−1 1 0 0 0 1 0 0
0 −1 1 0 0 0 1 0
0 0 −1 1 0 0 0 1


Figure 4.1: A labelled and oriented octahedron graph. Labels and orientations of edges at ver-
tex ∞ are not shown, since they do not affect the incidence matrix A.

This number Perm(G) depends on the choice of 0, ∞, and the orientation of the edges used to
write down A. However, it was shown in [CDY16] that the residue

Perm(G) mod (k + 1)

depends on all these choices only up to a sign. Equivalently, the residue of Perm(G)2 is a
well-defined invariant of the graph G. This invariant respects the known identities of Feynman
periods [CDY16]. Moreover, the sequence Perm(G[r])2 mod (kr + 1) of permanents of all
duplicated graphs is a very strong invariant of G in that it distinguishes almost all Feynman
periods [Cru17a, Cru17b].

In this section, we show that the permanent is determined by the Martin invariant. Note
that the repetition of rows makes Perm(G) a multiple of (k!)n. It is therefore congruent to zero
modulo k + 1 unless k + 1 is prime [CDY16, Proposition 13].

Theorem 4.1. For every 2k-regular graph G with n ⩾ 3 vertices such that p = k + 1 ⩾ 3 is
prime, we have

M(G) ≡ (−1)n−1 Perm(G)2 mod p. (4.3)

Note that each term of the sequencePerm(G[r])2 mod (kr+1) for which kr+1 is prime im-
mediately also falls under this theorem and so is determined by the Martin invariant on the G[r].

Example 4.2. The octahedron graph has 6 vertices and it is 4-regular, so k = 2. With la-
bels and orientations as in Figure 4.1, the incidence matrix gives perm

(
A
A

)
= 32. There-

fore, (−1)n−1 Perm(G)2 = −322 ≡ −1 mod 3. This agrees indeed with M(G) = 14 ≡ −1
mod 3, because the Martin invariant is

M

( )
= M (K5) + 2M

( )
= 6 + 4M

( )
+ 2M

( )
= 6 + 8 + 0.

We will give two proofs of Theorem 4.1. The first is elementary; the main work goes into
considering how a transition, viewed as a rule for replacing a vertex with new edges joining its
neighbours according to a matching, affects the permanent of A[k]. A similar but more intricate
consideration of the effect of moving between a vertex and a matching of its neighbourhood will
also be key to the results of Section 5.

For the elementary proof of Theorem 4.1, we show that the right-hand side of (4.3) satisfies
Definition 1.1 of M(G), modulo p. Firstly, any self-loop in G corresponds to a zero column in A,



24 Erik Panzer, Karen Yeats

hence permA[k] = 0 and (4.3) is trivial. Secondly, if G has 3 vertices and no self-loop, then G
is the power of a triangle. Thus G \ ∞ is a k-fold edge and A = (1, . . . , 1) is a single row of
ones, if we orient the edges away from vertex 0. Hence

Perm
(
C

[k]
3

)2
= (k!)2 ≡ (−1)2 = 1 = M

(
C

[k]
3

)
mod p

as required, by Wilson’s theorem.12 By induction, we can therefore conclude Theorem 4.1 by
proving a third identity: If G has no self-loops and v is a vertex v /∈ {0,∞}, then

−Perm(G)2 ≡
∑

τ∈T ′(v)

Perm(Gτ )
2 mod p, (4.4)

where T ′(v) denotes the subset of transitions that do not produce any self-loops at ∞. To estab-
lish this identity in Section 4.3, and thereby finish the proof of Theorem 4.1, we first work out
expansions of the permanents of G and Gτ .

For the second proof of Theorem 4.1, in Section 4.4 we show that the permanent can be read
off from the diagonal coefficients of the Kirchhoff and Symanzik polynomials. Together with
Theorem 5.17, this provides an independent proof of Theorem 4.1.

4.1. Expansion

Like determinants, permanents can be expanded in rows and columns. For the graph permanent,
this strategy leads to explicit formulas [Cru17b, Section 4]. Here, we apply this strategy to prove
the recurrence relation (4.4).

Label the vertices of G as 0, 1, . . . , n,∞ and let N = {e1, . . . , e2k} denote the 2k edges at
vertex n. Let vi ̸= n denote the other end of ei. Note that several of these edges may share the
same other end vi = vj .

The non-zero entries in row n of A are −1, located in the columns N . The expansion
of perm(A[k]) in the k copies of row n therefore eliminates k of the columns N . Let a ⊂ N
denote the leftover edges of N . Edges ei ∈ N incident to vi = ∞ are not present as columns
in A and can thus not be among the columns N \ a eliminated during the row expansion. The
expansion then reads

Perm(G) = k! · (−1)k
∑

a⊂N,|a|=k

Pa (4.5)

where we define Pa = 0 if there is any ei incident to∞which is not in a, and otherwise define Pa

to be the permanent of the k(n−1)×k(n−1) matrix that remains from A[k] after deleting the k
copies of row n and the k columns N \ a. The factor k! accounts for the different ways of
assigning the columns N \ a to the k copies of the row n.

Now expand Pa in the leftover columns, ei ∈ a where vi ̸= ∞: the non-zero entries are +1,
located in the rows corresponding to the k copies of vi. Let ai denote the number of edges in a
whose other vertex is i, and write P ′

a for the permanent of any matrix obtained from A[k] by
deleting all columns ei ∈ N with vi ̸= ∞, the k copies of row n, and ai copies of row i for

12Wilson’s theorem states that (p− 1)! ≡ −1 mod p if and only if p is prime.
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each 1 ⩽ i < n. This matrix is square with kn−2k+a∞ rows and columns. The different ways
to delete ai copies of row i only affect the matrix up to permutation of rows which is invisible
to the permanent, and so P ′

a, and hence also Pa, depends only on the numbers a0, . . . , a∞ (the
multiset of vertices a). Then the expansion of Pa in columns a reads

Pa =

[
n−1∏
i=1

k!

(k − ai)!

]
P ′
a.

The prefactor takes into account the different ways to assign ai parallel edges (identical columns)
to ai out of the k copies of vertex i. We note any column ei ∈ a with vi = 0 becomes a zero
column after deleting the copies of row n, since vertex 0 is absent in A. Therefore, Pa = 0
if a0 > 0. Along with our convention that Pa = 0 if a∞ < N∞ (where N∞ is the number of ei
in N with vi = ∞), the sum in (4.5) therefore is effectively only a sum over subsets a which
contain none of the edges from n to 0, and all of the edges from n to ∞. Squaring, we find

Perm(G)2 = (k!)2
∑

a,b⊂N,
|a|=|b|=k

PaPb. (4.6)

4.2. Expansion of a transition

Pick any transition τ at vertex n that does not produce self-loops at ∞ in Gτ . Then the incidence
matrix Aτ of the graph Gτ has dimensions (n−1)×k(n−1). It is obtained from A by removing
row n and the 2k −N∞ columns N that do not connect to ∞, and adding k −N∞ columns for
the edges eτ1, . . . , e

τ
k given by the perfect matching τ of N , but excluding those edges eτj that

connect to ∞.
Let Or(τ) denote the set of orientations of the matching, that is, the set of size 2k whose

elements α choose for each edge eτi , one of its incident vertices α(i) = vα(i), which we view as
the vertex that edge eτi points to under this orientation. Let αj denote the number of edges eτi
which point to vα(i) = vj .

To define the signs ±1 in the new columns of Aτ , fix any orientation o ∈ Or(τ) of the new
edges inGτ . The expansion of perm(A

[k]
τ ) in one of the columns eτi either picks one of the copies

of row vα(i) or one of the copies of the row for the other end of eτi . The expansion in all these
columns can therefore be written as

Perm(Gτ ) =
∑

α∈Or(τ)

(−1)o∆αPα,

where o∆α denotes the number of indices i where o(i) ̸= α(i), that is, how often an entry −1
is picked from the matrix. Whenever an orientation picks vertex vα(i) = 0 as the vertex pointed
to, the corresponding contribution is zero, because this vertex is not a row in Aτ and hence does
not contribute to the expansion in column eτi . This is consistent with our convention Pα = 0
whenever α0 > 0, as discussed in the previous section.

Furthermore, our convention that Pα = 0 whenever α∞ < N∞, forces that all new edges eτi
that have one end at ∞ must be directed towards ∞. This reduces the sum effectively to a sum
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over the orientations of only those new edges eτi that are not connected to ∞. This is indeed
correct, because only those edges actually appear as columns in Aτ and thus participate in the
column expansion.

In conclusion, we can write the expansion of the permanent squared of Gτ as

Perm(Gτ )
2 =

∑
α,β∈Or(τ)

(−1)α∆βPαPβ. (4.7)

4.3. Recurrence

The vertices chosen by an orientation α ∈ Or(τ) define a subset a = {α(1), . . . , α(k)} ⊂ N
of size k. Conversely, by definition, an orientation α ∈ Or(τ) is determined by the subset a.
However, a defines an orientation of τ only if it picks precisely one element in each pair of τ .

Consider any pair a, b ⊂ N with |a| = |b| = k, and compare the coefficient of the prod-
uct PaPb on both sides of (4.4). On the left, it appears with coefficient

−(k!)2 ≡ −1 mod p,

according to (4.6) and Wilson’s theorem. On the right of (4.4), PaPb appears as PαPβ in (4.7)
for each transition τ such that α = a and β = b are orientations of τ . The collected coefficient
of PaPb on the right-hand side of (4.4) is therefore

(−1)a∆b · |{τ ∈ T ′(n) : a, b ∈ Or(τ)}| . (4.8)

We get a τ ∈ T ′(n)with a, b ∈ Or(τ) by pairing the elements in a∩bwith elements ofN \(a∪b)
giving those pairs with the same orientation in a and b, and pairing the elements in a \ b with
the elements in b \ a giving the pairs with opposite orientation in a and b. Every such choice of
pairings gives a distinct τ ∈ T ′(n) with a, b ∈ Or(τ).

The number s=a∆b of pairs τ(i) that get opposite orientations in a and b is s= |a\b|= |b\a|.
The other k− s pairs have equal orientations and go from N \ (a∪ b) to a∩ b. We conclude that
precisely s! ·(k−s)! transitions contribute to (4.8), namely those that match a∩b with N \(a∪b)
and a \ b with b \ a. Therefore, (4.8) equals

s! · (k − s)! · (−1)s

≡ s! · [k + 1− (k − s)] · [k + 1− (k − s− 1)] · · · [k + 1− 1] · (−1)k mod (k + 1)

= s! · (s+ 1)(s+ 2) · · · k · (−1)k

= (−1)k · k!.

This is equal to the left-hand side −1 mod p of (4.4), by Wilson’s theorem and because k is
even (so that p = k + 1 is a prime ⩾ 3). Finally, note that we only need to consider a and b
with a∞ = b∞ = N∞. Any transition τ that creates a self-loop at ∞ in Gτ , has at most N∞ − 1
pairs attached to ∞, and hence a and b cannot be orientations of such τ . Therefore, in our
counting above, indeed only the transitions τ ∈ T ′(n) appear.

This completes the proof of Theorem 4.1.
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4.4. From the Kirchhoff polynomial

In this section we express the permanent, which is defined via the incidence matrix A from (4.1),
in terms of the graph Laplacian. Together with Theorem 5.17, this yields an alternative proof of
Theorem 4.1. Recall that G is a 2k-regular graph with n + 2 vertices, labelled 0, 1, . . . , n,∞.
In this section we assume that G has no self-loops.

Definition 4.3. Let X denote the kn × kn matrix with variables xi = Xii on the diagonal and
zeroes elsewhere. The reduced graph Laplacian of the graph G \∞ is the n× n matrix

L = AXA⊺. (4.9)

The variables xi are associated to the edges ofG\∞. The rows and columns ofL are indexed
by vertices v ̸=0,∞. This matrix does not depend on orientations: diagonal entriesLv,v=

∑
e xe

are positive sums over all edges e at v, whereas off-diagonal entriesLv,w = −
∑

e xe are negative
sums over all edges between v and w ̸= v.

Lemma 4.4. Denote the kn× kn matrix obtained by repeating k × k blocks of L as

L[k×k] =

L · · · L
... . . . ...
L · · · L

 . (4.10)

Recall the notation [xm] for coefficient extraction of a monomial xm =
∏

i x
mi
i , see Defini-

tion 1.4. Then (
permA[k]

)2
= [x1 · · ·xkn] perm

(
L[k×k]

)
. (∗)

Proof. The block matrix on the right-hand side of (4.10) is equal to L[k×k] = A[k]X(A[k])
⊺. By

the MacMahon master theorem, the right-hand side of (∗) is therefore equal to

[x1 · · ·xkn] [y1 · · · ykn]
1

det(Ikn − Y A[k]X(A[k])
⊺
)
,

where Y denotes a kn×knmatrix with variables yi = Yii on the diagonal and zeroes everywhere
else, and Ikn denotes the kn× kn identity matrix. The generalization of the MacMahon master
theorem from [CDM22, Theorem 1] shows that the above expression is equal to the product of
the permanents perm(A[k]) and perm((A[k])

⊺
) = perm(A[k]).

Corollary 4.5. For p = k + 1 prime, (permA[k])2 ≡ (−1)n [x1 · · ·xkn] (detL)
k mod p.

Proof. This follows by Wilson’s theorem and the congruence perm(L[k×k]) ≡ (k!)n(detL)k

mod (k + 1) obtained in [Gly11, Theorem 7.5].13 The latter holds because performing row
operations (adding a multiple of one row to another) simultaneously in all k copies of any row
of L[k×k] does not change its permanent modulo k+1 [CDY16, Corollary 6]. For R a sequence

13With the notation in that paper, Xk+1(B) = (permB[k])/(k!)n.
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of such row operations such that RL = D is a diagonal matrix (thus detL = detD), applying R
simultaneously to the k copies of each row shows that

perm
(
L[k×k]

)
= perm

(
D[k×k]

)
≡ (detL)k perm

(
I [k×k]
n

)
= (detL)k(k!)n mod p

factorizes into determinants of L and the permanents of the n blocks of I [k×k]
n . Each of the latter

blocks is a k × k matrix with each entry equal to 1, hence permanent k!.

By the matrix-tree theorem, the determinant of L is the Kirchhoff polynomial

detL = Ψ̃G\∞ =
∑
T

∏
e∈T

xe (4.11)

where the sum is over all spanning trees T of G \ ∞. It has degree n, and it is related to the
Symanzik polynomial (1.7) with degree (k − 1)n by an inversion of variables,

Ψ̃G\∞(x1, . . . , xkn) =

( kn∏
e=1

xe

)
·ΨG\∞

(
x−1
1 , . . . , x−1

kn

)
. (4.12)

In conclusion, Corollary 4.5 expresses the square of the permanent as a diagonal coefficient
of a power of the Kirchhoff or Symanzik polynomial:

(−1)n Perm(G \∞)2 ≡ [x1 · · ·xkn] Ψ̃
k
G\∞ =

[
xk−1
1 · · ·xk−1

kn

]
Ψk

G\∞ mod p. (4.13)

Remark 4.6. The results in this subsection do not require that G is 2k-regular. We only used that
the number of edges of G \ ∞ is equal to kn, with integer k. Therefore, Corollary 4.5 proves
that the graph permanent [CDY16] and its extension [Cru17b] are determined, for any graph, by
the cycle matroid of that graph. This proves [Cru17a, Conjecture 3].

5. Diagonals of graph polynomials

A unifying perspective on the Martin invariant, the graph permanent, and the c2 invariant, is
that they are related to diagonal coefficients of certain polynomials defined from the graph.
This point of view was crucial for recent progress on the c2 invariant [HSSY22, HY23, EY23]
and will be used again in Section 6. For the permanent, a diagonal interpretation was given
in [Cru17b, § 5.1] in terms of a new polynomial, whereas in (4.13) we identified the square of
the permanent with a residue of the diagonal of the Kirchhoff polynomial. In the present sec-
tion, we show that not just the residue, but the diagonal coefficient itself satisfies the Martin
recurrence (1.1). Consequently, the Martin invariant of a regular graph can be identified, up to
a normalization, with this coefficient (Theorem 5.17).

