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ABSTRACT OF THE DISSERTATION 

 

 

Reliability-Based Integrity Management of Natural Gas Pipelines Subject to  

Spatio-Temporal Corrosive Environment 

 

by 

 

Keo-Yuan Wu 

Doctor of Philosophy in Materials Science and Engineering 

University of California, Los Angeles, 2020 

Professor Ali Mosleh, Chair 

 

 

Pipeline integrity management refers to an approach of understanding and operating pipelines in a 

safe and reliable manner. In this work, firstly, a probabilistic predictive model for internal 

corrosion of natural gas pipelines subject to aqueous CO2/H2S environment has been proposed. 

The model regards uniform and pitting corrosion as two main corrosion mechanisms and has been 

calibrated with the experimental data in a deterministic framework. Methodologies of simulating 

and accounting for temporal and spatial variabilities of operating parameters have been proposed 

and applied to the model for field applications. The model has been validated against field data 

from eight wet gas gathering pipelines in a probabilistic framework. Secondly, a reinforcement 

learning (RL)-based maintenance scheduler has been proposed for pipeline maintenance 

optimization problems by leveraging the proposed predictive corrosion model and the Q-learning 

and Sarsa algorithms. A case study has shown the superiority of the proposed maintenance 

scheduler over the periodic maintenance policy in reducing the maintenance costs. Finally, the 
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previous two parts of work have been integrated into a pipeline system integrity management 

software featuring pipeline health monitoring, corrosion prognosis, system-level failure analysis, 

sensor placement optimization, and inspection/maintenance optimization. A case study has been 

provided to demonstrate the capabilities of the software.   
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 1 

1 Introduction 

1.1 Background 

Much of the world relies on hydrocarbons including oil and natural gas as one of the main energy 

sources. Before they are processed into fuels and sent to the customers, they have to be extracted 

from underground either onshore or offshore and undergo a series of treatment to get rid of the 

impurities. Natural gas, compared to oil, creates less carbon pollution and doesn’t emit poisonous 

byproducts such as SOx and NOx during the combustion process for power generation; therefore, 

the demand for it has increased. A schematic diagram of a network of natural gas production in 

the oil and gas industry is shown Figure 1.   

 

 

Figure 1. Flow of natural gas production in the oil and gas industry. 
 

During the operation, different types of pipelines are used to transport hydrocarbons from the 

upstream to the downstream. For example, production pipelines transport oil, gas, and water from 
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the wellhead to the oil separator, which separates the gas from oil and water, and then to the gas 

dehydration facility to further dehydrate the remaining water and other impurities in the gas. In 

addition, transmission pipelines are built to transport natural gas to the production facility where 

they are processed to become fuel products and finally to the customers. According to Kiefner and 

Rosenfeld’s report [1], the total lengths of interstate and intrastate natural gas transmission 

pipelines in the United States are already more than 305,000 miles by 2000 and the major locations 

of them are shown in Figure 2.  

 

 

Figure 2. The distribution of natural gas transmission pipelines in the United States [1]. 
 

However, these pipelines are susceptible to degradation over their service life. One of the main 

degradation mechanisms is corrosion, a deterioration of materials by the reactions with its 
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environments. With high density of natural pipeline networks, any corroded pipeline that is lack 

of suitable treatment will lead to severe health and environmental hazards associated with huge 

cost as a result of leakage or burst. The research conducted by Pipeline and Hazardous Materials 

Safety Administration (PHMSA) from 1988 to 2008 reveals that corrosion, accounts for 18% (3rd 

highest) among the causes of severe incidents of pipelines while the highest one (25.9%) is for 

excavation damage [2]; therefore, corrosion remains an import issue in the oil and gas industry 

over the past thirty years. One of the effective ways to mitigate the risk of internal corrosion is 

through inspection and maintenance; however, it is too costly to excavate and inspect the entire 

sections of a pipeline which is typically tens or hundreds of miles.  

Prior to applying mitigation and maintenance practices, corrosion prediction in terms of corrosion 

damage (i.e., corrosion rate, corrosion depth, etc.) is important. Above all, corrosion predictive 

models can serve as guides and enable engineers to take actions (i.e., maintenance or replacement) 

proactively for the sake of pipeline integrity management purpose.  

Corrosion rate is influenced by many factors such as environmental and operating conditions, 

material, and geometry. In fact, corrosive matters such as water, CO2, H2S, condensates, and Cl- 

ions are often unavoidable during the extraction process and thus favor the environment for 

internal corrosion to happen inside the pipelines.  
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1.2 Motivation 

Up to date, corrosion predictive models can be categorized into three categories: mechanistic, 

semi-empirical, and empirical depending on the solidity of physical theories behind them [3]. The 

differences between these categories are shown in Figure 3. Among them, mechanistic models, 

which are mostly developed in the laboratories, are the most reliable because they have strong 

theoretical background and solid physics behind it; therefore, they are good for both interpolation 

and extrapolation predictions. However, sometimes they require parameter tuning and 

determination before they can be applied to real operating gas pipelines, increasing the difficulty 

of application in the industry. On the other hand, although empirical models are lack of theoretical 

background and often data-driven, they are more widely used in the industry compared to 

mechanistic models because of the ease of application and implementation. However, predictions 

done by empirical models are skeptical outside the valid range of available data. Semi-empirical 

models are partly based on theoretical hypothesis and have partly characteristics of both 

mechanistic and mechanistic models, rendering them also popular in the industry; however, it has 

the same problem as empirical models that unreliable results are expected for extrapolation.   

Pipeline corrosion modeling and integrity management research has been done for many decades, 

however, two issues have been noticed by the author. Firstly, up to author’s knowledge, most state-

of-the-art physics-of-failure (PoF)-based models don’t take temporal and spatial variability of 

operating parameters into account for corrosion predictions which deviates from the real situation 

that operating parameters are changing continuously within an uncertain range. This perspective 
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is also mentioned in a review study by Heidary et al. [4] who reported that a reliable corrosion 

assessment model should consider epistemic uncertainty, temporal uncertainty, spatial uncertainty, 

and inspection errors. Secondly, a study by U.S. Federal Highway Administration (FHWA) in 

2002 indicates that the annual cost of corrosion in the United States is approximately $7 billion, 

among which 52 % is for operation and maintenance [5]. This study reveals another issue about 

how to implement cost-effective maintenance practices of gas pipelines for pipeline operators. 

However, nowadays pipeline operators are applying inspection and maintenance actions to ensure 

the asset integrity based on experience or rule-of-thumb maintenance policies such as Time-based 

maintenance (TBM), Risk-based maintenance (RBM), or Condition-based maintenance (CBM), 

but they are usually found to be not cost-effective in the long run. Therefore, in order to establish 

a reliable pipeline integrity management tool in a cost-effective way, the abovementioned two 

issues have to be considered and applied for future predictions.   
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Figure 3. Differences between different categories of corrosion predictive models. 
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2 Literature Review 

2.1 Internal uniform corrosion modeling 

Corrosion is the gradual degradation of materials by chemical and/or electrochemical reactions 

with their environment. Internal corrosion is defined as corrosion that happens on the inner wall 

of natural gas pipelines when the pipe wall is exposed to corrosive environments such as the 

combination of water with O2, H2S, CO2, and chloride ions [6]. The extent of corrosion damage is 

a function of operating conditions.  Some combinations of corrosive constituents will lead to severe 

corrosion, while some will only lead mild or no corrosion, which makes corrosion prediction a 

difficult task. Fortunately, numerous corrosion predictive models have been developed based on 

years of research on field experience and laboratory experiments. Different types of corrosion 

occur at different operating conditions and pipe materials. Uniform corrosion, pitting corrosion, 

erosion corrosion, microbiologically-influenced corrosion, and corrosion fatigue are common 

types of internal corrosion in natural gas pipelines.  

Uniform corrosion is a type of corrosion that the anodic and cathodic reaction sites occur 

simultaneously on the entire surface, leading to the uniform reduction of pipe walls. For natural 

gas pipelines CO2 and H2S are two major causes of uniform corrosion because of chemical 

reactions with water. When dissolved in water, CO2 is hydrated to become carbonic acid (H2CO3) 

[7]: 

CO$(&) ⇔ CO$()*) (1) 
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CO$()*) + H$O()*) ⇔ H$CO-()*) (2) 

which then dissociates in two steps: 

H$CO-()*) ⇔ H()*). + HCO-()*)/  (3) 

HCO-()*)/ ⇔ H()*). + CO-()*)$/  (4) 

H2S also becomes corrosive when dissolved in water [8]: 

H$𝑆(&) ⇔ H$𝑆()*) (5) 

which then dissociates in two steps: 

H$𝑆()*) ⇔ H()*). + H𝑆()*)/  (6) 

HS()*)/ ⇔ H()*). + S()*)$/  (7) 

  

2.1.1 de Waard and Milliams model 

In early time, CO2 corrosion poses significant threat to gas pipelines and therefore has gained more 

attention. de Waard and Milliams firstly develops an equation and a corresponding nomogram for 

CO2 corrosion in wet natural gas pipelines by relating corrosion rate with temperature, partial 

pressure of CO2, and scale factor during early 1970s [9]. The nomogram for CO2 corrosion is 

shown in Figure 4. 
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They later simplify the corrosion rate equation for the nomogram with more data and the equation 

becomes [10]: 

logC5677 = 5.8 −
1710
T + 0.671log	(pCO$) (8) 

where Ccorr is corrosion rate; T is temperature; pCO2 is partial pressure of CO2.  

 

 

Figure 4. Nomogram for CO2 corrosion [9]. 
 

Moreover, the model is further modified with experiment data to include many other factors such 

as total pressure, protective layers, pH value, flow velocity, hydrocarbon liquid, and inhibitors 

(e.g., glycol). These factors are accounted for by multiplying the corrosion rate predicted by 

equation (8) with correction factors ranging from 0 to 1. That is to say these factors either reduce 
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or make no change to corrosion rate under certain circumstances. Each factor has a different 

influence on the predicted corrosion rate: 

(1) Effect of total pressure 

The increase of total gas pressure will increase corrosion rate, but nonideality will also become 

more important. Therefore, the effect of fugacity of the gas (Fg) should be considered a correction 

factor:  

logD𝐹FG = 0.67H0.0031 −
1.4
𝑇 L𝑃 (9) 

where T is temperature; P is total pressure of the gas. 

(2) Effect of surface layer 

Aqueous CO2 reacts with steel to form iron carbonate (FeCO3) scales (and Fe3O4 under some 

conditions), which can be protective or non-protective depending on the operating condition: 

Fe(P) + CO$()*) + H$O(Q) → FeCO-(P) + H$(&) (10) 

At lower temperatures (lower than 60℃), the scale is easily removed by flowing liquids and is 

non- protective. At higher temperature, the scale has a different texture and becomes more 

protective. The scale correction factor (Fscale) can be expressed as: 

log(FP5)QS) = 2400(
1
T −

1
TP5)QS

) (11) 
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where T is temperature; Tscale is scaling temperature above which protective scales start to form 

i.e., T >  Tscale, otherwise Fscale = 1. Tscale can be written as: 

TP5)QS =
2400

6.7 + 0.6log	(fCO$)
 (12) 

where fCO2 is fugacity of CO2. 

(3) Effect of pH 

With constant volume of water and constant CO2 pressure, the formation of corrosion byproducts 

(e.g., FeCO3 and Fe3O4) will increase the Fe++ concentration, but decrease the H+ concentration 

until the solution is saturated with FeCO3 or Fe3O4. pH at the onset of FeCO3 or Fe3O4 saturation 

(pHsat) for different temperatures and fugacity of CO2 can be approximated by: 

 

smallest	value	of						pHP)\ = 1.36 +
1307
T + 273 − 0.17 log

(fCO$) 		𝑎𝑛𝑑		 
(13) 

pHP)\ = 5.4 − 0.66	log	(fCO$) 

The pH correction factor (FpH) is then found to be: 

logDF`aG = 0.32(pHP)\ − pH)5\)    for    pHP)\ > pH)5\ (14) 

logDF`aG = −0.13(pH)5\ − pHP)\)c.d   for    pHP)\ < pH)5\ (15) 

where pHsat is actual pH. 



 

 

12 

 

 

(4) Effect of velocity 

The protective scales will be removed by flowing fluid under some conditions. When wet gas is 

transported at a superficial gas velocity of 20 m/s, the protective scales will be completely removed 

and the scale correction factor becomes 1.   

(5) Effect of hydrocarbon liquid 

Sometimes crude oil present along with gas in gas pipelines during the extraction process. Under 

this condition, CO2 corrosion can be inhibited if the steel is oil-wetted as water is entrained in the 

crude oil. However, light hydrocarbon condensates do not provide any protection like crude oil. 

The hydrocarbon liquid correction factor (Foil) can be expressed as:  

F6fQ = 0     if     water cut < 30%    and    V57hiS > 1 m/s 

                                    otherwise 

F6fQ = 1      

(16) 

where Vcrude is flow rate of crude oil. 

(6) Effect of glycol 

Glycol is added to wet gas pipelines to inhibit CO2 corrosion because glycol can reduce the 

corrosivity of the water phase and absorb water from the gas phase in a prevention of hydrates 

formation. The glycol correction factor (Fglyc) can be expressed as: 
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logDF&Qj5G = Alog(W%) − 2A (17) 

where A is a constant with a value of 1.6 for most glycols; W% is water content of water/glycol 

mixture in w%. 

 

2.1.2 Nesic et al. model  

A few years later, Nesic et al. [11–13] develops a mechanistic model for CO2 corrosion considering 

electrochemical reactions at the steel surface and transport processes of corrosive species between 

the steel surface and the bulk solution.  Electrochemical reactions, including one anodic reaction 

and three cathodic reactions, happen when corrosive species contact with the steel surface. The 

only anodic reaction is iron dissolution: 

Fe → Fe$. + 2e/ (18) 

The three cathodic reactions are hydrogen ion reduction, direct carbonic acid reduction, and direct 

water reduction: 

2H. + 2e/ → H$ (19) 

2H$CO- + 2e/ → H$ + 2HCO-/ (20) 



 

 

14 

 

 

2H$O + 2e/ → H$ + 2OH/ (21) 

The rate for any of the cathodic and anodic reactions can be described in terms of current density 

i (A/m2). The reaction is referred as “charge transfer controlled” if the rate of the overall corrosion 

process is limited by the rate of the electrochemical reaction. The charge transfer current density 

(ia) can be expressed as: 

io = ±iq × 10±(s/stuv)/x (22) 

where iq is exchange current density; E is electrical potential; Erev is reversible potential; b is Tafel 

slope. The iq is a function of temperature, which can be simply expressed in terms of the Arrhenius 

equation: 

iq = iq7Sye
/∆a/{( c|}

	/ c
	|},tu�

)
 

(23) 

where iq7Sy is reference exchange current density; ∆H is activation enthalpy; T� is temperature (K); 

T�,7Sy is reference temperature (= 298 K); R is gas constant (= 8.314 J/mol×K). In reality, iq is also 

related to concentrations of reactants and the summary of electrochemical parameters for different 

reactions is listed in Figure 5.  
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Figure 5. Electrochemical parameters for the reactions involved in CO2 corrosion [11]. 
 

When the cathodic reactants are reacted rapidly at the steel surface, the rate of the overall corrosion 

process is determined by the rate at which these cathodic reactants can be supplied from the bulk 

solution. At this condition, the reaction is referred to as “diffusion controlled” and the 

corresponding limiting current density (ilim) can be expressed as: 

iQf�	(��) = k�	(��)F[A.] (24) 

where k�	(��)  is mass transfer coefficient of reactant A; F is Faraday constant; [A.]  is 

concentration of reactant A. Given charge transfer current density and limiting current density, the 

overall current density (i) can be expressed as: 

i =
1

1
io
+ 1
iQf�

 (25) 
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As corrosion proceeds the anodic current density is electrically balanced by the cathodic current 

density at the steel surface and the unknown corrosion potential (Ecorr) can be found: 

i(a�) + i(a����) = i(�S) (26) 

Once the value of Ecorr is found, substitute the value E in equation (22) for iron dissolution with 

Ecorr can yield corrosion current (icorr). Therefore, CO2 corrosion rate (CR) can be obtained by 

Faraday’s law: 

CR =
i5677M�S

ρ�S2F
 (27) 

where M�S is molecular mass of iron; ρ�S is density of iron. 

During the corrosion process, when the concentration of Fe$.from corroded steel and that of CO-$/ 

from dissolved CO2 are high to an extent i.e., their product exceeds the solubility limit, the 

precipitation of iron carbonate (FeCO3) occurs according to: 

Fe$. + CO-$/ ⟺ FeCO-(P) (28) 

This nonequilibrium situation is called “supersaturation” (SS(�S���)) . The higher the 

supersaturation, the faster the precipitation will happen.  SS(�S���) can be defined as: 

SS(�S���) =
C�S$.C���

$/

KP`(�S���)
 (29) 
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where KP`(�S���) is solubility product constant, a function of temperature and strength.  

KP`(�S���) = 10(/��.-���/q.q�c-��×��/
$.c�d-
��

.$�.��$�×��F��.$.�c�×��.�/q.d��×� 
(30) 

where T� is temperature in K; I is ionic strength. 

The iron carbonate precipitation/growth rate (R�S��� ) can be modeled mathematically by two 

equations: 

R�S��� = Ae
��.�/c$-

{| �� (¡u¢£�)¤¥¥(¡u¢£�)
�.� /c¦

�

 (31) 

R�S��� = Ae
�$.�/cc�

{| �� (¡u¢£�)D¥¥(¡u¢£�)/cG¤c/¥¥(¡u¢£�)
§¨ ¦ (32) 

where A is surface area available for precipitation per unit volume; R is gas constant; T is 

temperature;  KP`(�S���) is solubility product constant; SS(�S���) is supersaturation. It should be 

noted that iron carbonate can not only precipitate on the steel surface but also within the pores of 

a porous surface layer in which A is equal to the surface area of the pore per unit volume. Dense 

and protective iron carbonate surface layers form when the precipitation rate is larger than the 

corrosion rate under high temperature (> 50 ℃) and high pH (> 5). Otherwise, non-protective and 

porous iron carbonate surface layers form instead.  
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Nesic et al. model gives a clearer picture of corrosion mechanism compared to de Waard and 

Milliams model because all equations and parameters have physical meanings; however, those 

parameters have to be determined from experiments.   

 

2.1.3 Sun and Nesic model  

So far, the previous described two models for uniform corrosion are in “sweet corrosion” (CO2 

corrosion) margin only. Not until 2009 does Sun and Nesic [14] propose a mechanistic model that 

propagates the application of corrosion modeling to “sour corrosion” (CO2/H2S corrosion). Since 

H2S is hardly present by itself without CO2 in a real gas pipeline, so this model predicts uniform 

corrosion in a mixed CO2/H2S environment.  

Based on their experimental observations, sulfide layers especially Mackinawite-type sulfides are 

likely to present at the beginning of the corrosion process by a fast, direct, and heterogeneous 

reaction at the steel surface called “solid-state reaction”: 

Fe(¥) + H$S ⟹ FeS(P) + H$ (33) 

Due to the presence of this inner mackinawite film, this model assumes that the whole corrosion 

process is under mass-transfer control and the fluxes of three main corrosive species i.e., CO2, H2S, 

H+. As corrosion proceeds, the mackinawite film grows and delaminates over time, leading to the 

formation of the outer mackinawite layer. How these fluxes are transported from the liquid/bulk 



 

 

19 

 

 

solutions to the steel surface through the mackinawite film are keys to simulate the corrosion rate. 

A schematic diagram of the corrosion process is shown in Figure 6.  

Take H2S for example, three kinds of fluxes are considered: 

(1) Convective diffusion through the mass-transfer boundary layer: 

Fluxa�¥ = k�,a�¥(Cx,a�¥ − C6,a�¥) (34) 

where k�,a�¥  is mass-transfer coefficient for H2S in the hydro-dynamic boundary layer  (=

	1 × 10/�	m/s); Cx,a�¥ is bulk concentration of H2S in the liquid/bulk solution in mol/m3; C6,a�¥ 

is interfacial concentration of H2S at the outer layer/solution interface in mol/m3. 

(2) Molecular diffusion through the liquid in the porous outer layer: 

Fluxa�¥ =
Da�¥εψ
δ6P

(C6,a�¥ − Cf,a�¥) (35) 

δ6P =
m6P

ρ�S¥	A
 

(36) 

where Da�¥  is diffusion coefficient for dissolved H2S in water  (= 	2 × 10/�	m$/s); ε is outer 

mackinawite layer porosity (= 0.9); ψ is outer mackinawite layer tortuosity factor (= 0.003); δ6P 

is thickness of the mackinawite layer in m; m6P is mass of the mackinawite layer in kg; A is surface 

area of the steel in m2; ρ�S¥ is density of the mackinawite layer in g/m3. 
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(3) Solid-state diffusion through the inner mackinawite layer: 

Fluxa�¥ = Aa�¥ln(
Cf,a�¥
CP,a�¥

) (37) 

where Aa�¥  is solid-state diffusion kinetic constant for H2S (= 2 × 10/�	mol/m$s); CP,a�¥  is 

“near-zero” concentration of H2S on the steel surface (= 1 × 10/�	mol/m-).   

In a steady state, these three fluxes are equivalent to each other and Fluxa�¥ becomes: 

Fluxa�¥ = Aa�¥ln(
Cx,a�¥ − Fluxa�¥(

δ6P
Da�¥εψ

+ 1
k�,a�¥

)

CP,a�¥
) (38) 

This flux can be further converted to corrosion rate caused by H2S (CRa�¥): 

CRa�¥ = Fluxa�¥	M�S/ρ�S (39) 

where M�S is molecular mass of iron; ρ�S is density of iron. 
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Figure 6. A schematic diagram of CO2/H2S corrosion process [14]. 
 

The effects of other two corrosive species, namely, CO2 and H+ on corrosion follow similar 

patterns in a calculation of corrosion rate by CO2 (CRa�¥) and by H+ (CRa�). Finally, the total 

corrosion rate in a mixed CO2/H2S environment (CR) is the contribution of these three main 

corrosive species: 

CR = CRa�¥ + CR��� + CRa� (40) 

Refer to equation (38), most parameters can be found in handbooks or are already determined via 

experiments except δ6P, which is thickness of mackinawite layer. The thickness changes over time 

based on the layer formation kinetics and layer damage kinetics: 

SRR = SFR − SDR (41) 
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where SRR is sulfide layer retention rate in mol/m$s; SFR is sulfide layer formation rate in 

mol/m$s; SDR is sulfide layer damage rate in mol/m$s.  

Since the formation of sulfide layers is a solid-state reaction as shown in equation (33), the supplier 

of Fe2+ is from the steel itself via corrosion process. The SFR is therefore assumed to be corrosion 

rate (CR). As for SDR, which is assumed to be affected by intrinsic or hydrodynamic stresses, is 

set to be 0.5CR as half of the formed sulfide layer is lost based on experimental observations. The 

final expression of SRR becomes: 

SRR = CR − 0.5CR = 0.5CR (42) 

Once SRR is determined, the change in mass of the mackinawite layer (∆m6P) in equation (36) 

can be calculated via: 

∆m6P = SRR	M�S¥	A	∆t (43) 

where M�S¥ is molecular mass of iron sulfide; ∆t is time interval. 

Sun and Nesic model successfully extends the application margin from CO2 only to mixed 

CO2/H2S environments; however, assumptions such as: (1) not considering sulfide layer 

dissolution effect and (2) the whole corrosion process is under mass-transfer control makes the 

model inaccurate under certain conditions.  
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2.2 Internal Pitting corrosion modeling  

Unlike uniform corrosion, the percentage of cathodic and anodic areas on the steel surface are 

uneven for pitting corrosion, leading to localized degradation of materials. Usually a small anodic 

reaction site is surrounded by large local cathodic reaction sites and form a pit. Depending on the 

types of materials, operating conditions, and environment, pits have different shapes as shown in 

Figure 7 [15]. Pits usually initiate at places where protective layers break down and fresh materials 

are exposed. Therefore, the initiation is related to the composition and thickness of protective 

layers as well as harmful ions such as chloride ions that tend to destroy protective layers. However, 

pitting corrosion has random nature, which makes it hard to predict. This also explains why many 

state-of-the-art pitting corrosion predictive models are data driven with small physical foundation. 

 

 

Figure 7. Different shapes of pits [15]. 
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2.2.1 Common data-driven based models 

According to a review study [4], there are two classes of data-driven based models for pitting 

corrosion, namely, random variable-based and stochastic process-based models, both of which 

have their sub-class categories.   

 

2.2.1.1 Random variable-based models  

Random variable-based models are the most common and easiest for reliability analysis. This 

category has two sub-classes, namely, linear random variable-based and non-linear random 

variable-based models depending on whether they can reflect the time-dependent nature of pitting 

corrosion rate or not.  

 

(1) Linear random variable-based models 

A linear random variable-based model estimates pit growth rate for a population of defects by a 

linear equation: 

υi =
D(t$) − D(tc)

t$ − tc
 (44) 

where D(tc) and D(t$) is maximum depth of the pit at tcand t$, respectively; υi is pit growth rate 

of the pit.  

Although this model requires only small number of data sets and is used commonly, it does not 

take into account the time-dependent nature of pitting corrosion. In addition, backward 
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extrapolation of this model results in negative corrosion initiation time, which violates the physics 

of corrosion.   

(2) Non-linear random variable-based models 

On the other hand, a non-linear random variable-based model [16,17] improves the drawback of 

linear random variable-based model and predicts the maximum defect depth by a power function: 

D�)²(t) = k(t − tq)o (45) 

where D�)²(t) is maximum defect depth at time t; tq is initiation time of stable pit growth; k is 

proportionality factor; α is exponent factor (a positive and less than one number).  

Random variable-based models are easy to develop and use via regression analysis; however, they 

do not consider either spatial heterogeneity or temporal variation on corrosion modeling, leading 

to less realistic predictions for the future. On the contrary, stochastic process-based models show 

the advancement by dealing with the temporal variability of the corrosion degradation process.  

    

2.2.1.2  Stochastic process-based models  

Stochastic process-based models have four sub-classes, namely, linear stochastic process-based, 

non-linear stochastic process-based, Markov process-based, and Gamma process-based models.  
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(1) Linear stochastic process-based models 

A linear stochastic process-based model takes into account the temporal variability by modeling 

the pit growth rate as a Poisson square wave process (PSWP) [18]. PSWP describes maximum pit 

depth growth rate (i.e., pulse height) as independent and identically distributed (i.i.d) random 

variables that are characterized by any specified distributions; pulse durations are characterized as 

i.i.d random variables that are exponentially distributed. This model estimates the maximum pit 

depth by: 

D�)²(tf.c) = D�)²(tf) + Yf(tf.c − tf)					for				i = 0, 1,… , n (46) 

where 𝐷¸¹º(𝑡¼) is maximum pit depth at time t, 𝑌¼ is maximum pit depth growth rate; n is number 

of pulses.  

Similar to the linear random variable-based model, this model also leads to negative corrosion 

initiation time after backward extrapolation.  

(2) Non-linear stochastic process-based models 

Non-linear stochastic process-based models are developed to correct the drawback of linear 

stochastic process-based models. A general expression of the maximum pit depth by a non-linear 

stochastic process-based model is given by [18]: 

D�)²(tf.c) = D�)²(tf) + Yf[(tf.c − tq)o − (tf − tq)o]					 

for				i = 0, 1,… , n 

(47) 
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where 𝐷¸¹º(𝑡¼) is maximum pit depth at time t; 𝑌¼ is proportionality coefficient of maximum pit 

depth; 𝛼 is exponent coefficient; n is number of pulses; tq is corrosion initiation time. 

Although stochastic process-based models take into account the temporal variability, they do not 

consider the spatial heterogeneity.  

(3) Markov process-based models 

Another sub-class of stochastic process-based models is Markov process-based models. A Markov 

process is a continuous-time stochastic process that follows Markovian property in which the 

conditional probability of the future state depends only on the present state. Pitting corrosion 

process can be described by the Kolmogorov differential equations given by [19]: 

dPc(t)
dt = −λcPc(t) (48) 

dPf(t)
dt = −λf/cPf/c(t)	−	λfPf(t)						for						i = 2, … ,N					 (49) 

where λf is transition rate from state i to i + 1; Pf(t) is probability of being in state i at time t; N is 

number of states in which the thickness of the pipeline divided.  

