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Abstract

Essays in Macroeconomics and Trade

by

Yury Yatsynovich

Doctor of Philosophy in Economics

University of California, Berkeley

Associate Professor Yuriy Gorodnichenko, Chair

In the current thesis I investigate the impact of sectoral structure of the economy on some
aspects of its short-run fluctuations and long-run trends.

In the first chapter – “Cost Structure and Price Rigidity across Sectors” – I model a
mechanism through which the structure of costs of producers can affect producers’ decisions
on the frequency of adjusting prices. First, I establish an empirical observation that sectors
which are characterized by either a higher share of labor or more diversified structure of
bundles of intermediate goods are characterized by more rigid prices. Then I build and
solve a partial equilibrium model that describes optimal price-setting strategies of firms
in different sectors. The model provides an explanation for heterogeneity in price rigidity
across different sectors. The calibrated model can be used for predicting how changes in
the production processes and in the structure of costs can affect the heterogeneity of price
rigidity across sectors and, hence, the aggregate price rigidity in the economy.

In the second chapter – “Technological Spillovers and Dynamics of Comparative Advan-
tage” – I investigate the question of the evolution of sector productivity and comparative
advantage under the presence of cross-sector technological spillovers. For that I develop a
dynamic model of international trade with cross-sector spillovers. In addition to the standard
effect of comparative advantage on labor allocation, the model accounts for the effects of
labor allocation on the sector productivity and comparative advantage. The core mechanism
is a combination of an idea-generating process within each sector and technological spillovers
across sectors. I establish necessary and sufficient conditions for the existence and unique-
ness of a balanced growth path and describe the conditions under which a welfare-improving
industrial policy is possible. I calibrate the model using the US patent data to parametrize
the strength of technological spillovers and use the model to describe the optimal industrial
policy.
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Chapter 1

Cost Structure and Price Rigidity
Across Sectors

1.1 Introduction

Price rigidity plays a crucial role in transforming nominal shocks into changes of output
and employment. Modeling this transformation mechanism is important for understanding
business cycles because, according to [29], roughly 28% of output volatility is attributed to
nominal shocks.

Heterogeneity of sectors in terms of price rigidity – a well-documented fact, see e.g. [7] –
is an important part of this transformation mechanism. The intuition works as follows: the
longer it takes for prices to adjust to their long-run equilibrium level, the more prolonged are
the deviations of output and employment from their natural levels. If all producers in the
economy have the same price rigidity then strategic complementarity plays a minor role in
the adjustment process. Namely, firms that adjust their prices will do so by a larger amount
knowing that others will adjust their prices shortly as well. Losses in profits due to large
changes in relative prices will be short-lived and, thus, will not prevent adjusting firms from
large adjustments. The opposite happens when firms are heterogeneous in terms of price
rigidity. Now the adjusting firms know that there is a group of firms who will keep their
prices constant for a while. This means that, say, a large upward adjustment in prices will
entail long-lasting losses in market shares for the adjusting firms. As a result, even the firms
with low rigidity will decide to adjust their prices gradually and, thus, deviations of output
and employment from their natural levels can be propagated. According to [24] and [2] the
presence of heterogeneity across firms in terms of price rigidity can increase the share output
volatility attributed to monetary shocks from 1% to 20-23%, which is close to the above
mentioned 28%.
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Several empirical facts on the heterogeneity of price rigidity across sectors have been es-
tablished, outlining the possible mechanism to explain different price-setting behavior across
sectors. Competitiveness and variability of markups, share of energy, labor and imported
inputs in costs, inattention are among the most potential channels for explaining heterogene-
ity of price rigidity (see, e.g. [8]). While the market share retention ([16]) and inattention
mechanism ([21]) were studied in details, the heterogeneous structure of costs as a source
of heterogeneous price rigidity remains underinvestigated. This gap is important, because
according to surveys (e.g.[30]) the change in costs is named a number-one reason for ad-
justing prices, while the nominal fixed-term contracts (a form of menu costs) – the most
significant reason for non-adjustment. To sum up, to generate a realistic responsiveness of
output to monetary shocks one needs to model heterogeneity in price rigidity. The latter
requires taking the structure and dynamics of costs into account.

