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“The woods are lovely, dark and deep,

But I have promises to keep,

And miles to go before I sleep,

And miles to go before I sleep.”

Robert Frost



UNIVERSITY OF CALIFORNIA, MERCED

Abstract
Program for Quantitative & Systems Biology

School of Natural Sciences

Doctor of Philosophy

by Simar J. Singh

Cellular metabolism is a defining feature in every physiologic and pathologic

process. Through advances in metabolomics, systems biologists can now track

the dynamic interactions of the metabolome with the epigenome, genome, tran-

scriptome and proteome. Metabolomics as an analytical platform is still in its

infancy, and the quality of data is highly dependent on sample preparation, includ-

ing derivatization for gas chromatography coupled mass spectrometry (GCMS).

Using a GCMS based approach, metabolism was found to play an important role

in cellular proliferation, differentiation, apoptotic and autocrine signaling, and

resistance to targeted cancer therapies. These results highlight how understanding

cellular metabolism can provide important insights into cellular processes both in

development and disease. Increased attention to how metabolism supports and

regulates such diverse cellular responses will allow for more precise engineering of

biological function and the identification of targeted therapies to cure disease. . . .
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Chapter 1

Introduction

1.1 Overview

Cellular metabolism is a key feature of every biological process, whether physio-

logic or pathologic. The advent of metabolomics as an analytical paradigm has

enabled systems level interrogation of these cellular processes, with gas chromatog-

raphy coupled mass spectrometry (GCMS) providing a powerful yet accessible

platform for metabolomics analysis. What follow in subsequent chapters of this

dissertation are a reflection of my published and submitted work applying systems

biology strategies to investigate the contribution of metabolic processes to diverse

cellular functions including differentiation[1], cellular proliferation[1-3], cell-cell

communication[1], tumor heterogeneity[2], anti-apoptotic signaling[3], cancer re-

sistance[4], and autocrine[5] signaling.

Author contributions to the work presented in this dissertation:

Chapter 1: Performed literature review, prepared all figures and text.

Chapter 2: Performed literature review, prepared all figures and text.

Chapter 3: Collected and analyzed the data presented in Figures 3, 4, 5, 6.

Performed literature review, prepared figures, wrote manuscript.
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Chapter 4: Collected and analyzed the data in Figure 1. Wrote mass spectrom-

etry methods section of manuscript. Edited manuscript.

Chapter 5: Analyzed publicly available data presented in Figures 1, 2 and Table

1. Collected and analyzed all other data presented. Performed literature review,

prepared figures, wrote text.

Chapter 6: Performed literature review, prepared all figures, wrote text.

Chapter 7: Prepared text.
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1.2 Background

1.2.1 Overview of Metabolism

Central carbon metabolism refers to the flow of organic molecules through gly-

colysis, the pentose phosphate pathway (PPP), and the tricarboxylic acid (TCA)

cycle. Generally, under normoxic conditions, a molecule of glucose is oxidized

in the cytosol via glycolysis to yield pyruvate, adenosine triphosphate (ATP)

and reduced nicotinamide adenine dinucleotide (NADH). Pyruvate is then decar-

boxylated by mitochondrial pyruvate dehydrogenase (PDH) into acetyl-coenzyme

A (acetyl-CoA) before further oxidation in the TCA cycle. The result of this

oxidative flow is the generation of NADH and reduced flavin adenine dinucleotide

(FADH2) and the transfer of electrons to the electron transport chain (ETC).

The ETC couples the flow of electrons to an electrochemical gradient by pumping

protons across the inner mitochondrial membrane thereby driving ATP synthesis

via oxidative phosphorylation (OXPHOS). As the final electron acceptor for the

ETC, oxygen is necessary for the coupling of glycolysis to OXPHOS. In hypoxia,

lactate dehydrogenase (LDH) transfers electrons from NADH to pyruvate, creating

lactate and replenishing the pool of oxidized NAD+ for continued glycolysis, a

process known as fermentation. Under idealized conditions, glycolysis, TCA cycle,

and OXPHOS generate a combined 36-38 molecules of ATP per glucose molecule,

while fermentation produces only 2 molecules of ATP.

Central carbon metabolism is however not a unidirectional system existing for the

sole purpose of ATP generation. Rather it is a dynamic hub of metabolic pathways

with numerous entry and exit points serving multiple functions. Cataplerosis refers

to the exit of a metabolic intermediate, while anaplerosis refers to the entry of an

intermediate metabolite into a metabolic pathway[3,6]. For example, transami-

nation of the TCA cycle intermediate alpha-ketoglutarate (AKG) generates the

multifunctional amino acid glutamate in a biosynthetic and cataplerotic reaction.

Conversely, the amino acid glutamine can be imported from the extracellular space,

metabolized into glutamate and then AKG, providing an alternative, replenishing

fuel for the TCA cycle via anaplerosis [7-9].These metabolic side streets provide a
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flexible framework for cells to couple bioenergetics and diverse processes such as

macromolecular biosynthesis, redox balance, signaling, and gene regulation[10,11]

The following sections highlight how cells engage cellular metabolism to support

distinct cellular processes and the methods employed by systems biologists to

understand the confluence of metabolism and cell biology.

1.2.2 Cancer metabolism

The importance of cellular metabolism in permitting cellular growth and prolifer-

ation has only recently garnered increasing attention[12]. If a cell is to divide, it

must double its biomass; it will need more nucleic acids to replicate its DNA, more

lipids for additional cell membrane, and more amino acids for protein synthesis.

The constant need to survive and divide under diverse nutrient conditions places

a premium on metabolic adaptability that is borne out during the metastatic

progression and evolution of a tumor.

Metabolic reprogramming is an emerging hallmark of cancer, particularly melanoma,

and is driven by the mutational activation of oncogenes and the inactivation of

tumor suppressors[8,13-15]. Despite widespread heterogeneity, what is consistent

across the metabolic landscape of cancer is that proliferating cells must fuel in-

creased demands for 1) macromolecular building blocks (nucleotide, amino acid,

and fatty acid synthesis), 2) high energy molecules (NADH and ATP generation),

and 3) maintenance of redox balance (glutathione and peroxiredoxin synthesis)[16-

20].

1.2.2.1 Glycolysis

The increased metabolic demands of highly proliferative cells are partially sup-

ported by aerobic glycolysis (the Warburg effect) which provides energy and build-

ing blocks for macromolecule biosynthesis[17,21,22]. In normoxia, melanoma cells

of various oncogenic backgrounds convert 60-80% of glucose into lactate, a value

that increases to 90% in hypoxia[23]. Under both normoxic and hypoxic con-
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ditions, hypoxia inducible factors (HIFs) induce a transcriptional program that

profoundly impacts central carbon metabolism[24,25]. Increased pyruvate dehy-

drogenase kinase 1 (PDK1) and decreased pyruvate dehydrogenase (PDH) activity

lower mitochondrial respiration[25]. Interestingly, under hypoxia, the acetyl-CoA

necessary to support fatty acid biosynthesis is partially produced via the reductive

carboxylation of glutamine derived AKG, which proceeds in reverse through the

TCA cycle and is dependent upon isocitrate dehydrogenase (IDH) 1 and 2[8,27].

Other glycolysis related changes included increased glucose uptake and increased

LDH and pyruvate kinase expression[28 − 30].

Pyruvate kinase (PK), termed the pacemaker of glycolysis, is the terminal enzyme

of glycolysis and catalyzes the irreversible dephosphorylation of phosphoenolpyru-

vate (PEP) to pyruvate. The oncofetal isoform of pyruvate kinase (PKM2), is

unique among PK isoforms is that it may exist in a dimeric form that is capable

of being regulated by both post-translational modification and allosteric interac-

tion[29,31]. By integrating complex inputs from growth factor and metabolite

signaling, PKM2 is able control the rate of glycolysis, and therefore the level of

glycolytic intermediates available for biosynthetic processes, termed anaplerosis.

In this fashion, increased PKM2 expression in proliferating cells provides for the

generation of cellular building blocks necessary for replication.

Besides its metabolic role, several non-metabolic functions of PKM2 have been

described within the nucleus. Multiple lines of evidence suggest an important

role for nuclear PKM2 in regulating gene transcription. Firstly, diverse signals

elicit the nuclear translocation of PKM2 from the cytosol, including phosphory-

lation by ERK1, acetylation on Lys 433, pro-apoptotic signaling, interleukin-3

response, lipopolyscharraide (LPS) stimulation, and interaction with the dioxyge-

nase/demethylase JMJD5[32-37].

Within the nucleus, PKM2 acts as both a transcriptional coactivator and a protein

kinase. When complexed with JMJD5, PKM2 mediates the HIF1a-mediated

transcriptional reprogramming of metabolic genes in hypoxic cancer cells[34]. Nu-

clear PKM2 interacts with Oct-4 to enhance the transcription potential of this

master transcription factor, and PKM2 interacts with phosphorylated β-catenin to
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induce c-Myc expression and the subsequent Myc directed upregulaion of glycolytic

genes during tumorigenesis[33,38,39]. Additionally, PKM2 promotes the spatial

proximity of tumor necrosis factor alpha (TNFα) alleles and their transcription

by binding GA repeat nucleotides within the tnfa promoter upon LPS stimulation

of murine macrophages[37].

As a protein kinase, PKM2 activates STAT3, resulting in the enhanced transcrip-

tion of several proliferation related genes[40,41]. This interaction with STAT3 also

promotes cell migration via STAT3-mediated expression of Snail-2 (a repressor of

E-cadherin) and the upregulation of matrix metalloproteinases MMP-2 and MMP-

9[42,43]. Lastly, PKM2 phosphorylates histone 3 (H3) on Thr11, a prerequisite for

the dissociation of histone deacetylase 3 (HDAC3) and the subsequent acetylation

on lysine 9 (H3K9Ac) near promoter regions, including the promoters of the

oncogenes Myc and cyclin D1[44]. This data suggests that nuclear PKM2 plays

a pivotal role in the regulation of cellular proliferation, metabolism, migration

and metastasis via epigenetic and transcriptional control of gene expression. How-

ever, a comprehensive global map of nuclear PKM2 activity and regulated gene

expression changes does not yet exist.

1.2.2.2 Amino acid metabolism

Serine and glycine are biosynthetically linked nutrients found at the intersec-

tion of multiple biochemical pathways important for cancer proliferation[15, 45 −
47].Together they provide the essential precursors for the synthesis of proteins,

nucleic acids, and lipids crucial to cancer growth[46,48-52]. Moreover, serine/g-

lycine biosynthesis affects antioxidant capacity, and by fueling the folate cycle,

provides one-carbon units for a diverse set of biochemical reactions including

purine biosynthesis and epigenetic modifications[45,49,50,53-56]. The importance

of serine/glycine metabolism is further highlighted by genetic and functional evi-

dence indicating that over-activation of the serine/glycine biosynthetic pathway is

a driver of oncogenesis[57,58]. Similar to serine, alanine is synthesized at greater

rates in melanoma cells compared to melanocytes, despite both alanine and serine

being abundant in plasma and cell culture media[8,23] Given that melanoma cells
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generate alanine from both glycolysis and glutaminolysis, alanine bridges two

highly active pathways promoting cancer cell proliferation[8,23]. Identifying the

enzymes and pathways involved in alanine and amino acid metabolism.

1.2.2.3 Metabolism in stem cell fate and pluripotency

Stem cells are defined as clonogenic cells capable of both self-renewal and multi-

lineage differentiation[59,60]. Traditionally, metabolism was thought to serve

the basic energy demands of stem cells, in what was considered a secondary

consequence of signaling pathways related to a given cell state and function[61,62].

However it is now apparent that metabolism can dictate the functional state

of stem cells and control cell fate decisions[61,63,64]. Pluripotent stem cells

(PSCs) are highly glycolytic, displaying elevated expression of glycolytic enzymes,

decreased PDH, and high lactate production[1,65]. During differentiation however,

stem cells undergo a shift away from lactate fermentation towards mitochondrial

OXPHOS[1,66-68]. Moreover, induction of pluripotency in human and mouse

somatic cells requires the acquisition of a highly glycolytic metabolic state, and

is more efficient under hypoxia[69,70]. However, it is also clear that a func-

tioning mitochondrial TCA cycle and ETC are also vital for the maintenance

of pluripotency[66,70], indicating that a bivalent balance between glycolysis and

mitochondrial metabolism regulates pluripotency.

What benefit a glycolytic predominance provides to the maintenance of pluripo-

tency and self-renewal is unknown. In many ways, glycolysis skewed stem cells

resemble cancer cells that have de-differentiated and participate in high rates of

aerobic glycolysis, known as the Warburg phenomenon[21,71-73]. In cancer cells,

increased glucose uptake and aerobic glycolysis supports not only ATP production,

but provides precursors for macromolecule biosynthesis, including serine/glycine

for folate and nucleotide production, acetyl-CoA for fatty acid synthesis and

histone acetylation[23,57,74]. This glycolytic phenotype is similarly reinforced in

stem cells by transcription factors including the hypoxia inducible factors (HIF).

HIF1α promotes glycolysis in cancer and stem cells by upregulating glycolytic
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genes such as LDHA and PDK, the latter of which limits mitochondrial respiration

by inhibiting PDH and preventing the entry of pyruvate into the TCA cycle[75-82].

1.2.2.4 Metabolism in Stem Cell Quiescence

Metabolism also regulates quiescence, a state of growth and proliferation arrest

reversible by extracellular signals[83]. Quiescent hematopoietic stem cells (HSCs)

maintain low mitochondrial respiration and rely on glycolysis in a HIF1α depen-

dent manner, but require a shift to OXPHOS for activation and differentiation[75,77-

82]. In HSCs HIF1a promotes quiescence by activating PDK2/4, which also

reduces cellular reactive oxygen species (ROS)[75]. Loss of HIF1a, PDK2/4,

increased mitochondrial mass, and exposure to oxygen all lead to loss of quiescence,

likely due to the presence of increased ROS species[75,81,84,85].

1.2.2.5 Redox metabolism in Stem Cell Function

Metabolic control of redox states during stem cell function is important because

increasing ROS levels trigger differentiation and decreased ROS levels limit dif-

ferentiation of several quiescent stem cell populations[86-89]. Moreover, low ROS

levels are required for self-renewal capacity[90-92]. Aberrantly high levels of ROS

lead to DNA damage, promote stem cell exhaustion and tissue damage, and

accelerate stem cell aging[93,94]. A common theme that is emerging is the necessity

of low levels of mitochondrial ROS for stem cell quiescence and self-renewal,

and a dependence on a physiological increase in ROS to drive normal stem cell

proliferation and differentiation[62].

1.2.2.6 Metabolism and the Epigenome

The link between metabolism and the regulation of the stem cell epigenome is

growing[95]. Typically, DNA and histone methylation promote self-renewal and

pluripotency, while demethylation leads to activation and differentiation[96]. The

hypoxic bone marrow niche lowers AKG and raises succinate, thereby stabilizing
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HIF1 α, and inhibiting histone demethylases (HDMs) thereby promoting HSC

maintenance[97,98]. The enzymatic requirement for AKG in Jumonji C domain

containing histone lysine demethylases (KDMs) is a general phenomenon linking

cellular metabolic states to epigenetic modification[99-101]. Threonine catabolism

is critically vital for pluripotency because it provides one-carbon units via glycine

cleavage that are necessary for histone 3 methylation at lysine residue 4 (H3K4)

hypomethylation of which leads to loss of self-renewal, slowed growth and differ-

entiation[102,103].

The link between metabolism and histone acetylation is more complex. Histone

acetylation by histone acetyltransferases (HATs) generally promote gene tran-

scription while deacetylation by histone deacetylases (HDACs) generally remove

open chromatin marks. HAT-mediated acetylation is intimately tied to the pool

of available acetyl-CoA, which is generated in mitochondria via the catabolism

of glycolytic pyruvate, amino acids, or fatty acids[104]. HDACs, such as those

belonging to the NAD+ dependent Class III SIRT family, are regulated by the

ratio of NAD+/NADH[105]. Metabolic shifts resulting in altered acetyl-CoA

and NAD+ levels however have been reported to affect both HAT and HDAC

function and promote both pluripotency and differentiation[99,106,107]. Aging of

stem cells is linked to changes in metabolite levels, HAT/HDAC expression, and

epigenetic modification, raising the possibility that modulating affecting metabolic

parameters, such as NAD+ and acetyl-CoA production could form the basis of

rejuvenation strategies aiming to improve aged stem cell function[84,99,108,109].
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Chapter 2

Methods

Gas chromatography mass spectrometry (GCMS) based metabolomics is a young,

rapidly evolving analytical platform consisting of sample generation and collection,

metabolite extraction, derivatization, data acquisition and processing, metabolite

identification and quantification, and statistical analysis. Of these, sample prepa-

ration has the biggest impact on the quality of data generated by GCMS, of which

derivatization is the most variable. The optimal derivatization strategy often

depends on the experimental question. The following is a review of GCMS based

metabolomics with an emphasis on oximation and silylation for the derivatization

of intracellular metabolites.

2.1 Introduction to Metabolomics

The term metabolome first entered the literature in 1998 when it was used to

represent the entire set of molecules expressed by an organism[1]. In 2001, Fiehn

defined the term metabolomics as the comprehensive and quantitative assessment

of all metabolites in a biological system[2]. Several other terms have been proposed

to represent specific types of metabolic analysis, such as metabonomics, metabolic

footprinting and metabolic profiling, but each seeks to derive functional meaning

from the quantitative analysis of metabolite levels[35].
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A major limitation of many metabolomics studies that they provide only a snap-

shot of the metabolome, and lack dynamic information regarding the movement of

metabolites within metabolic pathways, or metabolic fluxes[6,7]. To address this,

stable isotope tracing, in which one monitors the distribution of an isotope label

originating on a metabolite of interest, is used to provide information of metabolic

pathway activity[810].

Several analytical platforms have been applied to the field of metabolomics, namely

mass spectrometry (MS) and nuclear magnetic resonance (NMR). NMR detects

the magnetic spin of molecular nuclei under a defined magnetic frequency and is

effective at identifying metabolites from complex mixtures, quantifying metabo-

lite abundance, and assessing the position of specific nuclei (i.e. 13C) within a

metabolite of interest, all with excellent reproducibility[10,11]. Moreover, NMR

has the advantage of not requiring significant sample preparation or derivatization,

and is nondestructive, meaning it can be applied to in vivo studies[11,12]. NMR

is also useful for compounds that are difficult to ionize and for compounds with

identical masses, such as in isotope labeling when studying the same metabolite

and its different isotopomer distributions[13]. The major weaknesses of NMR in its

application to metabolomics are its relatively low sensitivity and selectivity, with

highly complex spectra often difficult to deconvolute for metabolite identification

and quantification[14]. Still, one dimensional 1H NMR can be gainfully applied to

specific questions in metabolomics research[15].

Mass spectrometry- (MS) based techniques detect the mass/charge (m/z) ratio of

a metabolite and its fragments. While MS based techniques have higher sensi-

tivity and specificity in comparison to NMR, analysis requires that complex mix-

tures of compounds first undergo a separation technique[16]. Separation reduces

sample complexity, minimizes ionization suppression effects, thereby enhancing

detection sensitivity and increasing metabolite coverage[16]. The separation tech-

niques commonly employed for metabolomics research include gas chromatogra-

phy (GC), liquid chromatography (LC), high-performance liquid chromatography

(HPLC), ultra-performance liquid chromatography (UPLC), and capillary elec-

trophoresis (CE). Of these, GCMS and LCMS are the most used MS platforms in

metabolomics research.
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GCMS is a well-accepted and widely used platform in metabolomics[1719]. GCMS

instrumentation is of comparatively low cost and is easy to operate and maintain

compared to NMR and other MS based platforms. While time consuming derivati-

zation and sample preparation is necessary prior to GC separation, the structural

specificity of derivatized adducts has made it easy to build dedicated spectral

libraries that aid in metabolite identification[20]. Despite its time consuming

sample preparation and relatively low throughput, GCMS provides a method to

reliably measure several classes of metabolically important biomolecules, such as

organic acids, amino acids and fatty acids in a robust and economical manner[21].

Compounds are usually identified based on their retention time in a GC column

and their fragmentation pattern upon ionization in the MS. Several GC columns

have been employed for metabolomics analysis. Column length, polarity, and

composition of the stationary phase all affect chromatographic separation and

retention time of metabolites. Most stationary phases are composed of high

molecular weight, thermostable polymers, of which the polysiloxanes are amongst

the most common due to their stability, robustness and versatility. Selection of a

GC column depends upon the class of compounds to be analyzed.

After gas chromatographic separation, compounds are ionized and separated by

m/z. Several ionization modes exist, with Electron Impact (EI) ionization the most

common. Following ionization the now charged species, termed the molecular ion

further decomposes to smaller fragments via predictable chemical rearrangement

pathways[22]. The resulting ions are then accelerated through an ion focusing lens

to a mass detector by positive voltage from the repeller electrode. Quadrupole

mass analyzers, consisting of four oppositely charged rod electrodes, are commonly

used because they are inexpensive and easy to use, but still have high sensitivity

and a fast scan rate[21]. Mass analyzers convert the ions that reach the detector

into electrons which are then amplified by an electron multiplier detector (EMD)

into to a signal intensity for each m/z ratio, generating a fragmentation pattern

for a given retention time.

Fragmentation patterns are then matched to curated spectral libraries. For tar-

geted quantification of metabolites, a single specific m/z ratio is monitored, while



Singh, Simar J. 25

additional m/z ratios serve as confirming ions. The combined presence of these

pre-identified, metabolite specific ions at a single retention time leads to the

identification and quantification of a metabolite. Dilution series of metabolite

standard mixtures of known concentrations are run and analyzed in parallel with

experimental samples to yield experimental concentrations of metabolites.

The typical GCMS workflow is depicted in Figure 2.1. General steps include

sample generation and collection, metabolite extraction, derivatization, data ac-

quisition, data processing and metabolite identification, data transformation and

statistical operations. Excellent instrument specific and third party software exists

for the processing and analysis of GCMS data. Sample preparation has the biggest

impact on the quality of data generated by GCMS, of which derivatization is

perhaps the variable.

Figure 2.1: Typical workflow for GCMS analysis of mammalian cells.

2.1.1 Derivatization

In GCMS analysis, derivatization is defined as the modification of an analytes

functionality to permit gas chromatographic separation and detection23. Because

volatility is a requirement for GCMS, derivatization is needed to render compounds

sufficiently volatile for elution at reasonable temperatures without thermal decom-

position or molecular rearrangement [24]. Derivatization not only optimizes the
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volatility of an analyte, but also reduces polarity and adsorption in the GC system,

improves detector response, peak separations, and peak symmetry[23].

Compounds capable of intermolecular hydrogen bonding (those containing -SH,

-OH, -NH, =NH and COOH) necessitate derivatization as these active hydrogens

affect volatility, column interaction, and thermal stability[25,26]. Several classes of

derivatization reactions have been used to exchange these active hydrogens prior

to GCMS analysis.

Alkylation was among the first derivatization procedures employed for GCMS[24].

It results in the replacement of an active hydrogen with an aliphatic or aliphatic-

aromatic chain by esterification[23,24]. If the hydrogen replaced is not sufficiently

polar, catalysis with a strong base and reaction with an alkyl halide may be

required[24] Common reagents used in alkylation reactions include dialkylacetals,

diazoalkales, benzylbromide, boron trifluoride (BF3) in methanol or butanol and

tetrabutylammonium hydroxide (TBH) among others[23]. The use of alkylation

is limited by the harsh reaction conditions and toxic reagents.

Acylation with acid anhydrides, acid chlorides, and reactive amides is another com-

mon derivatization procedure in GCMS analysis[24]. Acylation is used to convert

OH, -SH, and NH2 into esters, thioesters, and amides, in the process generating

a less polar, more thermostable derivative with a more predictable fragmentation

pattern[27]. Acylation is particular useful for the derivatization and chromato-

graphic separation of sugars[23,28]. Common acylating agents include fluoracylim-

idazoles, fluorinated Anhydrides, N-methyl-bis(trifluoroacetamide) (MBTFA), pen-

tafluorobenzoyl chloride (PFBCI) and pentafluoropropanol (PFPOH). Acylating

reagents are moisture sensitive, toxic and odorous. Moreover, acylation derivatives

are difficult to prepare owing to the significant acid byproducts formed during re-

action[23]. Excess reagent and acid byproducts are hazardous to GC columns, and

must be removed by pyridine or another acid scavenging solvent before analysis.

Esterification is similar in principle to alkylation in that the acid hydrogen of a

carboxylic acid is exchanged for an aliphatic group. This process is especially

useful in the derivatization of organic fatty acids into fatty acid methyl esters

via methanolic hydrochloride[29,30]. Other common reagents include Pentafluo-
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robenzyl bromide (PFBBr) and trimethylanilinium hydroxide. Disadvantages of

esterification reagents are similar to those of alkylation and acylation, including

toxic reagents, harsh reaction conditions, and acidic byproducts.

2.1.1.1 Silylation

Silylation has been used since nearly the beginning of GCMS analyses, and remains

the most common derivatization method for GCMS analysis[24,3133]. It allows for

the simultaneous derivatization of several classes of metabolites under mild reac-

tion conditions, with a wide range of injection and column settings[23,34]. Active

hydrogens are typically replaced with a trialkylsilyl group such as dimethylsilyl

[SiH(CH3)2], t-butyldimethylsilyl [Si (CH3)2C(CH3)3] or chloromethyldimethylsi-

lyl [SiCH2Cl(CH3)2]. Silylation forms thermostable derivatives of polar com-

pounds with hydrogen atoms bound to electronegative atoms such as oxygen,

nitrogen, sulfur or phosphorus, but also with numerous oxyanions, including phos-

phate, borate, carbamate, and oxalate[24,32,33]. Especially useful for compounds

with hydroxyl or amino groups, silylation renders derivatives less polar, signifi-

cantly more volatile, and more thermostable than non-derivatized analytes[35,36].

Generally, silylated derivatives have increased volatility and more stability than

other derivatives, resulting in more narrow and symmetric peaks during GCMS

analysis[37,38]. Silylation agents are highly moisture sensitive, requiring carefully

dried samples and the minimal use of highly pure solvents, of which pyridine is

the most common[23,25].

Because silylation occurs through nucleophilic (Sn2) attack, larger, more hindered

substrates are more difficult to derivatize. The ease of reactivity of functional

groups to silylation has been reported as: alcohols>phenols >carboxylic Acids

>primary amines >secondary amines >amides[23]. Generally, the addition of a

catalyst, increased reaction time, and added heat with or without microwave and

ultrasonic assistance can improve the silylation of sterically hindered functional

groups [24,33,39,40]. Oximation is applied prior to silylation to protect against

enolization, prevent ring formation in sugars, and to reduce the complexity of

chromatographic spectrum[41].



Singh, Simar J. 28

Table 2.1: Silylation reagents used in GCMS metabolomics

Reagent Abbreviation
Trimethylchlorosilane TMCS
Trimethyliodosilane TMSI
t-Butyldimethylchlorosilane TBDMCS
Hexamethyldisilazane HMDS
N-Trimethylsilyldiethylamine TMSDEA
N-Trimethylsilylimidazole TMSIm
N-Methyl-N-trimethylsilylacetamide MSTA
N-Methyl-N-trimethylsilyltrifluoroacetamide MSTFA
N,O-Bis(trimethylsilyl)acetamide BSA
N,O-Bis(trimethylsilyl)trifluoroacetamide BSTFA
N,O-Bis(t-butyldimethylsilyl)trifluoroacetamide MTBSTFA
Trimethylsilyl N,N-dimethylcarbamate TMSDMC
Trimethylsilyl cyanide TMSCN

Reagents used for silylation are listed in Table /refTMS table. The most commonly

used are Bistrimethylsilyltrifluoroacetamide (BSTFA), N-methyltrimethylsilyltri-

fluoroacetamide (MSTFA), and N-methyl-N-t-butyldimethylsilyltrifluoroacetamide

(MTBSTFA). Selected silylasation agents are described further below.

BSTFA

BSTFA is one of the most reactive TMS donors for both hydroxyl groups and

basic functional groups[33]. It reacts with most alcohols, phenols, carboxylic acids,

amino acids, saccharides, thiols, amines, indoles, and nucleotides[4244]. For the

derivatization of amides, secondary amines or hindered hydroxyl groups, a mixture

of 1% or 10% (v/v) trimethylchlorosilane is often used. The by-products of BSTFA

reactions are themselves volatile and minimize interference with chromatographic

separation of target compounds.

MSTFA

MSTFA is the most volatile of the trimethylsilyl acetamides[23]. Its reaction profile

is similar to BSTFA, but it performs better on dicarboxylic acids, carbohydrates,

amines, and amino acids[4549]. MSTFA is more polar that BSTFA, and therefore

can be used with no additional solvent[23]. Given its high polarity and volatility,

MSTFA continues to be used as a simple, broad derivatization agent for the
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GCMS analysis of complex metabolite mixtures, such as in eukaryotic central

metabolism[50]. Like BSTFA, MSTFA is and its derivatives are water sensitive,

and it requires the presence of 1% or 10% (v/v) trimethylchlorosilane as a catalyst

for hindered or poorly reactive functional groups

MTBSTFA

Reacts with analytes to form tertbutyldimethylsilyl (TBDMS) derivatives[51,52].

TBDMS derivatives not only have improved stability against hydrolysis, but they

also have the added advantage of distinctive fragmentation patterns, which makes

them useful in a variety of GC/MS applications, including stable isotope tracing of

13C labelled metabolites[37,53,54]. This derivatization method is particularly ad-

vantageous for targeted quantification of small molecules with multiple functional

groups, such as keto acids and amino acids[37,54], yielding very good precision

with RSDs better than 5%[55]. However, TBDMS derivatives are very bulky,

increasing steric hindrance so that polyhydroxy metabolites, for example, sugars,

are not derivatized completely. MTBSTFA is frequently used together with t-

butyldimethylchlorosilane as a catalyst to derivatize hindered functional groups.

2.1.1.2 Oximation

Oximation is often used with silylation to protect ketones and aldehydes from form-

ing enolization products[41,56]. It protects alpha-ketoacids, such as those TCA

metabolites, from decarboxylation[32]. Oximation also inhibits ring-formation,

particularly in sugars, forming E (anti) - and Z (syn)-oxime isomers instead[20,57,58].

In many cases, the E/Z ratio can be assumed constant, allowing for accurate sugar

quantification normally confounded by anomeric ring forms[22,59]. By reducing

the number of isomers and chromatographic peaks, oximation increases signal

intensity and therefore the sensitivity of detection[60].

Oximation is achieved by reaction of an analyte with hydroxylamine, or one of

its O-substituted derivatives, such as O-methoxyamine, O-ethoxyamine, O-tert-

butyloxyamine, and O-benzyloxyamine[45,56,61,62]. Few head to head studies

comparing the use of each oximation agent in conjunction with silylation exist
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Table 2.2: Oximation and silylation of pyruvate with methoxyamine (MOX),
ethoxyamine (EtOX) or tert-Butylhydroxyamine (tButOX) and trimethylsilane

(TMS) or tert-butyldimethylsilane (TBDMS)

Oxime TMS TBDMS

MOX

EtOX

tButOX

for mammalian metabolomics. Studies using plant and algal matter have sug-

gested O-ethoxyamine followed by trimethylsilyation with BSTFA is superior to

O-benzyloxyamine and trimethylsilyaltion[63]. However, it is also believed that

oximation of sugars proceeds more favorably using smaller, less hindered protecting

groups, such as O-methoxyamine[20]. Smaller analytes, such as pyruvate, may

benefit from oximation with a bulkier adduct[64]. Systematic analysis of combi-

nations oximation and silylation agents of different classes and sizes of analytes

will be helpful for expanding the depth and breadth of metabolites monitored by

GCMS.

