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ABSTRACT 

 

Trace Metal Catalysis in Water:  Enabling Technologies 

 for Environmentally Friendly Organic Synthesis 

by 

Evan Barrett Gam Landstrom 

 

     Organic synthesis is the cornerstone of small molecule pharmaceutical development and 

manufacturing. Unfortunately, making these medications still relies on the use of toxic 

organic solvents as the reaction medium. These solvents represent ~80% of the organic 

waste stream generated by the pharmaceutical industry. Additionally, key catalytic reactions 

involve unsustainably high levels of endangered precious metals. 

Throughout the course of this research new reaction conditions were developed to 

address these concerns. With respect to solvents, the designer surfactant TPGS-750-M in 

water was chosen as the reaction medium. This commercially available surfactant has  

significant literature track record of enabling organic transformations in aqueous media, 

often with mild reaction conditions.  

There are a plethora of catalysts in the literature that enable critical organic 

transformations, such as the Suzuki-Miyaura coupling, that can be effective at low catalyst 

loadings. Unfortunately, they often require harsh reaction conditions involving high heat and 

organic solvents to achieve optimal yields of the desired product. In light of this, new, more 

effective catalysts and shrewd implementation of available catalysts was investigated. 

 By combining aqueous micellar media with judicious catalyst design and 

implementation, new reaction conditions were developed in good-to-excellent product yields 



 

 viii 

of critical bond-forming reactions that are used extensively in pharmaceutical synthesis, 

namely C-C, C-N, and “click” reactions. All of these are conducted in an environmentally 

friendly manner in an aqueous medium with no more than 0.05-0.5 mol % (500-5000 

ppm) of metal catalyst. 
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I.   Introduction and General Experimental 

A.  Green Chemistry 

In 1998 Anastas and Warner published the 12 Principles of Green Chemistry in “Green 

Chemistry: Theory and Practice.”1 This list serves to highlight an essential problem with the 

field of chemistry:  it is an inherently dangerous and wasteful field. The 12 Principles serve 

as a roadmap to highlight these issues and offers suggestions on how to mitigate them. 

While seemingly aspirational initially, the chemistry community has risen to the challenge 

with a multitude of researchers across academia, industry, and government pouring 

significant effort into the development of processes that will enable chemistry, especially 

synthetic chemistry, to reach a point where the practice can be truly called both green and 

sustainable. The importance of this pursuit is highlighted by the existence of the Presidential 

Green Chemistry Challenge Awards, and chemistry journals dedicated to publications on 

green and sustainable chemistry. In the remainder of this introductory passage the reasoning 

and motivation behind the research discussed in subsequent chapters will be covered. 

B. Solvents 

Synthetic organic chemistry is a field that has been conducted largely in organic 

solvents, invoking the adage “like dissolves like.” The drawbacks to the use of these 

solvents are myriad. The vast majority of organic solvents are toxic to people and the 

environment at large, posing an immediate safety hazard to any who may be exposed to 

them. Exposure can lead to a multitude of medical issues including cancer, injury, and birth 

defects. Due to their harmful nature they must be stringently disposed of as hazardous waste 

which is a costly and problematic process in its own right. A majority of organic solvents is 

flammable and pose a significant safety risk due to fire and explosion. Almost all of the 
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flammable solvents have flash points that can be easily reached at temperatures often 

encountered during synthetic processes. Extensive engineering controls must be employed 

for their safe use. Even with those engineering controls, accidents and injuries can still 

occur. 

But how much of a problem is this, especially when looking at organic synthesis in the 

service of the pharmaceutical industry? A big one. According to the American Chemical 

Society’s Green Chemistry Institute Pharmaceutical Roundtable organic solvents alone 

account for 56% of the entire waste stream generated by the pharmaceutical industry.2 While 

that figure alone should give any reasonable chemist pause, it must also be viewed through a 

different lens. What that statistic really means is that 56% of the waste generated has no 

hope of even being incorporated as part of the desired product, an active pharmaceutical 

ingredient (API). It is simply the medium for conducting a reaction. It is appalling that this 

is considered the norm; this is an issue that needs to be addressed. Additionally, a variety of 

solvents that used to be considered standard are increasingly under legal scrutiny (DMF, 

DCM, etc.; Figure 1). Their use is outright banned or soon to be banned under the European 

Union R.E.A.C.H. agreement due to their particularly egregious safety and pollution 

hazards.3 The rest of the world will eventually follow suit. Clearly an alternative is needed. 

 

Figure 1: Structures of problematic solvents. 
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C. Precious Metals 

One tenet of the 12 Principles of Green Chemistry is the utilization of catalytic 

(enzymatic, organo-, or metallic) methods, as opposed to stoichiometric reagents, for the 

synthesis of chemical matter. While this is, in theory, ideal, the nature of the catalysts 

requires some scrutiny. Some of the most useful catalytic metals reside within the platinum 

group or coinage group of elements in the d-block of the Periodic Table. These metals are 

critical for the synthesis of APIs. Key treatments for a variety of disease would not exist if 

these metals and the chemistries associated with them had not been developed. Supply 

issues will soon become of grave importance for these metals according to the ACS Green 

Chemistry Institute.4 Their current rates of usage in the range of 1-5 mol % or higher is 

simply an unsustainable practice. Once again, an alternative or significant improvement 

must be found wherein catalysts are designed and implemented in such a manner that 

significantly lower catalyst loadings are competent for the desired transformation. 

D. Is There Hope? 

All is not lost. Nature has been using trace quantities of metals in the active sites of 

enzymes since the dawn of life to create both simple and complex organic molecules. 

Modern organic chemistry has only been conducted in organic solvents by humans using 

their own hands over the past, at most, 200 years. Throughout evolution, however, organic 

chemistry has been conducted by nature in an aqueous medium. Can modern organic 

chemists learn an obvious lesson and follow nature’s lead? 

Yes. But how? The interior of enzymatic cores are typically nonpolar regions that exist 

in polar aqueous environments due to the (oftentimes complex) folding of protein structures. 

Luckily, organic chemists can replicate this type of nonpolar environment with the use of 

appropriately and newly engineered surfactants. Surfactants, above their critical micellar 
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concentration (CMC), spontaneously form micellar aggregates with greasy, hydrophobic 

cores that exclude water and mimic the environment of anhydrous organic solvents. 

Partitioning of reagents from the polar aqueous medium to the interior of micelles yields 

reactant concentrations around two molar.5 This allows reaction partners and catalysts to 

reach locally high reactant and catalyst concentrations that cannot be typically achieved in 

traditional organic solvents. Consequently, catalyst loadings and reaction temperatures can 

drop significantly. But not any old the shelf surfactant will do.  

Over the years designer surfactants have been created to address the specific needs of 

synthetic chemists. These commercially available surfactants can facilitate a variety of 

organic transformations that would typically require toxic, flammable, or environmentally 

egregious organic solvents.6-9 Vitamin E-based TPGS-750-M (Figure 2), which is benign by 

design, has proven to be a workhorse surfactant and its use is the focus of the research 

discussed in later chapters. TPGS-750-M is particularly effective due to its unique micellar 

structure. A solution of TPGS-750-M forms 50-60 nm super-micelle aggregates of micelles, 

instead of the typical 5-15 nm free floating micelles characteristic of other surfactants which 

allows more facile exchange of reaction partners between micelles (Figure 3).10 

 

Figure 2: Structure of TPGS-750-M 
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Figure 3: TPGS-750-M micellar aggregates 

The relative greenness of any organic transformation can be quantified by Sheldon’s E 

factor. The E factor is a simple metric that is reached by dividing the total mass of waste (in 

this case solvent) by the mass of product obtained. Typical E factors for the pharmaceutical 

industry are between 25-100 or greater.10 Switching to designer surfactant-enabled reactions 

puts E factors in the range of 1-5, which is more typical of the fine chemicals industry.6-9 

Calculation of the E factors obtained during these studies will be a common thread in the 

coming chapters. 

The following chapters will describe three novel approaches to catalyst design and/or 

implementation that yield relevant bond-forming methodologies, namely C-C, C-N, and 

“click” reactions, in environmentally responsible aqueous conditions with low catalyst 

loadings. 

E. General Experimental  

Unless otherwise noted, all reactions were performed under an atmosphere of argon. All 

commercially available reagents were used without further purification. Organoazides used 

for click reactions were prepared using known procedures.12 A 2 wt % TPGS-750-M/H2O 

solution was prepared by dissolving 20 mg TPGS-750-M per mL water (degassed with 
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argon prior to mixing, HPLC grade). TPGS-750-M was made as previously described or was 

donated by PHT International.7 Tetrahydrofuran (THF) and toluene, obtained from Fisher 

Scientific, were degassed by sparging with argon and dried by pushing through a column of 

activated aluminum oxide. HPLC grade ethyl acetate (EtOAc), obtained from Fisher 

Scientific, was degassed by sparging with argon for a minimum of 2 h while stirring. All 

glassware and stir bars were cleaned with aqua regia prior to use to avoid trace metal 

contamination. Palladium catalysts were purchased from Spectrum Chemicals or were 

graciously donated by Johnson Matthey. The source of palladium acetate can have a 

dramatic effect on success of the reaction as noted by Colacot and co-workers.13 Spectrum 

and Johnson Matthey branded palladium was found to be competent. Strem and Sigma-

Aldrich palladium acetate were found to be inferior. Reagents were purchased from Sigma-

Aldrich, Combi-Blocks, Alfa Aeser, or Acros Orgnaics, n-Butyllithium (nominally 2.5 M) 

was purchased from Sigma-Aldrich and titrated with diphenylacetic acid prior to each use. 

Analytical thin layer chromatography (TLC) was performed using Silica Gel 60 F254 glass 

backed plates (Merck, 0.25 mm thick) or Aluminum Oxide 60 F254 polyester backed plates 

(Sigma-Aldrich, 0.2 mm thick). The developed chromatogram was analyzed by UV lamp 

(254 nm). UV inactive compounds were visualized using aqueous potassium permanganate 

(KMnO4), aqueous dinitrophenylhydrazine, aqueous ceric ammoniumnitrate/phospho-

molybdic acid, or butanolic vanillin and developed with a heat gun. Flash chromatography 

was performed using Silicycle Siliaflash® P60 Unbonded Grade Silica: Particle size: 40-60 

µm, Pore size: 60 Å. 1H and 13C NMR data were recorded at 297.8 K on an Agilent® 

Technologies 400 MHz or Varian Unity Inova® 500 MHz. 19F and 31P NMR were recorded 

at 297.8 K on an Agilent® Technologies 400 MHz. The FID was processed using 

MestReNova (release: 10.0). Chemical shifts in 1H NMR spectra are reported in parts per 
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million (ppm) on the δ scale with the residual 1H resonance from deuterated chloroform set 

at 7.26 ppm, deuterated acetone set at 2.05 ppm, and deuterated dimethyl sulfoxide set at 

2.50 ppm. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, 

t = triplet, q = quartet, p = pentet, sext = sextet, sep = septet, m = multiplet, br = broad, dt = 

doublet of triplets, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of 

doublet of doublets), coupling constant in Hertz (Hz), and integration. Chemical shifts of 13C 

NMR spectra were referenced through the chloroform 13C resonance reported at 77.16 ppm 

from the central peak on the δ scale according to IUPAC recommended secondary 

referencing method and the manufacturer's protocols. Reactions were deemed complete by 

TLC or via GCMS analyses. GCMS data were recorded on a 5975C Mass Selective 

Detector, coupled with a 7890A Gas Chromatograph (Agilent Technologies). A capillary 

column HP-5MS cross-linked 5% phenylmethylpolysiloxanediphenyl column (30 m x 0.250 

mm, 0.25 micron, Agilent Technologies) was employed. Helium was used as carrier gas at a 

constant flow of 1 mL/min.  
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II. EvanPhos: A Novel Biaryl Scaffold for Monophosphine Ligands and their 

Application to Suzuki-Miyaura Couplings. 

A. Introduction 

Seminal work disclosed by Akira Suzuki and Norio Miyaura in 1979 focused on a 

method for the construction of C(sp2)-C(sp2) aryl-alkenyl bonds employing a palladium 

catalyst leading to cross coupling of aryl halides and alkenyl catecholboranes (Figure 1), 

later coined as the Suzuki-Miyaura coupling (SMC).1 

 

Figure 4: First reported SMC 

      This work would eventually lead Suzuki to share the 2010 Nobel Prize in Chemistry 

with Ei-Ichi Negishi and Richard Heck for the development of palladium-catalyzed cross 

couplings in organic synthesis. The decision to award the prize was likely informed by rapid 

rise to prominence of the SMC within the pharmaceutical, agrochemical, and materials 

sectors. In 2014 it was the second most commonly utilized reaction methodology in process 

chemistry and the fifth most utilized in medicinal chemistry.2 It’s widespread use can be 

attributed to its robust nature, functional group tolerance, and facile scalability. However, 

the transformation of an initial disclosure to robust methodology did not occur 

instantaneously. Early reports noted that the substrate scope was limited by known reactivity 

trends of aryl halides in oxidative addition to Pd0, especially since catalyst choice in earlier 

times was limited to mainly tetrakis(triphenylphosphine)palladium derivatives or their 

analogous PdII salts.1 Extensive effort was, therefore, poured into the still highly active 

research field of ligand design for transition metal-catalyzed reactions.  
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B. Background of Ligand Design 

     Triphenylphosphine is a ubiquitous phosphine ligand owing to its inexpensive nature and 

long bench life. However, it is among the least reactivity-inducing ligands available for Pd-

catalyzed cross coupling reactions. To understand why, the mechanism of the SMC must be 

discussed (Figure 2). The first step before initiation of the catalytic cycle is activation of the 

palladium catalyst when utilizing PdII salts followed by ligand dissociation as needed to 

achieve a coordinatively unsaturated complex, typically a 12-electron LPd species but in 

some cases such as with triphenylphosphine a 14-electron L2Pd complex can suffice. 

Mechanisms and methods for Pd activation will be discussed in depth later on. Once an 

appropriate Pd0 species is present it undergoes oxidative addition to the aryl halide (step 1)  

 

Figure 5: SMC catalytic cycle 

to generate an organo-palladium-halide complex. Halide coupling partners typically follow 

the reactivity trend of I > Br = OTf > Cl. This is followed by a metathesis (step 2) with 

hydroxide to form and an organo-oxopalladium(II) species. This is crucial because despite 

early beliefs that transmetallation occurs through a tetracoordinate organoboronate, Hartwig 
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showed that this is not energetically favorable.4 Rather, transmetallation (step 3) occurs 

through a neutral organoboron and an oxo-palladium. This is followed by a reductive 

elimination (step 4) to yield the cross-coupled product while regenerating the active Pd0 

catalyst. 

     The stereoelectronic properties of a ligand can significantly impact multiple steps of this 

reaction. In 1989, Osborn concluded that for optimal activity of a Pd complex towards 

chloroarene activation the ligand on Pd must feature both significant basicity (pKa > 6.5) and 

large steric volume (q > 160°).5 After studying various effects of ligand stereoelectronic 

properties Buchwald reached several key conclusions relating to dialkyl biaryl 

monophosphine ligands.6-8 Sterically encumbered ligands tend to favor the 12 electron LPd0 

complex which, being coordinatively unsaturated complex, accelerates the oxidative 

addition step. Strongly electron-donating alkyl groups (Cy, t-Bu, Ad) increase the basicity 

and steric volume around phosphorus similarly enhancing oxidative addition. These same 

attributes can increase the rate of transmetallation by again ensuring a coordinatively 

unsaturated monoligated Pd(II) species  (compared to PPh3 which allows for two ligands on 

the metal center throughout the cycle). The large alkyl groups facilitate reductive 

elimination by pushing the coupling substituents on Pd into close proximity. 

These insights in ligand design have been developed over two decades of active 

research. It is widely appreciated that there is no one ligand that can accomplish all 

couplings. A multitude of ligands must be screened to identify one that works for a 

particular substrate combination en route to a molecule of biological interest. A variety of 

groups have synthesized monophosphine ligands that, when complexed with an appropriate 

Pd pre-catalyst, exhibit high activity towards cross-coupling reactions using low catalyst 

loadings (Figure 3).7-14 While these can be powerful in their own right they are not without 



 

 12 

faults. While Buchwald ligands are bench stable they suffer from oxidation/deactivation on 

their own in solution and over the course of reactions. CataCXium only shows high activity 

with simple, unfunctionalized coupling partners.10 BI-DIME and Handphos require lengthy, 

inefficient, environmentally questionable, and often frustrating syntheses. Several of these        

 

Figure 6: Modern era highly-active ligands for SMC 

ligands on Pd as catalysts  require harsh coupling conditions at elevated temperatures in 

organic solvent. Often less appreciated is the need to rethink how cross-coupling reactions 

are conducted with regard to catalyst loading. Literature catalyst loadings are typically in the 

range of 1-5 mol % (10,000-50,000 ppm). Due to palladium’s endangered nature, new 

catalyst systems requiring only low catalyst loadings ( < 0.5 mol%) should help to make 

these processes sustainable.15 
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     Key to many of these ligands is the presence of an ortho biaryl scaffold. While this has 

proven to be a powerful  platform, there was a lingering question. Would an alternative 

biaryl substitution pattern also provide a ligand with powerful and diverse reactivity? To that 

end we endeavored to develop a novel ligand scaffold that is cheap, simple to craft, modular 

in nature, and capable of facilitating the SMC of densely functionalized heterocyclic 

coupling partners under traditional solvent or aqueous micellar conditions at low catalyst 

loadings and mild temperatures. 