For a Markov process-based model, the goal is to predict the probability of being in each state 

represented by the maximum pit depth at each time. Thus, the difficulties of this model are to find 

transition rates between states and relate transition rates to corrosion rates with available data that 

can best describe the corrosion behavior of gas pipelines. Transition rates can be time-dependent 
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to become non-homogeneous Markov process-based models [20]. Non-homogeneous transition 

rates can be expressed as: 

λÃ(t) =
λÃ(1 + λt)
1 + λt� 									for							j = 1, 2,… , n (50) 

where λÃ  is transition rate from state j to j + 1; t  is exposure time; λ and k are parameters of a 

specific pitting corrosion in pipe systems. 

Similar to stochastic process-based models, Markov process-based models consider the temporal 

variability but not the spatial heterogeneity.  

(4) Gamma process-based models 

Last sub-class of stochastic process-based models is Gamma process-based models. The pitting 

corrosion depth at time t, d(t), can be characterized by a homogeneous gamma process with a 

time-dependent shape parameter, α(t), and a scale parameter, β. The probability density function 

of  d(t) can be expressed as [21]: 

fÆ(d(t)|α(t − tq, β) = βo(\/\�)
d(t)o(\/\�)/ce/i(\)ÈI(t)

Γ(α(t − tq))
 (51) 

where tq is corrosion initiation time; Γ(∙) is gamma function; I(t) is indicator function, which 

equals to unity if t > tq or equals to zero if 0 ≤ t ≤ tq. 

As α(t) > 0 and β > 0, which results in the monotonic increasing nature of the gamma process, 

this process can describe degradation mechanisms such as corrosion well. In other words, it 
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captures the increasing nature of the defect size. In addition, Gamma process-based models are the 

most versatile ones among data-driven models because they consider both temporal variability and 

spatial heterogeneity.  

  

2.2.2 Mathematical function-based models - Papavinasam model  

Papavinasam et al. [22,23] propose a predictive model that takes operating parameters into account 

for oil and gas pipelines. The model is developed based on laboratory experiments which are done 

to simulate real operating conditions as well as field data from real operating pipelines. It can only 

be used to predict pitting corrosion rate for the location where water is accumulated. Different 

effects of parameters on pitting corrosion rate are discussed and quantified each of which can 

influence pitting corrosion rate individually: 

(1) Effect of oil: 

The influence of oil on pitting corrosion depends on the type of oil-water emulsion. For water-in-

oil (W/O) emulsion, as the continuous phase oil has low conductivity, corrosion on the steel surface 

in contact with W/O emulsion is reduced. However, oil-in-water (O/W) emulsion is likely to 

facilitate corrosion as water with high conductivity is the continuous phase in contact with the steel 

surface. The pitting corrosion rate (PCR6fQ ) as a function of contact angle of oil in a water 

environment is given by:  



 

 

30 

 

 

PCR6fQ = −0.33θ + 55 (52) 

where θ is contact angle in degree.  

(2) Effect of water: 

Wettability of water in the environment with the presence of oil has a large impact on pitting 

corrosion. An oil-wet surface is immune to corrosion, but a water-wet surface or a mixed-wet 

surface is not. According to experiments, the wettability of water is related to water percentage 

(water production rate/ (water + oil production rate) × 100). The pitting corrosion rate (PCRÍ)\S7) 

as a function of water percentage is given by: 

PCRÍ)\S7 = 0.51W+ 12.13 (53) 

where W is water percentage in %. 
 

(3) Effect of gas: 

Besides the presence of oil and water, the production rate of gas would affect the flow rate. The 

increase of the turbulence flow increases pitting corrosion, which can by modeled by wall shear 

stress. The pitting corrosion rate (PCR&)P) as a function of wall shear stress is given by: 

PCR&)P = 0.19WPP + 64 (54) 
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where WPP is wall shear stress in Pa. 
 

(4) Effect of solids: 

Solids influence pitting corrosion in many ways depending on different flow regimes. Under low 

flow regime, solids may deposit on the steel surface and facilitate underdeposit localized corrosion; 

under moderate flow regime, solids are likely to remove protective layers in localized areas where 

pitting corrosion will occur; under high flow regime, solids may promote erosion corrosion. The 

pitting corrosion rate (PCRP6Qfi) as a function of the presence of solids is given by: 

PCRP6Qfi = 25RP6Qfi + 50 (55) 

where RP6Qfi is the presence of solids in a pipe (= 1 for presence; = 0 for  absence). 

(5) Effect of temperature: 

The influence of temperature on corrosion is complicated. In general, higher temperature increases 

corrosion rate because it accelerates chemical and electrochemical reactions of corrosion. However, 

high temperature also facilitates the precipitation of protective layers and reduce corrosion rate. 

For pitting corrosion, high temperature increases the diffusivity of pitting species such as chloride 

ions which may destroy protective layers in localized areas, increasing pitting corrosion rate. The 

pitting corrosion rate (PCR|) as a function of temperature is given by: 

PCR� = 0.57T + 20 (56) 

where T is temperature in ℃. 
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(6) Effect of total pressure: 

Pressure has a dual role on corrosion. High pressure may facilitate corrosion if it accelerates the 

dissolution of steels; however, it may also promote the formation of protective layers as 

supersaturation condition is met. The pitting corrosion rate (PCRÎ) as a function of total pressure 

is given by: 

PCRÎ = −0.081P\6\)Q + 88 (57) 

where P\6\)Q is total pressure in psi. 

(7) Effect of H2S partial pressure: 

H2S becomes corrosive once it is dissolved in water. Aqueous H2S has a dual role on corrosion. 

Higher H2S partial pressure may increases corrosion rate as H2S reduction is a key cathodic 

reaction for corrosion in a H2S-present environment. On the other hand, Higher H2S partial 

pressure may also inhibit corrosion rate as dissolution of H2S provides required species S2- for the 

formation of iron sulfide protective layers. The pitting corrosion rate (PCRÎÏ�Ð) as a function of 

H2S partial pressure is given by: 

PCRÎÏ�Ð = −0.54Pa�¥ + 67 (58) 

where Pa�¥ is partial pressure of H2S in psi. 

 



 

 

33 

 

 

(8) Effect of CO2 partial pressure: 

Similar to H2S, CO2 reduction is one of the main cathodic reactions for corrosion in a CO2-present 

environment. However, it also promotes the formation of iron carbonate layers and inhibit 

corrosion rate. According to Sun and Nesic [14], the formation of iron sulfide is kinetically 

preferable compared to that of iron carbonate; therefore, the dominant protective layers are mainly 

iron sulfides in a mixed CO2/H2S environment. The pitting corrosion rate (PCRÎ¢£�) as a function 

of H2S partial pressure is given by: 

PCRÎ¢£� = −0.63P��� + 74    (59) 

where P���  is partial pressure of CO2 in psi. 

(9) Effect of sulfate ions: 

The effect of sulfate ion on corrosion is predominant only in the presence of H2S. Once sulfate 

layers are formed, corrosion rate is inhibited. Experiments show that sulfate ions have little effect 

on pitting corrosion rate. The pitting corrosion rate (PCR¥�Ñ�§) as a function of sulfate ions is given 

by: 

PCR¥�Ñ�§ = −0.013[SO�$/] + 57 (60) 

where [SO�$/] is concentration of sulfate ions in ppm. 

(10) Effect of bicarbonate ions: 
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According to equation (2), CO2 can be dissolved in water and form carbonic acid (H2CO3), which 

later will later dissociate into H+ and HCO3- according to equation (3). The dissolution step is why 

aqueous CO2 is corrosive; however, if the supply of HCO3- is sufficient, shifting the equilibrium 

of equation (3) to the left and reducing the severity of corrosion. In addition, bicarbonate ions act 

like a buffer that can absorb H+ ions and neutralize the acid. The pitting corrosion rate (PCRa���§) 

as a function of bicarbonate ions is given by: 

PCRa���§ = −0.014[HCO-/] + 81 (61) 

where [HCO-/] is concentration of bicarbonate ions in ppm.   

(11) Effect of chloride ions: 

Chloride ion is the most potent species in destroying protective layers; therefore, it plays an 

important role for inducing pitting corrosion. In addition, once a pit is formed, it is likely to 

accumulate inside a pit and accelerates corrosion rate.  

PCR�Q§ = 0.0007[Cl/] + 9.2 (62) 

where [Cl/] is concentration of chlorides ions in ppm. 

(12) Effect of unconsidered parameters: 

There are some minor parameters (e.g., acetic acid) that may influence pitting corrosion but not 

discovered or considered in this model. Their effects are considered by taking the mean value of 
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other 11 individual pitting corrosion rate called PCR)iif\f6Ò)Q . This effect has small influence on 

predicted corrosion rate, but it increases the uncertainty of the prediction.  

(13) Combined effect: 

Although each of the parameter discussed above can individually influence pitting corrosion rate, 

the ultimate pitting corrosion is the combined effect of all operational parameters. That is to say 

the influence of each parameter has to be connected in a statistical principle because the driving 

force for pitting corrosion is a distributed parameter. The ultimate pitting corrosion rate (PCR�S)Ò) 

can be expressed as: 

PCR�S)Ò =
PCR6fQ + PCRÓ¹ÔÕÖ + PCRF¹× + ⋯+ PCR¥�Ñ�§ + PCRa���§ + PCRÙ�§

12
 

(63) 

According to the model assumptions, PCR�S)Ò is the resulting pitting corrosion rate at a localized 

anodic reaction site where protective layers are removed.   

(14) Effect of duration: 

In general, pitting corrosion rate is not constant during the propagation of pitting corrosion. Many 

factors (e.g., reformation of protective layers, local increase in pH, etc…) actually lead to a 

parabolic decrease of pitting corrosion as a function of time. If the operating conditions are 

constant over years, the average pitting corrosion rate (PCR)ÚS7)&S) can be expressed as: 
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PCR)ÚS7)&S =
PCR�S)Ò

1 + PCR�S)Ò2 + PCR�S)Ò3 + ⋯+ PCR�S)Òt
t  (64) 

where t is number of years.  

(15) Effect of flow regime: 

Based on the analysis of field data, this model further provides a correction factor in a 

consideration of flow regime, which is multiplied by PCR)ÚS7)&S. Different kinds of flow regime 

may happen inside a gas pipeline and influence the water wettability in contact with the steel 

surface, resulting in the change of corrosion behaviors. Correction factors based on different flow 

regimes and the pitting corrosion rate (PCR) as a function of flow regime are provide in Table 1. 

 

Table 1. Corrected predicted pitting corrosion rate as a function of flow regime [22]. 

Flow Regime Type PCR 
Slug Flow No Change 
Plug Flow PCR)ÚS7)&S × 0.98 
Bubble Flow PCR)ÚS7)&S × 0.96 
Dispersed Flow PCR)ÚS7)&S × 0.94 
Oscillatory Flow PCR)ÚS7)&S × 0.92 
Annular Flow PCR)ÚS7)&S × 0.90 
Churn Flow PCR)ÚS7)&S × 0.88 
Wave Flow PCR)ÚS7)&S × 0.86 
Stratified Flow PCR)ÚS7)&S × 0.84 
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2.3 Pipeline corrosion risk assessment 

Risk assessment is to analyze and evaluate the risk associated with damage caused by a certain 

kind of hazard in terms of the probability of occurrence and the magnitude of the consequence of 

occurrence. Risk assessment is also central to pipeline integrity management that ensures the 

maximum availability of pipelines. Corrosion risk is about future failure probabilities of corroded 

pipelines and consequences of pipeline failure that may lead to asset and personnel loss. Two 

approaches, namely, deterministic and probabilistic approaches, have been developed for the 

treatment of pipeline corrosion risk.  

 

2.3.1 Deterministic framework  

Traditional deterministic approach of risk assessment is based on expert judgement by engineering 

personnel, which is fallible and subjective for many cases [24]. On the other hand, semi-

quantitative (deterministic) approach adopts explicit judgement that scientific treatment or model 

makes, which is more reliable and objective.  

Deterministic corrosion risk assessment of gas pipelines involves the prediction of corrosion rate 

by any given corrosion models and the determination of pipe minimum allowable wall thickness 

(MAWT) and nominal pipe wall thickness. On the basis of the assumption that corrosion rate is 

constant over time, the remaining life (years) at a distance “z” along a pipeline (R(z)) can be 

calculated by: 
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R(z) =
NÍ\ − d(z) − tÜ�Ý|

CR(z)  (65) 

where NÍ\ is nominal pipe wall thickness; d(z) is cumulative corrosion damage to date at distance 

z; tÜ�Ý|  is pipe minimum allowable wall thickness; CR(z) is corrosion rate at distance z by a 

given corrosion model.  

The probability of failure is then determined based on the remaining life values of the pipe. The 

development of failure criteria relies on expert judgement and may differ among different pipeline 

operators. An example of deterministic failure probability criteria is shown in Table 2. 

 

Table 2. Demonstration of deterministic failure probability criteria. 

Pipeline Remaining Life (years) Probability of Failure 
𝐑(𝐳) < 𝟓 High  
𝟓 < 𝐑(𝐳) < 𝟏𝟓 Medium 
𝐑(𝐳) > 𝟏𝟓 Low 

 

Although deterministic approach is simple to use and can be applied to the whole pipeline, the 

prediction is sometimes too conservative as each classification of probability of failure covers a 

large window of pipeline remaining life, which prevents pipeline operators from applying cost-

effective maintenance practices based on the prediction result. Also, its inability to deal with 

uncertainties of input data exposes the corrosion prediction to the risk of underestimation or 

overestimation problem.     
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2.3.2 Probabilistic framework  

Unlike deterministic approach which takes mean values of input data, probabilistic approach takes 

uncertainties of input data into account in terms of probability distributions [25,26]. Therefore, the 

prediction, mostly based on scientific standards or models, considers the information of 

uncertainty. In other words, extreme conditions are considered, enabling pipeline operators to take 

suitable actions.    

 

2.3.2.1 Service limit method  

Service limit method involves the determination of service limit, namely, corrosion allowance of 

a gas pipeline above which the pipeline fails because of corrosion-induced failure [24]. Probability 

distributions of cumulative corrosion damage over time are collected or estimated each of which 

will later be compared to the corrosion allowance to determine if failure event is likely to happen. 

An analytical expression for failure probability calculation is given: 

P(C(t) > λ) = 1 −âϕDC(t)Gdt
ä

q

 (66) 

where λ is corrosion allowance; C(t) is cumulative corrosion damage at time t; ϕ is probability 

density distribution. Figure 8 shows a schematic diagram of service limit method showing the 

probability density function of cumulative corrosion damage with respect to corrosion allowance.  
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Figure 8. Illustration of service limit method of cumulative corrosion damage. 
 

2.3.2.2 Reliability analysis method  

A system’s reliability can be modeled by considering the performance criteria, i.e., load and 

resistance [27,28]. A functional relationship between a load and a resistance is called “limit state 

function” (G(x)), which can be expressed as: 

G(x) = R − L (67) 

where R is probability density function of resistance (or strength); L is probability density function 

of load.  

The limit state function is negative when the system fails, but is positive when the system is stable. 

Figure 9 shows a schematic diagram of limit state function of a system with respect to load and 

resistance. As the results by probabilistic methods such as reliability analysis method are hard to 

verify experimentally, numerical technique i.e., Monte Carlo simulation is often used to artificially 

simulate a large number of experiments to obtain outcomes of the model. This technique involves 
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random sampling of load and resistance random variables (R.V.) from their respective probability 

distributions and evaluation of whether a failure scenario (G(x) < 0) happens for the calculation 

of failure probability (Py). The analytical expression of this technique is given by: 

Py =
n(G(x) < 0)

N  (68) 

 where N is number of trials.  

 

 

Figure 9. Illustration of reliability analysis method of limit state function of a system.  
 

3 Research objectives 

The main objectives of this research are: firstly, develop a corrosion predictive model that 

considers both temporal and spatial variability of operating for corrosion predictions. Secondly, 

develop a smart condition-based maintenance algorithm by reinforcement learning using the 

proposed corrosion predictive model as a pipeline system to be simulated. This research work is a 

part of the project titled: “Inference Methodology for Pipeline System Integrity Management”, 
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which aims at developing a multi-disciplinary science, engineering, and operational approach to 

find a solution of pipeline integrity. Therefore, the developed corrosion predictive model and 

maintenance algorithm is/will be integrated into a pipeline system and integrity management 

(PSIM) software that is currently being developed by our lab to fulfill the corrosion prognosis 

function of the software.  

To address the research contributions that have been done, this dissertation involves three parts in 

a hierarchical order: Part A - pipeline corrosion predictive model, Part B - smart condition-based 

maintenance (SCBM) algorithm and Part C - pipeline system and integrity management software 

as shown in Figure 10.  

 

Each of these topics has respective sub-topics listed as follows: 

Part A: Pipeline Corrosion Predictive Model - Chapter 4 to 6 

(1) Development of corrosion predictive models for gas pipelines (Chapter 4):  

A corrosion predictive model was developed to study the internal corrosion of transmission 

gas pipelines subject to an aqueous CO2/H2S environment. Two common types of corrosion, 

namely, uniform and pitting corrosion, were considered in the development of the model. The 

model can predict corrosion rates and depths given operating and environmental parameters.   

(2) Modeling of the variability of operating and environmental parameters in gas pipelines 

(Chapter 4):  
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Methodology to simulate operating and environmental parameters in operating gas pipelines 

with both temporal and spatial variabilities were proposed. Considering variability of operating 

and environmental parameters enables the corrosion predictive models to predict time-

evolution probability density functions of corrosion rates and depths.    

(3) Model validation with experimental data (Chapter 5): 

The proposed uniform corrosion model embedded in the internal corrosion predictive model 

was validated with the experimental data with respect to pH, flow velocity, temperature, and 

partial pressure of H2S. The effects of these parameters on corrosion rates were discussed.  

(4) Model application on operating gas pipelines in the field (Chapter 6): 

To verify the validity of this model on operating gas pipelines, eight wet gas pipelines in 

Sichuan province, China were studied, and the predicted corrosion rates were compared with 

observational corrosion rates. Due to lack of information, the identification of the types of 

corrosion that these gas pipelines are suffered must be made before the corrosion prediction. 

A methodology including extreme value analysis and risk curve analysis was applied to 

identify uniform and pitting corrosion given the pipe wall loss data.  

Part B: Smart Condition-based Maintenance (SCBM) of Pipeline Integrity Management - 

Chapter 7 and 8 
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(1) Development of smart conditioned-based maintenance (SCBM) algorithm (Chapter 7): 

A smart condition-based maintenance management methodology was developed for cost-

optimization of maintenance actions by a reinforcement learning (RL) algorithms. Due to lack 

of data, the developed internal corrosion predictive model was used to simulate the 

environment (pipeline) and reacted with the agent (maintenance planner).   

(2) Case study (Chapter 8):  

The results by the proposed maintenance planner were compared to those by the traditional 

periodic maintenance policy. The main difference between results by two methodologies was 

discussed. 

 

Part C: Pipeline System Integrity Management (PSIM) Software - Chapter 9 and 10  

(1) Description of the PSIM software framework (Chapter 9): 

A risk-based pipeline integrity management tool that integrates data, methods, and 

technologies into a dynamic pipeline health and monitoring management software developed 

in our lab was introduced. The software can firstly do integrity assessment based on a variety 

of evidence including real monitoring data and inspection; secondly, predict pipe segment 

health with corrosion prognostic function; last but not least, optimize the sensor placement by 

inference probability models based on the damage (i.e. corrosion) detection in gas pipelines at 

a specific location. 
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(2) Development of the corrosion prognosis function (Chapter 9): 

The proposed internal corrosion predictive model along with an external corrosion model 

composed of two corrosion models, namely, pitting corrosion and stress corrosion cracking 

models, were integrated into the software to fulfil the corrosion prognostic function.  

(3) Case study (Chapter 10): 

A system-level pipeline integrity management analysis was done on Hybrid Causal Logic 

Analyzer (HCLA), a software platform that combines Boolean logic-based probability risk 

assessment (PRA) methods such as event sequence diagrams (ESDs) and fault trees (FTs) with 

Bayesian networks (BNs), for the calculation of pipeline failure probabilities. A case study was 

then done to demonstrate the results of its dynamic pipeline network probabilistic health 

assessment function. 
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Figure 10. Hierarchy of three topics covered in this research. 
 

It should be mentioned that the parts of the work described here have been published on Journal 

of Natural Gas Science and Engineering [29], uploaded to ResearchGate [30], or presented at the 

Probabilistic Safety Assessment and Management (PSAM 14) [31,32], Proceedings of the ASME 

2019 International Mechanical Engineering Congress and Exposition (IMECE2019) [33], and 

2019 Boston COMSOL Conference [34].  

  



 

 

47 

 

 

Part A 

4 Development of Gas Pipeline Corrosion Predictive Models  

The goal of corrosion predictive models is to predict whether a pipeline is susceptible to a 

particular type of corrosion in a given environment; if yes, estimate corrosion rate and depth that 

the corrosion will proceed.  This chapter described the development of corrosion predictive models 

of natural gas pipelines for internal corrosion including uniform and pitting corrosion. In addition, 

two methodologies were introduced to consider temporal and spatial variabilities of operating 

parameters on corrosion modeling. 

 

4.1 Internal corrosion model  

The proposed internal corrosion predictive model includes two predictive models for uniform and 

pitting corrosion types, respectively. A schematic diagram of the model flow chart is shown in 

Figure 11. The model inputs are operating parameters of pipelines (e.g., operating temperature, 

gas pressure, flow velocity, pH, etc.), while the model outputs are corrosion rate or corrosion depth 

as a function of time.     
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Figure 11. The flow chart of the internal corrosion predictive model. 
  

4.1.1 Uniform corrosion 

This research proposed a uniform corrosion model, which is a physics-based model for mild steels 

in an aqueous CO2/H2S environment. It can be used to estimate the corrosion rate as a function of 

time to reflect the time-dependent nature of uniform corrosion. The model describes uniform 

corrosion in a ‘phenomenological’ sense in terms of two stages based on the formation of 

protective layers. Stage I simulates the corrosion rate to be time-independent under the assumption 

of the absence of protective layers. According to experimental observations in Zheng et al.’s study 

[8],  this stage only exists for a short time (i.e., transition time, t0), usually in several hours. On the 

other hand, the Stage II simulates the corrosion rate to be time-dependent due to growth or 

annihilation of protective layers. Specifically, the corrosion rate decreases over time because 

protective layers act as diffusion barriers for corrosive species. A schematic diagram of predicted 

uniform corrosion rate as a function of time is shown in Figure 12.  
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4.1.1.1 Modeling Stage I  

Several chemical reactions immediately take place in pipelines made of mild steels subjected to 
an aqueous CO2/H2S environment. A corrosive environment is then formed due to these chemical 
reactions. Typical chemical reactions in an aqueous CO2/H2S environment and their equilibrium 
equations are shown in Table 3. The equilibrium constants of chemical reactions from other 
literature are shown in  
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Table 4 and will be used to calculate concentrations of corrosive species. 

 

 

Figure 12. Predicted uniform corrosion rate as a function of time. 
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Table 3. Typical chemical reactions in an aqueous CO2/H2S environment and their equilibrium 
equations.  

Reaction Chemical Reaction Equilibrium Equation Unit 

Dissolution of 
carbon dioxide CO2(g) ó CO2(aq) KCO2 	= 

çCO2(aq)è
pCO2(g)

 molar/bar 

Carbon dioxide 
hydration CO2(aq) + H2O(l) ó H2CO3(aq) Khyd = 

Khyd
f

Khyd
b  = 

[H2CO3]
çCO2(aq)è

 - 

Carbonic acid 
dissociation H2CO3(aq) ó H+(aq)+ HCO3-(aq) Kca = 

[HCO3
- ]çH+è

[H2CO3]
 molar 

Bicarbonate ion 
dissociation HCO3- (aq)ó H+(aq) + CO32-(aq) Kbi = 

çCO3
$-èçH+è

[HCO3
- ]  molar 

Dissolution of 
hydrogen sulfide H2S(g) ó H2S(aq) KH2é	= 

çH2𝑆(aq)è
p𝐻$𝑆(g)

 molar/bar 

Hydrogen sulfide 
dissociation H2S(aq) ó H+(aq) + HS-(aq) KHS = 

[HS-]çH+è
çH2𝑆(aq)è

 molar 

Water 
dissociation H2O(l) ó OH-(aq) + H+(aq)  Kw	= [OH-]çH+è molar2 
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Table 4. Equilibrium constants of chemical reactions. 

Equilibrium Constant   

𝐾Ùì� =
14.5

1.00258 × 10
/($.$�	.	�.d�×cq§��í	/	�.qd×cq§î�í

�	.	q.q���) 

𝐾ïðñ 	= 	2.58 × 10/-  

𝐾ò¹ = 	387.6 × 10/(d.�c	/	c.���×cq
§��í	.	�.�$×cq§î�í

�	/	-.q�×cq§�óÙì�×c�.�	/	q.���$��.�	.	q.cc��)  

𝐾ô¼ = 10/(cq.dc	/	�.��×cq
§��í	.	c.--c×cq§��í

�	/	$.d$�×cq§�óÙì�×c�.�	/	c.cdd��.�	.	q.-�dd�)  

𝐾õ�é	 = 10/(d-�.$�	.	q.$�q���	/	q.ccc-$×cq
§���

�	/	cd�c���
/$dc.�×��F(��))  

𝐾õé	 = 10(��$.�-���	.	q.-dc$dc��	/	c.d�$$×cq
§Ñ��

�	/	$q�d�.�-c���
/c�$.��c�$$×�ö(��))  

𝐾Ó	 = 10/($�.-�d�	/	q.q�-������	.	�.����c×cq§����)  

*Tf is the temperature in degrees Fahrenheit; Tk is the absolute temperature in Kelvin; pCO2 is the 
partial pressure of CO2 in psi; I is the ionic strength in molar.  
 

In addition to chemical reactions, several electrochemical reactions may subsequently occur on the 

steel surface in contact with the corrosive environment. Typical electrochemical reactions 

including anodic and cathodic reactions in an aqueous CO2/H2S environment are shown in Table 

6. It can be seen that there is only one anodic reaction (i.e., iron dissolution) but four cathodic 

reactions (i.e., hydrogen ion reduction, direct carbonic acid reduction, direct hydrogen sulfide 

reduction). Every electrochemical reaction contributes to current densities consisting of charge 

transfer current density (iα) and mass transfer limiting current density (ilim). Depending on the rate-

determining process, these electrochemical reactions are either under charge transfer control only 

or under both charge transfer and mass transfer control.   
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Table 5. Typical electrochemical reactions including anodic and cathodic reactions in an aqueous 
CO2/H2S environment. 

Reaction Electrochemical Reaction Type Reaction No. 

Iron dissolution Fe2+(s) → Fe2+(aq) + 2e- Anodic Reaction (1) 

Hydrogen ion 

reduction 
2H+(aq) + 2e- → H2(g) Cathodic Reaction (2) 

Direct carbonic 

acid reduction 
2H2CO3(aq) + 2e- → H2(g) + 2HCO3-(aq) Cathodic Reaction (3) 

Direct hydrogen 

sulfide reduction 
2H2S(aq) + 2e- → H2(g) + 2HS-(aq) Cathodic Reaction (4) 

Direct water 

reduction 
2H2O(l) + 2e- → H2(g) + 2OH-(aq) Cathodic Reaction (5) 

 

Table 6 shows the expressions of charge transfer current density and limiting current density of 

electrochemical reactions, which will be used for current density calculation in this research. Table 

6 shows that iron dissolution and direct water reduction are under charge transfer control only 

because there is an unlimited supply of ferric ions on the steel surface and an unlimited supply of 

water in an aqueous CO2/H2S environment. Hydrogen ion reduction, direct carbonic acid reduction, 

and direct hydrogen sulfide reduction are under charge transfer control in the beginning and later 

become mass transfer control because the supply of corrosive species from the bulk solution is 

slower than the consumption of them at the steel surface after a certain time. A concentration gap 

is thus formed between the steel surface and the bulk solution.   
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For the anodic reaction (Reaction (1)), the overall anodic current density (ia) is equal to the charge 

transfer current density (iα(a)), whereas for the cathodic reactions (Reaction (2)-(4)), the overall 

cathodic current density (ic) is consisted of the charge transfer current density (iα(c) ) and the 

limiting current density (ilim(c)) in a parallel expression given by equation (25). As corrosion 

proceeds the anodic current density is electrically balanced by the cathodic current density at the 

steel surface, and corrosion potential (Ecorr) can be found: 

i(a�) + i(a����) + i(a�¥) + i(a��) = i(�S) (69) 

where i(�S) is current density of Reaction (1); i(a�) is current density of Reaction (2); i(a����) is 

current density of Reaction (3); i(a�¥) is current density of Reaction (4); i(a��) is current density 

of Reaction (5).  