2.1.2 Stable Isotope Labeling with Carbon-13 Tracers

Traditional metabolomics approaches provide only a snapshot of metabolic activity

within a cell. While changes in intracellular metabolite concentrations indicate
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altered activity of producing or consuming reactions, they do not provide infor-

mation regarding metabolic fluxes (rates) or the direction of fluxes[9,6568].This is

because a change in concentration can be due to either changes in consumption or

production of a metabolite. Stable isotope labeling, usually with 13C, provides

a dynamic readout of intracellular metabolism, and the flux through specific

biochemical pathways[69]. In formal 13C metabolic flux analysis, labeling patterns

of intracellular metabolites from a 13C labeled tracer are combined with data

on cellular uptake and secretion rates, and prior knowledge of the biochemical

reaction network to computationally estimate metabolic fluxes[7072]. Even with-

out formal 13C flux analysis, the direct interpretation of 13C labeling patterns

is often sufficient to provide information on relative pathway activities, the use

of alternative metabolic routes, and nutrient contribution to the production of

different metabolites[9]. This type of direct interpretation of 13C labeling data has

been termed 13C tracer analysis[9].

The pattern of labeling refers specifically to a mass distribution vector (MDV),

sometimes called a mass isotopomer distribution (MID) (Figure 2.2). The incor-

poration of heavy isotope, such as 13C, in place of lighter isotope causes a shift

in mass of a metabolite, which is reflected in the MDV. Isotopologues, or mass

isotopopmers, are metabolites that differ only in their isotopic composition. A

metabolite with n carbons can have isotopologues that differ in mass (M) from

M to M + n. For example, following oximation and trimethylsilylation, the three

carbon metabolite pyruvate can fragment into an ion with mass 174 m/z (Figure

2.2). Its mass distribution vector therefore will range from 174 m/z to 177 m/z,

with the fractional abundance of M + 3 representing the fully labeled isotopomer.

Before a MDV can be interpreted, it must be corrected for the presence of nat-

urally occurring isotopes (Table ??) [73,74]. This includes correcting for the

natural abundance of heavy isotopes found in derivatization adducts, such as

in trimethylsilyl groups[75]. Typically, correction involves matrix multiplication

between a MDV and correction matrix containing the natural abundance of heavy

isotopes for each atom in the fragment to be analyzed. Construction of the

correction matrix requires that the elemental composition of each fragment being

analyzed be known prior to correction. Therefore this type of analysis is inherently
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Figure 2.2: A) Expected labeling pattern and atom transitions for U-13C and
12C Glucose to pyruvate. B) Typical mass distribution vector for labeled and

unlabeled pyruvate

Table 2.3: Natural isotope abundance for atoms typically involved in
metabolomics research

Isotope Natural Abundance

13C 1.07%
15N 0.368%
2H 0.0115%
17O 0.038%
18O 0.205%
29Si 4.6832%
30Si 3.0872%

a targeted approach. Several tools exist to assist with this type of correction[7678].

For untargeted analyses, MDV data from unlabeled samples can be compared to

MDV data obtained from labeled samples, and several tools exist for the global

detection of isotopic enrichment in tracer studies[9,7981].
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2.1.2.1 Stable Isotope Labeled Tracers

Common tracers used in the study of cancer metabolism include 13C labeled

glucose and 13C labeled glutamine. Several isotopomers of labeled glucose and

glutamine are available as tracers (Table 2.4 These range from fully, or uniformly

labeled molecules, to those with 13C in one or two positions in the carbon backbone.

The position of labeled atoms within a tracer allows the disambiguation of closely

related pathways[82]. For example, 13C1-1 Glutamine enters the TCA cycle as

AKG and the may become oxidized to succinate, or proceed in reverse towards

isocitrate and citrate via reductive carboxylation. The two pathways can be

distinguished because the labeled carbon from 13C1-1 will be lost as carbon dioxide

during the production of succinate. Positional tracers are often used to resolve

specific pathways but are expensive. Uniformly labeled [13C6]-Glucose ([U13C-

GLUC]) and [13C5]-Glutamine ([U13C]-GLN) are economical stable isotope tracers

with broad applicability[83]. [U13C]-GLUC is commonly used for measuring gly-

colysis as it labels all glycolytic carbons and enables tracing of glycolysis-derived

precursors in other pathways, such as serine, glycine, and lactate[83]. [U13C]-GLN

is often used to interrogate the total contribution of glutamine in the TCA cycle

and lipogenesis[84]. An atom transition map showing the flow of labeled carbon

into the TCA cycle is shown in Figure 2.3. Understanding atomic transitions

during the flow of metabolites through metabolic pathways allows not only for the

selection of the most useful tracer, but also allows for accurate interpretation of

labeling data.
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Figure 2.3: Atom transition map for 13C labeling with A) U-13C Glucose and
B) U-13C Glutamine



Singh, Simar J. 35

Table 2.4: Common stable isotope tracers in metabolomics research and their
uses. PPP - pentose phosphate pathway; TCA - Tricarboxylic acid

Tracer Use

U-13C-Glucose
Glycolysis, PPP, Krebs cycle, hexosamine, nu-

cleotide, lipid synthesis

1,2-13C-Glucose Non-oxidative versus oxidative PPP

3,4-13C-Glucose Pyruvate Carboxylase anaplerosis

U-13C/15N-Glutamine
Glutaminolysis, nucleotide biosynthesis, Krebs

cycle, and fatty acid synthesis

1-13C- and 5-13C- Glutamine
Oxidative TCA cycle versus reductive carboxyla-

tion, fatty acid synthesis

13C3-Glycerol-
Lipid synthesis, gluconeogenesis-pentose cycle

interactions

13C8-Octanoate
β-Oxidation, lipid synthesis, phospholipid synthe-

sis
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Abstract

Background: Vascular progenitor cells (VPCs) derived from embryonic stem cells (ESCs) are a valuable source for
cell- and tissue-based therapeutic strategies. During the optimization of endothelial cell (EC) inductions from mouse
ESCs using our staged and chemically-defined induction methods, we found that cell seeding density but not VEGF
treatment between 10 ng/mL and 40 ng/mL was a significant variable directing ESCs into FLK1+ VPCs during stage 1
induction. Here, we examine potential contributions from cell-to-cell signaling or cellular metabolism in the production
of VPCs from ESCs seeded at different cell densities.

Methods: Using 1D 1H-NMR spectroscopy, transcriptomic arrays, and flow cytometry, we observed that the
density-dependent differentiation of ESCs into FLK1+ VPCs positively correlated with a shift in metabolism and
cellular growth.

Results: Specifically, cell differentiation correlated with an earlier plateauing of exhaustive glycolysis, decreased lactate
production, lower metabolite consumption, decreased cellular proliferation and an increase in cell size. In contrast, cells
seeded at a lower density of 1,000 cells/cm2 exhibited increased rates of glycolysis, lactate secretion, metabolite
utilization, and proliferation over the same induction period. Gene expression analysis indicated that high cell seeding
density correlated with up-regulation of several genes including cell adhesion molecules of the notch family (NOTCH1
and NOTCH4) and cadherin family (CDH5) related to vascular development.

Conclusions: These results confirm that a distinct metabolic phenotype correlates with cell differentiation of VPCs.

Keywords: Stem cells, Differentiation, Vascular fate, Cell seeding density, Systems biology, Metabolism, NMR,
Metabolomics, Fluorescence-activated cell sorting, Flow cytometry, Cell adhesion, Cell contact, Cell communication,
Microenvironment, Cancer stem cells, Embryonic stem cells, Vascular progenitor cells, Endothelial cells

Background
Vascular progenitor cells (VPCs) and endothelial cells
(ECs) are desirable cell sources for cellular therapeutic
and tissue engineering strategies including: peripheral
vascular disease [1, 2], severe ischemic heart disease
[3, 4] and lining the lumens of small diameter vascular
grafts in order to minimize thrombosis or arteriosclerosis
[5, 6]. In cancer, the vascular niche promotes cancer stem
cells (CSCs) and is enriched with CSC-derived ECs, which
promote tumor invasion and metastasis [7]. VPCs are
important for maintenance of the stemness of normal

adult stem cells, including self-renewal, undifferenti-
ated status, and dormancy. However, it is sometimes
difficult to obtain sufficient numbers of proliferating
VPCs and ECs, especially from aged adults and
diseased patients [6]. Alternatively, embryonic stem
cells (ESCs) and induced pluripotent stem cells
(iPSCs) with their unlimited capacity for self-renewal,
are considered excellent cell sources in a variety of
cell-based therapies. In addition to their growing
therapeutic applications, these cell sources in combination
with derived VPCs and ECs can also serve as representa-
tive in vitro models of vascular development.
During early stages of vascular development, sig-

naling from vascular endothelial growth factor
(VEGF = VEGFA, vascular endothelial growth factor
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A, GeneBank: 7422) and the VEGF receptor, FLK1
(FLK1 = VEGFR = KDR, kinase insert domain recep-
tor, GeneBank: 3791) promotes ventral mesoderm
and hematopoietic fate [8–10] leading to activation
of the mitogen activated protein kinase pathway [11].
Endothelial, hematopoietic, and smooth muscle cells
have been derived from outgrowths of FLK1+ VPCs,
making this VEGF receptor a hallmark for identifica-
tion of VPCs [12]. However, despite our growing un-
derstanding of the critical biochemical factors in
development, the precise timing and quantitative levels
of EC induction/activation for directing vascular fate
from ESCs in vitro have remained confounding. This is
complicated by the inherent variability in kinetic and
autocrine signaling from ESC line-to-ESC line [13]. For
example, the optimal time to induce the mouse D3-ESC
line into FLK1+ VPCs has been reported to occur at
day 4 (FLK1+ = FLK1 positive = VEGFR expressing cells)
[14–16], while the optimal time for the corresponding
mouse R1-ESC line has been reported at day 2 [17]. Add-
itionally, while VEGF is the most published growth factor
associated with directing EC differentiation, published
treatment levels vary between 20 ng/mL and 50 ng/mL
[12, 15, 18]. Matrix signaling is also an important signal in
stem cell fate, but studies on this topic have also been con-
flicting. For example, it has been reported that collagen
type-IV directs a higher percentage of ECs [12, 15, 18].
However, more recent studies show fibronectin pro-
motes increased cell adhesion and/or proliferation, gener-
ating greater numbers of VPCs and ECs compared with
collagen-type IV [1, 17]. Moreover, increasing evidence

supports a role for modified cellular metabolism in the
regulation of stem cell self-renewal, specification, and
plasticity in cancer and development [19–21]. Despite
this growing understanding of cellular metabolism as a
regulator of cell function, the role of cell seeding den-
sity in metabolic alterations supporting vascular fate is
not defined.
Therefore, using our established staged differentiation

methodology and chemically-defined media formulations
(Fig. 1a), we examined a number of combinatorial
variables (induction time, VEGF treatment, matrix
signaling, and cell seeding density) for directing the
generation of VPCs (stage 1). The results indicated that
cell seeding density was a significant factor in the first
stages of induction of ESCs into VPCs, especially in the
A3-ESC cell line [22] generated by our own laboratory.
Therefore, we set out to further examine the underlying
mechanisms related to density-dependent differentiation
in this ESC line.

Methods
Embryonic stem cell culture
Mouse A3-ESCs were extracted, generated, and cultured
at 3,000/cm2 on inactivated mouse embryonic fibroblasts
(MEFs; 20,000/cm2) [22]. Prior to induction, the A3-ESCs
are purified from MEFs by gravity separation followed by
MEF adhesion to tissue culture dishes for 1–2 hours and
passaged onto 0.5% gelatin-coated plates in ESC culture
media containing: Knockout Dulbecco’s Modified Eagle
Medium (KO-DMEM; Invitrogen), 15% Knockout Serum
Replacer (KSR; Invitrogen), 1Χ penicillin-streptomycin

Fig. 1 Higher seeding density yields higher expression of differentiation marker FLK1 (FLK1 = VEGFR = KDR, VEGF receptor, kinase insert domain
receptor). Schematic of staged differentiation of embryonic stem cells (ESCs) into vascular progenitor cells (VPCs) and endothelial cells (ECs) with
representative micrographs from A3-ESCs seeded at 10,000 cells/cm2. Stage 1 involves the culturing of ESCs on fibronectin in the presence of
BMP4 (bone morphogenetic protein 4) and VEGF (vascular endothelial growth factor). At the completion of Stage 1, resulting VPCs are assayed
for FLK1 receptor expression by an anti-FLK1 antibody
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(Invitrogen), 1Χ non-essential amino acids (Invitrogen),
2 mM L-glutamine (Invitrogen), 0.1 mM 2-mercaptoethanol
(Calbiochem), 2000 units/mL of leukemia inhibitory
factor (LIF-ESGRO; Chemicon), and 10 ng/mL of bone
morphogenetic protein 4 (BMP4, GeneBank: 652)
(R&D Systems). Full media changes occurred every other
day and cells were passaged every 4–5 days.

Induction of FLK1+ VPCs
A3-ESCs were harvested and plated at either 1,000,
5,000 or 10,000 cells/cm2 in 12-well cell culture dishes,
coated with 50 ng/mL fibronectin (BD Biosciences), and
fed our induction media: alpha-minimal essential medium
(MEM; Corning), 20% KSR (Invitrogen), 1Χ penicillin-
streptomycin (Invitrogen), 1Χ nonessential amino acids
(Invitrogen), 2 mM L-glutamine (Invitrogen), 0.05 mM
2-mercaptoethanol (Calbiochem), and 5 ng/mL BMP4
(R&D Systems), and 0 to 30 ng/mL of VEGF (R&D
Systems) without media change for 4 days. Experi-
ments were conducted in triplicate (N = 3) allowing for
analysis of variance. The assessment of stage 1 VPCs,
which are not contact-inhibited, was quantified by the
percentage of FLK1+ cells over time, previously shown
to correlate with down-regulation of the pluripotent stem
cell marker POU class 5 homeobox 1 (POU5F1 = OCT3/4,
GeneBank: 5460) over the same time period [22].

Characterization of VPCs
Adherent cells were harvested using Cell Dissociation
Buffer (Invitrogen), fixed in 4% paraformaldehyde
(Tousimis), rinsed 2Χ with phosphate buffered saline
(PBS), blocked using 0.5% donkey serum (Fitzgerald) and
1% bovine-serum albumin (Sigma) for 1 h at room
temperature, and stained with Alexa Fluor 647®-conju-
gated anti-FLK1 antibody (Biolegend) at 1:100 and allowed
to incubate overnight at 4 °C. Cells were rinsed 2Χ with
PBS before being analyzed on an LSR II flow cytometer
(BD Biosciences) and FloJo Software (TreeStar) at 1, 2,
and 3 days post induction of differentiation. Samples were
analyzed in triplicate (N = 3) for each data point.

Exometabolome analysis
Triplicate samples of conditioned induction media (N = 3)
were harvested at 1, 2 and 3 days post-induction and
stored at −80 °C. Prior to 1D 1H-NMR spectroscopy
metabolomics analysis, supernatants were extracted using
1:1 cold methanol (BDH 67-56-1) and chloroform
(Amresco 0757) mixture [7]. The extracts were cleared by
centrifugation at 14,000 g and the aqueous phase was
collected. Freeze-dried metabolite samples were resus-
pended in 200 μL of H20 with 5% D2O spiked with
0.75% 3-(trimethylsilyl)propanoic-2,2,3,3-d4 acid (TSP)
(Sigma 293040) to a final concentration of 2.409 mM
into 3 mm NMR tubes (Norrell C-S-3-HT-7). Spectra

were recorded using 1D 1H excitation sculpting at
512 scans, d1 = 1 s, 1H pulse 11.0 μs, power level of
shaped pulse 25.55db and an experimental time of
10 min at 300 K at an Avance II 600-MHz spectrometer
fitted with a cryogenic probe operating with TOPSPIN
2.0 (Bruker BioSpin GmbH). All spectra were automati-
cally phased, baseline corrected and referenced to TSP
(δ 0.00 ppm) using Chenomx NMR spectroscopy suite
8.1 (Chenomx Inc). Metabolite concentrations were
quantified on the basis of matching chemical shifts and
multiplicities to the Chenomx reference compound
library. Exometabolome analysis by NMR spectroscopy
provides direct comparison of absolute metabolite con-
centrations of analytes. Not surprisingly, the amount of
metabolites excreted or taken up scales with the initial
seeding density. Therefore, by normalizing each time
point to the first time point post-induction, dynamic infor-
mation of the system can be obtained. The total cell count
prior seeding was obtained in triplicate (N = 3) by analy-
zing cells accurately using multifocal plane analysis in
the TC20 automated cell counter (Biorad).

Cell size and proliferation
Cell diameter and proliferation rates were measured
over the 3 days of VPC induction using an automated
image-based cytometer. Cells were harvested using
0.25% trypsin-EDTA (Corning) from fibronectin
coated cultures dishes at 1, 2 and 3 days post induc-
tion of differentiation, stained with trypan blue, and
pipetted into disposable counting chambers for count-
ing and image analysis. Cell diameter measurements
of live differentiating ESCs were obtained in the TC20
automated cell counter (Biorad). Multi-planar bright-
field digital images were automatically collected,
quantified, and assessed for cell number and diameter.
Cell proliferation rates were calculated and densities
validated from the live cells per dish (N = 6) over the
3 days of VPC induction.

Differential gene expression
Total RNA was extracted from undifferentiated ESCs
as well as from cells 3 days post induction of differ-
entiation using TRIzol (Sigma T9424). At least three
biological replicates of RNA samples were analyzed per
condition. The concentration of RNA was determined
using a Nanodrop spectrophotometer (Thermo Scientific).
Two micrograms of RNA was processed with the RT2

profiler array PAMM-146Z (Qiagen SABiosciences) and
used to synthesize cDNA using the RT2 SYBR green master
mix (Qiagen SABiosciences) in a 7300 real-time (RT)
quantitative polymerase chain reaction (QPCR) System
(Applied Biosystems). Gene expression profiles were
analyzed using the ΔΔCT method. RT QPCR thresh-
old cycle (CT) values were normalized using five different
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housekeeping genes (HKG), ACTB, actin beta, GeneBank:
60, B2M, beta-2-microglobulin, GeneBank: 567, GAPDH,
glyceraldehyde-3-phosphate dehydrogenase, GeneBank:
2597, GUSB, glucuronidase beta GeneBank: 2990, and
HSP90AB1, heat shock protein 90 kDa alpha family class B
member 1, GeneBank: 3326. The difference threshold cycle
value (ΔCT) of any gene of interest (GOI) to the average
housekeeping value was calculated using the formula
ΔCT(GOI) = CT(GOI) — AVERAGE(CT(HKG)) for ESCs,
differentiating cells at seeding density of 1,000 cells/cm2

and 10,000 cells/cm2. In addition, change in gene expres-
sions of any gene of interest was monitored by calculating
ΔΔCT(GOI) = ΔCT(GOI-10 K) — ΔCT(GOI-1 K).
RT2 gene array profiles were normalized, separated
according to differential expression between the two
seeding densities in univariate T-tests with a random
variance model using a p-value cut-off below 0.05, and
ranked with LOG2 fold-change of specimen seeded at
10,000 cells/cm2 in comparison to 1,000 cells/cm2 consi-
dered significant.

Differential protein expression analysis
Induced VPCs originally seeded as ESCs at 1,000 cells/cm2

or 10,000 cells/cm2 were harvested 3 days post induction.
Cells were fixed, washed, and blocked in PBS supple-
mented with 2% fetal bovine serum (FBS; Corning 35-010-
CV). Cells were incubated light-protected at 4 °C for 1 h
with the following antibodies and staining reagents: FLK1
PerCP (Biolegend 121915), CDH2 rabbit polyclonal
(Abcam ab12221), CDH5 (CD144) brilliant violet 421 (Bio-
legend 138013), and Fixable Viability Dye eFluor780
(eBioscience 65-0865-14). After washing, cells were incu-
bated light protected at 4 °C for 1 h with FITC conjugated
Donkey Anti-Rabbit IgG pre-adsorbed (Abcam ab7079).
Samples were rinsed twice with PBS supplemented with
2% FBS before being analyzed on an LSR II flow cyt-
ometer (BD Biosciences) at a flow rate at least 500
events per second. 100,000 events per sample were re-
corded and samples were analyzed in triplicate (N = 3)
for each data point. FloJo Software (TreeStar) was
used for data analysis. Dead cells were gated out from
analysis based on Viability Dye eFlour780 reactivity.
FLK1+ cells were then analyzed for FITC (CDH2) and
Brilliant Violet 421 (CDH5) fluorescence and the percent-
age of Flk1+/CDH2+CDH5+ cells were compared between
low density and high density groups.

Results
Characterization of differentiated FLK1+ VPCs
Induction of mouse A3-ESCs [22] into VPCs was exam-
ined over a range of seeding densities, VEGF treatment
levels, and time (Fig. 2a). The greatest number of FLK1+

cells was generated on day 3, with a reduction at day 4.
Although the VEGF treatment levels led to variable

results, the greatest number of FLK1+ VPCs was consist-
ently and statistically significant in cultures seeded at the
highest seeding density (Fig. 2a-b) while cells initially
seeded at 1,000 cells/cm2 generated significantly fewer
FLK1+ cells. Bright field microscopy revealed that after
three days, the 10,000 cells/cm2 seeding density remained
subconfluent (Fig. 2c).

Metabolic shift during density-dependent differentiation
To identify density-dependent changes in cellular metabol-
ism during differentiation, we measured metabolite abun-
dance within conditioned media using 1D 1H-NMR
spectroscopy. This exometabolome analysis provides in-
sights into metabolite utilization and secretion. A reduction
in metabolite abundance is consistent with cellular uptake
from our chemically defined induction media, whereas an
increase in abundance correlates with active production
and extracellular secretion. Of the metabolites in the differ-
entiation media profiled, only lactate exhibited an increase
in abundance. Cells seeded at a density of 10,000 cells/cm2

displayed a rapid increase in lactate production between
days 1 and 2, which then slowed between days 2 and 3
(Fig. 3a-b). Conversely, cells grown at a density of 1,000
cells/cm2 produce, on a per cell basis, comparatively more
lactate, and exhibit a significant increase in lactate abun-
dance between days 1 and 3 (9.0 vs 3.8; p-value < 0.001)
(Fig. 3a-b). The same trend is seen in metabolite utilization.
Cells grown at a density of 10,000 cells/cm2 exhibit higher
rates of metabolite utilization between day 1 and day 2, and
much lower utilization between days 2 and 3 (Fig. 3c-d). In
contrast, cells seeded at lower density increase their metab-
olite uptake over time, exhibiting their highest levels of
utilization between days 2 and 3 (Fig. 3c-d).

Differentiation correlates with increased cell size and
reduced proliferation
To determine whether the observed shift in metabolite
utilization coincides with a change in cellular proliferation,
we measured the number of live cells present for both
seeding densities following induction of differentiation.
Cells induced at a density of 10,000 cells/cm2 have a
higher proliferation rate between day 1 and day 2 (3.32 vs.
2.07; p-value < 0.001) and a lower proliferation rate be-
tween day 2 and day 3 (2.01 vs. 3.73; p-value < 0.001)
(Fig. 4a). In contrast, cells grown at low density continue
to increase their proliferation rate over the 3 days of in-
duction. Notably, while VPCs are not contact-inhibited,
cell cultures at all seeding densities remain subconfluent
after 3 days of culture (Fig. 1D) and continue to prolifer-
ate. A3-ESCs seeded at the highest density contained
fewer cells of a small diameter representative of ESC
size three days post induction compared with cells seeded
at lower density (5–6 μm, 26% vs 36%; p-value < 0.001).
Additionally, proportionately more cells of larger
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Fig. 2 Higher seeding density yields higher expression of differentiation marker FLK1 (FLK1 = VEGFR = KDR, kinase insert domain receptor). The effect
of (a) seeding density, (b) vascular endothelial growth factor (VEGF) concentration, and induction time on the percentage of FLK1+ vascular progenitor
cells (VPCs) generated from embryonic stem cells (ESCs). An induction time of three days combined with a seeding density of 10,000 cells/cm2

resulted in high percentages of FLK1+ cells regardless of VEGF concentration. c Phase contrast images and flow cytometic cell scanning histograms of
FLK1 expression of ESCs induced on 50 ng/mL fibronectin with 20 ng/mL VEGF treatment. Upper panel shows time course following seeding densities
of 1,000 cells/cm2. Lower panel shows time course following seeding densities of 10,000 cells/cm2. By day 3 post induction, the majority of cells seeded
at 10,000 cells/cm2 exhibit FLK1 receptor expression. In contrast, cells initially seeded at 1,000 cells/cm2 exhibit less FLK1 receptor expression and
exhibit fewer cell clusters at day 3
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Fig. 3 Density-dependent shift of metabolic rate. 1D 1H-NMR spectroscopic exometabolome analysis of conditioned media from induced embry-
onic stem cells (ESCs) initially seeded at 1,000 cells/cm2 (blue) and 10,000 cells/cm2 (red). a By day 3, cells seeded at higher density reduce produc-
tion of lactate whereas cells initially seeded at low density continue to increase lactate production and exhibit a significantly higher fold increase
in lactate abundance between days 1 and 3 (9.0 vs 3.8; *** p-value < 0.001). b Fold change of lactate production relative to day 1. c Amino acid
uptake of valine, isoleucine, phenylalanine, and glutamine/glutamate (glx) significantly increases in the low density group after two days of induction
(*** p-value < 0.001). d Amino acid uptake plateaus between 2 and 3 days post induction in the higher density group. Fold change of amino acid up-
take relative to day 1

Fig. 4 Density-dependent shift of proliferation and cell diameter. a Proliferation rate significantly slows at day 3 in cells seeded at 10,000 cells/cm2
(red) but increases in cells seeded at 1,000 cells/cm2 (blue; fold increase of 2.1 vs 3.7; *** p-value < 0.001). b Higher density cells have a greater
percentage of cells with large diameter (9–10 μm, 19.6% vs 8.2%; *** p-value < 0.001) and fewer small diameter cells (5–6 μm, 26.1% vs 36.2%;
*** p-value < 0.001). c Flow cytometric cell scanning contour plot indicating 10,000 cells/cm2 seeding density results in a greater proportion of cells
exhibiting high forward scatter and FLK1 allophycocyanin conjugate (APC) positivity
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diameter were found in cultures seeded at a density of
10,000 cells/cm2 compared with lower density (9–10 μm,
20% vs 8%; p-value < 0.001) (Fig. 4b). The forward scatter
measurements from fluorescence-activated cell sorting in
flow cytometry, another indication of cell size, show that
the early A3-ESCs are smaller compared with the larger
differentiated FLK1+ VPCs (Fig. 4c).

Differential gene expression of cell-to-cell signaling
molecules during density-dependent differentiation
In order to further investigate the density-dependent
signaling directing FLK1+ VPCs, a number of cell-to-cell
signaling molecules were examined using a targeted PCR
array. The expression pattern of cells seeded at densities
of 10,000 cells/cm2 or 1,000 cell/cm2 revealed significant
differential expression with p-values below 0.05 and a
fold change of 2.0 or higher (Fig. 5a). Gene expression

pattern included significant up-regulation of NOTCH1
(GeneBank: 4851), NOTCH4 (GeneBank: 4855), CDH4,
cadherin 4, retinal, R-cadherin (GeneBank: 1002), CDH5,
cadherin 5, vascular endothelium, VE-cadherin (GeneBank:
1003), DSG1B, desmoglein 1 (GeneBank: 1828), DSG2,
desmoglein 2 (GeneBank: 1829), PKP1, plakophilin 1
(GeneBank: 5317), CTNNA2, catenin cadherin-associated
protein alpha 2 (GeneBank: 1496), WAS, Wiskott-Aldrich
syndrome (GeneBank: 7454), and WASF1, WAS protein
family, member 1 (GeneBank: 8936) as well as significant
down-regulation of NOTCH3 (GeneBank: 4854), and
PKP2, plakophilin 2 (GeneBank: 5318).

Differential protein expression of cell-to-cell signaling
molecules during density-dependent differentiation
Protein level differences in cell-to-cell signaling molecule
expression were quantified by flow cytometry (Fig. 6).

Fig. 5 Differential gene expression analysis of density-dependent differentiation identifies molecules related to cellular adhesion and vascular genesis.
a Gene expression analysis of embryonic stem cells (ESCs) as well as vascular progenitor cells (VPCs) seeded at density of 1,000 vs 10,000 cells/cm2.
The logarithmic fold change of cells seeded at 10,000 cells/cm2 in comparison to 1,000 cells/cm2 (LOG2(FC 10 K/1 K)) identifies density-depended
processes. Gene symbols labeled with an asterisk * indicate significant differential expression with p-values below 0.05. Schematic model compares:
b Poor differentiation efficiency of embryonic stem cells seeded at low density of 1,000 cells/cm2, where isolated cells eventually die off. c Seeding of
embryonic stem cells at high density of 10,000 cells/cm2 results in expression of differentiation markers of vascular progenitor cells, which are a potent
starting point for tissue engineering. d Enlarged diagram of cell-cell contact shows signaling processes and positive feedback enhancing differentiation:
I. Cell-cell contacts mediate signals into nucleus. II. Transcriptional changes create positive feedback enforcing cell surface contacts and stimulating
regulators of adherens junctions and desmosomes. III. Switch of metabolism from exponential, proliferative mode to differentiated phenotype.
IV. Enforcement of new cell surface contacts. V. Propagation of differentiation state to neighboring cells

Singh et al. Cell Communication and Signaling  (2017) 15:44 Page 7 of 12

52



Induced VPCs originally seeded at 1,000 cell/cm2 or
10,000 cells/cm2 were stained and analyzed for FLK1,
CDH2 (cadherin 2, neuronal, N-cadherin, GeneBank: 1000)
and CDH5 expression. Importantly, the cell adhesion
molecule CDH5, VE-cadherin, is indicative of vascular
endothelial differentiation. The percentage of cells staining
positive for FLK1, CDH2, and CDH5, FLK+/CDH2+CDH5+,
quadrant 2, (Fig. 6a-b) was higher for cells originally seeded
at 10,000 cells/cm2 than those seeded at 1,000 cells/cm2
(1.51% vs 0.70%, p < 0.01) (Fig. 6c).