The diagonal coefficients we are interested in have combinatorial interpretations as parti-
tions of the edges into spanning trees (this section), or partitions into spanning trees and certain
spanning forests (Section 6). We exploit this combinatorial interpretation to prove the Martin
recurrence (1.1) for these diagonal coefficients. The key tool is a generalization of the Prüfer



combinatorial theory 5 (1) (2025), #10 29

encoding enabling us to move from spanning trees on a graph to spanning trees on the graph
with a vertex resolved by a transition viewed as a matching; this is the content of Section 5.1.

After these introductory remarks, consider now concretely the Kirchhoff polynomial Ψ̃G

(appeared in (4.11) for a decompletion) and the Symanzik polynomial ΨG from (1.7):

Ψ̃G =
∑
T

∏
e∈T

xe and ΨG =
∑
T

∏
e/∈T

xe.

For any graph G, both Ψ̃G and ΨG are homogeneous, are linear in each variable, and have
all monomials appearing with coefficient 1. For Ψ̃G each monomial consists of the edges of
a spanning tree while for ΨG each monomial consists of the edges that when deleted leave a
spanning tree of G. For a disconnected graph, ΨG = Ψ̃G = 0. If G is connected, then the
polynomials are non-zero (spanning trees exist), and their total degrees are

deg Ψ̃G = n− 1 and degΨG = m− n+ 1

if G has n vertices and m edges. The degree m− n+1 equals the dimension of the cycle space
of G (the first Betti number of G viewed as a topological space); this number is known as nullity
or corank and in the quantum field theory community as the loop number. All these observations
are immediate from the definitions (1.7) and (4.11).

Example 5.1. Let G be the triangle with one doubled edge. Let indices 1 and 2 be the doubled
edge and 3 and 4 be the other edges, as in Figure 6.2. Then n = 3, m = 4, Ψ̃G = x1x3+x1x4+
x2x3 + x2x4 + x3x4 and ΨG = x2x4 + x2x3 + x1x4 + x1x3 + x1x2.

Let G be a graph with m edges. We are particularly interested in the diagonal coefficient
of Ψ̃k

G, namely [x1 · · ·xm] Ψ̃
k
G where [·] denotes the coefficient extraction from Definition 1.4.

Since Ψ̃k
G has degree k(n−1), where n is the number of vertices ofG, note that the diagonal coef-

ficient is necessarily zero whenever m ̸= k(n− 1). We only consider cases with m = k(n− 1).
ThenΨG has degree (k−1)(n−1), and so we also have a diagonal coefficient [xk−1

1 · · ·xk−1
m ]Ψk

G.
Due to (4.12), they agree:

[x1 · · ·xm] Ψ̃
k
G =

[
xk−1
1 · · ·xk−1

m

]
Ψk

G. (5.1)

Consider now a 2k-regular graph G with n vertices and thus kn edges, and let v denote a
vertex without any self-loops. Then the graph G \ v has n− 1 vertices and m = k(n− 2) edges,
so that the above diagonal coefficients have the potential to be non-zero. In Theorem 5.17 we
will show that

[x1 · · ·xm] Ψ̃
k
G\v = k! ·M(G).

The main technical step is to prove that the diagonal coefficient on the left-hand side satisfies
the Martin recurrence. We will do this using a combinatorial interpretation of the diagonal
coefficient. In Section 6.3 we will apply similar considerations to the diagonal of a different but
related polynomial.
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Definition 5.2. A partition of a set S is a set P = {p1, . . . , pk} of non-empty subsets pi ⊆ S,
called the parts of P , such that each element of S is in exactly one part of P .

An ordered partition of S is a tuple P = (p1, . . . , pk) of distinct non-empty subsets of S that
form a partition of S.

Definition 5.3. For a graphG and integer k, defineNk(G) to be the number of ordered partitions
of the set of edges of G into k parts, so that each part is a spanning tree of G.

We will use the following combinatorial interpretation of the diagonal coefficient.

Lemma 5.4. For a graph G with m edges, and any positive integer k,

Nk(G) = [x1 · · · xm] Ψ̃
k
G.

Proof. Every monomial which appears in Ψ̃G has coefficient 1, so Nk(G) counts the ordered
partitions of the variables (edges of G) into a k-tuple of parts (one part from each factor of Ψ̃k

G),
where each part is a monomial (spanning tree) appearing in Ψ̃G.

Here the order of the trees Ti matters. Without the order, we get a partitionP = {T1, . . . , Tk}
of the edge set of G and require an extra combinatorial factor.

Corollary 5.5. The diagonal coefficient Nk(G) of Ψ̃k
G is equal to k! times the number of parti-

tions of the edge set of G such that each part is a spanning tree.

Proof. Since the trees are edge-disjoint, the map (T1, . . . , Tk) 7→ {T1, . . . , Tk} that forgets the
order is k!-to-1.

Example 5.6. Continuing with the graphG in Example 5.1, we see that there are two partitions of
the edges of G into spanning trees {{1, 3}, {2, 4}} and {{1, 4}, {2, 3}} and hence four ordered
partitions as there are two orderings of each partition, giving N2(G) = 4. This is consistent
with [x1x2x3x4]Ψ̃

2
G = [x1x2x3x4](x1x3 + x1x4 + x2x3 + x2x4 + x3x4)

2 = 4.

Remark 5.7. It is also the case that ΨG has every monomial with coefficient 1, so the same
argument as in the proof of Lemma 5.4 interprets the diagonal coefficient of Ψk

G as a k-tuple of
complements of spanning trees, of which there are also Nk(G). This again explains (5.1), where
here the act of taking the complement of a set of variables is interpreted combinatorially—instead
of the equivalent algebraic formulation in (4.12).

Lemma 5.8. For a graph G with m edges and for all positive integers r and k, we have

Nkr

(
G[r]
)
= [x1 · · ·xrm] Ψ̃

kr
G[r] = (r!)m [xr

1 · · ·xr
m] Ψ̃

kr
G . (5.2)

Proof. This is [Cru17b, Proposition 40]. Set ei = (e−1)r+i so that e1, . . . , er label the r copies
in G[r] of any edge e ∈ {1, . . . ,m} of G. For a spanning tree T ′ of G[r], replacing each ei ∈ T ′

by e defines a spanning tree T of G. In particular, T ′ can contain at most one copy of any edge e
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of G. Thus T ′ is determined by T together with choices ι(e) ∈ {1, . . . , r} of one copy for
each e ∈ T . Therefore,

Ψ̃G[r](x1, . . . , xrm) =
∑
T

∑
ι

∏
e∈T

xeι(e) =
∑
T

∏
e∈T

r∑
i=1

xei = Ψ̃G(y1, . . . , ym)

where ye = xr(e−1)+1 + . . . + xer = xe1 + . . . + xer is the sum of the variables associated to
the copies of edge e. This identity also follows from the matrix tree theorem (4.11), since the
reduced graph Laplacian L from Section 4.4 for G[r] is the same as that of G, except for the
replacement xe 7→ ye. Now note that

[xe1 · · ·xer ] y
q
e = [xe1 · · ·xer ] (xe1 + . . .+ xer)

q =

{
r! if q = r and
0 otherwise,

so taking the linear coefficient in the copies of edge e is the same—up to a factor r!—as taking
the coefficient of yre . The claim follows.

Similarly to Lemma 5.4 and Remark 5.7, we can interpret the coefficient [xr
1 · · ·xr

m] Ψ̃
kr
G ∈ Z

as the number of lists (T1, . . . , Tkr) of spanning trees of G such that each edge of G appears in
precisely r of these trees. In contrast to Corollary 5.5, this does not imply that this coefficient is
a multiple of (kr)!, because the Ti are not necessarily distinct. Instead, we can show

Lemma 5.9. Let G be a graph with m edges and n ⩾ 2 vertices. Let k and r be positive integers.
Then [xr

1 · · ·xr
m] Ψ̃

kr
G is divisible by the integer (kr)!/(r!)k.

Proof. Every spanning tree has n− 1 edges, so we may assume that m = k(n− 1): otherwise,
no edge decompositions into kr spanning trees can exist and the claim becomes trivial since the
coefficient is zero.

Any tuple (T1, . . . , Tkr) of spanning trees determines a multiset tµ1

1 . . . t
µp
p that records the

set {t1, . . . , tp} = {T1, . . . , Tkr} of distinct trees and their multiplicities, where µi ⩾ 1 denotes
the number of indices s such that ti = Ts. Note that µ1 + . . . + µp = kr, so µ is necessarily a
composition of kr, and therefore

(kr)!

µ1! · · ·µp!
=

(
kr

µ1, . . . , µp

)
is a multinomial coefficient. It counts the number of distinct ordered tuples that correspond to
the multiset. We can therefore write the diagonal coefficient as a sum

[xr
1 · · ·xr

m] Ψ̃
kr
G =

∑
p,t,µ

(kr)!

µ1! · · ·µp!
, (†)

over all multisets of spanning trees with the constraint that each edge e ofG appears in precisely r
of the trees, counted with multiplicity. This condition can be phrased as

r = µ1χ1(e) + . . .+ µpχp(e)
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where we set χi(e) = 1 if e ∈ ti and χ(e) = 0 otherwise. It follows that

r!

(µi!)χ1(e) · · · (µp!)χp(e)
=

(
r

µ1χ1(e), . . . , µpχp(e)

)
∈ Z

is an integer. Multiplying these identities for all k(n− 1) edges of G, we find that(
(r!)k

µ1! · · ·µp!

)n−1

∈ Z

is an integer. Here we used that
∑

e χi(e) = |ti| = n−1 as ti is a spanning tree. We conclude that
the rational number (r!)k/(µ1! · · ·µp!) is an integer.14 Hence, for every multiset that contributes
to (†), the summand is divisible by (kr)!/(r!)k.

Example 5.10. For the k-fold edge G = K
[k]
2 with m = k edges and n = 2 vertices, we

have Ψ̃G = x1 + · · ·+ xk and ΨG =
∑k

i=1

∏
j ̸=i xj . The diagonal coefficients are

[
x
r(k−1)
1 · · ·xr(k−1)

k

]
Ψkr

G = [xr
1 · · ·xr

k] Ψ̃
kr
G =

(
kr

r, . . . , r

)
=

(kr)!

(r!)k
.

5.1. Coloured matchings and distinct representatives

The key technical step towards the proof of Theorems 5.17 and 6.2 is a bijection based on Prüfer
codes between two sets called A and B, which we will now define. Throughout, we fix an
integer k > 0 and a non-empty set S with at most 2k elements. We set d = 2k − |S| ⩾ 0.

Given a partition P = {p1, . . . , pt} of S, we write |P | = t for the number of parts. A
subset X ⊆ S is called a system of distinct representatives (SDR) of P if it contains ex-
actly |X ∩ p| = 1 element in each part p ∈ P .

Given any sequence P1, . . . , Pk of partitions of S, we want to count families (X1, . . . , Xk)
of pairwise disjoint systems of distinct representatives Xi of Pi that cover S = X1 ∪ . . . ∪Xk.
We can encode such as a map f : S → {1, . . . , k} with Xi = f−1(i), and hence define

A(P1, . . . , Pk) =
{
f : S → {1, . . . , k} : f−1(i) is a SDR of Pi for each i

}
. (5.3)

In our application, the set S will consist of the h-neighbourhood of a vertex u after deleting a
vertex v. Since u began with degree 2k, d is the number of edges from u to the deleted vertex v.
In our application, the setA(P1, . . . , Pk) encodes all ways to extend forests of the graph without u
inducing the partitions P1, . . . , Pk into trees using each edge around u exactly once.

Example 5.11. We will run an example through this section. Let S = {1, 2, . . . , 12} and k = 8.
In the context where we will ultimately use the bijection that we’ll define in Proposition 5.15, S
will be the h-neighbourhood of a vertex u. For instance, the particular values of S and k could
occur as in Figure 5.1.

14An elementary argument shows that qn ∈ Z, for n ∈ Z>0 and rational q, implies that q ∈ Z.
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Figure 5.1: An illustration of S as an h-neighbourhood of a central vertex u which has been
removed. The dotted half edges and empty vertex on the left represent the connections to the
deleted v, and are not included in S.
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Figure 5.2: The systems of distinct representatives given by f illustrated in the context of S as
the h-neighbourhood of the central vertex u.

Take the partitions P1 = P2 = P3 = P4 = P5 = {S} to be trivial (one part) and let

P6 = {{1, 2, 3, 4, 5, 8}, {6, 7}, {9, 10, 11, 12}} ,
P7 = {{1, 2, 3, 4, 7, 11, 12}, {5, 6, 8, 9, 10}} ,
P8 = {{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12}} .

For our context involving the h-neighbourhood of u, each partition of S is induced from a parti-
tion of the vertices adjacent to u, and so with the vertices as illustrated in Figure 5.1, the partitions
must all have 1 and 2 in the same part and likewise for 11 and 12.

Then one example of an element of A(P1, . . . , P8) in this case is given by f(1) = f(12) = 8,
f(2) = 1, f(3) = 2, f(4) = 3, f(5) = 4, f(6) = 5, f(7) = f(8) = f(9) = 6, f(10) = f(11) = 7.
Figure 5.2 illustrates the partitions as coloured blobs and f with bold edges. We shall return to
this example after the next definitions.

A matching of S is a set of disjoint pairs of elements of S. Its support is the set suppm ⊆ S
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of all elements of S that appear in some pair {a, b} ∈ m.
Given a partition P = {p1, . . . , pt} of S, we can view a set m of pairs of elements of S as

a graph whose vertices are the parts of P , by interpreting each element {a, b} ∈ m as an edge
between the vertices pi and pj corresponding to the parts that contain a ∈ pi and b ∈ pj . If this
graph happens to be a tree, then we say that m defines a tree on P .

Definition 5.12. For any sequence P1, . . . , Pk of partitions of S, let B(P1, . . . , Pk) denote
the set of tuples (m, z) that consist of k matchings m = (m1, . . . ,mk) of S and d ele-
ments z = (z1, . . . , zd) ∈ Sd such that:

1. the matchings have |m1|+ . . .+ |mk| = k − d pairs in total,

2. mi defines a tree on Pi for each 1 ⩽ i ⩽ k, and

3. S = suppm1 ∪ . . . ∪ suppmk ∪ {z1, . . . , zd}.

Since |suppmi| = 2 |mi| and |S| = 2k − d, the first condition implies that the union in 3.
is disjoint. Therefore, all zi are necessarily distinct, and m1 ⊔ . . . ⊔mk is a k-coloured perfect
matching of S \ {z1, . . . , zd}.

In our application the set B(P1, . . . , Pk) will encode the ways to extend forests of the graph
without vertex u (and without v), inducing the partitions P1, . . . , Pk, into trees in such a way that
the new edges are formed from a matching of the half edges at u, i.e. a transition. Each zi labels
a half-edge that is paired with the deleted vertex v.

Example 5.13. Continuing Example 5.11, if we set z = (3, 4, 5, 6) and define the match-
ings m1 = m2 = m3 = m4 = m5 = ∅,

m6 = {{2, 7}, {8, 9}} , m7 = {{10, 11}} , m8 = {{1, 12}}

then this gives an element of B(P1, . . . , P8) and is is illustrated in Figure 5.3.

Lemma 5.14. A(P1, . . . , Pk) and B(P1, . . . , Pk) are empty whenever
∑k

i=1 |Pi| ≠ |S|.

Proof. For A, we must choose exactly one element from each part and use each element of S
exactly once, so the sum of the number of parts in each Pi must be equal to |S|. For B, since a
tree has one fewer edges than vertices, we have

∑k
i=1(|Pi| − 1) = k− d. Since |S| = 2k− d by

definition, this is the same as the condition for A.

Let us recall the classic Prüfer code [Prü18]. Fix a set P of size n ⩾ 2 and equip it with a
total order. Given a tree t with vertex set P , start with i = 1 and repeat:

1. pick the smallest leaf ai ∈ P of t and let bi ∈ P denote its neighbour,

2. remove ai from t and increment i.