 

Once the value of Ecorr is found, substitute the value E in equation (22) for iron dissolution with 

Ecorr can yield corrosion current density(icorr), which is the charge transfer current density at the 

corrosion potential for the anodic reaction (i.e., iron dissolution). According to the electrochemical 

model [7], the corrosion current density can be converted into the corrosion rate at Stage I (CRI) 

in mm/y given by:  

CRø = 	
i5677M�S

ρ�S2F
 (70) 
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where M�S is molecular mass of iron (= 55.85 g/mol); ρ�S is density of iron (= 7.86 g/cm3); F is 

Faraday constant (= 96500 C/mol). Further unit correction is needed for the corrosion rate to be in 

the unit of mm/y. 

 

Table 6. Charge transfer current density and limiting current density of electrochemical reactions.  

Charge Transfer Current Density (A/m2) 

No. Exchange Current Density, iα0 Current Density, iα  

(1) 1 × (
3.5 × 10d[HS/]

1	 + 	3.5 × 10d[HS/]
) × e

/-��qq
{ ¤ c|}

	/	 c$�-¦ ioq,�S × 10
( s	.	q.���	$.-{|}

c.��ù
)
 

 

(2) 0.5 × (
[H.]
10/�

)q.� × e
/-qqqq

{ ¤ c|}
	/	 c$��¦ 

−ioq,a� × 10
/(
s.$.-{|}`a �ù 	
$.-{|}

q.��ù
)
 

 

(3) 0.06 × (
[H.]
10/�

)/q.�(
[H$CO-]
10/�

) × e
/�qqqq

{ ¤ c|}
	/	 c$�-¦ 

−ioq,a���� × 10
/(
s.${|}`a �ù 	
$.-{|}

q.��ù
)
 

 

(4) 1.5 × 10/� × (
[H.]
10/�

)/q.�(
[H$S]
10/�

)q.� × e
/dqqqq

{ ¤ c|}
	/	 c$�-¦ 

−ioq,a�¥ × 10
/(
s.$.-{Tk`a

�ù 	
$.-{Tk

q.��ù
)
 

 

(5) 1 × 10/d × (
[H.]
10/�

)/q.�(
[H$S]
10/�

)/q.c × e
/�qqqq

{ ¤ c|}
	/	 c$�-¦ 

−ioq,a�� × 10
/(
s.$.-{Tk`a

�ù 	
$.-{Tk

q.��ù
)
 

 

Limiting Current Density (A/m2) 

(2) iQf�(a�)	 = 	 k�(a�)FçH+è  

(3) iQf�(a����)	 = 	F[CO2]fa����úDa����KûjiKûji
y

 
 

(4) iQf�(a�¥)	 = 	 k�(a�¥)F[H2S] 
 

*E is the potential in V; km(H+) and km(H2S) are the mass transfer coefficients of H+ and H2S in m/s; 
F is Faraday constant (= 96500 C/mol); fH2CO3  is the flow factor of carbonic acid; DH2CO3 is the 
diffusion coefficient of aqueous carbonic acid (= 1.3×10-9 m2/s at 25℃).  
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4.1.1.2 Modeling Stage II 

At the beginning of Stage II, the formation of protective layers starts by a direct and fast 

heterogeneous solid-state reaction as expressed by equation (33). The primary protective layers 

are sulfide layers of mackinawite. Due to the presence of protective layers, the corrosion process 

is assumed to be under mass transfer control, and the corrosion rate is time-dependent at this stage. 

During the corrosion process at Stage II, the diffusion of corrosive species (i.e., CO2, H2S, and H+) 

and release of Fe2+ are taking place in the CO2/H2S aqueous system. However, they fail to consider 

the effect of sulfide layer dissolution, which is significant at low pH environment. This research 

considers that effect in the corrosion modelling and demonstrates the uniform corrosion process at 

Stage II in Figure 13. The corrosion rate is related to the diffusion processes of corrosive species 

between the steel surface and the bulk solution, which can be quantified by their fluxes. Adopting 

the Sun and Nešic’s model [14], the steady-state H2S flux (ϕH2S), CO2 flux (ϕCO2), and H+ flux 

(ϕa�) in mol/(m2s) are expressed as: 

ϕa�¥ 	= 	Aa�¥ ln ü
Cx(a�¥)	 − 	ϕa�¥ H

δ
Da�¥ϵφ

+ 1
k�(a�¥)

L

CP(a�¥)
ÿ (71) 

ϕ���	 = 	A��� ln

⎣
⎢
⎢
⎢
⎡Cx(���)	 − 	ϕ��� H

δ
D���ϵφ

+ 1
k�(���)

L

Flux���
Da����ϵφKûji

y Kûji ⎦
⎥
⎥
⎥
⎤
 (72) 
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ϕa�	 = 	Aa� ln ü
Cx(a�) 	− 	ϕa� H

δ
Da�ϵφ

+ 1
k�(a�)

L

CP(a�)
ÿ (73) 

where ϕH2S, ϕCO2, and ϕH+	  are the fluxes of H2S, CO2, and H+ in mol/(m2s); km(H2S), km(CO2), and 

km(H+) are the mass transfer coefficients of H2S, CO2, and H+ in m/s; Cb(H2S), Cb(CO2), and Cb(H+) 

are the bulk concentration of H2S, CO2, and H+ in the liquid phase in mol/m3; ε is the outer 

mackinawite layer porosity (= 0.9); ψ is the outer mackinawite layer tortuosity factor (= 0.003); δ 

is the thickness of mackinawite layers in m; AH2S, ACO2 , and AH+  are the solid state diffusion 

kinetic constants for H2S, CO2, and H+ (= 2×10-5, 4×10-4, and 2×10-6 mol/(m2s)); Cs(H2S) and Cs(H+) 

are the near zero concentration of H2S and H+ on the steel surface (= 1×10-7 mol/m3); δ is the 

thickness of mackinawite layers in m; DH2S , DCO2 , DH2CO3 , and DH+  are aqueous diffusion 

coefficients for H2S, CO2, H2CO3, and H+, which were computed via Einstein’s relation [7]: 

Df 	= 	D7Sy(f) '
T�
T�,7Sy

('
µ7Sy(a��)
µa��

( ,							i	 = 	H$S, CO$, H$CO-, and	H. (74) 

where Dref(H2S), Dref(CO2)
, Dref(H2CO3), and Dref(H+) are reference aqueous diffusion coefficients for 

H2S, CO2, H2CO3, and H+ (= 2×10-9, 2.8×10-8, 2.8×10-8 ,and 1.96×10-9 m2/s at 25℃); Tk is the 

temperature in K and Tk,ref is the reference temperature (= 298 K), respectively; µH2O is the water 

dynamic viscosity and µref(H2O) is the reference water dynamic viscosity (= 1.002×10-4 Pa·s at 

25℃), respectively. 
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Flux of each corrosive species can be converted into an individual corrosion rate: 

CRa�¥ =
ϕa�¥M�S

ρ�S
 (75) 

CR��� =
ϕ���M�S

ρ�S
 (76) 

CRa�	 =
ϕa�	M�S

2ρ�S
 (77) 

where CRa�¥, CR���, and CRa�	are the corrosion rate of H2S, CO2, and H+ in mm/y; MFe is the 

molar mass of iron (= 55.85 g/mol); ρFe is the density of iron (= 7.86 g/cm3). Finally, the total 

corrosion rate in Stage II (CRII) is the sum up of CRa�¥ , CR��� , and CRa�	as they are main 

corrosive species in CO2/H2S aqueous environment.  

CRøø = CRa�¥ + CR��� + CRa�	 (78) 

It should be noted that unit correction is needed for the corrosion rate to be in the unit of mm/y. 
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Figure 13. Schematic diagram of the Stage II corrosion process in a CO2/H2S aqueous system. 
 

During the corrosion process at state II, the thickness of protective layers (i.e., mainly sulfide layers) 

will either grow or annihilate depending on the tradeoff between layer formation and layer damage 

effects. Therefore, whether formation or damage effect of sulfide layers dominates is determined 

by the sulfide layer retention rate (SRR) in mol/(m2s) at every time interval, which can be 

represented as: 

SRR = SFR − SDR (79) 

where SFR  is the sulfide layer formation rate; SDR  is the sulfide layer damage rate. As the 

unlimited supply of ferric ions of sulfide layers is the steel itself, SFR  is assumed to be the 

corrosion rate at Stage II (CRøø). On the other hand, SDR is the sum up of sulfide layer mechanical 

damage rate (SDRÜ) and the sulfide layer dissolution rate (SDR*). SDRÜ is influenced by the 
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effect of intrinsic growth stresses and the effect of extrinsic hydrodynamic forces. A sulfide layer 

mechanical damage coefficient (α), ranging from 0 to 1, is used to model SDRÜ as: 

SDRÜ = α × CR (80) 

α is simulated to be a function of temperature, pH, flow velocity, and partial pressure by a Bayesian 

Network (BN) model. BN is a good tool to model the influences between random variables by 

cause-consequence dependencies [35]. According to experimental observations by Sun and Nesic 

[14], sulfide layer mechanical damage effect is found to be related to temperature, pH, flow 

velocity, and partial pressure of H2S, all of which are set to be mutually independent parents of the 

child node α. The quantification of joint probability tables requires the modeling results with 

experimental data obtained by the proposed model, the data from other literature and expert 

opinions. An example of the BN model for α value assessment is displayed in Figure 14. It can be 

seen that this BN model is in a discrete framework with the states of each node uniformly 

distributed. This particular example shows that the estimated α value is likely to be between 0 to 

0.2 with 60% probability and between 0.2 to 0.4 with 40% probability when the flow velocity is 

between 500 to 750 rpm with 100% probability; the pH level is between 5 to 6 and 6 to 7 with the 

same probability; the temperature is between 25 to 50℃ with 100% probability; the partial pressure 

of H2S is between 10 to 100 and 100 to 1000 mbar with the same probability. 
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Figure 14. An example of the BN model for α value assessment. 
 

For SDR*, the initial mackinawite sulfide layers in the aqueous H2S system is reported to dissolute 

into Fe(HS)+ and HS- at a rate as a function of pH, temperature, and ionic strength under certain 

conditions [36,37]. This dissolution rate is a first-order equation with a hydrogen ion 

concentration-dependent term in acid solutions and a hydrogen ion concentration-independent 

term in neutral to alkaline solutions. 
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SDR* = kc[H.] + R(k$) (81) 

where R(k2) is the H+ concentration-independent term contributing to the dissolution rate of 

mackinawite in mol/(cm2·min); [H+] is the hydrogen ion concentration in mol/cm2. 

k1 and k2 are rate constants in cm/min and mol/(cm2·min), respectively. k1 and k2 are functions of 

temperature in Arrhenius form as: 

kc	 = (26 ± 1) × 10-exp H
−28451
RT�

L (82) 

k$ = (4.2 ± 0.1) × 10/�exp H
−30125
RT�

L (83) 

where Tk is the temperature in K; R is the gas constant (= 8.314 J/(mol·K)).  

According to Pankow and Morgan’s study [38], an anaerobic region will form and facilitate the 

non-oxidative dissolution when mackinawite sulfide layers originally form in the aqueous H2S 

system, whereas oxygen in the water solution facilitates the oxidation of dissolved iron sulfides. 

Therefore, a concentration gradient is developed between the anaerobic region and the oxic region, 

triggering the non-oxidative dissolution of mackinawite. This dissolution is described by R(k$), 

the dissolution rate of mackinawite in neutral to alkaline solutions, and it can be expressed as: 

R(k$) = H1 −
c
cP
L k$ (84) 
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where c is the concentration of dissolved mackinawite in mol/cm3; cs  is the saturation 

concentration (= 2×10-9 mol/cm3 at the natural water pH).  

To simplify the problem, R(k$) is treated as a production term in a one-dimensional diffusion 

problem. Two boundary conditions, namely, c = 0 when X = 0 and c = cs when X = ∞ are used to 

obtain the steady-state solution as: 

c = cP '1 − exp +−H
2k$
D�cPr

L
q.�

X-( (85) 

where X is the thickness of mackinawite sulfide layers in m; r is the radius of mackinawite particles; 

Dm is the diffusion coefficient of dissolved mackinawite (= 3×10-3 cm2/min).  

Once CRøø and SDR including SDRÜ and SDR* are calculated via the abovementioned steps, SRR 

can be obtained for each time interval. At time interval ∆t, SRR is converted to the change of 

sulfide layer thickness (∆δ) in m, which can be expressed as: 

∆δ =
SRR × M�S¥ × ∆t

ρ�S¥
 (86) 

where M�S¥ is the molecular mass of mackinawite (= 87.91×10-3 kg/mol); ρ�S¥ is the density of 

mackinawite (= 4840 kg/m3). 

To generate a series of predicted corrosion rate over time, the abovementioned steps were repeated 

until the target time was reached. The flow chart of the detailed calculation procedures of the 

uniform corrosion model is shown in Figure 15. Firstly, calculated CRø for Stage I given operating 
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parameters, which is time independent. Secondly, calculated CRøø for Stage II by solving equations 

(71)-(78) with δ being 0 at the beginning. Then, SRR and ∆δ were calculated via equations (79)-

(86), which were used to update δ and CRøø for each time interval ∆t. It should be noted that this 

model assumes that  CRø > CRøø  as protective layers at Stage II play the role of diffusion barrier, 

inhibiting the corrosion process. Finally, these steps were repeated until the target time was 

reached.  
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Figure 15. The flow chart of the detailed calculation procedures of the uniform corrosion model. 
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4.1.2 Pitting corrosion  

This research simulated the pitting corrosion behavior given operating parameters by the 

Papavinasam model [22,23] because this model is time-dependent and also able to reflect the 

influences of numerous operating parameters on corrosion rate. In addition, it is applicable to 

nature gas pipelines made of mild steels and subjected to aqueous CO2/H2S environment, which 

matches our research scopes. The mathematical expression of the time-independent mean pit 

growth rate (PCR�S)Ò ) is expressed as equation (63) and the time-dependent average pitting 

corrosion rate over a time interval (PCR)ÚS7)&S) is expressed as equation (64), respectively. A 

number of changes that have been made in this research in based on the Papavinasam model are 

described as follows: 

(1) In order to simulate the instantaneous pitting corrosion rate at a certain time, the original 

corrosion rate equation is modified and written as: 

PCR\ =
PCR�S)Ò

t  (87) 

where t is time in years.  

(2) In a consideration of daily variability of operating parameters, this model can predict daily 

mean pit growth rate as a function of time. A schematic diagram of predicted pitting corrosion 

rate as a function of time is shown in Figure 16.  
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Figure 16. A schematic diagram of predicted pitting corrosion rate as a function of time. 

 

4.2 Modeling the variability of operating parameters 

Most of the time, operating parameters of a nature gas pipeline are changing all the time within an 

uncertain range temporally and spatially. Taking both temporal and spatial variabilities into 

account enables the application of the proposed corrosion model from deterministic to probabilistic 

framework.   

 

4.2.1 Temporal variability  

To consider the temporal variability and simulate a series of time-varying operating parameters 

for corrosion predictions, a methodology was proposed, all of which will become inputs of the 

proposed corrosion predictive model. Each time-varying operating parameter was simulated by 

Poisson process. Specifically, the duration of time is described by Exponential distribution; the 
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magnitude is described by a particular distribution based on observations; the number of each time 

interval is described by Poisson distribution in which the lambda value is fixed to be 1/day for 

every operating parameter in a simulation of daily variability. The schematic diagram of the 

Poisson process for the modelling of operating parameters is shown in Figure 17.  

 

 

Figure 17. The schematic diagram of the Poisson process for operating parameters modeling. 
 

Given time-varying operating parameters as model inputs, a Monte Carlo simulation was then 

performed to generate the time-evolution probability density functions of corrosion predictions.   

A detailed flow chart of the proposed methodology on corrosion predictions in probabilistic 

framework is displayed in Figure 18. The flow chart shows that: 
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Step 1: Specified distributions of all operating parameters are determined based on field 

observations or literature. 

Step 2: Poisson process with lambda equaling 1/day is used to simulate the operating parameters 

such as Temperature, pCO2, pH, etc. A value for each parameter is randomly selected 

based on its probability distribution using Monte Carlo sampling. 

Step 3: Step 2 is repeated for all the operating parameters to generate time histories    operating 

parameters that are used in generating corrosion rate as a function of time 

Step 4: These time histories operating parameters are taken as inputs for the corrosion predictive 

model.  

Step 5: The above processes are repeated for a large of number of times to generate the probability 

distributions of corrosion rate at different time. 
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Figure 18. A detailed flow chart of the proposed methodology on corrosion predictions in a 
probabilistic framework. 
 

4.2.2 Spatial variability  

A typical nature gas pipeline is usually tens of miles long. Therefore, it can be imagined that 

operating parameters are different at various locations along the pipe. Spatial variability of 

operating parameters is thus also important on corrosion predictions. This issue has been reported 

in previous studies by other scientists and engineers. For example, operating temperature is likely 
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to decrease with increasing distance from the inlet due to heat exchange with the pipe material; 

operating pressure also shows a same trend of decreasing where compressors are located. 

Moreover, Kale et al. [26] indicates the decreasing efficiency of corrosion inhibitors along the pipe 

if the inhibitors are added from the inlet.  

In this research, besides locations at near inlet, at near outlet, and at midpoint, the basic design 

variables (e.g., pipe length, bent, and diameters) were assumed not to be relevant to the spatial 

variability. An example of the effect of spatial variability of operating parameters on corrosion 

predictions is depicted in Figure 19. This figure shows that the probability density functions of 

predicted corrosion rate by the proposed uniform corrosion model are different at three different 

sites inside a pipe.  This result is similar to Droguett et al.’s finding [39] that different failure rate 

can occur if the data is collected from systems exposed to different operational, design, and 

maintenance conditions. Therefore, it is reasonable to say that the presence of variation of 

corrosion predictions in a reflection of spatial variability of operating parameters in this research 

is the result of inherent population variability of the corrosion predictions as the operating 

conditions are different. In other words, on a pipeline system point of view, predicted corrosion rate 

at every site along a pipeline is inherently different, each of which can be viewed as a sub-population. 
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Figure 19. Location-dependent probability density functions of corrosion rate predictions. 

 

Bayesian estimation method, specifically, non-homogeneous analysis was applied to address the 

non-homogeneity of predicted corrosion rate considering spatial variability of operating 

parameters. A Bayesian data analysis package called R-DAT [40] was used to estimate the 

parametric population variability distribution (i.e., a probability distribution of corrosion rate that 

can represent the general corrosion rate for the whole pipe with location-varying operating 

conditions. A schematic diagram of the Bayesian estimation method for the parametric population 

variability distribution is shown in Figure 20.  
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Figure 20. Bayesian estimation method of corrosion predictions considering the spatial variability 
of operating parameters. 
 

The detailed process of calculating the parametric population variability distribution was described 

as follows: Firstly, a form of the parametric population variability distribution of corrosion rate, 

∅(𝑟),	was assumed (i.e., Lognormal distribution in R-DAT [40]) and given as: 

∅(r) = ∅(r|θ)					where					θ = (µ,σ) (88) 
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where r is corrosion rate; θ  is a set of parameters (i.e. µ  and σ  for Lognormal distribution). 

Secondly, evidence or information, E, which is composed of predicted corrosion rate predictions 

considering spatial variability of operating parameters as shown in the top table in Figure 20, was 

used to estimate θ by Bayes theorem, which can be expressed as: 

π(θ = µ,σ|E) =
L(E|µ,σ)πq(µ, σ)

∫ ∫ L(E|µ,σ)πq(µ,σ)dσdµ67

 (89) 

where π(µ,σ|E) is the posterior probability of θ given E; πq(µ,σ) is the prior probability of θ. 

L(E|µ,σ) is the likelihood function, which can be expressed as: 

L(E|µ, σ) =8L(rf|µ, σ)
Ò

f9c

					where					L(rf|µ, σ) = â L(rf|r)∅(r|µ, σ)dr
7

				 (90) 

where rf  is corrosion rate predictions considering spatial variability of operating parameters. 

Finally, the mean parametric population variability distribution of corrosion rate was considered 

the average of all possible ∅(r) given E denoted by ∅:(r): 

∅:(r) = â â ∅(r|µ,σ)π(µ,σ|E)dσdµ
67

 (91) 

The calculated ∅:(𝑟) is the general parametric population variability distribution in representative 

of a corrosion rate distribution for the whole pipe with the location-changing operating conditions. 

In practical, the proposed methodology of corrosion predictions considering spatial variability and 
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temporal variability of operating parameters should be applied together for corrosion modeling on 

nature gas pipelines. Only if all possible variability is considered in the modeling can models 

provide comprehensive and unbiased predictions.    

 

4.3 Conclusions 

This chapter introduced the two internal corrosion models (i.e., one for uniform corrosion and one 

for pitting corrosion) for natural gas pipelines. The common advantage of these models is that they 

are all correlated with operating parameters, enabling the study of the effect of operating 

parameters on corrosion rates. In addition, this trait allows us to consider temporal and spatial 

variabilities of operating parameters on corrosion modeling in which the predicted results are 

believed to be more reliable.  
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5 Model Validation with Experimental Data 

A model has to be calibrated and validated for its applicability before it can be used. Therefore, 

this chapter is to test the validity of the proposed uniform corrosion predictive model, a modified 

model from the Sun and Nesic model [14], for predicting instantaneous corrosion rate given 

operating parameters of nature gas pipeliens. The predicted results were compared with the 

experimental data in H2S/CO2 and pure H2S aqueous systems with respect to pH level, flow 

velocity, temperature, and partial pressure of H2S in a deterministic framework presented in the 

literature [14,41].  

 

5.1 Model comparison 

As described before, the proposed uniform corrosion model is a modified model based on the 

electrochemical model and the Sun-Nešic model; therefore, a comparison between two models are 

needed. There are several improvements of the proposed model compared to the Sun-Nešic model, 

which are summarized as follows:  

 

(1) The Sun-Nešic model assumes that the sulfide layers start to form at the beginning of the 

corrosion process, while the proposed model describes the corrosion process by two stages in 

which the sulfide layers only form at Stage II. 

(2) The Sun-Nešic model assumes that the sulfide layer mechanical damage rate is a constant for 

sulfide layer damage effect; the proposed model treats the sulfide layer mechanical damage 
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rate as a variable and defines a sulfide layer mechanical coefficient by a BN model, in which 

the coefficient is influenced by the pH level, flow velocity, temperature, and partial pressure 

of H2S. 

(3) The Sun-Nešic model does not take into account the sulfide layer dissolution effect, but the 

proposed model does.  

 

5.2 Results and discussion 

The comparison between the predicted results by the proposed model and the Sun-Nesic model 

with the experimental data is shown in Figure 21. The predicted corrosion rates by the proposed 

model are denoted by solid lines; the predicted corrosion rates by the Sun-Nesic model are denoted 

by dashed lines; the experimental data are denoted by dots.  

The results show that most model predictions by the proposed model reasonably agree with the 

experimental data, displaying the trends of corrosion rate drop over time, except for the condition 

pH=4. On the other hand, model predictions by the Sun-Nešic model only agree with the 

experimental data at few test conditions. Specifically, most of their predictions largely 

overestimate initial corrosion rates due to the invalid assumption that sulfide layers start to form 

at the beginning of the corrosion process, whereas predicted initial corrosion rates by the proposed 

model are more reasonable. In addition, the Sun-Nešic model can not reflect the change of pH 

level and flow velocity due to the negligence of sulfide layer dissolution effect and the constant 

mechanical damage rate assumptions.  
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It can be seen from Figure 21 that the influences of different parameters on the corrosion rates are 

dependent on protective layers, each of which can be described in terms of Stage I and II as follows: 

(1) Effect of pH  

Figure 21(a) demonstrates the effect of pH level in a range between 4 to 6 on the corrosion 

rates. At stage I where protective layers are absent, decreasing pH level increases the hydrogen 

reduction of cathodic reactions, resulting in a rise in initial corrosion rates; at Stage II where 

protective layers are present, decreasing pH level increases the sulfide layer dissolution rate 

and the sulfide layer mechanical damage rate, leading to an increase of the corrosion rates. It 

should be noted that the proposed model should be used with cautions when pH level is down 

to 4 where the corrosion rates increase over time, whereas they usually decrease over time at 

other test conditions. This can be explained by the enhanced galvanic corrosion between ferrite 

(α) and pearlite (α + Fe3C)	phases in mild steels as Fe3C is an electronic conductor, which 

was not taken into account in the proposed model. The enhanced galvanic corrosion takes 

effect before sulfide layers are formed and thus increases corrosion rates at the initial stage 

[42].   

 

(2) Effect of flow velocity 

Figure 21(b) shows the effect of flow velocity between 60 and 600 rpm on the corrosion rates. 

At Stage I, increasing the flow velocity accelerates the transport of corrosive species to the 

metal surface, leading to a rise in the initial corrosion rates; at Stage II,  increasing flow velocity 
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enhances the sulfide layer mechanical damage rate as a result of increasing extrinsic 

hydrodynamic forces, leading to a rise in the corrosion rates.  

 

(3) Effect of temperature 

Figure 21(c) illustrates the effect of temperature between 50℃ and 90℃ on the corrosion rates. 

At Stage I, increasing temperature accelerates electrochemical and chemical reactions as well 

as transport processes of corrosive species, leading to a rise in the initial corrosion rates. At 

Stage II, the enhancement of the supply of ferric ions for the sulfide layer formation outweighs 

the increase of the sulfide layer dissolution rate by increasing temperature. Therefore, the 

corrosion rates actually show a decreasing trend with increasing temperature.     

 

(4) Effect of partial pressure of H2S  

Figure 21(d) displays the effect of H2S partial pressure between 4 and 70 mbar on the corrosion 

rates. H2S is one of the corrosive species and also a supplier of S2- ions for sulfide layer 

formation. At Stage I, increasing H2S partial pressure results in the increasing initial corrosion 

rates due to the enhancement of the direct reduction of H2S. At Stage II, increasing H2S partial 

pressure in the range between 4 and 70 mbar results in the increasing corrosion rates. Similar to a 

study by Singer et al. [43], where the H2S partial pressure is in the range between 10 and 150 mbar, 

the corrosion rates all show an increasing trend with increasing H2S partial pressure. However, this 

increasing trend turns into a decreasing trend when H2S partial pressure is as high as 0.3 bar due 

to the acceleration of the formation of protective sulfide layers [41].  
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Figure 21. Corrosion rate as a function of time with respect to different environmental factors: (a) 
pH 303 level (Conditions: pH2S = 54 mbar, T = 80℃, stirring rate = 600 rpm for pH = 4 and 5, 
and 400 304 rpm for pH = 6), (b) flow velocity (Conditions: pH2S = 54 mbar, T = 80℃, pH = 5), 
(c) temperature 305 (Conditions: pH2S = 0.88 bar at 50℃, pH2S = 0.3 bar at 90℃, pH = 4.2 to 4.7, 
stirring condition), 306 and (d) partial pressure of H2S (Conditions: pCO2 = 2 bar, T = 70℃, pH = 
4.2 to 4.9, flow velocity 307 = 0.3 m/s.). Experimental data taken from previous literature [14,41]. 
 