Discussion
The generation of FLK1+ VPCs from ESCs peaks on day
3, followed by a reduction in FLK1+ numbers (Fig. 2ab)
within the range of reported days (2–5) during mesoderm
induction from ESCs [15, 17, 22–25]. The other significant
variable in the efficient induction of VPCs was a high cell
seeding density (Fig. 2a-b), while VEGF treatment level
was not significant. The higher density and robustly differ-
entiating VPC cultures also correlated with reduced prolif-
eration rates and greater cell diameters, both indicative of
differentiation (Fig. 4). Although these cells are not con-
tact inhibited nor were they confluent cultures, hypoxia is
known to drive mesoderm commitment [26, 27] and
endothelial fate [19] from ESCs. To determine whether
hypoxia could drive ESC differentiation, we calculated the
molar fraction of oxygen at the cell surface of our high
density cell dishes cultures. Using our experimental cell
proliferation rates, estimated oxygen solubility in saline
solution, and oxygen consumption rates reported for both
ESCs = 27.5x10−18 [28] and ECs = 50x10−18 mol/cell/s
[20], it was determined that, although oxygen would be
reduced at higher cell seeding densities, none of the con-
ditions would generate a hypoxic environment (defined as
1-3% oxygen).

Interestingly, VEGF treatment was not a determining or
statistically significant variable in directing VPC fate. A
large body of data implicates VEGF signaling in mesoderm
and endothelial cell fate and that the FLK1/VEGF receptor
is one of the key markers defining the angioblast cell
[12, 14, 29, 30]. However, since BMP4 signaling can also
activate the VEGF/VEGFR signaling [31, 32], it is sufficient
in the inductions shown. Moreover, the two distinct VEGF
binding domains in the fibronectin matrix [33] may
stabilize and protect autocrine VEGF production from
degradation [33], as well as, aid in cell presentation. The
presumptive requirement of VEGF treatment in chemically-
defined media for EC fate has been most rigorously exam-
ined using single cells cultured in collagen-type IV coated
96-well plates [12, 30, 34]. Without fibronectin matrix to
sequester and protect the VEGF generated by the cells, one
might expect that VEGF treatment would be required in
these cultures. However, our results suggest that the
utilization of fibronectin matrix mitigates the need for VEGF
supplementation in VPC induction cultures.
Differential gene expression array analysis identified a

number of cell-to-cell signaling molecules that were up-
regulated in the higher density cultures containing more
VPCs. Differential expression of cell surface receptors,
desmosome, catenins, and cytoskeleton regulators could
be required for, or facilitate, the density-dependent
differentiation of ESCs (Fig. 5b-d). Vascular cells take
advantage of many different cell adhesion contacts
demonstrated by the global up-regulation of cadherins,
desmosomal and desmoglein components. Since cell sur-
face molecules have the ability to communicate extracel-
lular changes into the cytosol, such as contact formation
with neighboring cells, the gene expression data suggests
a positive feedback reinforcing cellular contacts (Fig. 5d).
Initial cell-cell contacts mediate signals into the nucleus,

Fig. 6 Differential protein expression of cell adhesion molecules during density-dependent differentiation identifies molecules related to cellular
adhesion and formation of vascularization. Protein expression analysis of induced vascular progenitor cells (VPCs) derived from embryonic stem
cells (ESCs) comparing seeding densities of 1,000 vs 10,000 cells/cm2. Flow cytometric cell scanning plots of 100,000 events of differentiating
FLK1+ embryonic stem cells (a) seeded at low density of 1,000 cells/cm2 and (b) seeded at high density of 10,000 cells/cm2. The FLK1+ cells were gated
in quadrant 1 (Q1) for FLK1+/CDH2+CDH5−, in quadrant 2 (Q2) for FLK1+/CDH2+CDH5+, in quadrant 3 (Q3) for FLK1+/CDH2−CDH5−, and in quadrant 4
(Q4) for FLK1+/CDH2−CDH5+. Markers were quantified by fluorescence of FLK1 allophycocyanin conjugate (APC), CDH2 fluorescein isothiocyanate
(FITC) conjugate and CDH5 brilliant violet (BV) conjugate. c Fold change of FLK1+/CDH2+CDH5+ gated in Q2 with significant differential expression of
cells derived from seeding at densities of 1,000 vs 10,000 cells/cm2 indicated by asterisk * with p-value below 0.05
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where transcriptional changes create positive feedback
promoting and strengthening cell surface contacts and
stimulating regulators of adherens junctions and desmo-
somes. Positive feedback circuits have the ability to cre-
ate threshold densities for successful differentiation.
Once established and supported by the cell type specific
cell surface contacts molecules, signals of differentiation
can lead to lineage committed cell fates and organized
tissue formation.
Amongst genes exhibiting the strongest change in

the context of seeding density-dependent differenti-
ation of VPCs were the cytoskeleton regulators WAS
and CTNNA2. The expression pattern for both genes
is unaffected in the lower density cohort but was con-
sistently up-regulated in the higher density cohort.
Wiskott-Aldrich syndrome protein (WASP) is a key
regulator of endothelial cell-cell junctions and cyto-
skeleton dynamics and helps form and maintain the
integrity and function of EC monolayers [35]. More-
over, WASP organizes actin and vascular epithelium-
cadherins at EC junctions, and hence is vital for the
assembly of vascular structures [35–37]. Importantly,
along with FLK1 expression, WAS and CDH5 are also
indicators of vascular differentiation [8]. Other studies
have identified members of the E-twenty six (ETS)
transcription factor family associating with FLK1 and
CDH5 promoters in vascular epithelia to regulate vascular
specification from primitive mesoderm [8–10, 38]. In
murine and amphibian model organisms, plakophilins
have been found localized to the nucleus of ESCs
and form complexes with members of the ETS family
of transcription factors to direct development related
gene transcription events [39].
Similar to PKP1, CTNNA1, catenin cadherin-associated

protein, alpha 1 (GeneBank: 1495) and AJAP1, adherens
junctions associated protein 1 (GeneBank: 55966) expres-
sion levels are correlated with advancing tumor stage and
inversely related to cell proliferation [32, 40, 41]. While
CTNNA2 has been found as hub for extracellular matrix
organization, loss of CTNNA1 is exhibited by multiple
cancer types, and restoration of CTNNA1 expression in
acute myeloid leukemia cells led to lower proliferation
[27, 40]. Additionally CTNNA1 regulates differentiation
events in the developing nervous system by maintaining
beta-catenin signaling [42]. It is possible that the higher
levels of PKP1 and CTNNA1 seen in the 10,000 cells/cm2

density group causes these cells to slow their prolife-
ration in favor of differentiation and growth. The
regulation of desmosomal assembly by DSG1B, DSG2,
and PKP1 not only enforces cell surface adhesion
contacts between ECs but also regulates the cell
signaling events in the cytoplasm and nucleus. DSG2
regulates actin assembly in ECs and affects prolifera-
tion via modulation of EGFR signaling [43, 44]. PKP1

associates with eukaryotic translation initiation factor
4A1 to stimulate protein translation [45] and loss of
PKP1 is linked to prostate cancer proliferation [46].
Nuclear PKP1 complexes with catenin and is found
bound to single stranded DNA [47]. PKP2, which is
more abundant in the lower density group, binds to
catenin and complexes with the RNA polymerase III
holoenzyme [48].
The cadherin family uniformly responds to density-

dependent differentiation [36, 37]. All cadherins
assayed show up-regulation in the higher density co-
hort. CDH4 shows the highest density-dependent
fold-change of the cadherin family. In addition to
significant density-dependent up-regulation, vascular
endothelial CDH5 is also significantly different be-
tween undifferentiated and induced ESCs. Of the
desmosomal, desmocollin, and desmoglein compo-
nents, DSG1B, DSG2, and PKP1 stand out as positive
responders to density-dependent differentiation sup-
porting formation of cell surface adhesion contacts in
endothelial formation. For the majority of cell surface,
cell junction and desmosomal components, a global
increase in gene expression in response to density-
dependent seeding is observed.
Among the differentiation and density-dependent

effects on gene expression, perhaps the most pro-
found is differential expression of the NOTCH recep-
tor family. NOTCH signaling is a highly conserved
intercellular signaling mechanism essential for proper
cell fate choices during development [49]. Both
NOTCH1 and NOTCH4 have both been implicated
in vascular morphogenesis [50]. Moreover, NOTCH1
is found expressed in both endothelial and hematopoietic
progenitor cells [51], while NOTCH4 is expressed in
ECs, but not in hematopoietic progenitor cells [50].
NOTCH3 signaling is highest in late stage smooth
muscle cell differentiation [52] and neural differentiation
[53]. In the high cell density cultures, NOTCH1 and
NOTCH4 were significantly up-regulated, while NOTCH3
is significantly down-regulated at induction conditions
of 10,000 cells/cm2 compared with the lower density
cultures.
It is expected that differential expression of NOTCH

components within ESCs seeded at higher density is, at
least indirectly, responsible for the shift in metabolite
utilization observed during the differentiation process.
Specifically, NOTCH signaling has recently been linked
to the regulation of cellular metabolism [54, 55], indu-
cing glutamate uptake during the terminal differentiation
of astrocytes [54]. Furthermore, NOTCH inhibition in
glioma stem cells led to reductions in intracellular glu-
tamate and glutamine, and increased lactate and threo-
nine [55]. In the same study, it was noted that NOTCH
blockade modulated the expression of multiple genes
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regulating glutamate metabolism, including glutaminase
and several glutamate transporters [55]. Tight regulation
of glutaminase activity and glutamate metabolism are
vital features of both stem cell function and tumor sur-
vival [11, 30, 44]. Interestingly, glutamine metabolism
also regulates chromatin structure and pluripotency
related transcription factors, such as OCT4, and
therefore may play a pivotal role in vascular development
[20]. Additional studies examining the role of cell-cell
signaling components, particularly NOTCH, in the
regulation of glutaminergic and other metabolic pathways
could help optimize strategies for ESC differentiation and
understand NOTCH-mediated cancer progression.
An increase in cell size correlating with stem cell

differentiation is intimately coupled to loss of “stem-
ness”. Moreover, larger cells proliferate more slowly
compared to smaller cells [56]. While in cancer cells,
a positive feedback is used to rapidly ramp up a
distinct metabolic program [57], cellular differenti-
ation is accompanied by a switch in metabolism from
an exponential proliferative mode into a differentiated
phenotype. During the time course of differentiation,
ESCs start out as small, rapidly dividing cells, but
rapidly shift away from exhaustive glycolysis and high
metabolite consumption to a reduced metabolic de-
mand per cell. This observed switch in metabolism
also supports the changing demands of larger, more
differentiated VPCs. Our data shows that the gene
expression program of these differentiating ESCs also
dynamically responds to the culture conditions at
higher cellular density, and actively reinforces cell
surface signaling components leading to up-regulation
of genes associated with VPC fate. This strengthening
of cellular communication may help regulate the
concurrent switch of metabolism from an exponential,
proliferative mode to a differentiated, growth permis-
sive phenotype.

Conclusions
In summary, we have identified a density-dependent
metabolic shift correlating with increased differenti-
ation of VPCs from ESCs. This density-dependent
differentiation model is associated with reduced cellu-
lar metabolism, highlighted by a decrease in exhaust-
ive glycolysis, by a decrease in proliferation, and by
an increase in cell size. Concomitant is enhanced
expression of cell-cell signaling components, including
those known to regulate the differentiation and me-
tabolism of stem cells via density-sensing positive
feedback circuits. In the future, efficient tissue engineering
approaches may take advantage of such density-
dependent switches and control crosstalk between cell-
cell signaling and cellular metabolism.
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Abstract

Background: Among breast cancers, the triple-negative breast cancer (TNBC) subtype has the worst prognosis with
no approved targeted therapies and only standard chemotherapy as the backbone of systemic therapy.
Unique metabolic changes in cancer progression provide innovative therapeutic opportunities. The receptor
tyrosine kinases (RTKs) epidermal growth factor receptor (EGFR), and MET receptor are highly expressed in
TNBC, making both promising therapeutic targets. RTK signaling profoundly alters cellular metabolism by
increasing glucose consumption and subsequently diverting glucose carbon sources into metabolic pathways
necessary to support the tumorigenesis. Therefore, detailed metabolic profiles of TNBC subtypes and their
response to tyrosine kinase inhibitors may identify therapeutic sensitivities.

Methods: We quantified the metabolic profiles of TNBC cell lines representing multiple TNBC subtypes using
gas chromatography mass spectrometry. In addition, we subjected MDA-MB-231, MDA-MB-468, Hs578T, and
HCC70 cell lines to metabolic flux analysis of basal and maximal glycolytic and mitochondrial oxidative rates.
Metabolic pool size and flux measurements were performed in the presence and absence of the MET inhibitor, INC280/
capmatinib, and the EGFR inhibitor, erlotinib. Further, the sensitivities of these cells to modulators of core metabolic
pathways were determined. In addition, we annotated a rate-limiting metabolic enzymes library and performed a siRNA
screen in combination with MET or EGFR inhibitors to validate synergistic effects.

Results: TNBC cell line models displayed significant metabolic heterogeneity with respect to basal and maximal
metabolic rates and responses to RTK and metabolic pathway inhibitors. Comprehensive systems biology analysis
of metabolic perturbations, combined siRNA and tyrosine kinase inhibitor screens identified a core set of TCA
cycle and fatty acid pathways whose perturbation sensitizes TNBC cells to small molecule targeting of receptor
tyrosine kinases.

Conclusions: Similar to the genomic heterogeneity observed in TNBC, our results reveal metabolic heterogeneity
among TNBC subtypes and demonstrate that understanding metabolic profiles and drug responses may prove
valuable in targeting TNBC subtypes and identifying therapeutic susceptibilities in TNBC patients. Perturbation of
metabolic pathways sensitizes TNBC to inhibition of receptor tyrosine kinases. Such metabolic vulnerabilities offer
promise for effective therapeutic targeting for TNBC patients.
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kinase inhibitor, Metabolic inhibitor
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Background
Triple-negative breast cancer
Triple-negative breast cancer (TNBC) accounts for 15–
20% of invasive breast cancers. TNBC is characterized by
the lack of estrogen receptor (ER) and progesterone recep-
tor (PR) expression and human epidermal growth factor
receptor 2 (HER2) amplification. TNBCs are associated
with advanced stage at diagnosis and poorer outcome
compared to other breast cancer subtypes [1]. Characteris-
tic TNBC clinical features include a peak in recurrence
risk within the first 3 years, a weak relationship between
the tumor size and lymph node metastasis, and a peak of
cancer-related death in the first 5 years [2]. At the molecu-
lar level, TNBC has significant overlap with the basal-like
subtype as approximately 80% of TNBCs are classified as
basal-like [1]. Currently, TNBCs are treated with cytotoxic
combination chemotherapy. Even though TNBC patients
have significantly higher rates of pathologic complete
response compared to non-TNBC, TNBC patients have
decreased 3-year progression-free survival and overall sur-
vival rates [1, 3]. Hence, there is a vital need for a compre-
hensive understanding of the molecular basis of TNBC
progression and emerging treatment approaches.
TNBC is a highly heterogeneous disease at the molecu-

lar level, and this heterogeneity likely underlies the vari-
able treatment responses in patients. Recent studies
involving comprehensive gene expression analysis revealed
extensive molecular heterogeneity within TNBC cases and
identified four to six distinct molecular TNBC subtypes
[4, 5]. These subtypes have unique expression signatures
and ontologies and are defined as basal-like, mesenchymal
and luminal androgen receptor subtypes. To identify novel
treatment strategies for TNBC patients, it is essential that
we understand the unique and common molecular fea-
tures of these TNBC subtypes.
Current treatment options for TNBC patients are

restricted to chemotherapy; however, receptor tyrosine
kinases (RTK) are promising druggable targets due to
their high expression in TNBC. The epidermal growth
factor receptor (EGFR) and MET receptor are highly
expressed in multiple TNBC subtypes with EGFR over-
expression in 54% of basal breast cancers (predomin-
antly TNBC). Additionally, EGFR is a biomarker for
identification of basal breast cancers [6–10]. Similarly,
MET is associated with poor clinical outcome in breast
cancer [11–15], and high MET expression correlates
with TNBC [16, 17]. Previously, we demonstrated that
the MET inhibitor cabozantinib inhibited TNBC growth,
invasion, and metastasis [18]. Recently, we determined
that combined MET and EGFR inhibition was highly
effective at abrogating tumor growth in patient-derived
TNBC tumorgrafts and significantly decreased the vari-
ability in treatment response compared to monotherapy
with MET or EGFR inhibitors [19]. These results highlight

that MET and/or EGFR inhibition may be a highly effect-
ive treatment strategy for TNBC patients. Metabolic alter-
ations are now widely understood to support the cancer
phenotype, and RTKs such at MET and EGFR have been
implicated in driving some of these the metabolic alter-
ations [20–25].

Metabolic characteristics of TNBC
Particular metabolic characteristics of TNBC have been
investigated, and overall TNBC cell models and patient
samples are characterized by elevated glycolysis. Along
these lines, a genome wide screen identified a small
subset of metabolic genes, including core glycolytic and
oxidative phosphorylation (OXPHOS) genes, whose sup-
pression was lethal in a TNBC cell model [26]. Com-
pared to ER+ breast cancer cell lines, MDA-MB-231 and
MDA-MB-468 TNBC cell models are reported to harbor
high glycolytic flux and low OXPHOS activity [27] and
are more primed to switch to a glycolytic program in the
context of limited oxygen than non-transformed cells [28].
In patient samples, high glucose transporter, GLUT1, ex-
pression is observed in TNBC compared to non-TNBC
tumors [29]. GLUT1 may also enhance invasion by local-
izing to the invasive edge of in vivo tumor models [30].
Mechanistically, high MYC expression in TNBC cell
models suppresses expression of the glycolytic inhibitor,
thioredoxin-interacting protein, TXNIP, resulting in in-
creased glycolytic flux [31]. In addition, a siRNA screen
revealed that TNBC cell line models are dependent on
elevated glycolysis through the LDHB (lactate dehydrogen-
ase B) as opposed to their non-TNBC counterparts [32].
Recent evidence indicates that the metabolic charac-

teristics of TNBC correlate with therapeutic response.
The glycolytic potential of TNBC cells may be associated
with chemotherapeutic resistance as exposing TNBC cell
models to increasing concentrations of glucose increases
proliferation and decreases the efficacy of metformin-
induced apoptosis [33, 34]. Additionally, PKM2, a glyco-
lytic enzyme associated with high tumoral glycolytic flux
[35], may confer some resistance to doxorubicin treat-
ment in vitro and in MDA-MB-231 orthotopic breast
cancer models [36]. Other studies demonstrate that
stimulation of mitochondrial activity and concurrent in-
hibition of mitochondrial respiratory complex I [37] or a
combination of glycolytic and mitochondrial inhibitors
[38] effectively kills TNBC cells and TNBC xenografts.
Collectively, the above studies demonstrate a clear role

for altered metabolism supporting the aggressive TNBC
phenotype. Much like the genetic and signaling hetero-
geneity found in cancers in general and TNBC in
particular [39], metabolic heterogeneity also likely exists
in TNBC patients [40, 41] and cell models [33, 42] and
likely drives differential responses to therapeutics. There-
fore, comprehensive and systematic investigations into the
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metabolism of TNBC and TNBC cell models are neces-
sary in order to gain insight into the best therapeutic
strategies. Some previous approaches referenced above
undertook genome-wide siRNA screening approaches
or utilized computational approaches [43]. In the
present study, we provide detailed metabolic analyses
of the commonly used MDA-MB-231, MDA-MB-468,
Hs578T, and HCC70 TNBC cell line models, which
represent the two major basal-like subtype and the
mesenchymal subtypes [4]. We determined the basal
and maximal metabolic rates, as well as the metabolic
rates in response to EGFR and MET inhibitors in these
TNBC lines. We also measure viability in response to
chemical modulation of five metabolic pathways. Finally,
we report the viability effects of suppressing each KEGG
metabolic pathway in combination with EGFR (erlotinib)
or MET (INC280) inhibition in these cell lines. Overall,
these results provide a more thorough view of the meta-
bolic landscape of TNBC and the effect of RTK inhibition
on TNBC metabolism.

Methods
Cell culture
All cells were purchased from ATCC. MDA-MB-231,
MDA-MB-468, Hs578T, and HCC70 cells were cultured
in DMEM (ThermoFisher) supplemented with 10% fetal
bovine serum. hTERT-HME1 cells were cultured in
MEBM (Lonza) supplemented with hEGF, insulin, hydro-
cortisone, and BPE (Lonza).

Metabolomics profiling
For metabolite quantification, cells were seeded in tripli-
cate (n = 3) in 6-well plates with DMEM supplemented
with 10% FBS. After 24 h, the media was removed and re-
placed with fresh media. Upon reaching 70% confluency,
cells were washed twice with phosphate buffered saline
(PBS, 46-013-CM, Corning) and lifted from culture wells
using 0.25% Trypsin/2.21 mM EDTA (25-053-CI, Corn-
ing). Cells were then washed with PBS containing 10%
FBS followed by 0.9% NaCl (Sigma, S9888). Cell pellets
frozen in liquid nitrogen before storage at 193 K.
Frozen cell pellets were thawed on ice for 10 min before

addition of 1 mL cold extraction solvent containing aceto-
nitrile/isopropanol/water (3:3:2) at 253 K. Samples were
then vortexed (15 s × 5) and frozen on dry ice for 20 mins
and the freeze/thaw/vortex cycle repeated twice. Samples
were dried via vacuum centrifugal evaporation and stored
at −80 °C before analysis.
Dried samples were derivatized first by addition of 10 μL

of MOX Reagent (20 mg/mL methoxyamine-hydrochloride
in dry pyridine (TS-45950, Thermo Fisher Scientific)
followed by 90-min incubation in a digital heating shaking
drybath at 303 K and 1100 rpm. Next, 90μL N-Methyl-N-
(trimethylsilyl)trifluoroacetamide (MSTFA, Sigma 394,866)

was added and samples were incubated at 310 K and
1000 rpm for 30mins before centrifugation for 5 min at
14,000 rpm/277 K. The supernatant was transferred to an
auto sampler vial for gas chromatography-mass spectrom-
etry (GC-MS) analysis.
Derivatized samples were analyzed on a Triple Quadru-

pole GC-MS (TSQ8000, Thermo Fisher Scientific)
equipped with a TG-5MS (30 m × 0.25 mm i.d. × 0.25 μm,
26098-1420, Thermo Fisher Scientific) capillary column
and run under electron ionization at 70 eV. The GC was
programed with an injection temperature of 523 K and
splitless injection volume of 1 μl. The GC oven
temperature program started at 232 K for 1 min, rising
to 523 K at 10 K/min with a final hold at this
temperature for 6 min. The GC flow rate with helium
carrier gas was 1.2 mL/min. The transfer line temperature
was set at 563 K and ion source temperature at 568 K. A
range of 50–600 m/z was scanned with a scan time of
0.25 s.
Metabolites were identified using TraceFinder software

v 3.3 (Thermo Fisher Scientific) based on in-house
libraries of metabolite retention time and fragmentation
patterns. Identified metabolites were quantified using
the total ion count peak area for specific mass ions, and
standard curves generated from reference standards run
in parallel. The mean, standard deviation, and 95% confi-
dence interval were calculated for each cell line and
treatment condition. ANOVA with student’s t test was
used to compare treatment conditions within each cell
line.

Metabolic flux analysis
For all metabolic flux analyses, a Seahorse 96 XFe was
used. Twenty-four hours prior to metabolic flux analyses,
cells were cultured in identical media (10 mM glucose,
2 mM glutamine, 1 mM pyruvate). Cells were plated at a
density of 40,000 cells per well in a Seahorse 96-well assay
plate 16 h prior to analysis. For basal and maximal
metabolic profiles, four independent experiments were
performed, each with three biological replicates and
five technical replicates. For basal metabolic profiles
in the context of RTK inhibitor treatment, three bio-
logical replicates each with five technical replicates
were performed, and cells were treated with 10 μM
erlotinib or INC280/capmatinib (Selleck Chemicals)
for 18 h prior to metabolic rate analysis. After metabolic
rate analyses, extracellular acidification rate (ECAR) and
oxygen consumption rate (OCR) measurements were nor-
malized to CyQUANT (Invitrogen) measurements cell
count measurements in each well. For basal rate measure-
ments, ECAR and OCR measurements were spaced 6 min
apart. For maximal rate measurements, basal rates were
measured twice at an interval of 6–7 min, followed by car-
bonyl cyanide-p-trifluormethoxyphenylhydrazone (FCCP)
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(1 μM final concentration) injection, mixture, and meas-
urement 6–7 min later, followed another measurement 6–
7 min later, followed by 2-deoxyglucose (2-DG, 100 mM
final concentration) or rotenone + antimycin (1 μM each
final concentration) injection, mixture, and measurement
6–7 min later, followed by a final measurement 6–7 min
later. Maximal rate data are representative experiments
displayed as averages of three biological replicates with
error bars representing standard deviation.

Cell viability in response to metabolic modulators
Cells were plated at a density of 2500 cells per well in 96-
well plates in growth media. Cells were treated with vehicle
or the following concentrations of chemicals: 25 mM 2-
DG, 200 μM 6-aminonicotanimide (6-AN), 1 μM rotenone,
10 mM metformin, and 1 mM 5-Aminoimidazole-4-car-
boxamide ribonucleotide (AICAR). After 48 h of treatment,
viability was measured by CellTiter-Glo (Promega). Two
independent experiments, each containing six biological
replicates, were performed. Data are from one representa-
tive experiment and provided as averages with error bars
representing standard deviation.

siRNA screen
Screen design
All small interfering RNAs (siRNAs) were from Qiagen
(Additional file 1: Table S1) and were transfected into cells
with siLentFect (BioRad, 1 μl per ml, for transfection effi-
ciency for each cell line, see Additional file 2: Figure S1A).
Rate-limiting enzymes were collated through KEGG anno-
tation (http://www.genome.jp/kegg/), the Rate-Limiting
Enzyme Regulation Database (http://rle.cbi.pku.edu.cn/
home.cgi, [44]), and literature searches and categorized ac-
cording to KEGG. Genes and metabolic categories and
pathways are provided in Additional file 3: Table S2 ac-
cording these KEGG-based annotations. For the siRNA
screen, cells were transfected with control (non-targeting)
siRNAs or siRNAs targeting the above-described rate-
limiting enzymes, then treated with either DMSO, INC280,
or erlotinib (Additional file 2: Figure S1A). Cells were
plated in 96-well assay plates at 2500 cells per well. Sixteen
hours later, cells were transfected with a pool of two siR-
NAs per gene. Twenty-four hours post-transfection, fresh
media was added containing 10 μM INC280, 10 μM erloti-
nib, or 0.1% DMSO (the final DMSO concentration in
wells containing INC280 or erlotinib). The screen was car-
ried out in duplicate for each siRNA and each condition
(DMSO, INC280, or erlotinib) in each cell line. Seventy-
two hours post-transfection (48-h post-drug treatment),
cell viability was assessed by CellTiter-Glo (Promega).

Screen analysis
The siRNA screen was performed in duplicate, and sen-
sitivity index (below) values were derived from replicate

averages. Replicates resulting in a variance larger than
0.04 were not considered for further analysis. To deter-
mine which siRNAs resulted in the greatest loss of viabil-
ity in combination with INC280 or erlotinib compared to
DMSO, a variation on the sensitivity index (SI) equation
developed by Hoffman and Gardner (1983) was used to
estimate the effect of siRNA knockdown on drug sensitiv-
ity [45]. The SI value for each siRNA was calculated using
the following equation:

SI ¼ Rc

Cc
� Cd

Cc

� �
−

Rd

Cc

� �
:

In this equation, Rc is the average viability in drug-
untreated (DMSO) wells transfected with siRNA target-
ing rate-limiting enzymes, Rd is the average viability in
drug-treated wells (INC280 or erlotinib) with siRNA
targeting rate-limiting enzymes, Cc is the average viability
in drug-untreated (DMSO) wells with control (non-target-
ing) siRNA, and Cd is the average viability in drug-treated
(INC280 or erlotinib) wells with control (non-targeting)
siRNA [46]. The SI ranges from −1 to 1, with negative
values indicating an antagonistic effect on drug perform-
ance and positive values indicating a sensitizing effect.
This is accomplished by comparing the predicted effect of
drug and siRNA exposure (Rc/Cc × Cd/Cc) to the observed
effect of combined exposure (Rd/Cc). Although the SI
allows for rapid analysis of siRNA screening data that sur-
passes the power observed in simple fold-change analysis,
it does not allow for the calculation of a p value, as it does
not consider probability distribution [46, 47]. As a result,
the top 10% of sensitizing siRNAs was used in metabolic
pathway analysis. These resulting genes were grouped into
KEGG-annotated Metabolic Categories for each drug
treatment in each cell line and into KEGG-annotated
Metabolic Pathways for each drug treatment.

Results
Metabolomics profiles of TNBC cell lines
To understand the diversity of metabolic activity in
TNBC, we examined multiple TNBC cell lines that are
representative of several TNBC subtypes identified by
Lehmann et al. [4]. These cell lines correspond to the
two major basal-like subtypes and a mesenchymal-like
subtype. This included Hs578t (mesenchymal stem-like;
basal B), MDA-MB-231 (mesenchymal stem-like; basal B),
MDA-MB-468 (basal-like 1; basal A), and HCC-70 (basal-
like 2, basal A) cells (Additional file 2: Figure S1B). To
produce initial metabolic profiles of TNBC, we measured
the basal glycolytic and mitochondrial oxidative metabol-
ism rates in four TNBC cell models (MDA-MB-231,
MDA-MB-468, HS578t, HCC70) and one immortalized,
non-transformed mammary gland epithelial cell model
(hTERT-HME1) (Additional file 2: Figure S1C).
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We profiled pool sizes of 43 central carbon metabolites
of subconfluent TNBC cell lines in exponential growth
phase. In addition, we quantified pool size changes follow-
ing treatment with small molecule inhibitors of the RTKs
MET and EGFR. Both MET and EGFR were prominently
expressed in the assayed cell lines. Hierarchical clustering
of metabolic profiles of TNBC cell lines reveals molecular
heterogeneity between the TNBC mesenchymal-like and
basal-like subtypes (Fig. 1). Pool size measurements
showed common clusters of low TCA cycle and elevated
amino acid metabolites of mesenchymal-like MDA-MB-
231 and Hs578 which were distinct from the basal-like
MDA-MB-468 and HCC70 cell lines (Fig. 1a, Additional
file 4: Table S3). Drug perturbations of amino acid pool
sizes demonstrated similar response of mesenchymal-like
subtype MDA-MB-231 and Hs578 cell lines to both,
INC280 or erlotinib, treatment (Fig. 1b). Clusters of each
subtype and cell line were well separated by metabolic
profiles and drug responses showing that each subtypes
had major similarities but each breast cancer cell line also
had distinct components. The TCA cycle organic acid
α-ketoglutaric acid is significantly reduced upon INC280
treatment with p values below 0.05 for all tested TNBC
cell lines. Similarly, TCA cycle and central carbon metabo-
lites aspartic acid, fumaric acid, and malic acid are signifi-
cantly reduced upon erlotinib treatment with p values

below 0.05 for all cell lines. In addition, the MDA-MB-231
cell lines show significant perturbation of amino acid
metabolism for both inhibitors. Interesting, the MDA-
MB-231 cell line stands out for its strong metabolic per-
turbation affecting TCA cycle metabolites, many amino
and keto acids (Fig. 1b).