C. Results and Discussion 

     Drawing inspiration from a variety of other ligands, we developed a rationale for key 

parameters in the structure and synthesis of the biaryl scaffold. A 2,6-disubstituted upper 

ring bearing electron-donating groups could further increase the basicity and nucleophilicity 

at phosphorus. These substituents could also have coordination potential to form a pseudo-

bidentate ligand similar to Buchwald ligands. A bulky lower ring could provide additional 

steric crowding. Critical to realizing these goals was an appreciation for the cost and 

availability of the starting materials and the manner in which the biaryl framework would be 

assembled. Given the abundance of aryl halides, boronic acids, and their generally attractive 

price points we chose to use a SMC to construct the biaryl system (Figure 4). We also aimed 

to avoid cryogenic (< 20 oC) conditions if possible. Commercially available 1-bromo-2,4-

dimethoxybenzene was coupled with (2-methoxynaphthalen-1-yl)boronic acid. While this 

coupling can proceed with a variety of catalysts in toluene it was ultimately optimized to 

proceed with the newly devised ligand in TPGS-750-M/H2O in 88% yield. Subsequent 

lithiation of the biaryl in THF at 0° C followed by nucleophilic addition to commercially 

available chlorodicyclohexylphosphine afforded the new ligand EvanPhos in 77% yield 
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(69% overall).16 Utilizing EvanPhos to construct the challenging tri-ortho substituted biaryl 

framework hinted at the high activity of this catalyst system (Figure 4).  

 

Figure 7: Two-step sequence to EvanPhos 

     While the main focus in the Lipshutz is to avoid the using bulk organic solvents for 

reaction,s we nonetheless desired to test the performance of EvanPhos in both aqueous and 

traditional solvent conditions. While performing reactions in organic solvenst is less ideal 

from an environmental standpoint than solely aqueous media, this drawback can be 

mitigated by choosing a solvent that is both low in toxicity and derived from renewable 

feedstocks such as EtOAc. Initial testing of EvanPhos utilizing 0.5 mol % Pd(OAc)2 to form 

nitrogen-rich biaryl 1 led to 70% conversion in 24 hours in toluene, a common literature 

solvent for the SMC, while the same coupling performed in EtOAc led to complete 

conversion and a 90% isolated yield in 16 hours, later improving to 92% in 2 hours under 

optimized conditions (pre-reduction with DIBAL). Given the stark reactivity difference 

between EtOAc and toluene we sought to interrogate the substrate scope of coupling 

partners in EtOAc utilizing 0.1-0.5 mol % Pd (Figure 5). A wide variety of aryl bromides 

and boronic acids bearing diverse electronics could be smoothly coupled in EtOAc (Figure 

5). Notably, this catalyst system was widely applicable to the synthesis of a multitude of 
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functionalized heterocycles in good-to-excellent isolated yields. Examples  that can typically 

pose significant issues in cross-coupling chemistry due the coordinative ability of the 

nitrogen or sulfur interfering with the catalytic cycle posed no apparent issues. 

 

Figure 8: Cross-couplings in EtOAc using [Pd(OAc)2 + 2EvanPhos]. Conditions: a.) Pd(OAc)2 (0.5 
mol%). EvanPhos (0.9–1.0 mol%) reduced with DIBAL/PhMe, halide (0.5 mmol), organoboron (0.75 
mmol), K3PO4 ·H2O (0.75 mmol), EtOAc (0.8 mL), PhMe (0.1 mL from catalyst solution), DI H2O (0.1 
mL). 45 °C. Reaction times not optimized at 0.1 mol% Pd. b.) Pd(OAc)2 (0.25 mol%) EvanPhos (0.45–0.5 
mol%). c.) Pd(OAc)2, (0.1 mol%), EvanPhos (0.18–0.2 mol%). d.) No DIBAL preactivation. 

Within our group it has been observed that stock solutions of ligand/pre-catalyst 

complexes which are necessary to achieve low catalyst loadings at the 0.5 mmol scale can 

result in irreversible catalyst decomposition over time even when stored under inert 

conditions. Notably, SPhos undergoes a dramatic color change over the course of 22 hours 
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resulting in significant loss of catalytic activity (Figure 6). This is likely due to known 

intramolecular phosphine oxidation pathways when ligated to Pd(OAc)2.17 EvanPhos 

exhibits no such color change over the same time period and maintains identical catalytic 

activity, indicative of this ligand’s resistance to these intramolecular deactivation processes 

(Figure 7). 

 

SPhos 30 s      SPhos 15 min     SPhos 6 h 

 

SPhos 8 h        SPhos 22 h      EvanPhos 18 h 

Figure 6: Color changes for ligands ligated to Pd(OAc)2 

 

Figure 7: Effect of stock solution age on catalytic activity 

     While good reactivity was observed in EtOAc we view this solvent as a stepping stone 

towards ultimately conducting reactions in aqueous micellar media. To that end a variety of, 
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once again, functionalized “drug-like” (hetero)aryl bromides and boronic acids were 

synthesized in good-to-excellent yields utilizing 0.1-0.5 mol% EvanPhos2Pd (Figure 8).   

 

Figure 8: SMC couplings in TPGS-750-M utilizing EvanPhos2Pd. Conditions: Conditions: a.) Pd(OAc)2 
(0.1 mol%), EvanPhos (0.18–0.2 mol%) reduced with DIBAL/PhMe, halide (0.5 mmol), organoboron 
(0.75 mmol), K3PO4·H2O (0.75 mmol). 2 wt% TPGS-750-M/H2O (0.9 mL), PhMe (0.1 mL from catalyst 
solution) 45 °C. Reaction times not optimized at 0.1 mol% Pd. b.) Pd(OAc)2 (0.25 mol%), EvanPhos 
(0.45–0.5 mol%). c.) Pd(OAc)2 (0.5 mol%), EvanPhos (0.9–1.0 mol%). d.) No DIBAL  

Several of these synthesized examples were compared to literature methods previously 

used for their synthesis (Figure 9). In all three cases EvanPhos compares favorably with 

regard to solvent, temperature, and/or catalyst loading. 
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Figure 9: Comparisons of EvanPhos with literature methods 

As a featured case the coupling to form biaryl 23 (Figure 10), an intermediate en route to 

CETP inhibitor anacetrapib, was conducted under micellar catalysis conditions using only 
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500 ppm Pd (0.05 mol%). Even using such a low catalyst loading, 21 could be isolated 

cleanly in 91% yield.  

 

Figure 10: Synthesis of Anacetrapib intermediate 

      Utilizing (EvanPhos)2Pd at the 1000-2500 ppm level results in low levels of residual 

palladium contamination in the products (Figure 11). This is an important benefit as all of 

the products analyzed for residual palladium contained between 1-10 ppm palladium, well 

within the FDA mandated limit of 10 ppm (10 µg/g drug/day).18 As such, use of EvanPhos 

complexed palladium at these low loadings is an option for the ultimate step of an API 

synthesis without fear of exceeding the FDA mandated 10 ppm limit.  
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Figure 11: Residual Pd levels 

     To gain better insight into the nature of the catalyst two compounds were synthesized and 

isolated as bis-EvanPhos ligated Pd(OAc)2 and PdCl2 which were both bench stable and 

catalytically active vs. a toluene based mixture of ligand and Pd(OAc)2. Attempts to obtain 

crystals suitable for single crystal X-ray crystallographic analysis proved futile for the 

Pd(OAc)2 complex but gratifyingly, crystals could be obtained for the PdCl2 complex 

(Figure 12). Two interesting features are noted in this crystal structure that bears Ci 

symmetry. First, there is a weak 3.076 Å coordination between the resorcinol methoxy 

closest to the naphthyl system and the metal center. This would later prove to be a salient 

feature throughout the catalytic cycle based on DFT calculations. Second, counter-

intuitively the biaryl bond is rotated such that the bulkier ring of the napthyl system is facing 

the metal center rather than the less congested methoxy group. MN15 based calculations 

place the crystallographically observed rotation 4.36 kcal/mol lower in energy than the 

initially predicted rotation predicted rotation.  
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Figure 12: X-ray crystal structure of EvanPhos2PdCl2. Hydrogens omitted for clarity 

    An analogue of EvanPhos wherein the cyclohexyls are replaced with t-butyl groups was 

synthesized. When the Pd(OAc)2 complex of t-buEvanPhos was synthesized an unexpected 

reaction occurred leading to the formation of an anionic bidentate P,O-desmethyl (t-

BuEvanPhos)PdOAc complex (Figure 13). Due to the presence of mEtOAc in the crude 

product, we conclude that this complex arises from an intramolecular nucelophillic 

displacement of the methyl group by the acetate ion (Figure 14) . Attempts to obtain single 

crystals of this compound yielded another unexpected result. Rather than the single atomic 

Pd complex, a Pd dimer crystallized from solution (Figure 13). This complex was only 

visible by ESI-MS at exceedingly high concentrations while the majority of observed 

species in the MS was identified as the single atomic Pd complex.  This leads us to conclude 

the single Pd atom complex is the dominant species in the mixture. This isolated powder 

was tested in several SMC reactions and proved to have essentially identical reactivity to 

EvanPhos. At the time of publication this was the first literature example of an anionic P,O 

bidentate ligand showing catalytic activity in a SMC (Figure 15). 
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Figure 13: X-ray crystal structure of desmethyl (t-BuEvanPhos)2Pd2(OAc)2. Hydrogens omitted for 

clarity. 

 

Figure 14: Formation of desmethyl t-BuEvanPhosPdOAc 

 

Figure 15: Comparisons betweent EvanPhos and t-BuEvanPhos  
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Given the modular nature of the EvanPhos synthesis other ligands have been prepared in 

search of enhanced reactivity. This effort has led to discovery of N2Phos (Figure 16) which 

shows greater reactivity upon complexation with Pd at both lower catalyst loadings and with 

aryl chlorides that could not be usefully coupled with EvanPhos.19 Additionally, EvanPhos 

has been incorporated into a novel substituted palladacycle for enhanced catalytic activity 

(Figure 16).20  

 

Figure 19: Structure of N2Phos and EvanPhos palladacycle 

D. Conclusion 

In summary, a newly designed ligand, EvanPhos, is described which when combined 

with palladium as a ca. 2 : 1 complex serves as a pre-catalyst for SM couplings in either 

EtOAc or under micellar conditions in water with equal efficiency. It can be prepared in two 

simple steps from either (CH3CN)PdCl2 or Pd(OAc)2, and is readily converted to a highly 

active Pd(0) species. This catalyst is even more reactive in the atypical organic medium 

EtOAc, rather than in commonly used toluene or ethereal solvents, and functions with 

loadings in the 0.05–0.5 mol% range of Pd. EvanPhos is also resistant to common 

intermolecular redox processes that lead to catalyst deactivation of other biaryl ligands. 
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E. Experimental Procedures and Analytical Data for the Synthesis of EvanPhos (2) and 
its Pd Complexes. 

  

  

1-(2,4-Dimethoxyphenyl)-2-methoxynaphthalene. An oven-dried 5 mL conical 

microwave vial containing an oblong stir bar was charged with Pd(OAc)2 (7.0 mg) and 

EvanPhos (29 mg) and sealed with a septum. The vial was evacuated and refilled 3x with 

argon. Toluene (0.64 mL) was added via syringe and the mixture was stirred for a minimum 

of 30 min under an inert atmosphere. A 4 mL dram vial containing an oblong stir bar was 

charged with 1-bromo-2-methoxynaphthalene (119 mg, 0.5 mmol), 2,4-

dimethoxyphenylboronic acid (173 mg, 0.95 mmol) and tribasic potassium phosphate 

monohydrate (173 mg, 0.75 mmol). The vial was fitted with a rubber septum and then 

evacuated and refilled 3x with argon. A 2 wt % solution of TPGS-750-M/H2O (0.9 mL) was 

added via syringe followed by the previously prepared catalyst solution (0.1 mL). The 

septum was removed and quickly replaced with a PTFE-lined threaded cap. The dram vial 

was placed in an aluminum reactor block containing a magnetic stir plate with a 

thermocouple set to 49 oC (NOTE: this yields a temperature of 45 oC within the reaction 

vial). The reaction was stirred rapidly for 3 h. The vial was removed from the reactor block 

and allowed to cool to rt. The reaction was extracted with EtOAc (3 x 1 mL) in flask and the 

combined organic layers were flushed through a Pasteur pipette plugged with cotton and 4 

cm of silica gel into a 50 mL round-bottomed flask. Volatiles were removed in vacuo. The 

product was purified via flash chromatography on silica gel eluting with 1:4 diethyl 

O

O

O
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ether/hexanes Rf = 0.20 in 1:4 diethyl ether:hexanes. The column was flushed with 100% 

diethyl ether. The pure product was collected. The impure fractions were collected along 

with the ether flush, concentrated in vacuo, and the resulting crude sample was 

chromatographed over silica gel eluting with 1:4 diethyl ether/hexanes. The pure fractions 

were combined and volatiles removed in vacuo to yield the title compound as an off-white 

powder (combined 130 mg, 88%).  

Gram scale synthesis of 1-(2,4-dimethoxyphenyl)-2-methoxynaphthalene. A 100 mL 

Schlenk flask containing a an oblong football shaped magnetic stir bar was consecutively 

charged with (EvanPhos)2Pd(OAc)2 (60.3 mg, 0.05 mmol), 1-bromo-2-methoxynaphthalene 

(1.186 g, 5.0 mmol), 2,4-dimethoxyphenylboronic acid (1.592 g, 8.75 mmol), and tribasic 

potassium phosphate monohydrate (2.02 g, 8.75 mmol). The flask was sealed with a septum 

then subjected to 3 evacuation/argon refill cycles. The flask was charged with toluene (1.5 

mL), and an aqueous solution of 2 wt % TPGS-750-M (8.5 mL). The flask was submerged 

in a heated oil bath (bath temperature 48 oC) and stirred vigorously for 5 h. After cooling to 

rt the mixture was diluted with EtOAc (40 mL) and stirred vigorously until all solids had 

dissolved. The mixture was transferred to a separatory funnel, washing with EtOAc to 

ensure complete transfer, and the phases were separated. The organic phase was dried over 

anhydrous Na2SO4 followed by solvent removal in vacuo. The crude material was 

chromatographed as before to yield the title compound as an off-white powder (1.251 g, 

85%)   

 

1H NMR (500 MHz, CDCl3) δ 7.87 (d, J = 9.0 Hz, 1H), 7.83 – 7.79 (m, 1H), 7.44 – 7.40 (m, 

1H), 7.37 (d, J = 9.0 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.13 (d, J = 7.8 Hz, 1H), 6.67 – 6.63 (m, 

2H), 3.90 (s, 3H), 3.85 (s, 3H), 3.68 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 160.38, 158.63, 
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154.47, 133.97, 132.63, 129.04, 128.90, 127.80, 126.03, 125.31, 123.33, 121.77, 117.67, 

114.10, 104.40, 99.03, 56.93, 55.66, 55.34. 

 

EvanPhos: dicyclohexyl(2,6-dimethoxy-3-(2-methoxynaphthalen-1-yl)phenyl)phos-

phane. A flame dried 250 mL 3-neck round bottomed flask containing a football shaped 

magnetic stir bar was charged with 1-(2,4-dimethoxyphenyl)-2-methoxynaphthalene (4.573 

g, 15.53 mmol) under a flow of argon. The vessel was evacuated and back-filled with argon 

three times. The vessel was charged with anhydrous THF (75 mL) and stirred until 

dissolution of the biaryl was visually complete. The vessel was submerged in an ice bath and 

stirred for 20 min. n-Butyllithium (2.23 [M] in hexanes, 6.9 mL, 15.38 mmol) was added to 

the stirring solution dropwise via syringe over 20 min. Upon complete addition of n-

butyllithium, the solution was allowed to stir in the ice bath for 30 min. Neat 

chlorodicyclohexylphosphine (3.35 mL, 15.16 mmol) was added dropwise via syringe over 

the course of 15 min. The solution was allowed to stir in the ice bath for 30 min. at which 

point the vessel was removed from the ice bath. Stirring was continued at rt for 1 h. The 

solution was quenched with water (25 mL) and diluted with diethyl ether (100 mL). The 

phases were separated and the aqueous phase was extracted with diethyl ether (2 x 50 mL). 

The combined organic phases were washed with a solution of 10% sulfuric acid/water (5 x 

20 mL) and the acidic layers were collected into a 1 L beaker. Diethyl ether (150 mL) was 

added to the beaker that was then cooled in an ice bath. Solid sodium carbonate was slowly 

added while gently swirling until gas evolution had ceased [CAUTION: extremely 

O

O

O

P
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exothermic. Add carbonate slowly and add more diethyl ether as needed to maintain 

approximately 100-150 mL of diethyl ether in the beaker]. The phases were separated and 

the aqueous phase was extracted with diethyl ether (3 x 50 mL). The ether was dried over 

anhydrous MgSO4 and concentrated in vacuo. The mixture was chromatographed over basic 

aluminum oxide eluting with 30% diethyl ether/hexanes (Rf = 0.26 30% diethyl 

ether/hexanes) which yielded a flocculent white solid (5.73 g, 77%). IMPORTANT 

NOTES CONCERNING ISOLATION:  this chromatographic purification must be run in 

20 min or less. Extended time in contact with the aluminum oxide will result in oxidation of 

the ligand to the phosphine oxide. The less time spent during chromatography directly 

translates to a lower percentage of phosphine oxide in the final product. Silica gel is 

extremely useful for analytically determining purity of the fractions by TLC but results in 

rapid oxidation of the phosphine to the phosphine oxide during column chromatography. 