5.3 Conclusions 

To sum up, the proposed corrosion model for uniform corrosion is able to predict reasonably 

accurate corrosion rate with respect to different operating parameters as a function of time. The 

initial corrosion rates agree with the experimental better than the Sun-Nesic model due to the 
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consideration of the absence of protective layers at Stage I. Although, the predicted corrosion rates 

at Stage I may have larger deviations compared to those at Stage II, the result is acceptable as 

corrosion modeling in real operating gas pipelines emphasizes on long-term prediction (i.e., years).  
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6 Model Application on Operating Gas Pipelines in The Field 

As one of the goals of this study is to develop a corrosion predictive model that can be applied to 

real operating gas pipelines, this chapter aims at validating the applicability of the proposed 

corrosion predictive model on operating gas pipelines in the field as a case study. Here, eight wet 

gas gathering pipelines in Sichuan Province, China were studied [44]. Comparisons were made 

between the model predictions and the observational data in terms of probability measures. 

Bayesian estimation was used for updating in consideration of model errors.   

 

6.1 Description of the pipeline systems 

According to [44], all the pipelines were made of 20 Gauge steels, defined by China National 

Standard GB/T688, and they were mainly used for transporting CH4 (≥ 94%) with a small amount 

of H2S (1.7 ~ 2.3%) and CO2 (0.5 ~ 2.0%). These pipelines were diagnosed to be under attack by 

internal corrosion in which corrosion rates data was generated by metal magnetic memory testing 

and ultrasonic guided wave methods. According to the definition by Pots et al. [45], these pipelines 

were operated in the sour regime (pCO2/pH2S < 20) in which the pCO2/pH2S ratios were in the 

range of 0.3 ~ 0.9; therefore, the proposed corrosion predictive model including an uniform model 

and a pitting model should be a suitable tool in this case. The basic design variables relevant to 

these pipelines are given in Table 7 and the operating variables are given in Table 8. It should be 

noted that the pipe parameters provided in [44] were deterministic in the first place; therefore, in 

this study each variable was assigned a specified type of distribution and a coefficient of variance 
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(COV) based on suggestions in other literature [25,46] in order to transform the problem into a 

probabilistic framework.   

 

6.1.1 Corrosion control measures 

As corrosion damage in gas pipelines is irreversible, uncensored corrosion often leads to lost 

production, downtime for maintenance or repair, and even casualties for worst cases. Therefore, 

pipeline operators implement several kinds of control measures to mitigate the corrosion. One of 

the common measures for internal corrosion is corrosion inhibitor treatment [47]. The mitigation 

level of corrosion inhibitor on corrosion rate depends on the inhibition efficiency (E%), which is 

usually determined through laboratory studies. A mathematical expression of the inhibition 

efficiency (E%) is given as: 

E% =
CRhÒ − CRfÒû

CRhÒ
× 100 (92) 

where CRhÒ  is uninhibited corrosion rate (i.e., the predicted corrosion rate by the proposed 

corrosion model in this case); CRfÒû is inhibited corrosion rate.  

Corrosion rate drop due to corrosion inhibitor treatments is not unlimited, instead, the inhibition 

efficiency is reported to depend on the concentrations of corrosion inhibitors i.e., the higher the 

concentration of corrosion inhibitors, the higher the inhibition efficiency [48]. In addition, if 

corrosion rate is down to a certain level (e.g., 0.1 mm/y), the inhibition efficiency decreases 

accordingly. As shown in Table 8, two classes of inhibition efficiency were assumed depending 
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on the threshold corrosion rate 0.1 mm/y, above which the inhibition efficiency was uniformly 

distributed in the range between 60 to 95 %, whereas the inhibition efficiency was uniformly 

distributed in the range between 25 to 50 % when the corrosion rate is below the threshold 

corrosion rate.  

Equation (92) can be used to calculate CRfÒû given CRhÒ and E% or vice versa; however, CRfÒû 

is not available all the time during the pipe operation in practical. Injection pump failures, inhibitor 

unavailability due to human errors, or poor quality of inhibitors, etc. may lead to unavailability of 

corrosion inhibitors, rendering the corrosion rate uninhibited. The inhibitor availability can be 

modeled by a mathematical expression to calculate the overall corrosion rate CR\6\: 

CR\6\ = f × CRfÒû + (1 − f) × CRhÒ (93) 

where f is availability of corrosion inhibitors (i.e., fraction of time corrosion inhibitors is available). 

 

Table 7. Basic design variables of eight gas pipelines. 

* L is the length; D is the diameter; d is the thickness; t is the operating time of the pipe 

Variables 

Data 

Type COV 
Mean 

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 

L (km) Normal 0.05 12.26 2.69 2.82 2.47 2.16 3.52 8.41 7.84 

D (mm) Normal 0.05 159 108 108 108 108 108 219 273 

d (mm) Normal 0.05 8 6 6 6 6 6 8 8 

t (y) Normal 0.05 17 7 6 7 6 8 20 20 
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Table 8. Operating variables of eight gas pipelines (partly [44]) 

* ”Operating parameter_in” denotes the operating parameter at the inlet; “Operating parameter_out” 
denotes the operating parameter at the outlet. 

* T is the temperature; P is the operating pressure; pH2S is the partial pressure of H2S (=P × mol% 
H2S/100); pCO2 is the partial pressure of CO2 (=P × mol% CO2/100); V is the flow velocity; pH 
is the pH level; Cl- is the concentration of chloride ions. 

 

Variables 

Data 

Type COV 
Mean 

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 

T_in (K) Lognormal 0.10 301  301  301  301  301  301  301  301  

T_out (K) Lognormal 0.10 298  298  298  298  298  298  299  298  

P_in (MPa) Lognormal 0.15 5.1  2.1  2.8  5.4  2.1  2.1  5.0  5.1  

P_out (MPa) Lognormal 0.15 3.2  1.8  2.5  4.9  1.8  1.8  3.7  3.8  

pH2S_in (MPa) Lognormal 0.15 0.089  0.036  0.049  0.093  0.045  0.044  0.108  0.110  

pH2S_out (MPa) Lognormal 0.15 0.041  0.031  0.044  0.085  0.038  0.038  0.080  0.082  

pCO2_in (MPa) Lognormal 0.15 0.041  0.013  0.029  0.044  0.030  0.039  0.046  0.065  

pCO2_out (MPa) Lognormal 0.15 0.026  0.011  0.026  0.040  0.026  0.033  0.034  0.049  

V (m/s) Lognormal 0.10 2 2 2 2 2 2 2 2 

pH Lognormal 0.05 6.58 6.58 6.58 6.58 6.58 6.58 6.58 6.58 

Cl-  

(× 10-	ppm) Lognormal 0.15 91 91 91 91 91 91 91 91 

Inhibitor 
Availability (%) Uniform 

Lower limit 

85 

Upper limit 

95 

Inhibitor 
Efficiency (%) Uniform 60/25 95/50 

Rsolid Uniform 0 1 
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6.1.2 Temporal and spatial variabilities 

Applying a corrosion model for field purposes requires the execution to be in a probabilistic 

framework in order to take into account the uncertainties of operation and basic design variables. 

Therefore, the proposed methodologies to consider temporal and spatial variabilities of operating 

parameters described in “Chapter 4.2: Modeling the variability of operating parameters” were 

applied on the given data for eight pipelines. 

For temporal variability of operating parameters, specifically, each operating parameter was 

modeled by a Poisson process with daily-varying values (i.e., λ = 1 /day) following assumed 

probability distribution in Table 8 where the target time is the operating time for each pipeline. 

The schematic diagram of the Poisson process for the modelling of operating parameters is shown 

in Figure 17. Readers are referred to “Chapter 4.2.1: Temporal variability” for more details. 

To make simulated operating parameters more realistic, the operating parameters were modeled to 

be fully-correlated on a basis of a proposed correlation matrix shown in Figure 22 where 

temperature and pressure were assumed to be highly and positively correlated compared to others 

[49]. By repeating this process for every operating parameter, a number of series of operating 

parameter as a function of time for each pipeline were created.   
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Figure 22. The proposed correlation matrix of operating parameters. 

 

For spatial variability of operating parameters, only operating temperature, operating pressure, 

partial pressure of H2S, and partial pressure of CO2, were considered. In other words, these 

operating parameters were location dependent where they are higher at the inlet and lower at the 

outlet as shown in Table 8. Three locations, namely, at near inlet, at midpoint, and at near outlet 

were considered for location-dependent corrosion predictions, all of which were later used to 

calculate population variability distribution of corrosion rate in a representative of a whole pipe. 

The same process was then repeated for each studied pipeline. Reader are referred to “Chapter 

4.2.2: Spatial variability” for more details.  

A picture of the R-DAT software interface showing the settings of prior distribution of corrosion 

rate for pipeline No.2 is illustrated in Figure 23 as an example. In this case, the prior distribution 

of corrosion rate was assumed to follow Lognormal distribution with median (Median) and error 
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factor (EF) as main parameters, both of which are described by an estimate (Estimate) and a range 

factor (RF). 

 

 

Figure 23. R-DAT software interface of prior distribution setting for pipeline No.2 [40]. 
 

Figure 24 shows the R-DAT software interface of evidence setting for pipeline No.2. As described 

before, predicted corrosion rates considering temporal variability of operating parameters at near 

inlet, at midpoint, and at near outlet were considered as evidences in a calculation of population 

variability distribution of corrosion rate. Their corresponding median, EF, 95th percentile, and 5th 

percentile values were provided as inputs to the software. This process was repeated for the eight 

pipelines to be studied.  

 

 

Figure 24. R-DAT software interface of evidence setting [40]. 
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6.1.3 Determination of corrosion type 

In [44], remaining pipe wall thickness of each pipeline was measured by metal magnetic memory 

testing and ultrasonic guided wave methods, both of which belong to non-destructive testing 

(NDT). The corresponding corrosion depth was calculated by subtracting the remaining wall 

thickness from the original pipe wall thickness, while the corresponding corrosion rate was 

calculated by dividing the corrosion depth with the operating time under the assumption of linear 

corrosion growth. However, neither metal magnetic memory testing nor ultrasonic guided wave 

method reveals the information of geometric characteristics of corrosion defects and pipe wall 

appearance. In addition, no information about the type of corrosion from which these pipelines 

were suffered was provided in [44]. Therefore, prior to applying corrosion models for corrosion 

predictions, corrosion type has to be determined for each pipeline.  

This study adopted two statistical methodologies, namely, extreme value analysis and risk curve 

method for the identification of corrosion types between uniform and pitting corrosion with 

corrosion rate data. Each methodology was described in the following paragraphs and the results 

of each methodology were compared for mutual verification.  

 

6.1.3.1 Extreme value analysis 

Extreme value analysis has been widely used to predict pitting corrosion [50,51] because it 

accounts for the random nature of pitting corrosion. Specifically, it is found that maximum pit 

depth or pit growth rate caused by pitting corrosion can be well fitted by Gumbel distribution. 
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Therefore, in this study Gumbel distribution was used to fit corrosion rate data with a threshold of 

R$ = 95. If a Gumbel distribution fitting on the corrosion rate data of a pipe has R$ ≥ 95, this 

pipe is determined to mainly suffer pitting corrosion. Otherwise, it mainly suffered uniform 

corrosion. The steps for extreme value analysis were described as follows:  

 

Step 1: Collect data (e.g., corrosion rate or depth) and arrange data in ascending order.  

 

Step 2: Compute the cumulative probability distribution of the data (F(y)) using the average rank 

method given by:  

 

F(y) =
i

N + 1 

 

(94) 

where i is rank of the data in an ascending order; N is total number of data points. 

 

Step 3: Fit the data by Gumbel distribution given by [50] with linear regression: 

x = −α[ln(− ln𝐹(𝑦))] + 𝜆 

 

(95) 

 where x is data; α is scale parameter; λ is location parameter. 

 

Step 4: Estimate the parameters α and 𝜆. The probability density function of Gumbel distribution 

can be expressed as: 
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f(y) =
1
α exp

[−y − exp	(−y)]									 

 

(96) 

 

where y = ²/ä
o

 and α > 0.  

If the data cannot be well fitted by Gumbel distribution, the data was then analyzed by EasyFit 5.6 

software [52] to find the best-fit probability distribution for it.  

 

6.1.3.2 Risk curve method 

Risk curve method is widely used in risk analysis to describe the relationship between 

complementary cumulative frequency (CCF) and the magnitude of an accident in order to find the 

safety index (D). This method was applied to the field of corrosion to determine if large-scale 

corrosion is likely to happen by Kasai et al. [53].  Specifically, there are three analogies between 

an accident and corrosion: the magnitude of the accident is analogous to the magnitude of corrosion 

rate or depth; the frequency of accident is analogous to the probability of occurrence of corrosion; 

the time domain (i.e., observation period) of accidents is analogous to the spatial domain (i.e., area 

of object that suffers corrosion). The typical log-log plot of a risk curve (i.e., amount of damage 

vs. CCF) is generally convex, but there is a linear relationship in the large-scale damage region, 

which can be regarded as deeper corrosion depth region. The mathematical expression of this 

region is shown as: 
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F(h) ∝ h/* (97) 

where F(h) is complementary cumulative probability (i.e., CCP); h is magnitude of corrosion rate 

or depth, and D is safety index (also known as decreasing ratio of large-scale corrosion in this case). 

Equation (97) shows that CCP decreases with increasing h in a power law form by D power. In 

other words, large D corresponds to the scenario that extremely large-scale damage of corrosion is 

less likely to happen (the case for uniform corrosion), whereas smaller D  corresponds to the 

scenario that extremely large-scale damage of corrosion is more likely to happen (the case for 

pitting corrosion).  

 

6.1.4 Corrosion prediction 

Based on the results of mutual verification by extreme value analysis and risk curve method, a 

corrosion type of each pipeline was identified. Then, the pipeline that mainly suffered uniform 

corrosion was modeled by the uniform corrosion predictive model described in Section 4.1.1, 

while the pipeline that mainly suffered pitting corrosion was modeled by the pitting corrosion 

predictive model described in Section 4.1.2. Operating parameters that considered temporal and 

spatial variabilities were regarded as inputs to the two corrosion predictive models in the 

calculation of probability density function of corrosion rate. Due to the consideration of both 

temporal and spatial variabilities of operating parameters, the predicted population variability 

distribution of corrosion rate of each pipeline is therefore time and location-dependent.  
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6.2 Results and discussion 

Results and discussion including the results of corrosion type identification for each pipeline, 

model performance and model performance considering model errors by Bayesian estimation as 

well as the comparison of corrosion predictions between different models were described in the 

following paragraphs.  

 

6.2.1 Corrosion type identification 

The results of extreme value analysis for pipeline No.1 to No.8 are shown in Figure 25. Based on 

the definition that Gumbel distribution fitting of corrosion rate with R$ ≥ 95 is denoted as pitting 

corrosion, whereas that with R$ < 95 is denoted as uniform corrosion. In other words, pipelines 

No.1, No.3, No.7, and No.8 are identified to mainly suffer pitting corrosion where their corrosion 

rates can be well described by Gumbel distribution, while pipelines No.2, No.4, No.5, and No.6 

are identified to mainly suffer uniform corrosion based on extreme value analysis results. 

Corrosion rates of pipelines No.2, No.4, No.5, and No.6 were then analyzed by EasyFit 5.6 

software [52] and found that the best-fit probability distribution is Generalized Extreme Value 

(GEV) distribution.  

The results of risk curve method for pipeline No.1 to No.8 are shown in Figure 26. According to 

[53], there is no strict rule of how large D should be to be classified as large. However, two groups 

of D were observed from the results, namely, D < 4 and D > 10. Therefore, the risk curve of 

corrosion rate with D < 4 is denoted as pitting corrosion, whereas that with D > 10 is denoted as 
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uniform corrosion.  In other words, pipelines No.1, No.3, No.7, and No.8 are identified to mainly 

suffer pitting corrosion, while pipelines No.2, No.4, No.5, and No.6 are identified to mainly suffer 

uniform corrosion based on risk curve method results.  
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Figure 25. Results of extreme value analysis for pipeline No.1 to No.8. 
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Figure 26. Results of risk curve method for pipeline No.1 to No.8. 
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The detailed results of corrosion type identification for all the pipelines are arranged and illustrated 

in Table 9. The results by extreme value analysis and risk curve method are actually mutually 

verified, indicating the suggested conclusion that pipelines No.1, No.3, No.7, and No.8 mainly 

suffer pitting corrosion, while pipelines No.2, No.4, No.5, and No.6 mainly suffer uniform 

corrosion. However, it should be noted that since this conclusion was made by statistical analysis 

based on the available data, there are other information of the pipelines that weren’t revealed by 

the available data. For example, although analysis results show that pipelines No.2, No.4, No.5, 

and No.6 suffer uniform corrosion, it does not rule out the possibility that these pipelines do not 

have corrosion defects caused by pitting corrosion. Instead, it only implies that they are likely to 

have more areas affected by uniform corrosion than pitting corrosion, which were captured by the 

inspection tools.  

In addition, Table 9 shows that three out of four pipelines that were identified to mainly suffer 

pitting corrosion, namely, pipelines No.1, No.7, and No.8 have been operated much longer than 

others (i.e., more than 10 years). In other words, older pipelines are found to be more likely to 

suffer uniform corrosion than younger ones. It can be explained by the film-breaking mechanism 

[54], stating that local breakdown of protective layers, mostly due to the presence of chloride ions 

or mechanical stresses at the defects on the protective layer, is the main cause of pit initiation. 

Since older pipelines are likely to have more defects on the protective layers after long time of 

operation, it is reasonable to speculate that they are more vulnerable to pitting corrosion as a result 

of local film breakdown according to the analysis results.     
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Table 9. Results of corrosion type identification for pipelines No.1 to No.8. 

Methodology Parameter Pipeline 
No.1 No.3 No.7 No.8 

Extreme value 
analysis 

Corrosion type Pitting 
Distribution type Gumbel 
Scale parameter, α 0.035 0.024 0.020 0.038 
Location parameter, λ 0.070 0.033 0.039 0.047 

Risk curve method Safety index, D 3.63 2.12 2.48 2.79 
   

Methodology Parameter Pipeline 
No.2 No.4 No.5 No.6 

Best-fit by EasyFit 
5.6 [52] 

Corrosion type Uniform 
Distribution type Generalized Extreme Value 
Scale parameter, σ 0.019 0.007 0.014 0.013 
Location parameter, µ 0.016 0.004 0.008 0.007 
Shape parameter, κ 0.480 0.054 -0.092 0.018 

Risk curve method Safety index, D 14.93 13.27 10.56 10.54 
 

6.2.2 Model performance 

Model performance was tested by comparing the prediction results by the proposed model with 

the observational data (i.e., corrosion rate). Graphical expressions as well as statistical metrics of 

the prediction results and the observational data were compared and discussed. 

Firstly, the model considered only temporal and spatial variabilities of operating parameters. The 

graphical comparison in terms of probability distribution between the predicted corrosion rates 

and the observational corrosion rates of pipelines No.1, No.3, No.7, and No.8 for pitting corrosion 

is shown in Figure 27. It shows that the observational corrosion rates of pitting corrosion follow 

Gumbel distribution, while the predicted corrosion rates follow Lognormal distribution obtained 

from EasyFit 5.6 software [52]. Except for pipeline No.3, the model predictions of pipelines No.1, 
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No.7, and No.8 agree well with the observational data. The probability distributions of model 

predictions tend to have longer tails compared to the observational corrosion rates due to the 

consideration of spatial variability of operating parameters from the inlet to the outlet, which 

covered a broad range of operating parameters, whereas the observational corrosion rates were 

assumed to be randomly measured from certain sections of the pipeline, meaning only a limited 

range of operating parameters was considered. 

 

               

              
Figure 27. Comparison between the predicted corrosion rates with the observational corrosion rates 
of pipelines (a) No.1, (b) No.3, (c) No.7, and (d) No.8 for pitting corrosion. 
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Comparison of statistical metrics (i.e., median, mean, mode, and standard deviation) between 

model predictions and the observed corrosion rates was also done and displayed in Figure 28. 

Figure 28 shows that most of the differences between the model predictions and the observed 

corrosion rates are within a factor of 2, indicating a decent accuracy of the corrosion model for 

pitting corrosion.   

 

 
Figure 28. Model predictions vs. Observational data of pipelines No.1, No.3, No.7, and No.8 in 
terms of statistical metrics for pitting corrosion. 
 

The graphical comparison in terms of probability distribution between the predicted corrosion rates 

and the observational corrosion rates of pipelines No.2, No.4, No.5, and No.6 for uniform 

corrosion is shown in Figure 29. It shows that the observational corrosion rates of uniform 

corrosion follow Generalized Extreme Value distribution, while the predicted corrosion rates 

follow Lognormal distribution. Only one out of four model prediction agree relatively well with 
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the observational corrosion rates, while the rest model predictions tend to overestimate the 

corrosion rates.  

Comparison of statistical metrics between model predictions and the observed corrosion rates was 

depicted in Figure 30, which shows that the majority of mean, median, and mode values of model 

predictions are larger than observational corrosion rates with a factor of 3 and even 4.  

To sum up, the model considering temporal and spatial variabilities of operating parameters can 

predicted decently accurate corrosion rates for pitting corrosion; however, the model predictions 

of uniform corrosion are not as accurate as those for pitting corrosion. This finding implies that 

for the pipelines that were identified to mainly suffer uniform corrosion, namely, pipelines No.2, 

No.4, No.5, and No.6 may have been under attack by other kinds of corrosion, all of which also 

play import roles and influence the corrosion behavior in the pipelines. Therefore, a correction of 

the existing model was applied and described in the next section. 
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Figure 29. Comparison between the predicted corrosion rates with the observational corrosion rates 
of pipelines (a) No.2, (b) No.4, (c) No.5, and (d) No.6 for uniform corrosion. 
 

 
Figure 30. Model predictions vs. Observational data of pipelines No.2, No.4, No.5, and No.6 in 
terms of statistical metrics for uniform corrosion. 
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6.2.3 Model performance with model errors  

Model errors were taken into account by Bayesian estimation to do model calibration. Model errors 

in this case study come from the assumptions of the model or factors that are not considered for 

corrosion modelling. For example, pipelines were identified to mainly suffer only uniform and 

pitting corrosion by extreme value analysis and risk curve method; however, besides uniform and 

pitting corrosion, other types of corrosion such as erosion corrosion, microbiologically-influenced 

corrosion, corrosion fatigue, Top-of-Line corrosion were not considered in this case study. Most 

importantly, the lack of historical operation information about the pipelines in terms of 

maintenance practices and repair certainly influences the model predictions.  

A schematic diagram showing the display of model errors between observational corrosion rates 

and model predictions is illustrated in Figure 31. In Figure 31, EÒ is the deviation of median values 

between the predicted corrosion rates and the observational corrosion rates for prediction n; EF is 

the error factor. Bayesian estimation method introduced in Section 4.2.2 was applied to quantify 

the model errors in the form of probability distributions. Specifically, parameteric probability 

distributions of model errors of four pipelines for pitting corrosion and those of four pipelines for 

uniform corrosion were calculated, respectively. Once the model errors for each pipeline was 

obtained, Monte Carlo simulation was used to correct the predicted corrosion rates with model 

errors to obtain the updated corrosion rates, which were analyzed by EasyFit 5.6 software [52] to 

find the best-fit probability distributions. 
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Figure 31. A schematic diagram showing the display of model errors between observational 
corrosion rates and model predictions. 
 

Figure 32 and Figure 34 show the graphical comparison between the updated corrosion rates with 

the observational corrosion rates for pipelines No.1, No.3, No.7, and No.8 after considering model 

errors for pitting corrosion and that between the updated corrosion rates with the observational 

corrosion rates for pipelines No.2, No.4, No.5, and No.6 after considering model errors for uniform 

corrosion, respectively. The results show that both uniform and pitting corrosion predictions agree 

well with the observational corrosion rates, which can be verified by the comparison of statistical 

metrics between model predictions and observational corrosion rates shown in Figure 33 and Figure 

35. Most deviations of statistical metrics are reduced to around or within a factor of 2, indicating a 

significant improvement in corrosion predictions.  
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Figure 32. Comparison between updated corrosion rates with observational corrosion rates of 
pipelines (a) No.1, (b) No.3, (c) No.7, and (d) No.8 considering model errors for pitting corrosion. 
 

 
Figure 33. Model predictions vs. Observational data for pipelines No.1, No.3, No.7, and No.8 in 
terms of statistical metrics after considering model errors for pitting corrosion. 
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Figure 34. Comparison between updated corrosion rates with observational corrosion rates of 
pipelines (a) No.2, (b) No.4, (c) No.5, and (d) No.6 considering model errors for uniform corrosion. 
 

 
Figure 35. Model predictions vs. Observational data for pipelines No.2, No.4, No.5, and No.6 in 
terms of statistical metrics after considering model errors for uniform corrosion. 
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6.2.4 Model comparison with other existing models 

In the oil and gas industry, engineering criteria have been used for corrosion evaluation. For 

example, National Association of Corrosion Engineers (NACE) proposed Wet Gas Internal 

Corrosion Direct Assessment SP0110 (WG-ICDA SP0110) [55] for wet gas pipelines subjected to 

internal corrosion, which suggests that corrosion rate can be calculated by corrosion predictive 

models such as the Anderko model [56], the Crolet model [57], the de Waard and Milliams model 

(D-M model) [10], or the SWRI model [58].  

In order to compare the model performance of the proposed corrosion model for uniform corrosion 

with other existing models, the D-M model and the SWRI model were used to predict corrosion 

rates given operating parameters of pipelines No.2, No.4, No.5, and No.6. It should be noted that, 

this comparison considered only temporal variability of operating parameters. The obtained 

predicted corrosion rates by each model was inserted into EasyFit 5.6 software [52] to find best-

fit probability distributions. The comparison between model predictions and observational data in 

terms of mean and median values by different models is shown in Figure 36. The result shows that 

the proposed corrosion model for uniform corrosion outperforms the D-M model and the SWRI 

model in this case. Among three models, the D-M model is most likely to overestimate corrosion 

rates and the highest absolute deviation is as large as 1 mm/y. This can be explained by the fact 

that the D-M model doesn’t consider the effect of H2S that can decrease corrosion rate as a result 

of the formation of protective sulfide layers.  
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Figure 36. Model predictions vs. Observational data of pipelines No.1 to No.8 in terms of mode 
values for different corrosion predictive models. 
 

6.3 Conclusions 

The application of the proposed model on operating gas pipelines was validated through a case 

study of eight operating pipelines in Sichuan Province, China. Consideration of temporal and 

spatial variabilities of operating parameters consolidated the validity of the proposed model on 

field applications. In other hand, temporal variability of operating parameters enables the model 

to simulate the effect of time-varying operating parameters on corrosion rate, while spatial 

variability of operating parameters enables the model to simulate location-dependent corrosion 

rate. Results show that model predictions considering only temporal and spatial variabilities of 

operating parameters agree with the observational corrosion rates better for pitting corrosion than 

uniform corrosion. Further model calibration on model errors largely improves the model 

performance as most deviations of statistical metrics are reduced to around or within a factor of 2. 
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Comparison of model performance with other models, namely, the D-M model and the SWRI 

model shows that the proposed model for uniform corrosion outperforms them in this case study.     
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Part B 

7 Smart Condition-Based Maintenance with Reinforcement Learning for Dry 

Gas Pipeline Subject to Internal Corrosion 

Integrity management is closely related to maintenance practices. A cost-effective way of making 

maintenance decisions is in demand. This chapter discussed two proposed smart condition-based 

maintenance management methodologies by reinforcement learning (RL) algorithms, namely, Q-

learning and Sarsa(l) to optimize corrosion maintenance costs over the life of a pipeline. Test 

study and sensitivity analysis were done to compare the model performances of Q-learning, 

Sarsa(l), and traditional periodic maintenance policy.  

 

7.1 Introduction 

In this era, the advancement of the Internet of Things (IoT), cloud computing, and communication 

and actuation technologies facilitates the development of intelligent cyber-physical systems 

(CPSs). Numerous applications of CPSs have been studied such as self-driving cars, smart 

buildings, smart electric grids, smart infrastructures, and smart manufacturing and production. 