After n − 2 steps, this produces the Prüfer sequence b = (b1, . . . , bn−2). The bi need not be
distinct, in fact every tuple b ∈ P n−2 arises exactly once this way. This is one way to prove
Cayley’s formula that there are nn−2 labelled trees on n vertices.
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Figure 5.3: The matchings giving a B set. The unmatched half-edges 3, 4, 5, 6 then form the
vector z and in this graph context would connect to the deleted vertex v.

Proposition 5.15. For any choice of k > 0, any non-empty set S of size |S| ⩽ 2k, and any
sequence P1, . . . , Pk of partitions of S, we have

|A(P1, . . . , Pk)| = |B(P1, . . . , Pk)| .

Proof. Let r denote the number of partitions Pi with only one part. We may place these trivial
partitions first, so that P1 = · · · = Pr = {S} and then |Pi| ⩾ 2 for i > r. By Lemma 5.14, we
may also assume that

∑k
i=1 |Pi| = |S| = 2k − d, and therefore

r = d+
k∑

i=r+1

(|Pi| − 2) .

For each partition Pi, fix some order of its parts. We will now define a bijection α : B → A
between the sets B = B(P1, . . . , Pk) and A = A(P1, . . . , Pk). Let (m, z) ∈ B.

For each i > r, consider the tree ti defined by mi on Pi. We run the Prüfer algorithm for ti
to build a sequence yi ∈ S|Pi|−2 and a set Xi ⊆ S of size |Pi| as follows:

• Loop for |Pi| − 2 steps:

– at the jth step take the remaining leaf which is first in the order on Pi and let {a, b}
be the element of mi corresponding to the unique edge adjacent to this leaf where a
is in the leaf part and b is in the other part, then

– put b in the jth slot of yi,
– add a to Xi, and
– remove this leaf from the tree.
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• Let {a1, a2} be the element of mi corresponding to the last remaining edge of the tree,
then add a1 and a2 to Xi.

Since elements are added to Xi when the part they are contained in is a leaf of the tree and then
the leaf is removed or the algorithm terminates, there will be exactly one element of each part
in Xi. Therefore, Xi is a SDR for Pi. We also note that the tree ti can be reconstructed from yi,
because the classical Prüfer code of ti is obtained by replacing each entry of yi with the part
of Pi that contains it.

Let y ∈ Sr denote the sequence of length r obtained by concatenation of the sequen-
ces yr+1, . . . , yk, z. We define a function f : S → {1, . . . , k} as follows:

• for each i > r set f(a) = i for each a ∈ Xi,

• for each i ⩽ r set f(b) = i for b the ith entry of y.

By the observations above, this construction defines an element f ∈ A. We have thus defined a
map α(m, z) = f from A to B. We will now define a map β : A → B and then show that this
is a two-sided inverse for α.

Given f ∈ A, setXi = f−1(i). SinceXi is a SDR forPi, we have |Xi| = |Pi|. Thus the first r
sets Xi = {xi} are singletons and define a sequence y = (x1, . . . , xr) ∈ Sr. Cut y into pieces of
lengths |Pr+1| − 2, . . . , |Pk| − 2, d to define sequences yr+1, . . . , yk, z. Set m1 = . . . = mr = ∅
and define matchings mi of S for i > r as follows:

• Let ti denote the tree on Pi corresponding to the Prüfer code obtained by replacing the
elements of yi by the parts of Pi that contain them.

• Run the Prüfer algorithm for ti. In the jth step, for p ∈ Pi the smallest leftover leaf,
add {a, b} to mi, where {a} = Xi ∩ p and b is the jth entry of yi.

• For the last edge {p1, p2} of ti, add {a1, a2} to mi, where {aj} = pj ∩Xi.

We define β(f) = (m1, . . . ,mk, z). From this construction it is clear that applying first α and
then β is the identity on A. Applying first β then α observe that in specifying the last edge for
each mi, the two remaining elements will be one in each part not corresponding to a part already
removed as a leaf, so this does give a well defined element of B and all other steps are direct
inverses.

Example 5.16. Let us work through an example of α and β described above. We will see in
hindsight that Example 5.11 and Example 5.13 were chosen with this in mind.

As noted above, withS interpreted as the specific h-neighbourhood of a vertex u as illustrated
in Figure 5.1, the partitions must all have 1 and 2 in the same part and likewise for 11 and 12. The
fact that half-edges 1 and 2 have the same incident vertex in the figure, and likewise for 11 and 12
has no effect on the maps α and β but can occur in the context where we will use Proposition 5.15
and so is useful to illustrate in the example.

The defect d = 2k−|S| = 4 indicates that in the 16-regular completion of the graph, u has 4
edges connecting it to the deleted vertex v as illustrated in Figure 5.1.
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Take the partitions to be as in Example 5.11, and as illustrated by the coloured blobs in
Figure 5.2 and Figure 5.3. Set z = (3, 4, 5, 6) along with the matchings m1 = m2 = m3 =
m4 = m5 = ∅,

m6 = {{2, 7}, {8, 9}} , m7 = {{10, 11}} , m8 = {{1, 12}}

as in Example 5.13.
Applyingα to this (m, z)we obtain f with f(1) = f(12) = 8, f(2) = 1, f(3) = 2, f(4) = 3,

f(5) = 4, f(6) = 5, f(7) = f(8) = f(9) = 6, f(10) = f(11) = 7 which is the f we began
with in Example 5.11.

5.2. Diagonals and the Martin invariant

We apply the results of Section 5.1 to show that the diagonal coefficient satisfies the Martin
recurrence and hence with suitable normalization agrees with the Martin invariant.

Theorem 5.17. Let G be a 2k-regular graph with n vertices. Then for any vertex v without
self-loops, [

x1 · · ·xk(n−2)

]
Ψ̃k

G\v = k! ·M (G) . (5.4)

Proof. By Lemma 5.4 the left-hand side, Nk(G \ v), is the number of ordered parti-
tions E = T1 ⊔ . . . ⊔ Tk of the edge set E of G \ v into k edge-disjoint spanning trees Ti.

If G has a self-loop, then M(G) = 0 and by hypothesis on v, G \ v also has a self-loop
and so Nk(G \ v) = 0 since no spanning tree can include any self-loop. Therefore, (5.4) holds
whenever G has one or more self-loops.

From now on, assume that G has no self-loops. Then G must have at least two vertices. If G
has exactly 2 vertices, then G ∼= K

[k]
2 is a k-fold edge with k! ·M(G) = 1, see (2.7), and G \ v

is a single vertex without edges and thus Nk(G \ v) = 1 from the partition T1 = . . . = Tk = ∅.
So (5.4) holds for n = 2.15

To complete the proof, we will show that the diagonal coefficient Nk(G \ v) satisfies the
Martin recurrence (1.1): Let w ̸= v be another vertex of G, then we will prove that

Nk(G \ v) =
∑

τ∈T ′(w)

Nk(Gτ \ v) (5.5)

where T ′(w) is the subset of transitions at w that does not create a self-loop at v. This induction
step reduces (5.4) from n to n− 1 vertices: if Nk(Gτ \ v) = k! ·M(Gτ ) is already known, then
the right-hand side of (5.5) is k! ·M(G). The transitions τ ∈ T (w) \ T ′(w) missing from (1.1)
only produce graphs with M(Gτ ) = 0 due to self-loops at v.

We now prove (5.5). Let S be the h-neighbourhood (see Section 2) of w in G \ v.
Let T1, . . . Tk be a partition of E into spanning trees of G \ v. For each Ti, let Xi = Ti ∩ S

and X ′
i be the set of edges incident to w which contain a half-edge of Xi. The remaining

15A direct proof for n = 3 is also straightforward (though not necessary), since then G ∼= K
[k]
3 with M(G) = 1

and the claim follows from the r = 1 case of Example 5.10.
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edges Fi = Ti \X ′
i determine a spanning forest of G \ {v, w}. Such a forest Fi induces a par-

tition Pi of S as follows: two half-edges from the h-neighbourhood of w are in the same part
of Pi if the corresponding neighbours of w are in the same component of Fi. Since Ti = X ′

i⊔Fi

and Xi is in bijection with X ′
i, Xi includes precisely one half-edge in each part of Pi, so it is

an SDR of Pi. Since the Ti partition E, the SDRs X1, . . . , Xk partition S. Conversely, given any
list of forests Fi that induce Pi, and any partition of S into SDRs Xi of Pi, then each Ti formed
by taking Fi = X ′

i ⊔ Fi (where X ′
i is again the set of edges which contain a half-edge of Xi) is

a spanning tree of G \ v and these trees partition E. Therefore, we can write

Nk(G \ v) =
∑
P

|A(P1, . . . , Pk)| · |C(P1, . . . , Pk)| (♯)

as a sum over all ordered sequences P = (P1, . . . , Pk) of partitions of S. Here A is defined
in (5.3) and counts the choices of Xi. To count the choices of Fi, we define C(P ) as the set of
lists (F1, . . . , Fk) of spanning forests Fi ⊆ E ′ of G \ {v, w} such that each Fi induces Pi, and
such that all Fi together form a partition of the edge set E ′ of G \ {v, w}.

Now consider a transition τ of G at w. This is a matching of the h-neighbourhood of w
in G. This neighbourhood differs from S by the d = 2k − |S| half-edges e1, . . . , ed incident
to v. Suppose additionally that τ does not create any self-loops at v. Then let z = (z1, . . . , zd)
be the elements of S which are paired in τ with e1, . . . , ed. Let m be the perfect matching
of S \ {z1, . . . , zd} given by the rest of the transition. We can thus identify the set T ′(w) with
pairs (m, z) of a d-tuple z and a matching m of the above form. Note that the elements of m are
canonically identified with edges in Gτ \ v, such that the edge set of Gτ \ v is the disjoint union
of E ′ and m.

Let T ′
1, . . . T

′
k be a partition of the edges of Gτ \ v into spanning trees. Similarly to before,

we can decompose each T ′
i = mi ⊔ Fi into the edges mi = T ′

i ∩ m that belong to m and
a spanning forest Fi = T ′

i \ mi of G \ {v, w}. Let Pi be the partition of S induced by Fi.
Then mi defines a tree on Pi in the sense explained before Definition 5.12. Conversely, given
any forest Fi that induces Pi, together with a matching mi defining a tree on Pi, we obtain a
spanning tree T ′

i = Fi ⊔mi of Gτ \ v. Therefore, we can write∑
τ∈T ′(w)

Nk(Gτ \ v) =
∑
P

|B(P1, . . . , Pk)| · |C(P1, . . . , Pk)| , (♭)

as a sum over sequences P = (P1, . . . , Pk) of partitions of S. Here, B(P ) from Definition 5.12
counts the choices of τ (that is, m and z) and also the choice of partition m = m1 ⊔ . . . ⊔mk;
whereas C(P ) counts the spanning forest decompositions E ′ = F1 ⊔ . . . ⊔ Fk as before.

By Proposition 5.15, (♯) and (♭) agree and hence we proved (5.5).

Corollary 5.18. For a 2k-regular graph G and a vertex v without self-loops, M(G) is equal to
the number of partitions of the edge set of G \ v into k spanning trees. Hence, the number of
these partitions is independent of v.

This combinatorial interpretation, stated as Theorem 1.3 in the introduction, follows from
Corollary 5.5. It is illustrated for the example M(K4) = 6 in (1.6). The claim remains true even
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if there are self-loops at v, for then M(G) = 0 but also Nk(G \ v) = 0, because G \ v must
then have more than kn edges (where G has n+2 vertices) and hence does not admit partitions
into k spanning trees (each of which contains n edges).
Remark 5.19. From this point of view, the condition M(G) > 0 is equivalent to the existence
of an edge partition of G \ v into spanning trees. Necessary and sufficient conditions for the
existence of such a partition were given by Nash-Williams [NW61] and Tutte [Tut61]. In fact,
for our case of 2k-regular graphs G, it follows easily from [NW61, Lemma 5] that G \ v has k
edge-disjoint spanning trees if and only if G is 2k-edge connected. This gives an alternative
proof of Corollary 3.3, which says that M(G) > 0 in this case. Also for more general graphs,
the maximal number of edge-disjoint spanning trees is related to the edge-connectivity via upper
and lower bounds [Gus83, Kun74].

Corollary 5.20. Let G be a 2k-regular graph with n vertices, and let v denote a vertex without
self-loops. Then for every positive integer r,

M(G[r]) =
(r!)k(n−2)

(kr)!

[
xr
1 · · ·xr

k(n−2)

]
Ψ̃kr

G\v. (5.6)

Proof. Combine Theorem 5.17 with Lemma 5.8.

Corollary 5.21. For a 2k-regular graph G with n ⩾ 3 vertices and any positive integer r, the
Martin invariant M(G[r]) is an integer that is divisible by (r!)k(n−3).

Proof. Combine Lemma 5.9 with Corollary 5.20.

The identity (5.6) shows that the sequenceM(G•) of Martin invariants of all duplicationsG[r]

of a fixed graph encodes the diagonal coefficients of all powers of the Kirchhoff polynomial.
These coefficients are related to each other by a difference equation:

Corollary 5.22. For any 2k-regular graph G, there exists an integer d > 0 and univariate
polynomials P0, . . . , Pd ∈ Z[t] with Pd ̸= 0 such that, for all r ⩾ 1,

P0(r) ·M
(
G[r]
)
+ P1(r) ·M

(
G[r+1]

)
+ . . .+ Pd(r) ·M

(
G[r+d]

)
= 0. (5.7)

Proof. If a rational function f(x1, . . . , xm) of several variables is non-singular at x = 0, then it
has a Taylor expansion at x = 0. The diagonal coefficients of this expansion define a univariate
formal power series Diag(f) =

∑
r⩾0 z

r [xr
1 · · ·xr

m] f called the diagonal of f . Such diagonals
areD-finite functions [Lip88], hence the sequence of diagonal coefficients isP -recursive [Sta80]
(namely it fulfils a polynomial recurrence).

Therefore, the diagonal coefficients M(G[r]) · (kr)!/(r!)k(n−2) of the geometric
series f = 1/(1 − Ψ̃G\v) =

∑
i⩾0 Ψ̃

i
G\v fulfil a recurrence of the form (5.7). Multiplying

this recurrence with ((r + d)!)k(n−2)/(kr)! produces the claimed recurrence for M(G[r]) alone,
by the transformation Pi(r) 7→ Pi(r) · [(r+ i+1) · · · (r+ d)]k(n−2) · (kr+1) · · · (kr+ ki).
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v1
v2

G1 G1 \ v1 (G1 \ v1)⋆ ∼= (G2 \ v2) G2 \ v2 G2

Figure 5.4: Planar embeddings of decompletions Gi \ vi that are planar duals of each other. The
completed graphs are labelled G1 = P7,4 and G2 = P7,7 in [Sch10].

5.3. Duality

As an application of the connection between the Martin invariant and diagonal coefficients, we
can relate the Martin sequences of graphs that are planar duals of each other.

Suppose that G is a graph with a plane embedding and G⋆ denotes the corresponding dual
graph. Then the edges of G are in canonical bijection with the edges of G⋆. Under this corre-
spondence, a set of edges defines a spanning tree in G precisely when its complement defines a
spanning tree in G⋆. Therefore, we have

ΨG⋆ = Ψ̃G. (5.8)

Recall that the Martin invariant of a regular graph G can be computed by the diagonal coefficient
of the Kirchhoff polynomial of a decompletion G \ v. For two regular graphs G1 and G2 with
vertex degrees d1 and d2, respectively, a duality (G1 \ v)⋆ ∼= G2 \ w between decompletions
implies that (d1, d2) ∈ {(3, 6), (4, 4), (6, 3)}. This follows from the constraints on the edge- and
vertex numbers imposed by regularity and duality. In such cases, (5.8) translates into a relation
between the Martin sequences of G1 and G2. An example is shown in Figure 5.4.