TNBC basal metabolic profiles
MDA-MB-231 and MDA-MB-468 cells exhibited similar
glycolytic rates (extracellular acidification rate, ECAR)
compared to HME1 cells, while HS578t and HCC70 cells
displayed approximately 1.5 and two times the glycolytic
rate of HME1 cells, respectively (Fig. 2a, c). MDA-MB-
231 and HS578t cells exhibited slightly elevated oxygen
consumption rates (OCR) compared to HME1 cells,
whereas MDA-MB-468 and HCC70 displayed approxi-
mately four times the oxygen consumption rate of HME1
cells (Fig. 2b, c). Determining each cell lines’ relative
ECAR/OCR ratio provides a relative index of which meta-
bolic program each cell line utilizes more in the basal state
(Fig. 2d). HME1 cells utilize relatively more basal glyco-
lytic than oxidative metabolism, as do Hs578T and MDA-
MB-231 cells. HCC70 cells utilize relatively similar basal
glycolytic and oxygen metabolism, while MDA-MB-468
cells utilize relatively more oxygen metabolism than

Fig. 1 Metabolomics profiling of TNBC cell lines. Hierarchical clustering of metabolic profiles of TNBC cell lines reveals molecular heterogeneity
between subtypes. a Pool size measurements show common clusters of low TCA cycle and elevated amino acid metabolites of mesenchymal-like
subtype cell lines MDA-MB-231 and Hs578 vs basal-like subtypes HCC70 and MDA-MB-456. b Clustering of drug responses of TNBC cell lines (average
ratios of metabolite concentrations in conditions INC280/vehicle and erlotinib/vehicle are plotted for each set of biological triplicates).
Drug perturbations of reduced amino acid pool sizes show similar response of reduced amino acid pool sizes upon receptor tyrosine kinase inhibitor
treatment of mesenchymal-like subtype MDA-MB-231 and Hs578 cell lines. INC280/capmatinib was used to inhibit proto-oncogene MET
receptor tyrosine kinase, and erlotinib was used to inhibit receptor tyrosine kinase and growth factor receptor EGFR in TNBC cell lines
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glycolytic metabolism (Fig. 2d). Together, the analyses of
basal metabolic rates indicate that HME1, MDA-MB231,
and Hs578T are all more poised to rely on glycolytic me-
tabolism, while MDA-MB-468 cells are more poised to
rely on oxidative metabolism in the basal state. Interest-
ingly, in the basal state, HCC70 cells exhibited the greatest
glycolytic and oxidative metabolism rates (Fig. 2a–c), but
also exhibited the most balance between these rates
(Fig. 2d). Understanding basal metabolic rates and the
relative metabolic index may provide insight into which
metabolic program specific cancers or cancer cell
models may be especially sensitive (Fig. 4).

TNBC maximal metabolic profiles
While basal metabolic rates (Fig. 2) are informative, most
cells harbor the ability to alter one metabolic program in
order to compensate when another metabolic program is
perturbed. Therefore, inhibition of one metabolic program
(e.g., glycolysis) allows measurement of the maximal
capability of the other metabolic program (e.g., oxidative
metabolism) (Fig. 3a). To determine the maximal glyco-
lytic and oxygen consumption metabolic capabilities
(Additional file 5: Figure S2A, B) in these TNBC cell
models, we measured respiration arrest-induced max-
imal glycolytic rates and depolarization-induced maximal
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to total cell numbers for each cell line in the ECAR assay. Data are ECAR averages from four experiments, each with five biological replicates. Error
bars represent SEM. Asterisks indicate significance compared to HME1 cell values (p ≤ 0.05). b Cells were maintained in uniform media for 24 h
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OXPHOS rates (Fig. 3b, c). The MDA-MB-231 cell line
and the non-transformed mammary gland epithelial cell
model, HME1, exhibited the least metabolic flexibility, as
demonstrated by only moderate adjustments in ECAR
and OCR (changes in values post-FCCP addition, Fig. 3b)
and subsequent calculated glycolytic reserve and spare re-
spiratory capacity rates (Fig. 3c). Interestingly, these two
cell lines also displayed very modest basal metabolic rates
(Fig. 2). Hs578T maximal ECAR and OCR were moder-
ately elevated above basal rates, above those of HME1 and
MDA-MB-231 but below MDA-MB-468 and HCC70.
Both MDA-MB-468 and HCC70 maximal ECAR were

nearly double basal rates, with HCC70 displaying the
greatest glycolytic capacity. MDA-MB-468 and HCC70
maximal OCR were moderately elevated above basal
rates, and MDA-MB-468 displayed the greatest capacity
for oxidative metabolism. From these measurements,
glycolytic reserve and spare respiratory capacity can be
calculated (Fig. 3a). While all cell models displayed
some glycolytic reserve, HCC70 and MDA-MB-468
cells exhibited the greatest glycolytic reserves (Fig. 3d).
MDA-MB-468 also exhibited the greatest spare respira-
tory capacity (Fig. 3d). These data indicate that each of
the TNBC cells possesses a measure of metabolic
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flexibility as defined by their abilities to increase
ECAR or OCR when the one program is perturbed,
with MDA-MB-468 cells exhibiting the greatest meta-
bolic flexibility.

TNBC response to metabolic modulators
To further characterize the metabolic profiles of these cell
models, we assessed the effects on viability following
treatment with metabolic modulators at concentrations
commonly utilized in published literature (Fig. 4). These
experiments evaluated the effects of the 5′ adenosine
monophosphate-activated protein kinase (AMPK) activator
[5-aminoimidazole-4-carboxamide-1β riboside (AICAR)]
[48], the glycolytic inhibitor 2-deoxy-glucose (2DG) [49],
the pentose phosphate inhibitor 6-amino-nicotinamide
(6-AN) [50], the mitochondrial complex I inhibitor
rotenone [51], and the AMPK activator/Complex I in-
hibitor metformin [52, 53] (Fig. 4a). Similar to the meta-
bolic rate investigations above, the TNBC models
exhibited heterogeneous responses to these treatments;
however, from these results, some interesting patterns
were observed (Fig. 4b–f). Each TNBC model exhibited an

approximately 40–60% loss of viability in response to the
glycolytic inhibitor 2-DG. Interestingly, HME1 cells, which
exhibited the greatest bias towards basal utilization of
glycolytic metabolism (Fig. 2e), were most affected by
2-DG treatment, as well as the pentose phosphate in-
hibitor 6-AN (Fig. 4b). Conversely, MDA-MB-468
cells, which exhibited the greatest bias towards basal
utilization of oxidative metabolism (Fig. 2e), were
most affected by the electron transport chain inhibi-
tor, rotenone (Fig. 4d).
Also of note, Hs578T cells exhibited enhanced pro-

liferation in response to AICAR while other cell lines
exhibited variable decreases in viability compared to
control. While AICAR and metformin are both com-
monly used as AMPK activators, they activate AMPK
via disparate mechanisms. However, metformin and
rotenone both perturb oxidative phosphorylation through
respiratory chain complex I (RCI) inhibition. Our results
reveal more similar viability effects between metfor-
min and rotenone (common RCI inhibitors) than
between metformin and AICAR (common AMPK activa-
tors) (Fig. 4b–f ).
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Comprehensive analysis of rate-limiting enzymes and RTK
inhibition
EGFR and MET receptors are known to drive tumori-
genic progression, and RTKs are known to regulate
metabolic signaling pathways [54]. To investigate the
effects of EGFR and MET inhibition on TNBC metabol-
ism, we measured ECAR and OCR in TNBC cells
treated with the EGFR inhibitor erlotinib and the MET
inhibitor INC280 (capmatinib). As in the above analyses,
the TNBC cell models displayed heterogeneous responses
to the tyrosine kinase inhibitors (TKIs). We observed that
MET and EGFR inhibition had little effect on the glyco-
lytic and oxidative metabolism rates of basal A/B subtype
MDA-MB-468 or HCC70 cell lines (Fig. 5a). In contrast,
in both mesenchymal-like MDA-MB-231 and Hs578T cell
lines, both MET and EGFR inhibition strongly perturbed
both glycolysis and oxidative metabolism (Fig. 5a). Import-
antly, comparing these data to a principal component ana-
lysis of our metabolomics data revealed that metabolic
changes of mesenchymal-like MDA-MB-231 and Hs578T
cell lines upon drug treatment recapitulated the observed
changes of metabolic fluxes (Fig. 5b). Both cell lines show
perturbation of the top two principal components

(reflecting 84.9% of the data) in the same direction and
magnitude. In contrast, major principle components of
metabolic perturbations do not change for basal-like
subtype MDA-MB-468 or HCC70. Despite the metabolic
responses of MDA-MB-231 and Hs578T cell lines to
INC280 vs erlotibib based on amino acid and TCA cycle
metabolism of mesenchymal-like cell lines are in agree-
ment, glycolytic rates show differential perturbation.
Among the assessed TNBC cell lines, mesenchymal-like
subtypes showed strong, consistent perturbations, des-
pite underlying heterogeneity of breast cancer subtypes.
To more comprehensively investigate the metabolic

consequences of EGFR and MET inhibition in TNBC
models, we performed a siRNA screen in each cell line
targeting all 323 rate-limiting enzymes in the human
KEGG metabolic pathways and Rate Limiting Enzyme
Regulation databases. This compliment of enzymes was
divided into 11 major metabolic categories representing
89 metabolic pathways (Additional file 3: Table S2). The
siRNA screen was performed in duplicate in each cell
line in cells treated with vehicle (DMSO), INC280, or
erlotinib. A sensitivity index was applied to viability mea-
surements to determine the effect of siRNA knockdown

a

c 231 Erlotinib 468 Erlotinib

468 INC280 Hs578T Erlotinib

0

0.3

0.2

0.1

-0.3

-0.2

-0.1

0

0.3

0.2

0.1

-0.2

-0.1

0.15

0.05

0.25

-0.15

-0.05

-0.25

0.15

0.05

0.25

-0.15

-0.05

-0.25

ACADM
ADH1B

ACSL1

HSD17B10
ACSL3

Fatty Acid
Metabolism

NMNAT2
RRM1

NT5DC3
NT5C3A

Nicotinate, Nicotinamide,
Purine, Pyrimidine

Metabolism 

CYP3A5
PLA2G2E

JMJD7-PLA2G4B

Arachadonic Acid
Linoleic Acid
Metabolism ADH1A

ACSL6
ACADS

Fatty Acid
Metabolism

S
en

si
tiv

ity
 In

de
x

S
en

si
tiv

ity
 In

de
x

S
en

si
tiv

ity
 In

de
x

S
en

si
tiv

ity
 In

de
x

10

0

-10
-10-20 0 10

PC1 (78.2%)

P
C

2 
(7

8.
2%

)

V I

E V

I E
E VIV

V I

V
E
I

Vehicle
Erlotinib
INC280

HCC70

MDA-MB-468MDA-MB-231

HS578T

ECAR (relative
mpH/min/cell number)

O
C

R
 (

re
la

tiv
e

pm
ol

es
/m

in
/c

el
l n

um
be

r)

0

0.5

1.0

1.5

2.0

0 0.5 1.0 1.5 2.0

I
E

V

I
E

V

I
E

V

I EV

HCC70

MDA-MB-468

HS578T

Increasing Glycolysis

In
cr

ea
si

ng
 O

X
P

H
O

S

V
E
I

Vehicle
Erlotinib
INC280

b

Fig. 5 RTK-dependent TNBC sensitization to metabolic pathway perturbation. a Metabolic rate response to RTK inhibitors. 40,000 cells per well were
plated in Seahorse 96-well assay plates. Cells were treated for 24 h with the DMSO, erlotinib, or INC280, and then ECAR and OCR were measured as
described in Methods. b Principle component analysis of drug responses. Mesenchymal-like subtype MDA-MB-231 and Hs578 cell lines show
largest perturbations. c RNAi screen results for selected TKI treatments which induce sensitivities to knockdown of common metabolic pathway genes

Lanning et al. Cancer & Metabolism  (2017) 5:6 Page 9 of 14

67



on drug sensitivity, and therefore identifies genes whose
knockdown preferentially reduces viability in TNBC cells
treated with a TKI vs vehicle alone (see Methods,
Additional file 6: Table S4). Eight of the 11 major meta-
bolic categories were represented in the sensitivity index
to varying levels for each TNBC model and each TKI
(Additional file 7: Figure S3, see also Additional file 6:
Table S4, Additional file 8: Table S5). Notably, lipid metab-
olism was prominent (represented > 15% of hits) in each
TNBC model treated with INC280 or erlotinib, while
amino acid metabolism was also prominent in each TNBC
model treated with INC280. Evaluating individual signifi-
cant rate-limiting enzymes in each group revealed poten-
tial sensitivities associated with specific TKI for some
TNBC subtypes (Fig. 5c). MDA-MB-231 and Hs578T cells
treated with erlotinib were sensitive to knockdown of fatty
acid genes, while MDA-MB-468 cells treated with the
same TKI were sensitive to knockdown of specific nucleo-
tide metabolism pathways. INC280 sensitized MDA-MB-
468 cells to knockdown of arachidonic and linoleic acid
metabolism rate limiting enzymes. Interestingly, a broader
analysis of metabolic pathways across cell TNBC subtypes
in response to TKI treatments identified additional sensi-
tivities. The top ten metabolic pathways identified by the
sensitivity index displayed significant overlap between
the TKI treatments (Additional file 7: Figure S3, see
also Additional file 8: Table S5). Additionally, within
this set of common pathways, three pathways which are
engaged to counteract oxidative stress were enriched in
the screen results (Glutathione metabolism, cytochrome
P450 metabolism, and non-P450 drug metabolism path-
ways). These results suggest that even with the molecular
heterogeneity that is present in TNBC, there are common
metabolic programs that can be targeted in TNBC sub-
types. Taken together, these data shows that targeting
pathways such as fatty acid metabolism, pyrimidine
metabolism, or oxidative stress relief pathways in combin-
ation with MET or EGFR inhibition may represent an
effective therapeutic strategy.

Discussion
In this study, we characterized the metabolic heterogen-
eity of TNBC and identified a core set of metabolic path-
ways that are common among the TNBC subtypes, yet
observed diverse metabolic profiles among TNBC cell
lines. Genetic and signaling heterogeneity is observed in
most solid cancers, and studies have indicated that there
is a particularly high level of genomic heterogeneity
among TNBC patients [39]. These observations of hetero-
geneity have been borne out in metabolic analyses of
TNBC as well. Analyses of TNBC patient tissues have
demonstrated heterogeneity of glycolytic and mitochon-
drial protein expression [40, 41, 55]. TNBC cell lines have

also exhibited heterogeneity with respect to glutamine
metabolism [42] and response to the metabolic modulator,
metformin [33, 34]. Therefore, the heterogeneity evident
between TNBC cell lines in our detailed metabolic
characterization extends these previous findings. Meta-
bolic pool sizes and drug responses revealed common
patterns between TNBC subtypes but also highlighted
cell line-specific responses (Fig. 1). Importantly, drug
responses of metabolic rates and principle metabolic
components identified a theme of metabolic capacity
and adaptability as major difference of mesenchymal-
like vs basal-like subtypes (Fig. 5) [56]. Basal-like cell
lines are metabolically most active with the highest
OCR and ECAR (Fig. 2c), resulting in low, depleted
metabolic pool sizes (Fig. 1a). Mesenchymal-like cell
lines have significantly lower OXPHOS allowing them
to modulate and adaptively respond to the drug chal-
lenges (Fig. 5a, b). The HCC70 cell is an example of
extremely high OCR and ECAR that allows for minimal
adjustment to drug challenges. The unique metabolic pro-
files (Figs. 1, 2, and 3) response to chemical modulators
(Fig. 4) and sensitivities to combined RTK, and metabolic
pathway inhibition (Fig. 5) provides platforms which can
help place the responses of these TNBC cell line models
in previous and future studies into a broader metabolic
context. For example, previous work demonstrated that
MDA-MB-468 cells are more sensitive to metformin than
MDA-MB-231 cells. Here, we provide a potential basis for
that observation as we found MDA-MB-468 cells to be
more poised to rely on OXPHOS than MDA-MB-231
cells (Fig. 2d). Therefore, this comprehensive metabolic
analysis provides a platform in which to identify thera-
peutic sensitivities within the TNBC metabolic landscape.
In the TNBC cell models that we evaluated, an index

mapping, the relative affinities for basal metabolic rates
(Fig. 2d), appeared more useful for predicting response
to chemical modulators (Fig. 4) than did an analysis of
maximal metabolic rates (Fig. 3). Cells which displayed
relatively higher OXPHOS rates than glycolytic rates
(MDA-MB-468) were the most sensitive to rotenone
treatment. On the other hand, cells which displayed rela-
tively higher glycolytic rates than OXHPOS rates (HME1,
Hs578T) were the most sensitive to 2-DG and 6-AN treat-
ment. Therefore, although a cell may harbor the ability to
greatly increase glycolytic rate when OXPHOS is
disrupted (MDA-MB-468, Fig. 3a, d), its higher basal
OXPHOS rate may reflect an absolute requirement for
high, sustained oxidative metabolism. Therefore, it is pos-
sible that cells which display the ability to upregulate alter-
native metabolic pathways in response to metabolic
insults still remain dependent on the metabolic pathways
which they preferentially utilize in the basal state.
In addition to glycolytic and mitochondrial oxidative

metabolism alterations, TNBC patient samples display
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evidence of altered glutamine metabolism compared to
HER2 positive cancers [57]. TNBC cancer cell line models
enhance glutamine uptake and metabolism, which are as-
sociated with epigenetic changes favoring expression of
pro-tumorigenic genes [58, 59]. Other studies provide
evidence of altered amino acid metabolism in TNBC.
MDA-MB-231 and MDA-MB-468 cells exhibit elevated
serine metabolism protein expression compared to HER2
positive cell lines, an observation that is shared in patient
samples [60, 61]. Metabolomics analyses of patient sam-
ples identified lower amino acid levels in TNBC patients
compared to healthy controls [62]. A folate metabolism
enzyme may also serve as a biomarker for TNBC in dis-
tinct ethnic populations [63]. Finally, altered lipid metab-
olism appears to play a part in TNBC. Patient TNBC and
non-TNBC tissues can be discriminated based on markers
of lipid metabolism [64, 65], and MDA-MB-231 and
MDA-MB-468 cells are effectively induced to undergo
apoptosis upon suppressing expression of the lipogenic
transcription factors, SREBP1/2 [66]. Recent metabolo-
mics analyses identified metabolites associated with the
Warburg effect, and the oxidative stress response, and
specific metabolite signatures associated with different
driver mutations [67]. Metabolomics have also identified
potential global differences in breast cancer-associated
metabolites between patients of different races [61], and
miRNA-associated thiamine homeostasis specific to
TNBC patient samples [68].
RTKs are promising drug targets due to their high

expression in TNBC. The success of trastuzumab in
HER2+ breast cancer underscores the potential of target-
ing tyrosine kinases yet, in spite of this promising start,
monotherapy with tyrosine kinase inhibitors (TKIs) has
had limited success in the clinic. In this study, we evalu-
ated the effects of RTK inhibition on metabolic pathways
in TNBC. This analysis highlighted the unique metabolic
dependencies in our TNBC models, but also revealed
reveal a core set of metabolic pathways that are univer-
sally affected by TKI treatment. Collectively, TNBC cells
were commonly sensitized to inhibition of redox homeo-
stasis, fatty acid metabolism, and nucleotide metabolism
by erlotinib and INC280 treatment. The metabolomics
results provide a mechanistic basis for the lipid metabol-
ism sensitivity identified in the RLE siRNA screen. Flux
analyses of multiple cancers demonstrate that altering
TCA cycle flux significantly impinges upon lipid metab-
olism [69]. Therefore, the sensitivities to lipid metabolism
RLE knockdown could be predicted by the concurrent
changes in amino acid metabolites. Glutathione metabol-
ism, cytochrome P450 metabolism, and non-P450 drug
metabolism pathways, each of which ameliorate oxidative
stress, were enriched in the siRNA screen, highlighting
the importance of redox homeostasis in this context. Clin-
ically, redox pathways have been shown to be upregulated

in TNBC vs ER+ tumors [70] and heightened glycolytic
metabolism may be regulated in part by oxidative stress in
TNBC cells [71]. Our data provide additional impetus for
co-targeting these metabolic and kinase pathways in
TNBC patients [72]. siRNAs targeting fatty acid metabol-
ism and specifically arachidonic acid metabolism genes
were also common hits in the screen. Expression of fatty
acid metabolism enzymes have previously been associated
with TNBC metastasis [64] and survival rates [65].
Arachidonic acid metabolism itself may also be linked
to cytochrome P450 metabolism in breast cancers
[72]. Interestingly, suppression of tryptophan metabol-
ism enhances INC280 treatment (Additional file 7:
Figure S3). A previous investigation of BT549 TNBC cells
demonstrated a link between tryptophan metabolism-
dependent kynurenine production and breast cancer cell
anoikis resistance, particularly in ER negative cell [73]. Be-
cause the data in Fig. 3d show that MDA-MB-468 cells
have very little relative glycolytic activity while maintaining
high OXPHOS activity, it would be reasonable to expect
less effects from suppression of carbon metabolism RLEs.
The data in Additional file 2: Figure S3 bear this out as
carbon metabolism RLE knockdown has the least effect on
MDA-MB-468 cells. A potential mechanism for this obser-
vation may be the KRAS mutational status of MDA-MB-
468 cells which is not shared by the other TNBC lines
under study. A previous study has demonstrated that
some KRAS-driven cancers cells significantly upregu-
late OXPHOS metabolism [74]. Finally, MET or EGFR in-
hibition collectively sensitized TNBC cells to knockdown
of pyrimidine and purine metabolism enzymes. Interest-
ingly, a significant proportion of the siRNA hits driving
enrichment of these metabolic pathways in our study are
5′-nucleotidases and nucleotide kinases. These results
suggest that regulation of nucleotide phosphorylation
plays an important role in determining sensitivity to RTK
inhibitors in TNBC. Therefore, small molecules disrupting
nucleotide phosphorylation dynamics may prove effective
at enhancing RTK inhibition in TNBC.

Conclusions
The findings in this study provide comprehensive infor-
mation on the metabolic background of TNBC subtypes,
their unique and common metabolic dependencies, and
how they respond to metabolic insults. These results
provide a valuable resource for investigators who utilize
these TNBC cell lines. Additionally, our siRNA analysis
establishes a comprehensive analysis of metabolic rate-
limiting enzymes and identifies erlotinib- and INC280-
sensitized pathways. Overall, this comprehensive meta-
bolic analysis demonstrates the metabolic heterogeneity
within TNBC and identifies therapeutic sensitivities that
may be exploited in treating TNBC patients.
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Additional files

Additional file 1: Table S1. Genes targeted and siRNA sequences used
in siRNA screen. (XLSX 57 kb)

Additional file 2: Figure S1. RNAi screen, cell lines, and metabolic
rates. (A) Schematic of RNAi screen (left) and transfection efficiency under
screen conditions (right). (B) Characteristics of each cell line used in this
study. (C) Schematic representing biological compartments and
metabolic pathways assessed for metabolic rates. (PDF 957 kb)

Additional file 3: Table S2. Genes and metabolic categories and
pathways used in siRNA screen. Rate-limiting enzymes were collated
through KEGG annotation (http://www.genome.jp/kegg/), the Rate-Limiting
Enzyme Regulation Database (http://rle.cbi.pku.edu.cn/home.cgi, [51]), and
literature searches and categorized according to KEGG. (XLSX 25 kb)

Additional file 4: Table S3. Quantitation of metabolic pool sizes, ratios
for cell lines, and drug responses with statistical values. Total ion count
integrated over peak area for metabolite-specific mass ion validated by
multiple precursor-product ion combinations. Mean, standard deviation,
and ANOVA with student’s t test compares triple-negative breast cancer
(TNBC) cell lines and treatment with INC280 or erlotinib vs control vehicle
(DMSO). (XLSX 52 kb)

Additional file 5: Figure S2. OCR and ECAR measurement explanation.
(A) i. Normally functioning cellular respiration utilizes electrons in the
form of NADH and FADH2 to pass down the electron transport chain
(ETC) gradient. These redox reactions in the ETC pump hydrogen ions
from the mitochondrial matrix into the mitochondrial inner membrane
space (IMS), providing an electrochemical gradient which in turn powers
ATP synthase-dependent ATP production. ii. FCCP is a lipid-soluble
ionophore that allows hydrogen ions to escape the IMS, functionally
uncoupling the ETC from ATP synthase-mediated ATP production. iii. In
order to restore FCCP-mediated depletion of ATP levels, glycolytic flux
increases to maximum capacity. iv. In order to maintain a minimal
hydrogen ion gradient in the IMS, mitochondrial complex IV activity
increases to maximum capacity, thus inducing maximum oxygen
consumption. (B) The order of metabolic rate measurements and
metabolic toxin treatment for maximal rate measurements. i. Basal
glycolytic rate. ii. Respiration arrest-induced maximal glycolytic rate. iii.
Glycolytic arrest. iv. Basal OXPHOS rate. v. Depolarization-induced
maximal OXPHOS rate. vi. OXPHOS arrest. (PDF 997 kb)

Additional file 6: Table S4. Drug response and sensitivity index for siRNA
treatment of triple-negative breast cancer (TNBC) cell lines.. (XLSX 128 kb)

Additional file 7: Figure S3. Sensitization to metabolic pathway
perturbation. (A) Graphical representation of the proportion which each
metabolic category (Table S2) was represented in the top 10% sensitivity
index scores. (B) The combined top ten pathways as defined by high-
scoring sensitivity index genes for each TKI (INC80 or erlotinib). (PDF 801 kb)

Additional file 8: Table S5. Top 10% scoring siRNAs in the siRNA
screen for each condition. (XLSX 27 kb)
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Abstract

Background: Kinase inhibition in the mitogen activated protein kinase (MAPK) pathway is a standard therapy for
cancer patients with activating BRAF mutations. However, the anti-tumorigenic effect and clinical benefit are only
transient, and tumors are prone to treatment resistance and relapse. To elucidate mechanistic insights into drug
resistance, we have established an in vitro cellular model of MAPK inhibitor resistance in malignant melanoma.

Methods: The cellular model evolved in response to clinical dosage of the BRAF inhibitor, vemurafenib, PLX4032.
We conducted transcriptomic expression profiling using RNA-Seq and RT-qPCR arrays. Pathways of melanogenesis,
MAPK signaling, cell cycle, and metabolism were significantly enriched among the set of differentially expressed
genes of vemurafenib-resistant cells vs control. The underlying mechanism of treatment resistance and pathway
rewiring was uncovered to be based on non-genomic adaptation and validated in two distinct melanoma models,
SK-MEL-28 and A375. Both cell lines have activating BRAF mutations and display metastatic potential.

Results: Downregulation of dual specific phosphatases, tumor suppressors, and negative MAPK regulators
reengages mitogenic signaling. Upregulation of growth factors, cytokines, and cognate receptors triggers signaling
pathways circumventing BRAF blockage. Further, changes in amino acid and one-carbon metabolism support
cellular proliferation despite MAPK inhibitor treatment. In addition, treatment-resistant cells upregulate
pigmentation and melanogenesis, pathways which partially overlap with MAPK signaling. Upstream regulator
analysis discovered significant perturbation in oncogenic forkhead box and hypoxia inducible factor family
transcription factors.

Conclusions: The established cellular models offer mechanistic insight into cellular changes and therapeutic targets
under inhibitor resistance in malignant melanoma. At a systems biology level, the MAPK pathway undergoes major
rewiring while acquiring inhibitor resistance. The outcome of this transcriptional plasticity is selection for a set of
transcriptional master regulators, which circumvent upstream targeted kinases and provide alternative routes of
mitogenic activation. A fine-woven network of redundant signals maintains similar effector genes allowing for
tumor cell survival and malignant progression in therapy-resistant cancer.
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Background
Therapy resistance in cancer
Cancer drug resistance is a major obstacle in achieving
durable clinical responses with targeted therapies. This
highlights a need to elucidate the underlying mecha-
nisms responsible for resistance and identify strategies
to overcome this challenge. In malignant melanoma, ac-
tivating point-mutations in the mitogen activated protein
kinase (MAPK) pathway in BRAF kinase (B-Raf proto-
oncogene, serine/threonine kinase, Gene ID: 673) [1–3]
made it possible to develop potent kinase inhibitors
matched to genotyped kinase mutations in precision
medicine approaches [4–6]. In tumors expressing the
oncoprotein BRAF(V600E), the inhibitor molecules
vemurafenib, dabrafenib, and encorafenib are designed
to lock the ATP binding site into an inactive conform-
ation of the kinase [4], the preferred state of wild-type
RAF proteins. Trametinib and cobimetinib target
MAP2K7 (MEK, mitogen-activated protein kinase kinase
7, Gene ID: 5609), the BRAF target and downstream ef-
fector molecule. In MAPK signaling, combinations of
specific inhibitors have proven to be superior to single-
agent regimens: BRAF inhibitors (BRAFi) in combin-
ation with MEK inhibitors (MEKi) improved survival
compared to single MAPK inhibitors (MAPKi) [7–10].
However, many patients responding to small molecule
inhibition of the MAPK pathway will develop resistance.
Ultimately, disease progression will take place and pa-
tients relapse with lethal drug-resistant disease.

Mechanism of resistance beyond mutations
Acquired resistance has been shown to involve a diverse
spectrum of oncogenic mutations in the MAPK pathway
[11–15]. In addition, non-genomic activation of parallel
signaling pathways has been noted [16]. Cell-to-cell vari-
ability in BRAF(V600E) melanomas generates drug-
tolerant subpopulations. Selection of genetically distinct,
fully drug-resistant clones arise within a set of heteroge-
neous tumor cells surviving the initial phases of therapy
due to drug adaptation [17]. Non-genomic drug adapta-
tion can be accomplished reproducibly in cultured cells,
and combination therapies that block adaptive mecha-
nisms in vitro have shown promise in improving rates
and durability of response [18]. Thus, better understand-
ing of mechanisms involved in drug adaptation is likely
to improve the effectiveness of melanoma therapy by
delaying or controlling acquired resistance.

Methods
Cellular models of malignant melanoma
SK-MEL-28 and A375 are human skin malignant melan-
oma cell lines with BRAF(V600E) activation that are
tumorigenic in xenografts [19–22] (HTB-72 and CRL-
1619, American Type Culture Collection, Manassas,

VA). The cell lines are maintained in DMEM medium
supplemented with 10% fetal bovine serum and antibi-
otics (10–017-CV, 35–010-CV, 30–002-CI Corning,
Corning, NY). All experimental protocols were approved
by the Institutional Review Boards at the University of
California Merced and Irvine. The study was carried out
as part of IRB UCM13–0025 of the University of Califor-
nia Merced and as part of dbGap ID 5094 on somatic
mutations in cancer and conducted in accordance with
the Helsinki Declaration of 1975.
BRAFi-resistant (BRAFi-R) models were obtained by

challenging cancer cell lines with incrementally increas-
ing vemurafenib (PLX4032, PubChem CID: 42611257,
Selleckchem, Houston, TX) concentrations in the culture
media. Starting at 0.25 μM, which matched the naïve
half maximal inhibitory concentration (IC50) of the par-
ental cell lines, the vemurafenib concentrations were in-
creased every 7 days in an exponential series up to 100-fold
the naïve IC50 concentrations. Following this 6-week
selection protocol, vemurafenib-adapted, cancer ther-
apy resistance models were maintained in media sup-
plemented with 5.0 μM vemurafenib.

