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Abstract 

We describe a class of continuously phase modulated radiation pulses 

that result in coherent population inversion on resonance as well as over a 

large range of transition frequencies and radiation field strengths. This 

is a population inversion analogy to Self Induced Transparency. 

Simulations of the inversion properties of the modulated inversion pulse 

(MIP) are presented. It is shown that the inversion behavior can be 

explained by treating the MIP as a highly efficient adiabatic sweep. 

Criteria for establishing adiabaticity are discussed in detail . Finally, a 

method is presented for generating a sequence of phase shifted radio 

frequency pulses, from the continously modulated pulse, which can be 

implemented on modern NMR and coherent optical spectrometers; experimental 

confirmation is given. 
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I. I NTROOUCTI ON 

A. Background 

The implementation of population inversion amongst energy states is 

an important requirement of many techniques in nuclear magnetic resonance 

(NMR) and coherent optical spectroscopy, including relaxation time1 

234 measurements, spin or photon echoes' and spin decoupling. The 

simplest way to coherently invert populations is with a single n pulse, 

i.e. a pulse of radiation such that the product of amplitude in angular 

frequency units and the time in seconds equals n. For good population 

inversion to be achieved, the difference between the radiation frequency 

and the resonant frequency of the transition for which the populations are 

to be inverted must be much smaller than the radiation amplitude. In other 

words, the inversion bandwidth of a single n pulse is quite limited. 

Often it is the case experimentally that the bandwidth of resonant 

frequencies is comparable to or greater than the available radiation 

amplitude. In NMR, the bandwidth may result from static magnetic field 

gradients, chemical shifts or spin couplings. In coherent optics, this may 

be due to inhomogeneous broadening from crystal strains or Doppler shifts. 

An established technique in NMR for inverting spin populations over 

a large bandwidth is Adiabatic Rapid Passage 5 , in which the frequency of 

applied radio frequency (rf) radiation is swept through the resonances at a 

constant rate that is small compared to the rf amplitude but large compared 

to the inverse of the relaxation times. Adiabatic sweeps have been 

1 d · h . 11 6-11 emp oye ln co erent optlCS as we • An alternative approach to 

broadband inversion in NMR was proposed some time ago by Levitt and 

12 Freeman • They suggested using a sequence of phase-shifted pulses, 

collectively called a compostie n pulse, to produce inversion over a broad 
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bandwidth. Composite pulses have led to a wide range of applications. 

Several approaches to their design in NMR4,12-27 and coherent 

optics28-29 have been described. The original work was based on computer 

simulations of spin trajectories and geometrical intuition13 This was 
14-16 followed by a more formal analysis in terms of rotation operators • 

More recent developments include an approach based on coherent averaging 

theory17,18 and the introduction of iterative methods for generating 

composite n pulses4,19-22. The coherent averaging theory approach and 
a 

another approach based on"fictitious spin-1/2 formalism have led to 
23-25 composite pulses for coupled spin systems • 

Th . 1 t· t . 26. h· h 1S paper en arges upon a recen commun1ca 10n 1n w 1C we 

introduced an approach to broadband population inversion that bridges 

between adiabatic sweeps and compo~te n pulses. This work -- which was 

subsequently appreciated by Silver, Joseph, and Hoult27 __ was originally 

motivated by the self-induced transparency effect 30 observed in coherent 

optical spectroscopy. The phenomenon of self-induced transparency, first 

discovered and studied by McCall and Hahn, occurs when a radiation pulse 

with an area of 2n and amplitude modulated according to a hyperbolic 

secant function brings a two-level absorbing system from its ground state 

back to its ground state regardless of its resonance frequency. In that 

sense, a hyperbolic secant pulse is a perfectly broadband 2n pulse. Allen 

and Eberly have proposed a similar class of pulses for population 

inversion, but with both phase and amplitude modulation 31 If w1(t) is 

the amplitude and ~(t) is the phase of the radiation, the pulse of Allen 

and Eberly may be written: 

(1) 
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~(t) (2) 

where t extends from -= to +m. Y is a parameter that determines the depth of 

the modulation, with no phase modulation when y equals n/2 and increasing 

phase modulation as y approaches zero. This pulse inverts populations in a 

two-level system regardless of the values of y and w~, provided that 

the radi at i on frequency exactly equals the resonance frequency, i. e. lion 

resonance ll
• Allen and Eberly point out that the pulse resembles an 

adiabatic sweep for small values of y, due to the equivalence of phase 

modulation and frequency modulation. Thus, it may be anticipated that a 

pulse with phase modulation similar to that of Equation (2) will have 

broadband inversion properties. The performance of a class of phase 

modulated pulses related to Eqs. (1) and (2) is investigated in detail 

below. Compari-sons with adiabatic sweeps are made. 

The relation to a composite n pulse arises from considering a 

composite n pulse as a single phase-modulated pulse, with a 

piecewise-constant phase function. A composite n pulse may then be 

regarded as an approximation of a continously phase-modulated pulse. One 

way to generate composite n pulses would be by approximating the 

continously varying phase function of a pulse similar to that of Equations 

(1) and (2) by a piecewise-constant function. Procedures for generating 

composite n pulses from continously phase modulated pulses are developed 

below. 

B. Organization 

In Section II, the class of phase-modulated, constant-amplitude 

pulses first presented in reference 26 is derived from consideration of the 
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magnetization trajectory. Simulations of population inversion performance 

are given. A general transformation from a pulse with a modulated phase 

and a constant amplitude to a pulse with both phase and amplitude 

modulation is introduced, in order to demonstrate the relationship between 

our pulses and those of Allen and Eberly. 

Section III treats phase-modulated pulses as adiabatic frequency 

sweeps. Criteria for adiabatic inversion are discussed. They lead to the 

concept of the efficiency of an adiabatic sweep and to the derivation of a 

new class of phase-modulated pulses based on efficiency considera~ions. A 

comparison of the inversion performance of linear sweeps, pulses derived in 

Section II, and pulses derived from considerations of efficiency is made. 