In the current chapter I investigate the relationship between the structure of costs across
sectors and the price rigidity of these sectors. The chapter is structured as follows: Section
2 introduces and solves a partial equilibrium model that allows to derive optimal price-
setting strategies for sectors with different compositions of inputs. Section 3 establishes
the evidence on composition of costs across sectors, on differences in the patterns of price
adjustment and tests the predictions of the model. Section 4 outlines some extensions and
possible implications for the model and directions for further research. Section 5 concludes.

1.2 Model

In the current section I construct and solve the partial equilibrium model that can re-
sult in different optimal price-setting strategies of firms in different sectors depending on
their cost structures. Partial equilibrium characteristics of the model come from a simpli-
fied approach to modeling labor and capital markets, as well as consumption. The model
provides a tractable explanation for heterogeneity in price rigidity across different sectors.
The calibrated model can be used for predicting how changes in production processes and
reallocations in cost structures can affect the aggregate price rigidity in the economy.

The model setting is similar to the one established in [1] and [28]. The economy consists
of J sectors. There is a continuum of producers in each sector, each of them producing a
unique variety of products (the mass of producers in each sector is normalized to 1). For
the time being let’s denote the producer of a particular variety with z. Every producer z in
sector j at time period t can produce output yt,j(z) according to

yt,j(z) = At,j (Lt,j(z))sj Mt,j(z)1−sj , (1.1)

where At,j is a sector-specific total factor productivity (TFP), Lt,j(z) – amount of employed
labor, sj – share of labor costs in total costs. Log of sectoral TFP evolves as a random walk:

lnAt,j = lnAt−1,j + ut,j, (1.2)
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where ut,j ∼ iid, E(ut,j) = 0, var(ut,j) = σj ∀t, j. Assuming A0,j = 1, we can rewrite
At,j = Wt,j, Wt,j =

∑t
τ=1 uτ,j, where Wt,j can be thought of a Wiener process.

I assume the perfectly elastic supply of labor and fixed wage across all sectors, wt,j = w
(wage serves as a numeraire). As follows from the production function specification, there is
no capital in the model (or one can think about intermediate goods as capital that depreciates
within one period). The interest rate is constant and is defined by a discount factor β from
the conventional (1 + r)β = 1.

Mt,j(z) is a sector-specific bundle of intermediate goods that is used as an input:

Mt,j(z) =

[
J∏
i=1

(
ξji
)−ξji (mj

t,i(z)
)ξji] . (1.3)

mj
t,i(z) is the physical amount of input bought by producer z in sector j from sector i at

period t. ξji is a weight of input i in sector j’s bundle of intermediate inputs:

J∑
i

ξji = 1∀i, j.

It is exactly the matrix of parameters ξ
(.)
(.) that characterize the input-output structure of the

economy in the model. If any element ξji is close to 1 it means that sector j depends heavily
on inputs from sector i and, hence, shocks to sector i will significantly affect sector j.

Output of each producer z within sector j is aggregated into a sectoral aggregate product
which, in turn, can be used either for consumption or as an input for production in all
sectors, including j itself. The demand elasticity of substitution across varieties within each
sector is equal to θ. Here I make an assumption that elasticity across varieties is the same for
each sector (θ enters without sector subscripts). One more assumption is that elasticity of
substitution is the same for final and intermediate demand. The price of sectoral aggregate
product, in other words, price at which input mk

j (.) is sold from industry j to any industry
k, is equal to:

Pt,j =

(∫ 1

0

Pt,j(z
′)(1−θ)dz′

) 1
1−θ

(1.4)

The sectoral price indexes are then combined into the prices of intermediate input bundles
for industries as follows:

Xt,j =
J∏
i=1

(Pt,i)
ξji (1.5)



CHAPTER 1. COST STRUCTURE AND PRICE RIGIDITY ACROSS SECTORS 4

Solving the cost-minimization problem of a producer in sector j at period t we can derive
the cost function

TC(Yt,j, {Pt,i}Ji=1, At,j, w) =
Yt,j
sj

(
sj

1− sj

)1−sj
(w)sj (At,j)

−1 (Xt,j)
1−sj

Differentiating this expression w.r.t. Y j
t we obtain the marginal cost function for every

producer z in sector j:

ψt,j =
1

sj

(
sj

1− sj

)1−sj
(w)sj︸ ︷︷ ︸

≡Ωj

(At,j)
−1 (Xt,j)

1−sj = Ωj
(
Ajt
)−1

(Xt,j)
1−sj (1.6)

Now let’s turn to the demand side of the model. Demand of producer z in sector j for input
aggregate from sector i is equal to

mj
t,i(z) = ξji

(
Pt,i
Xt,j

)−1

Mt,j(z) (1.7)

From equation (1.7) one can immediately see the interpretation of ξji as a share of interme-
diate costs of industry j spent on inputs from industry i:

ξji =
mj
t,i(z)Pt,i

Mt,j(z)Xt,j

.

Total demand for output of firm z in sector j is compounded from the final and intermediate
demand:

yt,j(z) =

(
Pt,j(z)

Pt,j

)−θ(
Ct,j +

J∑
i=1

∫ 1

0

mi
t,j(z

′)dz′

)
︸ ︷︷ ︸

≡Yt,j

=

(
Pt,j(z)

Pt,j

)−θ
Yt,j, (1.8)

where Ct,j =
(∫ 1

0
Ct,j(z

′)
θ−1
θ dz′

) θ
θ−1

is the total final demand for aggregate product of sector

j. Here I make use of the above mentioned assumption on the same elasticity of substitution
between sectoral aggregates in final and intermediate demand, θ. If we consider the expres-
sion for Yt,j in Equation (1.8) we can observe that the price Pt,j(z) set by producer z does
not directly affect Yt,j; there is an indirect effect since Pt,j(z) enters the sector’s j aggregate
price index, but since we have a continuum of producers in each sector this effect is negligibly
small. In other words, when choosing the optimal price the producer z considers aggregate
demand for sectoral output Yt,j to be constant.
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The next part of the model introduces the sources of price rigidity. Following the setting
in [27] I assume that there is a Calvo price adjustment mechanism ([3]) – with probability
(1 − δj) any producer in sector j is able to adjust his prices. Every time the producer
adjusts his prices he should pay a fixed cost Fj (“menu cost”). Unlike in the original Calvo
price adjustment mechanism, the probability of price adjustment (1− δj) is chosen by firms
endogenously. In other words, producers can choose the frequency of price adjustment, but
not the periods in which they adjust their prices. Notice also that all producers in sector j
that have an opportunity to adjust their prices are essentially identical – they observe the
same costs of inputs Xt,j and experience the same productivity shocks At,j – thus, in every
period t share (1 − δj) of producers in sector j adjust their price to same level P̌t,j. Sector
j’s price index evolves as

(Pt,j)
1−θ = (1− δj)(P̌t,j)1−θ + δj(Pt−1,j)

1−θ. (1.9)

Sectoral price indexes aggregate into the economy-wide index, analogy of PPI in the real
world:

Pt =
J∏
i=1

(Pt,i)
εi , (1.10)

where εi is the weight of sector i’s output in total output. The real profit at period t for any
producer z in sector j can be written down as:

πt,j(z) =
[
(Pt,j(z))1−θ − ψjt (Pt,j(z))−θ

]
(Pt,j)

θ P−1
t Yt,j, (1.11)

where Pt,j(z) is the actual price for producer z’s output in period t. If prices where fully
flexible it would be optimal for producers to adjust every period and set prices equal to the
optimal flexible price P ∗t,j which is the markup over the marginal costs:

P ∗t,j =
θ

θ − 1
ψt,j (1.12)

Since prices are sticky, the actually set prices by producers in sector j in period t, P̌t,j, will
be different from P ∗t,j. To derive the expression for P̌t,j let’s solve the optimization problem
that is encountered by a firm whenever it has a chance to reset its price. Using the second-
order Taylor approximation for firm’s profit around the steady state, we obtain an expression
for firm’s real profit losses at any period t due to setting a sub-optimal price P̌t,j which is
different from the flex-price optimum P ∗t,j (lower-case letters denote the log-deviation from
the steady state, xt = lnXt − ln X̄):