Transcriptomic profiling and differential gene expression
analysis
Total RNA from malignant melanoma cells was ex-
tracted using a mammalian RNA mini preparation kit
(RTN10-1KT, GenElute, Sigma EMD Millipore, Darm-
stadt, Germany) and then digested with deoxyribonucle-
ase I (AMPD1-1KT, Sigma EMD Millipore, Darmstadt,
Germany). Complementary DNA (cDNA) was synthe-
sized using random hexamers (cDNA SuperMix,
95,048–500, Quanta Biosciences, Beverly, MA). The
purified DNA library was sequenced using a High-
Seq2500 (Illumina, San Diego, CA) at the University of
California Irvine Genomics High-Throughput Facility.
Purity and integrity of the nucleic acid samples were
quantified using a Bioanalyzer (2100 Bioanalyzer, Agi-
lent, Santa Clara, CA). Libraries for next generation
mRNA transcriptome sequencing (RNA-Seq) analysis
were generated using the TruSeq kit (Truseq RNA Li-
brary Prep Kit v2, RS-122-2001, Illumina, San Diego,
CA). In brief, the workflow involves purifying the poly-A
containing mRNA molecules using oligo-dT attached
magnetic beads. Following purification, the mRNA is
chemically fragmented into small pieces using divalent
cations under elevated temperature. The cleaved RNA
fragments are copied into first strand cDNA using re-
verse transcriptase and random primers. Second strand
cDNA synthesis follows, using DNA polymerase I and
RNase H. The cDNA fragments are end repaired by ade-
nylation of the 3′ ends and ligated to barcoded adapters.
The products are then purified and enriched by nine cy-
cles of PCR to create the final cDNA library subjected to
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sequencing. The resulting libraries were validated by
qPCR and size-quantified by a DNA high sensitivity chip
(Bioanalyzer, 5067–4626, Agilent, Santa Clara, CA). Se-
quencing was performed using 50 base pair read length,
single-end reads, and more than 107 reads per sample.
Raw sequence reads in the file format for sequences with
quality scores (FASTQ) were mapped to human refer-
ence Genome Reference Consortium GRCh38 using
Bowtie alignment with an extended Burrows-Wheeler
indexing for an ultrafast memory efficient alignment
within the Tuxedo suite followed by Tophat to account
for splice-isoforms [23, 24]. Read counts were scaled via
the median of the geometric means of fragment counts
across all libraries. Transcript abundance was quantified
using normalized single-end RNA-Seq reads in read
counts as well as reads per kilobase million (RPKM).
Since single-end reads were acquired in the sequencing
protocol, quantification of reads or fragments yielded
similar results. Statistical testing for differential expres-
sion was based on read counts and performed using
EdgeR in the Bioconductor toolbox [25]. Differentially
expressed genes were further analyzed using Ingenuity
Pathways Analysis (IPA, Qiagen, Rewood City, CA), clas-
sification of transcription factors (TFClass), and gene set
enrichment analysis (GSEA, Broad Institute, Cambridge,
MA) [26, 27]. For real-time quantitative polymerase
chain reaction (RT-qPCR) validation of RNA-Seq signals
of differentially expressed target genes in BRAFi-R mel-
anoma cells, gene expression profiles were analyzed
using the ΔΔ threshold cycle (CT) method. Oligonucleo-
tides spanning exon-exon-junctions of transcripts were
used for RT-qPCR validation (Additional file 1: Table 1).
Triple replicate samples were subjected to SYBR green
(SYBR green master mix, PerfeCTa® SYBR® Green FastMix®,
95072-05k, Quanta Biosciences, Beverly, MA) RT-qPCR
analysis in an Eco system (Illumina, San Diego). CT values
were normalized using multiple housekeeping genes like
actin beta (ACTB, Gene ID: 60), cyclophilin A (PPIA, pepti-
dylprolyl isomerase A, Gene ID: 5478) and RNA polymer-
ase II subunit A (POLR2A, GeneID: 5430).

Inhibitor cytotoxicity studies
Chemical BRAFi against BRAF(V600E), vemurafenib,
was dissolved in dimethyl sulfoxide (DMSO, Sigma) as a
10.0 mM stock solution and used in treatments in final
concentrations between 0.01 μM and 50.0 μM. Melanoma
control experiments were carried out in the presence of
equivalent amounts of DMSO solvent without drug. Cell
viability was determined using a 2,3-bis(2-methoxy-4-ni-
tro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT,
X4626, Sigma EMD Millipore, Darmstadt, Germany)
absorbance assay by subtracting background readout at
650 nm from response readout at 570 nm wavelength.
IC50 concentrations were determined after 72 h of drug

treatment between 0.01–100 μM in two-fold dilution
series. Analysis was performed using CalcuSyn (v2.0, Bio-
soft, Cambridge, UK).

Melanin quantification
Melanin pigment production of cultured cells was deter-
mined by colorimetric measurements normalized for
total protein levels in arbitrary units [28, 29]. Melanoma
cells were harvested by centrifugation at 3000 rpm
(3830 g, Z326K, Labnet International, Edison, NJ) and
dissolved in either 1.0 N NaOH for melanin assay or
lysis 250 for protein assay. The cell lysates were soni-
cated, incubated at room temperature for 24 h, and
cleared by centrifugation at 13,000 rpm for 10 min
(17,000 g, Z326K, Labnet International, Edison, NJ). The
absorption of the supernatant was measured at 475 nm
in a spectrophotometer (Smartspec3000, Bio-Rad, Carls-
bad, CA). Cells were lysed in mild denaturing conditions
in lysis 250 buffer (25 mM Tris, [pH 7.5], 5 mM EDTA,
0.1% NP-40, 250 mM NaCl) containing proteinase inhib-
itors (10 μg/ml aprotinin, 10 μg/ml leupeptin, 10 μg/ml
pepstatin, 5 μg/ml antipain, 1 mM phenylmethylsulfonyl
fluoride). The total protein amount in the lysates was
quantified using a colorimetric Bradford assay (5000001,
Bio-Rad, Richmond, CA) at 595 nm and an incubation
time of 30 min [30].

Results
Generation of BRAFi-resistant melanoma cell lines
The parental melanoma cell lines SK-MEL-28 and A375
were exposed to incrementally increasing concentrations
of the mutant-BRAF inhibitor vemurafenib (Fig. 1a). At
the initial inhibitor concentration matching the IC50 of
vemurafenib in the naïve parental melanoma cells [11,
31] cell proliferation decreased. Surviving cells were
propagated and subjected to an exponential series of in-
creasing vemurafenib concentrations until BRAFi-R sub-
lines were obtained tolerating at least 5 μM vemurafenib
in the culture media with similar cell proliferation rates
as the parental cell lines of 0.67 doublings per day.
Some BRAFi-R cell lines showed structures typically

observed in differentiated melanocytes (Fig. 1b-c). In
the presence of 5 μM vemurafenib, however, the parental
cells were not able to grow but the resistant cells prolif-
erated comparable to naïve cell lines (Fig. 1d-e). For the
SK-MEL-28 cell line, two resistant sublines were estab-
lished. The resistant sublines displayed IC50 values of
11.5 ± 0.9 μM and 13.3 ± 1.2 μM for SK-MEL-28-BRAFi-
R1 and SK-MEL-28-BRAFi-R2 respectively, which is ap-
proximately 10–20 fold of the IC50 in a low micro-
molar range for the parental cells with 0.74 ± 0.05 μM.
For the A375 cell line, the IC50 of the A375-BRAFi-R
cell line was observed at 17.7 ± 1.5 μM, 22.7 fold of IC50
for the parental A375 cells with 0.78 ± 0.22 μM (Fig. 1f ).
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Transcriptomic profiling identifies non-genomic rewiring
of treatment-resistant cancer cells
We conducted transcriptomic gene expression profiling
of BRAFi treatment-resistant SK-MEL-28-BRAFi-R1 and
SK-MEL-28-BRAFi-R2 cell lines by RNA-Seq and looked
for differential expression versus the parental SK-MEL-
28 cell line. In total, 980 unique transcripts showed sig-
nificant differential expression in RNA-Seq experiments
with p values below 0.05, absolute log-fold change
(LOG(FC)) greater or equal 1.0 (Fig. 2a-b). The differ-
entially expressed genes included 505 upregulated tran-
scripts and 475 downregulated transcripts (Additional
file 1: Table S2–3). We subjected the identified direc-
tional sets to pathway enrichment analysis (Additional
file 1: Table S4). Distinct clusters stood out and showed
significant enrichment with p values below 0.05 and

q values below 0.10 (Fig. 2c). Melanogenesis and pathways
in cancer, inflammation, nuclear factor kappa-light-
chain-enhancer of activated B cells (NFκB) and signal
transducer and activator of transcription (STAT) signal-
ing, metabolic pathways including alanine, tyrosine,
valine, leucine, inositol, one-carbon metabolism, cell-
adhesion molecules, neurotrophin signaling were over-
represented in the upregulated dataset. MAPK signaling
and epithelial-mesenchymal transition (EMT) were dif-
ferentially expressed and characterized by both strong
up- and downregulation. Extra-cellular matrix (ECM) re-
ceptors, cell cycle, and hypoxia signaling were enriched
in the downregulated dataset. Of the 980 differential
expressed genes, we validated expression changes of 150
genes by RT-qPCR (Fig. 2d, Additional file 1: Table S3).
Of these, a majority, 64.0% (96 of 150), responded

Fig. 1 Establishing mitogen activated protein kinase inhibitor-resistant melanoma models. a A mitogen activated protein kinase BRAF inhibitor-
resistant (BRAFi-R) model was established using SK-MEL-28 and A375 malignant melanoma cell lines. Schedule of administered concentrations of
mitogen activated kinase inhibitor, vemurafenib. b Phase contrast images of control SK-MEL-28 parental melanoma cell lines and (c) BRAF inhibi-
tor-resistant SK-MEL-28-BRAFi-R melanoma cell line 1. Black bar indicates 1.0 μm. White arrows in image of resistant cell lines point to cellular
structures typical for differentiated melanocytes. d and e Cell viability assay on melanoma cell lines at 10 μM vemurafenib. Absorption in XTT
assay is measured at 570 nm. White squares indicate control melanoma cell lines, red triangles and diamonds show melanoma BRAFi-R model.
f IC50 concentrations of vemurafenib of control and drug-resistant cancer cell lines
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significantly (with p values below 0.05) in the same dir-
ection as RNA-Seq data for treatment-resistant melan-
oma. When both treatment resistance models of SK-
MEL-28 and A375 were taken into consideration, about
half of the tested genes, 50 of 96, showed consistent
regulation (Fig. 2e, Additional file 1: Table S3). Genes
in MAPK signaling included nuclear factor of activated
T-cells 2 (NFATC2, Gene ID: 4773), phospholipase A2
group VI (PLA2G6, Gene ID: 8398), dual specificity
phosphatase 1 (DUSP1, Gene ID: 1843), and dual

specificity phosphatase 2 (DUSP2, Gene ID: 1844),
which were downregulated in the BRAFi-R cells
compared to control. Genes contributing to melano-
genesis adenylate cyclase 1 (ADCY1, Gene ID: 107),
dopachrome tautomerase (DCT, TYRP2, Gene ID:
1638), and platelet derived growth factor C (PDGFC,
Gene ID: 56034) were upregulated. Lastly, metabolic
regulators such as methylenetetrahydrofolate dehydro-
genase 2 (MTHFD2, Gene ID: 10797) for folate me-
tabolism, asparagine synthetase (ASNS, Gene ID: 440)

Fig. 2 Transcriptomic profiling of BRAF inhibitor resistance in cellular models of malignant melanoma. a Establishing cellular models of mitogen
activated protein kinase inhibitor resistance using SK-MEL-28 malignant melanoma cell line and the BRAF inhibitor, vemurafenib. b Transcripto-
mics RNA-Seq analysis identifies 980 differentially expressed genes between BRAF inhibitor-resistant (BRAFi-R) cellular model vs control. c Enrich-
ment analysis of up- and downregulated gene sets shows shift in metabolic and signaling pathways. d Validation by transcriptomic profiling of
identified genes by RT-qPCR. e Comparison and validation of resistance model using melanoma cell lines SK-MEL-28 and A375 by transcriptomics
RT-qPCR arrays

Zecena et al. BMC Systems Biology  (2018) 12:33 Page 5 of 12

78



for amino acid metabolism, and NME/NM23 nucleoside
diphosphate kinase 1 (NME1, Gene ID: 4830) and dihy-
dropyrimidine dehydrogenase (DPYD, Gene ID: 1806) for
pyrimidine metabolism were significantly upregulated
(Fig. 2d). Taken together, the adaptive transcriptomic
changes were validated in two distinct melanoma models,
SK-MEL-28 and A375, both cell lines with metastatic po-
tential showed differential expression of MAPK signaling
while activating alternative mitogenic signaling interac-
tions and metabolic processes.

Upstream regulator analysis suggests control by
transcription factor families
Next, the gene list was subjected to hierarchical tran-
scription factor motif analysis to identify master regula-
tors [32]. We asked whether any of the enriched
transcription factor motif families were represented in
the differential gene expression data. In detail, we looked
for transcription factors as well as their target genes
whose promoters show respective transcription factor
binding sites among the same list of regulated genes
(Fig. 3a). It is expected that differentially expressed tran-
scription factors show motif enrichment in promoter
sites of significantly deregulated target genes. Further,
identified target genes with enriched transcription factor
motifs will have major contributions to significantly
deregulated pathways under treatment resistance (Fig.
3b). A network illustration of transcriptional master reg-
ulators, target genes, and dysregulated effector network
upon treatment resistance demonstrates transcriptional
synergy (Fig. 3c). Upregulated transcription factor fam-
ilies included Rel homology region (RHR) NFκB-related
factors, forkhead box (FOX), Zinc finger E-box-binding
homeobox domain factors (ZEB), nuclear steroid hor-
mone receptor subfamily 3 (NR3C, androgen receptor
and progesterone receptor), hypoxia-inducible and endo-
thelial PAS domain-containing factors (HIF, EPAS), and
the cell cycle transcription factor family (E2F) (Fig. 3b).
Downstream enriched target genes comprised members
of interleukin (IL), chemokine receptor (CXCL), matrix
metallo proteinase (MMP) families, transcription factors
forkhead box O1 (FOXO1, Gene ID: 2308), endothelial
PAS domain protein 1 (EPAS1, HIF2A, Gene ID: 2034)
and melanogenesis associated metabolic genes, tyrosinase
(TYR, OCA1, Gene ID: 7299), DCT, and melanosomal
transmembrane protein (OCA2, oculocutaneous albinism
II, Gene ID: 4948). Downregulated transcription factors
included forkhead box F2 (FOXF2, Gene ID: 2295), which
has DUSP2 or transforming growth factor beta 3 (TGFB3,
Gene ID: 7043) as target genes. Upstream regulator ana-
lysis suggested gene expression changes of nuclear factor
kappa B subunit 1 (NFKB1, Gene ID: 4790, V$NFKB_Q6,
motif M11921) in complex with REL proto-oncogene
(REL Gene ID: 5966, V$CREL_01, motif M10143), EMT

modulator zinc finger E-box binding homeobox 1
(ZEB1, Gene ID: 6935, V$AREB6_01, M11244), fork-
head box (V$FOXO1_01, motif M11512), and hypoxia
inducible factor family transcription factors (V$HIF1_Q3,
motif M14011) as master regulators of transcriptional ef-
fector networks upon BRAFi treatment resistance.

Validation of pathway rewiring in drug resistance in
multiple cell lines by transcriptomics arrays
Transcriptome analysis of reversible drug resistance
identified distinct pathways that allowed for circumven-
tion of BRAF blockage (Fig. 4a). Cell-to-cell variability in
combination with drug exposure selects for distinct sub-
populations of MAPKi-resistant (MAPKi-R) cell lines. In
a hierarchical fashion, transcriptional master regulators
promote a distinct set of target genes resulting in cir-
cumvention of MAPK inhibition. Receptor activation by
fibroblast growth factor 1 (FGF1, Gene ID: 2246) or
PDGFC can lead to activated receptor tyrosine signaling
parallel to canonical MAPK signaling [16] (Fig. 4b).
In addition, downregulation of tumor suppressors
reengages mitogenic signaling. The dual specific phos-
phatases, DUSP1 and DUSP2, have the ability to switch
MAPK signaling off and rank among the top downregu-
lated hits. Thus, downregulation of dual specific phos-
phatases facilitates and reinforces alternative MAPK
effector activation under BRAF blockage (Fig. 4b). One
of the mitogen-activated protein kinase 1 (MAPK1,
ERK2, Gene ID: 5594) effector targets, transcription
factor EPAS1, showed upregulation and the ability to
maintain its transcriptional program. The pro-apoptotic
program of TGFB3 was downregulated including
SMAD family member 9 (SMAD9, Gene ID: 4093) and
DUSP1/2 (Fig. 4c). Adenylate cyclase, G-protein, and
phospholipase signaling are alternative cascades observed
in cutaneous and uveal melanoma (Fig. 4d). Upregulation
of ADCY1, endothelin receptor type B (EDNRB, Gene ID:
1910), phospholipase C beta 4 (PLCB4, Gene ID: 5332),
and cAMP responsive element binding protein 3 (CREB3,
Gene ID: 10488) promote MITF activity, the master tran-
scription factor for pigmentation genes. Downstream
metabolic enzymes, TYR and DCT, are both MITF target
genes and contribute to enhanced eumelanin production
observed in some therapy-resistant cell lines. The ob-
served pigmentation showed a wide range of from 1.3-fold
to up to 16.8-fold upregulation (Fig. 4d). While both cell
lines showed dysregulation of melanogenesis, the regula-
tors and effectors involved were different. SK-MEL-28-
BRAFi-R2 has ASIP prominently expressed (TYR (2.1),
DCT (2.8), tyrosinase related protein 1 (TYRP1, OCA3,
Gene ID: 7306) (0.5), MITF (0.7), agouti signaling protein
(ASIP, Gene ID: 434) (18.9)), while A375-BRAFi-R showed
strongest regulation of TYRP1 and MITF (TYR (0.34),
DCT (0.24), TYRP1 (41.8), MITF (2.94), ASIP (0.41)).
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In summary, upregulation of growth factors or recep-
tors triggers signaling pathways circumventing BRAF
blockage. Changes in amino acid and one-carbon metab-
olism support cellular proliferation despite inhibitor
treatment. In addition, alternative MAPK signaling coin-
cides with differential response of melanogenesis and

pigmentation pathways, which partially overlap with
MAPK effectors. In particular, NFKB1, REL, ZEB1,
FOXO1, and EPAS1 may serve as master regulators
to enact broad transcriptional changes implemented
in altered cascades of MAPK, TGFB, ADCY, and
MITF signaling.

Fig. 3 Transcription factor motif analysis of mitogen activated protein kinase inhibitor resistance in cellular models of malignant melanoma.
a Schematic representation of differentially expressed genes in drug resistance model and transcription factor motifs associated with regulated
target genes. Upregulated and downregulated factors are depicted in red and blue, respectively. b Hierarchical transcription factor network with
master regulators on top and downstream targets at bottom. Sets of transcription factor target genes are identified in enrichment analysis based
on sequence motifs. c Hierarchical network model illustrates how therapy resistance in cancer selects for specific transcriptional master regulators
to rewire target genes in effector pathways in a concerted fashion
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Discussion
Activation of the MAPK pathway is the central and most
common oncogenic event in the pathogenesis of

malignant melanoma [3, 33]. About 50% of all melan-
oma patients have activating somatic mutations in the
activator loop involving L597, T599, V600, and K601

Fig. 4 Pathway analysis of BRAF kinase inhibitor resistance shows alternative activation of MAPK targets and pigmentation. a Schematic representation
of regulatory network involving drug inhibition and non-genomic selection for differential expression of driver genes that can circumvent suppressed
signaling. b Deregulation of MAPK signaling with RNA-Seq data is mapped in red and blue for differential upregulation and downregulation,
respectively. c Modulation of TGFB signaling leads to downregulation of dual specific phosphatases, which are required to switch MAPK signaling off.
d Interconnectedness between G-protein signaling and melanogenesis. Alternative activation of melanoma pathways leads to increased eumelanin
synthesis and mitogenic survival. Photograph of cell pellets of melanoma cell models and detected melanin. Left shows SK-MEL-28 melanoma cell line,
middle and right shows two different SK-MEL-28-BRAFi-resistant melanoma cell lines with elevated melanin production
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switching proto-oncogene BRAF into a constitutively active
protein kinase and cancer driver. Such activation is sup-
ported by somatic copy number amplifications of chromo-
some 7 [34], often coinciding with somatic V600E/G/K/M/R
mutations. Another 20–30% of the patients show non-
genomic activation of BRAF by transcriptional upregulation
or post-translational modification induced by somatic mu-
tations of upstream signaling molecules like KIT proto-
oncogene receptor tyrosine kinase (KIT, Gene ID: 3815),
proto-oncogene neuroblastoma RAS viral oncogene homo-
log (NRAS, Gene ID: 4893), or loss-of-function neurofibro-
min 1 (NF1, Gene ID: 4763). Constitutively activated BRAF
phosphorylates MAPK1 and downstream kinases resulting
in mitogenic signaling, proliferation, and cell growth. Inte-
grated into this cellular program is negative feedback result-
ing in reduction of NRAS expression [35, 36].

Genomic and non-genomic mechanisms of therapy
resistance
Genomic sequencing has facilitated the understanding of ac-
quired resistance mechanisms to MAPKis [14–16, 37–40].
Detected genetic aberrations included mutations in NRAS,
MAPK1/2, phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit alpha (PIK3CA, Gene ID: 5290), and phos-
phatase and tensin homolog (PTEN, Gene ID: 5728). Som-
atic melanoma mutations provide examples of how single,
well-defined genomic events can confer resistance against
vemurafenib treatment. In contrast, transcriptomic as well
as epigenomic regulation can provide insight into resistance
states that may involve larger networks. Eventually, resist-
ance-conferring genomic, epigenomic, and transcriptomic
alterations result in sustained mitogenic effector signaling
and persist to promote proliferation.

Network rewiring of therapy-resistant melanoma
The transcriptomic profiles revealed a network of genes
involved in adenylate cyclase signaling conferring resist-
ance and contributing to melanogenesis. ADCY1 and
CREB3 are prominent members of the melanogenesis
pathway exhibiting mitogenic control and MITF activa-
tion. Similarly, a gain-of-function screen confirmed a
cyclic-AMP-dependent melanocytic signaling network in-
cluding G-protein-coupled receptors, adenylate cyclase,
protein kinase cAMP-activated catalytic subunit alpha
(PRKACA, Gene ID: 5566), and cAMP responsive elem-
ent binding protein 1 (CREB1, Gene ID: 1385) [41]. The
MAPK pathway negatively regulates MITF protein level as
well as activity [29], which in turn regulates a series of cell
cycle regulating genes. In particular, P16INK4A and
P21CIP1, gene products of cyclin dependent kinase inhibi-
tor 2A (CDKN2A, Gene ID: 1029) and cyclin dependent
kinase inhibitor 1A (CDKN1A, Gene ID: 1026), respect-
ively, differentiation genes TYR, DCT, TYRP1 as well as
survival genes B-cell lymphoma 2 apoptosis regulator

(BCL2, Gene ID: 596) and BCL2 family apoptosis regula-
tor (MCL1, Gene ID: 4170) are effector genes under the
control of MITF. Indeed, inhibition of MITF increases
sensitivity to chemotherapy drugs [42]. In contrast, upreg-
ulation of MITF in therapy-resistance may present itself
as a survival mechanism, which coincides with upregula-
tion of melanin, hence it may serve as prognostic bio-
marker for drug adaptation.
Dual specific phosphatases (DUSPs) act downstream of

BRAF on phosphorylated MAPK members to provide at-
tenuation of signal. Loss of DUSP activity results in consti-
tutive activation of the pathway. Prominent members of
this family DUSP1 and DUSP2 are consistently downregu-
lated at the transcriptional level. In prior clinical studies,
somatic mutation of DUSP4 in MAPKi-R has been re-
ported [39]. Although in that case a genomic mechanism
of resistance was utilized, the outcome of reduced DUSP
activity by genomic or transcriptomic changes is equiva-
lent and leads to persistent triggering of MAPK effectors.

Metabolic support of therapy resistance
Metabolic genes support the rewiring of acquired resist-
ance and have been shown to play an intricate role in the
malignancy of skin cutaneous tissues. Glutamine and glu-
cose metabolism showed sensitivity to combinations of
MAPKi and metabolic inhibitors in preclinical studies
[43]. The transciptomic profiles identified key enzymes in
related, branching glycolytic pathways of serine, folate and
pyrimidine metabolism. A cancer systems biology analysis
of skin cutaneous melanoma brought forward a new mas-
ter regulator and diagnostic target in cancer metabolism.
Somatic mutations of DPYD have the ability to reconfig-
ure and activate pyrimidine metabolism promoting rapid
cellular proliferation and metastatic progression [44].

Concertation of transcriptional regulators
The forkhead box family of transcription factors is an im-
portant downstream target of the MAPK pathway and is
currently being considered as a new therapeutic target in
cancer, including melanoma therapy [45]. In epithelial
cells, these transcriptional factors are directly involved in
the expression of cyclin dependent kinase inhibitors and
CDKN2A gene under the control of TGFβ [46, 47]. Both
downregulation of anti-apoptotic targets as well as activa-
tion of proliferative metabolism have been observed as
mechanisms contributing to MAPKi-R. Downregulation
of FOXF2 has been shown to promote cancer progression,
EMT, and metastatic invasion [48]. In contrast, a different
member of the FOX family, the stem cell transcription
factor forkhead box D3 (FOXD3) has been identified as an
adaptive mediator of the response to MAPK pathway in-
hibition selectively in mutant BRAF melanomas [49, 50].
We have discovered non-genomic rewiring of path-

ways in chemotherapy resistance by RNA-Seq data and
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validated gene targets in two cell lines by transcripto-
mics arrays. Perturbation of these resistance pathways by
drug molecules, RNA interference, or genomic editing
will corroborate the translational impact of identified
gene targets. The established cell culture models of
treatment resistance provide a broadly applicable plat-
form to utilize high-throughput screening tools in the
search for effective combinations of targeted therapies in
cancer.

Conclusion
The MAPK pathway undergoes major rewiring at the
transcriptional level while acquiring inhibitor resistance.
The outcome of such transcriptional plasticity is dysreg-
ulation at the level of different upstream master regula-
tors, while maintaining similar effector genes.
Combination therapies including targeted approaches
and immune checkpoint inhibition are promising and
rapidly improving. For these therapies to show durable,
progression-free success in the clinical setting, adapta-
tion mechanisms of treatment resistance need to be
understood. Cellular model systems in combination with
transcriptome-wide analyses provide insight into how
non-genomic drug adaptation is accomplished. Ongoing
efforts are focused on utilizing the established preclinical
models to overcome drug adaptation as well as precision
medicine profiling of cancer patients. Over time, a better
understanding of mechanisms involved in drug adapta-
tion is likely to improve the effectiveness of melanoma
therapy by delaying or controlling acquired resistance.
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Chapter 6

Increased glutaminolytic flux and

activation of mitochondrial

metabolism by BCL2

hyperactivity in lymphoma

6.1 Abstract

B-cell lymphoma 2 (BCL2) is an important apoptosis regulator during develop-

mental and pathological states, and its overexpression is a key feature of several

malignancies. Genomic data from The Cancer Genome Atlas (TCGA) reveals

significant somatic copy number amplification, overexpression, and/or elevated

protein activity of BCL2 in 50% of diffuse large B-cell lymphoma (DLBC) pa-

tients. While its canonical role in mitochondria-directed apoptosis is well es-

tablished, the effect of BCL2 on transcriptional and metabolic networks remains

elusive. Using an established lymphocytic pro-B-cell line overexpressing BCL2, we

identified dysregulated transcriptional and metabolic networks by transcriptomic

profiling arrays. Elevated BCL2 levels affect transcription factor complexes and

mitogenic programs of NF-kB / REL, HIF-1a/ARNT, AP1, E2F, and STAT

factors. Using stable isotope-assisted metabolic flux measurements we quantify
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that elevated BCL2 expression increases carbon utilization boosting cellular prolif-

eration. Tumorigenic overexpression of BCL2 significantly increases glycolytic flux,

glutaminolysis, and anaplerotic flux into the TCA cycle. At the same time, the

mitochondrial acetyl-CoA pool is separated from the glycolytic one by inactivating

the pyruvate dehydrogenase complex via transcriptional regulation of pyruvate

dehydrogenase kinase (PDK3). As compensatory fuel, mitochondrial TCA cycle

metabolism is supported by asparagine synthase (ASNS) and oxidative glutaminol-

ysis creating targets for small molecule inhibition of glutaminase. Lymphoma cells

overexpressing BCL2 contained more mitochondrial mass and were more sensitive

to L-glutamine deprivation and glutaminase inhibition. Cells overexpressing a

mutant BCL2 G145E, which is incapable of binding BH domain members, failed to

increase proliferation, glycolysis, or glutaminolysis. Taken together, the oncogene

BCL2 has the ability to ramp up a metabolic phenotype supporting proliferation

independent of its anti-apoptotic role. The cellular model of BCL2 activation

supports NF-kB-positive subtypes of DLBC and identifies metabolic bottlenecks

with dependency on anaplerotic flux as an actionable BCL2 effector network in

cancer.

6.2 Introduction

The B-cell lymphoma 2 (BCL2, Gene ID: 596) family of proteins are essential

regulators of the intrinsic, mitochondrial pathway of apoptosis[1]. They are char-

acterized by the presence of BCL2 homology (BH) domains which interact with one

another to regulate essential cellular processes such as survival pathways, apoptotic

initiation, cell cycle propagation, mitochondrial activity, or autophagy transitions

[2]. Phylogenetically, members of the BCL2 family classifies as either pro- or anti-

apoptotic BCL2 homologs, members with canonical BH domains, or those with

non-canonical BH domains. Of the pro-apoptotic BH member the BCL2 associated

X apoptosis regulator (BAX, Gene ID: 581) and BCL2 antagonist/killer 1 (BAK,

Gene ID: 578) are interaction partners and direct effectors of mitochondrial outer

membrane permeabilization (MOMP). In contrast, in case there is no interaction

with pro-apoptotic BH members, BCL2 and BCL2 like 1 (BCL2L1, better known
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as BCL-XL, Gene ID: 598) exert their anti-apoptotic effect through inhibitory

interactions with pro-apoptotic members such as BAX.

BCL2 was first described as part of the t(14:18) chromosomal translocation event

in B-cell follicular lymphoma [3], where it functioned to block apoptosis [4, 5].The

translocation of BCL2 to the Ig heavy chain locus in chromosome 14 drives its

constitutive expression [6-8]. Subsequent studies demonstrated that BCL2 is

overexpressed in several hematological cancers[9] and may support cancer cell

survival through chemotherapeutic resistance [10] and regulation of autophagy [11,

12]. Clinically, trials of BCL2 inhibitors such as ABT-199 (venetoclax, PubChem

CID: 49846579) have shown promise in the treatment of hematological cancers

and immune diseases[13-16].

