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Article

A genome-scale TF–DNA interaction network of
transcriptional regulation of Arabidopsis primary
and specialized metabolism
Michelle Tang1,2,3,† , Baohua Li2,† , Xue Zhou2, Tayah Bolt2, Jia Jie Li2, Neiman Cruz1,

Allison Gaudinier1,3, Richard Ngo1,2, Caitlin Clark-Wiest1,2, Daniel J Kliebenstein2,4,* &

Siobhan M Brady1,**

Abstract

Plant metabolism is more complex relative to individual microbes.
In single-celled microbes, transcriptional regulation by single tran-
scription factors (TFs) is sufficient to shift primary metabolism.
Corresponding genome-level transcriptional regulatory maps of
metabolism reveal the underlying design principles responsible for
these shifts as a model in which master regulators largely coordi-
nate specific metabolic pathways. Plant primary and specialized
metabolism occur within innumerable cell types, and their reactions
shift depending on internal and external cues. Given the importance
of plants and their metabolites in providing humanity with food,
fiber, and medicine, we set out to develop a genome-scale transcrip-
tional regulatory map of Arabidopsis metabolic genes. A comprehen-
sive set of protein–DNA interactions between Arabidopsis thaliana
TFs and gene promoters in primary and specialized metabolic path-
ways were mapped. To demonstrate the utility of this resource, we
identified and functionally validated regulators of the tricarboxylic
acid (TCA) cycle. The resulting network suggests that plant meta-
bolic design principles are distinct from those of microbes. Instead,
metabolism appears to be transcriptionally coordinated via
developmental- and stress-conditional processes that can coordi-
nate across primary and specialized metabolism. These data repre-
sent the most comprehensive resource of interactions between TFs
and metabolic genes in plants.
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Introduction

Metabolism is the fundamental biological process underpinning all

cellular functions. An organism’s metabolism comprises individual

biochemical reactions organized into metabolic pathways where

metabolites are sequentially transformed in increasing or decreasing

complexity by enzymes. In conjunction, the primary metabolic path-

ways create the cellular building blocks and directly contribute to

the interconversion of chemicals into energy currency. In plants,

and most other organisms, primary metabolites serve as precursors

to secondary, or specialized, metabolites crucial to the organism’s

interaction with its environment. Plant specialized metabolites serve

many functions, including defending plants from predators and

pathogens, attracting symbiotic organisms, and promoting interac-

tions with pollinators.

To properly function, metabolic pathways must be intricately

orchestrated to maintain the homeostasis necessary for growth and

are in turn dependent on the organism’s developmental stage and

environment. Thus, it is critical to understand how metabolic path-

ways are regulated to maximize our ability to predict and manipu-

late an organism’s genotype-to-phenotype matrix. Metabolism is

known to be regulated by mechanisms that span the central dogma

from messenger RNA (mRNA) transcription to protein posttransla-

tional modifications, with the best-studied regulatory mechanisms

being posttranslational modification and allosteric feedback of

enzymes (Nielsen, 2017). Adding to this understanding, systems

biology and genetic approaches in single-celled organisms demon-

strate the importance of transcriptional regulation. In Saccharomyces

cerevisiae and Escherichia coli, these systems approaches integrate

chromatin immunoprecipitation, transcriptomic experiments, and

in silico models to elucidate transcription factor (TF)–enzyme

promoter regulatory interactions and ultimately, investigation of

genome-scale regulatory networks of global metabolism (Ihmels
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et al, 2002, 2004; Barrett et al, 2005; Fang et al, 2017; Lempp et al,

2019). Studies in these organisms have resulted in a model where

metabolic networks are organized into distinct transcriptional

modules that control specific cellular processes (Ihmels et al, 2002,

2004). Whether the same principles apply in multicellular organisms

remains to be determined.

Relative to S. cerevisiae and E. coli, the genomes of multicellular

organisms encode many more genes including TFs, enzymes and in

plants, relative to animals, a further expansion of both enzyme and

TF families linked to metabolism. The acquisition of multicellularity

also enables the partitioning of function across cell types. Thus,

multicellular organisms likely have more complex transcriptional

and metabolic regulation in comparison with single-celled

microbes. However, few studies exist that systematically character-

ize the complexity of metabolic networks from the perspective of

transcriptional regulation in multicellular organisms. Even fewer

studies have explored the regulatory interconnection between the

regulation of central and specialized metabolism in multicellular

organisms, where specialized metabolism is a critical component of

the organism’s response to the environment. Instead, the majority

of studies on plant metabolism have focused on the transcriptional

regulation of individual pathways (Bonawitz et al, 2012; Li et al,

2014, 2018; Kim et al, 2015; Dolan et al, 2017; Gaudinier et al,

2018).

Recent work is beginning to show that plant primary and special-

ized metabolism are highly interconnected. The potential for inter-

connected regulation of central carbon and specialized metabolism

is revealed by transcriptional profiling of mutants in TFs, MYB28

and MYB29, that regulate glucosinolate (GSL) biosynthesis, a

specialized metabolic pathway. This work showed that, as expected,

these TFs not only regulate the GSL biosynthetic pathway, but also

affect several primary metabolic pathways that synthesize precur-

sors of GSLs, including methionine biosynthesis, tryptophan biosyn-

thesis, the TCA cycle, sulfur metabolism, and folate metabolism

(Malitsky et al, 2008; Sønderby et al, 2010). Another example of

TFs that affect both central carbon and specialized metabolism are

the Mediator complex, a multisubunit transcriptional co-regulator

that interacts with other TFs, and the general transcription machin-

ery to regulate transcription (Tsai et al, 2014). In Arabidopsis, dif-

ferent subunits of the Mediator complex are involved in fatty acid

biosynthesis (Kim et al, 2016) and the synthesis of specialized

metabolites known as phenylpropanoids (Stout et al, 2008; Bonaw-

itz et al, 2012; Dolan et al, 2017; Dolan & Chapple, 2018). These

observations suggest that transcriptional regulation of plant metabo-

lism may be highly coordinated and differs from the pathway-

specific transcriptional regulatory modules, as observed in S. cere-

visiae and E. coli. Thus, we hypothesized that Arabidopsis metabo-

lism is orchestrated by TFs that regulate both primary and

specialized metabolism.

Testing this hypothesis requires a large-scale dataset linking as

many TFs to primary metabolism promoters as possible. Presently,

large-scale regulatory transcriptional regulatory networks of plant

metabolism can be inferred computationally with tools and publicly

available datasets including RNA sequencing (RNA-Seq), chromatin

immunoprecipitation sequencing (ChIP-Seq), DNA affinity purifica-

tion sequencing (DAP-Seq), and protein-binding microarrays (Weir-

auch et al, 2014; O’Malley et al, 2016; Kulkarni et al, 2018).

However, these datasets are limited to a subset of TFs, with the

Arabidopsis cistrome dataset consisting of 529 of 2,492 Arabidopsis

TFs predicted to be in the genome (Pruneda-Paz et al, 2014;

O’Malley et al, 2016). We complement these approaches using

enhanced yeast one-hybrid (Y1H) assays (Gaudinier et al, 2011;

Reece-Hoyes et al, 2011a, b) to systematically screen for interactions

between approximately 85% of all characterized and putative TFs in

Arabidopsis and 224 promoters of enzyme genes in 11 central

carbon metabolic pathways and of a specialized metabolic pathway,

aliphatic GSL biosynthesis. By developing a comprehensive dataset

linking TFs to metabolic genes, we can begin addressing key ques-

tions on the transcriptional regulation of multicellular metabolism:

are metabolic pathways linked by common precursors coordinately

regulated by single TFs? Do TFs confer environmental conditionality

of primary metabolism as occurs for specialized metabolism?

This dataset showed that 90% of TFs bind to promoters of

metabolic genes, with all TFs binding to gene promoters in multi-

ple metabolic pathways. Co-expression analyses support a regula-

tory model whereby the majority of TFs influence more than one

metabolic pathway. We validated this hypothesis and the dataset

by expression profiling inducible lines of four TFs that bind to

promoters of genes from a range of metabolic pathways. This

showed that the predicted target enzyme genes in the central

carbon metabolic pathways were enriched among the differentially

expressed genes (DEGs) of the TFs we examined. Additionally, we

explored the combinatorial regulation of a single pathway, the

TCA cycle, given its interconnection with other central metabolic

pathways. This dataset provides a unique resource to extend our

understanding of how metabolism is regulated in multicellular

organisms.