The treatment of adiabaticity in Section III suggests that the phase 

modulated pulses of Section II may invert spin populations over large 

ranges of rf amplitude as well as large ranges of resonant frequencies. 

The inversion performance as a function of the rf amplitude is treated in 

Section IV. Section V describes a method for deriving discrete composite 

pulse sequences from continously phase-modulated pulses. Experimental 

results are presented. 

II. DERIVATION OF PHASE MODULATED PULSES FO~ POPULATION INVERSION 

A. Frames of Reference 

We begin with a description of two frames of reference, shown in 

Figure 1, that are of importance in the remainder of the paper. The first 

f th . th 1 t . f 32 If' 1 d' 1 1 o ese 1S e usua ro at1ng rame. an 1S0 ate sp1n or two eve 

system with resonance frequency Wo is irradiated with an rf pulse with any 

general amplitude and phase modulation, its motion in the usual rotating 

frame is determined by the Hamiltonian H
PM 

(where PM refers to Phase 
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Modulation): 

(3) 

Wl(t) and ~(t) are the pulse amplitude and phase; 6w is the difference 

between Wo and the rf carrier frequency w, i.e. the resonance offset. H
PM 

is derived from the laboratory frame Hamiltonian by the transformation T
PM

: 

(4) 

In this reference frame, which we call the PM frame, the rf frequency 

appears constant and the phase, i.e. the direction in the xy plane, 

varies. This is seen in Figure la. 

An alternate rotating frame transformation that is useful in dealing 

with continously modulated pulses is accomplished by the unitary operator 
FM T (where FM refers to Frequency Modulation): 

(5) 

In the FM frame, the Hamiltonian is: 

(6) 

and the time derivative of the phase function appears as an additional 

resonance offset with the xy plane component constant in direction, as 

shown in Figure lb. That a phase-modulated pulse can be viewed in either 
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the PM or FM frames is a statement of the equivalence of phase and 

frequency modulation. Of course, due to the design of a typical pulsed NMR 

spectrometer with its constant frequency reference, spin evolution is 

normally observed in the PM frame. For our purposes, the FM frame serves 

as a useful tool for deriving modulated pulses. 

B. Derivation of phase modulation from magnetization trajectories 

An isolated spin can be described in the FM frame by a density 

operator p(t) of the following form: 

(7) 

where ~(t) is a three-vector proportional to the magnetization and 1 
33 is a three-vector whose components are the angular momentum operators • 

With Equation (6), M(t) satisfies the Bloch equations without relaxation: 

dM 
"'" dt - (-w1(t), 0, ~(t) + 6w} x M (8) 

If the initial condition for ~ is known and if ~(t) and w1(t) are given, 

then Eq. (8) determines the evolution in time of ~. For arbitrary ~(t) 

and w1(t), Eq. (8) can be solved by numerical methods for ordinary 

differential equations. Alternatively, ~(t) and w1(t} may be approximated 

by piecewise-constant functions possibly by dividing time into small 

intervals over which ~(t) and w1(t} are assigned their respective values 

at the midpoint of each interval. For each interval with constant ~(t), 

the evolution of ~ is simple. ~ precesses around the effective field 

vector with x component -WI and z component (~ + 6w) at an angular rate 
2 • 2 1/2 

equal to (WI + (q, + 6w)} • The length of M is conserved. If 11 is 
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is assumed to have unit length, ~ follows a trajectory on a unit sphere. 

A trajectory of ~ from +z to -z corresponds to the inversion of spin state 

populations. 

An important question which now arises is the following: given a 

trajectory for M(t), how can we determine the ~(t) and w1(t) which will 

yield that trajectory: We begin our consideration of this question with a 

class of trajectories that is of particular importance in the rest of the 

paper, namely those that follow a great circle from +z to -z in the FM 

frame, as depicted in Figure 2a. Appendix A presents a formalism· for 

treating other trajectories. A great circle trajectory is of the form: 

~(t) = (cosy COSE, siny COSE, -sinE) (9) 

where y is a constant azimuthal angle and E is a polar angle. E is a 

function of t that is to be determined. Since the trajectory depends on 

the resonance offset, we specify that ~w = 0, i.e. that Eq. (9) should 

hold on resonance. In addition, we initially search for a pulse with a 
a constant amplitude equal to wI. The general case of amplitude modulation 

is treated later. Eqs. (8) and (9) lead to: 

(-€cosysinE, -€sinysinE, -£COSE) 

= (-~ sinycosE, -w~sinE + ~ COSyCOSE, - w~SinYCOsE) (10) 

which implies: 
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£ = (w~Si ny)t (11 ) 

~ = w~ COSy tan(w~Sinyt) (12) 

< t < 

Eq. (12) dictates a class of phase-modulated pulses that invert spin 

populations exactly on resonance, since it is derived from the 

inverting trajectory in Eq. (9). With y = n/2, the phase is constant, the 

PM and FM frames coincide, and a standard n pulse is recovered. ~(t) 

is confined to a plane perpendicular to the plane of the effective field. 

As y approaches zero, the phase modulation deepens, the pulse length 

increases, and the plane of the magnetization trajectory approaches 

coincidence wtih the plane of the effective field, suggesting adiabatic 

behavior. Eq. (11) indicates that ~(t) moves with a constant angular 

velocity along the trajectory of Eq. (9) regardless of the value of y, 

provided that wI is constant. 