π̂
(
p̌t,j, {pt,i}Ji=1, yt,j, at,j

)
− π̂

(
p∗t,j, {pt,i}Ji=1, yt,j, at,j

)
≈ |π11|

2

(
p̌t,j − p∗t,j

)2
, (1.13)

where π11 = ∂2π

∂pjt
2 is estimated at the steady state. The full derivation of Equation (1.13)

is be provided in Appendix A. A producer that adjusts his price at period t sets the price
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p̌t,j at the level that minimizes his expected losses from keeping the price constant in all
consequent periods:

p̌t,j = argmin
p̌t,j

Et

∞∑
τ=0

(βδj)
τ |π11|

2

(
p̌t,j − p∗t+τ,j

)2
(1.14)

or, by considering the FOC for Equation (1.14) and setting it equal to zero

p̌t,j = (1− βδj)Et
∞∑
τ=0

(βδj)
τp∗t+τ,j (1.15)

Finally, taking into account that every price adjustment for a firm in sector j involves a
real fixed cost Fj, the expected profit losses of a price-adjusting firm can be shown to be a
function of a price adjustment frequency adopted in industry j and in all other industries,
except j (∆j = {δi}i 6=j):

Lt,j(δj,∆j) =
1− βδj
1− β

[
Fj + Et

∞∑
τ=0

(βδj)
τ |π11|

2

(
p̌t,j − p∗t+τ,j

)2

]
(1.16)

A detailed derivation of Equation (1.16) can be found in Romer (1990).

Plugging Equation (1.15) into Equation (1.16) one can rewrite the total expected losses
of sector j as

Ljt(δj,∆j) =
1− βδj
1− β

F j +
|π11,j|

2(1− β)

[
(1− δjβ)

∞∑
τ=0

(δjβ)τ Et
(
p∗jt+τ

)2

]
−

− |π11,j|
2(1− β)

[
(1− δjβ)

∞∑
τ=0

(δjβ)τ Et
(
p∗jt+τ

)]2

.

(1.17)

So far the model can be summarized in the following way: producers in every sector
j minimizes the total expected losses (Equation (1.16)) subject to the following four log-
linearized constraints:

p∗t,j = −Wt,j +
J∑
i=1

ξi,j(1− sj)pt,i (1.18)

pt,j = (1− δj)p̌t,j + δjpt−1,j (1.19)

Wt,j = Wt−1,j + ut,j (1.20)

p̌t,j = (1− δjβ)
∞∑
τ=0

(δjβ)τEtp
∗
t+τ,j (1.21)

Equation (18) is a log-linearized version of Equation (1.6), Equation (19) comes from Equa-
tion (1.10), while Equation (21) is just a rewritten Equation (1.15). All variables are in
log-deviations from their steady states. p∗t,j – optimal flexible price, p̌t,j – actually set price,
pt,j – sector j price index, Wt,j – sector j’s TFP level.
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There are J such systems of equations (one for every sector). The system is forward-
looking. To solve it I rewrite it in the matrix form and use the Blanchard-Kahn method. All
the derivations are omitted here for the sake of brevity and are provided in Appendix B.

The intuition behind the anticipated result can be explained with Equation (1.16). Firms
in every sector choose the optimal frequency of price adjustment (1 − δj) to minimize the
total expected losses taking the vector of price adjustment frequencies in other sectors (∆j)
as given. The equilibrium of the model is a Nash equilibrium, when every sector chooses
its optimal probability of adjustment and, given the levels of adjustment probabilities in
other sectors, does not have an incentive to deviate. With sectoral productivity modeled as
a random walk the variance of optimal prices p∗t+τ,j increases over time, so that there is an
optimal δj that minimizes the expected total losses. It works as follows. Variance of optimal
price p∗t+τ,j increases faster if the costs of a representative producer in sector j are driven by
one or two shocks coming from intermediate goods than if the bundle of intermediate goods
is well diversified. So, for a faster growing var(p∗t+τ,j) it will be optimal to set lower weights
on more distant periods (high τ), thus, choosing more frequent price adjustment (low δj). If
the intermediate goods bundles are well diversified, then variance of optimal price increases
slower over time, thus, the producers will choose lower frequency of price adjustment (higher
δj) to economize on fixed costs. By the same intuition if the costs of sector j have higher
share of labor then the variance of the optimal price of sector j, p∗t+τ,j rises at lower rate
since the costs of labor are modeled to be constant. These arguments are illustrated by
Figure (1.1) for an economy with 10 sectors: one can solve Equations (18)-(21) for variance
of optimal prices for each of 10 sectors and observe that those sectors that are characterized
by a less diversified structure of intermediate goods bundle and/or smaller share of labor
in their costs have more volatile optimal prices and volatility of their optimal prices grows
at higher rates than for sectors with more diversified input structure (low Herfindahl index)
and/or larger share of labor costs.