Corollary 5.23. If G1 and G2 are 4-regular graphs such that there exist vertices v1 and v2
without self-loops such that G1 \ v1 is a planar dual of G2 \ v2, then the Martin sequen-
ces M(G•

1) = M(G•
2) agree.

Proof. Let n denote the number of vertices of G1. Then G1 \ v1 and G2 \ v2 each have n − 1
vertices, m = 2n− 4 edges, and n− 2 loops. From (4.12) and (5.8) we see that

[xr
1 · · ·xr

m] Ψ̃
2r
G1\v1 = [xr

1 · · ·xr
m] Ψ

2r
G2\v2 = [xr

1 · · · xr
m] Ψ̃

2r
G2\v2

and thus the claim follows from Corollary 5.20.

Corollary 5.24. Let G3 be a 3-regular graph and G6 a 6-regular graph, such that there exist
vertices v and w, without self-loops, such that G3 \ v is a planar dual of G6 \ w. Let n denote
the number of vertices of G6. Then for every positive integer r, we have

M
(
G

[2r]
3

)
=

(
(2r)!

r!

)3(n−2)

M
(
G

[r]
6

)
. (5.9)
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Proof. The graphs G3 \ v and G6 \w each have m = 3(n− 2) edges. Setting (r, k) to (2r, 3/2)

in (5.2), we find that M(G
[2r]
3 ) · (3r)! = [(2r)!]m [x2r

1 · · ·x2r
m ] Ψ̃3r

G3\v from Theorem 5.17.16

From (4.12) and (5.8) we see that[
x2r
1 · · ·x2r

m

]
Ψ̃3r

G3\v =
[
x2r
1 · · · x2r

m

]
Ψ3r

G6\w = [xr
1 · · ·xr

m] Ψ̃
3r
G6\w,

and thus the claim follows from Corollary 5.20.

Through Theorem 4.1, the above dualities imply relations between the graph permanents.
Those have been noted before, see [Cru17b, Proposition 28].
Remark 5.25. The identity (5.8) extends beyond the realm of planar graphs G to all matroids M
and their dualsM⋆, if we replace “spanning tree ofG” in the definition of Ψ̃G andΨG by “basis of
M”. The matroid polynomial Ψ̃M thus defined is still linear in each variable, and its degree is the
rank ofM . The degree ofΨM is the corank (formerly loop number) ofM . The combinatorial in-
terpretation from Lemma 5.4 identifies the diagonal coefficient of Ψ̃k

M with decompositions into
bases. The existence of such decompositions has been characterized in [Edm65, Theorem 1].
For regular matroids, Ψ̃M is the determinant of a matrix, similar to the graph Laplacian (4.11).

Consequently, any function of the diagonal coefficient of Ψ̃M is invariant under matroid dual-
ity, for all matroids in the domain of the function—not just cycle matroids of planar graphs. For
example, the permanent of regular matroids is invariant under duality. This follows from Sec-
tion 4.4 or the matrix manipulations in [CDY16], since those apply without change to regular
matroids.17 For the c2 invariant, the situation is less clear: its connection to the diagonal coeffi-
cient is known only in the presence of a 3-valent vertex, see Remark 6.18. Moreover, invariance
of c2 under duality is not even known for all graphic matroids [Dor18].
Remark 5.26. An identity of Feynman periods called Fourier split was introduced in [HSSY22,
§2]. It operates by taking a planar dual on one side of a 3-vertex cut in a decompletionG\v. This
identity also holds for the Martin invariant. The same proof strategy as in Section 3.2 applies:
the Martin recursion (1.1) at a vertex on the other side of the 3-vertex cut reduces the statement
by induction to smaller graphs. The remaining base case is the ordinary duality relation (Fourier
identity).

We hence conclude via Theorems 4.1 and 6.2 that also the extended graph permanent and
the c2 invariant at primes respect the Fourier split identity.

6. c2 invariant

For any power q = ps of a prime p, let Fq denote the finite field with q elements. Given any
polynomial P ∈ Z[x1, . . . , xm] in m variables xi, we denote by

JP Kq =
∣∣{x ∈ Fm

q : P (x) = 0
}∣∣ ∈ Z⩾0

16We may set k to rational values in Lemma 5.8, as long as the exponent rk stays positive integer.
17An example of a permanent of a neither graphic nor co-graphic matroid R10 is computed in [Cru17a, § 7.5].
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the number of points on the hypersurface {P = 0} over Fq. In the special case P = ΨG of
Symanzik polynomials (1.7) of graphs, the study of point-counts goes back to [Sta98, Ste98].
For all graphs with less than 14 edges [Sch11], the point-counting function is a polynomial,

q 7→ JΨGKq =
m∑
i=0

ci(G)qi. (∗)

Starting at 14 edges, there exist graphs whose point-count is not polynomial [Dor11, Sch11]. In
fact, point-counting functions of graph hypersurfaces {ΨG = 0} can be as complicated as the
point-counting functions of any variety, as made precise and proved in [BB03].

Lemma 6.1. Let G be a graph with at least 3 vertices and at least 2 edges. Then for every prime
power q, the point count JΨGKq is divisible by q2.

Proof. This is proved in [Sch11, Corollary 2.8] and [BS12, Proposition-Definition 18] when G
is connected. If G is disconnected, then ΨG = 0 and hence JΨGKq = qm where m is the number
of edges of G.

We will only consider point-counts of graphs with n ⩾ 3 vertices and m = 2(n− 1) edges,
hence Lemma 6.1 applies and we can write

JΨGKq ≡ q2 · c(q)2 (G) mod q3 (6.1)

for well-defined residues c
(q)
2 (G) ∈ Z/qZ. The c2-invariant [Sch11] is the sequence of these

residues, one for each prime power, given by18

c
(q)
2 (G) ≡

JΨGKq
q2

mod q. (6.2)

Our main result in this section extracts c2 at primes from the Martin invariant:

Theorem 6.2. Let G be a 4-regular graph with at least 6 vertices. Then for every vertex v of G,
and every prime p, we have

c
(p)
2 (G \ v) ≡ M(G[p−1])

3p
mod p. (6.3)

In Section 6.1 we give a proof for primes p ̸= 3, by relating c2 to the diagonal coefficients
of powers of ΨG as in Section 5. In Sections 6.2 to 6.4 we present another proof, which is more
technical, but which works for all primes—including p = 3.
Remark 6.3. The relation Equation (6.3) does not extend to prime powers. Only a few relations
for c2 are known at prime powers, see [EY23, SY21, Dor17a].

18When the point-count happens to be a polynomial, then c0(G) = c1(G) = 0 and c
(q)
2 (G) ≡ c2(G) mod q is

determined by the coefficient of q2 in (∗).
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Corollary 6.4. Let G be a 4-regular graph G with at least 6 vertices, and let v, w denote two
vertices. Then c

(p)
2 (G \ v) ≡ c

(p)
2 (G \ w) mod p for all primes p.

This proves the completion conjecture, [BS12, Conjecture 4], for all prime fields. This con-
jecture is a special case of the stronger [BS12, Conjecture 5] from [Sch11, Remark 2.11]:

Conjecture 6.5. Whenever P(G1) = P(G2) for two primitive ϕ4 graphs, then
c
(q)
2 (G1) ≡ c

(q)
2 (G2) mod q for all prime powers q.

Here a graph G is called primitive ϕ4 if it can be obtained from a cyclically 6-connected
4-regular graph G′ by deleting a vertex: G ∼= G′ \ v. We then call G′ the completion of G, and
we also say that G is a decompletion of G′, as originally defined in Section 1.2. Every ϕ4 graph
has a unique completion, but a 4-regular graph can have several non-isomorphic decompletions.

The completion identity P(G\v) = P(G\w) for cyclically 6-connected 4-regular graphs G
is only one of several known period identities proved in [Sch10]. The twist and duality identities
lead to further special cases of Conjecture 6.5. Combining our results on the Martin invariant
(Proposition 3.12 and Corollary 5.23) with Theorem 6.2, we also obtain proofs of the corre-
sponding identities for c2. Specifically, for all primes p:

• If G1 is a twist of G2, then c
(p)
2 (G1 \ v) ≡ c

(p)
2 (G2 \ w) mod p.

• If G is planar, and G⋆ a planar dual, then c
(p)
2 (G) ≡ c

(p)
2 (G⋆) mod p.

The duality relation was known previously, even for prime powers [Dor17a]. Our twist identity
for c2 is a new result, however our proof of the completion identity is arguably more significant.
The completion conjecture has been repeatedly stated explicitly [BS12, BS13] and has had many
unsuccessful or only partially successful attempts at a proof.

To apply the main theorem, we use some divisibility properties, which we record here and
which are proved in Section 6.4. In Corollary 6.31 and Lemma 6.35 we show:

Lemma 6.6. Let G denote a 4-regular graph with at least 4 vertices. Then for every prime p,
M(G[p−1]) is divisible by p. For p = 3 and at least 5 vertices, we also have that M(G[2]) is
divisible by 32. Hence, the right-hand side of Equation (6.3) is well-defined.

In practice, for the purpose of computing c
(p)
2 , one can simplify the Martin recursion and

ignore all graphs that have a ⩾ p fold edge:

Lemma 6.7. If G is 4r-regular with p = r + 1 prime, and G has at least 6 vertices and at least
one edge with multiplicity p or more, then M(G) is divisible by p2 (or p3 in the case p = 3) and
hence such a graph does not contribute to c2.

Proof. Lemma 6.30 shows that applying the Martin recurrence around either end of an edge
with multiplicity ⩾ p gives a factor divisible by p multiplying the Martin invariant of each Gτ .
Applying the previous lemma to M(Gτ ) gives the result.

Remark 6.8. The properties of the Martin invariant and Theorem 6.2 also explain other c2 iden-
tities which are known from [BSY14] and [BS12, Corollary 34]:
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↔

Figure 6.1: The double triangle operation.

• If G has a 2-edge cut, a 4-edge cut, or a 3-vertex cut, then c
(p)
2 (G \ v) ≡ 0 mod p.

• If G and G′ are related as in Figure 6.1, then c
(p)
2 (G) ≡ c

(p)
2 (G′) mod p.

The first follows from Theorem 1.2 and the factors of p in M(G[p−1]) (see Lemma 6.6) produc-
ing p2 in the products (1.3) and Proposition 3.10. The double-triangle relation follows from
Lemma 6.7, since for either vertex incident to the edge shared between two triangles in G, after
(p − 1)-duplicating the only transitions that do not lead to self-loops or edges of multiplicity p
or larger, are precisely those that produce G′.

We can exploit Lemma 6.7 to simplify the calculation of c(p)2 in recursive families of graphs.
A recursive family [CY19, §5] is in the simplest case a sequence G1, G2, . . . of graphs
where Gn+1 is obtained from Gn through a fixed local modification that affects only a finite
number of vertices (call these the active vertices).

Lemma 6.9. For a recursive family of ϕ4 graphsG1, G2, . . . and any fixed integer r, the sequence
of Martin invariants M(G

[r]
1 ),M(G

[r]
2 ), . . . fulfils a linear recurrence with constant coefficients.

Proof. Applying the Martin recurrence to the finite number of vertices in Gn that are involved
in moving from Gn−1 to Gn produces a linear combination of finitely many graphs which have
the same recursive structure as Gn−1 and the same active vertices but with potentially different
connections between the active vertices. The Martin recurrence can likewise be applied to these
graphs and so on. There are only finitely many possibilities for connecting the active vertices so
there are only finitely many such graphs to consider. Collecting the Martin invariants of these
graphs into a vector an, we obtain a system of recurrences an = Tan−1 for some matrix T .

For example, the prisms K2 × Cn can be constructed using 4 active vertices, by adding one
rung at a time. We derive the corresponding recurrence for M(G

[2]
n ) at the end of Section 7.2.

For the family of circulants Cn
1,2 we compute M(Gn) in (7.4).

Through Theorem 6.2, the sequence c
(p)
2 (Gn \ v) at a fixed prime fulfils the same linear

recurrence as M(G[p−1]). Lemma 6.7 shows that we can drop all graphs with ⩾ p-fold edges
from the vector an, to obtain a shorter recurrence for c2. It could be interesting to compare this
approach with the method of [Yea16], since the latter produces recurrences that are considerably
larger than necessary [Yea20]. Experiments for circulants Cn

1,3 and Cn
2,3 at primes p = 2, 3

suggest that indeed the approach above produces shorter recurrences.
In order to prove Theorem 6.2, we relate c2 to diagonal coefficients of some polynomials.

One such relation was known previously, and its combinatorial interpretation (Lemma 6.14) was
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key to the results of [Yea18, HY23]. We will use this interpretation to prove Theorem 6.2 for
all primes, including p = 3. For p ̸= 3, we will also give a simpler proof using the diagonal
coefficient of Ψ. We will need the following polynomials from [BY11]:

Definition 6.10. Let G be a graph and let P be a partition of a subset of the vertices of G. The
associated spanning forest polynomial is defined to be

ΦP
G =

∑
F

∏
e̸=F

xe

where the sum is over spanning forests F of G which are compatible with P in the sense that
there is a bijection between the trees of F and the parts of P such that each tree of F contains
all vertices that belong to the corresponding part of P .

Lemma 6.11. LetG be a 4-regular graph with at least 5 vertices and let v andw be two adjacent
vertices, both without self-loops. Let a, b, c be the three neighbours of w which are not v and
let x4, . . . , xm be the variables associated to the edges of G \ {v, w}. Then

c
(p)
2 (G \ v) ≡ −

[
xp−1
4 · · ·xp−1

m

] (
Φ

{a,b},{c}
G\{v,w}ΨG\{v,w}

)p−1

mod p

for all primes p.19 Accordingly, the right-hand residue is invariant when permuting a, b, c.

Proof. This is a consequence of a chain of results from [BS12] and [BSY14]. To see them all
laid out in detail to obtain the statement of the lemma, see [EY23, §2].20

Remark 6.12. With G as in the lemma, and with 1, 2, 3 the edges from w to a, b, c respectively,
then the two spanning forest polynomials in the lemma can also be written in terms of Dodgson
polynomials, which were introduced in [Bro09]. Specifically

Φ
{a,b},{c}
G\{v,w} = Ψ1,2

G\v,3

ΨG\{v,w} = Ψ13,23
G\v .

Proving these two facts is one of the steps in the chain of results proving the lemma, coming from
results of [BSY14] (see also [EY23, Example 2] or [HY23, §2.2] for the calculation exhibited
pedagogically). We will not need to use Dodgson polynomials in the present paper, so we will
not give their definition, but may use the two displayed above simply as an alternate notation for
the corresponding spanning forest polynomials.

Definition 6.13. For a graph H with 3 vertices marked a, b, c and an integer r define Nr,r(H)
to be the number of ordered partitions of the set of edges of H into 2r parts, the first r of
which are spanning trees of H , and the last r of which are spanning forests compatible with the
partition {{a, b}, {c}}.

19Such an identity also holds at prime powers q = ps, but only modulo p not q (as detailed in [EY23]).
20The lower bound of 5 vertices is required to apply [BS12, Lemma 24] to G\v. With only 4 vertices, the lemma

fails. The graph from Remark 6.17 provides a counter-example.
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The following combinatorial interpretation of c2 was proven and put to productive use
in [Yea18, HY23, EY23]. It will be used in our second proof of Theorem 6.2.

Lemma 6.14. Let G be as in Lemma 6.11. Then for every integer r,

(r!)m−3 · [xr
4 · · ·xr

m]
(
Φ

{a,b},{c}
G\{v,w}ΨG\{v,w}

)r
= Nr,r(G

[r] \ {v, w}).

Consequently, c(p)2 (G \ v) ≡ Nr,r(G
[r] \ {v, w}) mod p for every prime p = r + 1.

Proof. For the first claim, apply the argument from the proof of Lemma 5.8 to relate the left-
hand side to the diagonal coefficient of the polynomials for the duplicated graphG[r]\{v, w}; the
interpretation as Nr,r then follows as in Lemma 5.4, using the observation from Remark 5.7 that
taking the complement of each part does not change the count. The second claim is then a corol-
lary of Lemma 6.11 and Wilson’s theorem r! ≡ −1 mod p, noting that the numberm = 2n− 4
of edges in G \ v is even (here n is the number of vertices in G).