The derivation of the phase modulation has been carried out in the 

FM frame. Since the PM and FM frames are related by a rotation about z by 

~(t), the trajectory in the PM frame does not follow a great circle but is 

still an inverting trajectory. This is shown in Figure2b. To obtain 

~(t), we integrate Eq. (12): 

~(t) = - coty In[coS(w~Sinyt)J, 

where: 
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(13) 

~(t) and ~(t) are plotted in Figure 3. A pulse specified by Eqs. (12) and 

(13) will be referred to as a Modulated Inversion Pulse (MIP). The 

magnetization trajectory in the PM frame (Figure 2b) is: 

(14 ) 
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c. Inversion performance off resonance 

Although the MIP is derived so as to invert spin populations on 

resonance, the appearance of adiabatic behavior suggests that spin 

populations maybe inverted over large ranges of resonance offsets as y 

approaches zero. Figure 4 shows simulations of the inversion performance 

of the MIP as a function of the resonance offset for several values of y . 

The extent of inversion is defined to be the negative of the final z 

component of~. Apparently, the range of offsets for which the inversion 

is nearly complete can be made as large as desired by taking y to be 

sufficiently small. 

D. Transformation to amplitude-modulated pulses 

Equation (13) is derived above with the assumption of a constant pulse 

amplitude. Although there is at most one rf phase function that yields a 

given magnetization trajectory on resonance with a given constant rf 

amplitude, there may be an infinite variety of combinations of phase and 

amplitude functions, if amplitude modulation is allowed. Here we present a 

method for converting a phase-modulated, constant-amplitude pulse to a 

pulse with both phase and amplitude modulation that produces the same 

trajectory on resonance. 

The essential idea becomes apparent from considering a single pulse 

with a constant phase ~O' a constant amplitude w~, and a length T. 

The effect of such a pulse when 6w = 0 is to produce a rotation of ~ 
o by an angle WIT about an axis in the xy plane at an angle ~O to the x 

axis. Since it is only the area of the pulse that matters, however, the 

net effect is unaltered if the pulse amplitude is changed, provided that 
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o 
the pulse length is also changed so that the pulse area remains equal to WIT. 

In general, a phase-modulated, constant-amplitude pulse can be approximated 

to arbitrarily high accuracy by a sequence of many constant-phase, 

constant-amplitude pulses. In order to transform the overall pulse to some 

desired amplitude modulation, it is then only necessary to increase or 

decrease the amplitudes of the individual pulses and correspondingly 

decrease or increase their lengths. The total pulse area must remain 

constant • . Figure 5 illustrates the procedure. 

Mathematically, the amplitude transformation is a distortion of 

time. In general, suppose a pair of functions w1(t) and ~(t) produce a 

certain magnetization trajectory, with: 

(15) 

If there is another amplitude function w1(t), also with area A, then 

we implicitly define a time transformation tl = h(t) by the relation: 

I 

rt ft Jo w1(u)du = ~o w(u)du (16) 

The phase function i(t) = p(h(t)), along with the amplitude function 

~l(t), will produce the same magnetization trajectory. 

Thus we have arrived at the most general procedure for finding phase 

and amplitude combinations that produce a desired magnetization trajectory. 

We first derive a unique constant-amplitude pulse. Then we may transform 

to any other amplitude function of the same area, with the trajectory 

uniquely determining the pulse area. 
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To derive the pulses of Allen and Eberly, we transform the pulses of 

Eq. (13) to the amplitude function of Eq. (1). The corresponding time 

transformation is: 

h( ) 1 -1(. 0) t = O. tan slnh wIt 
w1s1ny 

(17) 

While the pulses of Eqs. (1) and (2) and of Eq. (12) yield the same 

on-resonance trajectory, the utility of the pulses lies in their ability to 

invert spins off resonance. The significant, dimensionless quant~ty that 

characterizes off-resonance behavior is the ratio 6w/wl. In simulations , 

we find that the constant amplitude pulses of Eq. (13) give inversion over 

a larger range of resonance offsets than the amplitude-modulated pulses of 

Eqs. (1) and (2). An explanation for this is that 6w/wl is always at its 

minimum for the constant amplitude pulses. 

III. POPULATION INVERSION BY ADIABATIC SWEEPS 

We saw in section II that modulated pulses invert spins perfectly 

on resonance and also over a large range of frequencies as y + O. Because 

the on-resonance magnetization trajectories are suggestive of adiabaticity, 
, 

we now treat the above pulse in the framework of adiabatic sweeps and 

compare different adiabatic approaches. 

A. Criteria for adiabatic inversion 

The Hamiltonian of Eq. (6) can be written: 

FM 
H = W ff(t).I 

~e ~ 
(18) 

(19) 
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Spin populations may be inverted adiabatically if ~(t) and w1(t) are 

such that the direction of ~eff(t) moves from -z to +z, or from +z to 

-z, at a sufficiently slow angular rate. In that case, the magnetization, 

or spin density operator, is said to follow the effective field ~eff(t). 

If ~eff(t) is written as: 

~eff(t) = weff(t)(-cose, 0, sine) (20) 

-1 e = tan [(bw + ~(t))/wl(t)] (21) 

the two criteria for adiabatic inversion by a pulse between times -to and 
6 7 26 to can be stated as follows: ' , 

1. I ~t e(t) I «weft 

Criterion 1 states that the effective field must change direction slowly 

compared to the rate at which ~FM precesses. In order to quantify 

criterion 1, we define the adiabaticity factor Q(t) according to: 

d 
Q(t) = weff(t)/[ dt e(t)] (22) 

The larger the value of Q(t). the more adiabatic the frequency sweep. 

In what follows, we consider only sweeps for which wI is constant 
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and non-zero. Therefore, criterion 2 requires that the sweep begin far 

below resonance and end far above resonance, such that I ~W + ~(±to) I »w1• 

There are many possible forms for ~(t) that result in adiabatic 

inversion. We call a sweep efficient if it accomplishes population 

inversion in a comparatively short time. Different forms of sweeps may 

have different efficiencies for the following reason. Consider criterion 

1. Taking w1 to be constant, weff is smallest when e = 0 and ~(t) = -~w, 
i.e. when the sweep passes through resonance. It is at this time that 

criterion 1 is most restrictive so that \ ~t e(t)\ must be smallest. 