I solved the above outlined model for optimal frequencies of non-adjustment (1− δj) and
simulated the data from it for an economy with 10 sectors. I have done three exercises:
(1) find optimal frequency of non-adjustment for sectors with different structure of interme-
diate goods bundle (keeping all other characteristics of sectors the same), (2) find optimal
frequency of non-adjustment for sectors with different shares of labor in their costs (again,
values of all other parameters kept the same) and (3) find the variance of average price
adjustments depending on the level of inputs bundles diversification and share of labor. For
these exercises I generated 100 observations (100 random matrices of ξ’s for (1), 100 random
vectors of s for (2) and 100 random vectors of ξ’s and s for (3)) using the values of parameters
reported in Table 1.1.

To find the equilibrium vector {δj}Jj=1 I follow the next steps:

1. Pick an arbitrary initial vector {δj}Jj=1;
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2. For the current vector {δj}Jj=1 compute the values for dLt,j/dδj for every sector j using
formulas for var(p∗t+s) provided in Appendix B (Appendix B also shows why Lt,j can
be expressed in terms of var(p∗t+s) , s > 0 if the system is at the steady stated at time
t).

3. If |dLt,j/dδj| > ε for some j, where ε is a criteria of convergence, then update the
vector {δj}Jj=1 in the following way: increase each element δj for which dLt,j/dδj < 0
and decrease those δj for which dLt,j/dδj > 0. Return to step 2.

To demonstrate that the loss function attains its minimum at the computed equilibrium
vectors of δ’s (for which the first order condition holds) let’s consider the second order
condition for the economy at the steady state (here I make use of the fact that Et(p

∗
t+s,j) =

0 ∀s > 0 if at period t economy is at the steady state; for details, again, see Appendix B):

∂2Lt,j
∂δ2

j

=
β2|π11,j|
2(1− β)

[
∞∑
τ=0

(
τ(τ − 1)(δjβ)τ−2 − τ(τ − 1)(δjβ)τ−1

)
var

(
p∗t+τ,j

)]

It is easy to see that coefficients in front of var
(
p∗t+τ,j

)
sum up to zero, so the sign of

∂2Lt,j
∂δ2j

depends on the pattern of var
(
p∗t+τ,j

)
over time: it will be negative if variance monotonically

decreases, zero – if it is constant and positive – if variance increases over time. From Figure

(1.1) and Appendix B one can observe that var
(
p∗t+τ,j

)
increases over time, thus,

∂2Lt,j
∂δ2j

> 0

and the loss function indeed attains its minimum at the computed δ’s.

Table 1.1: Calibration of parameters for simulations

Parameter Value Note
J 10 Number of sectors in the economy
sj 0.4 Share of labor in total cost
θ 4 Price elasticity of demand
Fj 0.007 Real fixed cost of price adjustment
wt 1 Nominal wage
Ȳj 1 Demand for real output of each sector
Āj 1 Steady state value of TFP
σAj 0.026 Standard deviation of productivity shocks

ξji 0.1 Share of inputs from i in input costs of j

Figure (1.2) depicts the relationship between diversification of inputs, share of labor in
total costs and optimal probability of non-adjustment. As one can see from Figure (1.2) the
model, indeed, generates the patterns of price adjustment across sectors that is in line with
the above mentioned intuition. The more diversified structure of inputs bundle reduces the
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volatility of sector’s marginal costs as time since last price adjustment passes and, hence,
reduces the expected losses of producers from sub-optimally set prices. The latter allows
industries to reset their prices with lower frequency and economize on the fixed costs of
adjustment. The intuition for the labor share in costs works in the same way: if the share
of input price for which is stable (labor) is higher, it means that variances of marginal costs
and optimal flexible prices increase slowly over time, again, causing firms to reset prices less
frequently.