Results

Genome-scale identification of TFs involved in primary and
secondary metabolism

To identify TFs that potentially regulate Arabidopsis primary meta-

bolism, we conducted enhanced Y1H screens (Gaudinier et al, 2011;

Reece-Hoyes et al, 2011a, b) with 224 promoters of enzyme-

encoding genes involved in the TCA cycle, glycolysis and gluconeo-

genesis, pentose phosphate pathway, glutamine synthetase/

glutamine oxoglutarate aminotransferase (GS–GOGAT) cycle, shiki-

mate pathway, and most amino acid biosynthesis pathways, with

the exception of the aromatic amino acids (Fig 1A, Dataset EV1).

We refer to this collective group of promoters as central carbon

promoters (CCPs). We also included promoters of genes involved in

aliphatic GSL biosynthesis (Li et al, 2014), to investigate transcrip-

tional coordination of primary and secondary metabolism. To

enable the genome-level detection of TFs involved in primary meta-

bolism, we extended our original collection of 812 TFs by cloning

an additional 1,224 TFs into activation domain fusion vectors

compatible with our enhanced Y1H system (Dataset EV2; Gaudinier

et al, 2011, 2018; Li et al, 2014). The final Arabidopsis TF collection

contains 2,039 TFs and represents over 80% of all characterized and

putative TFs in Arabidopsis (Pruneda-Paz et al, 2014; see https://

genomecenter.ucdavis.edu/yeast-one-hybrid-services).

From the binding data obtained via the genome-scale Y1H, we

queried how promoters and metabolic pathways are organized. We
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detected 27,485 interactions between 1,930 TFs and 220 promoters

across the 12 pathways surveyed (Figs 1A–C, Dataset EV3). Per

promoter, we identified 1–509 TF interactions, with an average of

125 TFs binding to a promoter. To visualize if most TFs are specific

to individual pathways or connect to multiple metabolic pathways,

we mapped TF–promoter interactions relative to their respective

pathways (Fig 1B and C). While we observed a general positive rela-

tionship between the number of interactions and the number of

promoters screened for each pathway (Fig 1B and D), the number

of TFs identified did not scale with the number of promoters in each

pathway. For instance, we detected approximately the same number

of TFs binding to promoters associated with serine biosynthesis and

the GOGAT cycle, even though there are twice as many genes

encoding enzymes in serine biosynthesis as in the GOGAT cycle.

While the large number of TFs found to bind to metabolic promoters

could suggest that specific groups of TFs target unique pathways,

A B

C

D E

Figure 1. Summary of transcription factor (TF)–promoter interactions of central carbon and specialized metabolism.

A The simplified biochemical network comprises amino acid biosynthetic and respiratory pathways in central carbon metabolism and a specialized metabolic
pathway, aliphatic glucosinolate (GSL) biosynthesis, studied in this paper.

B Each pathway in central carbon and specialized metabolism varies in gene number.
C, D Yeast one-hybrid (Y1H) identified TFs that interact with promoters of genes in each pathway in central carbon and in the specialized metabolic pathway.
E The majority of TFs bind to promoters from two or more metabolic pathways.
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the majority of TFs (~88%) in our network bind to gene promoters

in two or more pathways (Fig 1E). Indeed, only 10% of the TFs

bound to promoters of genes in a single pathway. This pattern of

binding suggests TFs may regulate multiple pathways to coordinate

metabolic control (Fig 1E). We next queried the percentage of TFs

that are shared between metabolic pathways. In all pairwise combi-

nations, the number of TFs common between any two pathways is

significantly greater than expected (Fisher’s exact test, false discov-

ery rate (FDR) < 0.0001), signifying that transcriptionally mediated

interconnection may be an emergent property of plant metabolism

(Fig 2, Dataset EV4). Such coordination may be guided to control a

particular biological process or molecular function that requires a

subset of metabolic pathways. However, Gene Ontology (GO)

enrichment analysis for each pathway did not provide any clarity,

likely due to the fact that most TFs do not have known functions or

metabolism-associated annotations (Dataset EV5).

We next examined how our representative specialized metabolic

pathway, aliphatic GSL biosynthesis, is integrated with central

carbon metabolism within the TF–DNA interaction network. Among

the 974 TFs that bind to aliphatic GSL gene promoters, 933 of those

TFs (~95%) also bind to promoters from a central carbon pathway.

In our pairwise comparison of pathways based on TF binding, the

central carbon metabolic pathways that shared the most TFs with

aliphatic GSL based on the level of enrichment using a hypergeo-

metric test are the pathways that synthesize the sulfur-containing

precursors needed to synthesize aliphatic GSL (methionine and

cysteine) (Dataset EV4). This signifies that although the number of

TFs shared between pathways is higher than expected across all

pairwise combination of pathways, there is still regional enrichment

wherein biosynthetic pathways that are closest within the metabolic

network share more TFs than biosynthetic pathways more distant in

the metabolic network.

Coordinate transcriptional regulation of central
carbon metabolism

This global analysis of TF–metabolic promoter interactions suggests

coordinate transcriptional regulation of central carbon and special-

ized metabolic pathways. However, genome-scale assays like the

Y1H suffer from both false positives and false negatives. We there-

fore tested the regulatory capacity of four TFs that bind to gene

promoters from multiple metabolic pathways: CHROMATIN REMO-

DELING 19 (CHA19), EIN2 NUCLEAR ASSOCIATED PROTEIN 1

(ENAP1), LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16),

and WRINKLED 3 (WRI3) (Table 1). WRI3 binds to promoters in the

TCA cycle, glycolysis/gluconeogenesis and pentose phosphate path-

way, while CHA19, ENAP1, and LBD16 bind to promoters from all

12 pathways at varying degrees (Table 1, Fig 3A). We predicted that

conditional overexpression of these TFs would reveal their suffi-

ciency to regulate gene expression in these pathways. Additionally,

we utilized the fact that dark-grown plant seedlings are hetero-

trophic and do not shift to autotrophy (photosynthesis) until expo-

sure to light. Thus, we tested the regulatory capacity for these TFs

in dark-grown seedlings. We reasoned that carbon metabolism relat-

ing to photosynthesis and carbon fixation would be suppressed in

dark-grown seedlings, and that the seedlings would maintain

heterotrophy during catabolism of maternal stores to provide energy

for seed germination and growth. CHA19, ENAP1, LBD16, and WRI3

coding regions were fused to a dexamethasone (Dex)-controlled

glucocorticoid receptor (GR). The gene expression was profiled by

RNA-sequencing 24 h after mock treatment or 10 lM dexametha-

sone induction in dark-grown six-day-old Arabidopsis seedlings.

Hundreds to thousands of genes were differentially expressed in

response to TF induction across multiple insertion lines (Fig 3B,

Dataset EV6). There was a significant enrichment of Y1H network

gene targets among these differentially expressed genes (DEGs) for

GR-ENAP1; GR-LBD16, and GR-WRI3 (one-tailed Fisher’s exact test,

P < 0.05).

Gene ontology and pathway enrichment analysis further corrobo-

rated the effect of these TFs on central carbon metabolism. Gene

ontologies (GOs) associated with glycolysis/gluconeogenesis,

glycine catabolism, and the TCA cycle were overrepresented more

than expected by chance in the significantly upregulated DEGs upon

GR induction of CHA19 and WRI3 (Fig 3C). Cysteine biosynthesis

was enriched in significantly upregulated DEGs upon GR induction

of LBD16. Only GR-LBD16 had downregulated DEGs enriched for

GO terms involving central carbon metabolism (glycine and arginine

catabolism, reductive pentose phosphate pathway, glycolysis, and

gluconeogenesis) (Fig 3D). Pathway enrichment analysis (Methods)

revealed, in particular, significant enrichment of DEGs in the TCA

cycle for GR-WRI3. As much as 71.4% of the Y1H-predicted WRI3

TCA cycle targets were recovered in the RNA-Seq analysis (Fig 3E,

P = 0.0006, Fisher’s exact test). Additionally, we found other TCA

cycle genes, totaling 28.5% of TCA cycle genes, to be enriched in

the set of significant Dex-dependent genes (Fig 3E, P = 0.0018,

Fisher’s exact test). These data collectively demonstrate that our

TF–DNA interaction network was able to predict in planta regula-

tory interactions, in line with mapped networks for other biological

Figure 2. Pairwise association of transcription factors (TFs) between
metabolic pathways.