Cellular proliferation, including both physiologic lymphoid cell expansion and

pathologic malignancy, requires a metabolic phenotype that supports macromolec-

ular biosynthesis. Mitochondrial activity, electron redox transfer in the inner mito-

chondrial membrane, and oxidative phosphorylation play key roles in satisfying the

energy demands of growing and diving cells. Despite a growing understanding of

the role of BCL2 in mitochondria-directed apoptosis, little is known about whether

BCL2 regulates metabolism under non-apoptotic conditions.

Interleukin 3 (IL3, Gene ID: 3562) dependent FL5.12 pro-B cells derived from

murine fetal liver [17] have served as a useful model for studying B-lymphocyte

development [18], oncogenesis [19, 20], apoptosis [21, 22], and BCL2 binding events

23, 24]. Overexpression of BCL2 in these cell lines [25] leads to increased survival

following IL3 deprivation, and increased tumorigenesis in vivo [20]. Using the

FL5.12 cell line, and stably expressing BCL2 [20, 26] or a mutant of BCL2 unable

to bind BH members [23, 27-30], we sought to quantify the transcriptional and

metabolic phenotype of BCL2 overexpression using metabolic flux and prolifera-

tion assays.
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6.3 Methods

6.3.1 Cell Culture

Lymphocytic FL5.12 pro-B-cell lines including a parental lymphocytic cell line

with BCL2 wild type [17], a tumorigenic lymphoma cell line with BCL2 overex-

pression [25], and a BCL2(G145E) mutant with loss of binding of BH domain

interaction partners [23] were cultured in minimal essential media (MEM, 15-010-

CV, Corning, Corning, NY) supplemented with 10.0 % fetal bovine serum (FBS,

35-010-CV, Corning, Corning, NY), 1.0 % penicillin-streptomycin solution (PS,

30-002-CI, Corning, Corning, NY), 1.0 % MEM vitamins (MEM VIT, 25-020-CI,

Corning, Corning, NY), 0.8 ng/mL of interleukin 3 (IL3, I4144, Sigma Merck,

Darmstadt, Germany), 2.0 L of 2-mercaptoethanol (M6250-100ML, Sigma Merck,

Darmstadt, Germany), 1.0 g/L D-glucose (GLC, G7021-1KG, Sigma Merck, Darm-

stadt, Germany), and 2.0 mM L-glutamine (GLN, 25-005-CI, Corning, Corning,

NY) at 37 C (310 K) with 5.0 % carbon dioxide (CO2, CD50, Praxair, Danbury,

CT).

6.3.2 Cell size and proliferation analysis

Cell diameter and proliferation rates of normal and cancer cells were quantified by

automated imaged-based cytometry. Cells in suspension were harvested and mixed

1:1 with a 0.4 % solution (w/v) trypan blue (25-900-CI, Corning, Corning, NY),

and pipetted into disposable counting chambers (1450003, Bio-Rad, Hercules, CA)

for counting and image analysis. Cell diameter and proliferation rates measure-

ments of live cells in exponential growth were obtained in an automated tissue cell

counter (TC20, 145-0102, Bio-Rad, Hercules, CA). Multi-planar bright-field digital

images were automatically collected, quantified, and assessed for cell number and

diameter. Cell proliferation rates were calculated and densities validated from

the live cells per flask (N=6) over a 3-day time course of a proliferation assay

experiment. Proliferation data based on different initial seeding densities was
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LOG2 transformed to fit a linear regression model with an explained variation R2

above 0.970.

6.3.3 Flow cytometry and mitochondrial stains

Cells were analyzed for mitochondrial content, membrane potential, and matrix

oxidant burden as previously described [31]. Cells were collected by centrifuga-

tion, counted, and aliquots corresponding to 500,000 cells were incubated pro-

tected from light with 200 nM MitoTracker green fluorescent mitochondrial stain

(MTG, M7514, Life Technologies, Thermo Fisher Scientific, Carlsbad, CA), 13.3

nM tetramethylrhodamine ethyl ester (TMRE, T669, Life Technologies, Thermo

Fisher Scientific, Carlsbad, CA), or 6.6 µM MitoSOX red mitochondrial super-

oxide indicator (MitoSOX, M36008, Life Technologies, Thermo Fisher Scientific,

Carlsbad, CA). Cells were collected, centrifuged, and resuspended in phosphate

buffered saline (PBS, 46-013-CM, Corning, Corning, NY) supplemented with 2.0

% FBS twice before being analyzed on an LSR II flow cytometer (BD Biosciences,

San Jose, CA) at a flow rate at least 500 events per second. 100,000 events per

sample were recorded and samples were analyzed in triplicate (N=3) for each data

point. FlowJo (V10, FlowJo, Ashland, OR) was used for data analysis.

6.3.4 Custom-designed gene expression profiling arrays

for high-throughput RT-QPCR

We generated custom-designed profiling arrays to validate differential expression

of metabolic genes and transcription factors in the in vitro lymphoma progression

model of BCL2 activation. Total RNA was extracted from FL5.12 murine pro-

lymphocyte B-cells using NucleoSpin RNA Plus Columns (740984.25, Macherey-

Nagel, Dren, Germany). At least three biological replicates of RNA samples were

analyzed per condition. The concentration of RNA was determined using a micro-

volume plate (Take3, BioTek, Winooski, VT) and a multi-mode microplate reader

(Synergy HT, BioTek, Winooski, VT) multi-mode microplate reader (Synergy

HT, BioTek, Winooski, VT). One microgram of RNA was used to synthesize
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complementary DNA (cDNA) using qScript cDNA SuperMix (95048-500, Quanta

Biosciences, Beverly, MA). cDNA corresponding to 1/5 of the first strand synthesis

was mixed with 500 nM custom-designed forward and reverse primers (Sigma

Genosys, The Woodlands, TX) and PerfeCTa SYBR Green FastMix (95072-05k,

Quanta Biosciences, Beverly, MA) and analyzed on a high-throughput real-time

(RT) quantitative polymerase chain reaction (QPCR) System (ECO, EC-101-

1001R, Illumina, San Diego, CA). Custom-designed gene expression profiling ar-

rays were analyzed using the CT method. RT-QPCR threshold cycle (CT) values

were normalized using three different housekeeping genes (HKG), ribosomal pro-

tein S13 (RPS13, Gene ID: 6207), TATA box binding protein (TBP, Gene ID:

6908), and polymerase (RNA) II (DNA directed) polypeptide A (POLR2A, Gene

ID: 5430). The difference threshold cycle value (CT) of any gene of interest (GOI)

to the average housekeeping value was calculated using the formula CT(GOI)

= CT(GOI) AVERAGE(CT(HKG)) for each cell line. In addition, change in

expression of any gene of interest was monitored by calculating CT(GOI) =

CT(GOI CONDITION) - CT(GOIWT) with CONDITION being cell lines overex-

pressing BCL2 or BCL2(G145E) and WT the reference lymphocytic pro-B-cell

line. RT2 gene array profiles were normalized, separated according to differential

expression between conditions in univariate T-tests with a random variance model

using a p-value cut-off below 5.00E-02, and ranked with LOG2 fold-change between

specimens considered significant.

6.3.5 Somatic copy number alteration analysis

The tool GISTIC, genomic identification of significant targets in cancer, 2.0.21

[32-34] was used to identify genomic regions that are significantly gained or lost

across a set of 48 paired normal and tumors samples of TCGA DLBCL data

set. We executed GISTIC 2.0.21 on Agilent SNP 6.0 gene expression microarrays

G4502A 07 01, UNC Chapel Hill, NC. GISTIC 2.0.21 distinguishes arm-level

events from focal events at a broad length cutoff of 0.7. Events whose length was

greater or less than 50% of the chromosome arm on which they resided were called

arm-level or focal events, respectively, and these groups of events were analyzed
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separately. The data was concordant to segmented level 3 data publicly available

at the TCGA data portal. Since GISTIC 2.0.21 uses ratios of segmented tumor

copy number data relative to normal samples as input, segmented level 3 data

aligned to HG19 served as input for analysis runs. For significant loci and genes a

cutoff p-value of 0.05 and q-value of 0.1 was applied, and concordance determined

by overlaying whole-genome sequencing and SNP data. All experiments on SCNAs

were carried out at a confidence level of 0.99.

6.3.6 Cell culture for metabolomics flux measurements

For metabolite quantification and stable isotope tracing, 100,000 cells were seeded

in tissue culture flasks with vented caps (430639, Corning, Corning, NY) in N=6

replicate. For stable isotope D-glucose and L-glutamine labeling experiments,

MEM media was supplemented with 1 g/L [U-13C6] D-glucose ([U-13C6] GLC,

389374-2G, Sigma Isotec, Miamisburg, OH) or 2 mM [U-13C5] L-glutamine ([U-
13C5] GLN, 605166-500MG, Sigma Isotec, Miamisburg, OH). After 24 h, cell

suspensions were transfer to microcentrifuge tubes (MT-0200-BC, Biotix, San

Diego, CA) and centrifuged for 5 min at 277 K and 300 g in a refrigerated

centrifuge (X1R Legend, Sorvall, Thermo Fisher Scientific, Waltham, MA) using a

fixed-angle rotor (F21-48x1.5, Sorvall, Thermo Fisher Scientific, Waltham, MA).

For exometabolome analysis, 40 µL of supernatant containing condition media

was transferred to microcentrifuge tubes and dried by vacuum centrifugation

in a speedvac concentrator (DNA120OP115, Savant, Thermo Fisher Scientific,

Waltham, MA) overnight. The remaining supernatant was aspirated and the cell

pellets frozen in liquid nitrogen before storage at 193 K.

6.3.7 Metabolite Extraction

Frozen cell pellets were thawed on ice for 10 min before addition of 1 mL 253 K

cold extraction solvent containing acetonitrile/isopropanol/water (3:3:2) acetoni-

trile (ACN, 34998-4L, Sigma Merck, Darmstadt, Germany), isopropanol (IPA,

34965-1L, Sigma Merck, Darmstadt, Germany), water (H2O, 46-000-CI, Corning,
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Corning, NY). Samples were then vortexed 5 times for 15 s and frozen on dry ice for

20 min and the freeze/thaw/vortex cycle repeated twice. Extracted cell suspension

or media supernatants were dried via vacuum centrifugal evaporation and stored

at 193 K before analysis. Dried, extracted cell pellets or media supernatants

were derivatized by addition of 20 µL of 2.0 % methoxyamine-hydrochloride in

pyridine (MOX, TS-45950, Thermo Fisher Scientific, Waltham, MA) followed

by 90min incubation in a digital heating shaking drybath (8888-0027, Thermo

Fisher Scientific, Waltham, MA) at 303 K and 1100 rpm. 90 µL of N-methyl-N-

(trimethylsilyltrifluoroacetamide (MSTFA, 394866-10X1ML, Sigma Merck, Darm-

stadt, Germany) was added and samples incubated at 310 K and 1100 rpm for

30 min before centrifugation for 5 min at 14,000 rpm and 277K. The supernatant

was transferred to an autosampler vial (C4000LV3W, Thermo Fisher Scientific,

Waltham, MA) with caps (C5000-53B, Thermo Fisher Scientific, Waltham, MA)

for separation by gas chromatography (GC, TRACE 1310, Thermo Fisher Scien-

tific, San Jose, CA) coupled to a triple-quadrupole GC mass spectrometry system

(QQQ GCMS, TSQ8000EI, TSQ8140403, Thermo Fisher Scientific, San Jose, CA)

for analysis.

6.3.8 GCMS for metabolomics

Samples were analyzed on a QQQ GCMS system equipped with a 0.25 mm inner di-

ameter, 0.25 µm film thickness, 30 m length, low polarity phase, 5% diphenyl/95%

dimethyl polysiloxane capillary column (TraceGOLD TG-5MS, 2609-1420 Thermo

Scientific, Waltham, MA) and run under electron ionization at 70 eV. The GC was

programmed with an injection temperature of 523 K and splitless injection volume

of 1.0 µl. The GC oven temperature program started at 323 K for 1 min, rising

to 573 K at 10 K/min with a final hold at this temperature for 6 min. The GC

flow rate with helium carrier gas (HE, HE 5.0UHP, Praxair, Danbury, CT) was 1.2

mL/min. The transfer line temperature was set at 290 C (563 K) and ion source

temperature at 295 568 K. A range of 50-600 mass over charge (m/z) was scanned

with a scan time of 0.25s.
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6.3.9 Metabolomics data processing

Metabolites were identified using metabolite retention times and fragmentation

patterns in TraceFinder (v3.3, Thermo Fisher Scientific, Waltham, MA). Identified

metabolites were quantified using the selected ion count peak area for specific

mass ions, and standard curves generated from reference standards run in parallel.

The mean, standard deviation, and 95.0 % confidence interval for each quantified

metabolite was calculated for each cell line and treatment condition. A two-sample

homoscedastic students t-test was used to compare treatment conditions of each

metabolite and each cell line

6.3.10 13C stable isotope tracing and metabolic flux

quantification

To quantify metabolic fluxes from substrates into metabolites, the mass isotope

distribution vector (MDV) for known fragments of carbon backbone labeled amino

acids and carboxylic acids was retrieved and 13C tracer-to-tracee ratios were cal-

culated [35-37]. GCMS MDV data from fractionally labeled [U-13C] D-glucose or

L-glutamine samples was quantified to determine pool and isotopomer distribution

of intracellular metabolites. Identified fragments contained either the whole carbon

skeleton of the metabolite or resulted from a loss of the carboxyl carbon, or

for some amino acids contained only the backbone minus the side-chain. For

each fragment, mass ion counts were retrieved for the lightest isotopomer (M+0,

without any heavy isotopes), and cumulative isotopomers for heavier mass counts

with increasing mass units (M+1 up to M+6) relative to M0. Mass ion counts

were normalized by dividing by the sum of M0 to M6, and corrected for the

natural abundance of heavy isotopes of the elements H, N, O, Si, and C. By

using probabilistic matrix-based multiplication one arrives at normalized MDVs

corrected for naturally occurring isotopes in atoms of fragments of the metabolite

backbone. 13C-labeling data is expressed as fraction of the MDV and corresponds

to stable isotope enrichment per carbon in a measured metabolite for a set of

biological replicates with number of experiments N=6 for each condition. 13C-
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labeling data is converted into metabolic flux from carbon source by dividing by

percent labeling of respective carbon source, 50 % [U-13C6] of total 2.0 g/L D-

glucose or 100 % [U-13C5] of total 2.0 mM L-glutamine. A two-sample students

t-test with a minimum significance level α=5.00E-02 was used to compare average

stable isotope enrichment per carbon of each metabolite between conditions.

6.3.11 L-glutamine deprivation and glutaminase

inhibition

Cells were plated in white 96-well assay plates at a density of 10,000 cells/well in

100 µL of media containing either no L-glutamine, 2.0 mM L-glutamine, or 2.0 mM

L-glutamine with 1.0 mM selective glutaminase inhibitor bis-2-(5-phenylacetamido-

1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES, SML0601, Sigma Merck, Darmstadt,

Germany). After 24 h, cells were equilibrated at room temperature before being

treated with 100 µL/well of CellTiter-Glo luminescent cell viability assay (CTG,

G7571, Promega, Madison, WI). Cells were then shaken for 2.0 min and incubated

for 8 min protected from light before being analyzed in a multi-mode microplate

reader (Synergy HT, BioTek, Winooski, VT)

6.4 Results

6.4.1 Somatic activation of BCL2 in lymphoma

In lymphoma, one of the most frequent somatic copy number alteration (SCNA)

events is arm-level amplification of chromosome 18 with a recurrence frequency of

30 % in The Cancer Genome Atlas (TCGA) dataset (Figure 1A). In DLBC, signif-

icant arm-level SCNAs include: chr18pq, 30 %, 7.66E-04; chr7pq, 26 %, 4.57E-04;

chr3pq, 23 %, 1.43E-02; chr11pq, 19 %, 1.43E-01; chr21q, 21 %, 1.08E-01; chr12q,

19 %, 2.83E-02; chr8q, 18 %, 1.75E-01; and chr1q, 13 %, 2.48E-01. These SCNA

events enhance function of oncogenes and tumor suppressors in lymphoma (Figure

1A-B). Specifically, a sharply-defined focal region around chromosome band 18q21
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(genome coordinates chr18:48582939-78077248) is significantly amplified with a q-

value of 0.065049. Further, multi-omics integration reveals that BCL2 activation is

often observed at multiple different levels including copy number, gene expression,

and/or protein expression (Figure 1C). Elevated BCL2 activity has a negative

effect on overall decreased patient survival (Figure 1C-D) [38-42].

Somatic BCL2 amplification shows significant co-occurrence with other oncogenic

drivers observed in DLBC and highlights synergistic effects of structural somatic

events in disease initiation and progression. Together with somatic amplification

of BCL2 the following SCNA events are observed and constitute some of the

most frequent and significant focal SCNA events in DLBC: deletion of cyclin

dependent kinase inhibitor 2A and 2B (CDKN2A, Gene ID: 1029, CDKN2B,

Gene ID: 1030, chr9p21); amplification of proto-oncogene and NF-κβ interac-

tion partner REL (REL, REL proto-oncogene, NF-κβ subunit, Gene ID: 5966,

chr2p16), B-cell CLL/lymphoma 11A (BCL11A, Gene ID: 53335, chr2p16), B-cell

CLL/lymphoma 6 (BCL6, Gene ID: 604, chr3q27), non-receptor tyrosine kinase

ABL proto-oncogene 2 (ABL2, Gene ID: 27, chr1q25) (Figure 1, Table 1). Taken

together, genomic concertation and correlation of focal chromosome aberrations

at the copy number level with focal BCL2 amplification emphasizes tissue-specific

oncogenic driver pathways in lymphoma.

B-cell activation, selection, and maturation rely on apoptotic and pro-survival

pathways mediated by BH domain proteins. BCL2 holds a tissue-specific gene

expression program in the B-cell lineage and in lymphatic cancers. We therefore,

sought to compare incidence of BCL2 activation in lymphomas with all other

cancer tissues. Somatic activation of BCL2 is observed in less than 0.1 % of 10944

specimens across 37 pan-cancer tissues. There are two cases of gene fusions of

BCL2 with a chromatin remodeler and a neural regulator: ATRX-BCL2 in lower

grade glioma and NEDD4L-BCL2 fusion pair in breast cancer in combination

with SCNAs activate the gene product. Therefore, across all cancers, DLBC

stands out as cancer tissue with frequent arm-level amplification of chromosome

18 and distinct transcriptional activation of BCL2. In comparison to all other

cancers, DLBC with a cohort size of 48 specimens is highly enriched for somatic

amplification of chromosome 18. The detected DLBC cases represent about half
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of all highly amplified focal amplification cases observed across more than 10,000

cancer specimens.

Figure 6.1: Frequent somatic copy number aberration of chromosome 18 in
B-cell lymphoma results in amplification and somatic activation of BCL2. A)
Landscape of somatic copy number aberrations (SCNAs) of diffuse large B-cell
lymphoma (DLBC) with significant amplifications (red) and deletions (blue). B)
Frequency and mechanism of somatic activation of B-cell lymphoma 2 (BCL2,
Gene ID: 596) in DLBC. C) Mutation spectrum and impact of BCL2 activation
on overall survival. D) Comparison of somatic aberrations of BCL2 in DLBC vs
all cancer tissues (PAN-cancer) cohort in The Cancer Genome Altas (TCGA)

6.4.2 Enrichment of inflammatory and metabolic

pathways in specimens with BCL2 activation

In order to prioritize pathways affected by BCL2 activation, the DLBC patients

were divided into two sub-cohorts: on the one hand, specimens were assigned

to an unaltered sub-cohort with normal BCL2 status. On the other hand, a

sub-cohort was defined with BCL2 activation based on somatic copy number

amplification and differential expression of RNA-Seq V2 RSEM data. Using these

two sub-cohorts, we queried whether activation of BCL2 resulted in enrichment

of significantly deregulated transcripts and proteins. In protein arrays, BCL2
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Table 6.1: Gene ontology and pathways enriched with BCL2 activation

NAME FRAMEWORK SIZE NES p-value q-value
Regulation of amino acid process GO 56 2.41 0.00E+00 1.20E-03
TCA cycle and respiratory chain GO 114 2.12 0.00E+00 3.10E-03
Amine metabolic process GO 85 1.82 0.00E+00 5.60E-02
Metabolism of amino acids GO 136 1.69 0.00E+00 7.00E-02
Precursor metabolites and energy GO 238 1.71 0.00E+00 8.80E-02
Cellular amide metabolic process GO 594 1.46 1.20E-03 2.00E-01
Oxidative phosphorylation KEGG 196 2.72 0.00E+00 0.00E+00
Epithelial mesenchymal transition KEGG 173 2.69 0.00E+00 0.00E+00
Coagulation KEGG 92 2.64 0.00E+00 0.00E+00
Interferon gamma response KEGG 189 2.57 0.00E+00 0.00E+00
Interferon alpha response KEGG 94 2.57 0.00E+00 0.00E+00
Complement KEGG 163 2.52 0.00E+00 0.00E+00
Inflammatory response KEGG 160 2.47 0.00E+00 0.00E+00
TNF? signaling via NFκβ KEGG 181 2.28 0.00E+00 0.00E+00
Allograft rejection KEGG 175 2.15 0.00E+00 0.00E+00
IL2 STAT5 signaling KEGG 183 2.02 0.00E+00 3.40E-04
Hypoxia KEGG 166 1.9 0.00E+00 7.70E-04
Glycolysis KEGG 170 1.91 0.00E+00 8.30E-04
Apoptosis KEGG 148 1.86 0.00E+00 9.60E-04
TP53 pathway KEGG 180 1.67 1.30E-03 5.90E-03
IL6 JAK STAT3 signaling KEGG 73 1.63 4.60E-03 9.20E-03
Fatty acid metabolism KEGG 132 1.55 7.20E-03 1.80E-02
Angiogenesis KEGG 29 1.58 1.80E-02 1.40E-02
$STAT5A TF 174 1.73 0.00E+00 1.30E-02
$NFKB1 TF 195 1.7 0.00E+00 1.40E-02
$STAT5B TF 148 1.67 0.00E+00 1.50E-02
$E2F TF 200 1.66 0.00E+00 1.60E-02
$AP1 TF 170 1.64 1.40E-03 1.60E-02
$HIF1A TF 225 1.63 1.60E-03 6.60E-03
$ARNT TF 257 1.62 5.00E-03 1.50E-02
$YY1 TF 206 1.61 2.70E-02 1.90E-02

overexpression was maintained at the protein level with a p-value of 3.77E-07

(Figure 2A). This is an important data point to validate, since the query cohort

was selected exclusively based on genomic and transcriptional activation. One

of the strongest activated proteins was the L-glutamine-hydrolyzing metabolic

enzyme asparagine synthetase (ASNS, Gene ID: 440) (Figure 2B). Remarkably,

focal SCNA amplification on chr7q21 of ASNS (Figure 1A) occurs in 29.2% of

patients and coincides with SCNA of BCL2 with a p-value of 1.70E-02. In addition,

a set of cycle genes was enriched including cyclin dependent kinase inhibitor 1B

(CDKN1B, Gene ID: 1027), proliferating cell nuclear antigen (PCNA, Gene ID:
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5111), cyclin B1 (CCNB1, Gene ID: 891), and cyclin E1 (CCNE1, Gene ID: 898)

with a p-values below 1.00E-02 (Figure 2C-D). Cyclin dependent kinase inhibitor

protein CDKN1B binds to and prevents the activation of cyclin E-CDK2 or cyclin

D-CDK4 complexes. In the altered, BCL2-activated gene set, there was signifi-

cant enrichment of metabolic pathways including amino acid processing, oxidative

phosphorylation, hypoxic and glycolytic metabolism with p-values below 1.0E-

10 (Table 1). Significantly enriched transcriptional networks included complexes

of signal transducer and activator of transcription (STATs, specifically 3/5A/5B),

nuclear factor kappa B (NF-κβ), NF-κβ subunit REL proto-oncogene (REL), JUN

proto-oncogene/FOS proto-oncogene complex (AP1), yin yang (YY) transcription

factor, hypoxia inducible factor (HIF), and aryl hydrocarbon receptor nuclear

translocator (ARNT) transcription factor families with p-values below 2.0E-02. In

addition, pathways in cancer, interferon response, inflammatory response, janus

kinase (JAK)-STAT signaling, and the tumor protein p53 pathway (TP53, Gene

ID: 7157) were enriched with p-values below 1.4E-03. The analysis indicates that

BCL2 has the ability to activate a specific effector network impacting cell cycle,

inflammation, and metabolism.
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Figure 6.2: BCL2 activation significantly modulates metabolic and cell cycle
regulators at the protein level. Protein expression level of lymphoma patients
with unaltered BCL2 status was compared to patients with BCL2 activation. A)
Specimens with BCL2 activation were selected based on altered somatic copy
number or differential expression and had significantly higher BCL2 protein
levels. B) asparagine synthetase (ASNS, Gene ID: 440) protein levels were
elevated in lymphoma patients with genomic or transcriptomic BCL2 activation.
C) The cyclin dependent kinase inhibitor 1B (CDKN1B, Gene ID: 1027) controls
cell cycle progression and had lower median levels in patients with BCL2
activation. Degradation or loss of this protein is required for transition to a
highly proliferative state. D) Cell cycle regulator cyclin B1 (CCNB1, Gene ID:
891) showed higher median protein levels with BCL2 activation. Analysis of
protein expression levels was performed on reverse phase protein arrays (RPPA)
of The Cancer Proteome Atlas (TCPA). Quartile box plots illustrate distribution
following data normalization. Significance level of differential expression is
indicated by asterisks according to p-value thresholds (* p-value ¡ 5.00E-02,

** p-value ¡ 1.00E-02, **** p-value ¡ 1.00E-04)
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6.4.3 Validation of dysregulated metabolic and

transcriptional networks by transcriptomic profiling

arrays

We utilized custom-designed gene expression profiling arrays based on identified

genomic and transcriptomic alterations with BCL2-activation in DLBC. Differen-

tial gene expression analysis of the in vitro lymphoma progression model of BCL2

activation validated important regulatory molecules and control points of the

metabolic and transcriptional machinery related to the oncogenic effector network

of BCL2. We identified 28 transcripts of 75 tested target genes to be significant dif-

ferentially expressed in response to BCL2 overexpression with p-values below 1.0E-

05 (Figure 3). The differential gene expression analysis took into consideration:

basal expression level and directionality of regulation highlighting transcription

factors (Figure 4A) and functionally redundant metabolic isoenzymes (Figure 4B).

For enhanced clarity, two-dimensional plotting of gene expression values of multiple

conditions facilitates visual inspection of differential regulation (Figure 3), while

bar graphs in direct comparison of conditions emphasize basal expression level and

trends in directionality (staggered presentation of gene expression of pro-B-cell line

overexpressing BCL2, pro-B control cell line, and BCL2(G145E) mutant) (Figure

4). For instance, the target gene ASNS has higher gene expression in the pro-B-

cell line overexpressing BCL2 but lower expression in the BCL2(G145E) mutant.

Its gene expression values are therefore plotted above and below the diagonal,

respectively, against the pro-B control cell line (Figure 3A). The data indicates

that ASNS expression is favored upon BCL2 overexpression but decreased if BH

domain interactions are lost in the mutant. Many metabolic enzymes showed op-

posite directionality of regulation following BCL2 or BCL2(E145G) mutant over-

expression including asparagine synthetase glutamine-hydrolyzing (ASNS, Gene

ID: 440), hexokinase 2 (HK2, Gene ID: 3099), glucose-6-phosphate dehydrogenase

(G6PD, Gene ID: 2539), transketolase (TKT, Gene ID: 7086), glyceraldehyde-3-

phosphate dehydrogenase (GAPDH, Gene ID: 2597), glyceraldehyde-3-phosphate

dehydrogenase, spermatogenic (GAPDHS, Gene ID: 26330), lactate dehydrogenase

A (LDHA, Gene ID: 3939), and pyruvate dehydrogenase kinase 3 (PDK3, Gene

ID: 5165) (Figure 3A, Figure 4B). HIF/ARNT and STAT transcription factor
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recognition sites are common to this set of metabolic target genes. Regulators of

the L-glutamine metabolite pool, ASNS, and pyruvate flux, PDK3, take pivotal

roles standing out as strongest, most significantly regulated target genes (Figure

3A). In contrast, GCK, HK3, PFKM, PFKP, PDHA1, PDHB, and PDK1 were

down-regulated following BCL2 overexpression (Figure 3B). Further, prominent

transcription factors, RELA proto-oncogene (RELA, NF-κβ subunit, NFKB3,

p65, Gene ID: 5970), nuclear factor kappa B subunit 1 (NFKB1, p105, p50,

Gene ID: 4790), hypoxia inducible factor 1 alpha subunit (HIF1A, BHLHE78,

Gene ID: 3091, aryl hydrocarbon receptor nuclear translocator (ARNT, Gene

ID: 405, signal transducer and activator of transcription 5A (STAT5A, Gene

ID: 6776), signal transducer and activator of transcription 5B (STAT5B, Gene

ID: 6777), signal transducer and activator of transcription 6 (STAT6, Gene ID:

6778), and Jun proto-oncogene, AP1 transcription factor subunit (JUN, AP1,

Gene ID: 3725), showed significant regulation in both test conditions (Figure 3A-C,

Figure 4A). The in vitro analysis validated activation of heterodimeric transcrip-

tion factor complex components NFKB1/REL, HIF1A/ARNT, AP1, E2F, and

STAT5A/5B/6 with BCL2 activation in agreement with the genomic data (Table

1, Figure 4A). Gene ontology and pathway analysis pointed toward activation of

amino acid metabolism, enhanced glycolysis, and TCA cycle with BCL2 activity.

The profiling of metabolic enzymes validated this finding at the transcriptional

level and showed up-regulation of key metabolic mediators of glycolysis, TCA

cycle, and anaplerosis (Table 1, Figure 2B, Figure 4B).