DO NOT USE SILICA GEL FOR PURIFICATION AND RUN THE ALUMINUM 

OXIDE CHROMATOGRAPHIC PURIFICATION RAPIDLY. Additionally, fractions 

should be collected and concentrated rapidly. Allowing the phosphine to sit in the 

chromatographic eluent exposed to atmosphere will result in oxidation of the phosphine to 

the phosphine oxide as well. Finally, once the last traces of solvent are removed in vacuo the 

product will foam vigorously and expand to consume the full headspace of the vessel and 

will likely end up in the rotary evaporator and/or hi-vac lines. To avoid this use a 

significantly larger vessel than one would normally pick for this scale of reaction. A batch 

synthesized on the scale presented here should use a 1 L round-bottomed flask or other 

appropriate vessel for concentration/solvent evaporation. 1H NMR with 31P decoupling (400 

MHz, CDCl3) δ 7.88 (d, J = 9.0 Hz, 1H), 7.83 – 7.79 (m, 1H), 7.48 – 7.43 (m, 1H), 7.39 – 

7.29 (m, 3H), 7.18 (d, J = 8.3 Hz, 1H), 6.75 (d, J = 8.4 Hz, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 
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3.22 (s, 3H), 2.46 – 2.30 (m, 2H), 2.01 – 1.88 (m, 2H), 1.81 – 1.54 (m, 8H), 1.37 – 1.06 (m, 

10H). 13C NMR (101 MHz, CDCl3) δ 164.78, 164.65, 163.30, 154.43, 134.41, 133.87, 

129.17, 129.14, 127.95, 126.42, 125.39, 123.56, 122.56, 121.98, 113.93, 106.20, 61.05, 

56.90, 55.58, 34.76 (d, J = 11.5 Hz), 34.32 (d, J = 11.7 Hz), 32.71 (d, J = 24.5 Hz), 32.34 (d, 

J = 22.2 Hz), 30.70 (dd, J = 8.8, 6.4 Hz), 27.64 – 27.15 (m), 26.67. 13C NMR (126 MHz, 

CDCl3) δ 164.81, 164.71, 163.35, 154.49, 134.44, 133.93, 129.21, 129.18, 127.96, 126.42, 

125.44, 123.58, 122.68, 122.04, 114.02, 106.24, 61.06, 61.03, 56.93, 55.59, 34.86, 34.76, 

34.44, 34.35, 32.82, 32.63, 32.48, 32.30, 30.81, 30.74, 30.68, 27.64, 27.59, 27.57, 27.53, 

27.42, 27.34, 27.31, 27.22, 26.71 (complexity due to phosphorus coupling). 31P NMR (162 

MHz, CDCl3) δ -9.24 (phosphine oxide appears at 50.80). Chemical Formula:  C31H39O3P. 

EI-MS [M*+] calcd:  490.2637; found: 490.2630. 

 

t-BuEvanPhos.Di-t-butyl(2,6-dimethoxy-3-(2-methoxynaphthalen-1-

yl)phenyl)phosphane. A flame dried 400 mL cylindrical pressure vessel with 24/40 jointed 

side arm and threaded screw cap (see page 6 for picture of the reaction apparatus) containing 

a football shaped magnetic stir bar was charged with 1-(2’,4’-dimethoxyphenyl)-2-

methoxynaphthalene (1.30 g, 4.42 mmol) under a flow of argon. The vessel was charged 

with anhydrous THF (25 mL) and sealed with a rubber septum. The mixture was stirred until 

dissolution of the biaryl was visually complete. The vessel was submerged in an ice bath and 

stirred for 20 min. n-Butyllithium (2.39 [M] in hexanes, 1.77 mL, 4.22 mmol) was added to 

the stirring solution dropwise via syringe over 20 min. Upon complete addition of n-

O

O
O

P
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butyllithium, the solution was allowed to stir in the ice bath for 30 min. Neat di-t-

butylchlorophosphane (0.76 mL, 4.22 mmol) was added dropwise via syringe over the 

course of 15 min. The solution was allowed to stir in the ice bath for 30 min. at which point 

the vessel was removed from the ice bath. Stirring was continued at rt for 1 h. The rubber 

septum was removed and neat Cu(I)Cl (0.605 g, 4.22) was added to the vessel. Residual 

Cu(I)Cl was rinsed into the vessel with anhydrous THF (5 mL). The vessel was sealed with 

a threaded screw cap, placed in an oil bath set to 90 oC, and stirred for 18 h. The vessel was 

cooled to rt. The solution was quenched with water (25 mL) and diluted with diethyl ether 

(100 mL). The phases were separated and the aqueous phase was extracted with diethyl 

ether (2 x 50 mL). The combined organic phases were washed with a solution of 10% 

sulfuric acid/water (5 x 20 mL) and the acidic layers were collected into a 1 L beaker. 

Diethyl ether (150 mL) was added to the beaker that was then cooled in an ice bath. Solid 

sodium carbonate was slowly added while gently swirling until gas evolution had ceased 

[CAUTION: extremely exothermic. Add carbonate slowly and add more diethyl ether as 

needed to maintain approximately 100-150 mL of diethyl ether in the beaker]. The phases 

were separated and the aqueous phase was extracted with diethyl ether (3 x 50 mL). The 

ether was removed in vacuo and the resulting viscous oil was flushed through a plug of basic 

alumina with 30% ether/hexanes. The solvent was removed in vacuo yielding a white 

powder (0.833 g, 45%). 

 

1H NMR with 31P decoupling (400 MHz, CDCl3) δ 7.91 – 7.77 (m, 2H), 7.52 – 7.45 (m, 

1H), 7.40 – 7.27 (m, 3H), 7.21 (d, J = 8.4 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 3.84 (s, 6H), 

3.27 (s, 3H), 1.27 (d, J = 11.3 Hz, 18H). 31P NMR (162 MHz, CDCl3) δ 61.89, 24.75. 

Molecular formula: C27H35O3P ESI-MS [M+H]+ calcd:  439.2402; found:  439.2389. 



 

 30 

General procedure for the synthesis of (EvanPhos)2Pd and related complexes. A dry 

25 mL round-bottom flask containing a magnetic stir bar was charged with an appropriate 

palladium(II) salt under an argon atmosphere. Sufficient dry toluene was added to achieve 

0.4 [M] relative to the palladium(II) salt and the mixture was stirred until dissolution of the 

palladium was complete. A separate dry 25 mL round-bottom flask was charged the 

appropriate ligand (2.05:1 L:Pd) and dissolved in dry toluene to achieve 0.4 [M]. The ligand 

solution was transferred to the palladium solution via syringe in a dropwise fashion over the 

course of 30 min. Upon complete addition the flask containing the ligand was rinsed with a 

small portion of dry toluene and this was subsequently transferred to the palladium-

containing flask. The mixture was allowed to stir for 1-2 h (EvanPhos) 24 h (t-BuEvanPhos) 

under an argon atmosphere. A yellow powdery precipitate was observed in all cases. A 22 

gauge vent needle was placed into the septum to halve the volume of toluene in the flask. 

The mixture was vacuum filtered and the resulting yellow powder was rinsed liberally with 

hexanes. The material was transferred to a vial and volatiles were removed in vacuo. 

 

 

 

EvanPhos2[Pd(OAc)2]. Synthesized according to the general procedure utilizing Pd(OAc)2 

(86 mg, 0.38 mmol) and EvanPhos (383 mg, 0.781 mmol). Material was isolated as a yellow 
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powder (366 mg, 85%). Chemical Formula:  C66H84O10P2Pd. ESI-MS [M+H-2(OAc)]+ 

calcd:  1087.4408; found: 1087.4413. 

 

 

EvanPhos)2PdCl2. Synthesized according to the general procedure utilizing (MeCN)2PdCl2 

(52 mg, 0.2 mmol) and EvanPhos (202 mg, 0.411 mmol). Material was isolated as a yellow 

powder (154 mg, 67%). Chemical Formula:  C62H78Cl2O6P2Pd. ESI-MS [M+H-2(Cl)]+ 

calcd:  1087.4408; found: 1087.4404. 

 

 

 

(t-BuEvanPhos)Pd(OAc). Synthesized according to the general procedure utilizing 

Pd(OAc)2 (60 mg, 0.27 mmol) and EvanPhos (234 mg, 0.53 mmol). Material was isolated as 

a yellow powder. Chemical Formula:  C58H76O10P2Pd. ESI-MS [M+2CH3CN-(OAc)]+ calcd:  

611.1167; found: 611.1642.  

General procedure for catalyst solution preparation and optional pre-reduction. 

Pd(OAc)2 (3.0-11.0 mg) and EvanPhos (1.75-2.0 equiv EvanPhos : Pd) were added to a dry 
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5 mL microwave vial containing an oblong stir bar. The vial was sealed with a rubber 

septum and the vial was evactuated and refilled with argon 3x. Dry toluene was added to the 

vial to achieve a concentration of 0.56 mg Pd(OAc)2/0.1 mL toluene for a 0.5 mmol scale 

reaction (0.56 mg Pd(OAc)2 in 0.1 mL toluene yields 0.5 mol % catalyst loading). To 

achieve lower catalyst loadings, e.g., 0.1-0.25 mol % Pd, dilute this mixture accordingly). 

The mixture was stirred at a moderate speed for a minimum of 30 min under an argon 

atmosphere. OPTIONAL:  For reactions that may be slow to initiate pre-reduction of the 

catalyst with DIBAL may be beneficial. After 30 min, DIBAL (1.0 [M] in toluene or DCM, 

2.0-2.1 equiv relative to Pd) was added dropwise. Complete reduction is accompanied by the 

mixture turning brown/black. At this point the catalyst is ready and may be added to the 

reaction mixture. This procedure is exactly the same for the use of isolated EvanPhos2PdX2 

catalysts in place of Pd(OAc)2 + 2EvanPhos. 

General procedure A for Suzuki-Miyaura reactions in EtOAc. A 4 mL dram vial 

containing an oblong magnetic stir bar was charged with solid halide (0.5 mmol), 

organoboron (0.75 mmol, though many reactions can be conducted effectively with 0.625 

mmol) and potassium phosphate monohydrate (0.75 mmol). The vial was fitted with a 

rubber septum, and then evacuated and refilled with argon 3x. At this point liquid halides 

could be added via syringe. Degassed EtOAc (0.8 mL), DI water (0.1 mL), and the catalyst 

solution (0.1 mL = 0.1-0.5 mol % Pd) were added sequentially to the vial via syringe. Unless 

otherwise noted the catalyst was pre-reduced with DIBAL. The septum was removed and 

quickly replaced with a PTFE lined threaded cap. The vial was placed in an aluminum 

heating block over a stir plate with stir rate set to 1100 rpm and a thermocouple probe in the 

aluminum block set to 49 oC (NOTE: this yields a temperature of 45 oC within the reaction 

vial). Reactions were followed by TLC and/or GC/MS monitoring. When the reactions were 
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judged complete (or continued progress was not observed for incomplete reactions) the vial 

was cooled to rt. The mixture was flushed through a Pasteur pipette containing a cottton 

plug and silica gel. If needed the vial was rinsed with additional EtOAc to remove any 

material remaining. Volatiles were removed in vacuo and the crude mixture purified via 

flash chromatography. 

General procedure B for Suzuki-Miyaura reactions in aqueous TPGS-750-M. A 4 

mL dram vial containing an oblong magnetic stir bar was charged with solid halide (0.5 

mmol), organoboron (0.75 mmol, though many reactions can be conducted effectively with 

0.625 mmol) and potassium phosphate monohydrate (0.75 mmol). The vial was fitted with a 

rubber septum and then evacuated and refilled with argon 3x. At this point liquid halides 

could be added via syringe. A solution of 2 wt % aq. TPGS-750-M (0.9 mL) and the catalyst 

solution (0.1 mL = 0.05-0.5 mol % Pd) were added sequentially to the vial. Unless otherwise 

noted the catalyst was pre-reduced with DIBAL. The septum was removed and quickly 

replaced with a PTFE lined threaded cap. The vial was placed in an aluminum heating block 

over a stir plate with stir rate set to 1100 rpm with a thermocouple probe in the aluminum 

block set to 49 oC (NOTE: this yields a temperature of 45 oC within the reaction vial). 

Reactions were followed by TLC and/or GC/MS monitoring. When the reactions were 

judged complete (or continued progress was not observed for incomplete reactions) the vial 

was cooled to rt. The mixture was extracted with EtOAc (3 x 1 mL) and the organic phase 

was flushed through a Pasteur pipette containing a cotton plug and silica gel. Volatiles were 

removed in vacuo and the crude mixture was purified via flash chromatography. 
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F. Substrates 

 

1-Methyl-5-(2-(piperidin-1-yl)pyrimidin-5-yl)-1H-indole. Synthesized utilizing 5-bromo-

2-(piperidin-1-yl)pyrimidine and (1-methyl-1H-indol-5-yl)boronic acid according to general 

procedure A (3.5 h, 134 mg, 92% yield. 0.5 mol % Pd) and general procedure B (16 h, 127 

mg, 87%. 0.1 mol % Pd) (1.5 h, 136 mg, 93%. 0.5 mol % Pd) (1.5 h, 132 mg, 90%. 0.5 mol 

% of isolated t-BuEvanPhosPd[OAc]). White solid, turns red over time when exposed to the 

atmosphere. Rf  = 0.31 in 3:20 EtOAc:hexanes. 1H NMR (400 MHz, CDCl3) δ 8.59 (s, 2H), 

7.70 (d, J = 1.6 Hz, 1H), 7.43 – 7.29 (m, 2H), 7.09 (d, J = 3.1 Hz, 1H), 6.53 (d, J = 3.1 Hz, 

1H), 3.83 (d, J = 5.8 Hz, 7H), 1.76 – 1.61 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 160.92, 

156.15, 136.23, 129.79, 129.26, 127.41, 123.83, 120.31, 118.24, 109.96, 101.32, 45.20, 

33.08, 25.93, 25.07. Chemical Formula: C18H20N4 ESI-MS [M+H]+ calcd:  293.1766; found: 

293.1767. 

 

t-Butyl 2-(2-morpholinopyrimidin-5-yl)-1H-indole-1-carboxylate: Synthesized utilizing 

4-(5-bromopyrimidin-2-yl)morpholine and (1-(t-butoxycarbonyl)-1H-indol-2-yl)boronic 

acid according to general procedure A (3 h, 179 mg, 94% yield. 0.5 mol % Pd) and general 

procedure B (3 h, 185 mg, 97%, 0.5 mol % Pd). White solid. Rf  = 0.23 in 3:17 
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EtOAc:hexanes. 1H NMR (400 MHz, CDCl3) δ 8.39 (s, 2H), 8.18 (d, J = 8.3 Hz, 1H), 7.55 

(d, J = 7.6 Hz, 1H), 7.38 – 7.21 (m, 2H), 6.55 (s, 1H), 3.90 – 3.82 (m, 4H), 3.83 – 3.75 (m, 

4H), 1.50 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 160.84, 157.27, 150.23, 137.27, 135.08, 

129.25, 124.67, 123.27, 120.56, 117.87, 115.85, 110.63, 84.28, 66.96, 44.49, 28.11. 

Chemical Formula: C21H24N4O3. ESI-MS [M+Na]+ calcd: 403.1746; found:  403.1748. 

 

2-(4-Methoxy-2-methylphenyl)-6-methyl-3-nitropyridine. Synthesized utilizing 2-bromo-

6-methyl-3-nitropyridine and (4-methoxy-2-methylphenyl)boronic acid according to general 

procedure A (10 h, 123 mg, 95% yield. 0.5 mol % Pd) and general procedure B (1.5 h, 121 

mg, 94%. 0.1 mol % Pd) (1.5 h, 118 mg, 92%, 0.25 mol % of isolated t-

BuEvanPhosPd[OAc]). Viscous yellow oil that slowly solidifies. Rf  = 0.19 in 3:17 

EtOAc:hexanes. 1H NMR (400 MHz, CDCl3) δ 8.17 (d, J = 8.3 Hz, 1H), 7.29 (d, J = 8.4 Hz, 

1H), 7.13 (d, J = 8.2 Hz, 1H), 6.85 – 6.75 (m, 2H), 3.82 (s, 3H), 2.69 (s, 3H), 2.16 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 162.74, 160.10, 153.75, 144.58, 137.47, 132.55, 129.65, 

129.46, 122.16, 116.08, 111.44, 55.38, 24.97, 19.90. Chemical Formula: C14H14N2O3 ESI-

MS [M+Na]+ calcd:  281.0902; found:  281.0902. 

 

4-Chloro-2',4'-difluoro-[1,1'-biphenyl]-2-carbaldehyde.  Synthesized utilizing 2-bromo-

5-chloro-benzaldehyde and (2,4-difluorophenyl)boronic acid without DIBAL pre-reduction 

of the catalyst according to general procedure A (3 h, 120 mg, 95% yield, 0.5 mol % Pd) and 

N
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general procedure B (2 h, 122 mg, 97 %, 0.5 mol % Pd). Rf  = 0.53 in 3:17 EtOAc:hexanes. 

1H NMR (400 MHz, CDCl3) δ 9.84 (d, J = 3.0 Hz, 1H), 8.00 (d, J = 2.3 Hz, 1H), 7.64 (dd, J 

= 8.2, 2.3 Hz, 1H), 7.37 – 7.28 (m, 2H), 7.00 (dtd, J = 27.7, 9.1, 8.6, 2.5 Hz, 2H). 13C NMR 

(101 MHz, CDCl3) δ 190.01 (d, J = 2.3 Hz), 163.46 (dd, J = 251.5, 11.6 Hz), 159.80 (dd, J = 

249.7, 12.2 Hz), 136.17, 135.43, 135.15, 133.87, 132.96, 132.68 (dd, J = 9.6, 4.1 Hz), 

128.08, 120.84, 112.13 (dd, J = 21.4, 4.0 Hz), 104.50 (d, J = 25.8 Hz).19F NMR (376 MHz, 

CDCl3) δ -108.24 (p, J = 7.7 Hz, J1 C-F= 251.5 Hz), -110.84 (q, J = 8.4 Hz, J1 C-F= 249.7). 