The number of TFs shared between metabolic pathways is greater than
expected by chance for all combinations of pairs of metabolic pathways
(Dataset EV4). The size of the nodes corresponds to the number of TFs
identified for each pathway. The width of the edge linking two metabolic
pathways indicates the number of TFs shared between the two pathways.
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processes (Li et al, 2014; Taylor-Teeples et al, 2014; Gaudinier et al,

2018; Truskina et al, 2021).

In most heterotrophic and autotrophic eukaryotes, the TCA cycle

occurs predominantly in the mitochondria. Plants, however, have

expanded this repertoire such that TCA cycle isoforms also function

in the cytosol, peroxisomes, and plastids, thus allowing pathway

interactions with photosynthesis, photorespiration, and nitrogen

assimilation. These isoforms create the potential for localized

bypasses, resulting in cyclic and noncyclic fluxes in the TCA cycle

to optimize metabolism (Tcherkez et al, 2009; Ara�ujo et al, 2012).

Given the relatively large number of TCA cycle genes differentially

expressed upon GR induction of WRI3, we inspected their subcellu-

lar localization. The TCA cycle DEGs of GR-WRI3 are specifically

localized in the mitochondria and plastids (Fig 4A). This showed

that only the mitochondrial and plastidic TCA pathways were being

influenced by WRI3 indicating the potential for TFs to differentially

modulate pathways targeted to different subcellular compartments

(Fig 4A, P = 0.01159 (mitochondria) and P = 0.001431 (plastids),

respectively, two-sided Fisher’s exact test, Methods). Overall, the

inducible constructs support the Y1H-binding results and the

hypothesis of coordinated regulation across metabolic pathways.

Uncovering regulators of the Arabidopsis TCA cycle

To develop a deeper understanding of a single metabolic pathway,

we focused on the TCA cycle that converts nutrients into carbon

skeletons for more complex biomolecules and reduces electron

carriers for adenosine triphosphate (ATP) synthesis. These functions

are carried out by eight enzymes: citrate synthase (CSY), aconitase

(ACO), isocitrate dehydrogenase (IDH), oxoglutarate dehydroge-

nase (OGD), succinyl-CoA (coenzyme A) ligase (SCL), succinate

dehydrogenase (SDH), fumarase (FUM), and malate dehydroge-

nase (MDH), many of whom have organelle-specific isoforms

(Fig 4A). Pyruvate dehydrogenase (PDH) serves as a critical link

between glycolysis and the TCA cycle, which together, form the

central hub of carbon metabolism. Thus, the plant TCA cycle

comprises organelle-specific isoforms, connects with many meta-

bolic processes, and its activity likely functions in different ways

in cells, tissues, organs, and the plant’s response to the environ-

ment. We therefore use the TCA cycle as a reference point to exam-

ine how TFs function to organize the TCA cycle and ultimately

how this regulation coordinates plant growth, development, and

response to the environment.

We first mapped a TCA cycle subnetwork consisting of 4,684

interactions between 962 TFs and 55 TCA cycle genes (Figs 4B and

EV1, Datasets EV1 and EV3). Within this subnetwork, we tested the

hypothesis that certain TF families coordinate specific isoforms

within specific cellular compartments. Enrichment was constrained

to specific enzyme isoforms targeted to defined cellular compart-

ments and not for all TCA cycle enzymes in that compartment

(Fig EV2). For example, TFs in the LATERAL ORGAN BOUNDARIES

DOMAIN (LBD) family were enriched for binding to promoters of

genes encoding the mitochondrial-localized forms of pyruvate dehy-

drogenase (PDH), succinyl-CoA ligase (SCL), fumarase (FUM), and

malate dehydrogenase (MDH) (Figs 4C and EV2, Dataset EV7).

These data suggest that the transcriptional control of the TCA cycle

is organized around the intersection of the enzyme complex and

subcellular compartment.

As metabolic priorities differ between plant cell types and shift

while adapting to environmental changes, we predicted that a given

TF’s regulation of TCA cycle genes will be structured by develop-

ment and the environment. To test this prediction of context

Table 1. Associated metabolic pathways of promoters bound by
transcription factors tested in conditional glucocorticoid receptor
(GR)-induction assays.

CHA19 ENA1 LBD16 WRI3

Aliphatic GSL biosynthesis (22) 9 18 9 0

Arginine/glycine biosynthesis (3) 1 3 2 0

Aspartate biosynthesis (9) 2 4 5 0

BCAA biosynthesis (18) 6 8 15 0

Cysteine biosynthesis (8) 1 6 6 0

Glycolysis/gluconeogenesis (64) 19 49 41 8

GS-GOGAT cycle (3) 2 2 1 0

Methionine biosynthesis (7) 1 3 5 0

Pentose phosphate pathway (25) 8 21 20 3

Serine biosynthesis (6) 3 4 4 0

Shikimate pathway (5) 1 1 2 0

TCA cycle (56) 15 33 24 7

BCAA, branched-chain amino acid; GS-GOGAT, glutamine synthetase/
glutamine oxoglutarate aminotransferase; GSL, glucosinolate; TCA,
tricarboxylic acid.
Summary of the number of targets in each metabolic pathway of Chromatin
Remodeling 19 (CHA19), EIN2 Nuclear-Associated Protein 1 (ENAP1), Lateral
Organ Boundaries-Domain 16 (LBD16), and Wrinkled 3 (WRI3) from yeast
one-hybrid (Y1H) assays. The number of promoters of each metabolic
pathway assayed is given in parentheses.

▸Figure 3. Validation of regulatory interactions via transcriptomics of glucocorticoid receptor–transcription factors (GR–TFs).

A Chromatin Remodeling 1 (CHA19), EIN2 Nuclear Associated Protein 1 (ENAP1), Lateral Organ Boundaries-Domain 16 (LBD16), and Wrinkled 3 (WRI3) vary in the
pathways and the number of genes targeted based on yeast one-hybrid (Y1H).

B Thousands of genes were differentially expressed in dexamethasone (Dex)-induced GR–TFs compared to GR–TFs under mock conditions.
C Gene ontologies (GOs) significantly enriched in the upregulated differentially expressed genes (DEGs) included metabolic pathways in central carbon metabolism.
D Gene ontologies (GOs) significantly enriched in the downregulated DEGs related to central carbon metabolism were found mainly in glucocorticoid-Lateral Organ

Boundaries-Domain 16 (GR-LBD16).
E Wrinkled 3 (WRI3) was enriched for targets in glycolysis/gluconeogenesis and the tricarboxylic acid (TCA) cycle. The WRI3 network consists of interactions identified in

the Y1H and through expression profiling of GR-WRI3. Solid gray lines indicate WRI3–target interactions found in the Y1H network only. Dashed lines signify
interactions detected by RNA-Seq only. Colored solid lines indicate interactions identified via Y1H and RNA-Seq. Lines are colored by whether GR-WRI3 upregulates
(blue) or downregulates (red) target gene expressions.
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dependency, we estimated the Pearson correlation coefficients of

TFs and their TCA cycle targets across five microarray datasets that

surveyed different developmental processes and environments: (i)

plant development (Schmid et al, 2005); (ii) root cell type develop-

ment (Birnbaum et al, 2003; Lee et al, 2006; Levesque et al, 2006;

Brady et al, 2007); (iii) pollen development (Honys & Twell, 2004;

Qin et al, 2009); (iv) osmotic stress (Kilian et al, 2007); and (v) salt

stress (Kilian et al, 2007) (Dataset EV8, Reagents Table). If our

hypothesis of conditional regulation were true, we expected to

detect few interactions in common across the five microarray data-

sets. As many as 1,046 TF/TCA cycle target interactions from the

TCA cycle subnetwork (~26%) were highly correlated (|r| > 0.8) in

one or more microarray datasets (Fig EV3). Of the TF/TCA cycle

target interactions that are highly co-expressed, 797 interactions

(~76%) were exclusive to only one of the five microarray datasets.

Roughly 23% (237) of the highly correlated interactions between TF

and TCA cycle targets were found in two microarray datasets, with

the vast majority of these being an overlap between related salt and

osmotic stress microarrays. The absence of universal TF/TCA cycle

target interaction and the high percentage of interactions being

specific to a developmental or stress dataset align with our hypothe-

sis that regulation of TCA cycle genes is highly conditional.