6.4.4 BCL2 overexpression increases cellular proliferation

and mitochondrial mass

To characterize the effect of BCL2 overexpression on the proliferation of lympho-

cytic and lymphoma cell lines automated, serial cell counts were obtained. BCL2

overexpression resulted in significantly higher growth rates ρ with p-values below

1.00E-04 compared to the parental and mutant BCL2-G145E cell lines (Figure

5A). Despite an initial plateau of the overexpressing cell line, it was possible to

obtain fitted exponential maximum growth rates ρmax for all cell lines with an
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Figure 6.3: Real-time quantitative polymerase chain reaction (RT-QPCR)
profiling arrays of central carbon metabolic enzymes and their regulators
validate significant deregulation of mitochondrial metabolism at the gene
expression level. Gene expression level of the gene of interest (GOI) is shown as
negative threshold cycle (-CT) relative to the house keeping gene for the parental
control (WT) in grey on x-axis, and cell lines overexpressing BCL2 in red, or
BCL2(G145E) in blue on y-axis. In case, there is no change of expression level,
the data point for the GOI will reside on the diagonal within 95.0 % confidence
interval shown as solid lines. A) Differential expression of transcripts with
significantly increased levels of GOI upon BCL2 overexpression but opposite
directionality of levels of GOI in the BCL2 mutant. pyruvate dehydrogenase
kinase 3 (PDK3, Gene ID: 5165) and asparagine synthetase (ASNS, Gene ID:
440) are two highly expressed and significantly dysregulated genes identified by
the screen. PDK3 is a protein kinase that regulates and deactivates the pyruvate
dehydrogenase complex by phosphorylation thereby shutting off flux from lower
glycolysis into the TCA cycle. ASNS supports biosynthetic and anaplerotic flux
in a L-glutamine-coupled reaction, which transfers an amide from L-glutamine
to aspartate to generate asparagine. B) Differential expression of transcripts
with decreased levels upon BCL2 overexpression and up-regulation in the BCL2
mutant. C) Differential expression upon BCL2 overexpression but no change of

directionality in the BCL2 mutant.

explained variation R2 above 0.970 of the regression model (Figure 5B). Notably,

ρ can undergo dramatic changes up to 50% decrease depending on nutrient supply,

cell density, and growth phase [43]. Maximum proliferation rates at exponential

growth were ρmax=9.59E-02 ± 2.20E-03, R2=9.73E-01, t2
max=10.4 h for parental

pro-B cell line, ρmax=1.08E-01 ± 3.24E-03, R2=9.83E-01, t2
max=9.29 h, 112.2%

increase, p-value=6.70E-03 for BCL2 overexpression, and ρmax=8.75E-02 ± 4.93E-

04, R2=9.78E-01, t2
max=1.14E+01, 10.7% decrease, p-value=5.42E-03 for the

BCL2 mutant.

Additionally, cell diameter measurements indicate that BCL2 overexpressing cells

were significantly smaller on average than were parental or mutant cells. Auto-

mated cell gating with thresholds between 8-10 µm and 12-14 µm showed smaller

BCL2 overexpressing cells and larger BCL2 mutant cells than the parental cell lines

with p-values below 1.00E-04 (Figure 5C). Given the increased flux of D-glucose

and L-glutamine into the TCA cycle, we next asked whether BCL2 overexpression

affected mitochondrial dynamics more generally. Mitochondrial staining with Mi-

toTracker green fluorescent mitochondrial stain (MTG) followed by flow cytometry
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Figure 6.4: Elevated BCL2 expression causes differential expression of
transcription factors and metabolic enzymes Real-time quantitative polymerase
chain reaction (RT-QPCR) validates significant deregulation of A) transcription
factors and B) central carbon metabolic enzymes and their regulators. Gene
expression level is shown as negative threshold cycle (-CT) quantified relative
to the house keeping gene with significant differential expression marked by ****

and p-values below 1.0E-05.
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revealed an increase in mitochondrial staining (Figure 6A). This is indicative of

increased mitochondrial mass within BCL2 overexpressing cells, despite these cells

being smaller (Figure 5C). Staining for mitochondrial membrane potential and

superoxide generation by the mitochondrial superoxide indicator, MITOSOX fluo-

rescein isothiocyanate, did not reveal any difference between BCL2-overexpressing

lymphoma and the parental lymphocytic cell line (Figure 6B-C).
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Figure 6.5: Elevated BCL2 expression significantly increases proliferation rate
and decreases cell size. A) Proliferation rates of parental lymphocytic pro-B-
cell lines and BCL2 overexpressing lymphoma cell lines were quantified using
automated cell counting. BCL2 overexpression resulted in 12.2 % increased
cellular proliferation, while expression of BCL2(G145E) mutant reduced cellular
proliferation by 10.7 %. Significance levels are indicated with asterisks according
to p-value thresholds (* p-value ¡ 5.00E-02, ** p-value ¡ 1.00E-02, *** p-value
¡ 1.00E-03: **** p-value ¡ 1.00E-04). B) BCL2 overexpressing lymphoma cell
lines have a significantly higher fraction of cells with smaller cell diameters (8-10
µm) than parental lymphocytic pro-B-cell lines, while BCL2 mutant cells have
a higher fraction of cells with larger cell diameters (14-16 µm). Distribution
of cell size is shown as fraction of observed cell counts for each measured cell

diameter.
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Figure 6.6: BCL2 overexpression increases mitochondrial mass Lymphoma
and parental pro-B-cell lines were treated with fluorescent mitochondrial
dyes to quantify mitochondrial size, mitochondrial membrane potential,
and intracellular superoxide levels by flow cytometric cell scanning. Flow
cytometric cell scanning plots show normalized cell counts of 100,000 events
of lymphatic and lymphoma cell lines. Markers quantified: A) fluorescence
of mitochondrial tracker green (MTG, correlates with mitochondrial size,
green fluorescence), B) tetramethylrhodamine ethyl ester (TMRE, determines
mitochondrial membrane potential, red fluorescence), and C) mitochondrial
superoxide indicator (MITOSOX, fluorescein isothiocyanate (FITC) conjugate).

6.4.5 BCL2 overexpression increases glycolytic flux

Increased glycolysis is a hallmark of cancer cells and an important feature of phys-

iological and pathologic lymphoid cell proliferation. To assess glycolytic flux in

response to BCL overexpression we used GCMS-based stable isotope tracing. Fol-

lowing incubation with [U-13C6] D-glucose, the lymphoma cell line overexpressing

BCL2 exhibited increased incorporation of labeled carbon in pyruvate and lactate

compared to parental and mutant cell lines, indicating increased glycolytic and

fermentative flux from D-glucose (Figures 7-8). Moreover, BCL2 overexpression

displayed increased flux of glycolytic carbon into the TCA cycle. In accordance,

analysis of conditioned media samples using GCMS revealed increased D-glucose

uptake and lactate secretion by the BCL2 overexpressing cell l
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Figure 6.7: Stable isotope labeling shows an increased percentage of pyruvate
containing Carbon-13 from labeled glucose. Significance level of differential
incorporation is indicated by asterisks based on a p-value threshold of 1.00E-03
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Figure 6.8: Stable isotope labeling shows an increased percentage of lactate
containing Carbon-13 from labeled glucose. Significance level of differential
incorporation is indicated by asterisks based on a p-value threshold of 1.00E-03

6.4.6 BCL2 increases glutaminolysis and anaplerotic flux

into TCA cycle

A prominent feature of several malignancies is a dependency on anaplerotic flux to

fuel TCA and reverse TCA fluxes [35, 44]. We therefore examined whether BCL2

overexpression increased glutaminolysis and L-glutamine influx into the TCA

cycle. Following incubation with [U-13C5] L-glutamine, BCL2 overexpression had

increased incorporation of 13C stable isotopes into citrate, succinate, fumarate,
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L-aspartate, L-asparagine, L-glutamate and other TCA cycle intermediates com-

pared with parental and mutant cells. In detail, the isotope composition of citrate,

succinate, fumarate, aspartate, and L-asparagine showed significant increase in the

M+4 feature with a p-value below 5.00E-02 in the BCL2 overexpressing cell line

indicating predominantly oxidative, forward flux of the TCA cycle (Figure 9).

Other TCA cycle intermediates and TCA cycle associated amino acids includ-

ing L-aspartate and L-asparagine track with four-carbon TCA cycle precursor

organic acids characterized by reduced pool size and increased stable isotope

incorporation from L-glutamine upon BCL2 overexpression. Cellular uptake of

L-glutamine and glucose from extracellular media was also significantly greater

in the BCL2 overexpressing cell line with p-values below 5.00E-02 (Figure 10-

11). Given such increased utilization of extracellular L-glutamine, we next tested

whether L-glutamine deprivation preferentially affected the BCL2 overexpressing

cell line. Removing L-glutamine completely from extracellular media for a period

of 24 hours abolished cellular growth of pro-B-cell and BCL2 overexpressing cell

lines (Figure 12). In contrast, pro-B-cells with BCL2 mutant protein showed

increased survival in the absence of L-glutamine with a p-value below 5.00E-02

(Figure 7F). Furthermore, treatment with the selective glutaminase (GLS, Gene

ID: 2744) inhibitor BPTES over a period of 24 hours more adversely affected the

BCL2 overexpressing lymphoma cell line in comparison to the non-tumorigenic

lymphocytic cell lines with p-values below 5.00E-02 (Figure 13). Taken together,

BCL2 activation in the overexpressing cell line showed increased glycolytic and

TCA cycle capacity, while creating a strong dependency on TCA cycle support

via glutaminolytic anaplerosis.
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Figure 6.9: Stable isotope labeling shows an increased percentage of citrate
containing Carbon-13 from labeled glutamine. Significance level of differential
incorporation is indicated by asterisks based on a p-value threshold of 1.00E-03



Singh, Simar J. 115

Figure 6.10: BCL mutant cells exhibit increased consumption of glutamine
from extracellular media. Significance level of differential incorporation is

indicated by asterisks based on a p-value threshold of 1.00E-03.
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Figure 6.11: BCL mutant cells exhibit increased consumption of glucose from
extracellular media. Significance level of differential incorporation is indicated

by asterisks based on a p-value threshold of 1.00E-03.
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Figure 6.12: Relative cell viability measured in response to depleted glutamine
levels. Significance level of differential viability is indicated by asterisks based

on a p-value threshold of 1.00E-03.
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Figure 6.13: Relative cell viability measured in response to incubation with
the glutaminase inhibitor BPTES. Significance level of differential viability is

indicated by asterisks based on a p-value threshold of 1.00E-03.

6.5 Discussion

6.5.1 Pro-survival function of BCL2 beyond its

anti-apoptotic role

Elevated expression of the proto-oncogene BCL2 is a key element discovered in

hematological malignancies [9, 45, 46]. The B-cell lymphocytic lineage utilizes
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programmed cell death as selection mechanism relying on BCL2 as deciding factor

for survival or in its absence apoptosis. In response to BCL2 overexpression,

pro-apoptotic BH members are bound by BCL2 preventing initiation of outer

membrane permeabilization in the process of apoptotic cell death [47]. While

this observation accounts for the protective, anti-apoptotic effect of BCL2, it

does not explain other aspects of BCL2 activity particularly in cancer. In ma-

lignant melanoma, myeloma, lung adenocarcinoma and stomach adenocarcinoma,

overexpression of BCL2 is associated with oncogenesis and poor outcome [49-

52]. Overexpression of BCL2 in pro-B lymphocytic cell lines exhibits resistance

to mitochondrial apoptosis and induces lymphoma upon injection in mice [20,

25, 48]. Correspondingly, loss of the BCL2 gene in murine models leads to

widespread apoptosis, hypopigmentation, and polycystic kidney disease pointing

to an important homeostatic role [53]. Surprisingly, despite its fundamental role

in apoptosis and cancer, there is little molecular or mechanistic data on the effects

of BCL2 expression levels on transcriptional and metabolic networks.

6.5.2 Somatic activation of BCL2 by somatic copy

number amplification

In cancer, increased levels of BCL2 have been observed at the transcriptional,

epigenetic, or copy number level [45, 54-56]. Congruently, the t(14:18) chromo-

somal translocation causes constitutive overexpression of BCL2 by juxtaposing

it to immunoglobulin heavy chain gene enhancer elements. Our somatic copy

number analysis identified locus chr18q21 as a frequently amplified hotspot in both,

focal and arm level, genomic alterations (Figure 1, Supplementary table 1). The

analysis confirmed prior described correlations between BCL2 amplification and

MYC amplification, which are associated with poor prognostic outcome [43, 57,

58]. Further, we detected co-occurrence between BCL2 and NF-κβ/REL signaling

[57, 59]. Curiously, frequent, focal SCNA amplification of the metabolic enzyme

ASNS on chr7q21 of DLBC patients coincides with amplification of BCL2 (Figure

1A). Together, these observations raise questions for functional implications of

BCL2 amplification for transcriptional and metabolic regulatory networks.
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6.5.3 BCL2 serves a pro-survival role by modulating and

controlling genes required for apoptotic cell death

Most oncogenes, like BCL2, if they are not transcription factors themselves, are

activators of transcriptional programs. Our analyses identified BCL2 overex-

pression as an activator of several highly regulated and inducible transcription

factors, including NF-κβ subunits NFKB1/2 and REL/A/B, basic helix-loop-helix

(BHLH) family members, HIF1A or MYC, AP1 factors, JUN and FOS, and STAT

family members. Stimulation of these pathways, in turn, increases expression of

target genes that are necessary for growth and protection from apoptosis. The

anti-apoptotic potential of BCL2 has been demonstrated to be partially attributed

to its complexing with various components of the NF-κβ complex in the nucleus,

thereby modulating nuclear gene expression with a strong pro-inflammatory and

oncogenic outcome [60, 61]. Since inducible transcription factors are activated by

specific regulators, detection of unusually active transcription factors also points

to upstream signal transduction pathways, potentially identifying therapeutic op-

tions for inhibition in BCL2-driven cancers. Our dataset contains three pieces

of independent evidenceat the genomic, transcriptomic and effector target gene

levelthat NF-κβ/REL signaling is closely connected to the oncogenic, pro-survival

function of BCL2.

6.5.4 The cellular model of BCL2 activation supports

NFKB-positive subtypes of DLBC

In B-cell neoplasias, DLBCs represent a group of different subtypes including

activated B cell-like (ABC), primary mediastinal center B cell-lymphoma (PMBL),

and germinal center B cell-like (GCB) DLBC. BCL2 amplification and transcrip-

tional activity were found in chr18q21 in ABC and PMBL [62]. One of the most

important differences among the DLBC subgroups is the constitutive activity of

the NF-κβ pathway in ABC and PMBL but not GCB DLBCL. Significantly, of

the three DLBC subtypes, only ABC and PMBL responded to inhibitors of the

NF-κβ pathway, whereas GCB was impervious to these agents [62, 63]. In DLBC,
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JAK-STAT signaling is a feature of the ABC DLBC subtype and triggered by

autocrine production of interleukins under the control of NF-κβ/REL. STATs

also stimulate NF-κβ target genes, which could be due to the ability of STATs to

form a complex with the NF-κβ transcription factor complex 6[4]. This emerging

evidence suggests that BCL2 and NF-κβ/REL positive DLBCs critically depend

on sustained activity of the NF-κβ pathway, which, among others, is achieved

through numerous distinct genomic and transcriptomic aberrations [60, 61]. In

the BCL2 overexpression model, the BCL2-NF-κβ-STAT axis stood out as con-

sistently altered at the genomic and transcriptional level emphasizing its role as

important oncogenic driver pathway in lymphoma. Systems-level connections of

transcriptional networks now enable us to propose target therapeutic intervention

strategies that target oncogenic BCL2 signaling and dysregulated NF-κβ activity

6.5.5 Pleiotropic effects of BCL2 on transcription factors

RNA-Seq enrichment and RT-QPCR validation show activation of transcription

factor programs of NF-κβ/REL, HIF1A/ARNT, AP1, and STAT complexes in the

presence of elevated BCL2. In concordance, transcriptional profiling of cellular

DLBC models, members of NF-κβ, HIF, CREB and other transcription factor

families were found overexpressed or inappropriately activated [65]. The pro-B-

cell lymphocytic lineage provides a useful model system independent of MYC

activation. Overexpression of BCL2 in these cells was shown to suppress MYC,

a target gene of NFKB1, by influencing the DNA-binding activity of NFKB1,

thereby negatively affecting MYC transcription [60]. In this case, similar to

our presented model system, NFKB1 serves as upstream regulator of MYC and

other transcription factors [59] and up-regulates MYC transcript levels in the

absence of wildtype BCL2 expression (Figure 4A). Conversely, overabundance of

BCL2 suppresses MYC. Independent of transcriptional regulation, there is genomic

synergy between BCL2 and MYC at the copy number level (Supplementary table

1). Therefore, transcriptional control of MYC expression by BCL2 via NFKB1

can be overridden by genomic alterations of MYC, which negatively impacts

patient survival. An additive adverse patient survival effect of BCL2 activation
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in combination with MYC or NFKB1 overexpression has been reported [66, 67]

correlating with experiments on transgenic BCL2 and MYC animal models in

lymphomagenesis [68, 69]. Despite poor prognosis, MYC rearrangements are

rare in BCL2-enforced lymphomagenesis in humans. Importantly, BCL2 and

NFKB1 correlate at genomic, transcriptional, and network levels in DLBC patients

strengthening and supporting the in vitro data.

6.5.6 Reversal of the phenotype by BH interaction

mutant of BCL2

Interactions of BCL2 with BH members regulate mitochondrial outer membrane

permeabilization in the process of apoptotic cell death. In addition to canonical

BH domains, structurally similar non-canonical BH domains can be found in

numerous proteins, potentially making them responsive to overabundant BCL2. It

is important to mention that the chosen approach of profiling in combination with

enrichment analysis is not able to resolve protein-protein interactions. However,

the approach prioritizes cellular networks in an unbiased way and identifies NF-

κβ signaling, amino acid metabolism, and inflammation as important signatures

of BCL2 associated dysregulation. Further, the BCL2(G145E) mutant, which is

unable to bind BH3 domains, provides a useful control, since phenotypic differences

between cell lines overexpressing BCL2 wildtype vs mutant, can be attributed to

an inability to bind or interact with the BH3 domain of BCL2 [23]. Indeed,

overexpression of mutant BCL2 reversed the cellular phenotype observed with

wildtype BCL2 overexpression. This indicates that lack of BH domain interaction

in the mutant reduces proliferation rate, increases cell size, and results in smaller

mitochondria compared with wildtype BCL2 or control pro-B cell lines (Figure

5-6). Similarly, transcriptomic and metabolic assays point to phenotypic nodes,

which are responsive to BCL2 overexpression and which can be reversed by the

interaction mutant. Specifically, transcription factors RELA, ARNT, HIF1A,

and STAT5B correlate positively with an increase in BCL2 expression and BH

interactions (Figure 3A and 4A). Similarly, transcriptional levels of metabolic
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effector enzymes HK2, GAPDH, LDHA, ASNS, and PDK3 follow BCL2 activity

(Figure 3A and Figure 4B).

6.5.7 Dysregulated amino acid and TCA cycle

metabolism as part of the BCL2 effector network in

cancer

The integral relationship between BCL2 and mitochondria suggests that it may

function in regulating cellular metabolism independent of its role in apoptosis.

Stable isotope-assisted metabolic flux measurements showed that elevated BCL2

expression increases carbon utilization necessary to support cell cycle progres-

sion and cellular proliferation. Tumorigenic overexpression of BCL2 significantly

increased flux from D-glucose into pyruvate and lactate, which is indicative of

oxidative fermentation and the Warburg effect in cancer cells. Transcriptional

networks responding to BCL2 overexpression include activation of NF-κβ, HIF1A,

STAT5A and AP1 target genes ensuring activation of fermentative glycolysis and

oxidative glutaminolysis (Table 1). The glycolytic phenotype is carried out by

transcriptional up-regulation of rate-limiting enzymes HK2, GAPDH, and LDHA.

The pentose phosphate pathway is increased, judged by up-regulation of gate-

keeper enzymes G6PD, TKT, and TALDO1. The transcription factor complex

HIF1A/ARNT controls glycolytic enzyme levels and supports rapid growth. How-

ever, by deregulating PDK3, which is another HIF1A target gene, the mitochon-

drial acetyl-CoA pool is separated from the glycolytic one. The TCA gatekeeping

pyruvate dehydrogenase (PDH) complex is switched off by elevated activity of

PDK3, which causes inhibition of the PDH complex. The activator of PDHs,

PDP2, as well as enzymatic subunits of PDH, PDHA1, and PDHB, are down-

regulated to prevent the irreversible conversion from pyruvate into acetyl CoA.

At the same time, any other PDK isoforms, PDK1, PDK2, and PDK4, are

down-regulated emphasizing PDK3 as sole regulatory step for switching off PDHs.

Decoupling of glycolysis depletes TCA cycle metabolite pool sizes and increases

dependence on anaplerosis to replenish TCA cycle intermediates [44]. Anaplerotic

L-glutamine metabolism is engaged via up-regulation of GLS and ASNS to com-
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pensate and support mitochondrial TCA cycle metabolism. The tight connection

between BCL2 and ASNS is illustrated by co-occurring SCNAs, synergistic tran-

scriptional regulation, joint strong up-regulation at the protein level, and increased

metabolic flux (Figure 1A, 2B, 3A, 4B, 7D). ASNS supports biosynthetic and

anaplerotic flux in an L-glutamine-coupled reaction by transferring an amide group

from L-glutamine to aspartate thereby generating L-asparagine. L-glutamine, -

ketoglutarate, and L-asparagine metabolism is not only important for cancer cell

survival but also in oxidative stress and tumor vascularization to offset nutrient

and oxygen limitations.

subsectionMetabolic bottlenecks upon BCL2 overexpression and dependency on

anaplerotic support

Combined metabolic and transcriptional analyses highlight distinct switches at-

tributed to overexpression of BCL2. Enhanced BCL2 expression and BH binding

scaffolds stimulate pro-survival interactions and promote mitochondrial stability.

In addition, BCL2 overabundance stimulates non-canonical nuclear interactions

leading to activation of transcriptional networks facilitating onco-metabolism. Of

the tested transcription factors, transcriptional complexes of NFKB1, RELA,

HIF1A, ARNT, and STATs are prominently expressed and able to modulate

expression of metabolic target genes. Beyond the traditional Warburg effect, which

is focused on cytosolic fermentation, the TCA cycle-gatekeeper, PDK3, separates

glycolysis and mitochondrial TCA cycle. Congruently, anaplerotic L-glutamine

and L-asparagine conversion supports oxidative TCA cycle metabolism and fuels

elevated bioenergetics demands of rapidly growing BCL2-positive cells. Since the

discovery of L-asparagine-sensitive lymphomas [70], a great deal of research has

probed the nature of L-asparagine turnover in cancer and its value as a therapeutic

target [71]. In BCL2 overexpressing cell lines, targeting of L-glutamine turnover

was immediately responsive, likely due to a metabolic bottleneck created by in-

creased dependency on anaplerotic support. Moreover, 13C-assisted stable isotope

tracing showed how BCL2-driven lymphoma cell lines are able to reroute TCA

cycle related amino acid metabolism and sustain L-glutamine and L-asparagine

pathways. Details of how anti-apoptotic regulation generates specific conditions
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under which non-essential amino acids becomes indispensable for cancer cells

deserve future attention.

6.6 Conclusion

The field of BH domain interactions is at an exciting point. Extensive knowl-

edge and datasets including high-resolution structural and systems biology allow

to build on decades of research on pro- and anti-apoptotic mediators providing

useful insights into transcriptome, proteome, and interactome of the BH family.

Importantly, the therapeutic potential of BCL2 activation by somatic amplifica-

tion or transcriptional up-regulation has been recognized and offers a genotype-

match approach for precision targeting of cancers affected by dysregulation in the

pro-survival BH family of onco-proteins. These results suggest DLBC subtype-

specific biomarkers based on genomic and transcriptomic alterations of BCL2

and encourage stratification of DLBC patients for targeted therapy with BCL2

inhibitors. Based on genomic, transcriptional, and metabolic readouts of BCL2-

activated lymphoma, BCL2 has a pronounced oncogenic phenotype. By trig-

gering a non-canonical network of transcription factors it promotes a metabolic

and mitogenic program. Anaplerotic L-glutamine metabolism is engaged via up-

regulation of GLS and ASNS creating metabolic vulnerability. Significantly, there

is an increased sensitivity to glutaminase inhibition and glutamine deprivation in

BCL2-driven lymphoma cells. This is supported by 13C -assisted metabolomics

data indicating increased anaplerotic glutamine and asparagine flux. The NF-

κβ/REL complex stands out as master regulator of pro-inflammatory and mito-

genic target networks. In addition, it is controlling and impacting downstream

transcriptional networks of stimulated STAT and repressed MYC transcription

factor networks. The BCL2-NF-κβ-STAT axis recommends itself as biomarker and

anti-cancer target to address an unmet clinical need for the precision management

of lymphoma. Dual, BCL2- and NF-κβ-expressing lymphomas identify a distinct

molecular subset of DLBC. In the treatment of such dual BCL2- and NF-κβ-

expressing lymphomas, agents targeting BH domain interactions, immunotherapy,
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and chemotherapy focused on metabolic vulnerability should offer significant ther-

apeutic benefit.
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Abstract 

Aberrant glutamatergic signaling has been 
implicated in altered metabolic activity in many cancer 
types including malignant melanoma. Previously, we have 
illustrated the role of metabotropic glutamate receptor 1 
(GRM1) in neoplastic transformation of melanocytes in 
vitro and spontaneous metastatic melanoma in vivo. 
Glutamate is the natural ligand of GRM1. It is one of the 
most abundant amino acids in the human body and the 
predominant excitatory neurotransmitter in the vertebrate 
central nervous system. 

GRM1-expressing tumor cells including 
melanoma exhibit elevated extracellular glutamate levels. 
Autocrine stimulation constitutively activates the 
glutamate receptor and downstream mitogenic signaling. In 
addition, significant upregulation of glutaminase (GLS) 
expression was detected in these GRM1+ cells. GLS 
catalyzes the first step in the conversion of glutamine to 
glutamate. In cultured GRM1+ melanoma cells, inclusion of 
CB-839, a potent, selective, and orally bioavailable inhibitor 
of GLS, resulted in a profound suppression of cell 
proliferation. Exposing GRM1+ tumor cells to an inhibitor of 
glutamate release, riluzole promoted apoptotic cell death 
in vitro and in vivo. Riluzole is an FDA approved drug for the 
treatment of amyotrophic lateral sclerosis (ALS) that is 
mediated by the pathological accumulation of glutamate. In 
melanoma, combined CB-839 and riluzole treatment 
proofed to be superior to single agent treatments. 
Targeting both, metabolic conversion and release, via 
combined CB-839 and riluzole treatment restricted 
glutamate bioavailability and led to effective suppression of 
tumor cell proliferation. 

Hyper-activation of GRM1 in malignant 
melanoma is an oncogenic driver of malignant melanoma, 
which acts in a BRAF/NRAS independent fashion. Ectopic 
GRM1 expression promotes a metabolic phenotype that 
supports increased glutamate production and autocrine 
glutamatergic signaling, which can be pharmacologically 
targeted by decreasing the glutaminase-dependent 
glutamine to glutamate conversion and bioavailability. 

Introduction 

Melanoma is the most aggressive type of skin 
cancer and its incidence is on the rise worldwide, 
accounting for almost 10,000 deaths every year [1, 2]. 
Although surgically curable at early stages, late stage 
melanoma is difficult to treat due to genomic tumor 
variability and therapy resistance [3]. The constitutive 
activation of the mitogen activated protein kinase pathway 
is frequently altered in melanoma and initially responsive to 
targeted treatment [4]. However, disease relapse and 
tumor progression impedes long-term survival [5]. Newer 
immunotherapies including CTLA-4 or PD-1 blockade 
initially display great therapeutic efficacies in patients with 
advanced melanoma [6, 7]. However, almost all patients 
acquire resistance to these therapies after varying periods 
of time [8, 9]. Therefore, there is a clear need for improved 
combinatorial treatments to combat melanoma. 

Utilizing a transgenic mouse model [10], we have 
established the genotype and tumorigenicity of aberrant 
expression of metabotropic glutamate receptor 1 (GRM1) 
in melanoma [11]. In addition to glutamate being the 
natural ligand of GRM1, our interest in exploring the 
consequences of altered glutaminolytic glutamate 
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production is based on previous studies demonstrating that 
increased resistance to targeted therapy is a result of 
augmented glutamine dependency in melanoma cells [12, 
13]. Consistent with this, we have demonstrated that a 
reduction in expression or function of GRM1 resulted in a 
decrease in melanoma cell proliferation in vitro and tumor 
burden in vivo [14]. 

GRM1-expressing melanoma cells release excess 
glutamate into the extracellular environment to warrant 
constitutive activation of the receptor [15]. Glioma cells use 
glutamate as an autocrine or paracrine signal to promote 
cellular migration and invasion [16]. Glioma cells release 
excess glutamate through a cystine-glutamate antiporter 
system (xCT), which causes the excitotoxic death of neurons 
and permits tumor cell expansion [17, 18]. The brain is a 
common metastatic site for secondary tumors to arise in 
metastatic melanoma [19]. In addition, enhanced 
glutamate release has been observed in both breast cancer 
and prostate cancer cells [20, 21].  

Glutamine is the most abundant and multifaceted 
biomolecule that plays a fundamental role in multiple 
metabolic processes and signaling in human cells. The vital 
role of glutamine metabolism in cancer cell proliferation 
suggests that glutaminolytic enzymes feeding into the 
tricarboxylic acid (TCA) cycle could be appealing targets for 
therapy. It has been shown that GLS (glutaminase), an 
important glutaminolytic enzyme involved in the 
conversion of glutamine to glutamate, has elevated activity 
in tumors and is positively correlated with transformation 
and oncogenesis [22-25]. These findings brought about the 
design and development of CB-839, a potent, selective, and 
orally bioavailable GLS inhibitor. Recent studies have shown 
that CB-839 exhibits anti-proliferative activity in vitro 
against a panel of triple-negative breast cancer (TNBC) cell 
lines, as well as in vivo breast cancer models, suggesting 
that GLS inhibition could lead to therapeutic benefit in 
patients with TNBC and other glutamine-dependent tumors 
[26]. In addition, CB-839 is well tolerated in preclinical 
studies in mice, with no weight loss or toxicity observed 
[26]. Recent reports also suggest that combining potent GLS 
inhibitors with other targeted therapies increases the 
durability of therapeutic responses in a variety of cancers 
[27, 28]. These results prompted us to investigate a novel 
therapeutic approach to inhibit glutaminolytic glutamate 
production and utilization in GRM1+ melanoma through 
combined actions of CB-839 and riluzole. 

Methods 

Reagents and antibodies 

CB-839 (PubChem CID: 71577426) and riluzole 
(PubChem CID: 5070) were purchased from Selleckchem, 
Houston, TX). CB-839 and riluzole were dissolved in 
dimethyl sulfoxide (DMSO, Fisher Scientific) as 50 mM and 
100 mM stock solutions, respectively, and used in 
treatments at the indicated concentrations. Anti-GLS 
antibody was purchased from Novus Biologicals 
(NBP158044, Littelton, CO). Monoclonal α-tubulin antibody 
was purchased from Sigma Aldrich (T6074, St. Louis, MO). 
Anti-GRM1 antibody was purchased from Lifespan 
BioSciences (LSC354444, Seattle, WA). 

Cell lines, cell culture reagents and conditions 

C8161/C81-61 human melanoma cells were 
provided by Dr. Mary J.C. Hendrix (Children’s Memorial 
Research Center, Chicago, IL). These cell lines were cultured 
in RPMI-1640 medium supplemented with 10% fetal bovine 
serum (FBS). hTERT/CDKR24C/p53DD (AR7119; 
immortalized normal human melanocytes) cells was 
provided by Dr. David Fisher (Harvard Medical School, 
Boston, MA) and maintained in Medium 254 with human 
melanocyte growth supplements (M-254, Invitrogen, 
Carlsbad, CA) [29].  All cell lines were maintained at 37 ºC in 
a humidified 5% CO2 incubator. 