Chemical Formula:  C13H7ClF2O CI-MS [M +] calcd: 252.0154; found: 252.0154. 

 

t-Butyl 5-(4-cyanophenyl)-3-formyl-1H-indole-1-carboxylate. Synthesized utilizing t-

butyl 5-bromo-3-formyl-1H-indole-1-carboxylate and (4-cyanophenyl)boronic acid 

according to general procedure A (14 h, 121 mg, 70% yield, 0.5 mol % Pd) Rf  = 0.16 in 

3:17 EtOAc/ hexanes. 1H NMR (400 MHz, CDCl3) δ 10.12 (s, 1H), 8.53 (s, 1H), 8.31 – 8.21 

(m, 2H), 7.75 (q, J = 8.1 Hz, 4H), 7.64 (d, J = 8.7 Hz, 1H), 1.73 (s, 9H). 13C NMR (101 

MHz, CDCl3) δ 185.81, 148.67, 145.60, 137.44, 136.16, 135.97, 132.71, 128.15, 126.97, 

125.48, 121.70, 121.04, 119.10, 115.91, 110.92, 86.27, 77.48, 77.16, 76.84, 28.22. Chemical 

Formula: C21H18N2O3 ESI-MS [M+Na]+ calcd: 369.1215; found:  369.1208. 

 

6-(Dibenzo[b,d]thiophen-3-yl)picolinaldehyde. Synthesized utilizing 6-

bromopicolinaldehyde and dibenzo[b,d]thiophen-3-ylboronic acid according to general 

procedure A (14 h, 144 mg, quantitative) Rf  = 0.24 in 9 EtOAc:hexanes. 1H NMR (400 
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MHz, CDCl3) δ 10.22 (s, 1H), 8.84 (d, J = 1.7 Hz, 1H), 8.31 – 8.22 (m, 1H), 8.14 (dd, J = 

8.5, 1.8 Hz, 1H), 8.01 (dd, J = 6.6, 2.3 Hz, 1H), 7.97 – 7.82 (m, 4H), 7.55 – 7.44 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 194.01, 157.74, 152.87, 141.07, 139.97, 137.92, 136.30, 

135.53, 134.68, 127.21, 125.44, 124.71, 124.42, 123.24, 123.02, 121.96, 120.13, 119.79. 

Chemical Formula:  C18H11NOS ESI-MS [M+Na]+ calcd:  312.0459; found: 312.0458. 

 

 

4-Methyl-6-(naphthalen-1-yl)pyrimidin-2-amine : Synthesized utilizing 4-chloro-6-

methyl-pyrimidin-2-amine and naphthalene-1-boronic acid according to general procedure 

A (18 h, 118 mg, quantitative. 0.5 mol % Pd) Rf  =  0.17 in 3:17 EtOAc:hexanes. 1H NMR 

(400 MHz, CDCl3) δ 8.19 – 8.10 (m, 1H), 7.95 – 7.85 (m, 2H), 7.58 (dd, J = 7.1, 1.4 Hz, 

1H), 7.57 – 7.45 (m, 3H), 6.79 (s, 1H), 5.24 (s, 2H), 2.44 (s, 3H). 13C NMR (101 MHz, 

CDCl3) δ 168.56, 167.80, 163.03, 136.86, 134.01, 130.72, 129.77, 128.55, 127.05, 126.77, 

126.20, 125.54, 125.32, 112.23, 24.30. Chemical Formula:  C15H13N3 ESI-MS [M+Na]+ 

calcd:  258.1007; found:  258.1011. 

 

 

t-Butyl 5-(1-tosyl-1H-indol-3-yl)-1H-pyrrolo[2,3-b]pyridine-1-carboxylate : Synthesized 

utilizing tert-butyl 5-bromo-1H-pyrrolo[2,3-b]pyridine-1-carboxylate and (1-tosyl-1H-indol-
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3-yl)boronic acid according to general procedure A (18 h, 224 mg, 92%, 0.5 mol % Pd) Rf  =  

0.35 in 3:17 EtOAc:hexanes. 1H NMR (400 MHz, CDCl3) δ 8.73 (d, J = 2.1 Hz, 1H), 8.10 – 

8.02 (m, 2H), 7.82 (d, J = 8.1 Hz, 2H), 7.77 – 7.66 (m, 3H), 7.38 (t, J = 7.7 Hz, 1H), 7.29 (t, 

J = 7.6 Hz, 1H), 7.23 (d, J = 8.1 Hz, 2H), 6.55 (d, J = 4.0 Hz, 1H), 2.33 (s, 3H), 1.69 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 147.92, 147.73, 145.27, 144.57, 135.45, 135.11, 130.08, 

129.38, 128.29, 127.49, 126.99, 125.19, 124.09, 123.83, 123.23, 123.18, 121.28, 120.15, 

113.96, 104.58, 84.37, 28.19, 21.68. Chemical Formula:  C27H25N3O4S ESI-MS [M+Na]+ 

calcd:  510.1463; found:  510.1476. 

 

 

2-(Benzofuran-2-yl)-6-methyl-3-nitropyridine. Synthesized utilizing 2-bromo-6-methyl-3-

nitro-pyridine and benzofuran-2-ylboronic acid according to general procedure B (4 h, 116 

mg, 91%, 0.25 mol % Pd) Rf  = 0.25  in 1:4 EtOAc:hexanes. 1H NMR (400 MHz, CDCl3) δ 

7.94 (d, J = 8.3 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H), 7.52 (d, J = 9.8 Hz, 2H), 7.37 (t, J = 7.7 

Hz, 1H), 7.31 – 7.21 (m, 2H), 2.71 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 162.14, 155.82, 

151.21, 141.12, 132.30, 128.02, 126.30, 123.61, 122.75, 122.17, 112.04, 109.38, 24.87. 

Chemical Formula:  C14H10N2O3 CI-MS [M]+ calcd: 254.0591; found:  254.0694. 
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1-(5-(Benzofuran-2-yl)-2-fluorophenyl)piperidin-2-one. Synthesized utilizing 1-(5-

bromo-2-fluorophenyl)piperidin-2-one and benzofuran-2-ylboronic acid according to 

general procedure B (16 h, 114 mg, 74%, 0.5 mol % Pd) (16 h, 118 mg, 76%, 0.5 mol % of 

isolated t-BuEvanPhosPd[OAc]) Rf  = 0.22 in 40% EtOAc:hexanes. 1H NMR (400 MHz, 

CDCl3) δ 7.80 – 7.71 (m, 1H), 7.57 (d, J = 7.4 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.33 – 7.17 

(m, 3H), 6.96 (s, 1H), 3.65 (t, J = 5.3 Hz, 2H), 2.65 – 2.57 (m, 2H), 1.99 (p, J = 3.3 Hz, 4H). 

13C NMR (101 MHz, CDCl3) δ 170.11, 157.90 (d, J = 252.8 Hz), 154.95, 154.43 (d, J = 1.5 

Hz), 131.27 (d, J = 13.9 Hz), 129.18, 127.74, 125.95 (d, J = 1.9 Hz), 125.58 (d, J = 8.1 Hz), 

124.55 (d, J = 8.0 Hz), 123.16, 121.10, 117.32 (d, J = 21.3 Hz), 111.23 (d, J = 21.3 Hz), 

101.63, 51.46 (d, J = 1.8 Hz), 32.71, 23.52, 21.52. 19F NMR (376 MHz, CDCl3) δ -120.24 – 

-120.31 (m, J1 C-F= 252.8 Hz). Chemical Formula:  C19H16FNO2 ESI-MS [M+Na]+ calcd:  

332.1063; found:  332.1067. 

 

2-(2,4-Difluorophenyl)-3-fluoro-6-methylpyridine. Synthesized utilizing 2-bromo-3-

fluoro-6-methylpyridine  and (2,4-difluorophenyl)boronic acid according to general 

procedure B (20 h, 78 mg, 70%, 0.5 mol % Pd) Rf  =  0.43 in 3:17 EtOAc:hexanes. 1H NMR 

(500 MHz, CDCl3) δ 7.58 (td, J = 8.4, 6.4 Hz, 1H), 7.38 (t, J = 8.8 Hz, 1H), 7.18 (dd, J = 

8.4, 3.6 Hz, 1H), 7.01 (td, J = 8.3, 2.4 Hz, 1H), 6.96 – 6.87 (m, 1H), 2.60 (s, 3H). 13C NMR 

(101 MHz, CDCl3) δ 163.72 (dd, J = 250.6, 11.8 Hz), 160.51 (dd, J = 253.2, 12.0 Hz), 

155.86 (d, J = 256.8 Hz), 154.50 (d, J = 4.8 Hz), 140.94 (d, J = 15.4 Hz), 132.62 (ddd, J = 

9.9, 5.0, 1.3 Hz), 124.13 – 124.05 (m), 123.88, 120.34 – 120.00 (m), 111.86 (dd, J = 21.4, 

3.8 Hz), 104.25 (t, J = 25.7 Hz).19F NMR (376 MHz, CDCl3) δ -108.81 – -108.91 (m, J1 C-F 
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= 250.6 Hz), -109.95 (dq, J = 30.6, 8.9 Hz, J1 C-F= 253.7 Hz), -126.82 (ddd, J = 30.5, 9.3, 

3.6 Hz, J1 C-F= 256.8 Hz). Chemical Formula: C12H8F3N CI-MS [M]+ calcd:  223.0609; 

found: 223.0609. 

 

 

5-(2-Fluoro-5-nitrophenyl)-1-(phenylsulfonyl)-1H-indole. Synthesized utilizing 2-bromo-

1-fluoro-4-nitrobenzene and (1-(phenylsulfonyl)-1H-indol-5-yl)boronic acid according to 

general procedure B (8 h, 168 mg, 85%, 0.5 mol % Pd) Rf  = 0.28 in 1:4 EtOAc:hexanes. 1H 

NMR (500 MHz, CDCl3) δ 8.38 (dd, J = 6.6, 2.9 Hz, 1H), 8.25 – 8.18 (m, 1H), 8.11 (d, J = 

8.7 Hz, 1H), 7.92 (dd, J = 7.5, 1.7 Hz, 2H), 7.74 (d, J = 3.6 Hz, 1H), 7.65 (d, J = 3.7 Hz, 

1H), 7.57 (t, J = 7.4 Hz, 1H), 7.54 – 7.45 (m, 3H), 7.30 (t, J = 9.2 Hz, 1H), 6.74 (d, J = 3.6 

Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 163.31 (d, J = 258.8 Hz), 144.62, 138.30, 134.97, 

134.21, 131.25, 130.67, 130.55, 129.56, 128.80, 127.51, 126.96, 126.90 (d, J = 5.6 Hz), 

125.59 (d, J = 3.0 Hz), 124.53 (d, J = 10.1 Hz), 122.23 (d, J = 3.2 Hz), 117.34 (d, J = 25.8 

Hz), 113.99, 109.37.. 19F NMR (376 MHz, CDCl3) δ -107.04 (dt, J = 9.6, 4.7 Hz). Chemical 

Formula:  C20H13FN2O4S ESI-MS [2M+Na]+ calcd:  815.1058;  found:  815.1064. 
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2-(Benzo[b]thiophen-2-yl)-4-methoxybenzaldehyde. Synthesized utilizing 2-bromo-4-

methoxy-benzaldehyde and benzo[b]thiophen-2-ylboronic acid MIDA ester according to 

general procedure B (48 h, 92%) Rf  = 0.38 in 3:17 EtOAc:hexanes. 1H NMR (400 MHz, 

CDCl3) δ 10.13 (s, 1H), 8.05 (d, J = 8.6 Hz, 1H), 7.86 (ddd, J = 18.0, 7.0, 2.1 Hz, 2H), 7.41 

(tt, J = 7.3, 5.7 Hz, 2H), 7.31 (s, 1H), 7.10 – 7.00 (m, 2H), 3.93 (s, 3H). 13C NMR (101 

MHz, CDCl3) δ 190.61, 163.59, 140.62, 140.56, 139.90, 138.82, 130.42, 128.12, 126.33, 

125.14, 125.06, 124.08, 122.28, 115.97, 115.06, 77.48, 77.16, 76.84, 55.88. Chemical 

Formula:  C16H12O2S ESI-MS [M+Na]+ calcd:  291.0456; found:  291.0462. 

 

6-(4-(Trifluoromethoxy)phenyl)benzo[d][1,3]dioxole-5-carbaldehyde. Synthesized 

utilizing 6-bromopiperonal and 4-(trifluormethoxy)benzeneboronic acid according to 

general procedure B (20 h, 152 mg, 98%. 0.25 mol % Pd); Rf = 0.44 in 1:4 EtOAc:hexanes; 

1H NMR (400 MHz, CDCl3) δ 9.73 (s, 1H), 7.47 (s, 1H), 7.37 (d, J = 8.2 Hz, 2H), 7.30 (d, J 

= 8.3 Hz, 2H), 6.82 (s, 1H), 6.11 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 190.15, 152.35, 

149.36, 148.28, 142.05, 136.37, 131.62, 129.05, 120.96, 110.33, 106.65, 102.40. 19F NMR 

(376 MHz, CDCl3) δ -57.85 (J1C-F= 287.7 Hz). Chemical Formula:  C15H9F3O4 ESI-MS 

[M-Na]- calcd:  333.0351; found:  333.0355. 

 

Methyl 4-hydroxy-4'-(trifluoromethoxy)-[1,1'-biphenyl]-2-carboxylate. Synthesized 

utilizing methyl 5-hydroxy-2-iodobenzoate and 4-(trifluoromethoxy)benzeneboronic acid 

O

O

O

OCF3

CO2MeHO

OCF3
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according to general procedure B (10 h, 116 mg, 74%. 0.1 mol % Pd) Rf  =  0.45 in 40% 

EtOAc:hexanes. 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 9.2 Hz, 2H), 7.58 (s, 1H), 7.56 

(s, 1H), 7.33 (dd, J = 8.1, 4.3 Hz, 3H), 5.50 (s, 1H), 3.94 (s, 3H). 13C NMR (101 MHz, 

CDCl3) δ 166.87, 152.63, 135.28, 131.68, 131.16, 130.75, 130.66, 122.36, 121.54, 117.42, 

52.51. 19F NMR (376 MHz, CDCl3) δ -57.79 (J1 C-F= 257.6 Hz). Chemical Formula:  

C15H11F3O4 ESI-MS [M-H]- calcd:  311.0531; found:  311.0537. 

 

 

6-(1-Methyl-1H-indol-5-yl)benzo[d][1,3]dioxole-5-carbaldehyde. Synthesized utilizing 5-

bromo-piperonal and (1-methyl-1H-indol-5-yl)boronic acid according to general procedure 

A (20 h, 113 mg, 81%. 0.1 mol % Pd) without pre-reduction of the palladium acetate and 

utilizing toluene:water 9:1 as the reaction medium. Rf  = 0.40 in 1:4 EtOAc:hexanes. 1H 

NMR (500 MHz, CDCl3) δ 9.78 (s, 1H), 7.58 (d, J = 1.7 Hz, 1H), 7.48 (s, 1H), 7.38 (d, J = 

8.4 Hz, 1H), 7.20 (dd, J = 8.4, 1.8 Hz, 1H), 7.14 (d, J = 3.1 Hz, 1H), 6.93 (s, 1H), 6.53 (d, J 

= 3.0 Hz, 1H), 6.09 (s, 2H), 3.85 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 191.61, 152.00, 

147.44, 145.39, 136.53, 130.19, 129.14, 128.84, 128.52, 124.07, 122.89, 110.88, 109.20, 

106.26, 102.08, 101.46, 33.17. Chemical Formula:  C17H13NO3 ESI-MS [M+Na]+ calcd:  

302.0793; found:  302.0790. 

O

O

O

N
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4'-Fluoro-5'-isopropyl-2'-methoxy-4-(trifluoromethyl)-[1,1'-biphenyl]-2-carbaldehyde. 

Synthesized utilizing 2-bromo-5-(trifluoromethyl)benzaldehyde and (4-fluoro-5-isopropyl-

2-methoxy-phenyl)boronic acid according to general procedure B (20 h, 155, 91%, 0.05 mol 

% Pd). Rf  = 0.60 in 1:4 Et2O/hexanes. 1H NMR (400 MHz, CDCl3) δ 9.77 (s, 1H), 8.25 (s, 

1H), 7.87 (d, J = 7.8 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 8.4 Hz, 1H), 6.70 (d, J = 

11.9 Hz, 1H), 3.72 (s, 3H), 3.24 (hept, J = 6.9 Hz, 1H), 1.27 (d, J = 7.2 Hz, 7H). 13C NMR 

(101 MHz, CDCl3) δ 191.16, 161.78 (d, J = 248.3 Hz), 155.46 (d, J = 10.2 Hz), 144.54, 

134.49, 132.21, 130.17, 129.96 (q, J = 3.4 Hz), 129.76 (d, J = 7.4 Hz), 127.94 (d, J = 15.6 

Hz), 124.08 (q, J = 3.8 Hz), 121.12 (d, J = 3.5 Hz), 99.42 (d, J = 27.8 Hz), 55.92, 26.88, 

22.91.19F NMR (376 MHz, CDCl3) δ -62.84 (J1 C-F= 272.4 Hz), -114.25 (dd, J = 11.8, 8.4 

Hz, J1 C-F = 248.3 Hz). Chemical Formula:  C18H16F4O2 ESI-MS [M+Na+MeOH]+ calcd:  

395.1246; found: 395.1236. 