When the sweep is far from resonance, \~t e(t)\ may be larger while still 

satisfying criterion 1 since weff is larger. If \ ~t e(t)\ indeed becomes 

larger far from resonance, criterion 2 may be satisfied for comparatively 

small values of to. 

In the remainder of this section, three forms of sweeps are examined 

in light of the above criteria for adiabaticity. The factors that limit 

their inversion bandwidths are discussed, and their efficiencies are 

contrasted. 

B. Linear sweep 

The simplest and most commonly used frequency sweep is a linear 

sweep defined by: 

(23) 

where k is the constant sweep rate. Since k is constant, criterion 1 is 

satisfied for all values of ~W once k is small enough so that criterion 1 

is satisfied at any particular value of ~W. For ~W = 0, a linear sweep 

has: 



-16-

(24) 

Q(t) has its minimum at t a 2 
= 0, where Q(O) = (w1) Ik. Simulations show 

that the maximum value of k for which populations are inverted adiabatically 

with 6w = a is given approximately by kmax = 0.2(w~)2. This limit is 

determined by simulating the effects of linear sweeps with to taken to be 

very large. 

For values of k less than or equal to kmax ' criterion 1 is satisfied 

throughout the sweep. With k fixed, the choice of to determines whether 

criterion 2 is satisfied. 

Simulations of inversion as a function of 6w/w~ for linear sweeps 
a 2 with k = 0.2(w1) and various values of to are shown in Figure 6. For 

the inversion to be essentially complete for 6w = 0, the minimum length of 
a the sweep must be given approximately by 2tO = 100w1. Inversion is 

achieved over a large range of resonant frequencies because criterion 2 is 

satisfied for a large range of resonant frequencies once it is satisfied 

for 6w = O. In other words, ~(±tO) is only a weak function of 6w when 

I~(±to~ ~ w/2. However it is still criterion 2 that ultimately limits the 

inversion bandwidth for any given value of to. 

C. Modulated inversion pulse 

When treated as a frequency sweep, the MIP of Eq. (12) and Figure 

3.a satisfies criterion 2 for all values of y and 6w. This is because 

~(t) becomes infinite at the beginning and end of the pulse. Thus, it is 

criterion 1 that determines whether the MIP functions as an adiabatically 

inverting frequency sweep. Recall that the MIP was derived in Section II 
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in such a way that the inversion at 6w = 0 is complete regardless of y. 

The adiabatic nature of the inversion is therefore expressed not by the 

inversion at 6w = 0, but rather by the appearance of a large inversion 

bandwidth as y decreases. 

The adiabaticity factor for the MIP with 6w = 0 is given by: 

(25) 
-1 Q(t) has its minimum at t= 0, where Q(O) = (cosysiny) • Broadband 

inversion occurs when y is less than or about equal to 0.20, as was seen in 

Figure 4. When y = 0.20, 'Q(O) = 5.1. This result is consistent with the 

finding that a linear sweep effectively inverts populations only when the 

sweep rate k is less than or about equal to 0.2(w~)2, making the 

adiabaticity factor for a linear sweep greater than or equal to 5. Thus, 

the adiabaticity factor appears to be a meaningful quantity for predicting 

the performance of a frequency sweep. In addition, the agreement of the 

adiabaticity factors for the MIP and the linear sweep supports the 

contention that the broadband properties of the,MIP are due to the 

adiabatic nature of the inversion. 

A comparison of Figures 4 and 6 reveals that nearly complete 

inversion is achieved by the MIP in less time than by a linear sweep. The 

sweeps in Figures 6a, 6b, and 6c require the same total time as the MIP in 

Figure 4 with y = 0.20, y = 0.10, and y = 0.05, respectively. The 

inversion results in Figure 4 are generally superior, however. Thus, the 

MIP is a more efficient frequency sweep. This is because the instantaneous 

sweep rate, i.e. ~ is greater at the beginning and end of the sweep than 
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at t = o. 
The fact that the sweep rate is not constant makes criterion 1 the 

limiting factor on the inversion bandwidth for the MIP. At resonant 

frequencies for which the sweep rate is rapid as the sweep passes through 

resonance, defined by the condition ~(t) = -6W, criterion 1 is not 

satisfied and populations are not inverted. 

D. Constant adiabacity pulse 

A third class of frequency sweeps may be derived by making the 

restriction that Q(t) be constant when 6w = O. 

Q(t) = q (26) 

Based on the above discussion, such a sweep with q = 5 is expected to be 

particularly efficient for adiabatic inversion. 

Equation (26) implies: 

(27) 

In addition, we have: 

(28) 

(29) 

Equations (27) and (28) imply: 

sine (30) 
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Equation (29) leads to: 

(31) 

Equation (31) defines the desired frequency sweep, which we refer to as the 

constant adiabaticity pulse (CAP). Integration of Eq. (31) gives the 

equivalent phase modulation: 

Note that ~(t) remains finite, although ~(t) becomes infinite at 
o t = ±q/w1• 

(32) 

Figure 7 is a comparison of the frequency and phase modulations of 

the CAP. the HIP. and the linear sweep. The specific parameters in Figure 

7 are chosen so that the adiabaticity factor at t = 0 is the same for the 

three sweeps. For a given minimum adiabaticity factor the CAP requires the 

least total time of the three sweeps. 

The adiabaticity factors as functions of time for the CAP, the HIP. 

and the linear sweep with bw = 0 are shown in Figure 8. The adiabaticity 

factor has its minimum value throughout the sweep for the CAP. The 

adiabaticity factor for the HIP remains close to its minimum value for a 

greater portion of the sweep than for a linear sweep. 