These systems are integrated with computer systems with self-learning capability that can 

communicate and interact with physical components [59]. CPSs are found to benefit the 

implementation of complicated asset integrity management as the collection of data by IoT can be 

processed immediately and provide accurate, in-time information about conditions of an 

infrastructure [60]. For example, a gas pipeline embedded with a decision-making agent can 
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immediately analyze the collected data and predict the level of corrosion, which can facilitate 

pipeline operators in making maintenance or repair decisions.  

Among many data-driven techniques for the development of Artificial Intelligence (AI), 

reinforcement learning (RL) is found to be well suited to formulate the asset integrity management 

problems. In general, RL observes and interacts with the environment by trial and error; therefore, 

after adequate trainings, it is capable of making decisions to achieve the goal in an optimal way 

even in an uncertain environment that is new to the RL agent. There are three extraordinary 

characteristics of RL algorithms: RL algorithms learn from historical and online data monitored 

and collect by IoT; RL can deal with delayed consequences of applying maintenance actions; RL 

algorithms are designed to interact and learn in a stochastic environment with unpredictable 

operating and environmental conditions. The abovementioned three characteristics have make RL 

attract more and more attention in asset integrity and management in recent years.  

Many studies have been done using RL to solve asset integrity and management problems. For 

example, for the manufacturing systems, Xanthopoulos et al. [61] used policy-based Q-Learning 

algorithm to find the optimal joint production/maintenance policy that can minimize the inventory 

level but and reduce the cost.  Sensitivity analysis was done to study the influences of arrival rate, 

deterioration failure rate, and maintenance rate on various maintenance management practices to 

find the best parameter combinations. Wei and Qi [62] designed a policy-based Q-Learning 

algorithm to build a maintenance scheduler using a two-machine-one buffer system. The 

maintenance scheduler was trained to choose actions among produce, idle, and maintenance in a 



 

 

112 

 

 

goal to maximize the average reward. For large infrastructure systems, Aissani et al. [63] used a 

Sarsa (Sate-Action-Reward-State-Action) algorithm to build a maintenance scheduler that can 

maximize the system availability and the production efficiency for an oil refinery. They found the 

RL maintenance scheduler is more cost-effective than the preventive maintenance and the 

corrective maintenance in making maintenance practice decisions. Moreover, Compare et al. [64] 

used a Sarsa algorithm to train a RL agent to find best part flow strategy in terms of repair and 

purchase actions in a gas turbine plant. Results show that RL agent increased the reliability of the 

gas turbine plant by reducing the probability of forced outages.  

Another large-scale infrastructure that requires the integrity management during its operation is 

gas transmission pipelines. These pipelines are about 3 million miles in total length in the United 

States as reported by U.S. Energy Information Administration in 2017 and corrosion is one of the 

main threats to their integrity. In addition, according to NACE, 80% of annual corrosion-related 

cost, roughly 7 billion US Dollar, is spent on corrosion-related maintenance. Therefore, how to 

implement pipeline integrity management in a cost-effect way has been a significant issue for pipeline 

operators.  

 

7.2 Objectives 

To date, numerous approaches have been proposed on maintenance management of gas 

transmission pipelines including time-based maintenance (TBM),  risk-based maintenance (RBM), 

and condition-based maintenance (CBM) [65]. According to the definitions, TBM strategy 
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performs maintenance based on a calendar schedule already planned in advance. This strategy is 

similar to periodic maintenance in which each specific maintenance is done over a specific time 

interval; RBM strategy performs maintenance on the component with the largest risk of failure. It 

is a more economical methodology than TBM as maintenance resources only apply to the most 

vulnerable component but not all components; CBM strategy monitors actual conditions of the 

system and make maintenance decisions based on the conditions of the systems. For example, 

CBM will decide what maintenance actions to take when there are indicators showing the 

performance is decreasing or potential failure is coming. Among these three maintenance strategies, 

condition-based practice is found to be more cost-effective over other two strategies [66].   

In view of optimal corrosion maintenance management problem, this study proposed a corrosion 

maintenance scheduler on gas transmission pipelines by integrating a RL algorithm into a CBM 

framework. The new methodology is thus called smart-CBM because it is equipped with the power 

of AI in making maintenance decisions for cost-effective purposes. Higher level of system 

reliability is also maintained to ensure that corrosion-related failures, such as leak or burst, will 

not happen during the operation.  

 

7.3 Overview of the RL maintenance scheduler 

The proposed maintenance scheduler integrates the internal corrosion modeling with the data-

driven and model-free RL algorithms to optimize the maintenance management on a transmission 

gas pipeline. It should ensure the asset integrity and extend the lifetime of the asset while 
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minimizing the maintenance costs. In general, a RL agent interacts with an uncertain environment 

and learn via try and error to achieve a goal. During the interaction, the RL agent firstly observes 

the signals from the environment and decides what actions to take. That action will then influence 

the environment and update the environment. Once the agent takes another observation of the 

environment, it gets new information and a reward signal corresponding to the previous action it 

takes. Ideally, the agent learns from the reward signal it receives after applying the action to the 

environment so that it can optimize the decision making in the future to reach maximum rewards.   

These processes are repeated many times until the agent learns when to and how to choose actions 

on a cost-effective point of view. A schematic diagram showing RL agent and environment 

interaction is displayed in Figure 37.  

 

 

Figure 37. Interaction between a RL agent and the environment. 
 



 

 

115 

 

 

In this study, a proposed framework of SCBM of a gas transmission pipeline for the development 

of a maintenance scheduler is shown in Figure 38. The proposed SCBM framework like other RL 

algorithms has an agent and an environment that are interacting to reach the goal. The environment 

is a segment of a gas transmission pipeline, which is in operation under stochastic environmental and 

operational parameters. The internal corrosion takes place in the pipeline during the operation. Once 

the corrosion is built up to a certain level, failures such as leak or burst will happen and cause 

catastrophic losses to the human life and property. The proposed corrosion predictive model for 

internal corrosion described in “Chapter 5.1 Internal corrosion model” and the reliability model 

described in “Chapter 3.3 Pipeline corrosion risk assessment” was used to simulate the 

environment. On the other hand, the agent is a maintenance scheduler aims at preventing the 

pipeline failures from happening and meanwhile minimizing the maintenance costs. The 

interaction between the environment and the agent is that, firstly, the environment updates the 

agent with up-to-date pipe information (e.g. corrosion depth, length, probability of leak, 

probability of burst) as well as costs (i.e., reward function) on monthly basis. Then, agents will 

each time select one out of four maintenance actions, namely, internal coating, corrosion inhibitors, 

cleaning pigs, and repair/replacement or do nothing and interact with the environment. Finally, 

after enough training, the agent should be able to suggest the best possible action at specific 

condition to maintain the pipeline integrity while keeping the goal of minimizing the cost. The 

main idea is to pre-train the maintenance planner with our model and then train it with real data 

when it is available. Finally, this maintenance planner should be mature enough to be applied on 

real operating gas transmission pipelines. This process is called transfer learning.  
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Figure 38. The overview diagram of the proposed model framework of maintenance scheduler. 
 

RL framework can be mathematically formulated by a Markov Decision Process (MDP) defined 

by a tuple (𝑆,𝐴,𝑅,𝑇)	in which 𝑆	is a set of states, 𝐴	is a set of actions, 𝑅	is a reward function, and 

𝑇	is a transition probability function [67]. For maintenance management of gas pipeline, 𝑆	is the 

health conditions of the pipe (e.g., corrosion depth and length) that can be used to summarize the 

historical information of the environment (i.e., pipe in this case). 𝐴	is the maintenance actions, 

including pigging, batch corrosion inhibitor, internal coating, and replacement that the agent can 

take at a certain state to mitigate corrosion. In addition, do nothing is also an option for the agent 

to avoid forced action situations. 𝑅	is the rewards associated with the costs of maintenance action, 

costs of pipeline failures, and bonus of pipeline life extension. The rewards can give the agent 

feedbacks about how the maintenance action it takes affect the health state of the pipe. It should 
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be noted that we do not need 𝑇	here	as	our	developed	agent	is	model-free;	therefore,	it	knows	

nothing	about	the	environment.	In	other	words,	the	agent	does	not	know	how	𝑆	is changing 

in the environment; instead, what it knows is the monthly observation (or updated information) 

from the environment and the corresponding rewards.  

 

7.4 Methodology and Implementation 

This section describes implementation details of the proposed methodology. This section covers 

three topics, namely, the development of the environment (i.e., pipeline internal corrosion model), 

the development of the RL maintenance scheduler, and the evaluation methodology and metrics.  

 

7.4.1 Development of the environment  

The environment is a segment of a demonstrative gas transmission pipeline system, which is 

assumed to be straight and 1-mile long in length. The pipeline is made of mild steels and is mainly 

used for transporting natural gas (i.e., CH4) with small amount of corrosive gases (i.e., CO2 and 

H2S) and elements (i.e., Cl-) that are introduced during the extraction and collection of natural 

gases. The pipeline is suffering internal corrosion during the operation in which two common types 

of corrosion, namely uniform corrosion and pitting corrosion, are assumed to be the main 

mechanisms of the internal corrosion.  

At this stage, the problem is confined to one corrosion defect on the pipe surface; however, the 

proposed approach is also applicable to other assets under single or multiple defects. 
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It can be seen from Figure 38 that the environment consists of the simulation of operating 

parameters and the pipe model, which is composed of an internal corrosion model and a reliability 

model. Each of them will be described in the following sub-sections.  

 

7.4.1.1 Simulation of operation parameters with stochastic process 

The inputs of the internal corrosion model in simulation of the demonstrative gas pipeline are 

operating parameters. Therefore, first of all, time-series operating parameters should be provided 

to the internal corrosion model to simulate the propagation of corrosion inside the pipeline. The 

operating condition inside a gas pipeline is very complex as the operating parameters are changing 

all the time within an uncertain range. Due to the lack of data, the time-series operating parameters 

were simulated by the proposed methodology described in “Chapter 5.2 Modeling the variability 

of operating parameters”, which takes temporal variability of operating parameters into account. 

The operating parameters of the demonstrative gas pipeline are shown in Table 10. They are 

operating temperature (T), total pressure (P), partial pressure of CO2 (pCO2), partial pressure of 

H2S (pH2S), flow velocity (V), pH, chloride ion concentration (Cl-), sulfate concentration (SO42-), 

probability of solid presence (𝑅𝑠𝑜𝑙𝑖𝑑). These parameters were considered stochastic and were 

assigned specified probability distributions followed by coefficient of variations (COVs). 
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Table 10. Operating parameters of the internal corrosion model in simulation of the demonstrative 
gas pipeline. 

Variables  Type  Mean  COV  

T (K)  Normal  308  0.10  

P (bar)  Lognormal  56.6  0.15  

pH2S (bar)  Lognormal  3  0.15  

pCO2 (bar) Lognormal  4  0.15  

V (m/s)  Lognormal  5  0.10  

pH  Lognormal  4  0.06  

Cl- (ppm)  Lognormal  150000  0.15  

SO42- (ppm)  Lognormal  2000  0.15  

𝑅𝑠𝑜𝑙𝑖𝑑  Uniform  
Upper limit  Lower limit  

1  0.5  

 

7.4.1.2 Corrosion degradation model 

Internal corrosion defects inside a pipeline may grow in the radial, circumferential and axial 

directions; however, most common engineering practices only consider the corrosion depth (d) 

and length (l) for simplicity [25]. In this study, we also described the corrosion defect by depth 

and length, and a schematic diagram of a rectangular-like shaped corrosion defect is shown in 

Figure 39.  

To simulate internal corrosion in the demonstrative gas pipeline subjected to an aqueous CO2/H2S 

environment, the proposed internal corrosion predictive model described in “Chapter 5.1 Internal 

corrosion model” was adopted. This corrosion model takes time-series operating parameters as 
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inputs and returns corrosion rate as a function of time. It should be noted that the predicted 

corrosion rate by the proposed internal corrosion predictive model is the rate of depth that the pipe 

wall loses (i.e., corrosion depth rate) due to internal corrosion. As for the corrosion length rate, 

since there are still no reliable models, this study simulated the corrosion length rate for internal 

corrosion by a linear growth model, which states that corrosion length propagates linearly over 

time with a constant corrosion length rate, and this assumption is also used in other study [68] to 

study the reliability of corroded gas pipelines .  

This study considered only uniform and pitting corrosion for internal corrosion; therefore, the 

accumulated corrosion depths over time were calculated by summing up the daily corrosion rates 

over total time of operation for uniform and pitting corrosion, respectively. The expressions of 

corrosion depths for uniform and pitting corrosion are given as: 

𝑑JÙ(𝑡) =K
𝐶𝑅¼(𝑡)
365

M

¼9c

 (98) 

𝑑NÙ(𝑡) =K
𝑃𝐶𝑅¼(𝑡)
365

M

¼9c

 (99) 

where 𝑑JÙ(𝑡)  and 𝑑NÙ(𝑡)  are corrosion depths at time 𝑡  by uniform corrosion and pitting 

corrosion, respectively, in mm; 𝐶𝑅¼(𝑡) is corrosion rate at time 𝑡 by uniform corrosion in mm/y; 

𝑃𝐶𝑅¼(𝑡) is corrosion rate at time 𝑡 by pitting corrosion in mm/y; 𝑁 is number of days.  
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Synergistic effect of different types of corrosion is very complicated; therefore, in practice, many 

internal corrosion problems are treated in consideration of their combination effect. According to 

a study [49], the total internal corrosion depth can be expressed as the sum of uniform and pitting 

corrosion depths given by: 

𝑑ò(𝑡) = 𝑑JÙ(𝑡)𝑊JÙ + 𝑑NÙ(𝑡)𝑊NÙ  (100) 

where 𝑑ò(𝑡) is total corrosion depth at time 𝑡 due to uniform and pitting corrosion in mm; 𝑊JÙ  

and 𝑊NÙ  are weight of uniform and pitting corrosion (i.e., in this case, they are considered equally 

weighted). 

Same to the corrosion depth, the total corrosion length is also the summation of corrosion length 

rate over time and can be expressed as: 

𝑙ò(𝑡) = 𝐿𝐺𝑅 ×
𝑡
365 (101) 

where 𝑙ò(𝑡) is total corrosion length at time 𝑡 in mm; 𝐿𝐺𝑅 is corrosion length rate in mm/y; t is 

time in days. 

 



 

 

122 

 

 

 

Figure 39. A rectangular-like shaped corrosion defect in the pipeline in (a) Top view and (b) Cross-
section view. 
 

7.4.1.3 Pipeline mechanical and reliability model 

Corrosion defects inside the gas pipeline pose threats to the pipe integrity by deteriorating the pipe 

strength. As corrosion proceeds, the pipe becomes weaker and unreliable. In this study, two 

common types of corrosion-related failures, namely, leak and burst were considered in calculation 

of pipe failure probability or reliability.  

Specifically, corrosion defects thin the pipe wall, resulting in leak when through-wall defects are 

formed. In addition, corrosion defects propagate in different dimensions and reduce the pipe 

strength, rendering the pipe vulnerable to burst when the remaining strength (or burst pressure) is 

lower than the operating pressure [68]. Several burst pressure models have been developed over 
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the past few decades of years [25], including ASME B31G [69], DNV RP-F101 [70], CSA Z662-

07 [71], RAM PIPE REQUAL [72], etc. The common characteristics of these standards are that 

they consider longitudinal-oriented corrosion defects. Moreover, the burst pressure calculation is 

related to burst stress as a result of the geometry of existing corrosion defects and the pipe property. 

This study chose ASME B31G standard because it is easy to implement and the prediction result 

is not too conservative compared to other burst pressure standards according to [25]. The burst 

pressure calculation by ASME B31G standard can be expressed as:  

𝑃ôS-cT = 𝜎ï
2𝑤
𝐷 = 𝜎W ü

1 − 𝐴
𝐴q

1 − 𝐴
𝑀𝐴q

ÿ (
2𝑤
𝐷 ) = (1.1𝜎ð)(

2𝑤
𝐷 ) ü

1 − 𝐴/𝐴q

1 − 𝐴
𝐴q
/𝑀

ÿ (102) 

where 𝑃ôS-cT  is burst pressure by ASME B31G; 𝜎ï is hoop stress; 𝜎W is flow stress; 𝑤 is pipe wall 

thickness; 𝐷 is pipe outer diameter; 𝐴 is surface area of corrosion defect; 𝐴q is original surface 

area of the pipe; 𝑀 is Folias factor. 𝑀 is related to the geometry of the corrosion defects and the 

pipe itself and can be expressed as:  

𝑀 = Y1 + 0.8(
𝑙
𝐷)

$(
𝐷
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Y0.8(
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𝐷
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The ratio \
\�

 is a geometry term of corrosion defect and pip. As corrosion defect is assumed to be 

two-dimensional, which can be described by corrosion depth and length, according to ASME 

B31G standard, \
\�

 can be expressed as: 

𝐴
𝐴q

=
¤23¦ 𝑙𝑑
𝑙𝑤 =

2𝑑
3𝑤 (105) 

where 𝑙 is corrosion length; 𝑑 is corrosion depth.  

After the determination of burst pressure, probability of failure for leak and burst can be calculated 

via the reliability model described in “Chapter 3.3.2.2 Reliability analysis method”, respectively 

with Monte Carlo simulation. Specifically, probability of leak is the probability that the corrosion 

depth is larger than the corrosion allowance, which is usually defined as 80% of the pipe wall 

thickness [73]. The expression of probability of leak is given as: 

𝑃𝑂𝐹�Õ¹^ =
𝑛[(𝜆− 𝑑¸¹º) < 0]

𝑁  (106) 

where 𝑃𝑂𝐹�Õ¹^  is probability of leak; 𝑑¸¹º  is maximum corrosion defect; 𝜆  is corrosion 

allowance; 𝑁 is number of trials. 

The expression of probability of burst is given as: 
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𝑃𝑂𝐹ô_Ö×Ô =
𝑛çD𝑃ô − 𝑃�óG < 0è

𝑁  (107) 

where 𝑃ô is burst pressure; 𝑃�ó is operating pressure of the pipe. 

In order to determine if the pipe fails or not in a scenario given 𝑃𝑂𝐹�Õ¹^ and 𝑃𝑂𝐹ô_Ö×Ô, Binomial 

distribution was used to simulate this process. Leak and burst events are assumed mutually 

independent for simplicity. Therefore, two parallel simulations were done using the Binomial 

distribution in which one simulated leak event with 𝑃𝑂𝐹�Õ¹^ and the other one simulated burst 

event with 𝑃𝑂𝐹ô_Ö×Ô. Finally, the failure event means either one of the failures happens, and the 

environment is in the failure state. 

 

7.4.2 Development of the smart condition-based maintenance scheduler 

This section discussed the development of the maintenance scheduler. As stated before, MDP, 

which consists of a state space, an action space, a reward function, and a state transition function 

is the mathematical formulization of our RL-based maintenance scheduler. However, it should be 

noted that although the state transition function was modeled by the proposed internal corrosion 

model, the maintenance scheduler has no access to it because it is model-free. Therefore, every 

element of the maintenance scheduler was introduced except the state transition function.  

Two RL algorithms were developed in this study. Firstly, Q-learning learning algorithm was 

applied to develop the maintenance scheduler for optimal corrosion maintenance policy. Then, the 
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results by the Q-learning maintenance scheduler and the traditional periodic maintenance policy 

were compared. Moreover, sensitivity analysis was done to study the effect of model parameters 

on the model performance. Finally, Sarsa algorithm was developed and applied to the problem in 

order to compare the model performance of Q-learning and Sarsa algorithms.  

 

7.4.2.1 State space 

The state space can be understood as the health condition of the environment to which the 

maintenance scheduler has access during inspection. Due to Markov property, which states that 

the future state depends only on the current state and the current action, each state should contain 

all the historical information of the environment so that the maintenance scheduler can predict the 

next state given the action.  

As the environment was modeled to be a gas transmission pipe subjected to internal corrosion, the 

state must include the information of the pipeline in terms of corrosion level. Corrosion level was 

described by two metrics, namely, corrosion depth and corrosion length as the corrosion was 

assumed to propagate in two dimensions in this study. Max-normalization was done by dividing 

the corrosion depth with the maximum corrosion depth and dividing the corrosion length with the 

maximum corrosion length to obtain the corrosion depth percent (𝐶𝐷𝑃) and the corrosion length 

percent (𝐶𝐿𝑃), respectively. The maximum corrosion depth was defined as the pipe wall thickness, 

but the maximum corrosion length is trickier to determine as the pipe length is much longer than 

a corrosion defect. Therefore, here the maximum corrosion length was estimated by running the 
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corrosion simulation under the given operating conditions without any maintenance for 40 years. 

The reason of applying normalization is to remove the maintenance scheduler’s dependency on 

the pipeline’s parameters in order to become a more generic model. The expressions of 𝐶𝐷𝑃 and 

𝐶𝐿𝑃 are given as: 

𝐶𝐷𝑃 =
𝑐𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛	𝑑𝑒𝑝𝑡ℎ

𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑐𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛	𝑑𝑒𝑝𝑡ℎ (108) 

𝐶𝐿𝑃 =
𝑐𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛	𝑙𝑒𝑛𝑔𝑡ℎ

𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑐𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛	𝑙𝑒𝑛𝑔𝑡ℎ (109) 

According to our definition to the maintenance scheduler, it has the access to the environment only 

through monthly inspections. State variable consists of 𝐶𝐷𝑃 and 𝐶𝐿𝑃 only cannot provide the 

maintenance scheduler with enough information to predict next state because it does not know if 

the corrosion is propagating at the moment or is inhibited by any mitigation method. Therefore, 

another metric called corrosion rate presence (𝐶𝑅𝑃) was added to the state variable to check if the 

corrosion process continues or not by comparing the inspected 𝐶𝐷𝑃 and 𝐶𝐿𝑃 with those of the 

previous month. 𝐶𝑅𝑃 is a Boolean variable defined as follows: 

𝐶𝑅𝑃 = h	0				𝑖𝑓				𝐶𝐷𝑃Ô/c = 𝐶𝐷𝑃Ô				𝑜𝑟				𝐶𝐿𝑃Ô/c = 𝐶𝐿𝑃Ô			
1					𝑖𝑓				𝐶𝐷𝑃Ô/c ≠ 𝐶𝐷𝑃Ô				𝑜𝑟				𝐶𝐿𝑃Ô/c ≠ 𝐶𝐿𝑃Ô	

 (110) 

where 𝑡 is time in months. 
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The state space of the maintenance scheduler consist were discretized into 24 states in terms of 

𝐶𝐷𝑃, 𝐶𝐿𝑃, and 𝐶𝑅𝑃, and the table of all possible state spaces is shown in Table 11. Besides these 

24 states, two terminal states were considered, namely, failure state and replacement state, each of 

which stops the simulation and terminates the ongoing scenario.   

 

Table 11. Discretized state spaces of the maintenance scheduler. 

CRP 
                       CDP 

CLP 0%-20% 20%-40% 40%-60% 60%-100% 

0 0%-33% 0 1 2 3 

0 33%-66% 4 5 6 7 

0 66%-100+% 8 9 10 11 

1 0%-33% 12 13 14 15 

1 33%-66% 16 17 18 19 

1 66%-100+% 20 21 22 23 
 

7.4.2.2 Action space 

The main task of a maintenance scheduler is to take maintenance actions to mitigate the corrosion. 

In this study, the maintenance scheduler can choose four maintenance actions, namely, batch 

corrosion inhibitor, internal coating, cleaning pigging, and replacement. In addition to four 

maintenance actions, it can also chose do nothing and let the corrosion proceeds if it thinks there 

is no need to do maintenance depending on the health condition of the pipeline. These maintenance 

actions are summarized in Table 12. Strictly speaking, among the four maintenance actions, only 

batch corrosion inhibitor and cleaning pigging are commonly seen in the industry for internal 
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corrosion mitigation according to the report by The Canadian Association of Petroleum Producers 

(CAPP) [74]. In this study, we added internal coating because although internal coating is usually 

applied during the manufacturing process, coating repair is a common maintenance action if it is 

damaged during the operation [75,76]. In addition, replacement was included to available 

maintenance actions so that the maintenance scheduler has an option to select when the corrosion 

is so severe that no other maintenance actions can stop the pipeline failure.  

Each of available actions shown in Table 12 has its specific influence on the pipe in terms of 

corrosion mitigation. In order to quantify the influence of maintenance actions except for 

“Replacement”, a discount factor (𝑑𝑓) ranging from 0 to 1 was proposed for each available action. 

Updated corrosion rate was obtained by multiplying corrosion rate with 𝑑𝑓. Specifically, 𝑑𝑓 = 0 

stands for no corrosion propagation condition, whereas 𝑑𝑓 = 1 stands for no corrosion mitigation 

condition. It should be noted that once a maintenance action passes its lifetime, its effect on 

corrosion disappears and 𝑑𝑓 turns into 1 immediately. 

The discount factors and the lifetime of different maintenance actions are listed in Table 13. 

According to Table 13, “Do nothing” has no effect on corrosion mitigation; therefore, 

𝑑𝑓ñ�_ö�Ôï¼öF = 1 and no lifetime is specified; “Batch corrosion inhibitior” reduces the corrosion 

rate once it is added, but the efficiency decays over the lifetime according to 𝑑𝑓¼öï¼ô¼Ô�Ö	shows. In 

general, the lifetime of corrosion inhibitor is around 1 month according to [47]; “Internal coating” 

and “Cleaning pigging” turn the corrosion rate into 0 within their lifetimes, meaning 

𝑑𝑓¼öÔÕÖö¹�_ò�¹Ô¼öF = 0 and 𝑑𝑓ò�Õ¹ö¼öF_ó¼FF¼öF = 0. However, the lifetime of “Internal coating” is 5 
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years [28], whereas the lifetime of “Cleaning pigging” is only 2 weeks [47]. The short lifetime of 

“Cleaning pigging” is due to the fact that water, solids, and debris are likely to show up again 

during the operation after the application of pigging.  

 

Table 12. Available maintenance actions of the maintenance scheduler. 

Actions Descriptions Comments 

Do nothing  • No mitigation is done  • The corrosion proceeds 

Batch corrosion 
inhibitor  

• A chemical that adsorbs onto the 
metal surface and reacts with it to 
form a protective film 

• Corrosion inhibitor is added 
from the inlet of the pipeline 

• Corrosion rate drop is based on 
the inhibitor efficiency  

• Effective only within its 
lifetime 

Internal coating  

• An artificial coating that isolates 
the pipe from the corrosive 
environment and prevents water 
from reaching the pipe surface  

• No corrosion propagation 
during its lifetime 

 

Cleaning pigging  • A gadget that effectively cleans 
up liquids and corrosive solids  

• No corrosion propagation 
during its lifetime 

Replacement  
• Replace the corroded segment 

with a new one 
• Renew corrosive environment  
• No more corrosion defects 

 

The action space of the maintenance scheduler were discretized into 5 actions, including “Do 

nothing”, “Batch corrosion inhibitor”, “Internal coating”, “Cleaning pigging”, and “Replacement”. 

According to the definition of the environment, the corrosion process inside the pipeline continues 

on a daily basis; however, the maintenance scheduler updates itself with the latest states of the 

environment on a monthly basis through monthly inspections. Once the maintenance scheduler 
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receives the information, it decides which action to take from action spaces and the environment 

will be affected by that action in accordance with the discount factors defined in Table 13.  

 

Table 13. Discount factors and lifetime of maintenance actions. 