Seventeen TFs contribute to TCA-cycle-dependent plant growth

To test the function of TFs within this TCA cycle subnetwork, we

developed a system to test the phenotypic consequences of defects in

the TCA cycle. Dark-grown Arabidopsis seedlings utilize the TCA

cycle to catabolize seed stores and exogenous carbohydrates and

lipids for growth (Padmasree et al, 2002; Lee et al, 2010; Angelovici

et al, 2011; Zakhartsev et al, 2016). Wild-type Col-0 seedlings are etio-

lated with long hypocotyls and a short root in the dark (Fig 5A). Our

previous transcriptome profiling experiment demonstrates that WRI3

is sufficient to regulate TCA cycle gene expression in the dark. In

agreement with these data, the hypocotyl and root lengths of the wri3

loss-of-function mutant allele are shorter compared to those of wild

type under specific conditions (Fig 5B, C, and E). This suggests that

we can utilize hypocotyl and root lengths as a proxy for alterations in

the respiratory/TCA cycle output in plant growth and development.

Transcription factor–TCA cycle target expression correlation

analyses suggested that TCA cycle transcriptional regulation is

highly context-dependent. To assess the functional contribution of

select TFs from this subnetwork to the TCA cycle and context-

dependent plant growth, we obtained 31 insertional mutant alleles

of 17 TFs (Reagents Table). The expression of these 17 TFs was

highly correlated with their TCA cycle gene targets in the salt and

osmotic stress datasets, and was associated with primary metabolic

GOs more than expected by chance (Dataset EV9). To first assess

their contribution to the TCA cycle, we measured the hypocotyl and

root lengths and the ratio of root length to the total seedling length

(the sum of hypocotyl and root lengths) of the mutant alleles. We

further queried the dependence of these phenotypes on a particular

stage of the TCA cycle by externally supplying TCA cycle intermedi-

ates—pyruvate, oxaloacetic acid (OAA), citrate, alpha-ketoglutarate,

succinate, fumarate, and malate. We also included acetate to

capture the noncyclic pathway of the TCA cycle and sucrose as a

representative respiration-dependent carbon source (Eastmond

et al, 2000). In wild-type seedlings, pyruvate, OAA, citrate, alpha-

ketoglutarate, fumarate, acetate, and sucrose decrease the hypocotyl

length; while alpha-ketoglutarate, succinate, fumarate, malate, and

sucrose increase the root length (Fig EV4A and B). The ratio of root

to total seedling length of wild-type Arabidopsis responded similarly

to root lengths (Fig EV4C). These observations support our hypothe-

ses that TCA cycle activity and its intermediates have distinct func-

tions in different organs (the root and hypocotyl).

TF-dependent changes and TF by TCA cycle intermediate-

dependent changes in the three traits were tested using a two-way

ANOVA (Fig 5B, Dataset EV10). Of the 17 tested TFs and their corre-

sponding mutant alleles, 12 TFs have significant genotype-dependent

hypocotyl growth effects. Six TFs have significant genotype-

dependent effects on the root length and seven TFs have significant

genotype-dependent effects on the ratio of root to total seedling

length. HD2A and AtHB34 are the two TFs that have significant

genotype-dependent effects across the three measured traits. In the

majority of the TF mutant alleles tested, hypocotyl lengths decreased

across the TCA intermediate conditions, indicating that the majority

of these TFs promote hypocotyl length. The direction of the effect on

root length and the ratio of root to total seedling length was more

varied among the TF mutant alleles across conditions (Fig EV4D),

indicating that the responses to the TCA intermediates in the roots

and the ratio of root to total lengths are conditional to the specific TF.

Over one third of the TFs have significant effects conditional on TCA

intermediate supplementation (Fig 5B). Two TFs showed significant

genotype by TCA intermediate effects in hypocotyl length—GATA12

and WRI3 (Fig 5B and D). Six of the 17 TFs tested have significant

genotype by TCA metabolite effects on root length and root to total

length in the mutant allele seedlings, with five TFs common between

the two traits (Fig 5B–F, Dataset EV10). In summary, all 17 TFs tested

have an effect on plant growth in the dark and TCA-cycle-dependent

nutrition. Moreover, there was a near-absence of TFs with significant

TCA metabolite interaction effects that overlap between the hypocotyl

and the root. This further supports our hypothesis that TCA cycle

activity differs dependent on the organ type and points to specific TFs

potentially responsible for this conditionality.

▸Figure 4. Arabidopsis tricarboxylic acid (TCA) cycle and its yeast one-hybrid (Y1H) network.

A TCA cycle-associated metabolites and isozymes in the plastid (green), mitochondrion (orange), peroxisome (blue), and cytosol of a plant cell allow for noncyclic flux,
thus increasing the flexibility of the pathway. Organelles are not drawn to scale.

B Y1H network shows the interactions between TFs and promoters of TCA cycle genes. Promoters are colored rectangles. The following colors correspond with the
metabolic pathways: Orange PDC, pyruvate dehydrogenase; red CSY, citrate synthase; purple ACO, aconitase; light green IDH, isocitrate dehydrogenase; blue OGD,
oxoglutarate dehydrogenase; light purple SCL, succinyl-CoA ligase; green SDH, succinate dehydrogenase; pink FUM, fumarase; and light blue MDH, malate
dehydrogenase. Gray ovals denote TF, and gray edges indicate interactions detected via Y1H. Tested TFs are labeled. See Fig EV1 for full diagram.

C TF family (oval) enrichment is modularly organized by the interaction of cellular localization and enzyme (rectangles). Colored enzymes indicate significant TF family
enrichment in cellular compartment (adjusted P < 0.05, Fisher’s exact test).
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TFs affect salt stress responses

The above phenotypic analyses establish that the TCA cycle TF

subnetwork affects TCA cycle-linked growth and development. We

next tested our hypothesis that these TFs also organize TCA cycle

function in response to the environment by focusing on salt stress.

Salt stress generates a dramatic shift in plant primary metabolism

including for the TCA cycle (Sanchez et al, 2007). Saline conditions

are a major threat to agriculture and we thus analyzed physiologi-

cally relevant traits throughout the plant life cycle. All of the 17 TFs

are highly correlated with their TCA cycle target genes in salt stress

conditions (Dataset EV8). We therefore evaluated the TF mutant

A
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Figure 4.
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alleles’ response to salt stress. At seven days of age, plants were

watered with either water or water with 50 mM NaCl. This concen-

tration of salt is the minimum concentration necessary to induce a

significant growth difference in wild-type Arabidopsis Col-0 seed-

lings (Julkowska et al, 2014). Rosette area, growth rate, dry shoot

biomass, flowering time, seed yield, and the natural abundance of
13C, 15N in seeds as well as their ratio (13C:15N) were measured and

provide a comprehensive overview of the agriculturally relevant

consequences of TCA cycle disruption over the continuum of plant

growth in response to salt stress. TF-dependent and TF by salt

treatment-dependent responses were evaluated using a two-way

ANOVA (Dataset EV11).

As anticipated, salt stress significantly reduced growth rate and

dry shoot biomass in wild-type Col-0 plants (Fig EV5A–F). Muta-

tions in 15 of the TCA cycle-linked TFs led to small but significant

effects on shoot biomass, flowering time, growth rate, and seed

yield in both control and salt conditions relative to Col-0 (Figs 6A

and EV5G). These included both positive and negative effects on

rosette areas of TF mutants. Six of the TFs tested affected growth in

a salt-dependent manner, including mutants of BASIC PENTACYS-

TEINE 4 (ATBPC4), COLD SHOCK DOMAIN PROTEIN 4 (ATCSP4),

AT2G48100, and CHA19 for rosette area, LBD16 in dry shoot

biomass, and WRI3 and AT2G48100 in seed yield (Fig 6B and C,

Datasets EV11 and EV12).

In addition to growth phenotypes, mutations in nine of the tested

TFs led to significant changes in the abundance of 13C, 15N, or the
13C:15N ratio (Fig 6D). Five TFs had significant genotype-dependent

effects on 13C abundance. Two TFs had significant genotype-

dependent effects and two TFs had significant TF by salt treatment

on 15N abundance. Among the TFs that affected the 13C:15N ratio,

two TFs had significant genotype-dependent effects and three TFs

had significant effects dependent on the salt treatment (Fig 6D,

Datasets EV11 and EV12). Mutations in ENAP2 and LBD16 gener-

ated significant differences in all three isotope abundance traits rela-

tive to Col-0 (Figs 6D and EV6, Datasets EV11 and EV12).