 

t-Butyl 5-(1-methyl-1H-indol-5-yl)-1H-pyrrolo[2,3-b]pyridine-1-carboxylate. 

Synthesized utilizing t-butyl 5-bromo-1H-pyrrolo[2,3-b]pyridine-1-carboxylate and (1-

methyl-1H-indol-5-yl)boronic acid according to general procedure B (3 h, 165 mg, 95%, 

0.005 mol % Pd). Rf  = 0.21   in 1:4 EtOAc:hexanes. 1H NMR (400 MHz, CDCl3) δ 8.79 (s, 

1H), 8.08 (s, 1H), 7.85 (s, 1H), 7.66 (d, J = 3.9 Hz, 1H), 7.52 – 7.38 (m, 2H), 7.11 (d, J = 3.0 

O F

F3C
O

N

N Boc
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Hz, 1H), 6.55 (m, 2H), 3.83 (s, 3H), 1.69 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 148.13, 

147.41, 144.79, 136.40, 133.64, 130.28, 129.84, 129.19, 127.66, 127.03, 123.13, 121.64, 

119.86, 109.84, 104.80, 101.44, 84.07, 33.10, 28.27. Chemical Formula:  C21H21N3O2 ESI-

MS [M+Na]+ calcd:  370.1531; found:  370.1527. 

 

1-Methyl-5-(5-nitropyridin-2-yl)-1H-indole. Synthesized utilizing 2-bromo-5-

nitropyridine and (1-methyl-1H-indol-5-yl)boronic acid according to general procedure A 

(20 h, 106 mg, 84%. 0.1 mol % Pd) without pre-reduction of the palladium acetate and 

utilizing toluene:water 9:1 as the reaction medium. Rf  = 0.32 in 1:4 EtOAc:hexanes. 1H 

NMR (400 MHz, CDCl3) δ 9.48 (d, J = 2.7 Hz, 1H), 8.49 (dd, J = 8.9, 2.7 Hz, 1H), 8.41 (d, 

J = 1.7 Hz, 1H), 8.02 (dd, J = 8.7, 1.8 Hz, 1H), 7.95 (d, J = 8.9 Hz, 1H), 7.44 (d, J = 8.7 Hz, 

1H), 7.13 (d, J = 3.1 Hz, 1H), 6.62 (d, J = 3.1 Hz, 1H), 3.85 (s, 3H). 13C NMR (101 MHz, 

CDCl3) δ 163.51, 144.87, 142.00, 138.30, 132.00, 130.45, 128.96, 128.00, 121.44, 121.39, 

119.64, 109.96, 102.54, 33.07. Chemical Formula:  C14H11N3O2 ESI-MS [M+H]+ calcd:  

254.0930; found:  254.0923. 

 

2-(2-((3-Fluorobenzyl)oxy)phenyl)-5-nitropyridine. Synthesized utilizing 2-chloro-5-

nitropyridine and (2-((3-fluorobenzyl)oxy)phenyl)boronic acid according to general 

procedure B (3 h, 154 mg,  95%, 0.25 mol % Pd). Rf  = 0.24 in 1:4 EtOAc:hexanes. 1H NMR 
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(400 MHz, CDCl3) δ 9.51 (d, J = 2.6 Hz, 1H), 8.43 (dd, J = 8.8, 2.7 Hz, 1H), 8.14 (d, J = 8.8 

Hz, 1H), 7.96 (dd, J = 7.8, 1.8 Hz, 1H), 7.50 – 7.40 (m, 1H), 7.34 (td, J = 7.9, 5.7 Hz, 1H), 

7.21 – 6.98 (m, 6H), 5.17 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 163.08 (d, J = 246.8 Hz), 

161.38, 156.41, 144.97, 142.52, 138.99 (d, J = 7.4 Hz), 131.98 (d, J = 2.9 Hz), 130.85, 

130.50, 130.41, 127.41, 125.07, 122.71 (d, J = 2.9 Hz), 122.05, 115.23 (d, J = 21.2 Hz), 

114.23 (d, J = 22.1 Hz), 113.19, 70.14. 19F NMR (376 MHz, CDCl3) δ -112.35 (td, J = 9.0, 

5.7 Hz, J1 C-F= 246.8 Hz). Chemical Formula: C18H13FN2O3 ESI-MS [M+H]+ calcd:  

325.0988; found:  325.0977. 

 

(E)-6-Styrylquinoline. Synthesized utilizing 5-bromoquinoline and (E)-phenethylboronic 

acid acid according to general procedure A with no DIBAL pre-reduction ( 8 h, 106 mg, 

92%, 0.25 mol% Pd). Rf = 0.15 in 1:4 EtOAc:hexanes. 1H NMR (500 MHz, CDCl3) δ 8.95 

(dd, J = 4.6, 1.3 Hz, 1H), 8.56 (dd, J = 8.6, 1.4 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.84 – 

7.69 (m, 3H), 7.61 (d, J = 7.6 Hz, 2H), 7.47 – 7.40 (m, 3H), 7.33 (t, J = 7.4 Hz, 1H), 7.18 (d, 

J = 16.0 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 150.46, 148.70, 137.32, 135.52, 133.00, 

132.30, 129.41, 129.39, 128.96, 128.27, 126.89, 126.60, 124.36, 124.03, 121.08. Chemical 

Formula: C17H13N EI-MS [M.]+ calcd: 231.1048; found: 231.1048 

 

Methyl 6-(2,4-dimethylphenyl)-2-naphthoate. Synthesized utilizing methyl 6-bromo-2-

naphthoateand (E)-phenethylboronic acid acid according to general procedure A with no 

N

O

O
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DIBAL pre-reduction ( 6 h, 140 mg, 96%, 0.1 mol% Pd). Rf = 0.58 in 1:4 EtOAc:hexanes. 

1H NMR (400 MHz, CDCl3) δ 8.65 (s, 1H), 8.08 (dd, J = 8.6, 1.7 Hz, 1H), 7.98 (d, J = 8.4 

Hz, 1H), 7.89 (d, J = 8.6 Hz, 1H), 7.80 (s, 1H), 7.53 (dd, J = 8.4, 1.7 Hz, 1H), 7.23 (d, J = 

7.7 Hz, 1H), 7.17 – 7.09 (m, 2H), 4.00 (s, 3H), 2.40 (s, 3H), 2.29 (s, 3H).  13C NMR (101 

MHz, CDCl3) δ 167.44, 142.18, 138.58, 137.56, 135.58, 135.39, 131.40, 131.36, 130.99, 

129.99, 129.05, 128.89, 128.32, 127.80, 127.35, 126.78, 125.65, 52.41, 21.26, 20.59. 

Chemical Formula C20H18O2. EI-MS [M.]+ calcd: 290.1307 found: 290.1314 

 

4-(5-(4-(Trifluoromethoxy)phenyl)pyrimidin-2-yl)morpholine. Synthesized utilizing 4-

(5-bromopyrimidin-2-yl)morpholine and 4-(trifluoromethoxy)phenylboronic acid acid 

according to general procedure A with no DIBAL pre-reduction (22 h, 130 mg, 80%, 0.1 

mol% Pd). Rf = 0.58 in 1:4 EtOAc:hexanes. 1H NMR (400 MHz, CDCl3) δ 8.53 (s, 2H), 7.51 

– 7.46 (m, 2H), 7.29 (d, J = 8.2 Hz, 2H), 3.89 – 3.77 (m, 8H). 13C NMR (126 MHz, CDCl3) 

δ 161.30, 156.00, 148.76, 134.54, 127.36, 122.23, 121.86, 119.61, 66.96, 44.51. 19F NMR 

(376 MHz, CDCl3) δ -57.91 (J1 C-F= 257.4 Hz). Chemical Formula C15H14F3N3O2. EI-MS 

[M.]+ calcd: 325.1038 found: 325.1049 

 

1-(2'-Methyl-[1,1'-biphenyl]-4-yl)ethan-1-one. Synthesized according to a modified 

general procedure B. EvanPhos2Pd(OAc)2 (1.5 mg, 0.0013 mmol), 4-bromoacetophenone 

(100 mg, 0.5 mmol), 2-methylphenylboronic acid (102 mg, 0.75 mmol), and potassium 

N
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phosphate monohydrate (173 mg, 0.75 mmol) were added to a 4 mL vial with an oblong stir 

bar. The vial was fitted with a septum and purged under a strong flow of argon for 5 min. 

Toluene (0.1 mL) then TPGS-750-M solution (0.9 mL) were added to the vial. The septum 

was removed and the vial was quickly sealed with a threaded screw-cap. The vial was 

placed in an alumnimum heating block and stirred for 1 h. The reaction was cooled to rt and 

extracted 3 x 1 mL EtOAc. The crude was purified by silica gel flash chromatography (104 

mg, 99%, 0.25 mol% Pd). Rf =  0.43 in 1:4 1:4 EtOAc:hexanes. 1H NMR (400 MHz, CDCl3) 

δ 8.04 – 8.00 (m, 2H), 7.45 – 7.42 (m, 2H), 7.31 – 7.21 (m, 4H), 2.65 (s, 3H), 2.28 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 198.01, 147.09, 140.86, 135.70, 135.29, 130.66, 129.63, 

129.59, 128.35, 128.03, 126.07, 26.83, 20.55. Chemical Formula C15H14O. EI-MS [M.]+ 

calcd: 210.1045 found: 210.1046. 

 

5-(Naphthalen-1-yl)pyrimidine. Synthesized according to a modified general procedure B. 

EvanPhos2Pd(OAc)2 (3.0 mg, 0.0025 mmol), 5-bromopyrimidine (79 mg, 0.5 mmol), 

naphthalene-1-boronic acid (129 mg, 0.75 mmol), and potassium phosphate monohydrate 

(173 mg, 0.75 mmol) were added to a 4 mL vial with an oblong stir bar. The vial was fitted 

with a septum and purged under a strong flow of argon for 5 min. Toluene (0.1 mL) then 

TPGS-750-M solution (0.9 mL) were added to the vial. The septum was removed and the 

vial was quickly sealed with a threaded screw-cap. The vial was placed in an alumnimum 

heating block and stirred for 4.5 h. The reaction was cooled to rt and extracted 3 x 1 mL 

EtOAc. The crude was purified by silica gel flash chromatography (103 mg, quantitative, 

0.5 mol % Pd). Rf =  0.14 in 1:4 1:4 EtOAc:hexanes. 1H NMR (400 MHz, CDCl3) δ 9.31 (s, 

1H), 8.90 (s, 2H), 7.96 (dd, J = 8.3, 3.8 Hz, 2H), 7.76 (d, J = 8.2 Hz, 1H), 7.62 – 7.49 (m, 

N

N
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3H), 7.43 (d, J = 7.0 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 157.78, 157.45, 134.48, 

133.91, 132.54, 131.30, 129.57, 128.82, 127.89, 127.22, 126.58, 125.57, 124.69. Chemical 

Formula C14H10N2. EI-MS [M.]+ calcd: 206.0844 found: 206.0849. 

G. Catalyst Stability Study EvanPhos vs. SPhos. 

 

Following the general procedure for catalyst stock solution preparation (no DIBAL pre-

reduction) and  general procedure A (0.5 mol % Pd(OAc)2), three reactions for each ligand 

(SPhos and EvanPhos) based on stock solution age were set up utilizing 2-bromo-5-chloro-

benzaldehyde and (2,4-difluorophenyl)boronic acid (1.1 equiv). Conversions were 

determined by GCMS at 1 h (SPhos) or 2 h (EvanPhos) based on the relative ratio of starting 

bromide to product. SPhos catalyst age:  0.25 min 100%, 6 h 95%, 22 h 36%. EvanPhos 

catalyst age: 15 min 96%, 6 h 96%, 22 h 96%. 

H. E Factor and Recycling Study  

The initial reaction was set up according to the general procedure B. After 2 h, the aqueous 

solution was extracted three times with MTBE (0.75 mL total), placed in a 10 mL round 

bottom flask, and the solvent was removed via rotary evaporation. The crude product was 

purified by flash column chromatography as described previously using EtOAc/hexane to 

provide the desired compound. 

E Factor calculation: 

Note:  density of MTBE = 0.74 g/mL, toluene = (0.867 g/mL) 
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FO

Cl
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Re-use of surfactant solution. The vial was sparged with argon and then sequentially 

charged with bromide (0.5 mmol), boronic acid (0.625 mmol), and tribasic potassium 

phosphate monohydrate (0.5 mmol), and catalyst solution (0.1 mL). The headspace of the 

vial was flushed with argon then capped, sealed, and stirred at 45 oC according to the 

general procedure.   

First run:      93% yield 

Second run:  95% yield 

Third run:     90% yield 
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I.  Residual Palladium Analysis 

 

Min-Kyu Cho

Novartis Institute for Biomedical Research

250 Mass. Ave.

Cambridge, Massachusetts  02139

CIB001

1REILJO3-001-EXP088 06/01/201705/30/2017Received: Completed:Test #:Sample #:

ICP-OES: Palladium =  178 ppm

Services
ICP-OES Synthesized with 0.5 mol% Pd (5000 ppm)
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Min-Kyu Cho

Novartis Institute for Biomedical Research

250 Mass. Ave.

Cambridge, Massachusetts  02139

CIB001

1REILLJO3-001-EXP093 08/08/201708/04/2017Received: Completed:Test #:Sample #:

ICP-OES: Palladium =  10 ppm

Services
ICP-OES

Synthesized with 0.1 mol % Pd (1000 ppm)
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Min-Kyu Cho

Novartis Institute for Biomedical Research

250 Mass. Ave.

Cambridge, Massachusetts  02139

CIB001

1REILLJO3-001-EXP094 08/08/201708/04/2017Received: Completed:Test #:Sample #:

ICP-OES: Palladium =  2 ppm

Services
ICP-OES Synthesized with 0.1 mol% Palladium (1000 ppm)
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Min-Kyu Cho

Novartis Institute for Biomedical Research

250 Mass. Ave.

Cambridge, Massachusetts  02139

CIB001

1REILLJO3-001-EXP095 08/08/201708/04/2017Received: Completed:Test #:Sample #:

ICP-OES: Palladium = < 1 ppm

Services
ICP-OES

Synthesized with 0.1 mol% Palladium (1000 ppm)
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Min-Kyu Cho

Novartis Institute for Biomedical Research

250 Mass. Ave.

Cambridge, Massachusetts  02139

CIB001

1REILLJO3-001-EXP096 08/08/201708/04/2017Received: Completed:Test #:Sample #:

ICP-OES: Palladium =  5 ppm

Services
ICP-OES

Text

Synthesized with 0.25 mol% Palladium (2500 ppm)
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Min-Kyu Cho

Novartis Institute for Biomedical Research

250 Mass. Ave.

Cambridge, Massachusetts  02139

CIB001

1REILJO3-001-EXP084 06/01/201705/30/2017Received: Completed:Test #:Sample #:

ICP-OES: Palladium =  211 ppm

Services
ICP-OES

Synthesized with 0.5 mol% Palladium (5000 ppm)
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J. NMR Spectra 
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III. Development of An Aqueous Palladium-Catalyzed C-N Coupling with t-Butyl 

Carabazate En Route to Indoles and Pyrazoles 

A. Introduction  

The indole nucleus is a ubiquitous privileged structure found in a variety of biological 

molecules, natural products, medicines, and illicit substances (Figure 1).1 Due to the 

ubiquity of indoles in such important molecules the pursuit of methods to synthesize indoles 

has been an active area of research since Bayer first produced indole from the 

decomposition of Indigo dye, reported in 1866.1 

 

Figure 10: Representative examples of indole containing molecules 

While various methods have been reported for the synthesis of indole derivatives, the 

most widely used method is the Fisher indole synthesis disclosed by Emil Fisher in 1883.1,2 
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The Fisher indole synthesis consists of condensing an enolizable ketone onto an aryl 

hydrazine under acidic conditions followed by enolization, then a [3,3] sigmatropic reagent 

and ultimate expulsion of ammonia (Figure 2).  

 

Figure 11: Mechanism of the Fisher indole cyclization 

The aryl hydrazines necessary for this method are typically prepared via diazotation of 

aniline derivatives utilizing sodium nitrite and aqueous acid followed by reduction of the 

diazonium salt to the aryl hydrazine. Unfortunately, these diazonium salts and their 

corresponding aryl hydrazines are unstable and typically need to be used immediately. To 

overcome this shortfall the Buchwald modification to the Fisher indole synthesis was 

disclosed in 1999.3 With this modification the hydrazine moiety is introduced via a 

palldium-catalyzed C-N coupling between aryl halides and benzophenone hydrazone (BPH) 

(figure 3).  The protected aryl benzophenone hydrazone can be isolated and stored prior to 

being subjected to the indolization, affording greater flexibility to the sequence of reactions 

involved. Another facet to this modification is that the aryl benzophenone hydrazone or 

deprotected aryl hydrazine need not be isolated and can instead be readily telescoped into a 

“one-pot” coupling, deprotection, condensation, cyclization sequence. While there are many 

attractive features to this modification it does have several drawbacks. The “one-pot” 

protocol, while lacking any intermediate purification, involves an initial coupling in toluene 
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at 80 oC followed by evaporation of toluene to allow for a solvent switch to ethanol. This 

wasteful solvent switch in tandem with high temperatures for the initial coupling, palladium 

loadings of up to 5 mol% leading significant residual palladium contamination, and the use 

of two equivalents of p-toluenesulfonic acid (PTSA) leaves much to be desired. The 

equilibrium protection/deprotection of the benzophenone moiety can interfere with the 

desired condensation on the enolizable ketone. Additionally, the presence of benzophenone 

waste complicates the purity profile of the final product and can be challenging to separate 

from the desired indole product since it is formed in stoichiometric quantities.  