Actions Discount Factors  Lifetime  

Do nothing 𝑑𝑓ñ�_ö�Ôï¼öF = 1 - 

Batch corrosion 
inhibitior  

𝑑𝑓¼öï¼ô¼Ô�Ö	

= 1 − 0.9487𝑒/q.q$-×¼öï¼ô¼Ô�Ö_�¼WÕÔ¼¸Õ  

[77] 

1 month [47] 

Internal coating  𝑑𝑓¼öÔÕÖö¹�_ò�¹Ô¼öF = 0 5 years [28] 

Cleaning pigging  𝑑𝑓ò�Õ¹ö¼öF_ó¼FF¼öF = 0 2 weeks [47] 

 

7.4.2.3 Reward function 

The reward is the feedback from the environment to let the maintenance scheduler understand how 

good the action it takes is at the certain state. In general, the maintenance scheduler as an agent in 

typical MDP problem has to strive for the goal toward maximizing the total reward it receives in 

the long run. Therefore, the reward has to reflect the goal of the maintenance scheduler, specifically, 

avoid catastrophic corrosion-related failures, namely leakage and burst; extend the lifetime of the 

pipeline; reduce the maintenance costs in this study. To develop the reward function of the 

maintenance scheduler, two types of rewards were defined, namely, cost and bonus in which cost 

type includes “Cost of maintenance” and “Cost of failure”, and bonus type includes “Life extension 
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reward”. To differentiate cost and bonus, cost was defined as negative reward, whereas bonus was 

defined as positive reward. The total reward that the maintenance scheduler receives is the summation 

of all the cost and bonus. The descriptions of the whole reward function are summarized in Table 14. 

Assigning values to the reward function is always an important but difficult task in MDP as it 

directly influences the agent’s decision on actions. The representative reward function should 

reflect the generic information of the pipeline maintenance such as the average cost of a specified 

maintenance practice on real operating gas pipelines. In this study, the values of the reward 

function were specified with respect to the maintenance costs and pipe failure costs. At this stage, 

these values are just single numbers as the problem was confined to a small segment and any spatial 

effect of the pipeline was ignored. The values of the reward function in the unit of $10,000 of the 

maintenance scheduler is shown in Table 15.  
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Table 14. Descriptions of the reward function of the maintenance scheduler. 

Types Descriptions 

Cost 

Cost of maintenance  
• The cost is associated with each maintenance action. 
• The cost is applied to the maintenance scheduler at the 

end of each month. 

Cost of failure 

• The cost is associated with two pipe failures, namely, 
leak and burst. 

• The cost is applied to the maintenance scheduler when 
the environment (i.e. pipeline) is in the failure state.  

• This cost is considerably larger than the cost of 
maintenance due to the huge loss of human life and 
property. 

Bonus Life extension reward 

• The bonus is associated with the extension of the pipe 
lifetime. 

• The bonus is applied to the maintenance scheduler at 
the end of each month if the environment is not in one 
of the two terminal states, namely, failure state and 
replacement state. 

• The bonus is relatively small compared to the cost. 
 

Table 15. Values of the reward function of the maintenance scheduler.  

Types  Cases Values 

Cost 

Cost of maintenance 

Do nothing 0 

Batch corrosion inhibitor -13 

Internal coating -80 

Cleaning pigging -3.5 

Replacement -160 

Cost of failure 
Leak -160 * 3 

Burst -160 – 160 * 10 

Bonus Life extension reward Life extension reward per month +7 
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For the cost of maintenance, it should be noted that the values were assigned based on the premise 

that the cost of inspection was neglected. Firstly, “Do nothing” costs $0 as no maintenance action 

is done after the inspection. Secondly, the cost of “Batch corrosion inhibitor” is based on the cost 

of corrosion inhibitors and the amount of corrosion inhibitor needed. According to [47], batch-

treatment is to add corrosion inhibitors to the inlet in which one-third of the tubing volume is 

needed for the inhibition efficiency to be over 90%. Based on that, “Batch corrosion inhibitor” was 

estimated to cost $130000/mile. Thirdly, the cost of “Internal coating” should be understood as the 

cost of coating repair, which is usually much costlier compared to corrosion inhibitor or pigging 

because it requires a portion of the pipe system to be shut down for excavation and coating.  

Therefore, the cost of “Internal coating” was estimated to be $800000/mile according to [78]. 

Fourthly, the cost “Cleaning pigging” is based on the distance it needs to go through to do cleaning. 

According to [79], the cost was estimated to be roughly $35000/mile. Finally, the cost of 

“Replacement” is hard to define because the cost differs from different operators depending on the 

size and productivity of the pipeline. Overall, “Replacement” is definitely more expensive than 

other type of maintenance practices. Here, the cost was estimated to be $1600000/mile.   

For the cost of failure, both “Leak” and “Burst failures are costlier than the cost of any maintenance 

actions. Failures involve not only the unplanned interruption of the service but also catastrophic 

hazards imposed on the surrounding environment and human life. Again, the exact cost of failure 

is hard to quantify. Here, “Leak” failure was assumed to be three times of the cost of 

“Replacement”. “Burst” failure is a severer failure than “Leak” failure; therefore, the cost was 

assumed to be the cost of “Leak” failure plus ten times of the cost of “Replacement”. 
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For the life extension reward, the value was set to be $70000 based on the results of the sensitivity 

analysis that was performed with different values of the life extension reward in the evaluation 

section, which will be introduced later. 

 

7.4.2.4 Maintenance scheduler learning algorithm 

There are two main categories of RL algorithms depending on the sizes of state and action spaces, 

namely, tabular solution method and approximate solution method. Tabular solution method is 

suitable for small-scale problems, whereas approximate solution method is suitable for large-scale 

problems [80]. The development of maintenance scheduler in this study adopted tabular solution 

method as the maintenance scheduler is built to solve a relatively small problem (i.e., to optimize 

maintenance policy for corroded gas pipelines) with finite sizes of state and action spaces. The 

applied algorithms are model free in nature because the maintenance scheduler treats the model as 

a black box that generates the required data for the learning process.  

Among many learning methods of model free tabular solution method, temporal difference (TD) 

learning is one of the most popular methods. The basic idea is to update the current estimate of a 

value given the acquired information in the current time step. Many algorithms are developed 

based on the concept of TD learning, including Q-learning and Sarsa (an acronym for state, action, 

reward, state, action) algorithms. Two algorithms all aim at developing optimal maintenance 

management policy by learning from the optimal action-value function (or Q-value) but in slightly 

different ways.   
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The action-value function 𝑄l(𝑠, 𝑎)  is defined as the expected cumulative discounted future 

rewards if an agent performs action 𝑎 at state 𝑠 under the policy 𝜋. In short, it can quantitatively 

evaluate the value of an agent’s decision making at a certain state. The mathematical expression 

of 𝑄l(𝑠, 𝑎) is given by: 

𝑄l(𝑠, 𝑎) = 	𝐸 o K 𝛾^𝑅Ô.^.c|𝑆Ô = 𝑠,𝐴Ô = 𝑎
ÔÕÖ¸¼ö¹�

^9q

q (111) 

where 𝛾  is reward decay factor, 𝑅Ô.c  is gained reward at state 𝑆Ô.c  after action 𝐴Ô = 𝑎  is 

performed at state 𝑆Ô = 𝑠 at time step 𝑡. It is assumed that the trajectory is finite and ends at a 

terminal state (i.e., replacement state or failure state in this case).   

In general, the optimal policy for an agent is to take the action with the largest Q-values at each 

state. However, a model free or data-driven RL algorithm has no access to the model and therefore 

can only estimate the Q-values based on it experiences on the previous interactions with the 

environment. This leads to a problem that if an agent always makes a decision based on its current 

knowledge, it is blind to other actions with higher actual value functions if the current estimates 

of the value functions are inaccurate. Therefore, during the learning process an agent should not 

only exploit the current knowledge of Q-values but also explore more actions to update the 

estimates of Q-values. This technique is known as exploration-exploitation trade-off.   

Two RL algorithms were introduced and implemented in this study: 
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(1) Q-learning 

Q-learning has gained its popularity because it is simple to formulate and implement with 

reasonable computation and memory costs. The pseudocode of the implemented Q-learning 

algorithm is shown in Figure 40. Three model parameters, namely, learning rate (𝛼), reward decay 

rate (𝛾), and exploration rate (𝜀) were defined. The simulation of an episode starts with a fresh 

pipeline (i.e., no corrosion) as the environment which the agent interacts with by performing 

maintenance actions to mitigate the internal corrosion until one of the terminal states is met. 𝜀-

greedy policy was used to account for the exploration-exploitation trade-off when the agent needs 

to choose the next action. Specifically, the agent exploits its current knowledge and takes the best 

action with the highest Q-value (𝑎s = 𝑎𝑟𝑔𝑚𝑎𝑥¹𝑄(𝑠, 𝑎)) with the probability (1 − ε). ε is the 

probability (or exploration rate) that the agent explores other suboptimal actions randomly. Here, 

the decaying 𝜀-greedy policy was applied to optimize its learning behavior. At the beginning, the 

agent starts with a high ε and tends to do exploration more. As the learning process continues, ε is 

set to be smaller as the agent becomes mature and it tends to exploit its knowledge more to make 

decisions [81]. The mathematical expression of the decaying 𝜀-greedy policy is given by.  

𝜖 = min(𝜖) + (max(𝜖) − min(𝜖))𝑒ñu×¼ÔÕÖ¹Ô¼�ö (112) 

where 𝑑𝜖 is exploration decay rate. 
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Figure 40. Pseudocode for the Q-learning algorithm. 

  

(2) Sarsa 

Sarsa is another popular tabular RL algorithm, which is an acronym for state, action, reward, state, 

action. Compared to Q-learning algorithm, Sarsa algorithm improves its estimation of 𝑄l(𝑠, 𝑎) by 

incorporating the arriving state, the gained reward, and the next action it plans to perform in the 

next time step based on the Bellman optimality equation [82] given by: 

𝑄(𝑠, 𝑎) = 𝐸[𝑅Ô.c + 𝛾𝑄(𝑆Ô.c,𝐴Ô.c)|𝑆Ô = 𝑠,𝐴Ô = 𝑎] (113) 

The pseudocode of the implemented Sarsa algorithm is shown in Figure 41. Four model parameters, 

namely, learning rate (𝛼), reward decay rate (𝛾), exploration rate (𝜀), and trace decay factor (𝜆) 

were defined. The initial settings if Q-value, state and action spaces are the same as Q-learning 

algorithm. The updating of Q-values for choosing action 𝐴Ô = 𝑎 at state 𝑆Ô = 𝑠 is given as: 
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𝑄(𝑆Ô,𝐴Ô) ← 𝑄(𝑆Ô,𝐴Ô) + 𝛼𝛿 (114) 

where 𝛿 is TD error, the difference between the previous and the new estimates of the Q-value. 

Episode learning (or n-step learning) technique was added to Sarsa algorithm and became Sarsa(λ) 

algorithm. The advantage of Sarsa(λ) algorithm is that, the Q-values of all the previous steps that 

are experienced until the current time step are updated according to the new reward at each time 

step. In other words, the reward of current step is back-propagated to all previous steps. This was 

done by considering the eligibility trace of each state-action pair (𝐸(𝑠, 𝑎)). Specifically, 𝐸(𝑠, 𝑎) 

of a state-action pair is set to 1 once it is visited by the agent. However, if this state-action pair is 

not visited in the following time step,  𝐸(𝑠, 𝑎) decays by 𝛾𝜆. on the basis of the decaying 𝐸(𝑠, 𝑎). 

 

 
Figure 41. Pseudocode for the Sarsa(λ) algorithm. 
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7.4.3 Evaluation method 

This section described the methodology to, firstly, compare the performance of the proposed 

maintenance scheduler by Q-learning and the periodic maintenance policy; secondly, conduct 

sensitivity analysis of the proposed maintenance scheduler by Q-learning; thirdly, compare model 

performance of the proposed maintenance scheduler by Q-learning and by Sarsa(λ).  

 

(1) Evaluation of the model performance  

Three metrics of performance were defined with respect to the three corresponding goals of the 

maintenance scheduler. Q-learning maintenance scheduler was trained for 1000 episodes with the 

simulation time steps set to be 480 months (i.e., 40 years). The minimum and maximum 

exploration rates were set to be 0.0005 and 0.8, respectively, and the exploration decay rate was 

set to be 0.002. For model evaluation, 20 episodes of simulation were run with the time steps set 

to be 288 months (i.e., 24 years) and the averaged metrics of performance were reported to account 

for the randomness of the environment. The detailed descriptions of the metrics of the performance 

for model evaluation are shown in Table 16. 

 

Table 16. Descriptions of the metrics of performance for model performance evaluation. 

No. Metrics of performance Goals of the maintenance scheduler 

1 Number of failures in 20 full episode runs  Avoiding catastrophic failures, including 
leak and burst 

2 Average life length in the unit of month 
over 20 full episode runs Extending the pipe lifetime 

3 Average monthly cost of maintenance and 
failure over 20 full episode runs  Reducing the maintenance cost 



 

 

141 

 

 

As periodic maintenance policy (i.e., each maintenance actions is applied at its specified and fixed 

time interval) is the most common maintenance practice in the oil and gas industry, the 

performance of the periodic maintenance policy was served as the baseline performance and 

compared with the model performance of the proposed maintenance scheduler. The usage period 

of each maintenance action in the periodic maintenance policy differs from different pipeline 

operators; therefore, different scenarios of the periodic maintenance policy were considered and 

listed in Table 17.  

 

Table 17. Different scenarios of the periodic maintenance policy. 

Scenarios 
Usage period of each maintenance actions (months) 

Batch corrosion 
inhibitor  Internal coating  Cleaning pigging  Replacement  

1  1  120  1  288  

2  2  120  1  288  

3  3  120  1  288  

4  1  180  1  288  

5  2  180  1  288  

6  3  180  1  288  

7  1  120  2  288  

8  2  120  2  288  

9  3  120  2  288  

10  1  180  2  288  

11  2  180  2  288  

12  3  180  2  288  
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(2) Sensitivity analysis 

Sensitivity analysis was done by conducting different simulations with various model parameters, 

including life extension reward, batch corrosion inhibitor lifetime, internal coating lifetime, and 

cleaning pigging lifetime. Specifically, for each scenario, 1000 episodes were run with the 

simulation time steps set to be 480 months (i.e., 40 years) to train Q-learning maintenance 

scheduler in which each episode ends by either reaching the maximum time steps or one of the 

terminal states. Then, the same evaluation method of the model performance described before was 

used and the metrics of performance of each scenario were compared.  Different scenarios of the 

sensitivity analysis of the maintenance scheduler by Q-learning are shown in  

Table 18.  

 

Table 18. Different scenarios of the sensitivity analysis of the maintenance scheduler. 

Scenarios 
Life extension 
reward  
($10,000)  

Internal coating  
lifetime  
(months)  

Cleaning pigging 
lifetime 
(months) 

Batch corrosion 
inhibitor lifetime 
(months) 

Baseline +7  60  0.5  1  

1  +1  60  0.5  1  

2  +9  60  0.5  1  

3  +7  36  0.5  1  

4  +7  60  1  1  

5  +7  60  0.5  4  
 

(3) Model performance comparison between Q-learning and Sarsa(λ)  
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In order to compare the model performance of the maintenance scheduler by Q-learning and by 

Sarsa(λ), both maintenance schedulers were trained with the model parameters listed in Table 19 

for 1000 episodes with the simulation time steps set to be 480 months (i.e., 40 years). Then, the 

same evaluation method of the model performance mentioned above was used but with simulation 

time steps changing to 480 months (i.e., 40 years).  

 

Table 19. Cost and effective lifetime of maintenance actions, failure costs, and life extension 
reward. 

Type Value  Lifetime 

Pigging maintenance cost -3.5 1 

Inhibitor maintenance cost -13 1 

Coating maintenance cost -80 5 

Replacement maintenance cost -160 NA 

Leakage failure cost -480 NA 

Burst failure cost -1760 NA 

Life extension reward per month  +7 NA 
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8 Evaluation results of the Smart Condition-Based Maintenance scheduler on 

dry gas pipeline 

This section includes the results and discussion of the model performance evaluation of the 

proposed maintenance scheduler by Q-learning and the periodic maintenance policy, sensitivity 

analysis of the proposed maintenance scheduler by Q-learning, and the model performance 

comparison between Q-learning and Sarsa(λ).  

 

8.1 Evaluation of the model performance  

8.1.1 Periodic maintenance policy  

The results of performance in terms of defined performance metrics by the periodic maintenance 

policy for different scenarios as described in Table 17 is shown in Table 20. 

The results show that no scenario is terminated because of the pipe failure due to burst; however, 

most of them (around 75%) suffer pipeline failure due to leak at least once in 20 episodes. Among 

these cases, around 58.3% of them have pipeline failure due to leak in all 20 episodes. In short, the 

pipeline will fail due to leak under the periodic maintenance policy following scenario 3, 5, 6, 8, 

9, 11, and 12 in 25 years. Conversely, no any pipe failure is found under the scenario 1, 4, and 7.  

In order to find the dominating factor that increases the reliability of pipeline under the periodic 

maintenance policy, the effect of usage period of each maintenance action on average lifetime and 

average monthly cost was studied. Figure 42, Figure 43, and Figure 44 show the effect of usage 
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period of batch corrosion inhibitor, internal coating, and cleaning pigging on average lifetime and 

average monthly cost. The results show similar trends that if each maintenance action is applied 

more frequently (i.e., lower usage period), average lifetime of the pipeline increases. Intuitively, 

frequent maintenance action corresponds to high cost spent on maintenance. However, according 

to the results, more frequent maintenance action actually leads to lower average monthly cost 

because the cost of pipeline failure is much higher than the cost of maintenance. This finding can 

also explain why scenarios that have not suffered any pipe failure in 20 episodes all have lower 

usage period of maintenance action, particularly batch corrosion inhibitor compared to other 

scenarios as shown in Table 20. Therefore, according to the results, it is found that frequent 

application of batch corrosion inhibition (i.e., every 1 month) is helpful of ensuring the pipeline 

integrity under the periodic maintenance policy. The best scenario is 7 with batch corrosion 

inhibitor, internal coating, and cleaning pigging being applied every 1 month, 120 months, and 2 

months, respectively, on both lifetime and cost point of views.  
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Figure 42. The effect of usage period of batch corrosion inhibitor on average lifetime and average 
monthly cost.   
 

 
Figure 43. The effect of usage period of internal coating on average lifetime and average monthly 
cost.   
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Figure 44. The effect of usage period of cleaning pigging on average lifetime and average monthly 
cost.   
 

In conclusion, around 75% scenarios of the maintenance policy have at least one pipe failure due 

to leak. The study shows that frequent applications of maintenance action can not only increase 

the average lifetime but also the average monthly cost. Among all maintenance actions, the 

frequent application of batch corrosion inhibitor (i.e., every month) is important to ensure the 

pipeline integrity.   
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Table 20. Results of performance by the periodic maintenance policy. 

Scenarios  Number of burst 
failures   

Number of leak 
failures Average lifetime Average monthly 

cost  
1  0  0  288.0  13.40  

2  0  5  273.0  14.38  

3  0  20  216.5  33.28  

4  0  0  288.0  12.43  

5  0  20  215.6  34.14  

6  0  20  154.1  42.45  

7  0  0  288.0  11.65  

8  0  20  111.9  55.99  

9  0  20  113.6  53.91  

10  0  1  287.8  11.66  

11  0  20  105.3  58.87  

12  0  20  106.6  56.87  

 

8.1.2 Proposed maintenance scheduler by Q-learning 

The results of performance in terms of defined performance metrics by the Q-learning maintenance 

scheduler is shown in Table 21. It can be seen that no pipe failure happens in 20 episodes. This 

result was compared to the result of best scenario (i.e., scenario 7) of periodic maintenance policy 

shown in Table 20. Although both of them reached the full lifetime without any failure within 20 

episodes, the Q-learning maintenance scheduler reduces the average monthly cost by more than 

58% of the periodic maintenance policy. It leads to a conclusion that the developed maintenance 

scheduler has superior performance compared to the periodic maintenance policy in ensuring the 

pipeline integrity but also reducing the maintenance cost at the same time.  



 

 

149 

 

 

Table 21. Results of performance by the Q-learning maintenance scheduler. 
Number of burst 
failures   

Number of leak 
failures Average lifetime Average monthly cost  

0  0  288.0  4.86 
 

In order to investigate the decisions of maintenance action made by the Q-learning maintenance 

scheduler, the result of one evaluation in terms of maintenance actions and the corresponding 𝐶𝐷𝑃 

and 𝐶𝐿𝑃 is plotted and shown in Figure 45. The bottom displays the 𝐶𝐷𝑃 and 𝐶𝐿𝑃 over time, 

while the top displays all the maintenance actions taken over time. The result shows that the 

maintenance scheduler takes “Do nothing” at the beginning; however, when the corrosion level 

rises to a certain level that it thinks may pose risk to the pipeline integrity (i.e., 𝐶𝐷𝑃 = 0.57 and 

𝐶𝐿𝑃 = 0.18, it chooses to do “Internal coating” in which the corrosion will not propagate within 

the lifetime of the coating. Then, once the lifetime of the coating is passed, the maintenance 

scheduler repeatedly chooses to do “Internal coating” until it reaches the time step of simulation. 

It should be noted that the maintenance scheduler is smart enough to take “Do nothing” during the 

5 years effective life of the coating to avoid the unnecessary cost of other maintenance actions that 

have no influence on corrosion while internal coating is still effective.  
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Figure 45. Plotted result of one evaluation episode by the Q-learning maintenance scheduler. 
 

8.2 Sensitivity analysis 

The results of the sensitivity analysis of the Q-learning maintenance scheduler in comparison with 

the baseline scenario as described in  

Table 18 are shown in Table 22. It can be seen that none of these scenarios encounters any of the 

pipeline failure within the time scope of simulation in 20 episodes. In addition to the average 

lifetime, the average cost of every scenario is also much lower than that of the periodic 

maintenance policy. This result implies that the Q-learning maintenance scheduler can still come 

up with optimal maintenance policy even with different model parameters. However, although the 

average lifetime is equal, the average monthly cost actually differs in each scenario. The effect of 

usage period of maintenance action on the maintenance scheduler’s behavior was discussed in the 

following paragraphs. 

 



 

 

151 

 

 

 

Table 22. Results of sensitivity analysis of the Q-learning maintenance scheduler. 

Scenarios Number of burst 
failures   

Number of leak 
failures Average lifetime Average monthly 

cost 

Baseline 0 0 288 4.86 

1 0 0 288 7.03 

2 0 0 288 4.86 

3 0 0 288 7.62 

4 0 0 288 4.34 

5 0 0 288 5.03 

 

In scenario one, the only difference from the baseline scenario is that the life extension reward is 

reduced from 7 to 1. According to the definition, the life extension reward is to motivate the 

maintenance scheduler to extend the lifetime of the pipeline; therefore, reducing this metric would 

make the maintenance scheduler intuitively less eager to live longer. However, the result shows 

that the pipeline survives with no pipeline failure to the end of simulation, which is due to the fact 

that the cost associated to any pipe failure is much larger than the bonus. Avoiding the catastrophic 

pipe failure is still an optimal decision on a cost-effect point of view. On the contrary, the reduce 

of life extension reward indeed has some minor effect on the average monthly cost i.e., the average 

monthly cost is 1.5 times higher than the baseline scenario. Figure 46, which displays the plotted 

result of one episode in sensitivity analysis scenario 1, shows that the maintenance scheduler 

performs “Batch corrosion inhibitor” at the beginning following by a small period of “Cleaning 

pigging” until the corrosion becomes severe. Then, it repeatedly performs “Internal coating” and 



 

 

152 

 

 

“Do nothing” in between until the end of simulation. The frequent application of “Batch corrosion 

inhibitor” leads to the higher average monthly cost compared to the baseline scenario.  

 

 
Figure 46. Plotted result of one episode in sensitivity analysis scenario one by the Q-learning 
maintenance scheduler. 
 

In scenario two, the only difference from the baseline scenario is that the life extension reward is 

increased from 7 to 9, which means the maintenance scheduler is motivated to extend the lifetime 

of the pipeline. However, Figure 47 shows that the maintenance scheduler’s behavior is the same 

as the baseline scenario. In addition, their average lifetime and average monthly cost are identical. 

It implies that small increase of the life extension reward takes no effect on the maintenance 

scheduler in making decision for short time of simulation.  
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Figure 47. Plotted result of one episode in sensitivity analysis scenario 2 by the Q-learning 
maintenance scheduler.  
 

Therefore, another sensitivity analysis of scenario 2 was done with simulation scope extended to 

60 years and the new result is displayed in Figure 48. According to the figure, the maintenance 

scheduler decides to perform “Batch corrosion inhibitor” after around 1.5 years until the corrosion 

damage reaches medium to high. Then, repeated “Internal coating” and “Do nothing” were applied 

to the end of the simulation. Based on the results, it can be concluded that in order to maintain the 

pipeline integrity for longer time, the maintenance scheduler adjusts the maintenance policy, 

otherwise, the pipeline could have failure if the same maintenance policy as shown in Figure 47 is 

adopted.  
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Figure 48. Plotted result of one episode in sensitivity analysis scenario two by the Q-learning 
maintenance scheduler with extended simulation scope to 60 years. 
 

In scenario three, the difference from the baseline scenario is that the internal coating lifetime is 

decreased from 60 months (5 years) to 36 months (3 years). This change would make the “Internal 

coating” become less cost-effective among other available maintenance actions. In react to this 

change as shown in Figure 49, the maintenance scheduler decides to perform “Batch corrosion 

inhibitor” following by “Cleaning pigging” until the corrosion damage reaches medium to high. 

Then, repeated “Internal coating” and “Do nothing” were applied until it comes to the end of the 

simulation. This result shows that although “Internal coating” is less appealing to the maintenance 

scheduler intuitively, it still prefers “Internal coating” to other maintenance actions when the 

corrosion damage is high enough to pose the failure threat to the pipeline. However, the frequent 

application of “Internal coating” compared to the baseline scenario inevitably results in higher 

average monthly cost.    
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In scenario four, the difference from the baseline scenario is that the cleaning pigging lifetime is 

increased from 0.5 month to 1 month. The purpose is to make “Pigging cleaning” a more attractive 

option to the maintenance scheduler and observe how it would influence the maintenance policy. 

According to Figure 50, the maintenance scheduler chooses “Do nothing” at the beginning, but 

after a short period it switches to “Cleaning pigging” and sticks to it for the next 10 years. 

Afterward, again it repeatedly performs “Internal coating” and “Do nothing” when the corrosion 

damage reaches a medium to high level as this is a relatively conservative and safe action pair in 

face of high risk of pipe failure. In addition, although “Batch corrosion inhibitor” and “Cleaning 

pigging” have identical lifetime in this scenario, the maintenance scheduler only performs 

“Cleaning pigging” because it is much cheaper than “Batch corrosion inhibitor”. One thing worth 

mentioning is that scenario four is the only one that has lower average monthly cost than the 

baseline scenario among five studied scenarios.  

 
Figure 49. Plotted result of one episode in sensitivity analysis scenario three by the Q-learning 
maintenance scheduler. 
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Figure 50. Plotted result of one episode in sensitivity analysis scenario four by the Q-learning 
maintenance scheduler. 
 

In scenario five, the difference from the baseline scenario is that the corrosion inhibitor lifetime is 

increased from 1 month to 4 months. The purpose is to study the effect of longer corrosion inhibitor 

lifetime on the maintenance policy by the maintenance scheduler. Figure 51 shows that this time 

the maintenance scheduler performs “Batch corrosion inhibitor” more often. Not until the 

corrosion damage reaches medium to high does it switch to repetitive “Internal coating” and “Do 

nothing” like other scenarios until the end of the simulation.  

In conclusion, the developed Q-learning maintenance scheduler is able to adjusts its maintenance 

policy with respect to different model parameters and maintenance parameters. All the studied 

scenarios have no pipe failure in 20 episodes, rendering the maintenance scheduler a reliable tool 

of pipeline integrity management. Finally, the sensitivity analysis leads to a conclusion that the 
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maintenance scheduler has a preference on “Internal coating” when the pipeline is exposed to the 

high risk of pipe failure (i.e., 𝐶𝐷𝑃 ≅ 0.65) due to internal corrosion. 

 

 

Figure 51. Plotted result of one episode in sensitivity analysis scenario five by the Q-learning 
maintenance scheduler. 
 