Example 6.15. To compute c
(2)
2 (G), the Martin recursion has only 3 terms, which are again

4-regular graphs, hence we get a simple recursion as in (1.2):

c
(2)
2

( )
≡ c

(2)
2

( )
+ c

(2)
2

( )
+ c

(2)
2

( )
mod 2. (6.4)

This recursion of c2 specifically for p = 2 admits a quick proof using denominator reduction,
see [Bro09, §10]. The denominator Dr

G(e1, . . . , er) of a graph arises as the denominator of the
Feynman integral after integrating out the variables corresponding to the edges e1, . . . , er. It is
a polynomial in the remaining edge variables and can be defined by purely algebraic means. For
example, the second denominator is always a square, D2

G(1, 2) = P 2, of a certain (Dodgson)
polynomial (P = Ψ1,2

G ). The third denominator is the product D3
G(1, 2, 3) = ([x1

3]P )([x0
3]P ),

i.e. the expression Ψ13,23
G Ψ1,2

G,3 used in Lemma 6.11 via Remark 6.12. Higher denominators
can be computed as follows: whenever Dr

G(e1, . . . , er) = PQ with r ⩾ 3 is a product of
two polynomials that are both linear in xe, then Dr+1

G (e1, . . . , er, e) = [P,Q]e is the resul-
tant [P,Q]e = P eQe − PeQ

e. We use the shorthand notations P e = [x1
e]P and Pe = [x0

e]P for
the coefficients of a polynomial P that is linear in xe.

Denominators starting from the third determine c2 by taking the point count:

c
(q)
2 (G) ≡ (−1)r JDr

G(e1, . . . , er)Kq mod q

is shown in [BS12, Theorem 29]. The first case r = 3 is used in the proof of Lemma 6.11.
Let G (left-hand side), Gs, Gt, Gu be the four graphs in the order illustrated in (6.4). As

described at the beginning of [BSY14, §6.1], the square roots of the second denominators after
reducing the two explicitly drawn edges of Gs, Gt, and Gu are given by (A − B), (B − C),
and (C − A) respectively where A, B, and C are certain explicit spanning forest polynomi-
als. Furthermore letting e be any edge in the common part of G,Gs, Gt, and Gu, by [BSY14,
Lemma 42], the denominator after reducing the 4 illustrated edges of G along with edge e is
equal to

D5
G = [A,B]e + [B,C]e + [C,A]e.
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12
3

4

Figure 6.2: This graph shows the necessity of requiring at least 4 vertices in Lemma 6.16.

For the third denominator for Gs we get

(A−B)e(A−B)e = AeAe +BeBe − AeBe − AeB
e = AeAe +BeBe − [A,B]e − 2AeB

e.

Adding the third denominators for Gs, Gt, and Gu we get

2AeAe + 2BeBe + 2CeCe − [A,B]e − [B,C]e − [C,A]e − 2AeB
e − 2BeC

e − 2CeA
e

≡ [A,B]e + [B,C]e + [C,A]e mod 2.

So the fifth denominator of G equals modulo 2 the sum of the third denominators of Gs, Gt,
and Gu, but since denominators from the third on up compute c2, by taking the diagonal coeffi-
cient (point count mod p) we obtain

c
(2)
2 (G) ≡ c

(2)
2 (Gs) + c

(2)
2 (Gt) + c

(2)
2 (Gu) mod 2

as desired. This provides a very efficient recurrence to compute c(2)2 and gives a short alternative
proof of [HY23]. Discovering this relation between the Martin invariant and c2 at p = 2 was the
starting point that ultimately led to the result below for arbitrary primes.

6.1. Primes p ̸= 3 from the diagonal

Lemma 6.16. Consider a graph G with n ⩾ 4 vertices and m = 2(n− 1) edges. Let p = r+ 1
be prime. Then the diagonal coefficient of Ψ2r

G fulfils

[xr
1 · · ·xr

m] Ψ
2r
G ≡ −3p2 · c(p)2 (G) mod p3. (6.5)

Remark 6.17. The lemma fails for graphs with less than 4 vertices: The graph G in Figure 6.2
has JΨGKq = q3 and thus c

(p)
2 (G) ≡ 0, whence the right-hand side is 0 mod p3. This point-

count of ΨG = x1x2 + (x1 + x2)(x3 + x4) is obtained using [Ste98, Sch11]. The diagonal
coefficient of Ψ2r

G on the left-hand side, however, is equal to
(
2r
r

)2 ≡ p2 mod p3.

Proof. Pick a 3-valent vertex w, let 1, 2, 3 be its incident edges, and let a, b, c denote the vertices
on the other ends of these edges. Then the spanning forest polynomials denoted

f0 = ΨG\w, f1 = Φ
{a},{b,c}
G\w , f2 = Φ

{a,c},{b}
G\w , f3 = Φ

{a,b},{c}
G\w , f123 = Φ

{a},{b},{c}
G\w

are subject to f0f123 = f1f2 + f1f3 + f2f3 [BS12, Lemma 22]. Furthermore, we have

ΨG = f0(x1x2 + x1x3 + x2x3) + x1(f2 + f3) + x2(f1 + f3) + x3(f1 + f2) + f123.
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This implies f0ΨG = y1y2 + y1y3 + y2y3 with yi = f0xi + fi. Expanding the trinomial,

f 2r
0 Ψ2r

G =
∑

i+j+k=2r

(
2r

i, j, k

)
(f0x1 + f1)

j+k(f0x2 + f2)
i+k(f0x3 + f3)

i+j

and then extracting the coefficient of xr
1x

r
2x

r
3, we see that if f0 ̸= 0 then we can cancel 2r powers

of f0 from each side and get

[xr
1x

r
2x

r
3] Ψ

2r
G = f r

0

∑
i+j+k=2r

(
2r

i, j, k

)(
i+ j

r

)(
i+ k

r

)(
j + k

r

)
f r−i
1 f r−j

2 f r−k
3 .

This identity remains true when f0 = 0, because in this case, the left-hand side vanishes be-
cause Ψ2r

G has degree 2r in the variables x1, x2, x3.
Note that the first binomial coefficient is always divisible by p. The second binomial is

divisible by p when k < r (so that r < i + j = 2r − k), and similarly the remaining binomials
are divisible by p when j < r and i < r, respectively.

In conclusion, the summand is divisible by p3 unless two summation indices are equal to r.
Therefore, only the indices (i, j, k) ∈ {(0, r, r), (r, 0, r), (r, r, 0)} contribute mod p3:

[xr
1x

r
2x

r
3] Ψ

2r
G ≡

(
2r

r

)2

((f0f1)
r + (f0f2)

r + (f0f3)
r) mod p3

≡ p2 ((f0f1)
r + (f0f2)

r + (f0f3)
r) mod p3.

Now take the diagonal coefficient [xr
4 · · ·xr

m] in the remaining variables, on both sides. Since
each of the three products f0fi is the polynomial on the right-hand side of Lemma 6.11 for some
permutation of {a, b, c}, the claim follows.

This result converts the diagonal coefficient of the more complicated polynomials of
Lemma 6.11 into the diagonal coefficient of Ψ2r—at least modulo p3. For p ̸= 3, by using (4.12)
(or the combinatorial argument of Remark 5.7) to move between Ψ and Ψ̃ and using Lemma 5.8
to move between G and G[r], we see that Lemma 6.16 and Theorem 5.17 together give the de-
sired relationship between the Martin invariant and the c2 invariant. This proves Theorem 6.2
for all primes p ̸= 3.

Unfortunately, the explicit factor 3 in Lemma 6.16 does not allow us to draw the same conclu-
sion when p = 3. In this case we would need the congruence in Lemma 6.16 to hold modulo p4.
Lacking a direct method to establish this congruence, we prove Theorem 6.2 for p = 3 using a
different approach, detailed in the following subsections. The essence of this second proof is to
avoid the troublesome explicit 3 appearing in Lemma 6.16 by instead recreating the argument
used in Theorem 5.17 directly on the polynomials of Lemma 6.11 using Lemma 6.14. This
second proof applies for all primes, although even there the case p = 3 requires some special
treatment in the base case of the induction.

As a consequence of this second proof, having established Theorem 6.2 for p = 3 we can
infer indirectly that indeed, for p = 3 the statement of Lemma 6.16 holds modulo p4, provided
that G has at least 8 edges and 5 vertices.21

21For 6 edges, a counter-example is discussed after Lemma 6.35.
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Remark 6.18. The c2 invariant and the diagonal coefficient of Ψ̃ are defined for arbitrary graphs
(with at least 5 edges and 4 vertices, say). It thus makes sense to ask if the statement of
Lemma 6.16 holds more generally. Note that our proof requires the existence of a 3-valent
vertex, which may not exist in more general graphs. Almost nothing is known, however, for c2
invariants for graphs without 3-valent vertices. The only paper making a dent in this direction
is [Dor17b].

6.2. Structure of the proof for all primes

Our second proof of Theorem 6.2 proceeds by showing that the diagonal coefficient Nr,r from
Lemma 6.14 is congruent to the Martin invariant. Concretely, we will show that

Nr,r(G \ {v, w}) ≡ M(G)

3p
mod p (6.6)

for every prime p = r+ 1 and every 4r-regular graph G with at least 6 vertices, provided w is a
vertex with four neighbours {a, b, c, v}, each connected to w by an r-fold multiedge. Applied to
the special case where G is the r-fold duplication of a 4-regular graph, we obtain Theorem 6.2
as the consequence of Lemma 6.14. This approach works for all primes p and thus fills the gap
at p = 3, which is not covered by the method of Section 6.1.

The key step to prove (6.6) is to establish the Martin recurrence (1.1) for the left-hand side.
Like the diagonal coefficient Nk of Ψk from Section 5—see (5.5)—the diagonal coefficient Nr,r

also satisfies the Martin recurrence exactly: For a vertex u /∈ {v, w, a, b, c},

Nr,r(G \ {v, w}) =
∑

τ∈T ′(u)

Nr,r(Gτ \ {v, w}) (6.7)

is the sum over all transitions at u which do not produce a self-loop at v. The residue modulo p
in (6.6) is needed only to connect Nr,r with M(G) in the base cases (Section 6.4), and with the c2
invariant when G is the r-fold duplication of a 4-regular graph.

At its core the idea to prove (6.7) is the same as for Theorem 5.17, namely we interpret a
transition as going from sets counted by A (5.3) to those counted by B (Definition 5.12) and
then use the Prüfer based Proposition 5.15. However, this is more intricate for Nr,r than for Nk,
since we are now counting partitions of the edges into r trees and r forests consisting of two
trees each, one containing {a, b} and the other containing {c}. We thus need to keep track of
where the marked vertices {a, b, c} are. This requires augmenting the constructions of the proof
of Theorem 5.17 by 3 coloured vertices.

As in the proof of Theorem 5.17, applying the recurrence (1.1) will lead us outside the world
of r-duplicated graphs and we need to consider arbitrary graphs with the same vertex degrees.
To this end, by H we denote a graph with

• two vertices (a and b) marked with one colour, say red, and one (c) with a second colour,
say blue, all three of which have degree at most 3r,

• all other vertices have degree at most 4r, and
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H =

a

b

c

u
G =

u
w

v

Figure 6.3: The graphs for a running example. The large filled vertices, a and b, are the two red
vertices and the large empty vertex, c, is the blue vertex.

• the number of edges is r(2n− 3), where n ⩾ 4 is the total number of vertices of H .

Then let G be the graph obtained from H by adding a new vertex w with r edges to each of the
three coloured vertices of H , then adding a new vertex v with r edges to w and edges to each
remaining vertex of degree less than 4r so as to raise the degree to 4r, and finally forgetting the
colours. The above conditions on H ensure that G is 4r-regular, v and w have no self-loops,
and H = G \ {v, w}. Setting Hτ = Gτ \ {v, w}, we can state (6.7) as Nr,r(H) =

∑
τ Nr,r(Hτ ).

Consequently, the structure of our inductive proof is as follows: we first show the Martin
recurrence (6.7) for the number of partitions of edges of H into r spanning trees and r spanning
forests compatible with the colouring in Section 6.3. Then in Section 6.4 we compute these
numbers when H has only the three coloured vertices, and compare them with the Martin in-
variant of the corresponding graph G. This completes our second proof of Theorem 6.2 and in
particular proves the theorem in the case p = 3.

6.3. Proof of the recurrence for all primes

Let H , G, v, w, and r be as in Section 6.2. In this section, we prove the recurrence (6.7).
Recall the definitions of h-neighbourhood and v-neighbourhood from Section 2. Throughout

this section, let u be an uncoloured vertex of H , and S its h-neighbourhood in H .

Example 6.19. We will use as a running example in this section the graph H = G \ {v, w}
illustrated on the left-hand side of Figure 6.3. In this case G is obtained from a doubled 4-regular
graph; this is not necessary for the proof, but the application we care about.

Given a partition of the edges of H into r spanning trees and r spanning forests compatible
with the vertex colours, consider what happens when we remove u. As in the proof of Theo-
rem 5.17, for each spanning tree, if u has degree k in the tree then upon removing u the tree
is split into k trees and this induces a partition of S into k parts. For each spanning forest, the
vertex u is in one of the trees of the forest and if u has degree k in that tree, then upon removing u
this tree is split into k trees and the other tree of the forest is unchanged, leaving a spanning forest
of k + 1 trees of H \ u. There are then two possibilities for the resulting induced partition of
the h-neighbourhood S of u: if all the vertices of the v-neighbourhood of u were originally in
the same tree as u, then locally around u we only see one tree and so we get a partition of the
h-neighbourhood S of u into k parts as before. However, if some of the v-neighbourhood of u
was originally in the other tree, then there will additionally be a (k + 1)th part in the induced
partition of the h-neighbourhood corresponding to the other tree. In order to keep track of this
we will need to introduce coloured partitions in this case.
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We will first consider the case where for all the r spanning forests the whole v-neighbourhood
of u is in the same tree. Here the local situation is exactly as for Theorem 5.17 and so the same
argument applies. We now briefly go through this argument again in order to set notation that
will be useful when both trees interact around u.

Given a partition P of the h-neighbourhood of u, say a spanning forest is compatible with
both P and the vertex colouring if it has |P | + 1 trees, one of which involves all vertices of
one colour and no vertices of P or of the other colour and where the remaining |P | trees are
compatible with P . As observed in the proof of Theorem 5.17, given a partition P be a partition
of the h-neighbourhood of u, any spanning forest of H \u compatible with P can be extended to
a spanning tree T by choosing a system of distinct representative (SDR, as defined in Section 5.1)
for P and then adding the edges containing each of these half edges in H to T ; likewise for any
spanning forest of H \ u compatible with P and the vertex colouring. Every spanning tree or
spanning forest which induces the partition P on the h-neighbourhood of u is obtained in this
way.

We call such an SDR a u-extension of P .
For the other side of the Martin recurrence, given a transition τ of G which does not create

self-loops at v, write Hτ for the graph obtained by applying the transition restricted to H and
removing the unmatched half-edges (those that were matched to v in G). On each Hτ we are
then counting partitions of the edges into r spanning trees and r spanning forests compatible with
the coloured vertices. By breaking the edges matched by τ , each such tree or forest induces a
partition on the v-neighbourhood of u. For such a spanning forest, if all of the v-neighbourhood
of u is in the same tree of the forest, then locally we are only working with trees and so as in
Theorem 5.17 for any partition P of the h-neighbourhood of u with at most deg(u) − 2r + 1
parts, any matching that defines a tree on P in the sense of Definition 5.12 serves to extend any
spanning forest of H \ u compatible with P or compatible with P and the vertex colouring.
Furthermore, every such matching comes from at least one transition τ with no self loops at v
since the constraint on the number of parts guarantees enough half edges left to connect to v
without loops, and every spanning tree or spanning forest with all of the v-neighbourhood of u
is obtained in this way.