Given the influence of these TFs on both dark-mediated growth

and salt stress, we investigated if the two sets of traits showed a

connection as might be expected if a single metabolic pathway (the

TCA cycle) underlies both context-dependent phenotypes. A positive

correlation (r = 0.53, P = 0.03) was observed between the number

of significant phenotypes observed in the dark TCA intermediate-

feeding and salt stress response experiments and the number of

significant C and N content phenotypes (Fig EV7). In summary, our

phenotypic analyses of mutant alleles of 17 TFs within this TCA

cycle subnetwork demonstrate this regulatory module’s importance

in plant growth and its response to salt stress as well as the impor-

tance of TFs in coordination of TCA cycle function in different

organs and conditions.

Discussion

Here, we present a global map of interactions between TFs and gene

promoters in central carbon and specialized metabolism in Arabidop-

sis. The Y1H methods are complementary to other high-throughput

in vitro assays including protein-binding microarrays (Weirauch et al,

2014), DAP-seq (O’Malley et al, 2016), or computational inferences

(Kulkarni et al, 2018) to identify interactions between TFs and target

genes. Some of these methods assay for interactions between

hundreds of TFs—916 TFs (Kulkarni et al, 2018) or 529 TFs

(O’Malley et al, 2016). This mapped set of interactions utilizes a full

TF collection, which has been utilized in Y1H assays (Breton et al,

◀ Figure 5. Characterization of tricarboxylic acid (TCA) cycle function in transcription factor (TF) mutant alleles.

A Representative 5-day-old seedlings of wild-type Arabidopsis thaliana Col-0 and TF mutants gata12 and wri3 grown in the dark. Scale bar, 1 mm.
B Heat map indicates which TFs significantly affect hypocotyl length, root length, and the composite trait of root to total length in dark-grown seedlings and

whether the effects of TFs are dependent on condition. TFs are hierarchically clustered using Euclidean distance.
C Heat map of the average relative effects of TF mutant alleles on hypocotyl length, root length, and the ratio of root to total length reveals that TF lesions

significantly perturbed TCA cycle-dependent growth. Mutant alleles are listed in rows and traits in columns. Cells of TF mutant alleles in the heat map are colored
if the Arabidopsis Genome Initiative (AGI) or AGI:TCA Metabolite linear model terms for each trait are statistically significant (P < 0.05, two-way ANOVA, 16–20
seedlings per genotype per condition across two experiments per genotype). Mutant alleles are hierarchically clustered using Euclidean distance.

D–F Hypocotyl length, root length, and the ratio of root to total length are dependent on TF and exogenous TCA cycle metabolites. Radar plots present mutant
phenotypes relative to Col-0 (black). The ratio of mutant: WT (wild-type) traits was determined using the estimated marginal means (EMMs) of each genotype
calculated from 16 to 20 seedlings per genotype per condition across two experiments.

▸Figure 6. Phenotypes of mutant alleles are genotype by salt treatment-dependent.

A Heat map indicates which transcription factors (TFs) significantly affect rosette area, growth rate, shoot biomass, flowering time, and seed yield and whether the
effects of TFs are dependent on salt treatment. TFs are hierarchically clustered using Euclidean distance.

B Heat map summarizing the relative effect of TF mutant alleles under control and salt treatment on rosette area, growth rate, shoot biomass, flowering time, and seed
yield. Mutant alleles are listed in rows and traits under both control and salt treatment are in columns. Cells of TF mutant alleles in heat map are colored if the
Arabidopsis Genome Initiative (AGI) or AGI:Condition term in the linear model of each trait is statistically significant (P < 0.05, two-way ANOVA, N = 6–10 plants per
genotype per condition). Mutant alleles are hierarchically clustered using Euclidean distance.

C Rosette area of the mutant allele of BPC4 from day 7 to day 21 postgermination. Linear model for two-way ANOVA considers AGI, salt treatment, day
postgermination, and their interactions. The AGI and AGI:Salt Condition terms are statistically significant (P < 0.001, P < 0.01, respectively). Heat map under line plot
indicates which term in the linear model is statistically significant (P < 0.05) using two-way ANOVA for each day from nine biological replicates per condition. Solid
lines, Col-0; dashed line, bpc4; circle, control condition; triangle, 50 mM NaCl.

D Venn diagram of transcription factors in which the natural abundance of 13C and 15N and the ratio of 13C to 15N that were perturbed in their respective mutant
alleles. Transcription factors are listed if the Arabidopsis Genome Initiative (AGI) or AGI:Salt Treatment linear model terms are statistically significant (P < 0.05), as
determined by a two-way ANOVA from 3 to 5 biological replicates per genotype per condition.
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2016; Bonaldi et al, 2017; Kang et al, 2018; Li et al, 2019), albeit with

fragments of single regulatory regions. Here, we utilized an enhanced

Y1H system (Gaudinier et al, 2011) to screen for interactions with

224 promoters enabling the detection of a vastly higher proportion of

transcriptional regulators of primary and specialized metabolism

than these previously mentioned studies.

The resulting putative regulatory network model differs from that

found in single-celled organisms. In this network, most TFs bind to

promoters of genes in two or more metabolic pathways rather than

being pathway-specific TFs, suggesting a model of regulation that

requires TF coordination of multiple pathways. Additionally, a large

collection of TFs were identified via the Y1H analyses that could

potentially regulate each pathway. Together, these analyses suggest

that a pathway-specific or master-regulatory model is not likely

the design principle underlying metabolism in Arabidopsis, and

potentially, plants. Instead, we propose that plant metabolism is

controlled via a distributed system whereby each pathway is influ-

enced by a large collection of TFs. This collection of TFs provides

the ability for multiple pathways to be coordinated as a unit and for

different modules to be created. This potential was supported by the

inducible TF analyses whereby genes in the pentose phosphate

pathway, glycine biosynthesis, and cysteine biosynthesis were dif-

ferentially expressed upon induction of each single TF, with enrich-

ment for their putative regulatory targets.

An additional benefit of a distributed control system is that it

allows for more fine-tuning to precisely respond to either environ-

mental or developmental cues. This potential has been previously

observed in the aliphatic GSL pathway wherein TFs had tissue-

and/or environmentally conditional effects (Li et al, 2014, 2018). In

this study, we were able to extend this observation of developmen-

tal and environmental context-specific regulation of the TCA cycle,

a central primary metabolic pathway within Arabidopsis. Genetic

perturbation of 17 TFs revealed that these factors regulate the TCA

cycle and the localization of their targets suggests differential tran-

scriptional control of TCA cycle targets within various cellular

compartments, potentially increasing the flexibility of the pathway.

These findings on the TCA cycle further enhance the difference in

multicellular metabolic regulation as the TCA cycle within the

single-celled Escherichia coli and Saccharomyces cerevisiae is deter-

mined by a limited number of metabolites using a few key TFs.

This resource of TF–enzyme promoter interactions in Arabidop-

sis has allowed us to propose a hypothesis that multicellular

organisms rely on a distributed regulatory system for controlling

metabolism rather than the previously observed master-

regulatory/pathway-specific system found in single-celled organ-

isms. Furthermore, it can provide an important source of regulatory

modules to enable combinatorial engineering of plant metabolism

across diverse metabolic pathways.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source Identifier or Catalog number

Experimental Models

Arabidopsis thaliana Col-0 Dr. Daniel Kliebenstein (UC Davis) N/A

Arabidopsis thaliana wri3, AT1G16060 Arabidopsis Biological Resource Center SALK_144578

Arabidopsis thaliana bpc1-1, AT2G01930 Arabidopsis Biological Resource Center SALK_072966

Arabidopsis thaliana bpc1-2, AT2G01930 Arabidopsis Biological Resource Center SALK_101466

Arabidopsis thaliana cha19-2, AT2G02090 Arabidopsis Biological Resource Center SALK_069014

Arabidopsis thaliana cha19-1, AT2G02090 Arabidopsis Biological Resource Center SALK_054130

Arabidopsis thaliana atcsp4-1, AT2G21060 Arabidopsis Biological Resource Center GABI-579G10

Arabidopsis thaliana atcsp4-2, AT2G21060 Arabidopsis Biological Resource Center GABI_623B08

Arabidopsis thaliana atcsp4-3, AT2G21060 Arabidopsis Biological Resource Center SAIL_858_A06

Arabidopsis thaliana atbpc4, AT2G21240 Arabidopsis Biological Resource Center SALK_014313

Arabidopsis thaliana at2g36930 Arabidopsis Biological Resource Center SALK_209159C

Arabidopsis thaliana lbd16-2, AT2G42430 Arabidopsis Biological Resource Center SALK_040739C