8.2.1 Model performance comparison between Q-learning and Sarsa(λ)  

The results of model performance of Q-learning and Sarsa(λ) maintenance schedulers are shown 

in Table 23. It can be seen that Sarsa(λ) maintenance scheduler is as reliable as Q-learning 

maintenance scheduler as there is no any pipe failure happened over the simulation scope (i.e., 40 

years) in 20 episodes. Moreover, the average monthly cost of Sarsa(λ) maintenance scheduler is 

10% lower than that of Q-learning maintenance scheduler, rendering it a better model on a cost-

effective point of view.  
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Table 23. Model performances of Q-learning and Sarsa(λ) maintenance schedulers. 

Algorithms Number of 
burst failures   

Number of leak 
failures 

Average 
lifetime 

Average monthly 
cost  

Q-learning 0  0  480.0  4.72 

Sarsa(λ) 0  0  480.0  4.24 
 

The plotted results of one episode by Q-learning and Sarsa(λ) maintenance schedulers are shown 

in Figure 52 to investigate the difference of maintenance policy. Figure 52 (a) shows that Sarsa(λ) 

maintenance scheduler performs “Cleaning pigging” in early stage and sticks to it for around 4 

years. After that, when the corrosion damage increases to a level (𝐶𝐷𝑃 ≅ 0.65), the repetitive 

“Internal coating” and “Do nothing” are applied until the end of simulation. On the other hand, 

Figure 52 (b) shows that Q-learning maintenance scheduler has a similar maintenance policy as 

Sarsa(λ) maintenance scheduler, but it does not perform “Cleaning pigging” until 𝐶𝐷𝑃 is as high 

as 0.5. Moreover, the period of “Cleaning pigging” is shorter, and the number of times of “Internal 

coating” is higher, resulting in higher average monthly cost. It should be noted that none of the 

maintenance schedulers takes “Batch corrosion inhibitor” along the simulation of corrosion, which 

indicates the intelligence of maintenance schedulers because they know “Cleaning pigging” is a 

more cost-effective option than “Batch corrosion inhibitor” according to Table 19. 

In conclusion, the optimal maintenance policies of Q-learning and Sarsa(λ) are similar, both of 

each satisfy the three goals of an ideal maintenance scheduler. However, Sarsa(λ) maintenance 

scheduler has slightly better performance than Q-learning maintenance scheduler in terms of the 

average monthly cost i.e., a 10% reduction of the overall maintenance cost in the pipeline lifetime.  
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Figure 52. Plotted results of one episode by (a) Sarsa(λ) and (b) Q-learning maintenance schedulers. 

 

8.3 Conclusions 

This study proposed a methodology to optimize the maintenance management in gas transmission 

pipelines by RL decision-making approaches. The methodology includes an environment, which 
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is simulated by the proposed internal corrosion predictive model, and an agent, which is modeled 

by model-free RL algorithms, namely, Q-learning and Sarsa(λ). The result of model performance 

shows that the proposed smart maintenance scheduler reduces 58% of the average monthly 

maintenance costs and improves the reliability of the pipeline compared to the periodic 

maintenance policy. The result of sensitivity analysis shows that the maintenance scheduler adjusts 

itself to develop different optimal maintenance policies with respect to different model and 

maintenance action parameters. The result of model comparison between Q-learning and Sarsa(λ) 

shows that both models have similar pattern in decision making; however, Sarsa(λ) maintenance 

scheduler has lower average monthly cost than Q-learning.  

 

The proposed maintenance scheduler is model-free, and therefore it can be applied to an IoT 

monitoring data to derive the optimal maintenance policy of a pipeline from its history data. The 

proposed maintenance scheduler can serve as a bench mark for gas pipeline maintenance 

optimization subject to internal corrosion because it endorses the usefulness of the condition-based 

maintenance and encourages its further development in other types of physical assets.  
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Part C 

9 Pipeline health and monitoring management (PSIM) software 

This chapter introduced a software framework for pipeline system integrity and management 

(PSIM). The software features include pipeline system-level integrity modeling, corrosion 

prognosis, sensor placement optimization, and inspection/maintenance schedule optimization. The 

focus was on the introduction of the model framework. The work that have been done in this 

research was integrated to the corrosion prognosis, system-level reliability, and 

inspection/maintenance schedule optimization features of the software. A case study was provided 

to demonstrate the software. 

 

9.1 Introduction 

Pipeline failures have caused a major impact on human lives and property damage. According to 

PHMSA [5] regulation §191.3, a “serious” incident is defined as an event where gas is released 

from a pipeline and caused death and injury, while a “significant” incident is defined when there 

is a property damage of more than $50,000. Reports by PHMSA have shown that average 12 deaths 

and 66 injuries happen annually from 2009 to 2018 [83]. 

From a system point of view, natural gas transmission pipeline systems can fail by many failure 

mechanisms. The most common ones are equipment failure, corrosion failure, excavation damage, 

and natural force damage [33]; however, among all of them corrosion failures in the form of leak 
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and burst are usually disastrous, leading to economic and life loss. Due to harsh operating 

conditions, natural gas transmission pipelines are exposed to risks of both internal and external 

corrosion. Internal corrosion often occurs inside the pipe due to corrosive environments caused by 

aqueous CO2, H2S, Cl-, or solids and bacterial activities. Internal corrosion includes uniform 

corrosion, erosion corrosion, pitting corrosion, corrosion fatigue, and microbiologically-

influenced corrosion depending on operating conditions and design of a pipe. As for external 

corrosion, it often occurs on the outer surface of the pipe where the pipe materials contact with 

corrosive soils. External corrosion happens mostly due to the malfunction of mitigation measures 

such as coatings or cathodic protection. Common external corrosion includes pitting corrosion and 

stress corrosion cracking [22].  

Since long time ago, in-line inspection has long been regarded as the most efficient way of ensuring 

the integrity of corroded natural gas transmission pipelines. However, it is costly both on an 

economic and human point of views because a typical gas transmission pipeline is hundreds of 

miles long. Fortunately, over the past few decades, corrosion predictive models that can predict 

corrosion levels based on the monitoring data have been developed to prioritize the areas with 

most risks, and thus engineers can take advantage of the predictions to make decisions and take 

actions on corrosion mitigation [3]. The PSIM software as a integrity management tool is 

developed to meet this demand.  

The following sections discussed the software features including pipeline system-level integrity 

modeling, corrosion prognosis, and inspection/maintenance schedule optimization. Moreover, a 
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demonstration of the software platform was provided via a case study in which a gas transmission 

pipeline was studied and results of analyzes were discussed. 

 

9.2 Overview of the software platform 

The developed PSIM software is a web application designed to do risk-based pipeline integrity 

management to support pipeline operators in decision-making and planning activities. The 

developed software consists of 6 main features: 

 

(1) Pipeline Network Building 

(2) Live Data Monitoring 

(3) Corrosion Simulation 

(4) System-Level Failure Analysis 

(5) Sensor Placement Optimization 

(6) Maintenance and Inspection Schedule Optimization 

 

The “Pipeline Network Building” feature enables the user to add customized transmission 

pipeline systems to study. The “Live Data Monitoring” feature displays real-time as well as 

historic senor data of operating conditions. The “Corrosion Simulation” feature quantifies the 

corrosion degradation as well as pipeline segment failure probability for both internal and external 

corrosion. The “System-Level Failure Analysis” feature enables the development of system-level 

fault tree which consists of any factors that may influence the system integrity. In addition, the 
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software will calculate the system failure probability based on the fault tree. The “Corrosion 

Simulation” results are fed into the “Sensor Placement Optimization” and “Maintenance and 

Inspection Schedule Optimization” features where “Sensor Placement Optimization” feature 

shows the optimal locations to place sensors in order the maximize the likelihood of defect 

detection with a minimal cost and the “Maintenance and Inspection Schedule Optimization” 

shows the recommended actions to take to ensure the pipe integrity against corrosion. 

 

9.3 Development of the software features 

This section introduced only the “Corrosion Simulation”, “System-Level Failure Analysis”, 

and “Maintenance and Inspection Schedule Optimization” features because they are related to 

the research work that have been done in this thesis.   

 

9.3.1 System-Level Failure Analysis 

Transporting fuel from wellheads to consumers is a complex process. Fuel has to be transported 

through different pipelines as shown in Figure 53. Take natural gas for example, firstly, gathering 

pipelines are used to transport the gas from the production wells, either from onshore or offshore 

sites, to a processing and treatment plant. When the gas has been refined to remove impurities 

including hydrocarbons, water, helium, hydrogen sulfide, sulfur, and carbon dioxide by the oil and 

water separation process and gas dehydration, transmission pipelines are used to carry the gas 

across the states to the city gate. Transmission pipelines have the longest length and the highest 
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pressures (200-1500 psi usually). Due to safety issues, federal regulations suggest that 

transmission pipelines have to be buried at least 30 inches deep in rural areas and 36 inches in 

higher population density areas. In the United States, there are more than 300,000 miles of gas 

transmission pipelines and the number is still increasing. To preserve the level of pressure for 

transportation, compressor stations are installed along these pipelines along with valves to control 

the flow. Once the gas reaches the city gate, an odorant (i.e., mercaptans) is added to the gas by 

gas companies in order to make it identifiable when leakage happens. Then, the gas is delivered to 

customers by distribution pipelines at a lower pressure (up to 200 psi for gas mains and up to 10 

psi for residential service lines). Unlike gathering pipelines and transmission pipelines, most of 

which are made of steels, distribution pipelines could be made of steels and plastics. 

 

 
Figure 53. Networks of natural gas from production to customers. 
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Here we focus on transmission pipelines; therefore, in order to study the pipeline system integrity, 

the pipeline system has to be defined in the first place. In this study, the pipeline system was 

defined as the set of equipment that will transport the natural gas from the gas processing and 

treatment plant to the city gate after which the gas is distributed to customers. The system consists 

of transmission pipeline segments and compressor stations. Compressor stations are usually 

powered by natural gas engines or electric motors which are built every 50 to 100 miles [5] along 

the pipeline. The pipeline system was divided into multiple sub-systems referred to as transmission 

phases as shown in Figure 54. We define each transmission phase as a sub-system consisting of a 

compressor station and a pipeline segment. Therefore, a complete pipeline system may be 

composed of several transmission phases between the gas processing and treatment plant and the 

city gate, in which they are connected in series. 

 

 
Figure 54. Gas transmission pipeline system consisting of different transmission phases. 
 

System-level integrity modeling starts from developing a fault tree consisting of all possible factors 

that influence the integrity of the pipeline system in order to systematically quantify the failure 
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probability of the system. An example of the fault tree analysis of a gas transmission pipeline is 

shown in Figure 55. As different transmission phases are connected in series, which means failure 

of any of them fails the pipeline system, an “or” gate is used. Within each transmission phase, both 

the compressor station and the pipe segment failures will lead to a system failure in which the 

compressor station fails due to the failure of the lubrication system, power system, shaft seal 

system, or compressor unit [84]. Many factors may lead to pipe segment failures. They can be 

categorized into external and internal factors. Specifically, external factors include natural force 

(e.g., flooding, earthquake, and severe weather/subsidence), corrosion (i.e., external or internal), 

and third-party damage, while internal factors include material and welding defect.  

 

It is worth mentioning that failure probability due to corrosion is calculated by the “Corrosion 

Simulation” feature embedded in the PSIM software, which will be described in the next 

subsection. In short, a dynamic corrosion simulation will be executed to estimate the corrosion 

degradation and the failure probability based on the operating conditions. Overall, the fault tree 

provides a top down decomposition of the projected pipeline system in terms of failure probability 

based on the likelihood (i.e., failure rate, probability) of failure of the different system components.  

 



 

 

168 

 

 

 
Figure 55. Fault tree of the system-level gas transmission pipeline. 

 

9.3.2 Corrosion Simulation 

The “Corrosion Simulation” feature is fulfilled by corrosion predictive models. This section 

introduced the methodology to develop two Bayesian Network (BN)-based corrosion predictive 

models for natural gas transmission pipelines subject to internal and external corrosion, 

respectively. The construction of a BN model requires several steps. Firstly, build a graphical 

representation of the chain of events in a cause-consequence relationship leading to corrosion 
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failure. Secondly, develop the conditional probability tables (CPTs) based on available data such 

as physics-based models, field data, and expert knowledge among which the physics-based models 

are the most reliable one with solid science background [35]. In this study, the development of 

conditional probability tables was mainly based on physics-based or semi-empirical models, 

whereas a few of them are based on empirical models or expert judgement. In the BN-based 

corrosion predictive models, denotation (node name) represent the name of a node. 

 

9.3.2.1 BN internal corrosion model 

Figure 56 shows the proposed BN-based internal corrosion model that consists of three parts, 

namely, corrosion model, mechanical model, and reliability model. The model considers five types 

of corrosion that may take place inside the pipe and predicts instantaneous corrosion rate given 

operating conditions. Considered corrosion types include uniform corrosion, pitting corrosion, 

microbiologically influenced corrosion (MIC), erosion corrosion, and corrosion fatigue. It should 

be mentioned that as the presence of water is an essential factor for the corrosion for corrosion 

process to take place and proceed, a wetting factor (Wetting Factor) was applied to each corrosion 

model for corrosion predictions. Mechanical model calculates the burst pressure (or remaining 

strength) based on the accumulated corrosion damage and pipeline design parameters. Reliability 

model calculates the probability of failure caused by corrosion failure based on the limit state 

function of load and resistance. The details of discretized nodes of the BN-based internal corrosion 

models are listed in ANNEX A. The descriptions of each type of corrosion were discussed as 

follows. 
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9.3.2.1.1 Uniform corrosion  

In oil and gas pipelines, if the corrosion leads to the uniform reduction of pipe walls following by 

the formation of corrosion products, it is called uniform corrosion. It is caused by the presence of 

carbon dioxide (CO2) and hydrogen sulfide (H2S) in an aqueous environment because CO2 and 

H2S become acidic when dissolved in water and corrosion reactions take place at steel surfaces. 

Uniform corrosion has been studied over the past 20 years, and a number of predictive models 

have been developed including mechanistic [14,41], semi-empirical [10,85], and empirical models 

[23,58].  

In this study, the uniform corrosion was modelled by the proposed physics-of-failure (POF)-based 

model described in “Chapter 5.1 Internal corrosion model”, which can predict time-dependent 

corrosion rate given pipeline operating parameters. These parameters are temperature 

(Temperature), partial pressure of CO2 (pCO2), partial pressure of H2S (pH2S), pH level (pH), and 

the flow velocity of gas (Flow Velocity).  

 

9.3.2.1.2 Pitting corrosion  

Most of the time, corrosion in oil and gas pipelines is not uniform, instead, it happens locally and 

leads to localized pits, which is often referred to pitting corrosion. Pitting corrosion is reported to 

be the most serious corrosion problem in the oil and gas industry because it is hard to detect without 

comprehensive and frequent in-line inspection [86].  
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In general, pitting corrosion is likely to happen at the area where protective layers are destroyed 

and fresh steels are exposed to the corrosive environment. In this study, the Papavinasam model 

described in “Chapter 5.1 Internal corrosion model” was adopted to model pitting corrosion. 

This model is developed through numerous experiments considering a variety of pipeline operating 

or environmental parameters including wall shear stress (Wall Shear Stress), total operating 

pressure (P), solids (Rsolids), partial pressure of H2S (pH2S), partial pressure of CO2 (pCO2), 

temperature (Temperature), sulfate ions concentration ([SO42-]), bicarbonate ions concentration 

([HCO3-]), and chloride ions concentration ([Cl-]). Stochastic nature of pitting corrosion is 

considered by a distributed function consisting of corrosion rate predictions by each operating and 

environmental parameter.  

 

9.3.2.1.3 Erosion corrosion  

Erosion corrosion is defined as a degradation mechanism of pipe materials by the synergistic effect 

of mechanical action for erosion and electrochemical action for corrosion. Erosion corrosion is not 

as common as pitting or uniform corrosion, but it still poses threat to the oil and gas industry as it 

accounts for 9% among corrosion-related pipeline failure [87]. This study used Nesic model [88] 

to simulate erosion corrosion behaviors in which the presence of solids as well as the flow inside 

the pipes play an important role. The model inputs include operating parameters such as flow 

velocity (Flow Velocity) and particle mass (Particle Mass) and pipe design parameters such as 

pipe yield strength (Yield Strength) and impact angle (Impact Angle). One assumption is made that 

a particle must have a normal impact velocity greater than the critical velocity constant (0.668 m/s) 
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for erosion corrosion to happen. For detailed descriptions of this model, the readers are referred to 

the original papers [88]. 

 

9.3.2.1.4 Microbiologically influenced corrosion (MIC) 

Bacterial activity by microbes tends to form biofilms which become acidic when they trap 

electrolytes and acids inside the pipe. Then, corrosive environments are developed that are prone 

to the occurrence of MIC [89]. The presence of biofilms on the steel surface forms a galvanic cell, 

promoting galvanic corrosion locally. Therefore, MIC is likely to take place in the form of pitting 

corrosion. In this study, MIC behavior was simulated by the Pots model [45], which takes 

operating parameters, environmental parameters, and mitigation parameters into account that are 

related to the formation of biofilms by microbes. The model inputs include concentration of carbon 

from fatty acid ([C]), use of biocide (Biocide), concentration of oxygen ([O]), frequency of 

pigging (Pigging), concentration of nitrogen ([N]), ratio between concentration of carbon and, 

nitrogen (C:N ratio), concentration of dissolved solids ([Solids]), flow velocity (FVMIC), presence 

of debris (Debris), and temperature (TMIC), each of which corresponds to a value that is used to 

calculate corrosion rate. For detailed descriptions of this model, the readers are referred to the 

original paper [45]. 

 



 

 

173 

 

 

9.3.2.1.5 Corrosion fatigue 

The presence of corrosive environments and cyclic loads inside the pipe may lead to corrosion 

fatigue, the synergistic effect of corrosion and fatigue. The sources of cyclic loads in gas 

transmission pipelines include mechanical vibrations caused by compressor stations and thermal 

stresses due to significant changes in operating temperatures caused by shutdowns or seasonal 

variances. This process starts with pitting nucleation by pitting corrosion and then propagates with 

fatigue cracks that finally leads to fracture [90]. This study adopted the Paris law-based model 

[91,92] to predict the corrosion fatigue behavior assuming a corrosion damage already exists as 

the nucleation point for fatigue cracks. The model inputs include coefficient (Coefficient), which 

represents material characteristics; exponent (Exponent), which reflects mechanistic dependencies; 

alternating stress intensity (K), which is influenced by alternating stress (Stress Range) and initial 

pit length (Defect Length); frequency of change in cyclic load (Frequency). 
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Figure 56. BN model for internal corrosion assessment. 

 

9.3.2.2 BN external corrosion model 

Figure 57 shows the proposed BN-based external corrosion model that also consists of a corrosion 

model, a mechanical model, and a reliability model as the proposed BN-based internal corrosion 

model. Two common types of external corrosion, namely pitting corrosion and stress corrosion 

cracking (SCC) were considered. The details of discretized nodes of the BN external corrosion 

model were listed in ANNEX B. The descriptions of each type of corrosion were discussed as 

follows. 
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9.3.2.2.1 Pitting corrosion 

Underground oil and gas pipelines can suffer pitting corrosion results from inadequate cathodic 

protection or coating disbandment [93]. In this study, Velazquez et al. model [94] was used to 

predict the maximum pit depth caused by pitting corrosion. As the pit growth rate is significantly 

influenced by characteristics of soil, operating parameters, and mitigation operations. This model 

relates the pit growth rate to soil and pipe characteristics by a multivariate regression method, 

which is calibrated with field data. Pit growth rate is described by a power law function with its 

pitting proportionality (Coefficient) and exponent factors (Exponent) determined by a variety of 

parameters including resistivity (Resistivity), sulphate ions concentration ([SO42-]), bicarbonate 

ions concentration ([HCO3-]), chloride ions concentration ([Cl-]), water content of the soil (Water 

Content), pH level of the soil (pH), pipe/soil potential (Pipe Soil Potential), bulk density of the 

soil (Bulk Density), and redox potential (Redox Potential). Mitigation operation parameter 

included in this model is lifetime of a coating (Coating Lifetime) above which the corrosion may 

take place. 

 

9.3.2.2.2 Stress corrosion cracking 

SCC occurs when oil and gas pipelines are subjected to corrosive soil environments and small 

loading cycles where mechanical-electrochemical interaction happens. The source of external 

loading usually results from longitudinal strain caused by soil movement. Two types of SCC have 

been identified, namely, high pH SCC (pH > 9.0) and near-neutral pH SCC (pH ≈ 6.5) [95]. 
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However, although SCC has been studied over past decades, few equation-based predictive models 

are developed. This study adopted a finite element model firstly developed via COMSOL 

Multiphysics [96] and later modified by authors’ previous work [34] to simulate SCC behaviors. 

This model studies the changes of corrosion potential and corrosion current density on an already 

existing corrosion defect on the outer pipe wall subjected to a tensile strain under near-neutral 

condition. Model inputs include anodic current density (Anodic i0) and cathodic current density 

(Cathodic i0) for electrochemical reactions, strain (Strain (Displacement)) for elastoplastic stress 

modeling, and defect depth (Defect Depth) and defect length (Defect Length) for a corrosion defect 

geometry. For details of this model, the readers are referred to the original paper [34]. 

 

 
Figure 57. BN model for external corrosion assessment. 
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9.3.2.3 Mechanical and reliability model 

All of the above-mentioned corrosion models, namely, uniform corrosion, pitting corrosion, 

microbiologically-influenced corrosion, erosion corrosion, and corrosion fatigue affect the 

corrosion depth rate (Corrosion Depth Rate). Here, corrosion rate in length (Corrosion Length 

Rate) is modeled as an independent variable of Corrosion Depth Rate because there is no direct 

evidence that the growths of corrosion length and depth are correlated. A linear growth model is 

used to obtain the total corrosion length (Corrosion Length) after a certain time of operation (Pipe 

Age). On the other hand, for the total corrosion depth (Corrosion Depth) calculation, MIC, erosion 

corrosion, and corrosion fatigue are assumed to follow a linear growth in which the corrosion rate 

of each constituent is a constant, while that of uniform and pitting corrosion are time dependent. 

 

Not only the thickness of the pipe wall will reduce due to the corrosion damage, but also the 

strength of the pipe deteriorates with increasing age. Although a number of burst pressure models 

have been developed to calculate the remaining strength of a corroded pipeline, this study chooses 

ASME B31G [69] and DNV-RP-F101 [70] because they are convenient to implement with decent 

accuracy. However, ASME B31G is only suitable for low toughness steels while DNV-RP-F101 

is suitable for medium to high toughness steels. The burst pressure is controlled by the geometry 

of corrosion defects including defect depth (Corrosion Depth) and defect length (Corrosion Length) 

as well as the characteristics of pipe materials including pipe length (Pipe Length), pipe diameter 

(Pipe Diameter), pipe thickness (Pipe Thickness), and yield stress or flow stress (Yield Strength). 
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The burst pressure equations of ASME B31G mechanical model were already introduced in 

“Chapter 8.4.1.3 Pipeline mechanical and reliability model”, whereas the burst pressure 

equations for DNV-RP-F101 mechanical model are shown as follows: 

𝑃ôycqc = (𝜎ï) o
1 − ¤𝑑𝑤¦

1 − ¤ 𝑑
𝑀𝑤¦
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 (115) 

where 𝑃ôycqc is burst pressure by DNV-RP-F101; 𝜎ï is hoop stress; 𝑤 is pipe wall thickness; 𝐷 is 

pipe outer diameter; 𝑀 is Folias factor. 

As for the reliability model, two common failure modes that happen in gas pipelines due to 

corrosion, namely, leak and burst were considered in this study. Since the mechanical models used 

for calculating the burst pressure are deterministic in nature, it cannot be directly used to obtain 

failure probability. Instead, a probabilistic approach involving the formulation of limit state 

functions of leak and burst needs to be developed. Afterwards, the probability of failure given leak 

(POF Leak) or burst (POF Burst) was obtained by using the Monte Carlo technique to account for 

the uncertainties of the defined loads and strengths in the limit state functions. Specifically, the 

same equations described in “Chapter 8.4.1.3 Pipeline mechanical and reliability model” were 

used. Finally, since either of these two failure modes takes place, the pipe will fail. The one that 

has higher probability will be regarded as the probability of failure by internal corrosion (POF 

Internal Corrosion). The calculation of probability of failure by external corrosion (POF Internal 

Corrosion) was obtained followed the same process.  
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9.3.3 Inspection/Maintenance Optimization  

At this stage, “Inspection/Maintenance Optimization” feature provides two predictions with 

respect to risks caused by corrosion-related pipe failures. Firstly, it gives recommended actions, 

namely, do nothing, inspection, and repair based on the corrosion prediction results in terms of 

probability of failure. Specifically, the recommendation is based on the DNV-RP-F101 criteria [70] 

that takes into consideration the failure probability values in terms of leak and burst. Whenever 

POF leak or POF burst is between 10-3 and 10-5, inspection is required; whenever they are larger 

than 10-3, repair is required; otherwise, no action is needed. Secondly, it provides the optimal 

schedule and types of maintenance practices to be performed that can maintain the pipeline 

integrity while minimizing the maintenance costs by the proposed RL-based maintenance 

scheduler described in “Chapter 8: Smart Condition-Based Maintenance with Reinforcement 

Learning for Dry Gas Pipeline Subject to Internal Corrosion”. The considered maintenance 

practices include “Batch corrosion inhibitor”, “Internal coating”, “Cleaning pigging”, and “Repair” 

as well “Do nothing”.  
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10 Case study – Kinder Morgan's North Texas Pipeline 

This section demonstrated the PSIM software by a case study. Only corrosion-related analyzes 

were done and discussed in the following sub-sections. 

10.1 System specification 

The case study is a section of the Kern River Gas Transmission Pipeline was chosen. This 36-inch-

diameter steel pipe has 2 transmission phases (denoted as Phase 1 and Phase 2), each of which is 

composed of one compressor and one pipeline segment. The pipeline is built into the software by 

specifying the coordinates of the pipeline segments as shown in Figure 58. The user interface of 

the software shows different modules located on the top of the window. Firstly, pipe information 

in the form of shapefile was inserted into the “Pipeline Network Building” feature in order to 

create a new pipeline to be studied. “Live Data Monitoring” feature displays the monitoring 

operating parameters e.g., operating temperature, operating pressure, flow velocity, etc. This case 

study specifically utilized “Corrosion simulation”, “System-Level Failure Analysis”, and 

“Inspection/Maintenance Schedule Optimization” features to study the pipeline integrity of a 

corroded pipeline as a demonstration.  

The basic design variables of two phases are demonstrated in Table 24, which are provided by the 

users. Firstly, a system-level fault tree of the pipeline system was developed. Secondly, corrosion 

prognosis was done in which the outputs of it would be inserted back to the fault tree in calculation 

of system failure probability. Finally, inspection and maintenance schedule optimizations were 
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performed based on the corrosion results to aid decision makings in sensor placement and 

inspections. 

 

 
Figure 58. Kern River gas transmission pipeline network developed in the PSIM software. 

  

Pipeline Network Building Live Data Monitoring Corrosion Simulation System-Level Failure Analysis Sensor Placement Optimization Maintenance Schedule Optimization

Add New Transmission Pipeline

Name Kern River

Number of Pipe segments        2 

Name Phase 1

Inlet Coordinates Latitude: 34.8512535
Longitude: -116.8456497

Outlet Coordinates Latitude: 35.9412342
Longitude: -115.2165001

Pipe segment 1

Name Phase 2

Inlet Coordinates Latitude: 35.9412342
Longitude: -115.2165001

Outlet Coordinates Latitude: 36.214669
Longitude: -115.098536

Pipe segment 2
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Table 24. Basic design variables of Phase 1 and Phase 2 of the demonstrated transmission pipeline. 

Parameters Phase 1 Phase 2 

Inner Diameter, ID (in) 36 36 

Outer Diameter, OD (in) 38 38 

Wall Thickness, W (in) 1 1 

Length, L (miles) 103.917 86.658 

Yield Strength, YS (MPa) 448 448 

 

The “Live Data Monitoring” module shows the real-time monitoring data that is continuously 
generated by the sensors. The monitoring data of this case study is shown in Figure 59. 
 