The inversion performance as a function of bw for the CAP with 

various values of q is shown in Figure 9. The values of q are chosen so 

that the overall lengths of the sweeps in Figure 9 are the same as those in 
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Figure 4. The bandwidth of the CAP is limited by criterion 1. A 

comparison of Figures 4,6, and 9 reveals that the MIP exhibits the best 

inversion performance for equal sweep lengths. 
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IV. INVERSION IN AN INHOMOGENIOUS RF FIELD 

Although the MIP was derived by considering a particular class of 

inverting trajectories for a spin on resonance, Sections II and III show 

that the MIP may invert spin populations over large ranges of resonance 

frequencies due to its adiabatic characteristics. Adiabatic sweeps may 

invert populations over large ranges of rf amplitudes as well as resonance 

frequencies. Therefore, in this section we investigate the inversion 

performance of the MIP as a function of wI. Deviations of wI from its 

nominal value of w~ arise experimentally from rf inhomogeneity and from 

miscalibration of the rf field. In coherent optics, it is the laser beam 

profile that is the analogous source of amplitude inhomogeneity. 

The inversion performance as a function of wI may be anticipated by 

referring to the criteria for adiabatic inversion discussed in Section III. 

For the MIP, criterion 2 is automatically satisfied, since ~(t) becomes 

infinite at ±to. Once criterion I is satisfied for wI = w~, it is 

satisfied even more strongly for wI ) w~. Therefore, it is expected that 

essentially complete inversion may be acheived over a large range of wI 

when the MIP becomes adiabatic, i.e. for y ( 0.20. 

Figure 10 shows simulations of inversion as a function of wI for the 

MIP with various values of y. The above predictions are verified. Figure 

11 shows a simulated contour plot of inversion as a function of wI and ~ 

simultaneously for the MIP with y = 0.10. A large region of essentially 

complete inversion is apparent. 

For comparison, Figure 12 shows the inversion performance of a 

linear sweep as a function of wI. Much smaller bandwidths are achieved 

with much longer sweeps. For a linear sweep, criterion 1 of Section III is 
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again satisfied for wI > w~ once it is satisfied for wI = w~. However, 

criterion 2 is not automatically satisfied. Rather, e(tO) is a strong 

function of wI when le(to)1 = n/2, so that criterion 2 is not met at large 

v. GENERATION OF DISCRETE COMPOSITE PULSES FROM 

CONTINOUSLY PHASE MODULATED PULSES 

It is often difficult to implement the single continously phase 

modulated pulse experimentally. Frequently it is more convenient to use a 

sequence of phase shifted rf pulses forming a composite n pulse.· This 

section describes the method by which we approximate the continuous pulse 

by discrete pulse sequences that have both unrestricted phases as well as 

rf phases which occur only as multiples of a specified value. 

A. General Method of Approximation using magnetization trajectories 

The goal is to arrive at a discrete pulse sequence with inversion 

properties that are very similar to those of the continuously phase 

modulated pulse. In the computer simulations described above, the MIP is 

approximated with a large number of pulses, each with a small flip angle, 

by extracting the individual pulse phases and flip angles from ~(t) in 

Equation (13). This was done by dividing the total time interval into 

subintervals and assigning a constant phase to each subinterval as shown in 

Figure 13a. As the number of pulses, or subintervals, increases and the 

flip angles become smaller, this is an increasingly accurate approximation. 

However, if the number of pulses is small, i.e. less than 100, this is a 

poor approximation, particularly for small y. The spin evolution brought 

about by the MIP over a subinterval is not the same as that brought about 

by a constant-phase pulse with a phase equal to ~(t) at the midpoint of 

that subinterval. Errors in the magnetization trajectory accumulate from 
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one subinterval to the next, so that even on-resonance spins are no longer 

inverted. Clearly, a new approximation method is needed. Our method is 

based on following the on-resonance magnetization trajectory ~PM(t). 

Figure 13b is a schematic representation of the method used. The 

first step is to approximate the trajectory of the magnetization by 

choosing points in time along it. We then calculate the constant phase 

pulses that give the evolution of the magnetization from one point to the 

next. The result is a sequence of radiofrequency pulses or a composite 

pulse whose magnetization trajectory and inverting properties are very 

similar to those generated from the continuous pulse. 

B. Pulse sequences with unrestricted phases 

For a 2n-1 pulse sequence, we need to choose 2n+1 points on the 

trajectory !j(t). These points are denoted by ~, ~1 , ••• , 11n'·· ~2n. The 

individual flip angles and phases of the derived pulse sequences are 
o 

denoted respectively by 61, ••• ,6 2n_1 and ~1' ••• '~2n-1 where 6 = w1Li and Li 

is the length of the ith rf pulse. We set the first point ~O = +z and the 

last point M2 = -z to ensure that on resonance spins are always perfectly 
- n 

inverted by the discrete pulse sequence. Then in order to follow the 

trajectory as closely as possible, as indicated tin Figure 13b, more points 

are selected in the regions where ~PM(t) spirals more. A weighting 

function, ~(t), which is itself a function of y is used to generate a set 

of times (t 1, ••• ,t2n _1) from which the intermediate points ~i = ~PM(~i) can 

be calculated. 

~bre specifically, the intermediate points are calculated as 

follows. First, we choose a value tc < 0 which represents a cut-off time 

for ~(t). The means by which tc is chosen is discussed below. We evaluate 

~(tc) and calculate a set of phases (~(t1), ••• ,~(tn)) satisfying 
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(33) 

Using the set of times (tl, ••• ,tn) calculated from the set of phases above, 

we find ~I through ~n by evaluating ~i = ~PM(ti). The remaining points are 
PM determined by the symmetry of ~ (t i ); ~2n-i is related to Mi by 

reflection in the xy plane. Next, we calculate the phases and flip angles 

of the 2n pulses that move on resonance spins between successive points, 

i.e. that connect ~i with ~i+l. A sequence of pulses with symmetric 

phases and flip angles emerges. The central two pulses can be fused into 

one, since they have the same phase, so that an odd number of pulses 

results. 