Arabidopsis thaliana at2g48100-1 Arabidopsis Biological Resource Center SALK_009105

Arabidopsis thaliana at2g48100-2 Arabidopsis Biological Resource Center GABI_190A05

Arabidopsis thaliana at3g10580-1 Arabidopsis Biological Resource Center SALK_000108

Arabidopsis thaliana at3g10580-2 Arabidopsis Biological Resource Center SALK_020321

Arabidopsis thaliana amiR-enap1, AT3G11100 Zhang et al (2016); provided by Dr. Hong Qiao
(UT Austin)

N/A

Arabidopsis thaliana enap1, AT3G11100 Arabidopsis Biological Resource Center GABI_423B09

Arabidopsis thaliana athb34-1, AT3G28920 Arabidopsis Biological Resource Center SALK_085482C
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or Catalog number

Arabidopsis thaliana athb34-2, AT3G28920 Arabidopsis Biological Resource Center SALK_123593C

Arabidopsis thaliana athb34-3, AT3G28920 Arabidopsis Biological Resource Center SALK_147851C

Arabidopsis thaliana hd2a-1, AT3G44750 Arabidopsis Biological Resource Center GABI_355H03

Arabidopsis thaliana hd2a-2, AT3G44750 Arabidopsis Biological Resource Center SAIL_906_B06

Arabidopsis thaliana at3g53680-1 Arabidopsis Biological Resource Center SALK_117411

Arabidopsis thaliana at3g53680-2 Arabidopsis Biological Resource Center GABI_180C10

Arabidopsis thaliana atstkl1-1, AT4G00238 Arabidopsis Biological Resource Center SALK_083259

Arabidopsis thaliana atstkl1-2, AT4G00238 Arabidopsis Biological Resource Center SALK_019920

Arabidopsis thaliana atstkl1-3, AT4G00238 Arabidopsis Biological Resource Center SALK_068662

Arabidopsis thaliana gata9-2, AT4G32890 Arabidopsis Biological Resource Center SALK_080142C

Arabidopsis thaliana gata9-1, AT4G32890 Arabidopsis Biological Resource Center SALK_152156

Arabidopsis thaliana enap2, AT5G05550 Zhang et al (2016); provided by Dr. Hong Qiao
(UT Austin)

N/A

Arabidopsis thaliana gata12, AT5G25830 Arabidopsis Biological Resource Center SALK_052546

Arabidopsis thaliana p35S::GR-CHA19 line 5 This paper N/A

Arabidopsis thaliana p35S::GR-CHA19 line 7 This paper N/A

Arabidopsis thaliana p35S::GR-CHA19 line 8 This paper N/A

Arabidopsis thaliana p35S::GR-CHA19 line 9 This paper N/A

Arabidopsis thaliana p35S::GR-ENAP1 line 1 This paper N/A

Arabidopsis thaliana p35S::GR-ENAP1 line 2 This paper N/A

Arabidopsis thaliana p35S::GR-ENAP1 line 4 This paper N/A

Arabidopsis thaliana p35S::GR-ENAP1 line 5 This paper N/A

Arabidopsis thaliana p35S::GR-LBD16 line 3 This paper N/A

Arabidopsis thaliana p35S::GR-LBD16 line 8 This paper N/A

Arabidopsis thaliana p35S::GR-LBD16 line 11 This paper N/A

Arabidopsis thaliana p35S::GR-LBD16 line 12 This paper N/A

Arabidopsis thaliana p35S::GR-WRI3 line 8 This paper N/A

Arabidopsis thaliana p35S::GR-WRI3 line 10 This paper N/A

Arabidopsis thaliana p35S::GR-WRI3 line 17 This paper N/A

Arabidopsis thaliana p35S::GR-WRI3 line 21 This paper N/A

Recombinant DNA

TOPO-U Arabidopsis TF ORFeome Arabidopsis Biological Resource Center; Pruneda-Paz
et al (2014); see Table EV2

CD4-88

pMW#2 Deplancke et al (2006); provided by Dr. Marian Walhout
(U Mass Medical)

N/A

pMW#3 Deplancke et al (2006); provided by Dr. Marian Walhout
(U Mass Medical)

N/A

pDest-AD-2l Reece-Hoyes et al (2011a); provided by Dr. Marian
Walhout (U Mass Medical)

N/A

pFAST_R05 Shimada et al (2010); Gateway Vectors 3_75

pBeaconRFP_GR Bargmann et al (2013); Gateway Vectors 5_68

Oligonucleotides and sequence-based reagents

Promoter cloning primers This study Table EV1

T-DNA insertional mutant genotyping primers This study Table EV13

LBb1.3: ATTTTGCCGATTTCGGAAC IDT N/A

Software

emmeans v1.4 Length (2016), CRAN
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or Catalog number

FastQC v.0.11.7 https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/

TrimGalore v0.6.0 http://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/

STAR aligner v2.7.0f Dobin et al (2013)

octopus v0.3.7 Zhang et al (2017), https://github.com/WeiZhang317/
octopus

Cytoscape v3.7.1 Shannon et al (2003), www.cytoscape.org

Affy Bioconductor v3.4, http://bioconductor.org/packages/
release/bioc/html/affy.html

Other

Developmental Atlas dataset Schmid et al, Array Express E-TABM-17 https://www.ebi.ac.uk/arrayexpress/
experiments/E-TABM-17/

Root developmental atlas dataset Brady et al (2007), Birnbaum et al (2003), Lee et al
(2006), Levesque et al (2006), AREX

http://www.arexdb.org/download.html

Pollen developmental atlas dataset Honys and Twell (2004), Gene Expression Omnibus GSE6162

Pollen developmental atlas dataset Qin et al (2009), Gene Expression Omnibus GSE17343

Salt stress microarray dataset Kilian et al (2007), Gene Expression Omnibus GSE5623

Osmotic stress microarray dataset Kilian et al (2007), Gene Expression Omnibus GSE5622

GR-TF transcriptome This paper; Gene Expression Omnibus GSE137623

Methods and Protocols

Saccharomyces cerevisiae (Transformation)
Saccharomyces cerevisiae strain YM4271 (for promoters) or strain

Ya1867 (for TFs) was grown overnight at 30°C by taking streaking

from a glycerol stock onto a YPDA (yeast peptone dextrose adenine)

agar plate to make a lawn. A pea-sized glob of yeast cells was resus-

pended in 1 ml of liquid YPDA and ~100 ll was added to 50 ml of

liquid YPDA in an Erlenmeyer flask to a starting OD600 of 0.15–0.20.

The yeast culture was grown in a 30°C shaking incubator at

210 rpm for 2 h or until OD600 had reached 0.4–0.6.

Saccharomyces cerevisiae (Y1H)
Five ml of SC–HIS–URA was inoculated with yeast strains of the

promoters from glycerol stock and grown at 30°C and shaking at

210 rpm for 48 h. Cultures of promoter yeast strains were concen-

trated by pelleting down yeast cells (centrifuge for 5 min at 1,850 g)

and resuspending in 1–1.5 ml of liquid SC–HIS–URA, and then

510 ll spread onto SC–HIS–URA agar plates with 15–20 glass beads.

Promoter lawn plates were incubated for two nights at 30°C. The TF

collection was cultured in deep 96-well plates from glycerol stocks

in 315 ll of liquid SC-TRP for two nights at 30°C. TF culture plates

were spun down for 5 min at 1,850 g and 150 ll of liquid media

was removed. The pellets were resuspended in the remaining liquid

media and 50 ll of the culture transferred to 384-well plate and

arrayed in duplicates, resulting in two 96-well plates combined into

one 394-well plate.

Arabidopsis thaliana (Bulking and genotyping)
Transfer DNA (T-DNA) insertional mutant lines were ordered from

the Arabidopsis Biological Resource Center at Ohio State University

(Alonso et al, 2003) or obtained from published sources (Zhang

et al, 2016). T-DNA insertional mutant lines were confirmed by

polymerase chain reaction (PCR) using LP + RP + LBb1.3 primers

(Dataset EV13). To minimize variation due to maternal conditions,

all mutant lines were bulked together with wild-type except for

at2g48100-2, enap1, and gata12 (Reagents Table), which were

bulked together with another growth of the wild-type reference.