Another prediction that comes from the model concerns the relationship between cost
structure and the average percentage price changes across industries. Similarly to the previ-
ous prediction, the intuition is the same: the structure of costs that results in more volatile
marginal costs and more volatile optimal flexible prices should lead to larger absolute values
of price adjustments in the corresponding sectors. The variance of average price changes
versus share of labor in total costs and extent of inputs diversification for equilibrium vec-
tors of {δj}Jj=1 is depicted on Figure (1.3) (derivation of formulas for the variance of average
price adjustments is provided in Appendix C).

1.3 Empirical analysis

In this section I consider the data on price changes and cost structure and investigate the
relationship between them. The words “sectors” and “commodities” are used below as
synonyms, but all the analysis was implemented using the data on industries. The above
introduced model predicts that one can expect to observe the following patterns in the data:

• The higher is the share of labor (value added) in total costs of a given sector, the higher
should be the price rigidity in this sector;

• The more diversified is the structure of intermediate goods bundle that is used as input
in a given sector, the higher should be the price rigidity in this sector.

Again, restating what has already been mentioned in the model section, the intuition
behind these predictions comes as follows: if producers of every commodity are monopolistic
competitors then their optimal prices in every period are equal to a markup over their
marginal costs. Assuming that the markups are stable, the actually set prices should follow
the pattern of marginal costs. If we accept that labor costs are less volatile than prices of
commodities, then the higher share of value added in marginal costs will make optimal prices
and actually preset prices more stable and, hence, the observed price adjustments will be
less frequent.

The intuition for the second prediction is very similar to the intuition behind diversifica-
tion: suppose every sector in every period is subject to idiosyncratic productivity shocks and
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(b) Share of labor in total costs and optimal probability of non-adjustment

Figure 1.2: Cost structure and optimal probability of price non-adjustment
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(b) Share of labor in total costs and variance of average price adjustment

Figure 1.3: Cost structure and variance of average price adjustment
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these shocks translate into the prices of produced commodities and, hence, costs of other
sectors. Those producers that need to buy wast range of inputs have their intermediate
goods bundles better diversified than those producers that need to buy only few inputs. As
a result marginal costs and prices of the former producers will be less volatile than those of
the latter.

Data on costs

To obtain the information on cost structures of different sectors I considered an industry-
by-industry matrix of input-output flows. For further notations in this section I denote
matrix of industry-by-industry input flows as Z, vector of value added as V , vector of final
demand as F , and vector of total output as X. The data is taken from the benchmark
input-output (IO) tables for the US for year 2002 provided by Bureau of Economic Analysis.
Number of industries is equal to 426. The following variables were constructed:

• Herfindahl index for input costs (backward linkages). Making use of matri-
ces Z and X we can construct a commodity-by-commodity matrix of direct inputs
coefficients:

A = Z · X̂−1,

where X̂ is a diagonal matrix obtained from vector X: x̂ii = xi. Element ai,j of matrix
A shows what value of commodity i should be supplied as an input to produce the
amount of commodity j that worth 1 unit of currency. Sum

∑N
i=1 aij shows the total

value of intermediate goods that should be purchased by producers of commodity j
to produce 1 unit of value. If we normalize each element aij by the sum of elements
in the corresponding column we obtain the share of inputs supplied to producers of
commodity j from producers of commodity i in the overall amount of intermediate
inputs used by producers of commodity j:

āij =
aij∑N
k=1 akj

.

The normalized direct input coefficients are used for computing the normalized “back-
ward” Herfindahl index for every industry j:

hbj =

∑N
k=1 ā

2
kj − 1

N

1− 1
N

. (1.22)

Values of the index range from 0 to 1, where 0 corresponds to the case when the
intermediate inputs used by producers of commodity j are distributed evenly across
all N sectors (highest possible extent of diversification of inputs), while 1 means that
only 1 type of intermediate goods is used as an input. Again, the intuition is that the
lower this index is, the more stable is the value of sector’s intermediate input bundle,
the less volatile are the prices of this sector.
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• Sum of squared coefficients of direct inputs. This measure is similar to Herfindahl
index for direct inputs hb and is computed as:

sj =
N∑
i=1

a2
ij

• Share of wages in total output. Expenditures on labor comprise another important
part of costs – value added. The share of wages (labor compensation in IO accounts)
in total output for producer j is computed as

wj =
Wj

Xj

.