We call such a choice of matching an m-extension of P .
Let S be the h-neighbourhood of u in H and let P1, . . . , P2r be partitions of S. For H ′ = H

or H ′ = Hτ for some transition at u, write

NH′(P1, . . . , P2r)

for the number of partitions of the edges of H ′ into r spanning trees and r spanning forests
compatible with the coloured vertices so that the ith spanning tree induces the same partition on
the v-neighbourhood of u that Pi does and the jth spanning forest induces the same partition on
the v-neighbourhood of u that Pr+j does and only one tree of the spanning forest is involved in
the induced partition. Then what we need from Theorem 5.17 is the following:

Proposition 6.20. Let P1, . . . , P2r be partitions of the h-neighbourhood of u in H . Then

NH(P1, . . . , P2r) =
∑
τ

NHτ (P1, . . . , P2r)
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where the sum is over transitions τ of u in G which do not create self loops at v.

Proof. Consider spanning forests Fi compatible with Pi on H \ u for each 1 ⩽ i ⩽ r and
spanning forests Fj for each p ⩽ i ⩽ 2r so Fj has |Pj| + 1 trees of which |Pj| of them are
compatible with Pj and also contain the vertices of one of the two colours and the last tree
contains the vertex of the other colour. Let C(P1, . . . , P2r) be the set of possible choices for
the Fi.

If
∑2r

i=1 |Pi| = deg(u) and each partition has at most deg(u) − 2r + 1 parts, then as in
Theorem 5.17

NH(P1, . . . , P2r) = |C(P1, . . . , P2r)| · |A(P1, . . . , P2r)|

and collecting the sets of m-extensions by their zs,∑
τ

NHτ (P1, . . . , P2r) = |C(P1, . . . , P2r)| · |B(P1, . . . , P2r)|

where the sum is over transitions τ of u in G which do not create self loops at v. Here we have
used that for τ to have no self loops at v we must have

|z| = deg(u)−
r∑

i=1

2(|Pi| − 1) = 4r − deg(u)

which is the same condition as
∑2r

i=1 |Pi| = deg(u). Applying Proposition 5.15

NH(P1, . . . , P2r) =
∑
τ

NHτ (P1, . . . , P2r)

as desired.
Finally if

∑2r
i=1 |Pi| ̸= deg(u) or some partition has more than deg(u) − 2r + 1 parts then

both sides are 0: the left side because the u-extensions are SDRs and each Pi has at least one
part and the right side because all compatible transitions would have self loops at v.

Example 6.21. Let us continue Example 6.19 with a case where Proposition 6.20 applies.
Write S = {1, 2, 3, 4, 5, 6} for the h-neighbourhood of u where half edges 1 and 2 are inci-
dent to vertex a, half edges 3 and 4 are incident to vertex b, and half edges 5 and 6 are incident
to the unnamed fifth vertex of H . One possible partition of the edges into two spanning forest
compatible with the colouring and two spanning trees is given in Figure 6.4. The corresponding
partitions of S are P1 = P2 = {{1, 2, 3, 4, 5, 6}} and P3 = P4 = {{1, 2, 5, 6}, {3, 4}}, which
we can also visualize locally around u in the same manner as in the examples of Section 5.1, as
shown in Figure 6.5.

These u-extensions are given by the function f : 1 7→ 1, 2 7→ 4, 3 7→ 3, 4 7→ 4, 5 7→ 3, 6 7→ 2.
Then under Proposition 6.20 these u-extensions correspond to the matching of Figure 6.6, where
using the notation of the Prüfer bijection we have y = (1, 6), X3 = {3, 5}, X4 = {2, 4}. The
transition τ in this case is the one pairing {2, 4} and {3, 5}, while 1 and 6 each get paired to v inG
and so are no longer present in Hτ . The partition of the edges of Hτ into the corresponding two
spanning forests compatible with the colouring and two spanning trees is illustrated in Figure 6.7.
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Figure 6.4: A partition of the edges ofH into two spanning forests compatible with the colouring
and two spanning trees.
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Figure 6.5: A local view of the partitions around u obtained from Figure 6.4.
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Figure 6.6: The corresponding matching of the h-neighbourhood of u.
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Figure 6.7: The corresponding partition of the edges of Hτ into two spanning forests compatible
with the colouring and two spanning trees.
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Now we extend Proposition 6.20 and the associated set-up to the case where the v-neighbour-
hood of u may involve both trees in one or more of the spanning forests. For such a spanning
forest, the vertices of the v-neighbourhood of u which were originally in the same tree as u are
now partitioned into k parts, but there may additionally be a part containing vertices in the v-
neighbourhood of u which are in the other tree of the spanning forest. Furthermore, if the tree
corresponding to the red vertices is the tree which contains u, then the two red vertices may be
in the same tree after removing u or they may be in two different trees after removing u. Thus,
in the case that not all vertices of the v-neighbourhood of u are in the same tree of the spanning
forest, we need to mark the parts of the partition of the v-neighbourhood obtained by removing u
according to whether or not the tree associated to that part (after removing u) contained a red
vertex or a blue vertex. This will result in one or two red parts, one blue part, and any other
parts uncoloured. The partition of the h-neighbourhood is induced from the partition of the
v-neighbourhood and also inherits the colours. Call this a coloured partition.

The extensions are now more intricate to describe:

Lemma 6.22. Let P be a coloured partition of the h-neighbourhood of a vertex u of H (that
is P has one or two parts marked as red, one part marked as blue, and the rest uncoloured).
Any spanning forest of H \ u compatible with P can be extended to a spanning forest F of H
where the red part(s) are in one tree and the blue part in the other tree by

• choosing one half edge from each red part of P and each unmarked part of P and then
adding the edges containing each of these half edges in H to F , or

• if there is only one red part in P , choosing one half edge from the blue part of P and from
each unmarked part of P and then adding the edges containing each of these half edges
in H to F .

Every spanning forest of H which is compatible with the coloured vertices of H and which
induces the coloured partition P on the h-neighbourhood of u is obtained in this way.

We again call such a choice of edges a u-extension of the coloured partition P .

Proof. In any case, all uncoloured components must join through u as otherwise we would have 3
or more trees in the final forest. If there are two red parts then they must join through u in order
to be connected and so only the first option is possible. With one red and one blue part we are
free to join either one through u.

For coloured and uncoloured parts, the ways to join through u are as in the tree case.

Now consider the other side of a Martin-type recurrence. Given a transition τ of u in G
which does not create self-loops around v and with Hτ as before. A spanning forest of Hτ again
results in a partition of the vertices of H and hence the h-neighbourhood of u and if both trees
of the forest appear in the h-neighbourhood of u then we need to mark the parts of the partition
of the h-neighbourhood of u red or blue if their tree contained a red or blue vertex after splitting
all edges of the matching, resulting in a coloured partition of the h-neighbourhood of u.

Again we only need this local information to extend forests.
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Lemma 6.23. Let u be an uncoloured vertex of H and let P be a coloured partition of the h-
neighbourhood of u with at most deg(u)−2r+2 parts. Any spanning forest of H \u compatible
with P can be extended to a spanning forest F of some Hτ where the red part(s) are in one tree
and the blue part in the other tree by choosing a forest structure X where the vertex set of X is
the set of parts of P and the forest is compatible with the colours coming from the parts of P ,
and then for each end of an edge of X choosing a distinct half edge from the corresponding part
of P .

Every spanning forest of every Hτ which is compatible with the coloured vertices of H and
which induces the coloured partition P on the h-neighbourhood of u is obtained in this way.

We again call such a choice of edges an m-extension of the coloured partition P .

Proof. As for the tree case but so as to obtain a compatible spanning forest. The condition on
the number of parts likewise makes it always possible for τ to avoid self-loops at v where the
spanning forest structure on X uses one fewer edge than the tree structure did.

Extend the meaning of NH(P1, . . . , P2r) where Pp, . . . , P2r may be coloured to be the num-
ber of partitions of the edges of H into r spanning trees and r spanning forests compatible
with the coloured vertices so that the ith spanning tree induces the same partition on the v-
neighbourhood of u that Pi does and the jth spanning forest induces the same partition on the
v-neighbourhood of u that Pr+j does, with the inherited colouring if multiple trees of the forest
interact with the v-neighbourhood of u.

When some of the Pi may be coloured partitions, we bootstrap off Proposition 6.20.

Proposition 6.24. Let P1, . . . , P2r be partitions of the h-neighbourhood of uwhere for p⩽ i⩽2r
the partition Pi may be a coloured partition. Then

NH(P1, . . . , P2r) =
∑
τ

NHτ (P1, . . . , P2r)

where the sum is over transitions τ of u in G which do not create self loops at v.

Proof. Proposition 6.20 gives the result when all of the partitions are uncoloured and so we now
reduce to that case.

With Pi as in the statement, let A(P1, . . . , P2r), generalizing (5.3), denote the set of u-
extensions for each Pi (in the coloured sense where appropriate) which partition the edges
of H around u. Likewise, let B(P1, . . . , P2r), generalizing Definition 5.12, denote the set of
m-extensions for each Pi (in the coloured sense where appropriate) for which the union of the
matchings gives the matching of τ on S.

We will show that
|A(P1, . . . , P2r)| = |B(P1, . . . , P2r)|. (6.8)

Multiplying by the number of possible choices for the forests in H \ u which give Pi will then
give the result.

Suppose Pi is a coloured partition with one red part and one blue part. For any u-extension
of this coloured partition we take either an edge from the red part or an edge from the blue part
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and that choice is independent of the choices for the other parts. Therefore the u-extensions
of the coloured partition Pi are the same as the u-extensions of the uncoloured partition result-
ing from merging the red and blue parts of Pi and then forgetting the colours. Similarly for any
m-extension of Pi, we obtain a spanning forest onPi with two trees, one containing the vertex as-
sociated to the red part and one containing the vertex associated to the blue part. Merging the red
and blue parts then the same edge and end information gives an m-extension of the uncoloured
partition obtained from merging the red and blue parts and forgetting the colour and every such
tree becomes a forest and a valid m-extension upon splitting this part to reobtain Pi. If Pi had
no more than deg(u)− 2r + 2 parts before merging then it has no more than deg(u)− 2r + 1
parts after, and vice versa.

Therefore, for the purposes of (6.8), whenever there is a coloured partition with one red and
one blue part, merge those two parts and proceed with an uncoloured partition instead.

It remains to consider partitions with two red parts and one blue part. Suppose Pi is such a
partition and let p be the blue part and q and s the two red parts. Similarly to the above, every
u-extension of Pi is also a u-extension after merging p and q and forgetting the colours, and is
also a u-extension after merging p and s and forgetting the colours. However, merging p and q
also allows u-extensions which use an edge from p and an edge from s, and merging p and s
also allows u-extensions which use an edge from p and an edge from q. These are exactly the
u-extensions obtained from merging q and s and forgetting the colours. Therefore, indicating
the merged parts as superscripts, for example P p∪q

i = (Pi \ {p, q}) ∪ {p ∪ q}, we see that

2|A(P1, . . . , Pi, . . . , P2r)|
= |A(P1, . . . , P

p∪q
i , . . . , P2r)|+ |A(P1, . . . , P

p∪s
i , . . . , P2r)| − |A(P1, . . . , P

q∪s
i , . . . , P2r)|

where the counts on the right-hand side involve one coloured partition fewer than on the left-hand
side.

The situation is similar for them-extensions. Everym-extension ofPi is also anm-extension
after merging p and q and forgetting the colours, and is also anm-extension after merging p and s
and forgetting the colours. However, merging p and q also allows m-extensions where s is in the
tree with p after re-splitting p and q, and merging p and s also allows m-extensions where s is
in the tree with q after re-splitting p and s. These are exactly the m-extensions obtained from
merging q and s and forgetting the colours. The bounds on the numbers of parts correspond as
before. Therefore we have

2|B(P1, . . . , Pi, . . . , P2r)|
= |B(P1, . . . , P

p∪q
i , . . . , P2r)|+ |B(P1, . . . , P

p∪s
i , . . . , P2r)| − |B(P1, . . . , P

q∪s
i , . . . , P2r)|

which lines up term by term with what was obtained for the u-extensions.
Similarly expanding for each remaining coloured partition, we can write A(P1, . . . , P2r)

and B(P1, . . . , P2r) as identical signed sums involving only uncoloured partitions of S. There-
fore the expansions agree term by term by Proposition 5.15, proving (6.8) and hence proving the
proposition.

Summing both sides of Proposition 6.24 over all choices of the partitions Pi, we obtain the
Martin recursion Nr,r(H) =

∑
τ Nr,r(Hτ ) as claimed in Equation (6.7).
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Figure 6.8: Another partition of the edges of H into two spanning forests compatible with the
colouring and two spanning trees.
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Figure 6.9: A local view of the partitions around u obtained from Figure 6.8.

Example 6.25. Let us continue Example 6.21 with a case where Proposition 6.24 applies. One
possible partition of the edges into two spanning forest compatible with the colouring and two
spanning trees for which Proposition 6.24 is needed is given in Figure 6.8. The correspond-
ing partitions of S are P1 = {{1, 2, 3, 4}red, {5, 6}blue}, P2 = {{1, 2}red, {3, 4}red, {5, 6}blue},
P3 = {{1, 2}, {3, 4, 5, 6}}, and P4 = {{1, 2, 3, 4, 5, 6}}, with the colours indicated by the sub-
scripts. We can visualize this situation locally around u as shown in Figure 6.9.

Now we need to convert to uncoloured partitions in order to reduce to cases where Proposi-
tion 6.20 applies. Consider first P1. As described in the proof of Proposition 6.24, in this case
we can simply merge the red and blue parts obtaining in this case the partition with only one
part. P2 is more complicated. Label the parts as follows P2 = {p, q, s} with s = {1, 2}red,
q = {3, 4}red, p = {5, 6}blue. Considering both the uncoloured partitions with p ∪ q and p ∪ s
we see that the spanning trees and forests we started with are consistent with both, as illustrated
in Figure 6.10. Note that every u-extension of the coloured partition of Figure 6.9 also appears
as a u-extension for each of the partitions of Figure 6.10. However, some u-extensions of each of
the partitions of Figure 6.10 do not give u-extensions of Figure 6.9. For example taking edges 1
and 6 satisfies the requirements for P2 with p ∪ q as in the upper set of partitions of Figure 6.10
but not in Figure 6.9. However, 1 and 6 does work upon taking q ∪ s. This is an example of the
general fact that q ∪ s gives exactly the terms that need subtracting, as described in the proof of
Proposition 6.24.

Under Proposition 6.20, the two SDRs of Figure 6.10 correspond to the two matchings of
Figure 6.11. The transition τ in both cases is the one pairing {1, 4} and {2, 5} while 3 and 6
each get paired to v in G and so are no longer present in Hτ . The argument to reduce coloured
partitions to partitions by merging parts and subtracting for overcounting is the same as it was
in H . In this case we obtain the matching of the coloured partitions illustrated in Figure 6.12 and
hence the partition of the edges of Hτ into two spanning forests compatible with the colouring
and two spanning trees as illustrated in Figure 6.13.
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Figure 6.10: The partitions around u after merging as described in Proposition 6.24.
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Figure 6.11: The corresponding matchings.
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Figure 6.12: The corresponding matching of the h-neighbourhood of u.
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Figure 6.13: The corresponding partition of the edges ofHτ into two spanning forests compatible
with the colouring and two spanning trees.
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6.4. Base cases

Recall that p = r+1 is prime. Given a graph H with three marked vertices called {a, b, c}, with
(2|V (H)|−3)r edges, and with no vertex of degree more than 4r, recall from Section 6.2 that H
determines a 4r-regular graphG by adding two vertices, labelled {v, w}, adding r edges between
w and each of {a, b, c, v}, and finally adding 3r edges between v and the original vertices of H
in the unique way such that the resulting graph G is 4r-regular. With this construction, H =
G \ {v, w}.

Recall that Nr,r(H) from Definition 6.13 counts the ordered partitions of the edges of H
into r spanning trees and r spanning forests compatible with the partition {a, b}, {c}.