For metabolite quantification experiments, 
100,000 cells per well were seeded in replicate (n=6) in 6-
well plates (657160, Greiner Bio-One, Kremsmünster, 
Germany) in DMEM (10-017, Corning Cell-Gro, Manassas, 
VA) supplemented with 10% FBS, 1% Penicillin-
Streptomycin (30-002-CI, Corning Cell-Gro, Manassas, VA), 
and 1% MEM Non-Essential Amino Acids (25025-C, Corning 
Cell-Gro, Manassas, VA). 24 hours following seeding, media 
was aspirated and replaced with MEM (Corning Cell-Gro, 
Manassas, VA) supplemented with 1 g/L D-Glucose (0188, 
Amresco, Solon, OH), 2 mM L-Glutamine (G3126, Sigma 
Merck, Darmstadt, Germany), 10% FBS, and 1% MEM 
Vitamins (25-020-CI, Corning Cell-Gro, Manassas, VA).  

TGS melanoma model 

TGS mice were derived from crosses between TG-
3 and SKH-1 for 17 years. TG-3 mice were established as a 
result of a classic case of insertional mutagenesis that led to 
the ectopic expression of GRM1in melanocytes. TG-3 mice 
spontaneously develop metastatic melanoma with 100% 
penetrance. Genotypes of TGS mice were performed as 
described for TG-3 [11]. 

MTT cell proliferation/viability assays 
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Cell proliferation was ascertained using MTT 
reagent as previously described [15]. Briefly, each cell line 
was cultured in 96-well culture plates (~2500 cells per well) 
followed by treatment with vehicle (DMSO), CB-839 or/and 
riluzole at varying concentrations. At indicated time points, 
the number of viable cells was determined by measuring 
absorbance (at 560 nm with a reference wavelength of 750 
nm) using a 96-well plate reader (Infinite M200 Tecan USA, 
Durham, NC). 

Constructing melanoma cell lines with altered 
GRM1 expression 

Stable C8161 TetR siGRM1 B22-20 clone (C8161si) 
was generated and maintained in 1 µg/ml blasticidin and 10 
µg/ml hygromycin as described [30]. Induction of siGRM1 
was carried out by incubating the cells with 10 ng/ml of 
doxycycline for 4 days. Stable C81-61 GRM1-6 (C8161OE) 
clone that expresses elevated GRM1 levels compared to 
parental cell lines was selected with 10 µg/ml blasticidin as 
illustrated [31]. 

Glutamate quantification 

Glutamate concentration in the conditioned 
media was measured after 0, 2 or 4 days in culture with 
glutamate-free MEM using the Glutamine/Glutamate 
Determination Kit (GLN1, SigmaAldrich) according to the 
manufacturer’s instructions. The determination of L-
glutamate was done by measuring the dehydrogenation of 
L-glutamate to α-ketoglutarate accompanied by reduction 
of NAD+ to NADH. The conversion of NAD+ to NADH was 
determined by measuring absorbance at 340 nm using a 96-
well plate reader (Infinite M200 Tecan USA, Durham, NC). 
The amount of NADH is proportional to the amount of 
glutamate in each sample. 

Metabolite extraction 

Following 24 hours incubation in supplemented 
MEM, 5 µL of supernatant containing conditioned media 
was transferred to micro centrifuge tubes (MT-0200-BC, 
Biotix, San Diego, CA) with 1 mL of cold [-20 °C (253 K)] 
extraction buffer consisting of 50% methanol (A452, Fisher 
Scientific, Fair Lawn, NJ) in ultrapure (18.2 MΩ x cm) water 
with 20 µM L-Norvaline (N7627 Sigma Merck, Darmstadt, 
Germany) and 20 µM DL-Norleucine (N1398, Sigma Merck, 
Darmstadt, Germany) and dried by vacuum centrifugation 
in a speedvac concentrator (DNA120OP115, Savant, 
Thermo Fisher Scientific, Waltham, MA) overnight. The 
remaining media was aspirated and the cells washed 
quickly with cold 0.9% sodium chloride in ultrapure water 

(Amresco) and placed on ice. To each well, 1 mL of cold 
extraction buffer was added, the cells scraped on ice and 
the entire solution was then transferred to a pre-chilled 
micro centrifuge tube. Tubes were then frozen in liquid 
nitrogen, thawed, and placed in a digital shaking dry bath 
(8888-0027, Thermo Fisher Scientific, Waltham, MA) set to 
1100 rpm for 15 min at 4° C (277K). Samples were then 
centrifuged for 15 min at 4 °C (277 K) and 12500 g in a 
refrigerated centrifuge (X1R Legend, Sorvall, Thermo Fisher 
Scientific, Waltham, MA) using a fixed-angle rotor (F21-
48x1.5, Sorvall, Thermo Fisher Scientific, Waltham, MA). 
Supernatants were transferred to new micro centrifuge 
tubes and dried by vacuum centrifugation overnight. 

Metabolite derivatization 

Dried, extracted cell samples or media 
supernatants were derivatized by addition of 20 µL of 2.0% 
methoxyamine-hydrochloride in pyridine (MOX, TS-45950, 
Thermo Fisher Scientific, Waltham, MA) followed by 90 min 
incubation in a digital shaking dry bath at 30 °C (303 K) and 
1100 rpm. Then 90 µL of N-methyl-N-
trimethylsilyltrifluoroacetamide (MSTFA, 39486610X1ML, 
Sigma Merck, Darmstadt, Germany) was added and 
samples incubated at 37 °C (310 K) and 1100 rpm for 30 min 
before centrifugation for 5 min at 14,000 rpm and 4 °C. The 
supernatant was transferred to an auto sampler vial 
(C4000LV3W, Thermo Fisher Scientific, Waltham, MA) with 
screw cap (C5000-53B, Thermo Fisher Scientific, Waltham, 
MA) for analysis by gas chromatography (GC, TRACE 1310, 
Thermo Fisher Scientific, San Jose, CA) coupled to a triple-
quadruple GC mass spectrometry system (QQQ GCMS, 
TSQ8000EI, TSQ8140403, Thermo Fisher Scientific, San 
Jose, CA). 

GCMS 

Samples were analyzed on a QQQ GCMS system 
equipped with a 0.25 mm inner diameter, 0.25 µm film 
thickness, 30 m length 5% diphenyl/95% dimethyl 
polysiloxane capillary column (Trace GOLD TG-5MS, 26098-
1420, Thermo Fisher Scientific, Waltham, MA) and run 
under electron ionization at 70 eV. The GC was programed 
with an injection temperature of 250 °C (523 K) and split 
less injection volume of 1.0 µL. For media samples, a 1:20 
split injection was used. The GC oven temperature program 
started at 50 °C (323 K) for 1 min, rising to 300 °C (573 K) at 
10 K/min with a final hold at this temperature for 6 min. The 
GC flow rate with helium carrier gas (HE, HE 5.0UHP, 
Praxair, Danbury, CT) was 1.2 mL/min. The transfer line 
temperature was set at 290 °C (563 K) and ion source 
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temperature at 295 °C (568 K). A range of 50-600 m/z was 
scanned with a scan time of 0.25 s. 

Metabolomics data processing 

Metabolites were identified using Trace Finder 
(Version 3.3, Thermo Fisher Scientific, Waltham, MA) based 
on in-house libraries of metabolite retention times and 
fragmentation patterns. Identified metabolites were 
quantified using the selected ion count peak area for 
specific mass ions, and standard curves generated from 
reference standards run in parallel. Peak intensities were 
normalized for extraction efficiency using L-norvaline as an 
internal standard. The mean and standard deviation for 
each quantified metabolite was calculated for each cell line 
and treatment condition. A univariate t-test was used to 
compare means for each metabolite and cell line. 

Statistical analysis 

Statistical significance of experimental data was 
calculated using the Stat Plus software (Version 6.2.30) on 
Microsoft Excel® evaluated by the t-test or ANOVA 
depending on variables. The statistical significance was set 
at a p value of *p<0.05, **p<0.01 or ***p<0.001. 

Results 

Elevated circulating plasma glutamate levels 

We derived TGS mice from crosses between 
melanoma-prone TG-3 [9, 31-33] with hairless SKH-1. Onset 
and progression of pigmented lesions are very similar in TG-
3 and TGS mice; in the absence of hair the pigmented 
lesions are readily visible in TGS mice. Homozygous TGS 
mice that harbor two copies of the disrupted endogenous 
GRM1 gene succumb to large tumor burden by 4-5 months 
old; thus, frequently are not included in our studies. 
Heterozygous GRM1+/- TGS mice are viable and show 
highly pigmented tumors indicating that GRM1 signaling 
stimulates melanogenesis (Figure 1A). Comparison of 
glutamate levels in circulating blood plasma between 6-
month old heterozygous TGS (harbor only one copy of the 
disrupted GRM1) and wild type (no disrupted GRM1) TGS 
mice showed elevated glutamate levels in heterozygous 
TGS mice (Figure 1B), suggesting aberrant GRM1 expression 
may promote an increase in ligand, glutamate, to ensure 
constitutive activation of GRM1 receptor; similar 
observation was made in in vitro culture cells [15]. 

Elevated GLS detected in GRM1+ human 
melanoma cells 

Elevated GLS detected in GRM1+ human 
melanoma cells 

Ectopic expression of GRM1 is sufficient to induce 
cellular transformation in vitro and spontaneous melanoma 
development in vivo [9]. To investigate a possible 
relationship between GRM1 expression, glutamine 
metabolism, and glutaminase (GLS), we first confirmed 
GRM1 expression in C8161 and UACC903 human melanoma 
cells, plus immortalized normal human melanocytes, 
hTERT/CDKR24C/p53DD (AR7119). C8161 is a malignant 
human melanoma cell line that expresses wild type BRAF. 
UACC903 is another malignant melanoma cell line that 
harbors a BRAF (V600E) mutation. Both C8161 and 
UACC903 demonstrated significantly elevated levels of 
GRM1 and GLS compared to hTERT/CDKR24C/p53DD cells 
with almost undetectable GRM1 and much lower GLS 
expression (Figure 2). 

GLS inhibition reduces proliferation/viability of 
GRM1+ human melanoma cells 

In in vitro MTT assays both GRM1-expressing 
human melanoma cells, C8161 (with 0.5μM CB-839) and 
UACC903 (with 50μM CB-839) displayed modest efficacy in 
suppressing cell growth in the presence of CB-839 as 
compared with the control vehicle (DMSO) group 
regardless of their BRAF genotypes (Figure 3). To determine 
if GRM1 modulates the responsiveness to GLS inhibition, 
exogenous human GRM1 cDNA was introduced into an 
early stage melanoma cell line, C81-61, which does not 
express endogenous GRM1 (Figure 6E). Characterization of 
several GRM1-expressing C81-61 clones confirmed that 
these clones were transformed and tumorigenic [30]. Here 
we chose to compare the growth rate of the parental C81-
61 cells to the C81-61 GRM1-6 clone in the presence of CB-
839. A marked reduction in the cell proliferation of C81-61 
GRM1-6 was seen with 0.5μM CB-839 as compared to the 
vehicle (DMSO) control (Figure 3). Strikingly, very little if any 
changes was detected in growth of the parental C81-61 cells 
with analogous treatment conditions (Figure 3). These 
results suggest that GRM1 expression may influence the 
responsiveness of melanoma cells to GLS inhibition. 

Combinatorial treatment with CB-839 and riluzole 
leads to enhanced inhibition of GRM1+ melanoma cell 
proliferation 

Suppressive effects of riluzole on GRM1+ 
melanoma cell proliferation [15, 34, 35]. Here, the 
consequences of including both CB-839 and riluzole on the 
cell proliferation of two GRM1-expressing human 
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melanoma cell lines were investigated. As shown in Figure 
4, C8161 cells were treated for 7 days with 0.5μM CB-839, 
10μM riluzole or 0.5μM CB-839 + 10μM riluzole. Treatment 
with either CB-839 or riluzole reduced C8161 cell 
proliferation by ~40%, while combining both CB-839 and 
riluzole led to a decrease of ~85% when compared to 
vehicle treated control cells. However, a higher 
concentration of CB839 and riluzole was needed to reduce 
cell growth with another GRM1-expressing melanoma cell 
line (UACC903) that harbor mutated BRAF (Figure 4), similar 
to our earlier observations [14]. Furthermore, increasing 
evidence illustrate that the presence of a mutation in BRAF 
frequently makes cancer cells less responsive to various 
targeted treatments. UACC903 cells harbor a BRAF (V600E) 
mutation where as C8161 cells do not. Taken together, our 
results suggest that CB-839 combined with riluzole can 
enhance the anti-proliferative properties of CB-839, and 
that higher doses may be needed to administered in BRAF-
mutant cells. 

CB-839 treatment leads to inhibition of glutamate 
release from GRM1+ human melanoma cells 

Inclusion of riluzole in cultured media modulated 
the amount of glutamate released by melanoma cells [15]. 
To determine the consequences on the amount of 
glutamate released by GRM1+ melanoma cells upon 
treatment with CB-839 only or riluzole + CB-839 (treatment 
concentrations were determined by MTT results shown in 
Figure 4). C8161 cells were plated in glutamate-free MEM 
media followed by collection of conditioned media at days 
0, 2 and 4. We plated different number of C8161 cells so at 
time of collecting the conditioned-media samples, the cell 
numbers were very similar among the different days (Figure 
5A). In parallel we also performed cell viability/cell 
proliferation MTT assays to ensure that the treated cells 
were viable, as the levels of glutamate release were 
determined. Results from the Glutamine/Glutamate 
Determination Kit showed that extracellular glutamate 
levels were significantly reduced in the conditioned culture 
media isolated from CB-839, riluzole or CB-839+riluzole 
treated C8161 cells compared to the untreated cells (Figure 
5B). 

Modulation of GRM1 alters the intracellular 
production of glutaminolytic and glycolysis metabolites in 
human melanoma cells 

We next asked whether modulation of GRM1 
expression affects the intracellular levels of key 
glutaminolytic and glycolytic metabolites. To investigate 
the effect of modulating GRM1 expression, we analyzed 

both overexpression of GRM1 in a GRM1 low background 
(parental C81-61 and C81-61OE) and suppression of GRM1 
in a GRM1 high background (parental C8161 and C8161si). 
While suppression or overexpression of GRM1 failed to 
alter intracellular lactate concentration (Figure 6A), higher 
levels of GRM1 were accompanied by significantly 
increased levels of intracellular citrate, alpha-ketoglutarate, 
and glutamate (p<0.01) (Figures 6B-D). This indicates that 
GRM1 expression does not increase lactate fermentation 
but does increase levels of TCA cycle intermediates. The 
increased intracellular pool size of glutamate could be a 
direct result of increased conversion of glutamine into 
glutamate via the activity of GLS. To determine whether 
modulating GRM1 expression affects the level of GLS, we 
assayed GLS protein levels by western blot. Consistent with 
our observed glutamate concentrations, cells with higher 
levels of GRM1 also had higher levels of GLS protein (Figure 
6E). These results suggest that GRM1 expression increases 
glutamate production by increasing GLS expression. 

Discussion 

The high frequency of ectopic GRM1 expression 
in melanoma, and its signaling cascades implicated in 
cellular transformation, has made it a principal research 
interest among many groups seeking better therapeutic 
strategies for the treatment of melanoma. In this study, the 
role of metabotropic glutamate receptor 1 (GRM1) in 
modulating glutamate bioavailability in melanoma cells was 
explored. Our results suggest that GRM1 expression 
promotes a metabolic phenotype that supports increased 
glutamate production and autocrine glutamatergic 
signaling. Glutamatergic signaling through GRM1 leads to 
increased expression of GLS, potentially increasing the 
conversion of glutamine into glutamate. However, the 
exact mechanism by which GRM1 regulates GLS remains 
under investigation. Melanoma cells heavily depend on 
anaplerosis via glutamine [36, 37]. GRM1-positive 
melanoma cells upregulate GLS to support increased levels 
of glutamate. Excess amounts of intracellular glutamate get 
excreted, where it serves as trigger for the GRM1 receptor. 
In neuronal cell lineages, cytoplasmic glutamate is exported 
via vesicular glutamate transporters or cystine-glutamate 
exchangers [40]. 

We demonstrate elevated glutamate in systemic 
circulation of heterozygous TGS mice (harbor only one copy 
of the disrupted GRM1) compared to that of wild type TGS 
mice (no disrupted GRM1). This may lead to the 
constitutively activated GRM1 receptor, further promoting 
cell proliferation and metabolism pathways. To break such 
positive feedback signals, we tested different 
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pharmacological vulnerabilities of glutamate signaling and 
metabolism. While inhibition of glutamatergic signaling by 
decreasing glutamate release via riluzole or inhibition of 
GLS activity via CB-839 resulted in a proliferative relieve, the 
combination of both approaches was most effective. We 
also expected to see enhanced reduction of glutamate in 
the conditioned media after co-treatment with riluzole and 
CB-839 but this was not the case. Tumor cells have the 
ability to compensate for GLS inhibition and can overcome 
glutamate deprivation [39]. 

While the role of glutamine metabolism in cancer 
cells is well established, less clear is how this role is 
influenced by the tumor microenvironment, which can face 
shortages of oxygen and various nutrients [40]. Recently, 
we discovered that one of the consequences of aberrant 
GRM1 signal transduction is the downstream activation of 
hypoxia-induced transcription factor 1, HIF-1α, which 
promotes angiogenesis even in normoxic conditions [30]. 
Further, the molecular basis for alterations in glutamine 
metabolism of mammalian cells is linked to HIF-1α activity 
[41]. Whether HIF-1α is the link between GRM1 and GLS is 
being investigated. Lastly, we observe robust changes in 
TCA cycle intermediates but no changes in intracellular 
lactate levels upon GRM1 modulation likely suggesting that 
GRM1 preferentially manipulates glutamine metabolism 
over glucose metabolism. Furthermore, recent reports 
demonstrate that GLS inhibition enhances the effectiveness 
of chemotherapy in ovarian cancer cells [42] and also 
improves the efficacy of other targeted therapies [26, 27], 
suggesting the critical role of targeting GLS in an attempt to 
improve overall patient response. These insights, combined 
with our data, support the rationale to combine riluzole 
with CB-839 to combat GRM1-positive human neoplasia 
including melanoma. 
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Figures 

 

Figure 1: Phenotypes of wild type and 
heterozygous TGS genotypes 

A) Pigmented lesions on the skin of heterozygous 
TGS mice are easily visualized compared to the WT with no 
copies of the disrupted endogenous GRM1 gene. 
Homozygous (not shown) and heterozygous TGS mice are 
indistinguishable; the major difference is the onset of the 
disease, 6-8 weeks for homozygous TGS, and 7-8 months for 
heterozygous TGS. 

B) Elevated circulating glutamate levels in plasma 
isolated from heterozygous TGS mice: Glutamate 
concentration in plasma isolated from wild type (200 days 
old) or heterozygous TGS mice (199 days old) was measured 
using the Glutamate Determination Kit (GLN1, Sigma-
Aldrich) according to the manufacturer’s instructions. Data 
are given as µmoles of glutamate per mL of plasma and 
represented as mean ± STDEV (n=6). Student’s t-test was 
used to calculate statistical significance. **p<0.01 
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Figure 2: Visualization of epigenomic and 
transcriptional cooperation illustrates redundancy and 
complexity of a target network. 

Hierarchical trees of human transcription factors 
correspond to transcription factor superclass, class, and 
family from inward out. Transcription factor motifs often 
get recognized by multiple members of the same 
transcription factor family due to structural homology of 
DNA binding domains. The transcription factor target 
analysis (TFT) is carried out on sequence-specific 
epigenomics data. 

 

Figure 3: Inhibition of GLS reduces proliferation of 
GRM1-expressing melanoma cells. 

MTT cell viability/proliferation assays were 
performed on GRM1-positive C8161, UACC903 and C81-61 
GRM1-6 cells, and GRM1-negative C81-61 cells. The 
conditions for all cells except UACC903 were vehicle 
(DMSO) or CB-839 at 0.01, 0.05, 0.1 and 0.5 µM. For 
UACC903, higher concentrations (1, 10, 25 and 50 µM) of 
CB-839 were used. Each time point and concentration 
shown represents a mean ± STDEV of four independent 
reads. A one-way ANOVA test with Bonferroni’s post-hoc 
analysis was used to calculate statistical significance 
between experimental and control groups. *p<0.05; 
**p<0.01; ***p<0.001. 

 

Figure 4: Enhanced suppression of proliferation 
of GRM1-expressing human melanoma cells with CB-839 
and Riluzole. 

MTT cell viability/proliferation assays were 
performed on GRM1-expressing C8161 and UACC903 cells. 
For C8161 cells, the treatment conditions were vehicle 
(DMSO), CB-839 or/and riluzole at 0.5 µM and 10 µM 
respectively. For UACC903 cells, CB-839 or/and riluzole 
were used at 10 µM and 25 µM respectively. Each time 
point and concentration shown represents a mean ± STDEV 
of four independent reads. A two-way ANOVA test with 
Bonferroni’s post-hoc analysis was used to calculate 
statistical significance between experimental and control 
groups. *p<0.05; **p<0.01; ***p<0.001. 

 

Figure 5: CB-839 treatment leads to inhibition of 
glutamate release in GRM1+ human melanoma cells. 

Human melanoma C8161 cells were assessed for 
the amount of glutamate they release into the extracellular 
medium after treatment with CB-839, riluzole or CB-839 + 
riluzole. (A) Different number of cells was plated such that 
comparable numbers of cells were present at time of 
sample (conditioned medium) collection. The line chart 
refers to the number of total cells that were plated at day 0 
and the bar graph represents the number of viable cells 
during sample collection at day 0, day 2 or day 4. (B) 
Concentrations of extracellular glutamate within each 
treatment group are shown. Statistical analysis was 
performed between control (vehicle) and treated pairs to 
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show significance. Each bar represents mean ± STDEV, n=3. 
*p<0.05; **p<0.01. 

 

Figure 6: Modulation of GRM1 alters the 
intracellular production of glutaminolytic and glycolytic 
metabolites in human melanoma cells. 

The intracellular concentrations of lactate (A), 
citrate (B), α-ketoglutarate (C), and glutamate (D) were 
detected in C81-61, C81-61OE, C8161 and C8161si cells by 
GCMS analysis. Data represent the average of six 
independent reads (mean ± STDEV). *p<0.05; **p<0.01; 
***p<0.001; ns=no significance. (E) Modulations in GRM1 
and subsequent changes in glutaminase protein levels in 
C81-61, C81-61OE, C8161 and C8161si cells were 
determined by Western blot. Tubulin was used as the 
loading control. 
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Chapter 8

Future Studies

Metabolic rewiring, including increased glucose and glutamine consumption, is a

prominent feature of malignant melanoma[14]. GRM1 expressing cells increase

their production and release of glutamate, thereby engaging in an autocrine loop

involving leading to increased GRM1 mediated oncogenic signaling[59]. Treatment

with riluzole, which blocks glutamate release, disrupts GRM1 mediated signaling

and exhibits anti-tumor properties[913].

The source of increased glutamate production in GRM1+ melanoma cells remains

unclear. Glutamate can be generated by the deamination of imported glutamine

by glutaminases[9] (glutaminase, GLS, Gene ID: 2744 and glutaminase 2, GLS2,

Gene ID: 27165) with subsequent oxidation in a process termed glutaminolysis.

Given the relatively direct metabolic path from glutamine to glutamate, and

the increased dependence upon glutamine metabolism in melanoma, it has been

speculated that this is the preferred route of glutamate production in cancer.

Alternatively, glycolytic pyruvate can enter the TCA cycle via either decarboxyla-

tion into acetyl-CoA or carboxylation into oxaloacetic acid, eventually generating

oxoglutarate (alpha-ketoglutarate) [AKG]. AKG can then undergo transamination

forming glutamate, a reaction catalyzed by several aminotransferases including

AST, ALT. In addition, amination of AKG with ammonium may be reversibly

catalyzed by glutamate dehydrogenase (GLUD1, Gene ID: 2746).

144



Singh, Simar J. 145

Understanding the metabolic pathways enlisted by GRM1+ melanoma to increase

glutamate production may lead to the development of rational drug combinations

targeting aberrant GRM1 signaling and accompanying metabolic rewiring. To

determine the relative and absolute contributions of glucose and glutamine towards

glutamate production, 13C based tracer studies and GCMS could be used to

measure isotopic enrichment in glutamate following labeling with 13C glucose or

13C glutamine (Figure 8.1). This would identify the major source of glutamate,

and how metabolic flux into glutamate is affected by drug treatments, such as

with riluzole or GLS inhibition.

Figure 8.1: Atom transition map for 13C labeling with A) U-13C Glucose and
B) U-13C Glutamine
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To validate this approach, combination therapies targeting glutamate production

via pathways identified by stable isotope tracing should be utilized in additional

pre-clinical studies, including murine xenograft models. Another area for future

study is the contribution of the tumor micro-environment to glutamate secretion.

It is possible that tumor stromal cells and other infiltrating cells support melanoma

cell survival by increasing the supply of extracellular glutamate available for GRM1

activation on tumor cells. Single-cell RNA-seq analysis of tumor tissue would

help identify the expression level of metabolic enzymes implicated in glutamate

production in these adjoining cell populations, potentially identifying a new mech-

anistic link between metabolism, signaling, and the tumor microenvironment.

Confirming and then inhibiting the metabolism of glutamate production in other

tumor-associated cell types could help limit tumor growth.
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Chapter 9

Conclusion

Understanding how metabolism supports cell fate decisions is an important ques-

tion in development biology, tissue engineering, and oncology. In the first project,

density-dependent VPC differentiation was found to be a process in which cell-

cell contacts reinforce a metabolic shift away from glycolysis, lactate fermentation

and proliferation towards oxidative metabolism and cell growth. ESCs cultured

at high density were more efficiently differentiated into VPCs, a phenomenon

that coincided with an increase in the expression of cell adhesion molecules and

a decrease in lactate production and glucose utilization. This metabolic shift

supported increased differentiation and growth of VPC while also helping reduce

cell proliferation. Future studies could expand on this work by quantitatively

determining nutrient conditions that promote or inhibit VPC differentiation. Ad-

ditionally, stable isotope labeling and metabolic flux analysis could help identify

other metabolic pathways utilized during the differentiation process. This would

allow precise engineering of metabolic pathways to promote target cell differenti-

ation via genetic and chemical means.

The metabolism of cancer cells is known to support continued growth under a

diverse set of nutrient conditions. However, being able to effectively translate this

knowledge of cancer cell metabolism into rationally designed therapeutic regimens

is not yet widespread. In the second project described in this work, mass spectrom-

etry based metabolic profiling of TNBC cells identified the metabolic heterogeneity
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among TNBC subtypes, and in the process revealed metabolic vulnerabilities that

sensitize these cells to targeted tyrosine kinase therapy. Hierarchical clustering of

intracellular metabolite levels showed that molecular subtypes of TNBC display

different metabolic responses to drug inhibition, suggesting significant metabolic

heterogeneity amongst subtypes. Chief amongst these differential responses was

a reduction in TCA cycle intermediates, which are vital not only for oxidative

metabolism, but also for the generation of fatty acids via reductive carboxylation.

When an siRNA screen against metabolic pathways was applied to TNBC cells

following RTK inhibition, it was found that knockdown of pathways dependent

upon TCA anaplerosis, such as fatty acid and nucleotide synthesis, were highly

lethal to subtypes of TNBC with reduced TCA metabolite concentrations. This

suggests that by metabolically characterizing the intracellular levels of metabolites

in cancer cells, one could systematically identify synthetically lethal combinations

of molecular therapies. Future studies should expand on this hypothesis by cre-

ating predictive models of synthetic lethality based on intracellular metabolite

concentrations. One could then test these predictions by modulating the level of

intracellular metabolites and targeting biochemical pathways reliant upon those

metabolite pools.

Mitochondria play an integral role in both metabolism and the control of cell

death. While it is well established that the BCL2 family of proteins regulate

apoptosis, it is less clear what if any role the anti-apoptotic mitochondrial BCL2

protein plays in regulating metabolism. Moreover, though BCL2 is amplified in

many cancers which exhibit an altered metabolic phenotype, it is unknown if BCL2

amplification affects metabolism. In the thrid project detailed in this work, an ex-

amination of non-canonical BCL2 mediated effects were elucidated using genomic,

transcriptomic and metabolomics approaches. Tumorigenic amplification of BCL2

was detected to co-occur with amplification of the metabolic enzyme ASNS and

several metabolism regulating transcription factors, including HIF, MYC, NF-KB

and STAT family members. Furthermore, overexpression of BCL2 in a pro-B cell

line increased the expression of these transcription factors. On a metabolic level,

stable isotope tracing indicated that BCL2 overexpression increased glycolytic

flux into lactate and glutaminolytic flux into the TCA cycle and asparagine. This
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decoupling of glycolytic and mitochondrial metabolism increased the dependence

of BCL2 overexpressing cells to glutamine deprivation and glutaminases inhibition.

These effects were reversed by the use of a BCL2 mutant incapable of binding to

BAX. Together these results indicate that BCL2 expression produces a profound

oncogenic phenotype consisting of significant transcriptional and metabolic regula-

tion. This combined analysis of transcriptional and metabolic networks identified

a metabolic dependency on glutamine and asparagine metabolism that should offer

significant therapeutic benefit.

Melanoma cells employ diverse metabolic strategies to adapt and survive under

varied micro-environmental conditions. Two such strategies include the rewiring of

metabolism to support growth in the presence of MAPK inhibition and to promote

autocrine signaling through the metabotropic glutamate receptor GRM1, detailed

in the fifth and sixth chapters of this work respectively. Transcriptional analysis

of BRAF inhibitor resistant melanoma revealed a significant non-genomic rewiring

of mitogenic signaling and metabolic pathways. This approach identified several

transcription factor families whose activity may play a role in the development of

BRAF inhibitor resultant melanoma. It will be useful to combine this transcrip-

tomic data with data from metabolomics experiments to better understand how

transcriptional changes are related to metabolic adaptations in the generation of

resistance. Genome scale models using transcriptomic profiling could be created

and then validated with experimental determination of metabolite pool sizes,

pathway fluxes, and uptake rates for formal metabolic flux analysis. This would

be the first such examination of kinase inhibitor resistance in cancer.

Melanoma and several other cancers rely upon mitogenic autocrine signaling through

the GRM1 receptor. The results presented in this work indicate that signaling

through GRM1 is responsible for increased expression of the glutamate produc-

ing enzyme GLS and increased glutamate production by melanoma cells in-vivo.

Inhibition of GLS and glutamate release lowers cell viability and proliferation in

melanoma cells. This suggests that reducing the bioavailability of glutamate could

serve as an effective treatment for GRM1 expressing melanoma cells. Important

questions regarding the biochemical pathways that support increased glutamate

production remain. For instance, are there routes other than glutaminolysis
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which help GRM1 expressing cells produce glutamate? Stable isotope tracing

studies should resolve the relative contribution of glutamine and glucose towards

glutamate production, thereby identifying additional enzyme targets for inhibition

alongside GLS.

Together these results highlight the important role metabolism plays in supporting

cellular function. Further development of metabolomics based analytical tech-

niques in conjunction with other omics strategies will permit systems biologists to

better characterize key cellular states and processes. The application of systems

biology principles to clincial problems will continue to usher in an era of precision

guided, personalized medicine.
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