The "connect-the-dot" method described above ensures that 

on-resonance spins are inverted. Moreover, the fact that the intermediate 

M. are chosen according to constant increments in 9(t) ensures that more 
-1 

PM points occur where 9(t) is larger, in other words where ~ (t) spirals 

most rapidly. Thus, we achieve a good approximation to the trajectory 

generated from the MIP and it may be expected that the broadband inversion 

properties of the MIP will be preserved. 

In this method, there are only two parameters which must be computer 

optimized in order to get the best inversion performance over resonance 

offset or rf inhomogeneity effects, for a specified number of pulses. 

These are y and t c ' the cut-off time on 9(t). They are optimized according 

to a best-average criterion. This means that we cycle through different 

values of y and t within certain restrictions, and find the values for c 

which the average inversion, over a specified bandwidth of offsets or rf 

values, is a maximum. 
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Figure 14 illustrates three composite pulse sequences that are 

optimized for broadband inversion with respect to wI. Both simulations and 

experiments are shown. Inversion results for a single w pulse are plotted 

as a reference. The inversion performance improves for a larger number of 

pulses. 

c. Composite pulses with constant phase increments 

For reasons of experimental convenience, it would be desirable to 

derive sequences in which rf phases occur as multiples of a constant phase. 

In looki ng at the form of the pul se sequences deri ved earl i er, we ·see that 

the phases ~2 to ~2n-l of the 2n-l pulse sequence occur in constant 

increments but that ~1 and ~2n-l are arbitrary and hold no relationship to 

the other phases. Our goal in this section is to devise a method whereby we are 

able to specify the value of the constant phase increment, as well as make 

the first and last pulse have a phase that is some multiple of that 

increment. 

In our method, the values of the phases, ~2 to ~2n-2' of t he derived 

pulse sequence are determined solely from the constant phase increment used 

on the weighting function ~(t). The phase of the ith pulse is calculated 

from the (i_l)st and ith point on the trajectory, by 

(34) 

By substituting the values for Mx and My of Eq. 14 into the above equation 

and using the fact ~(ti) = (n-i)~O (Eq. 33), we find that 

(35) 
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where C is constant. This indicates that the times corresponding to 

constant phase increments in ~(t) also correspond to points on ~(t) 

that may be connected by pulses with constant phase increments. Therefore 

we can specify ~O to be any constant phase we desire, and for a 2n-1 pulse 

sequence all the calculated pulses from the trajectory between 2 and 2n-2 

will have phases that differ by a multiple of ~O. 

To ensure that the first and last pulse also have a phase that is a 

multiple of ~O the following procedure is used. Rather that setting 

~~ and M2 at ±z as before, we now choose M2 such that the pulse 
-v - n - n 
connecting M2 1 to M2 have a phase ~2 1 = m~O where m is an integer. 

- n- - n n-

In order to still invert on-resonance spins, we also stipulate that ~2n should 

remain as close to -z as possible. Therefore, to find the best position 

for ~2n the flip angle of the last pulse is optimized by setting 

62n- 1 = tan -1 
Mx(t2n_1)sin(m~O) - My(t2n_1)cos(m~O) 

Mz(t2n_1) 

~ is found from ~2n by symmetry. As before,the composite pulse is 

found by calculating the phases and flip angles .which connect all the 

poi nts M .• 
-1 

(36) 

Note that contrary to before, we no longer optimize tc and thereby 

~O' but rather ~O is chosen and tc is found from ~(tc) = n~O. The 

only parameter to be varied is y and once again the best average criterion 

is used to select the pulse sequence that inverts best over the specified 

range of frequencies and rf amplitudes. 

In Figure 15, we show computer simulations and experimental data of 

inversion versus resonance offset for pulse sequences generated by the 
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above method. As expected, when the pulse sequence becomes longer, 

inversion is achieved over a large range of offsets. The inversion 

bandwidths are comparable to those achieved by recently developed 

. 21-22 iterative technlques • 

O. Experimental Methods 

All of our experiments were perfonmed on a small H20(t) sample using 

a homebuilt spectrometer operating at a proton resonance frequency of 360 

MHz. The pulse sequence used in the experiments consists of a composite 

pulse followed by a delay T = lOOms, followed by a w/2 detection pulse. 

Large static field inhomogeneity causes transverse magnetization to dephase 

during T. The ensuing FlO is collected and Fourier transfonmed to give the 

final spectra. The resulting peak height is used as a measure of 

inversion. The peak height resulting fonma single w/2 pulse alone is used 

as a calibration. A correction is made for spin-lattice relaxation during 

T. 

Experimental tests of composite pulses designed for broadband 

inversion with respect to wI were perfonmed on resonance. The rf amplitude 

was varied with an attenuator following the transmitter. The length of the 

detection pulse was adjusted to maintain a constant flip angle. Rf 

amplitudes were calibrated as in reference 23. 'Phase shifts were generated 

by a digitally controlled phase shifter capable of 360°/256 phase 

increments, with a 3~s switching time. The switching time required that 

delays be inserted between individual pulses. These delays do not affect 

inversion perfonmance on resonance, although off resonance perfonmance may 

degrade appreciably. 

Experimental tests of broadband inversion with respect to the 

resonance offset required rf phases in 45° increments. This was 
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accomplished by mixing the outputs of the two quadrature generation 

circuits in the spectrometer. Each quadrature circuit produces phases in 

90° increments. A delay line was inserted between the two circuits, 

producing a phase difference of 45° between them. The quadrature circuits 

were driven by a variable IF, allowing the resonance offset to be adjusted. 

The detection pulse was generated independently and maintained on 
o resonance. All experiments were performed with w1/2w = 10kHz. 

SUMMARY 

We have described a general analytical procedure for deriving 

continously phase modulated pulses that result in coherent population 

inversion on resonance. In the general case, both the phase and amplitude 

of the inverting pulse can be modulated continuously. Here, however, we 

have focussed on a class of constant amplitude, phase modulated pulses 

characterized by a single parameter y, the depth of modulation. For small 

values of y, when the phase modulation is deepened, the modulated inversion 

pulse (MIP) inverts spin populations simultaneously over large ranges of 

resonance frequencies and rf amplitudes. 