 

Figure 12: Buchwald modification to the Fisher indole synthesis 

While previous efforts in the group had been focused on the coupling of BPH and 

Michler’s ketone hydrazone (MKH) (Figure 3) for this method, the aforementioned 

purification issues led us to search for an alternative protected hydrazine surrogate for use in 

this method.4 Previous work in the group on the palladium-catalyzed coupling of protected 

ammonia equivalents hinted at the possibility of using t-butyl carbazate (a.k.a. Boc-

hydrazine) as the source of hydrazine. A quick literature search buoyed our hopes as there 

have been several reports of palladium-catalyzed and copper-catalyzed couplings of t-butyl 

carbazate in the past.5-7   
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Figure 13: Structures of several hydrazine surrogates 

To that end, we endeavored to develop a mild aqueous coupling of t-butylcarbazate that 

could be easily telescoped into a net 4-step, 1-pot coupling, deprotection, condensation, 

cyclization sequence. 

B. Results and Discussion 

Prior optimization screenings utilizing MKH had indicated that 0.5 mol% of 

[tBuBrettPhosPd(allyl)]OTf was the best catalyst system.4 When applied to a coupling 

between 4-bromobiphenyl and t-butyl carbazate (1.1 equiv) in 2 wt% TPGS-750-M/H2O at 

45 oC with triethylamine (1.5 equiv.) as the base led to complete consumption of the halide 

in 18 h by TLC. Increasing the equivalents of both base and nucleophile to two led to 

complete consumption of the halide in 90 minutes by TLC. While triethylamine was 

effective it had to be freeze-pump-thawed on a consistent basis to remove oxygen. Sodium t-

butoxide, a base widely used in C-N coupling reactions, showed identical activity to 

triethylamine by another group member for the coupling of BPH.4 
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Figure 14: Evolution of coupling conditions with 4-bromobiphenyl 

 When these conditions were applied to a coupling with 4-bromoanisole a maximum of 

90% conversion was observed after five hours with noticeable Pd-black formation. 

Increasing the temperature to 55 oC led to rapid Pd-black formation and only minor 

conversion by TLC. Based on previously published work pointing to conversion 

enhancements when the ligand to Pd ratio is greater than 1:1, a ligand ratio of 2:1 was tested 

and complete conversion of 4-bromoanisole was achieved in six hours.8 

 

Figure 15: Optimization of ligand ratio 

A previous report on the coupling of t-butyl carbazate showed that the ratio of branched 

to linear products was dependent on both ligand and substrate, with ortho-substituted 
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substrates providing exclusively the linear coupling product.7 While for the scope of this 

study the exact ratio does not make a difference because the Boc deprotected intermediates 

would be identical, we still chose to determine the ratio of the products and to ascertain an 

isolated yield of the coupled product as a measure of the efficacy of the bond-forming 

method. 1-Bromo-4-t-butylbenzene was treated under  optimized conditions leading to 

complete consumption of the starting material after 90 minutes by TLC. The products were 

only partially separable chromatographically. However, sufficient amounts of  both  t-butyl 

1-(4-(t-butyl)phenyl)hydrazine-1-carboxylate (3) and t-butyl 2-(4-(t-butyl)phenyl)hydrazine-

1-carboxylate (4)  could be isolated independently to measure the NMR spectrum of each 

product. Combining all the material led to an isolated yield of 92% and a 2:1 ratio of 3 to 4 

based on 1H NMR analysis. 

 

Figure 16: Determination of product distribution 

While the coupling of 4-t-butyl-1-bromobezene was clearly efficient, we also wanted to 

address the issues of a complete solvent switch for the cyclization and for the use of two 

equivalents of PTSA which leads to excess organic waste for the sole purpose of supplying a 

proton.3 Since the coupling was already occurring in water, simple dilution with ethanol 

seemed to be a logical and straightforward choice. Sulfuric acid has long been known to be 

an effective acid for the Fisher indole synthesis.1 Thus, final conditions were realized by 

conducting the initial coupling in TPGS then utilizing an enolizable ketone (2 equiv), 

concentrated sulfuric acid (3 equiv), diluting the reaction mixture with ethanol to a global 
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concentration of 0.2 [M] relative to the starting halide and refluxing in a sealed vial 

overnight. 

Using these conditions a broad range of electron-rich and electron-neutral substrates 

could be successfully coupled and directly telescoped into the Fisher cyclization (Figure 8). 

 

Figure 17: Substrate scope of telescoped indole synthesis 

Based on the established efficiency of the coupling we were delighted to see that the 

deprotection, condensation, cyclization sequence was successful even though excess water 

(40% v/v) was present which might have inhibited condensation of the desired ketone (with 

the exception of 13 where the latter portions were conducted in absolute ethanol). These 
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results compared favorably with Buchwald’s method wherein we were able to isolate 5, 8, 

and 14 in 89%, 98%, and 91% vs. 92%, 54%, and 81% respectively. While 13 did require 

the use of absolute ethanol for the cyclization this allowed for the synthesis of this key 

intermediate en route to the painkiller indomethacin from 4-bromoanisole and levulinic acid 

in a 5-step coupling, deprotection, condensation, cyclization, ester-formation sequence. 

 

Figure 18: Synthesis of indomethacin intermediate 

The Fisher indole synthesis is limited in its applications. Only electron-neutral or 

electron-rich substrates are able to undergo the [3,3]-sigmatropic rearrangement. This leaves 

electron-deficient substrates as useless for this methodology despite being more efficient 

partners towards initial palladium catalysis. However, these substrates are suitable for the 

Knorr pyrazole synthesis as evidenced by the generation of 16 (Figure 10).9 Additionally, 

substrates bearing an ortho-nitrile can be easily cyclized to form 3-aminoindazole such as 17 

which could be isolated quantitatively with no purification needed. 
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Figure 19: Synthesis of a pyrazole and 3-aminoindazole 

C. Conclusion 

In summary, an efficient and mild method was developed for the C-N coupling of t-butyl 

carbazate to yield protected aryl hydrazines which can be readily telescoped into several 

named reactions for the synthesis of nitrogen heterocycles. This method address several 

issues associated with previous methods particularly with respect to catalyst loading and 

generation of stoichiometric organic waste. 

D. Experimental 

Synthesis of mixture of t-butyl 2-(4-(t-butyl)phenyl)hydrazine-1-carboxylate and t-butyl 

1-(4-(t-butyl)phenyl)hydrazine-1-carboxylate. 

 

To a 1 dram screw-cap vial equipped with an oblong stir bar was added in order 

[tBuBrettPhos Pd(allyl)]OTf (3.9 mg, 0.005 mmol), tBuBrettPhos (2.4 mg, 0.005 mmol), 

sodium t-butoxide (192 mg, 2 mmol), and t-butyl carbazate (264 mg, 2 mmol). The vial was 

fitted with a septum and was evacuated/back-filled with argon 3 times. 1-Bromo-4-(t-

butyl)benzene (173 µL, 213 mg, 1 mmol) was added via microliter syringe followed by 2 
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mL of a 2 wt% TPGS-750-M/H2O solution (Caution: a mild exotherm is noticed upon 

addition of water). Under a stream of argon the septum was quickly removed and replaced 

with a PTFE lined screw-cap. The vial was placed in an aluminum reactor well plate set to 

45 oC with a thermocouple probe and the reaction was stirred at 1000 rpm. TLC analysis at 

90 minutes showed complete consumption of  starting material. The reaction was cooled to 

rt and extracted  with t-butyl methyl ether 3 x 500 µL. The organic phase was passed 

through a short Pasteur pipette plug of silica gel. The crude was purified by flash 

chromatography to yield a mixture of  t-butyl 1-(4-(t-butyl)phenyl)hydrazine-1-carboxylate 

and t-butyl 2-(4-(t-butyl)phenyl)hydrazine-1-carboxylate in a 67:33 ratio as determined by 

1HNMR analysis. Rf = 0.1 in 1:19 EtOAc:hexanes 244 mg. 92%.  t-butyl 1-(4-(t-

butyl)phenyl)hydrazine-1-carboxylate NMR. 1H NMR (500 MHz, CDCl3) δ 7.26 (dt, J = 

8.6, 1.9 Hz, 2H), 6.77 (d, J = 8.4 Hz, 2H), 6.39 (s, 1H), 5.70 (s, 1H), 1.48 (s, 8H), 1.29 (s, 

9H). 13C NMR (126 MHz, CDCl3) δ 143.73, 126.12, 112.87, 81.26, 34.18, 31.64, 28.42. t-

butyl 2-(4-(t-butyl)phenyl)hydrazine-1-carboxylate NMR. 1H NMR (500 MHz, CDCl3) δ 

7.37 (d, J = 2.4 Hz, 1H), 7.36 (s, 1H), 7.32 (dt, J = 8.8, 2.3 Hz, 2H), 4.43 (s, 2H), 1.51 (s, 

9H), 1.31 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 147.60, 140.60, 125.23, 123.09, 81.78, 

34.49, 31.51, 28.51. 

E.  E Factor Calculation 

MTBE density: 740 mg/mL 
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F. Experimental Procedures and Analytical Data 

To a 1 dram screw-cap vial equipped with an oblong magnetic stir bar was added in 

order [tBuBrettPhos Pd(allyl)]OTf (3.9 mg, 0.005 mmol), tBuBrettPhos (2.4 mg, 0.005 

mmol), sodium t-butoxide (192 mg, 2 mmol), halide or pseudo-halide coupling partner if 

solid (1 mmol) and t-butyl carbazate (264 mg, 2 mmol). The vial was fitted with a septum 

and was evacuated/back-filled with argon 3 times. Liquid halide or pseudo-halide (1 mmol) 

was added via microliter syringe followed by 2 mL of a 2 wt% TPGS-750-M/H2O solution 

(Caution: a mild exotherm is noticed upon addition of water). Under a stream of argon the 

septum was quickly removed and replaced with a PTFE lined screw-cap. The vial was 

placed in an aluminum well plate set to 45 oC with a thermocouple probe and the reaction 

was stirred at 1000 rpm. After 16 h the reaction was cooled to rt (reaction times were not 

optimized). The mixture was transferred to a 2 dram screw-cap vial equipped with the aid of 

3 mL of absolute ethanol followed by the previously used magnetic stir bar. The mixture 

was placed in an aluminum well plate set to 90-95 oC and a stirring rate of 1000 rpm. To the 

stirring mixture was added concentrated sulfuric acid slowly (0.16 mL, 3 mmol) and the 

mixture was allowed to stir open to air while the ketone was being measured out 

(CAUTION: A large exotherm is observed upon addition of sulfuric acid. Additionally, this 

portion of the sequence will produce hydrazine. Appropriate safety measures should be 

observed). The ketone (2 mmol) was added. The vial was sealed with a PTFE screw-cap and 

stirred. During the first hour of the reaction it was removed from the well plate several 

times, allowed to cool for 10 minutes, and then opened to vent CO2 and butene gas. After 24 

hours stirring with heat the vial was cooled to room temperature (reaction times were not 

optimized). The mixture was transferred to a 60 mL separatory funnel with the aid of a 

saturated aqueous sodium bicarbonate solution. Additional saturated bicarbonate solution 
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was added until a pH >7 was achieved. The aqueous mixture was extracted with ethyl 

acetate or diethyl ether 3 X 6 mL. Volatiles were removed in vacuo. The crude was purified 

by flash chromatography. If the ketone and heterocycle product have identical Rfs and 

ketone is still present in the crude mixture then the crude was dissolved in 5 mL methanol in 

a 25 mL round bottom flask with a magnetic stir bar. Excess sodium borohydride was added 

and the mixture was stirred at room temperature for 5 hours. Saturated aqueous ammonium 

chloride (10 mL) was added slowly. The mixture was transferred to a 60 mL separatory 

funnel and extracted with 3 X 6 mL ethyl acetate. Volatiles were removed in vacuo. The 

crude was then purified by flash chromatography. 

 

6-Phenyl-2,3,4,9-tetrahydro-1H-carbazole: Following the general procedure starting with 

4-bromobiphenyl (233 mg, 1 mmol) and subsequently cyclohexanone (0.21 mL, 2 mmol), 

220 mg of product was isolated as an off-white solid (89% yield). Rf = 0.23 in 1:9 

Et2O:hexanes. 1H NMR (500 MHz, CDCl3) δ 7.72 – 7.59 (m, 4H), 7.50 – 7.30 (m, 4H), 2.76 

(dt, J = 16.6, 6.1 Hz, 4H), 1.94 (dddd, J = 18.6, 12.1, 5.8, 3.0 Hz, 4H). 13C NMR (126 MHz, 

CDCl3) δ 142.95, 135.21, 134.94, 132.72, 128.61, 128.38, 127.39, 126.15, 120.78, 116.39, 

110.55, 23.31, 23.23, 20.96. Molecular formula: C18H17N. EI-MS [M.]+ calcd: 247.1361 

found: 247.1355 
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O N
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4,6-Dimethoxy-2-methyl-3-pentyl-1H-indole: Following the general procedure starting 

with 1-bromo-3,5-dimethoxybenzene (217 mg, 1 mmol) and subsequently 2-octanone (0.31 

mL, 2 mmol), 209 mg of product was isolated as an pale oil (80% yield) following sodium 

borohydride reduction of the crude product. Rf = 0.15 in 2:8 EtOAc:hexanes. 1H NMR (400 

MHz, CDCl3) δ 7.51 (s, 1H), 6.35 (s, 1H), 6.18 (s, 1H), 3.88 (s, 3H), 3.82 (s, 3H), 2.73 (t, J 

= 7.5 Hz, 2H), 2.27 (s, 3H), 1.60 (p, J = 7.3 Hz, 2H), 1.35 (h, J = 6.3 Hz, 4H), 0.91 (t, J = 

6.8 Hz, 3H). 13C NMR (101 MHz, cdcl3) δ 156.46, 154.38, 136.61, 127.27, 112.83, 112.69, 

91.00, 86.56, 77.22, 55.63, 55.05, 31.71, 31.59, 25.29, 22.60, 14.17, 11.23. Molecular 

formula: C16H23NO2 EI-MS [M.]+ calcd: 261.1729 found: 261.1726. 

 

5-Methoxy-2-methyl-3-pentyl-1H-indole: Following the general procedure starting with 4-

bromoanisole (0.126 mL, 1 mmol) and subsequently 2-octanone (0.31 mL, 2 mmol), 209 mg 

of product was isolated as a brown oil (80% yield). Rf = 0.24 in 2:8 Et2O:hexanes. 1H NMR 

(500 MHz, CDCl3) δ 7.56 (s, 1H), 7.15 (d, J = 8.7 Hz, 1H), 6.97 (s, 1H), 6.76 (d, J = 8.7 Hz, 

1H), 3.87 (s, 3H), 2.64 (t, J = 7.5 Hz, 2H), 2.35 (s, 3H), 1.61 (p, J = 7.3 Hz, 2H), 1.35 (d, J = 

7.0 Hz, 5H), 0.94 – 0.85 (m, 3H). 13C NMR (126 MHz, CDCl3) δ 153.88, 131.75, 130.54, 

129.45, 112.55, 110.78, 110.29, 101.05, 56.18, 31.95, 30.46, 24.25, 22.79, 14.27, 11.93. 

Molecular formular: C15H21NO. EI-MS [M.]+ calcd: 231.1623 found: 231.1621.  

N
H

O
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2-Methyl-3-pentyl-5-phenyl-1H-indole: Following the general procedure starting with 4-

bromobiphenyl (233 mg, 1 mmol) and subsequently 2-octanone (0.31 mL, 2 mmol), 253 mg 

of product was isolated as a pale solid (91% yield). Rf = 0.33 in 2:8 Et2O:hexanes. 1H NMR 

(500 MHz, cdcl3) δ 7.71 (s, 1H), 7.68 (d, J = 7.3 Hz, 3H), 7.46 (t, J = 7.6 Hz, 2H), 7.39 – 

7.29 (m, 3H), 2.73 (t, J = 7.6 Hz, 2H), 2.39 (s, 3H), 1.67 (p, J = 7.4 Hz, 2H), 1.37 (h, J = 3.6 

Hz, 4H), 0.94 – 0.89 (m, 3H). 13C NMR (126 MHz, cdcl3) δ 143.13, 134.93, 132.72, 131.48, 

129.47, 128.72, 127.54, 126.25, 120.72, 116.93, 113.06, 110.40, 31.98, 30.66, 24.25, 22.80, 

14.28, 11.88. Molecular formula: C20H23N. EI-MS  [M.]+ calcd: 277.1830 found: 277.1818. 