Arabidopsis plants were grown in Sunshine mix #1 in 2.23” ×

1.94” × 2.23” pots. The chamber temperature was set to continuous

22°C and set to long day (16-h light/8-h dark) with light intensity of

~120 lmol m�2 s�1 from T12 very high output (VHO) fluorescent

light bulbs. Seeds were sieved for sizes between 250 and 300 lm
and surface sterilized by soaking in 50% household bleach, 0.05%

Tween 20 for 20 min and then rinsed with sterile water 5–7 times

before stratifying in 0.1% sterile agar for 2 days in 4°C. Seeds were

sown in Sunshine Mix #1 in traditional 1,020 trays with 18-cell

inserts (pot dimension 3.10” × 3.10” × 2.33”).

Arabidopsis thaliana (TCA metabolite feeding)
Seeds were plated onto half-strength Murashige and Skoog (MS)

agar pH 5.7 with potassium hydroxide (KOH), supplemented with

1 mM TCA metabolites or 0.21 mM sucrose based on theoretical

ATP yield (Rich, 2003). The concentration of sucrose was calculated

to provide an equivalent theoretical yield of ATP as 1 mM of the

TCA metabolites. The pH of 0.25 M OAA, ketoglutaric acid, and

pyruvic acid were adjusted with KOH, filter sterilized (0.22 lm),

and then added to MS agar after autoclaving to a final concentration

of 1 mM. The plates were then wrapped in double layers of

aluminum foil and grown standing vertically for 5 days in the dark

in ambient room temperature (21–23°C). Germination was deter-

mined by unwrapping additional plates each day postplating.
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Arabidopsis thaliana (Salt response)
Seeds were sieved for sizes between 250 and 300 lm and surface

sterilized by soaking in 50% household bleach, 0.05% Tween 20

for 20 min and then rinsed with sterile water 5–7 times before

stratifying in 0.1% sterile agar for 2 days in 4°C. The seeds were

sown in Sunshine Mix #1 in traditional 1,020 trays with 18-cell

inserts (pot dimension 3.10” × 3.10” × 2.33”) and grown in a

chamber with the temperature set to continuous 22°C and set

to long day (16-h light/8-h dark) with light intensity of

~120 lmol m�2 s�1 from T12 VHO fluorescent light bulbs. After

germination, each pot was thinned to one seedling per pot. When

the seedlings were 7 days old, flats were watered every 5–7 days

with either deionized water (control) or 50 mM NaCl (liquid; treat-

ment) to maintain soil moisture.

Arabidopsis thaliana (Transformation)
Ten to twelve Arabidopsis thaliana Col-0 seeds were sown in

Sunshine Mix #1 in 3.5” × 3.5” × 5” pots. Pots were incubated at

4°C for 3 days before transferring into a growth chamber set to

continuous 22°C and set to long day (16-h light/8-h dark) with light

intensity of ~120 lmol m�2 s�1 from T12 VHO fluorescent light

bulb. Five days after seed germination, each pot was thinned to five

seedlings per pot and grown to four to five weeks for Agrobacterium

transformation.

Arabidopsis thaliana (RNA-Seq)
T3 seeds from four independent lines were selected by the pres-

ence of red fluorescent protein (RFP) in the seed. Approximately

200–300 seeds of each line were surface sterilized with 50%

bleach for 15 min, rinsed 5–7 times with sterile distilled water,

and imbibed in the dark at 4°C for two days. The seeds were then

sowed onto nylon mesh on Petri plates containing half-strength

MS agar plates pH 5.7 with KOH. The plates were double wrapped

in foil and placed vertically in a dark chamber at ambient room

temperature (20–22°C).

Network visualization
All networks are visualized using Cytoscape v3.7.1 (Shannon et al,

2003).

Bait promoter cloning
The PCR primers were designed to amplify promoter regions of

2,000 bp in size or to the next gene upstream from the predicted

translational start site of each gene (Dataset EV1). Promoter regions

were amplified from Col-0 genomic DNA or from plasmids contain-

ing 1 kb synthesized promoters (Life Technologies) using Phusion

High-Fidelity Taq (NEB) and cloned into pENTR 5’ TOPO vector

(Invitrogen). Promoter regions were then recombined with pMW2

and pMW3 destination vectors (Deplancke et al, 2006) in LR reac-

tions and sequence-confirmed before transforming into the YM4271

yeast strain as described in (Gaudinier et al, 2011).

Prey TF cloning
Complementary DNA (cDNA) of TFs in pENTR from (Pruneda-Paz

et al, 2014) that were not present in the root-expressed TF collection

(Gaudinier et al, 2011) were recombined with pDEST-AD-2 micron

destination vector in LR reactions. Prey TFs were transformed into

Ya1867 yeast strain.

Yeast one-hybrid
All promoter baits were screened against a total collection of 2039

prey TFs, according to protocols in (Gaudinier et al, 2011, 2017).

Pairwise pathway comparison
To determine the significance of association between two metabolic

pathways based of their TF binding, we performed a one-tailed

Fisher’s exact test using fisher.test in R version 3.4.0. A 2 × 2

contingency matrix is calculated for all pairwise combinations of

metabolic pathways based on the number of TFs detected in both

pathways, the number of TFs detected in the first pathway, the

number of TFs detected in the second pathway, and the number of

TFs screened (2039 TFs). P-values were adjusted for multiple testing

using p.adjust in R version 3.4.0. Regional enrichment for aliphatic

GSL biosynthesis was defined by the rank order of (adjusted

p-values/odds ratios).

TF family enrichment
Subcellular localization of TCA cycle targets was determined from

the SUBA3 database (Tanz et al, 2013). The consensus-predicted

subcellular localization was used, except when a gene’s subcellular

localization was previously experimentally tested as per the litera-

ture. In that case, the experimentally determined subcellular local-

ization was used. The number of interactions was obtained for each

TF family targeting a TCA cycle enzymatic step in each cellular

compartment from the Y1H interaction data. TF family enrichment

was tested using a two-tailed Fisher’s exact test with Holm–Bonfer-

roni to adjust for multiple testing in R. The number of TFs in each

cellular compartment in each family was tested against the number

of TFs in the Y1H assay.

Correlation analysis
The Y1H data generated a network of TF–TCA cycle target gene

interactions, where TF or target genes were nodes and interactions

were edges. Using this network structure, Pearson correlation coeffi-

cients were calculated for each TF–TCA cycle gene interaction in R

using the cor function with gene expression values from publicly

available microarray datasets (Reagents Table). These datasets

capture a range of experimental and biological perturbations and

thus allow for the capture of conditional transcriptional correlations.

We downloaded available.CEL files from the experiments only when

the genotype corresponded to Arabidopsis thaliana accession Col-0.

This was to exclude the complications of polygenic natural variation

between different accessions and to focus on perturbations in a

single genotype. Using the.CEL files, the microarray datasets were

normalized using the rma function from the affy package (Gautier

et al, 2004) in Bioconductor.

We parsed these datasets to represent specific aspects of develop-

mental biology or stress response. The first was the Arabidopsis

development (Schmid et al, 2005) and root development expression

atlases (Birnbaum et al, 2003; Lee et al, 2006; Levesque et al, 2006;

Brady et al, 2007) that encompass numerous cell-, tissue-, and

organ-types. We added the pollen development expression atlas

(Honys & Twell, 2004; Qin et al, 2009) because of the coordinated

transcriptional changes with strong temporal regulation observed in

pollen metabolism, across pollen maturation and pollen germina-

tion. In addition to development, we included a large salt and

osmotic stress (Kilian et al, 2007) expression atlas because these
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stresses modulate photosynthesis and cellular respiration associated

with the TCA cycle.

Gene ontology enrichment analysis
Arabidopsis Genome Initiative (AGI) loci identifiers were uploaded

to the GO Term Enrichment tool powered by PANTHER released

July 11, 2019 on www.arabidopsis.org. The GO term enrichment

analysis was based on GO biological process complete annotations

from the Gene Ontology database released October 08, 2019.

TCA metabolite feeding assay
For each experiment, 30 replicates of Col-0 and 10 mutants were

plated in a random block design. The TF mutant lines were divided

into two blocks. Each plate (block) had six wild-type seedlings and

one seedling per mutant line for 15 or 16 TF mutant genotypes

plated across three rows. The entire experiment was repeated twice,

for a total of 20 biological replicates maximum per TF mutant lines

and 60 biological replicates maximum of Col-0 per TCA metabolite.

Backlit images of plates on a light table were acquired using a

Canon EOS T3i Rebel dSLR camera fixed on a camera stand. Roots

and hypocotyls were traced manually using a Wacom Intuos draw-

ing tablet in ImageJ.