 
Figure 59. Live data monitoring feature of the software platform. 
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10.2 System Analysis and Modeling 

In this case study, the system consists of 2 transmission phases. The first phase transmits natural 

gas from the Daggett compressor station to the Goodsprings compressor station through 102.56 

miles (165.05 kilometers) pipeline segment. The seconds phase transmits the gas from the 

Goodsprings compressor station to the Dry Lake compressor station through 86.66 miles (139.47 

kilometers) pipeline segment. Figure 60 shows the fault tree of this pipe system where all failure 

causes are taken into account.  

Except for corrosion node, the probability of each node was determined based on literature data. 
The compressor reliability is extracted from the literature [84] and is shown in Figure 61. The 

pipeline failure probabilities due to natural force, third-party damage, material defect, and 
welding defect are taken from the research work presented in the literature [97] and are presented 

in  

Table 25. The probability of corrosion node was determined by the “Corrosion Simulation” 

feature described in the next sub-section. 
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Figure 60. Fault tree of the studied section of the Kern River Gas Transmission Pipeline. 

 

 
Figure 61. Reliability of a gas compressor over time [84]. 
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Table 25. Failure probabilities of basic events for the fault tree analysis. 

Basic Event Description Probability 

Natural Force Risk of natural disaster due to earthquake, flooding, or 
subsidence 0.00026266 

Third-Party 
Damage 

Risk of interference from the third party due to parties 
ignore signage, implicit signage, sabotage, or overload 0.0075406 

Material Defect Risk of material defect due to design defect of material  
or construction defect of material 0.0005688 

Welding Defect 
Risk of weld-seam defect due to design defect of 
weld-seam or construction defect of 
weld-seam 

0.000523 

 

10.3 Results of corrosion simulation 

Both the results of internal corrosion modeling and external corrosion modeling by “Corrosion 

Simulation” feature were discussed as follows.  

 

10.3.1 Internal corrosion modeling 

Due to the lack of live monitoring data at this time, the live monitoring operating data was 

simulated by a proposed methodology described in “4.2.1 Temporal variability” in consideration 

of temporal variability with assumed operating parameters. For internal corrosion, the operating 

parameters at near inlet of the demonstrated transmission pipeline are presented in Table 26. A 

portion of the simulated operating parameters results are shown in Table 27, which shows the time-

dependency in daily variation because the corrosion modeling was conducted on a daily granuarity.  

According to the system definition, each transmission phase consists of a compressor at the inlet 

to maintain the transmission force for gas transportation, and this force may decrease over the 
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length of the pipe. Moreover, operating temperature is also found to decrease over the length of 

the pipe [24], rendering us to make an assumption in this study that spatial variability of operating 

parameters was only considered for temperature, pressure, partial pressure of H2S, and partial 

pressure of CO2. In other words, other operating parameters were only modeled to be time-

dependent but not location-independent.  

 

Table 26. Operating parameters at near inlet of the demonstrated transmission pipeline. 

Variables Type COV 
Mean 

Phase 1 Phase 2 

Temperature, T (℃) Lognormal 0.03 26 25 

Soil temperature, T_amb (℃) Lognormal 0.02 15 17 

Pressure, P (bar) Lognormal 0.10 62 50 

CO2 percentage in Gas, %_ CO2 (%) Lognormal 0.10 0.56 0.46 

H2S percentage in Gas, %_H2S (%) Lognormal 0.10 0.61 0.30 

pH Lognormal 0.10 6.5 6.7 

Flow velocity, V (m/s) Lognormal 0.05 3 3.5 

Chloride ion concentration, Cl (ppm) Lognormal 0.15 2000 1000 

Sulphate ion concentration, Cl (ppm) Lognormal 0.15 1000 1500 

 Lower limit Upper limit 

Probability of solids presence, S (%) Uniform 50 100 
*Partial pressure of H2S (=P × % H2S/100); partial pressure of CO2 (=P × % CO2/100). 
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Table 27. A portion of the simulated results of time-dependent operating parameters. 

Time 
(day) 

Temperature 
(K) 

Soil 
Temperature 
(K) 

Operating 
Pressure 
(bar) 

H2S 
Partial 
Pressure 
(bar) 

CO2 
Partial 
Pressure 
(bar) 

pH 
Flow 
Velocity 
(m/s) 

Chloride 
Ions 
(ppm) 

Sulphate 
Ions 
(ppm) 

Solids 
(%) 

0 305.5063 292.4915 53.9361 0.3856 0.3321 6.578 3.0774 2053.86 891.887 68.2 

1 303.1870 281.5281 64.0112 0.4285 0.3207 7.498 3.3490 1948.22 993.140 21.9 

2 300.8724 283.5577 57.6863 0.3711 0.3122 6.329 2.9389 2169.53 1100.70 4.27 

3 307.9069 287.4584 58.9141 0.3760 0.3829 6.937 2.9319 2495.63 852.038 17.1 

…                     

357 287.9477 286.6430 43.9673 0.4186 0.3480 6.430 3.0055 2022.50 997.775 44.9 

358 317.9171 286.9760 68.0592 0.3671 0.3137 6.395 2.9017 1786.11 919.773 99.8 

359 302.5259 283.5387 58.6378 0.4217 0.4121 8.526 2.9617 2162.85 1229.63 62.3 

 

Time-evolution schematic of predicted internal corrosion depths for Phase 1 transmission pipe is 

shown in the right side of Figure 62. It can be seen that corrosion depths increase with increasing 

time; however, the increase rate actually drops as corrosion rates decrease over time, which is one 

of the characteristics of internal corrosion [4]. Time-evolution schematics of probability of leak 

and burst due to internal corrosion for Phase 1 transmission pipe at near inlet are shown in the right 

side of Figure 62. As expected, both POF-leak and POF-burst show increasing trends over time.  
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Figure 62. Time-evolution schematics of predicted external and internal corrosion depths and 
failure probability for Phase 1 transmission pipeline segment 
 

The same analyzes were performed for Phase 2 transmission pipe in the “Corrosion Simulation” 

feature in calculation of POF-leak and POF-burst for internal corrosion. In addition, the highest 

ones among POF-leak and-POF burst (i.e., max(POF-leak, POF-burst)) of Phase 1 and Phase 2, 

respectively, was regarded as the segment failure probabilities for internal corrosion nodes in the 

fault tree analysis for Phase I and Phase 2, respectively. 
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10.3.2 External corrosion modeling 

External corrosion failures depend on the availability and the efficiency of mitigation measures 

such as cathodic protections and coatings [35]. Besides mitigation measures, soil and pipe 

conditions are also key factors of external corrosion for an underground transmission pipeline. Due 

to lack of field data, the soil and pipe data for external corrosion modeling was taken from other 

literature [28,96,98]. Table 28 shows the soil and pipe data of the demonstrated pipeline in which 

some of the variables are probabilistic while some of them are deterministic.   

Corrosion simulation of Phase 1 transmission pipe for external corrosion were conducted in 

consideration of time-dependency. Time-evolution schematic of predicted external corrosion 

depths for Phase 1 transmission pipe is shown in the left side of Figure 62. It can be seen that due 

to the application of coating, the corrosion does not propagate until the lifetime of the coating is 

reached. The parts of the pipe where the coating is broken suffers external corrosion, which is 

contributed by pitting corrosion and SCC. Time-evolution schematics of probability of leak due to 

external corrosion for Phase 1 transmission pipe is also shown in the left side of Figure 62. The 

result shows that POF-leak, as the main external corrosion failure, increases over time after the 

coating has broken for several years.   
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Table 28. Soil and pipe data of the demonstrated transmission pipeline for external corrosion 
modeling. 

Variable, symbol (units) Probability function 

Resistivity, re (Ω-m) Lognormal (50, 2931) 

Sulphate, sc (ppm) Lognormal (154, 25328) 

Bicarbonate, bc (ppm) Lognormal (19, 436) 

Chloride, cc (ppm) Lognormal (41, 3135) 

Water content, wc(%) Normal (24, 38) 

pH, ph Gumbel (6.13, 0.84) 

Pipe/soil potential, pp (V)1 Normal (-0.86, 0.04) 

Bulk density, bd (g/ml) Normal (1.30, 0.007) 

Redox potential, rp (mV)2 Uniform (2.14, 348) 
1Cathodic i0, i0_c (A/m2) Normal (0.015, 0.1) 
1Anodic i0, i0_a (A/m2) Normal (0.0024, 0.01) 
2Defect depth, dd (mm) Uniform (0.1, 5) 
2Defect length, dl (mm) Uniform (0.5, 10) 
3Displacement, disp (mm) Uniform (0.1, 1.5) 

 Deterministic function 

Coating type, ct Constant (0.7651) 

Coating lifetime, cl Constant (5) 
 

The same analyzes were performed for Phase 2 transmission pipe in “Corrosion simulation” 

feature in calculation of POF-leak for external corrosion. A recommended action was also given 

based on the corrosion simulation results. Finally, the POF-leak of Phase 1 and Phase 2, 
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respectively, was used as segment failure probabilities for external corrosion nodes in the fault tree 

analysis for Phase I and Phase 2, respectively  

 

10.3.3 Results of system-level failure analysis  

All possible failure causes that could fail the pipeline segments were added to the fault tree as 

shown in Figure 60. One of the novelties of this software is that the quantification is dynamic as 

the corrosion failure probabilities are changing over time with changing operating parameters 

received from the sensors. The result of the system-level failure analysis of the studied Kern River 

Gas Transmission Pipeline is displayed in Figure 63 which shows the system failure probability 

over time. The predicted failure probability increases over time because although failure 

probabilities of many basic events were assumed time-independent, corrosion actually propagates 

over time and break the pipe segment if no mitigation is done, leading to the failure of the pipe 

system. 
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Figure 63. Failure probability of the studied section of Kern River transmission pipeline over time. 
 

10.3.4 Results of Inspection/Maintenance Schedule Optimization  

The “Inspection/Maintenance Schedule Optimization” feature gives a recommended action 

based on the corrosion results along the pipeline segments and also provides optimal maintenance 

schedule suggestions over the lifetime of the pipe in a goal of reducing the maintenance cost while 

maintaining the pipe integrity with the aid of a RL-based maintenance scheduler. The results for 

this case study are displayed in the left side of Figure 64. Analysis results show that repair along 

the transmission pipeline is required after 10 years of operation if no maintenance is performed 

during the operation. Moreover, the corrosion depth and length over time of the pipe following the 

recommended maintenance actions by the maintenance scheduler is also shown in the right side of 

Pipeline Network Building Live Data Monitoring Corrosion Simulation System-Level Failure Analysis Sensor Placement Optimization Maintenance Schedule Optimization

Kern River

Phase 1

Phase 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

Sy
st

em
-L

ev
el

 Fa
ilu

re
 P

ro
ba

bi
lit

y

Time (Years)



 

 

193 

 

 

Figure 64. This figure shows that if the cleaning pigging, which removes bacteria, solids, and 

corrosive elements, is applied in the recommended time intervals, the pipe integrity can be assured 

as corrosion depth percentage (𝐶𝐷𝑃) is still below 0.4, which is lower than the well-accepted leak 

criterion 0.8. In addition, the results by the maintenance scheduler shows that it more cost-effective 

to do maintenance actions based on the condition-based maintenance (CBM) strategy than doing 

repairs when the pipe fails. The results show that the optimal maintenance schedule is to perform 

cleaning pigging every month between 33 months (2.75 years) and 94 months (7.83 years), and 

247 months (20.58 years) and 360 months (30 years). 

 

 
Figure 64. Recommended maintenance actions over time based on predicted corrosion failure 
probability and corrosion depth and length along the pipeline. 
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10.4 Conclusions  

In conclusion, the developed pipeline health monitoring and management models showed the 

ability to quantify the health state of the pipeline over time and help the operators make risk-

informed decisions. The platform design is supported by a multidisciplinary science and 

engineering approach for a comprehensive, state-of-the-art solution. The software platform 

integrates the data, methods, and technologies into a dynamic pipeline health monitoring system 

supported by multiple probabilistic predictive models which analyzed all causal factors that could 

fail the pipeline. In addition, this total system health management support tool provided dynamic 

mitigation suggestions to the user based on the simulation results such as the need of an additional 

sensor at a given location for a better structural health monitoring of the pipeline or the optimal 

timing of an inspection/ repair of a given pipeline. Finally, the PSIM software platform could be 

deployed in a control room as a dynamic health monitoring dashboard or in a mobile version for 

field inspection and maintenance purposes. 
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11 Summary and Conclusions 

Transporting natural gas from production to consumers is a critical and complex process. First of 

all, gas have to be extracted from the wellhead and transported through different kinds of pipelines. 

There are gathering pipelines, transmission pipelines, and distribution pipelines. The research 

interest of this dissertation is on the transmission pipeline because during the transportation the 

transmission pipeline is subject to corrosive environment. That means they are exposed to pipeline 

failure caused by corrosion. Although there are several causes of pipeline failure, “corrosion failure” 

is the second highest (20%). Moreover, corrosion failure tends to occur in old pipes (average 46 

years old). This implies that corrosion is a continuous degradation and it will propagate until the 

pipe breaks if no mitigation is ever performed during the operation.  

Fortunately, pipeline system integrity management can be used to assess and mitigate pipeline 

risks in an effort to reduce both the likelihood and consequences of pipeline incidents. The general 

PSIM tool includes four steps. In order to develop a PSIM tool, this dissertation has accomplished 

three objectives:  

1. Developed a corrosion predictive model that can take both temporal and spatial variabilities 

of operating parameters into account for corrosion predictions. The corrosion model 

consists of a modified uniform corrosion model and a selected pitting corrosion model. The 

proposed modified uniform corrosion model was validated with experimental data. 

Moreover, the proposed corrosion predictive model has verified its model application of 
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field-operating gas pipelines as most deviations between model predictions and measured 

corrosion rate of field data are smaller than a factor of 2.  

2. On top of the corrosion predictive model, we further developed a smart condition-based 

maintenance algorithm which is designed to do cost-optimized maintenance management 

for natural gas pipelines. The proposed methodology consists of a data-driven RL-based 

agent (i.e., Q-learning or SARSA) and a test bench (i.e., natural gas pipeline segment), 

which is simulated by a pipe model. The maintenance scheduler successfully avoids any 

failures within the simulation time step and reduces 58% of the average monthly 

maintenance costs compared to the best selected periodic maintenance policy.   

3. Finally, the abovementioned two research works were integrated into the PSIM software, 

specifically contributing to “Corrosion Simulation”, “System-level Failure Analysis”, 

and “Inspection/Maintenance Schedule Optimization” features. This software is a 

dynamic pipeline health monitoring and management tool that can fulfil the pipeline 

integrity management purpose and aid pipeline operators in decision makings. The 

corrosion-related features of the software were demonstrated via a case study. 
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12 Recommendations and Future Work 

At this stage, the proposed corrosion predictive model for internal corrosion is designed for natural 

gas pipelines subject to aqueous CO2/H2S corrosive environment, which are made of mild steels. 

The model has been calibrated with some experimental data and validated with some field data in 

this dissertation; however, as the model is semi-empirical in nature, it is possible to further adjust 

the model to support natural gas pipelines with different operating parameters and different 

materials once more data is available.   

The proposed maintenance scheduler is developed to serve as a bench mark for maintenance 

optimization of natural gas pipelines. According to the results of sensitivity analysis, the decision 

makings made by the maintenance scheduler are significantly influence by the model parameters; 

therefore, although the test bench of the model is based on a simulated environment (i.e., simulated 

pipeline segment by a pipe model), further improvement by real data is doable by transfer learning 

(TL), which is a machine learning technique that is able to store the gained knowledge from one 

problem and apply it to a different but related problem.  

Currently, the PSIM software supports pipeline integrity management analysis of natural gas 

pipelines. That is to say, most of corrosion-related features ““Corrosion Simulation”, “System-

level Failure Analysis”, “Sensor Placement Optimization”, and “Inspection/Maintenance 

Schedule Optimization” are developed based on the corrosion predictive models of natural gas 

pipelines subject to aqueous CO2/H2S corrosive environment buried underground. However, these 
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features will be extended to support oil pipelines in the future with available data; therefore, users 

can have more options in choosing the types of pipelines they are interested in.      
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Annex A 

DISCRETIZED NODES OF THE BBN INTERNAL CORROSION MODEL 

Variables Description Causes States Unit 

Wetting Factor Wetted — 1   
Not Wetted 0.1  

pH2S Partial pressure of 
hydrogen sulfide — 

0-10 

mbar 10-100 
100-1000 
1000-10000 

pCO2 Partial pressure of 
carbon dioxide — 

0-10 

mbar 10-100 
100-1000 
1000-10000 

Flow Velocity Flow velocity of gas — 

0-1  

m/s 1-2 
2-3 
3-4.5 

Temp Temperature — 

0-25 

℃ 25-50 
50-75 
75-100  

pH pH level — 

4-5 

 5-6 
6-7 
7-8 

Uniform Corrosion Uniform corrosion rate 

Wetting Factor 0-0.01 

mm/y 

pH2S 0.01-0.1 
pCO2 0.1-1 
Flow Velocity 1-5 
Temp 5-10 
pH  

P Total pressure — 

1-10 

bar 10-50 
50-100 
100-150 

Wall Shear Stress Wall shear stress due 
to the flow of gas — 

0-10 
Pa 10-20 

20-30 
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Rsolids 
W/ solid — 0  W/O solid 1 

[Cl-] Concentration of 
chloride ions — 

0-100 

ppm 100-1000 
1000-10000 
10000-100000 

[SO42-] Concentration of 
sulphate ions — 

0-10 
10-100 
100-1000 
1000-2500 

ppm 

[HCO3-] Concentration of 
bicarbonate ions — 

0-10 
10-100 
100-1000 
1000-4000 

ppm 

PCR 
Average pit growth 
rates due to every 
individual effects 

— 

0-0.01 

mm/y 
0.01-0.1 
0.1-1 
1-5 
5-10 

Pitting Corrosion Pitting corrosion rate 

Wetting Factor 0-0.01 

mm/y 

P 0.01-0.1 
Wall Shear Stress 0.1-1 
Rsolids 1-5 
[Cl-] 5-10 
[SO42-]  
[HCO3-]  
PCR  

[C] 

Concentration of 
carbon from fatty acid 
≥ 20 mg/L — 

1 

 Concentration of 
carbon from fatty acid 
< 20 mg/L 

0.2 

Biocide Routinely used — 0.2  Not routinely used 1 

[O] 

Oxygen ingress ≥  50 
ppb — 

5 
 Oxygen ingress < 50 

ppb 1 

Pigging Never — 1  Once 13 weeks 0.3 
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Once 4 weeks 0.001 
Once 1 week 0.0001 

C:N ratio < 10 — 1  ≥ 10 0.4 

[N] ≥ 5 mg/L — 1  < 5 mg/L 0.2 

[Solids] 

Dissolved_solid < 60 
g/L 

— 

1 
0.2 

 
Dissolved_solid ≥  60 
g/L and SRB grows 
Dissolved_solid ≥  60 
g/L and SRB doesn’t 
grow 

0.0001 

FVMIC 

Flow velocity < 1 m/s 

— 

1 

 
Flow velocity = 2 m/s 0.6 
Flow velocity = 2.5 
m/s 0.1 

Flow velocity = 3 m/s 0.01 

Debris Yes — 2  No 1 

TMIC 

10℃ ≤  Temperature 
≤ 45℃  — 

1 
 Temperature < 10℃ or 

Temperature > 45℃  0.2 

Microbiologically-
Influenced 
Corrosion (MIC) 

Microbiologically-
influenced corrosion 
rate 

Wetting Factor 
[C] 
Biocide 
[O] 
Pigging 
C:N ratio 
[N] 
[Solids] 
FVMIC 
Debris 
TMIC 

0-0.01 
0.01-0.1 
0.1-1 
1-5 
5-10 

mm/y 

Yield strength Yield strength of the 
pipe — 

10-250 
250-500 
500-750 
750-1000 

MPa 

Impact Angle — 0-15 degree 15-30 
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Impact angle between 
the solid and the pipe 
surface 

30-45 

45-60 

Particle Mass Mass of the particle — 0.1-1 g 
   1-10  
   10-100  
   100-200  

Erosion Corrosion Erosion corrosion rate 

Particle Density 0-0.01 

mm/y Impact Angle 
Particle Mass 

0.01-0.1 
0.1-1 
1-5 
5-10 

Exponent Exponent of the Paris 
equation  — 

0-1 
 1-2 

2-3 

Stress Range 
The range between 
maximum and 
minimum stress 

— 
0-100 

MPa 100-200 
200-300 

K Stress concentration 
factor — 

0-1 
 1-2 

2-3 

Defect Length Initial radius of the pit  — 

0-0.01 

mm 0.01-0.1 
0.1-1 
0.1-10 

Coefficient Coefficient of the Paris 
equation — 

10-12 – 10-11 
 10-11 – 10-10 

10-10 – 10-9 

Frequency The frequency of the 
stress change — 

1-2 
/day 2-3 

3-4 

Corrosion Fatigue Corrosion fatigue 
corrosion rate 

Exponent 0-0.01 

mm/y 

Stress Range 0.01-0.1 
K 0.1-1 
Defect Length 1-5 
Coefficient 5-10 
Frequency  
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Pipe Age Age of the pipe — 

0-10 
10-20 
20-30 
30-40 
40-50 

year 

Corrosion Depth 
Rate 

Total corrosion rate in 
term of depth 

Uniform Corrosion 
0-0.01 
0.01-0.1 
0.1-1 
1-5 
5-10 

mm/y 

Pitting Corrosion 
Microbiologically-
Influenced 
Corrosion (MIC) 
Corrosion Fatigue 
 

Corrosion Length 
Rate 

Total corrosion rate in 
term of length — 

0-0.01 

mm/y 
0.01-0.1 
0.1-1 
1-5 
5-10 

Corrosion Depth Total depth of 
corrosion 

Corrosion Depth 
Rate 0-5 

mm Pipe Age 5-10 
 10-100 
 100-500 

Corrosion Length Total length of 
corrosion 

Corrosion Length 
Rate 0-5 

mm Pipe Age 5-10 
 10-100 
 100-500 

Pipe Length Length of the pipe — 

10-160 

km 160-320 
320-480 
480-640 

Pipe Diameter Diameter of the pipe — 

10-150 

mm 150-300 
300-450 
450-600 

Pipe Thickness Thickness of the pipe — 
1-10 

mm 10-20 
20-30 
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Operating Pressure Operating pressure  
(like “P” node) — 

1-10 
10-50 
50-100 
100-150 

bar 

Burst Pressure 

Remaining strength of 
the pipe 

Corrosion Length 0-250 MPa  
Yield Strength 250-500 
Pipe Length 500-750 
Pipe Diameter 750-1000 
Pipe Thickness  
Corrosion Depth  

POF Leak 

Failure probability of 
leak  

Pipe Thickness 0-25 % 
Corrosion Depth 25-50 
 50-75 
 75-100 

POF Burst 

Failure probability of 
burst 

Burst Pressure  
Operating Pressure 

0-25 
25-50 
50-75 
75-100 

% 

POF Internal 
Corrosion 

Total failure 
probability of internal 
corrosion 

POF Leak 0-25 % 
POF Burst 25-50 
 50-75 
 75-100 
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Annex B 

DISCRETIZED NODES OF THE BBN EXTERNAL CORROSION MODEL 

Nodes Description Causes States Unit 

Resistivity Resistivity of the soil — 

1-250 

Ω-m 250-500 
500-750 
750-1000 

[SO42-] 
 

Sulphate ions 
concentration of the 
soil  

— 

0-10 

ppm 10-100 
100-1000 
1000-2500 

[HCO3-] 
Bicarbonate ions 
concentration of the 
soil 

— 

0-10 

ppm 10-100 
100-1000 
1000-4000 

[Cl-] 
Chloride ions 
concentration of the 
soil 

— 

0-100 

ppm 100-1000 
1000-10000 
10000-100000 

Redox Potential 

Oxidation 
/ reduction potential 
(Relative to the 
standard hydrogen 
electrode)  

— 

1-100 

mV 
100-200 
200-300 

300-400 

Coefficient 
Coefficient of the 
external corrosion 
model 

Resistivity 
0-0.25 
0.25-0.5 
0.5-0.75 
0.75-1 

 
[SO42-] 
[HCO3-] 
[Cl-] 
Redox Potential 

pH pH level of the soil — 

4-5 

 5-6 
6-7 
7-8 

Pipe Soil Potential 

Pipe/soil potential 
(Relative to a 
Cu/CuSO4 reference 
electrode) 

— 

(-2) – (-1.5) 
(-1.5) – (-1.0) 
(-1.0) – (-0.5) 
(-0.5) – 0 

V 

Bulk Density Bulk density of the 
soil — 0-0.5 g/cm3 0.5-1 
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1-1.5 
1.5-2 

Water Content Water content of the 
soil  — 

0-25 

% 25-50 
50-75 
75-100 

Exponent 
Coefficient of the 
external corrosion 
model 

pH 
Pipe Soil Potential  
Bulk Density  
Water Content 

0-0.25 
0.25-0.5 
0.5-0.75 
0.75-1 

 

Coating Lifetime Lifetime of the 
external coating — 

0-5 

year 5-10 
10-15 
15-20 

Pipe Age Age of the pipe — 

0-10 

year 
10-20 
20-30 
30-40 
40-50 

Pitting Corrosion Pitting corrosion rate Coefficient 0-0.01 mm/y 
  Exponent 0.01-0.1  
  Coating Lifetime 0.1-1  
  Pipe Age 1-5  
   5-10  

Cathodic i0 

Cathodic current 
density by 
electrochemical 
model 

— 
10-3 – 10-2 
10-2 – 10-1 
10-1 - 1 

A/m2 

Anodic i0 

Anodic current 
density by 
electrochemical 
model 

— 
10-3 – 10-2 
10-2 – 10-1 
10-1 - 1 

A/m2 

Defect Depth Initial corrosion 
defect depth — 0-0.01 mm 

   0.01-0.1  
   0.1-1  
   1-10  

Defect Length Initial corrosion 
defect length — 0-0.01 mm 

   0.01-0.1  
   0.1-1  
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   1-10  

Strain 
(Displacement) 

Displacement of the 
pipe by the soil 
movements 

— 
0-1 mm 
1-2  
2-5  

SCC Stress corrosion 
cracking rate Cathodic i0 0-0.01 mm/y 

  Anodic i0 0.01-0.1  
  Strain(Displacement) 0.1-1  
  Defect Depth 1-5  
  Defect Length 5-10  

Corrosion Length 
Rate 

Total corrosion rate 
in term of length — 

0-0.01 

mm/y 
0.01-0.1 
0.1-1 
1-5 
5-10 

Corrosion Depth Total depth of 
corrosion 

Corrosion Length 
Rate 

0-5 mm 

Pipe Age 5-10 
 10-100 
 100-500 

Corrosion Length Total length of 
corrosion 

Corrosion Length 
Rate 

0-5 mm 

Pipe Age 5-10 
 10-100 
 100-500 

Yield Strength Yield strength of the 
pipe material 

— 10-250 MPa 
250-500 
500-750 
750-1000 

Pipe Length Length of the pipe — 10-160 km 
160-320 
320-480 
480-640 

Pipe Diameter Diameter of the pipe — 10-150 
150-300 
300-450 
450-600 

mm 

Pipe Thickness Thickness of the pipe — 1-10 mm 
10-20 
20-30 
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Operating Pressure Operating pressure  — 1-10 
10-50 
50-100 
100-150 

bar 

Burst Pressure Remaining strength 
of the pipe 

Corrosion Length 0-250 MPa  
Yield Strength 250-500 
Pipe Length 500-750 
Pipe Diameter 750-1000 
Pipe Thickness  
Corrosion Depth  

POF Leak Failure probability of 
leak  

Pipe Thickness 0-25 % 
Corrosion Depth 25-50 
 50-75 
 75-100 

POF Burst Failure probability of 
burst 

Burst Pressure 0-25 % 
Operating 
Pressure 

25-50 

 50-75 
 75-100 

POF External 
Corrosion 

Total failure 
probability of internal 
corrosion 

POF Leak 0-25 % 
POF Burst 25-50 
 50-75 
 75-100 

 