We have proposed that the inversion behavior can be explained by 

treating the MIP as an efficient adiabatic sweep~ To support this, the 

simulated inversion performance of the MIP is compared to two other 

adiabatic sweeps in light of two criteria for adiabatic inversion. One 

sweep is the commonly cited linear frequency sweep and the other is a 

constant adiabaticity pulse derived directly from considerations of 

efficiency for adiabatic inversion. Comparisons indicate that the 

broadband properties of the MIP are in fact due to the adiabatic nature of 

the pulse and that for equal sweep length the MIP has superior inversion 
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properties. 

Having established the adiabatic properties of the MIP, we then 

present a method for generating a sequence of phase shifted rf pulses from 

the continuously phase modulated pulse. The composite pulses are 

calculated directly from the magnetization trajectory followed by on 

resonance spins subjected to the HIP. Selected points are chosen along the 

inverting trajectory and the corresponding constant phase pulses needed to 

connect these points are found. The broadband properties of the HIP are 

retained by the discrete pulse sequences, which can then be implemented on 

most modern NMR spectrometers. This approach connects modulated 

transparency and inversion pulses used in optics with composite pulses of 

NMR. 
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APPENDIX A 

In this appendix we treat the problem of finding rf pulses that 

cause on-resonance magnetization to follow a yiven trajectory. The 

trajectory in the FM frame is defined by a function ~(£), where ~ is the 

unit magnetization vector in Eq. (7). In the special case of Eq. (9), £ 

was a polar angle. In general, E is simply a variable that parametrizes 

the trajectory. Here we require that E lie in a unit interval. We make 

the restrictions that ~(£) be continuous and differentiable. These 

restrictions are consistent with the physical requirements that t~e 

trajectory be smooth and unbroken. A piecewise-differentiable trajectory 

may be treated by considering each piece separately. 
o 

With the rf amplitude constant and equal to WI' the task is now 

to determine £(t) and ~(t). With the definition: 

(A.I) 

Eq. (8) becomes: 

(A.2) 

1 eadi ng to: 

o Ilx 
~ = W -1 Il

z 

(A.3) 

o 
. Wi My 
£ - - (A.4) 
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Eq. (A.3) gives the phase modulation as a function of E. Eq. (A.4) gives t 

as a function of E: 

(A.5) 

Inverting Eq~ (A.5) gives E as a function of t, which completes the 

derivation of the phase modulation. 

The phase function obtained in this way produces the desired 

trajectory for 6w = a and wl(t) = w~. For non-zero values of Aw, the 

same trajectory may be produced by subtracting the constant Aw fr~m ~ in 

Eq. (A.3). Of course, this is equivalent to shifting the rf carrier 

frequency. The phase function that corresponds to an amplitude modulated 

pulse can be derived according to the discussion in Section 11.0. 

Finally, it should be realized that not all trajectories are 

obtainable. In particular, there is .no pulse that produces the desired 

trajectory if t is not a monotonic function of E in Eq. (A.5). 
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Figure 1 

a). Phase modulated (PM) frame 

b). Frequency modulated (FM) frame 

The resonance offset, ~w = wO-w, is the difference between the Larmor 

frequency and the rfcarrier frequency. The pulse amplitude and phase are 

denoted by w1(t) and ~(t), respectively. In the PM frame which is the 

equivalent of the usual rotating frame used in NMR, the phase of the pulse 

which varies with time, gives the direction of the radiation in the xy 

plane. In the FM frame, the direction of the radiation in the xy plane is 

fixed, and the time derivative of the phase function, ~(t), appears along 

the z direction as an additional resonance offset. The two frames are 

related by a rotation about the z axis by ~(t). 

Figure 2 

Inverting magnetization trajectories for an on-resonance spin the the FM 

(a) and PM (b) frames calculated from equations (9,11) and (13,14) 

respectively, with y = 0.1. 

Figure 3 

Continuously frequency (a) and phase (b) modulated inversion pulse (MIP) 

o ' plotted versus wIt for values of y = 0.2 and y = 0.1. The pulse 

amplitude is constant and the phase modulation increases as y decreases. Also, 

as y + 0, the overall pulse length increases (2w~t = n/siny). The MIP is 

an exact analytical solution to the problem of population inversion on 

resonance (~w = 0) for all values of y. 
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Figure 4 

Simulations of spin inversion from the MIP as a function of the relative 

resonance offset for various values of y. Inversion is defined as the 

negative of the final z component of the spin angular momentum; initially 

the spin system has a z component of +1. For all values of y, the 

inversion is always perfect on resonance. For y = w/2, i.e. no phase 

modulation, the MIP is equivalent to a standard w pulse, which can be used 

here as a reference. As y + 0, i.e. increasing phase modulation, a good 

inversion is accomplished over an increasingly large range of frequencies. 

Figure 5 

Schematic representation of the transformation from a pulse with constant 

amplitude and phase modulation (a) to a pulse with both amplitude and phase 

modulation (b). In (a) the total time interval is divided into 

subintervals of length T, represented by the dashed lines, which are each 

assigned a constant phase and a flip angle = WIT. The transformation from 

(a) to (b) is effected by choosing the desired overall amplitude 

modulation, and then changing the lengths of the individual pulses while 

still maintaining that their flip angle remain equal to WIT. The new phase 

modulation emerges from the time transformation. 

Figure 6 

Simulations of inversion as a function of resonance offset, resulting from 

the linear frequency sweep of Eq. (23) of the text with k/(w~)2 = 0.2. The 

linear sweep consists of a constant amplitude rf field whose frequency is 
o 2 changing at a constant rate of k/(wl). The overall lengths of the sweeps 

are 2w~to = 15.82 (a) 31.46 (b) 62.86 (c) 200.0 (d). The minimum overall 
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length required to achieve adiabatic inversion on resonance is 
o approximately 2w1tO = 100. Once inversion is achieved on resonance, it is 

also accomplished over a large range of resonant frequencies. The overall 

lengths of 6 (a), (b) and (c) are equal to the overall lengths of the 

sweeps used to simulate inversion performance from the MIP in Figure 4 when 

y = 0.20, 0.10, and 0.05 respectively. 