For the base case of our inductive proof, we need to show that

Nr,r(H) ≡ M(G)

3p
mod p (6.9)

for all marked graphs H as above on a fixed small number of vertices. The argument is easier
for G and H smaller, and so for p ̸= 3 we will prove (6.9) for H with 3 vertices (only the marked
vertices) and hence G with 5 vertices. For p = 3 we will need to move to H with 4 vertices and
hence G with 6 which remains sufficient for Theorem 6.2.

Suppose, then, thatH is a marked graph with only 3 vertices—namely, the marked vertices—
and 3r edges, and G as above.

Consider first the left-hand side.

Lemma 6.26. For any graph H = G \ {v, w} with 3 vertices and 3r edges and p = r+1 prime
and G as explained above, we have

Nr,r(H) ≡

{
−1 mod p, if G ∼= K

[r]
5 , and

0 mod p, otherwise.
(6.10)

Proof. Any self-loop in H cannot belong to any tree or forest, so the presence of self-loops
forces Nr,r(H) = 0. Thus suppose that H has no self-loops. Let mij denote the number of
edges between vertices i and j. The 2-forests of H that separate {a, b} from {c} consist of a
single edge between a and b. Hence there are precisely

(
mab

r

)
ways to assign r of these edges

to 2-forests. The remaining edges are to be grouped into α spanning trees of the form {ab, ac},
β spanning trees {ab, bc}, and γ spanning trees {ac, bc}. The constraints mab − r = α + β,
mac = α + γ, and mbc = β + γ have the unique solution α = r − mbc, β = r − mac,
γ = 2r − mab where we note α + β + γ = r. After choosing α out of the mab − r edges ab
and α out of the mac edges ac, there are α! ways to pair them up into spanning trees of the first
type, etc. Finally, accounting for the r! ways to order the spanning trees and 2-forests, we find

Nr,r(H) = r!

(
mab

r

)
r!α!β!γ!

(
mab − r

α

)(
mac

α

)(
mbc

β

)
=

r! ·mab! ·mac! ·mbc!

α!β!γ!
. (6.11)

We need mab ⩾ r for Nr,r(H) to be non-zero. Then γ ⩽ r and we always have α, β ⩽ r,
hence the denominator is not divisible by p. So the numerator, and hence Nr(H), become di-
visible by p if any mij > r. For this not to happen, we need each mij ⩽ r. But then we must
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have mab = mac = mbc = r, due to the constraint mab +mac +mbc = 3r. Then all edges in G
are r-fold, and we get Nr,r(H) = (r!)3 ≡ −1 mod p by Wilson’s theorem.

We now turn to the right-hand side of (6.9).
Consider the effect of multiedges on the expansion (1.1) of the Martin invariant at a vertex u

without self-loops. Letw1, . . . , ws denote the neighbours of u, and say that there are di edges uwi

between u and wi. Then Gτ depends only on the numbers Dij of pairs {uwi, uwj} in τ . Hence
different transitions with the same numbers Dij will repeat the same contributions M(Gτ ).

Definition 6.27. Let D be a symmetric matrix D of non-negative integers with diagonal Dii = 0
and row sums

∑
j Dij = di equal to the multiplicities of the edges between u and its neigh-

bourswi. We writeGD = Gτ for any transition τ ∈ T (u)with preciselyDij matches {uwi, uwj}
between any pair of neighbours. We also introduce the notation

d! = d1! · · · ds! and D! =
∏

1⩽i<j⩽s

(Dij!).

We only consider zero diagonals, because Dii > 0 would produce self-loops in GD, which
thus do not contribute to M(G). The row sum constraint arises because a transition has to pair
up all half-edges at u.

Lemma 6.28. LetG be a regular graph without self-loops and u any vertex. Let d = (d1, . . . , ds)
denote the edge multiplicities at u. Then

M(G) =
∑
D

d!

D!
M(GD) (6.12)

where the sum is over all matrices D as in Definition 6.27. The coefficients are integers,

d!

D!
= D!

s∏
i=1

(
di

Di1, . . . , Dis

)
. (6.13)

Proof. With the notation introduced above, this is just a rewriting of the vertex expansion (1.1),
including only transitions that do not produce self-loops in Gτ . The coefficient of M(GD) is the
number of transitions with the number of pairings prescribed by D. For every neighbour wi, a
transition partitions the di edges uwi into a part of size Di1 (which is paired with an edge uw1), a
part of size Di2 (to be paired with uw2), and so on. These partitions are counted by the multino-
mial coefficients in (6.13). The remaining factors Dij! in D! count the ways to pair the thus cho-
sen Dij copies of uwi with the Dji = Dij chosen copies of uwj into the new edges {uwi, uwj}
in GD.

Example 6.29. Let K [α,β,γ]
4 denote the graph on 4 vertices {1, 2, 3, 4} with m12 = m34 = α,

m13 = m24 = β, and m14 = m23 = γ, where mij denotes the number of edges between
vertices i and j. This is a regular graph of degree α + β + γ. Suppose that α + β + γ = 2k is
even. Then there is at most a single summand in (6.12), because a matrix D for the transitions at
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vertex 4 is uniquely determined by the row sums (d1, d2, d3) = (γ, β, α); it must beD12 = k−α,
D13 = k − β, D23 = k − γ. Therefore

M
(
K

[α,β,γ]
4

)
=

{
α!β!γ!

(k−α)!(k−β)!(k−γ)!
if α, β, γ ⩽ k and

0 otherwise.
(6.14)

Lemma 6.30. If p is a prime and u a vertex with a neighbour wi with edge multiplicity di ⩾ p,
then for every summand in (6.12), the coefficient d!/D! is divisible by p.

Proof. If D has an entry Dij ⩾ p, the divisibility follows from the D! factor on the right-hand
side of (6.13). So assume that all entries of D are less than p. Then D! is not divisible by p,
but di!, and thus d!/D!, is.

Corollary 6.31. For every 4r-regular graph G on at least 4 vertices, with p = r + 1 prime,
M(G) is divisible by p.

Proof. If G has self-loops, then the claim is trivial by M(G) = 0. For graphs with more than 4
vertices, the claim follows inductively by vertex expansion (1.1) to smaller graphs. Hence we
only need to consider G with 4 vertices and no self-loops, that is, G ∼= K

[α,β,γ]
4 for some in-

tegers α, β, γ with α + β + γ = 4r. Since at least one of {α, β, γ} must exceed r = p − 1,
Lemma 6.30 implies the claim.

Corollary 6.32. Let p = r + 1 be prime. Then for every 4r-regular graph G with 5 vertices,
which is not isomorphic to K

[r]
5 , we have that M(G) is divisible by p2.

Proof. If G has any edge of multiplicity greater than r, expansion at a vertex with such an edge
writes M(G) as a linear combination of (d!/D!)M(GD). The factor d!/D! is divisible by p due
to Lemma 6.30, and M(GD) is divisible by p due to Corollary 6.31. So we conclude that M(G)
is divisible by p2 whenever G has an edge with multiplicity ⩾ p. So, assume that all edges have
multiplicity ⩽ r. To reach degree 4r at every vertex, we must then have G ∼= K

[r]
5 .

Lemma 6.33. The Martin invariant of the r-fold power of the complete graph K5 is

M
(
K

[r]
5

)
= (r!)4

∑
α+β+γ=r

(r + α)!(r + β)!(r + γ)!

(α!β!γ!)2(r − α)!(r − β)!(r − γ)!
(6.15)

and congruent to M(K
[r]
5 ) ≡ −3p mod p2 whenever p = r + 1 is prime.

Proof. The expansion (6.12) at any vertex produces

M
(
K

[r]
5

)
=

∑
α+β+γ=r

r!r!r!r!

(α!β!γ!)2
M
(
K

[r+α,r+β,r+γ]
4

)
.

Inserting (6.14) gives (6.15). Now consider p = r + 1 prime. The denominator of the
summand in (6.15) is not divisible by p. The numerator is divisible by p2 unless at
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most one of α, β, γ is non-zero. We conclude that modulo p2, only the three summands
with (α, β, γ) ∈ {(0, 0, r), (0, r, 0), (r, 0, 0)} contribute. Therefore,

M
(
K

[r]
5

)
≡ 3(r!)2(2r)! = 3(r!)3p(p+ 1) · · · (2p− 2) ≡ −3p · (r!)4 mod p2

and the claim follows from Wilson’s theorem r! ≡ −1 mod p.

Note how the three explicit summands contributing in the last step of the proof are what leads
to the explicit factor of 3, causing extra trouble for p = 3.

Corollary 6.34. For every 4r-regular graph with 5 vertices and r + 1 prime, we
have M(G) ≡ 3pNr,r(H) mod p2.

Proof. For every graph other than K
[r]
5 the claim follows from Corollary 6.32 and Lemma 6.26.

For G = K
[r]
5 , see Lemma 6.33 and Lemma 6.26.

This establishes the base case (6.9) for all primes p ̸= 3. Now consider the special case p = 3.
Then (6.9) is equivalent to

M(G) ≡ 9N2,2(H) mod 27, (6.16)

that is, we have to compute the Martin invariants mod p3. We first note that the expres-
sion M(G)/9 mod 3 on the right-hand side of (6.9) makes sense.

Lemma 6.35. The Martin invariant of every 8-regular graph with at least 5 vertices is divisible
by 9.

Proof. By vertex expansion (1.1), the claim reduces to the case of graphs G with 5 vertices.
IfG = K

[2]
5 , thenM(G) ≡ −3p ≡ 0 mod p2 for p = 3. For all other graphs, see Corollary 6.32.

We thus have M(G) ≡ 9j mod 27 for some integer j, but for graphs with 5 vertices, j is
not necessarily congruent to N2,2(H). For example, the totally decomposable graph

M

(
[2]
)

= (4!)2 ≡ 9 mod 27

has j ≡ 1 mod 3; but we saw in Lemma 6.26 that N2,2(H) ≡ 0 mod 3. Therefore, for
prime p = 3 and 5 vertices, the c2 invariant cannot be read off the Martin invariant modulo p3.
We need to base the induction one step up, at 6 vertices.

So consider an 8-regular graph G with 6 vertices. Recall that G has 5 special vertices la-
belled {v, w, a, b, c} with H = G \ {v, w}, such that w is connected only to {a, b, c, v}, via a
double edge to each. It follows that the sixth vertex, call it u, is not connected to w and has
at most 4 neighbours {a, b, c, v}. If any of these connections to u has multiplicity 3 or higher,
then Lemma 6.30 shows that N2,2(H) ≡ 0 mod 3, since N2,2(H) fulfils the Martin recursion
at u. By Lemma 6.30 and Lemma 6.35, we also find M(G) ≡ 0 mod 27, hence we have estab-
lished (6.16) in this case.
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Figure 6.14: The doubled octahedron G = (C6
1,2)

[2] and the graph G′.

(Dab, Dac, Dbc) (2, 0, 0) (0, 2, 0) (0, 0, 2) (1, 1, 0) (1, 0, 1) (0, 1, 1)

d!/D! 4 4 4 16 16 16

GD K
[2]
5

G′
D K

[2]
5

Table 6.1: Contributions to the vertex expansion at u of the graphs from Figure 6.14.

It remains to consider graphs G where u is connected to each of {a, b, c, v} via a double
edge. So we are only left to arrange 8 edges between {a, b, c, v} to obtain an 8-regular graph G.
Let mij denote these multiplicities. The 8-regularity implies that mab = mcv, mac = mbv,
and mav = mbc. As before, any edge of multiplicity mij ⩾ 3 will force M(G) ≡ 0 mod 27.
Similarly, we will have N2,2(H) ≡ 0 mod 3, because the expansion at u can only add further
edges between {a, b, c}; so if maj ⩾ 3 already, it will stay strictly above 2 even in GD \ {v, w},
and therefore N2,2(H) ≡ 0 mod 3 by Lemma 6.26.

The only remaining cases then are those where all mij ⩽ 2. Up to permuting the ver-
tex labels, there are only two isomorphism classes of such graphs: (mab,mac,mbc) = (0, 2, 2)
and (mab,mac,mbc) = (1, 1, 2). The corresponding graphs G and G′ are shown in Figure 6.14.

Lemma 6.36. The Martin invariants of the two graphs in Figure 6.14 are

M(G) = 84096 ≡ −9 mod 27 and M(G′) = 97920 ≡ −9 mod 27.

Proof. Apply the expansion (6.12) to the vertex u. This produces the terms in Table 6.1. Two
of the arising 5-vertex graphs are totally decomposable due to 4-fold edges, so that

M
( )

= M

( )
= (4!)2.

We evaluate the remaining two 5-vertex graphs with the expansion (6.12) for the bottom left
vertex. Together with (6.14), this results in

M
( )

=
2!3!3!

1!1!2!
M
(
K

[2,3,3]
4

)
= 1296 and

M

( )
=

2!2!3!

1
M
(
K

[2,3,3]
4

)
+

2!2!3!

2
M
(
K

[2,2,4]
4

)
+

2!2!3!

2
M
(
K

[2,3,3]
4

)
= 1584.
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Inserting these values andM(K
[2]
5 ) = 2016 from (6.15) into Table 6.1, we obtainM(G) = 84096

and M(G′) = 97920.

It remains to show that N2,2(H) ≡ −1 mod 3 for H = G \ {v, w} and H ′ = G′ \ {v, w}.
By Lemma 6.26, we can compute N2,2(H) mod 3 by counting the number of transitions at u
that produce GD

∼= K
[2]
5 and then multiplying by −1. According to Table 6.1, in each case there

is only one matrix D with this property, thus N2,2 ≡ −d!/D! mod 3 gives

N2,2(H) ≡ −4 ≡ −1 mod 3 and N2,2(H
′) ≡ −16 ≡ −1 mod 3.

This finishes the proof that (6.16) holds for all H = G \ {v, w} with 4 vertices, that is, for all
graphs G with 6 vertices.

Consequently, this completes the proof of Theorem 6.2 for all primes, especially p = 3.

7. Computer calculations

We implemented the recursion (6.12) in Maple™, using nauty [MP14] to identify isomorphic
graphs.22 We use a cache table indexed by the canonical label of a graph, to avoid the recom-
putation of Martin invariants of isomorphic graphs. To test our implementation, we confirmed
that the results for M(G) and M(G[2]) for all 4-regular graphs with ⩽ 13 vertices, and M(G[2])
for all 3-regular graphs with ⩽ 18 vertices, agree with the values obtained by an independent,
simple but much slower Form [Ver00] program that computes the sum (2.12). We also checked
in many cases that our results for M(G[r]) are compatible with known permanents [Cru17b] and
c2-invariants [HSSY22, BS13] via (4.3) and (6.3).

Using this code, we computed the first few entries of the Martin sequences of all 3- and
4-regular graphs with small numbers of vertices. These results are provided in open data text
files Martin3.txt and Martin4.txt, respectively, that form part of this paper [Pan24]. Below
we give a summary of those computational results and highlight several observations.

7.1. 4-regular graphs

Due to Theorem 1.2 and the product identity (1.4), we only consider cyclically 6-connected 4-
regular graphs without a 3-vertex cut. The isomorphism classes of such graphs have been enu-
merated in [Sch10] up to n ⩽ 13 vertices. They are labelled Pℓ,1, Pℓ,2, . . .where ℓ = n− 2 ⩽ 11
denotes the loop number of any decompletion. Explicit definitions of these graphs are given in
a file provided with [PS17].

Table 7.1 summarizes our findings for the first two entries M(G) and M(G[2]) of the Martin
sequences. Explicit values are given for up to ℓ ⩽ 8 loops in Table 7.3. We note:

• Up to 7 loops, the Martin invariant M(G) is a perfect period invariant: By this we mean
that M(G1) = M(G2) if and only if P(G1 \ v) = P(G2 \ v). This follows from Ta-
ble 7.3 because at 7 loops, all periods are known [PS17] and the twist P7,4 ↔ P7,7 and the
duality P7,5 ↔ P7,10 provide the only two relations.