Salt response assay
Mutant seedlings were grown in a random block design. Each block

consists of 10–11 mutant TF lines plus Col-0, for a total of three

blocks. Each experiment consists of five biological replicates per TF

mutant lines and the entire experiment was repeated twice for a

total of 10 biological replicates maximum per TF mutant. The

concentration of salt selected was the minimum concentration

necessary to induce a significant growth difference in wild-type

Arabidopsis Col-0 seedlings (Julkowska et al, 2014). A copy stand

and Canon T3 dSLR were used to take aerial images of each flat

every other day starting at 7 days postgermination until 21 days

postgermination. Each image had a measurement marker to stan-

dardize size images between pictures. Image analysis to obtain

rosette area was conducted in ImageJ using the Analyze Particle

function after selecting Hue (42–166), Saturation (28–255), and

Brightness (80–255) under Adjust > Color Threshold. The dry shoot

biomass was determined from fully mature shoots from 3 to 5 indi-

viduals of each genotype at the end of the first salt stress experi-

ment. The shoots were dried in a 60°C oven overnight and then

weighed on an analytical balance.

Natural 13C and 15N abundance profiling
For Carbon-13 and Nitrogen-15 profiling, mature seeds from 3 to 5

individuals of each genotype were sieved and cleaned to remove any

plant material and then dried in a 60°C oven overnight. The seeds

were obtained from the control and salt conditions from the first salt

stress experiment. The seeds were allowed to acclimate to ambient

room conditions before 2–3 mg of seeds was submitted to the Stable

Isotope Facility at the University of California, Davis (UC Davis) for

determining the natural abundance of Carbon-13 and Nitrogen-15.

Statistical analysis for T-DNA insertional mutant
phenotype assays
Replication numbers for all experiments were designed to provide

significant power for moderate effect sizes and modest power for

small effect sizes using a presumed broad-sense heritability of about

15% based on previous experience with these traits. All statistical

analyses were conducted in R version 3.4.0. The TFs controlling the

root length, hypocotyl lengths, root to total seedling lengths, rosette

area, vegetative growth rate, dry shoot biomass, flowering time, and

seed yield were tested by ANOVA using a general linear regression

model in R with the package lmerTest. The following generalized

nested linear mixed model was used: Trait = AGI + AGI:Allele +

Treatment + AGI:Treatment + AGI:Allele:Treatment. In the case

of rosette area, day was included as a factor: Trait = AGI + AGI:

Allele + Treatment + Day + AGI:Day + AGI:Treatment + Treat-

ment:Day + AGI:Allele:Treatment + AGI:Treatment:Day. The random-

effect terms for the dark feeding experiment are Block nested in

Experiment and Row on Plate nested in Plate. The random-effect

terms for the salt response experiment are Flat Condition nested in

Shelf nested in Experiment. Random-effect terms in the models were

computed using ranova function from the lmerTest package. To

allow for an AGI:Allele term in the generalized linear model, growth

traits (hypocotyl lengths, root lengths, and rosette areas) of the two

alleles that were bulked at a different time were normalized by

adding the difference between the two wild types to the raw values.

Estimated marginal means (EMMs/least-squares means) and post

hoc comparisons between mutant alleles and Col-0 conditioned on

treatment were calculated using the emmeans (Lenth, 2016) pack-

age in R. P-values from post hoc tests were adjusted for multiple

comparisons using the Holm method in R. The relative effect is

expressed as EMMMutant – EMMWT/EMMWT.

Cloning dexamethasone-inducible overexpression TF lines
The coding sequences of CHA19, ENAP1, LBD16, and WRI3 in

pENTR from the Arabdiopsis TF ORFeome collection (Pruneda-Paz

et al, 2014) (CD4-88) were recombined into a modified pFAST-R05

plasmid with the dexamethasone-inducible GR construct from

pBeaconRFP-GR plasmid using LR reactions. To generate the modi-

fied vector, pFAST-R05 (Shimada et al, 2010) was digested with SbfI

and ApaI to serve as the backbone of the modified plasmid, contain-

ing the LB, RB, and pOLE1:OLE1-RFP, a seed-selectable RFP

marker. The dexamethasone-inducible overexpression cassette from

pBEACONRFP–GR (Bargmann et al, 2013) was cloned using

Phusion High Fidelity Taq (Forward primer: GACTAGAGCCAAGCT

GATCTCC; Reverse primer: CGACGTCGCATGCCTGCAGG),

sequenced verified, and then recombined into the digested pFAST-

R05 backbone using the Gibson assembly (NEB E2611S) (Forward

primer: CCTGCAGGCATGCGACGTCGTCAAGCTTAGCTTGAGCTTG

GATCA; Reverse primer: CAAGCTCAAGCTAAGCTTGACGACGTCG

CATGCCTGCAGG). Recombined TFs in the modified pFAST-R05

with the dexamethasone-inducible GR system were sequence-

confirmed and then transformed into Agrobacterium tumefaciens

strain EHA105 using the calcium chloride freeze-thaw method (Hol-

ster et al, 1978). Transformed Agrobacterium were selected on

Luria-Bertani (LB) agar plates containing spectinomycin and rifam-

picin and then confirmed by genotyping polymerase chain. Four- to

five-week-old, flowering Arabidopsis thaliana Col-0 were trans-

formed using the floral dip method (Clough & Bent, 1998). The

transformants were selected by the presence of RFP in the seed coat

using a 532-nm green laser and red filter, and confirmed by genotyp-

ing PCR. The transformants were bulked together to T3 under the

same conditions as the T-DNA insertional mutant lines.
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GR induction and RNA-Seq library construction
At day 5, the seedlings on the nylon mesh were transferred onto

mock plates or half-strength MS agar plates containing 10 lM dexam-

ethasone (Dex) in the dark, assisted with a green headlamp. After

24 h of induction, the whole seedlings were collected, flash frozen in

liquid nitrogen, and stored in �80°C until RNA-Seq library construc-

tions. Direct mRNA isolation was performed using biotinylated polyT

oligonucleotide and streptavidin-coated magnetic beads following the

protocol from (Townsley et al, 2015). Nonstrand-specific RNA-Seq

libraries were prepared, according to the protocol for the high-

throughput RNA-Seq library preparation method (Kumar et al, 2012).

A total of 64 RNA-Seq libraries were made, representing two biologi-

cal replicates for the two treatments across four independent Dex-

controlled GR–TF mutant lines (Reagents Table). Libraries were

sequenced twice on the Illumina HiSeq 4000 system in the SR100

mode at the University of California, Davis DNA Technologies Core.

RNA-Seq analysis
FastQ file processing was performed on the University of California,

Davis high performance bioinformatics cluster. FastQ files were qual-

ity checked using FastQC v.0.11.7 (https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/), adapter and poly-A trimmed using

TrimGalore v0.6.0 using default settings (http://www.bioinformatics.

babraham.ac.uk/projects/trim_galore/) and then reassessed for qual-

ity using FastQC. Gene counts were obtained by mapping trimmed

reads to the Arabidopsis thaliana genome (TAIR10) using STAR

aligner v2.7.0f (Dobin et al, 2013). Assessing that the read count and

quality were similar across the two sequencing runs, gene counts were

summed up. Statistical analysis was performed in R 3.6.0 using the

octopus pipeline established in (Zhang et al, 2017) (https://github.

com/WeiZhang317/octopus). Briefly, trimmed mean of M value

normalization was performed using the calcNormFactors function

from edgeR (Robinson et al, 2010) version 3.26.6. For each TF, we

ran the following negative binomial generalized linear model using

the glm.nb function from MASS package to test for genes that were

significantly influenced by the translocation of the TF into the nucleus:

Y = TI + AL + TI × AL where the main effects T and A are denoted

as dexamethasone treatment and allele of TF, respectively. The false

discovery rate was corrected using Benjamini–Hochberg with the p.ad-

just function. GO analysis was conducted on pantherdb.org by submit-

ting the list of AGIs of genes significantly differentially expressed due

to translocation of the GR–TFs’ chimeric protein into the nucleus. The

complete biological process GO annotation dataset for Arabidopsis

thaliana was used for testing statistical overrepresentation. Enrich-

ment analysis was performed in R using the fisher.test function.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• RNA-Seq data: Gene Expression Omnibus GSE137623 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137623).

• Raw data files and analysis scripts: GitHub (https://github.com/

melletang/ccp_y1h).

Expanded View for this article is available online.
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