  

5,6-Dimethoxy-2-methyl-3-propyl-1H-indole: Following the general procedure starting 

with 4-bromoveratrole (0.144 mL, 1 mmol) and subsequently 2-hexanone (0.25 mL, 2 

mmol), 228 mg of product was isolated as a pale solid (98% yield). Rf = 0.1 in 2:8 

EtOAc:hexanes. 1H NMR (500 MHz, CDCl3) δ 7.52 (s, 1H), 6.94 (s, 1H), 6.81 (s, 1H), 3.93 

(s, 3H), 3.89 (s, 3H), 2.62 (t, J = 7.4 Hz, 2H), 2.33 (s, 3H), 1.64 (h, J = 7.4 Hz, 2H), 0.95 (t, 

J = 7.3 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 146.22, 144.67, 129.47, 129.38, 121.80, 

112.14, 100.93, 94.57, 56.71, 56.50, 26.41, 23.98, 14.25, 11.85. Molecular formula: 

C14H19NO2 EI [M.]+ calcd: 233.1416 found: 233.1412. 
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4,6-bis(Benzyloxy)-2-ethyl-3-methyl-1H-indole: 5,6-dimethoxy-2-methyl-3-propyl-1H-

indole: Following the general procedure starting on a reduced scale with (((5-bromo-1,3-

phenylene)bis(oxy))bis(methylene))dibenzene (341 mg, 0.92 mmol), [tBuBrettPhos 

Pd(allyl)]OTf (3.6 mg, 0.0046 mmol), tBuBrettPhos (2.2 mg, 0.0046 mmol), sodium t-

butoxide (178 mg, 1.85 mmol), t-butyl carbazate (244 mg, 1.85 mmol)  and subsequently 3-

pentanone (0.20 mL, 1.85 mmol) and sulfuric acid (0.15 mL 0.185 mmol) 293 mg of 

product was isolated as a pale solid (85% yield). Rf = 0.21 in 2:8 Et2O:hexanes. 1H NMR 

(500 MHz, CDCl3) δ 7.58 – 7.32 (m, 10H), 6.47 (s, 1H), 6.38 (s, 1H), 5.16 (s, 2H), 5.07 (s, 

2H), 2.67 (q, J = 7.6 Hz, 2H), 2.42 (s, 3H), 1.24 (t, J = 7.6 Hz, 3H). 13C NMR (126 MHz, 

CDCl3) δ 155.71, 153.88, 137.70, 137.67, 136.63, 133.74, 128.63, 128.54, 127.90, 127.67, 

127.64, 127.26, 113.95, 106.30, 93.11, 88.61, 70.75, 69.91, 19.11, 14.34, 10.82. Molecular 

formula: C25H25NO2 ESI-MS [M+Na]+ calcd: 394.1783 found: 394.1780. 

 

2-Methyl-3-propyl-1H-indole: Following the general procedure starting with phenyl 

trifluoromethanesulfonate (0.162 mL, 1 mmol) and subsequently 2-hexanone (0.25 mL, 2 

mmol), 104 mg of product was isolated as a brown oil (60% yield). Rf  = 0.3 in 1:9 

Et2O:hexanes. 1H NMR (500 MHz, CDCl3) δ 7.65 (s, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.27 (d, 

J = 7.5 Hz, 1H), 7.11 (dt, J = 15.4, 7.1 Hz, 2H), 2.69 (t, J = 7.4 Hz, 2H), 2.38 (s, 3H), 1.68 
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(h, J = 7.4 Hz, 3H), 0.97 (t, J = 7.4 Hz, 4H). 13C NMR (126 MHz, CDCl3) δ 135.25, 130.73, 

128.90, 120.74, 118.93, 118.19, 112.25, 110.09, 29.74, 26.18, 23.89, 14.11, 11.68. 

Molecular formula: C12H15N ESI-MS [M + C2H5]+ calcd: 202.1596 found: 202.1598. 

 

3-Butyl-2-methyl-1H-benzo[g]indole: Following the general procedure starting with 2-

bromonapthalene (0.140 mL, 1 mmol) and subsequently 2-heptanone (0.28 mL, 2 mmol), 

237 mg of product was isolated as a red solid (quantitative yield). Rf = 0.22 in 2:8 

EtOAc:hexanes. 1H NMR (500 MHz, CDCl3) δ 8.41 (s, 1H), 7.92 (t, J = 7.5 Hz, 2H), 7.66 

(d, J = 8.6 Hz, 1H), 7.49 (t, J = 8.2 Hz, 2H), 7.38 (t, J = 7.6 Hz, 1H), 2.77 (t, J = 7.5 Hz, 

2H), 2.48 (s, 3H), 1.66 (p, J = 7.6 Hz, 2H), 1.42 (h, J = 7.4 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ 129.89, 129.21, 128.87, 128.73, 125.13, 124.44, 123.11, 

121.34, 119.68, 119.06, 118.88, 114.39, 38.79, 33.40, 26.27, 23.95, 22.65, 14.10, 11.79. 

Molecular formula: C17H19N ESI-MS [M + H]+ calcd: 238.1596 found: 238.1590. 

 

2-(t-Butyl)-5,6,7,8,9,10-hexahydrocyclohepta[b]indole: Following the general procedure 

starting with 4-t-butylbromonezene (0.173 mL, 1 mmol) and subsequently cycloheptanone 

(0.24 mL, 2 mmol), 193 mg of product was isolated as a yellow oil (80% yield). Rf  = 0.18 

in 1:19 EtOAc:hexanes. 1H NMR (500 MHz, CDCl3) δ 7.56 (s, 1H), 7.49 (s, 1H), 7.21 (d, J 

= 1.4 Hz, 2H), 2.88 – 2.79 (m, 3H), 1.96 – 1.88 (m, 2H), 1.85 – 1.75 (m, 5H), 1.42 (s, 9H). 

13C NMR (126 MHz, CDCl3) δ 141.94, 137.66, 132.36, 128.92, 118.84, 113.72, 113.44, 

HN

N
H
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109.71, 34.63, 32.06, 31.92, 29.65, 28.76, 27.62, 24.66. Molecular formula: C17H23N EI-MS 

[M.]+ calcd: 241.1830 found: 241.1831. 

 

5-Decyl-3-heptyl-2-methyl-1H-indole: Following the general procedure starting with 1-

bromo-4-n-decylbenzene (0.270 mL, 1 mmol) and subsequently 2-decanone (0.38 mL, 2 

mmol), 255 mg of product was isolated as a pale solid (70% yield) after reduction of the 

crude mixture with sodium borohydride. Rf  = 0.25 in hexanes. H NMR (500 MHz, CDCl3) 

δ 7.56 (s, 1H), 7.28 (s, 1H), 7.16 (d, J = 8.2 Hz, 1H), 6.94 (d, J = 8.1 Hz, 1H), 2.74 – 2.62 

(m, 4H), 2.35 (s, 3H), 1.64 (dp, J = 21.9, 7.3 Hz, 4H), 1.42 – 1.21 (m, 23H), 0.89 (t, J = 6.8 

Hz, 5H). 13C NMR (126 MHz, CDCl3) δ 133.83, 133.63, 130.76, 129.11, 121.79, 117.52, 

112.33, 109.84, 36.41, 32.65, 32.13, 32.08, 30.96, 29.83, 29.78, 29.61, 29.52, 29.45, 24.28, 

22.87, 22.85, 14.29, 11.85. Molecular formula: C26H43N ESI-MS [M + H]+ calcd: 370.3474 

found: 370.3482. 

 

Ethyl 2-(5-methoxy-2-methyl-1H-indol-3-yl)acetate: Following a modified general 

procedure starting with 4-bromoanisole (0.126 mL, 1 mmol), after stirring for 16 hours the 

aqueous coupling mixture was extracted with 3 x 1 mL EtOAc and collected in a 2 dram 

vial. Volatiles were removed in vacuo. The deprotection/cyclization was then conducted as 
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described in 5 mL of absolute ethanol utilizing levulinic acid(0.20 mL, 2 mmol), 188 mg of 

product was isolated as a brown oil (76% yield). Rf  =  0.17 in 2:8 EtOAc:hexanes. 1H NMR 

(500 MHz, CDCl3) δ 7.81 (s, 1H), 7.11 (d, J = 8.7 Hz, 1H), 7.01 (d, J = 2.4 Hz, 1H), 6.77 

(dd, J = 8.7, 2.4 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.86 (s, 3H), 3.65 (s, 2H), 2.36 (s, 3H), 

1.25 (t, J = 7.1 Hz, 4H). 13C NMR (126 MHz, CDCl3) δ 172.10, 154.10, 133.52, 130.17, 

128.96, 110.93, 104.50, 100.48, 60.68, 55.91, 30.60, 28.29, 14.28, 11.80. Molecular 

formula: C14H17NO3 ESI-MS [M + Na]+ calcd: 270.1106 found: 270.1115. 

 

2-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-methylpyridine: Following the general procedure 

starting with 2-bromo-5-methylpyridine (172 mg, 1 mmol) and subsequently acetylacetone 

(0.21 mL, 2 mmol), 155 mg of product was isolated as a yellow solid (83% yield). Rf  = 0.26 

in 1:9 EtOAc:hexanes. 1H NMR (600 MHz, CDCl3) δ 8.25 – 8.21 (m, 1H), 7.68 (d, J = 8.3 

Hz, 1H), 7.60 – 7.55 (m, 1H), 5.97 (s, 1H), 2.58 (d, J = 0.9 Hz, 3H), 2.34 (s, 3H), 2.29 (s, 

3H). 13C NMR (151 MHz, CDCl3) δ 151.42, 149.43, 147.51, 141.06, 138.77, 130.28, 

115.63, 108.47, 17.83, 14.07, 13.58. Molecular formula: C11H13N3 ESI-MS [M + H]+ calcd: 

188.1188 found: 188.1185. 

 

6-Methyl-1H-indazol-3-amine: Following the general procedure starting with 2-bromo-4-

methylbenzonitrile (196 mg, 1 mmol)147 mg of product was isolated as a brown solid with 

no purification required after extraction and evaporation of volatiles (quantitative yield). Rf 

N N
N

N

H
N

NH2
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0.30 in 1:4:4 EtOH:EtOAc:hexanes. 1H NMR (400 MHz, CDCl3) δ 8.83 (s, 1H), 7.44 (d, J = 

8.2 Hz, 1H), 7.09 (s, 1H), 6.90 (d, J = 8.2 Hz, 1H), 4.31 – 3.87 (m, 2H), 2.46 (s, 3H). 

Molecular formula: C8H9N3 ESI-MS [M + H]+ calcd: 148.0875 found: 148.0877. 

G. NMR Spectra 
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IV. Development of an Fe/ppm Cu Nanoparticle Catalyst for the Cu-Catalyzed Azide- 

       Alkyne Cycloaddition in Water 

A. Introduction 

The Huisgen cycloaddition, originally discovered 1893 and later popularized by Huisgen 

in the mid-20th century, is a thermally induced formal [3+2] 1,3-dipolar cycloaddition 

between an azide and a terminal or internal alkyne (Figure 1).1 While efficient, this 

thermally induced reaction leads to the possibility of two regioisomeric products with 

limited selectivity. In the early 2000s Fokin/Sharpless and Meldal independently disclosed a 

Cu(I)- catalyzed variant of this reaction with terminal alkynes that leads exclusively to a 1,4- 

rather than 1,5- substitution pattern (Figure 1). This Cu-catalyzed azide/alkyne cycloaddtion 

(CuAAC) would later join a group of reactions called “click” chemistry, so named due their 

predictability, robustness, and mild conditions thanks to their rapid, energetically favorable 

nature. 

 

Figure 20: Huisgen cycloaddtion vs. CuAAC 

This click reaction has a multitude of applications to chemical biology, drug discovery, 

combinatorial chemistry, and materials science.2-5 A variety of Cu(I) species can function as 

effective catalysts for this reaction, including any copper halide or carboxylate in the 
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presence of a base, typically an amine.1 Cu(II) sources such as CuSO4 can work as well 

when in the presence of a reducing agent such as sodium ascorbate.  

The Lipshutz group has developed a class of nanoparticles wherein ppm levels of  

catalytic metals are embedded in an Fe-based framework that enables a variety of reactions 

to be performed in water.6-9 These nanoparticles are uniquely effective in micellar media due 

to the coordinative ability of the PEG chains which leads to aggregation of the micelles in 

high concentrations in the region of the catalyst. This phenomenon has been named the 

“nano-to-nano” effect. Due to this high local concentration, very low global loadings of the 

catalytically active metal are needed to successfully perform these reactions. Based on this 

we endeavored to develop a Fe/ppm Cu nanoparticle catalyst for mild CuAAC reactions in 

aqueous micellar media. 

B. Results and Discussion 

The preparation of the nanoparticles followed a preparation analogous to those 

previously utilized for making Suzuki-Miyaura nanoparticles.6,10 For a single reaction 97% 

FeCl3 and CuOAc (1000 ppm) were stirred together in THF under an inert atmosphere for 

ten minutes followed by the slow addition of a THF solution of MeMgCl (1.5 equivalents 

relative to iron) until a dark brown precipitate formed (Figure 2). The THF was removed in 

vacuo and the resulting material directly used in the cycloaddition. Alternatively, the 

material could be prepared on >0.5 g scale. After removal of THF in vacuo the material was 

triturated with pentane followed by removal of volatiles in vacuo. These nanoparticles could 

be used directly in a CuAAC reaction, stored under argon for use 2-3 days later, or stored in 

a solution of 2 wt% TPGS-750-M with ascorbic acid for future use. 
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Figure 21: Nanoparticle synthesis. 

EDX analysis of the nanoparticles revealed that the bulk of the material is Mg, Cl, C, 

and O with a minor amount of Fe. Cu levels were below the detection limit (Figure 3). Cryo-

TEM analysis of the nanoparticles in a 2 wt % solution of TPGS-750-M/H2O reveals, as was 

expected, aggregation of the nanoparticles around micelles (Figure 4). The same analysis 

performed on a post-reaction solution showed even greater aggregation of the nanoparticles 

 

Figure 22: EDX analysis of nanoparticles 

 

Figure 23: Cryo-TEM images of fresh (left) nanoparticle solution and used (right) nanoparticle 

solution 

FeCl3 MeMgCl CuOAc
THF, rt

++
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With these nanoparticles we synthesized a variety of substrates bearing divergent 

functional groups (Figure 5). With respect to the alkyne, alkyl chains, halides, unprotected 

alcohols, protected alcohols, and variously substituted aromatic groups were well tolerated. 

A plethora of different benzylic azides were successfully used bearing a mix of various 

electron-donating and electron-withdrawing groups, although a methyl ester substituted 

aromatic azide and a purely alkyl azide proved to be poor reactants for this transformation 

leading to substrates 12 and 13, respectively. 

 

Figure 24: Substrate scope of CuAAC reactions  
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Recycle and E Factor studies were conducted to assess the “greenness” of this catalyst 

and methodology. An initial coupling leading to product 1 was isolated in quantitative yield. 

After extraction of the crude the same catalyst and solution was reused in situ to sequentially 

generate products 4, 3, and 10 in excellent yields. An E Factor, based on organic solvent 

usage of 4.1 was achieved for the combined four uses of this recycled surfactant solution 

and catalyst, which is an order of magnitude below what is typical for the pharmaceutical 

industry.11   

 

Figure 25: E Factor and recycling 

C. Conclusion 

A new nanoparticle catalyst of iron doped with ppm levels of copper was successfully 

proposed and applied to copper-catalyzed azide-alkyne cycloadditions in aqueous TPGS-

750-M at room temperature. A variety of diversely substituted aryl and alkyl azides and 

alkynes could be coupled under these conditions. Both the aqueous medium and catalyst 

were recyclable in situ leading to a low E Factor. The result is an attractive method for 

running green CuAAC reactions. 

D. General Experimental 

General procedure A for CuAAC reactions: In a flame dried 10 mL microwave 

reaction vial, FeCl3 (4.1 mg, 5 mol %) was added under anhydrous conditions. The reaction 

vial was closed with a rubber septum and the mixture was evacuated and backfilled with 
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argon three times. Dry THF (0.7 mL) and CuOAc in THF (0.061 mL, 1000 ppm; 1 g/L) 

were added to the vial and the mixture was stirred for 10 min at rt, after which MeMgCl in 

THF (0.75 mL, 7.5 mol %; 0.5 M) was added to the reaction mixture. While maintaining an 

inert atmosphere, THF was evaporated under reduced pressure. An aqueous solution of 2 wt 

% TPGS-750-M (1.0 mL) was then added to the vial followed by sequential addition of 

alkyne (0.5 mmol), azide (0.6 mmol, 1.2 equiv), and triethylamine (0.0349 mL, 0.25 mmol, 

0.5 equiv). The mixture was stirred vigorously at rt. After complete consumption of starting 

material, as monitored by TLC or GC-MS, EtOAc (1 mL) was added to the reaction 

mixture, which was then stirred gently for 5 min (NOTE : vigorous stirring or shaking in the 

reaction flask or in a separatory funnel during the extraction process resulted in the 

formation of an intractable emulsion with consequent reductions in isolated yields). Stirring 

was stopped and the organic layer was separated with the aid of a centrifuge. The organic 

layer was removed and the extraction process was repeated two additional times. The 

combined organic layers were dried over anhydrous magnesium or sodium sulfate, or 

flushed through a plug of dried silica gel. The solvent was then evacuated under reduced 

pressure to obtain crude material which was purified by flash chromatography over silica gel 

using EtOAc/hexanes as eluent. 

Preparation of Fe/ppm Cu nanoparticles: In a tared flame dried two-neck round-

bottomed flask, anhydrous pure FeCl3 (121.7 mg, 0.75 mmol) and CuOAc (1.839 mg, 0.015 

mmol) were placed under an atmosphere of dry argon. The flask was closed with a septum, 

and dry THF (10 mL) was added. The reaction mixture was stirred for 10 min at rt. While 

maintaining a dry atmosphere at rt, MeMgCl (2.25 mL, 1.125 mmol; 0.5 M solution) in THF 

was very slowly (1 drop/two sec) added to the reaction mixture. After complete addition of 

the Grignard reagent, the reaction mixture was stirred for an additional 30 min at rt. An 
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appearance of a dark-brown coloration was indicative of generation of nanomaterial. The stir 

bar was removed and THF was evaporated under reduced pressure at rt followed by washing 

the mixture with dry pentane to provide a light brown-colored nanopowder. The 

nanomaterial was dried under reduced pressure at rt for 10 min (603 mg) and could then be 

used directly for CuAAC reactions under micellar conditions. Dividing the starting mass of 

CuOAc by the final weight in the flask yields CuOAc concentration in the isolated catalyst 

Determination of Cu concentration in isolated catalyst. 