Figure 7 

Comparison of 3 adiabatic frequency (a) and phase (b) modulated pulses: 

the constant adiabatic pulse (CAP), the MIP and the linear sweep. The CAP, 

a constant amplitude pulse, was derived from considerations of efficiency 

for adiabatic sweeps. In this figure, the parameters were chosen such that 

the adiabaticity factor Q(t) defined by Equation 22, be equal to 10.067 for 

all three pulses at t = O. The larger the value of Q(t), the more 

adiabatic the sweep. 

Figure 8 

Comparison of the adiabaticity factors Q(t) with 600 = 0 for the MIP, the 

linear sweep and the CAP. Q(t) is defined in the text by Equations (25), , 

(24), and (26) respectively. The efficiency of the sweep is determined by 

the length of time Q(t) remains close to its minimum; the linear sweep is 

the least efficient sweep. 

Figure 9 
o Simulations of inversion as a function of 6W/OO1 for the CAP. The overall 

lengths of the sweeps were chosen such that they correspond to the overall 

lengths of the sweeps of Figure 4 (q = w/2siny, the overall length is 2q). 
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Simulations indicate that when Q(O) ) 5, the CAP, the MIP and the linear 

sweep exhibit adiabatic inversion over a large range of frequencies. A 

comparison of figures 4, 5(a)(b)(c) and 8 indicate that the MIP produces 

the best adiabatic broadband inversion for equal sweep lengths and always 

inverts on resonance spins. 

Fi gure 10 

Simulations of inversion as a function of w1/w~ for the MIP with values 

of y as shown. When y ( 0.2 (Q(O) ) 5), the inversion becomes perfect over 

a very large range of wI. 

Figure 11 

Simulated contour plot of population inversion as a function of ~w and wI 

for the MIP with y = 0.10. The MIP compensates simultaneously for ' 

resonance offset and rf inhomogeneity effects. 

Fi9ure 12 

Simul ated inversion performance as a function of w1/w~ for the 1 i near 

sweep with o 2 
k/(w1) = 0.2. The overall pulse lengths are 0 

2w1t O = 31.46 (a), 

62.86 (b) , 100.0 ( c), 200.0 ( d ) • For longer sweeps that shown in Fig. 10, 

the inversion is poorer. 

Figure 13 

a) Schematic diagram of a method for approximating the MIP by a large 

number of constant phase pulses. The total length of the pulse is divided 

into a large number of subintervals with lengths inversely proportional to 

~(t); this is indicated by the dotted lines. The pulse flip angles are 
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calculated from the subinterval lengths· and the constant amplitude. Based 

on ~(t). a constant phase is assigned to each subinterval. If the number 

of pulses is small, this is a poor approximation. 

b) Schematic representation of the method used to approximate the 

continuously modulated pulse (MIP) by a discrete pulse sequence. The 

magnetization trajectory ~PM(t) of an on-resonance spin subjected to the MIP 

is approximated by a discrete number of points. The flip angle and 

constant phase that give the evolution of the magnetization from one point 

to the next are calculated. The result of this "connect the dots" technique 

is a composite pulse whose inversion properties are similar to those of the 

continuous pulse. 

Figure 14 

Simulations (solid lines) and IH experimental measurements (dots) of 

population inversion as a function of wl/w~ for discrete pulse sequences 

derived from the MIP using the technique described in Fig. 13b. Results 

are shown for (a) single ~ pulse presented as a reference; (b) 3 pulse 

sequence (54)90(162.8)0(54)90; (c) 31 pulse sequence 

(18.3)264(4.8)185(5.3)172(5.7)159(6.3)146(6.9)132(7.6)119(8.5)106(9.4)93(10.6)79 

(12.0)66(13.9)53(16.4)40(20.2)26(27.3)13(127.0)0(27.3)13(20.2)26(16.4)40 

(13.9)53(12.0)66(10.6)79(9.4)93(8.5)106(7.6)119(6.9)132(6.3)146(5.7)159 

The notation is (e) where e and ~ are the flip 
~ 

angles . and phases of individual pulses in degrees. 

Figure 15 

Simulations (solid lines) and IH experimental measurements (dots) of 

population inversion as a function of 6W/wl for discrete pulse sequences 
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derived from the HIP. Results are shown for (a) single n pulse presented 

as a reference; (b) 7 pulse sequence (39.6)315(68.4)180(87.9)90(275.7)0 

(87.9)90(68.4)180(39.6)315; (c) 11 pulse sequence (30.2)270(28.7)180(34.9)135 

(43.8)90(58.9)45 (225·~0(58.9)45(43.8)90(34.9)135(28.7)180(30.2)270; 

(d) 15 pulse sequence (21.5)0(19.4)270(23.0)225(27.5}180(33.6)135(42.5)90 

(57.5)45(222.8)0(57.5)45(42.5)90(33.6)135(27.5)180(23.0)225(19.4)270(21.5)0· 



x 

x 

-41-

A. PM Frame 
z 

~--------~------y 

B. FM Frame 
z 

~-----+------<l- Y 

XBL 855·8870 

Figure 1 



-42-

,...--
....... ---------

XBL 855-8867 A 

Fi gure 2a 



-43-

z 

'f 

XBL 855-8869A 

Figure 2b 



0-
3 

........ -

10 

-44-

MODULATED INVERSION PULSE 

a. Frequency Modulation 

CP(t)/CoI? = cosY tan (sinY CoI?t) 

Y= Y= 
0.2 0 .1 

b. Phase Modulation 

~(t) = -cotY In [cos (sinY CoI~ t)] 
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Figure 3 
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