This index will also serve as a measure of marginal costs’ volatility across different
sectors. The higher is the share of wages in sector j, the less volatile should be its
costs.

• Share of output used for final demand.

fj =
Fj
Xj

.

This variable will be used as a proxy for “menu costs”. The assumption is that it
is harder to adjust prices more frequently in the final product market than in the
intermediate goods markets.

There are several issues that should be kept in mind when using the IO data for con-
structing proxies for measures of costs diversification and costs of price adjustments. First,
IO tables reflect only technological characteristics of production processes, but they do not
allow us to reveal the property structure across entities. In other words if two entities in
different sectors belong to one owner, the flows of products will be reflected in the IO tables,
yet, prices at which these products are supplied might be more stable than market prices.
If anything, this issue will tend the regression results to be downward biased in absolute
values1.

1Let’s assume that we estimate a regression of price rigidity, R, on a measure of inputs diversification,
say, Herfindahl index H. The observed diversification measure H is different from the actual one H∗:
H = H∗ + ω. The parameter of interest β(< 0) comes from the regression R = α + βH∗ + u which now,
due to measurement error, is estimated as R = α + βH + (u− βω)︸ ︷︷ ︸

z

. The sign of the bias is the same as

the sign of cov(z,H) = −βvar(ω) > 0 (assuming that H∗, u and ω are mutually uncorrelated) and from

β̂ = β + cov(z,H)
var(H) we have |β̂| < |β|.
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The second issue is related to aggregation of data that comes in the IO matrix. For
instance, even if an entity uses inputs coming from only one sector it can buy this input
from numerous suppliers, thus, again, decreasing the volatility of its marginal costs. Using
more disaggregated data, at the level of ZIP codes, that is collected by the US Census
Bureau could help to address the second issue and measure the diversification of costs more
precisely. In the same manner as the previous concern, this issue will also bias the estimates
downwards.

Third, share of final demand in total output might be a poor proxy for costs of price
adjustments. To address this point in the regression analysis below I use another proxy for
“menu costs” – share of output sold via exchange, first constructed in [26]. This measure
indicates how specific (tailored for each buyer) the products are.

Finally, the whole approach that is used in this chapter is focusing attention on the supply
side of price-setting mechanism. Clearly, if the demand for products of different sectors is
subject to idiosyncratic shocks then the price volatility is also a function of demand shocks.
Variation of variances of markups’ and profit margins’ across sectors is another issue that
the empirical part of the chapter should address in the future work.

Data on prices

The first source of data on frequency and values of price adjustments across different
sectors is the producer price indexes (PPI) provided by Bureau of Labor Statistics at monthly
frequency. Number of commodity groups covered by PPI indexes is 5382. Following [4] I
consider the following measures of price rigidity for this data set:

• Percent of month that are in spells (for this measure spell is considered to be a sequence
of at least two months with the same price index);

• Average absolute percentage price changes: |∆Pj,t| = | lnPj,t − lnPj,t−1|.

The first measure is expected to be negatively related with price flexibility (i.e. higher
share of periods in spells is associated with higher price rigidity), while the average absolute
percentage price change is positively associated with price flexibility (and, correspondingly,
negatively with price rigidity).

The second source of data on price adjustments patterns come from [25]. These data
contains prices for goods and services that enter CPI at daily frequency. For this data set
I take a frequency of price adjustment within a month and an average length of price spells
as measures of price rigidity.
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Regression analysis

To estimate the relation between different characteristics of cost structure and measures
of price rigidity I estimate four regressions for each data set. Besides the above mentioned
variables for cost diversification (s, hb and w), forward linkages (f) and a proxy for specificity
of products, I also included the measure of sector’s monopolization as an additional control
variable. It is measured as a market share of eight largest producers in a given sector. The
estimates for PPI-data are reported in Table 1.2; CPI-data estimates are reported in Table
1.3.

Table 1.2: Cross-sectoral price rigidity and structure of costs, PPI-based estimates.