 
 

 
 

 

 

General procedure B for CuAAC reaction with aged catalyst. In a flame dried 10 mL 

microwave reaction vial, aged nanomaterial (20 mg) and vitamin C (8.8 mg, 0.05 mmol) 

were added. The reaction vial was closed with a rubber septum and the mixture was 

evacuated and backfilled with argon three times. An aqueous solution of 2 wt % TPGS-750-

M (1.0 mL) was added to the vial. After 24 h stirring at rt, while maintaining the inert 

atmosphere, alkyne (0.5 mmol), azide (0.6 mmol, 1.2 equiv), and triethylamine (0.0349 mL, 

0.25 mmol, 0.5 equiv) were added. The mixture was stirred vigorously at rt. After complete 

consumption of starting material, as monitored by TLC or GC-MS, EtOAc (1 mL) was 

added to the reaction mixture, which was stirred gently for 5 min (NOTE : vigorous stirring 

or shaking in the reaction flask or in a separatory funnel during the exctraction process 

resulted in the formation of an intractable emulsion with consequent reductions in isolated 

yields). Stirring was stopped and the organic layer was separated with the aid of a 

centrifuge. The organic layer was removed and the extraction process was repeated two 
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additional times. The combined organic layers were dried over anhydrous magnesium 

sulfate or sodium sulfate, or flushed through a plug of dried silica gel. The solvent was then 

evacuated under reduced pressure to obtain crude material which was purified by flash 

chromatography over silica gel using EtOAc/hexanes as eluent. 

E. Analytical Data for Triazole Products 

 

1-Benzyl-4-phenyl-1H-1,2,3-triazole. Synthesized according to general procedure A or B 

using phenylacetylene (51 mg, 0.5 mmol) and benzyl azide (73 mg, 0.55 mmol). 118 mg 

was isolated as a white powdery crystal (99%). Rf = 0.33 (1:3 EtOAc:hexanes). 1H NMR 

(500 MHz, CDCl3): δ 7.79-7.81 (m, 2H), 7.66 (s, 1H), 7.37-7.42 (m, 5H), 7.30-7.33 (m, 3H), 

5.59 (s, 2H). Spectrum matched literature.12 

 

1-Benzyl-4-butyl-1H-1,2,3-triazole. Synthesized according to general procedure A using 1-

hexyne (41 mg, 0.5 mmol) and benzyl azide (73 mg, 0.55 mmol). 107 mg was isolated as a 

clumpy white solid (99%). Rf = 0.28 (1:3 EtOAc:hexanes). 1H NMR (500 MHz, CDCl3): δ 

7.32-7.38 (m, 3H), 7.23-7.25 (m, 2H), 7.17 (s, 1H), 5.48 (s, 2H), 2.68 (t, J = 8 Hz, 2H), 1.61 

(p, J = 7.5 Hz, 2H), 1.35 (sext, J = 7.5 Hz, 2H), 0.90 (t, J = 7.5 Hz, 3H). Spectrum matched 

literature.13 

 

1-Benzyl-4-hexyl-1H-1,2,3-triazole. Synthesized according to general procedure A using 1-

octyne (55 mg, 0.5 mmol) and benzyl azide (73 mg, 0.55 mmol). 117 mg was solated as a 
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fluffy white crystalline solid (96%) or 120 mg from procedure B (99%). Rf = 0.32 (1:3 

EtOAc:hexanes).  1H NMR (500 MHz, CDCl3): δ 7.32-7.37 (m, 3H), 7.23-7.24 (m, 2H), 

7.17 (s, 1H), 5.47 (s, 2H), 2.67 (t, J = 7.5 Hz, 2H), 1.62 (p, J = 7.5 Hz, 2H), 1.25-1.33 (m, 

6H), 0.85 (t, J = 6.5 Hz, 3H). Spectrum matched literature.14  

 

1-Benzyl-4-(3-chloropropyl)-1H-1,2,3-triazole: Synthesized according to general 

procedure A using 6-chloro-1-pentyne (51 mg, 0.5 mmol) and benzyl azide (73 mg, 0.55 

mmol). 116 mg was isolated as a flaky off-white solid (99%). Rf = 0.21 (1:3 EtOAc: 

hexanes). 1H NMR (500 MHz, CDCl3): δ 7.34-7.40 (m, 3H), 7.25-7.27 (m, 2H), 7.24 (s, 

1H), 5.50 (s, 2H), 3.56 (t, J = 6.5 Hz, 2H), 2.86 (t, J = 7.5 Hz, 2H), 2.15 (p, J = 7 Hz, 2H). 

Spectrum matched literature.15 

 

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol. Synthesized according to general 

procedure A using 2-methylbut-3-yn-2-ol (42 mg, 0.5 mmol) and benzyl azide (73 mg, 0.55 

mmol). 107 mg was isolated as a white powdery solid (99%). Rf = 0.31 (2:25 

MeOH:CH2Cl2). 1H NMR (500 MHz, CDCl3): δ 7.35-7.39 (m, 3H), 7.34 (s, 1H), 7.27 (dd, J 

= 8, 2.5 Hz, 2H), 5.49 (s, 2H), 2.54 (s, 1H), 1.60 (s, 6H). Spectrum matched literature.16  

 

1-Benzyl-4-(3-((triisopropylsilyl)oxy)propyl)-1H-1,2,3-triazole. Synthesized according to 

general procedure A using triisopropyl(pent-4-yn-1-yloxy)silane (120 mg, 0.5 mmol) and 

benzyl azide (73 mg, 0.55 mmol). 155 mg was isolated as a colorless, viscous oil (83%). Rf 
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= 0.37 (1:3 EtOAc:hexanes).  1H NMR (500 MHz, CDCl3): δ 7.34-7.38 (m, 3H), 7.24-7.26 

(m, 2H), 7.19 (s, 1H), 3.70 (t, J = 6.5 Hz, 2H), 2.79 (t, J = 7.5 Hz, 2H), 1.89 (p, J = 7.5 Hz, 

2H), 1.03 (s, 18H). 13C NMR (125 MHz, CDCl3): δ 148.60, 135.08, 129.18, 128.74, 128.11, 

120.81, 62.53, 54.13, 32.52, 22.22, 18.15, 12.06. ESI-MS [M + Na]+ calcd: 396.2447 found: 

396.2462 

 

1-Benzyl-4-(2-((t-butyldimethylsilyl)oxy)ethyl)-1H-1,2,3-triazole: Synthesized according 

to general procedure A using triisopropyl(but-3-yn-1-yloxy)silane (113 mg, 0.5 mmol) and 

benzyl azide (73 mg, 0.55 mmol). 120 mg was isolated as a colorless, viscous oil (76%). Rf 

= 0.26 (1:3 EtOAc: hexanes). 1H NMR (500 MHz, CDCl3): δ 7.39-7.43 (m, 3H), 7.31-7.32 

(m, 3H), 5.54 (s, 2H), 3.88 (t, J = 6.5 Hz, 2H), 2.96 (t, J = 6.5 Hz, 2H), 0.86 (t, 9H), 0.00 (t, 

6H). 13C NMR (125 MHz, CDCl3): δ 145.97, 134.95, 129.19, 128.77, 128.24, 121.92, 62.34, 

54.16, 29.62, 25.98, 18.32, -5.32. ESI-MS [M + Na]+ calcd:  340.1821 found: 340.1817. 

 

1-Benzyl-4-(((tert-butyldimethylsilyl)oxy)methyl)-1H-1,2,3-triazole: Synthesized 

according to general procedure A using triisopropyl(prop-2-yn-1-yloxy)silane (106 mg, 0.5 

mmol) and benzyl azide (73 mg, 0.55 mmol). 112 mg was isolated as a colorless, viscous oil 

(74%). Rf = 0.34 (1:3 EtOAc:hexanes). 1H NMR (500 MHz, CDCl3): δ 7.32 (s, 1H), 7.27-

7.30 (m, 3H), 7.19 (dd, J = 7.5, 2 Hz, 2H), 5.44 (s, 2H), 4.76 (s, 2H), 0.81 (s, 9H), 0.00 (s, 

6H). 13C NMR (125 MHz, CDCl3): δ 134.93, 129.19, 128.79, 128.09, 121.62, 114.62, 58.11, 

54.23, 26.01, 18.47, -5.14. ESI-MS [M + Na]+ calcd:  326.1665 found: 326.1673  
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4-(1-Benzyl-1H-1,2,3-triazol-4-yl)-N,N-dimethylaniline. Synthesized according to general 

procedure A using 4-ethynyl-N,N-dimethylaniline (73 mg, 0.5 mmol) and benzyl azide (73 

mg, 0.55 mmol). 129 mg was isolated as a maroon crystalline solid (93%). Rf = 0.40 (1:1 

EtOAc:hexanes). 1H NMR (500 MHz, CDCl3): δ 7.66 (d, J = 9 Hz, 2H), 7.52 (s, 1H), 7.35-

7.40 (m, 3H), 7.30 (d, J = 8 Hz, 2H), 6.74 (d, J = 9 Hz, 2H), 5.55 (s, 2H), 2.97 (s, 6H). 

Spectra matched literature.17 

 

1-(2-Fluorobenzyl)-4-phenyl-1H-1,2,3-triazole. Synthesized according to general 

procedure A using phenylacetylene (51 mg, 0.5 mmol) and 1-(azidomethyl)-2-fluorobenzene 

(83 mg, 0.55 mmol). 125 mg was isolated as a white powdery crystal (99%). Rf = 0.29 (1:3 

EtOAc: hexanes). 1H NMR (500 MHz, CDCl3): δ 7.81 (dd, J = 8.5, 1.5 Hz, 2H), 7.76 (s, 

1H), 7.30-7.42 (m, 5H), 7.15 (q, J = 10 Hz, 2H), 5.64 (s, 2H). Spectrum matched literature.18 

 

4-((4-Phenyl-1H-1,2,3-triazol-1-yl)methyl)benzonitrile. Synthesized according to general 

procedure A using phenylacetylene (51 mg, 0.5 mmol) and 4-(azidomethyl)benzonitrile (87 

mg, 0.55 mmol). 118 mg was isolated as a white powder (91%). Rf = 0.30 (1:1 EtOAc: 

hexanes). 1H NMR (500 MHz, CDCl3): δ 7.81 (dd, J = 8.5, 1.5 Hz, 2H), 7.72 (s, 1H), 7.68 

(d, J = 8.5 Hz, 2H), 7.32-7.43 (m, 5H), 5.65 (s, 2H). Spectrum matched literature.19 
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Methyl 4-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)benzoate. Synthesized according to 

general procedure A using phenylacetylene (51 mg, 0.5 mmol) and methyl 4-

(azidomethyl)benzoate (105 mg, 0.55 mmol). 37 mg was isolated as an off-white crystalline 

solid (25%). Rf = 0.39 (1:1 EtOAc:hexanes). 1H NMR (500 MHz, CDCl3): δ 8.05 (d, J = 8.5 

Hz, 2H), 7.81 (dd, J = 8.5, 1.5 Hz, 2H), 7.69 (s, 1H), 7.31-7.42 (m, 5H), 5.64 (s, 2H), 3.92 

(s, 3H). Spectrum matched literature.20 

 

1-Decyl-4-phenyl-1H-1,2,3-triazole. Synthesized according to general procedure A using 

phenylacetylene (51 mg, 0.5 mmol) and methyl 1-azidodecane (101 mg, 0.55 mmol). 25 mg 

was isolated as a flaky white powder (25%). Rf = 0.38 (1:3 EtOAc:hexanes).  1H NMR (500 

MHz, CDCl3): δ 7.84 (d, J = 7.5 Hz, 2H), 7.74 (s, 1H), 7.42 (t, J = 8 Hz, 2H), 7.32 (t, J = 6.5 

Hz, 1H), 4.39 (t, J = 7 Hz, 2H), 1.94 (p, J = 7 Hz 2H), 1.26-1.35 (m, 14H), 0.87 (t, J = 7 Hz, 

3H). Spectrum matched literature.21 

 

1-Benzyl-4-(2-fluorophenyl)-1H-1,2,3-triazole. Synthesized according to general 

procedure A using 1-ethynyl-2-fluorobenzene (60 mg, 0.5 mmol) and benzyl azide (73 mg, 

0.55 mmol). 109 mg was isolated isolated as a white crystalline solid (86%). Rf = 0.32 (1:3 

EtOAc: hexanes). 1H NMR (500 MHz, CDCl3): δ 8.31 (td, J = 7.6, 2.0 Hz, 1H), 7.86 (d, J = 
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3.7 Hz, 1H), 7.42 – 7.22 (m, 7H), 7.13 – 7.08 (m, 1H), 5.60 (s, 2H). Spectrum matched 

literature.22 

 

4-((4-(2-Fluorophenyl)-1H-1,2,3-triazol-1-yl)methyl)benzonitrile. Synthesized according 

to general procedure A using 1-ethynyl-2-fluorobenzene (60 mg, 0.5 mmol) and 4-

(azidomethyl)benzonitrile (87 mg, 0.55 mmol). 115 mg was isolated Isolated as a white 

crystalline solid (83%). Rf = 0.43 (1:1 EtOAc:hexanes). 1H NMR (500 MHz, CDCl3): δ 8.30 

(td, J = 7.6, 1.9 Hz, 1H), 7.92 (d, J = 3.6 Hz, 1H), 7.68 – 7.66 (m, 2H), 7.38 (d, J = 8.0 Hz, 

2H), 7.34 – 7.29 (m, 1H), 7.26 (td, J = 8.0, 1.4 Hz, 1H), 7.12 (ddd, J = 11.1, 8.2, 1.2 Hz, 

1H), 5.66 (s, 2H). 13C NMR (125 MHz, CDCl3): δ 160.34, 158.37, 142.17, 139.99, 133.03, 

129.77, 129.71, 128.45, 127.92, 127.89, 124.83, 124.80, 123.02, 122.91, 118.36, 118.25, 

115.89, 115.72, 112.94, 105.13, 53.55. ESI-MS [M+Na]+ calcd: 301.0865 found: 301.0869. 

 

4-(2-Fluorophenyl)-1-phenethyl-1H-1,2,3-triazole. Synthesized according to general 

procedure A using 1-ethynyl-2-fluorobenzene (60 mg, 0.5 mmol) and (2-azidoethyl)benzene 

(81 mg, 0.55 mmol). 96 mg was isolated as an off-white flaky powder (72%). Rf = 0.31 (1:3 

EtOAc: hexanes). 1H NMR (500 MHz, CDCl3): δ 8.29 (td, J = 7.6, 2.0 Hz, 1H), 7.70 (d, J = 

3.7 Hz, 1H), 7.35 – 7.21 (m, 4H), 7.17 – 7.14 (m, 2H), 7.13 – 7.09 (m, 1H), 4.66 (t, J = 7.3 

Hz, 2H), 3.27 (t, J = 7.3  Hz, 2H). 13C NMR (125 MHz, CDCl3): 137.11, 129.37, 129.30, 

F

N
NN

CN

F

N
NN

Ph



 

 137 

129.00, 128.85, 127.98, 127.95, 127.28, 124.73, 124.70, 123.18, 123.07, 115.84, 115.67, 

51.86, 36.94. ESI-MS [M+Na]+ calcd:  290.1069 found: 290.1066. 

 

1-Benzyl-4-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazole.  Synthesized according to 

general procedure A using 1-ethynyl-3,5-bis(trifluoromethyl)benzene (119 mg, 0.5 mmol) 

and benzyl azide (73 mg, 0.55 mmol). 128 mg was isolated as a white powder (69%). Rf = 

0.38 (1:3 EtOAc: hexanes). 1H NMR (500 MHz, CDCl3): δ 8.25 (s, 2H), 7.81 (s, 1H), 7.80 

(s, 1H), 7.39-7.44 (m, 3H), 7.3 (dd, J = 7.5, 2 Hz, 2H), 5.62 (s, 2H). Spectrum matched 

literature.23 

 

1-Phenethyl-4-phenyl-1H-1,2,3-triazole. Synthesized according to general procedure A 

using phenyl acetylene (51 mg, 0.5 mmol) and (2-azidoethyl)benzene (81 mg, 0.55 mmol). 

113 mg was isolated as a white crystal (91%). Rf = 0.49 (1:1 EtOAc:hexanes). 1H NMR (500 

MHz, CDCl3): δ 7.76 (dd, J = 8.5, 1.5 Hz, 2H), 7.46 (s, 1H), 7.41 (t, J = 8 Hz, 2H), 7.25-

7.34 (m, 4H), 7.14 (d, J = 8 Hz, 2H), 4.64 (t, J = 7 Hz, 2H), 3.26 (t, J = 7 Hz, 2H). Spectrum 

matched literature.24 
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1-(4-Methoxybenzyl)-4-phenyl-1H-1,2,3-triazole. Synthesized according to general 

procedure A using phenyl acetylene (51 mg, 0.5 mmol) and 4-(azidomethyl)anisole (90 mg, 

0.55 mmol). 118 mg was isolated isolated as a brownish white shiny crystalline solid (89%). 

Rf = 0.47 (1:1 EtOAc:hexanes). 1H NMR (500 MHz, CDCl3): 7.79 (dd, J = 8, 1 Hz, 2H), 

7.62 (s, 1H), 7.39 (t, J = 7.5 Hz, 2H), 7.25-7.32 (m, 3H), 6.91 (dt, J = 9, 2 Hz, 2H), 5.50 (s, 

2H), 3.81 (s, 3H). ESI-MS [M+Na]+ calcd:  288.1113 found: 288.1116 
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E. NMR Spectra  
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