22Maple is a trademark of Waterloo Maple Inc.

http://www.maplesoft.com/products/Maple/
http://pallini.di.uniroma1.it/
https://www.nikhef.nl/~form/
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loop order ℓ 3 4 5 6 7 8 9 10 11

|{graphs G}| 1 1 1 4 11 41 190 1182 8687
|{M(G)}| 1 1 1 4 9 25 100 409 1622

|{M(G[2])}| 1 1 1 4 9 29 129 776 6030
|{Hepp bounds H(G \ v)}| 1 1 1 4 9 29 129 776 6030

Table 7.1: The number of graphs, Martin invariants, and Hepp bounds up to 11 loops.

↔ ↔

P8,30 P8,36 P8,31 P8,35

Figure 7.1: Two unexplained pairs of graphs with apparently equal Martin sequences.

• Starting at 8 loops, there are pairs of graphs with the same Martin invariant, but different
period. At 8 loops, there are 4 such pairs (highlighted in Table 7.3).

• If we consider instead the Martin invariants of the doubled graphs, then we find that for all
graphs with ℓ ⩽ 11 loops, M(G

[2]
1 ) = M(G

[2]
2 ) holds if and only if H(G1\v) = H(G2\v).

Since the Hepp bound is expected to be a perfect period invariant for 4-regular graphs
[Pan23, Conjecture 1.2], we thus expect that M(G[2]) is a perfect period invariant up to 11
loops.

• For higher powers, we computed: M(G[3]) up to ℓ ⩽ 11, M(G[4]) up to ℓ ⩽ 10, M(G[5])
and M(G[6]) up to ℓ ⩽ 9, M(G[7]) and M(G[8]) up to ℓ ⩽ 8, and M(G[9]) and M(G[10])
up to ℓ ⩽ 7. For all these higher powers we find, as for M(G[2]), that they coincide
precisely when the Hepp bounds (and hence conjecturally the periods) coincide. All this
data constitutes our evidence for Conjecture 1.10.

The most interesting instances of Conjecture 1.10 are the graphs in Figure 7.1. These graphs
come in two pairs that share the same Hepp bound [Pan23], hence we expect that

P(P8,30 \ v) = P(P8,36 \ v) and P(P8,31 \ v) = P(P8,35 \ v), (7.1)

which does not follow from any of the known period identities. Correspondingly, the entire
Martin sequences should agree, that is, we conjecture that

M(P
[r]
8,30) = M(P

[r]
8,36) and M(P

[r]
8,31) = M(P

[r]
8,35) (7.2)

hold for all positive integers r. Our calculations confirm these identities explicitly in the
range 1 ⩽ r ⩽ 8. Modulo primes p = 2r + 1, (7.2) was checked much farther, up to r ⩽ 50
(via Theorem 4.1 from the permanents in [Cru17b, Appendix A]), and modulo the smaller
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primes p = r + 1, (7.2) was checked up to r = 100 (via Theorem 6.2 from the c2 invari-
ants calculated in [BS13]). We have thus accumulated overwhelming evidence for (7.2). In our
view, this strengthens considerably the credibility of the conjecture (7.1).

We also calculated examples that show that several of our results are best possible:

• Feynman period identities do not extend from the Martin invariant to the full Martin poly-
nomial. For example, P7,4 and P7,7 are related by a twist, and also by planar duality (Fig-
ure 5.4), but their Martin polynomials

m(P7,4, x) = x( 7x3 + 210x2 + 1054x+ 1320) and
m(P7,7, x) = x(13x3 + 200x2 + 1030x+ 1320) differ.

• The divisibility of M(G[r]) by (r!)2(n−3) for r-fold duplications of 4-regular graphs (Corol-
lary 5.21) does not persist for other 4r-regular graphs. For example, the complete graphK9

is an 8-regular graph on n = 9 vertices, but

M(K9) = 29 · 35 · 52 · 7 · 17 · 167 (7.3)

is not divisible by 212.

• The Martin invariant is determined by the cycle matroid, but it is not determined by the
Tutte polynomial TG(x, y). For example, P11,8403 and P11,8404 have the same Tutte poly-
nomial, but M(P11,8403) = 12438 and M(P11,8404) = 12442 differ.

Finally, we comment on the quantitative relation between the Martin invariant and the period.
Using the known periods from [PS17], we find a negative approximate correlation (Figure 1.1):
graphs with smaller M(G) tend to have larger periods P(G \ v).

We find in particular that, at each loop order ℓ ⩽ 11, the Martin invariant is minimized by a
unique graph: the circulant Pℓ,1 = Cℓ+2

1,2 . Its decompletion is called zigzag graph, whose period
is known and expected to be the largest [BS15]. While the period maximization is a conjecture,
the Martin minimization was shown in [BG96, Theorem 6.2]:

Proposition 7.1. If G is a cyclically 6-connected 4-regular graph with n ⩾ 5 vertices,
then M(G) ⩾ M(Cn

1,2). Furthermore, equality holds only if G ∼= Cn
1,2, and the value is

M(Cn
1,2) =

(3n− 2) · 2n−3 − 2 · (−1)n

9
. (7.4)

The expansion (1.2) gives the recurrence M(Cn
1,2) = M(Cn−1

1,2 ) + 2M(Cn−2
1,2 ) + 2n−4

where 2n−4 comes from a totally decomposable graph, leading to the closed form (7.4). That
this is the minimum among cyclically 6-connected graphs is related to the following properties.

• If G has a 3-vertex cut, then M(G) = M(G1)M(G2) ⩾ M(Ck
1,2)M(Cr

1,2) > M(Cn
1,2)

cannot be minimal. Here k + r = n+ 3 and k, r ⩾ 5.

• If G has no 3-vertex cut, then at each vertex, there is at least one transition such that Gτ is
cyclically 6-connected [FGJ07, Lemma 3.2].
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loops maxM(G) G HoG |Aut(G)|

3 6 P3,1 = K5 462 120
4 14 P4,1 = C6

1,2 226 48
5 36 P 2

3,1 912 48
6 108 P6,4 = K4,4 = C8

1,3 570 1152
7 256 P7,8 50432 16
8 728 P8,40 = C10

1,4 = C10
2,3 45705 320

9 1894 P9,190 = C11
1,3 = C11

1,4 = C11
2,3 50433 22

10 5300 P10,1182 = C12
2,3 33319 48

11 14376 P11,8687 = C13
1,5 = C13

2,3 21065 52

Table 7.2: The unique primitive ϕ4 graphs that maximize M(G) at each loop order ⩽ 11. Com-
plete (bipartite) and circulant graphs are highlighted, and the column HoG links to their entries
in the House of Graphs [CDG23].

• If at each vertex there is only one transition such that Gτ is cyclically 6-connected,
then G ∼= Cn

1,2 by [BG96, Theorem 6.1].

At the other extreme, our data shows that at each loop order ℓ ⩽ 11, the Martin invariant is
also maximized by a unique graph, see Table 7.2. We did not identify a general pattern, but the
non-trivial automorphism groups and the prevalence of circulants among these graphs suggest
some underlying structure. The same graphs were recently noticed to maximize the number of
connected sets [CGJ25].

7.2. 3-regular graphs

A 3-regular graph has an even number n of vertices, and we denote by ℓ = n/2 − 1 the loop
number of its decompletions. The cyclically 4-connected 3-regular graphs with ℓ ⩽ 9 (that is,
up to n ⩽ 20 vertices) have been enumerated in [BS22], where also many of their periods were
computed. We use the notation Pℓ,k from that paper; the definition of these graphs as edge lists
can be found in the file PeriodsPhi3.txt from [BS22].

We computed M(G[2]) and M(G[4]) for all graphs Pℓ,k from [BS22] with ℓ ⩽ 9, and M(G[6])
for ℓ ⩽ 8. A summary of our findings is given in Table 7.4. We observe in particular:

• Up to ℓ ⩽ 5, M(G[2]) is a perfect period invariant: P(G \ v) is the same for two graphs if
and only if M(G[2]) is the same. This is not true for the Hepp bound: P5,5 and P5,9 have
different periods but equal Hepp bound [BS22, §1.6].

• At ℓ = 6 loops, there is a single pair of graphs {P6,59, P6,68} with the property that their
periods differ [BS22] while M(P

[2]
6,59) = M(P

[2]
6,68) = 229 · 52 agree. However, the next

term M(G[4]) in the Martin sequence takes different values on this pair, and we find that
indeed M(G[4]) is a perfect period invariant at ℓ = 6.

https://houseofgraphs.org/graphs/462
https://houseofgraphs.org/graphs/226
https://houseofgraphs.org/graphs/912
https://houseofgraphs.org/graphs/570
https://houseofgraphs.org/graphs/50432
https://houseofgraphs.org/graphs/45705
https://houseofgraphs.org/graphs/50433
https://houseofgraphs.org/graphs/33319
https://houseofgraphs.org/graphs/21065
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Graph G M(G) M(G[2])/4ℓ−1

P3,1 6 126

P4,1 14 1314

P5,1 34 14706

P6,1 78 147546
P6,2 86 180594
P6,3 92 212436
P6,4 108 296676

P7,1 178 1453914
P7,2 202 1891314
P7,3 210 2083770

P7,4, P7,7 220 2313900
P7,6 226 2454426

P7,5, P7,10 228 2577204
P7,9 240 2929680
P7,11 246 3116286
P7,8 256 3358656

Graph G M(G) M(G[2])/4ℓ−1

P8,1 398 13881906
P8,2 470 19288170
P8,3 470 19560330
P8,4 494 21875634

P8,6, P8,9 510 23224770
P8,5 516 24331644

P8,7, P8,8 518 24330906
P8,11, P8,15 524 25080084

P8,14 534 26486154
P8,13, P8,21 542 26900226
P8,10, P8,22 548 27340956

P8,12 548 28399356
P8,18, P8,25 564 30075084

P8,20 566 30153834
P8,19, P8,27 572 31573476
P8,17, P8,23 582 32301306

P8,16 584 31092984
P8,29 584 33515064

P8,30, P8,36 602 36055206
P8,26, P8,28 608 36570816

P8,33 618 38238966
P8,32, P8,34 620 38026260
P8,31, P8,35 624 38998224

P8,37 638 41602626
P8,24 656 42769584
P8,38 656 44586864
P8,39 660 45058860
P8,41 684 50848884
P8,40 728 54288936

Table 7.3: The first two Martin invariants of ϕ4 primitives Pℓ,i with n = ℓ + 2 ⩽ 13 vertices.
All identities (two graphs in the same row) are explained by twists or dualities, except for the
two unexplained identities P8,30 ↔ P8,36 and P8,31 ↔ P8,35.
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loop order ℓ 1 2 3 4 5 6 7 8 9

|{graphs G}| 1 1 2 5 18 84 607 6100 78824
|{M(G[2])}| 1 1 2 5 17 72 441 4015 47074
|{M(G[4])}| 1 1 2 5 17 73 472 4534 58432

|{periods P(G \ v)}| 1 1 2 5 17 73 ? ? ?
|{Hepp bounds H(G \ v)}| 1 1 2 5 16 72 470 4522 58409

Table 7.4: The number of Martin invariants, periods and Hepp bounds among cyclically 4-
connected 3-regular graphs with 2ℓ+ 2 vertices.

• We conjecture that M(G[4]) remains a perfect period invariant also for 7 ⩽ ℓ ⩽ 9. In this
range, however, not all periods are known, and the Hepp bounds are only expected to give
a lower bound on the number of periods.23

Because the Martin invariant is defined only for graphs with even degree, we define the Martin
sequence of a 3-regular graph as

M(G•) =
(
M(G[2]),M(G[4]),M(G[6]), . . .

)
.

All available data is compatible with the following variant of Conjecture 1.10, which gives a
purely combinatorial characterization of 3-regular graphs with equal periods:

Conjecture 7.2. Two cyclically 4-connected 3-regular graphs G1 and G2 with the same number
of vertices have equal period P(G1 \ v1) = P(G2 \ v2) if and only if they have equal Martin
sequences M(G•

1) = M(G•
2).

Lemma 7.3. For a cyclically 4-edge connected, 3-regular graph with 2ℓ+2 vertices, the Martin
invariant M(G[2r]) is divisible by r! · [(2r)!]3ℓ−2.

Proof. This follows similarly to Corollary 5.21, by adapting Lemma 5.9 to the case of half-
integer k = 3/2.

Turning to the quantitative relation between periods and Martin invariants, we find the
same kind of behaviour as for 4-regular graphs; a plot of the known periods from [BS22]
versus M(G[2]) shows an approximate power law correlation, similar to Figure 1.1.

We also find that at any fixed number of vertices 8 ⩽ 2ℓ + 2 ⩽ 20, there is a unique graph
that minimizes M(G[2]): the prism Yℓ+1 = K2×Cℓ+1 over a base polygon Cℓ+1 with ℓ+1 sides
(see Figure 7.2). We expect that this persists for higher ℓ:

Conjecture 7.4. If G is a cyclically 4-connected 3-regular graph with 2ℓ + 2 ⩾ 8 vertices,
then M(G[2]) ⩾ M(Y

[2]
ℓ+1) and equality holds only if G ∼= Yℓ+1.

23We do not know that the Hepp bounds give a lower bound on the number of periods in this context, but we do
expect it. Specifically, we expect that P(G1) = P(G2) implies H(G1) = H(G2).
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P3,1 P4,2 P5,1 P6,8 P7,1 P8,79 P9,1

Figure 7.2: Prism graphs Yℓ+1 = K2 × Cℓ+1 and their labels in [BS22].

→ 16 +32 +32

Figure 7.3: The result of applying the Martin recurrence to two vertices of a doubled rung. The
remainder of the graph connects at top and bottom where indicated and is identical in all the
terms.

We can give a closed formula for these minimal Martin invariants: For all ℓ ⩾ 2,

M(Y
[2]
ℓ+1) = 42ℓ−1[3ℓ−2(4ℓ− 1)− 1]. (7.5)

Our proof uses the approach of Lemma 6.9, namely we obtain a transfer matrix of rank 3 to derive
a recurrence relation in the following manner: Beginning with one rung of prism visualized as
a cyclic ladder, apply the Martin recurrence to the two vertices of the rung. This results in the
three terms illustrated in Figure 7.3. For each of the graphs on the right-hand side, consider how
the next rung below interacts with the part drawn. For the first term on the right-hand side we
have simply returned to the left-hand side, but with the entire graph having one rung fewer. For
the second and third terms on the right-hand side, we have different graphs to consider but in
both cases we can, as before, reduce the two vertices where the next rung connected. The result
in both cases will include some graphs we’ve already seen on the right-hand side and some new
ones. Ultimately, we need four more equations, as illustrated in Figure 7.4. Letting an represent
the Martin invariant of the original ladder with n rungs, and bn, cn, dn, and en likewise for the
graphs of Figure 7.4, the calculations of the figures can be rephrased as

an = 16an−1 + 32cn−1 + 32dn−1

bn = 16bn−1 + 32cn−1 + 32dn−1

cn = 12en−1 + 48cn−1

dn = 8an−1 + 48cn−1 + 4en−1 + 32dn−1 + 8bn−1

en = 0

Observe that dn = 1
2
an + 1

2
bn + 1

3
cn (this is most apparent after reducing just one of the rung

edges, but can also be verified from the equations above). Using this fact along with en = 0 we
can simplify to a system of three recurrencesan

bn
cn

 =

32 16 128
3

16 32 128
3

0 0 48

an−1

bn−1

cn−1

 .
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→ 16 +32 +32

→ 12 +24 +24

→ 8 +24 +24

→

,

0

+4 +32 +8

Figure 7.4: The result of applying the Martin recurrence to the other graphs needed to get a
system of recurrences.

Solving the system gives the claimed formula.
Remark 7.5. As for ϕ4, our data shows that also that at each loop order ℓ ⩽ 9, there is a unique ϕ3

primitive graph that maximizes the Martin invariant M(G[2]). Those graphs are collected in
Table 7.5. Again, the same graphs were recently noticed to maximize the number of connected
sets [CGJ25].
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Table 7.5: The unique graphs that maximize M(G[2]) among ϕ3 primitives at a fixed loop order.
The column HoG links to their entries in the House of Graphs [CDG23].
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