(1) (2) (3) (4)
PCTS PCTS PA PA

Sum of squared dir. input coef-s, s -0.37 0.04***
(0.36) (0.01)

Herfindahl index by col-s, hb -0.19 0.03***
(0.20) (0.00)

Share of wages in total costs, w 1.05*** 1.06*** -0.01*** -0.02***
(0.13) (0.13) (0.00) (0.00)

Share of final demand, f 0.19*** 0.19*** -0.002*** -0.001***
(0.03) (0.03) (0.00) (0.00)

Sector’s monopolization proxy 0.004*** 0.004*** -0.00 -0.00
(0.00) (0.00) (0.00) (0.00)

Product specificity proxy 0.36*** 0.38*** -0.01*** -0.02***
(0.08) (0.07) (0.00) (0.00)

Constant -0.39*** -0.41*** 0.02*** 0.02***
(0.09) (0.08) (0.00) (0.00)

N 931 931 931 931
R2 0.304 0.304 0.484 0.489
PCTS – percentage of prices in spells,

PA – absolute average percentage price changes.

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Coefficients at variables s and hb show that, indeed, the relationship between rigidity
of prices across sectors and the extent of inputs’ diversification is positive, though, the
coefficients in regressions for PCTS are statistically insignificant. This observation is in
line with the above mentioned prediction: higher diversification may lead to lower values
of Herfindahl indexes hb and s, lower volatility of marginal costs, and, hence, higher price
rigidity. The share of labor compensation in total costs of a sector has a positive impact



CHAPTER 1. COST STRUCTURE AND PRICE RIGIDITY ACROSS SECTORS 17

Table 1.3: Cross-sectoral price rigidity and structure of costs, CPI-based estimates.

(1) (2) (3) (4)
Frequency Frequency Length Length

Sum of squared dir. input coef-s, s 94.1568*** -6.7679*
(12.98) (3.05)

Herfindahl index by col-s, hb 85.3262*** -4.7057*
(9.42) (2.34)

Share of wages in total costs, w -20.7556 -10.3301 2.9740 3.1408
(12.91) (12.32) (3.03) (3.07)

Share of final demand, f 0.19*** 0.19*** -0.002*** -0.001***
(3.13) (2.96) (0.73) (0.74)

Sector’s monopolization proxy -0.0346 -0.0376 0.0035 0.0047
(0.06) (0.05) (0.01) (0.01)

Product specificity proxy -7.4616 -7.0310 3.8736* 4.0340**
(6.53) (6.13) (1.53) (1.53)

Constant 33.7128*** 26.1266*** 0.5686 0.5326
(6.56) (6.37) (1.54) (1.59)

N 197 197 197 197
R2 0.422 0.485 0.174 0.171
Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

on the price rigidity of this sector, supporting the intuition that labor costs are much less
volatile than costs of intermediate inputs, thus, a higher share of labor in costs may lead
to less volatile prices. The estimates at the measure of sectors’ monopolization show that
sectors with higher concentration of producers have more rigid prices – fewer larger player in
sectors may result in more strategic price setting and, hence, higher extent of price rigidity.
Share of produced goods that are supplied for final demand, f , and the share of production
supplied by contracts (product specificity proxy) are positively related to price rigidity which
is also in line with the above mentioned intuition.

The analysis of the above mentioned data allows me to conclude that the following pre-
dictions of the model are supported by the data:

• Higher share of labor costs in total costs is associated with lower price volatility of
corresponding sectors.

• More diversified structure of used intermediate goods is associated with lower price
volatility.
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1.4 Applications

The introduced theoretical framework can be used for modeling the impact of changes in
the cost structure on price rigidity. Analysis of the input-output data described in [20] for
years 1995-2011 allows to establish the following important empirical facts which potentially
may have an impact on optimal price frequency adjustments, heterogeneity of sectors in
terms of price rigidity and the total responsiveness of the economy to nominal shocks

First, the share of value added in total output declines over time. Figure (1.4) depicts

the ratio V A
X

=
∑
i

∑
s V Ai,s∑

i

∑
sXi,s

in which V Ai,s denotes value added created in sector s of country

i, while Xi,s is the total output of sector s of country i. This pattern can potentially
be explained by decreasing costs of market transactions and, as a result, out-sourcing of
inputs and larger share of input in total costs and smaller share of labor. According to the
predictions of my model, such decline in the share of value-added will result in more frequent
price adjustments.
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Figure 1.4: Value added-to-output ratio, World, 1995-2011.

The second feature of the data is the raise in Herfindahl index for input bundles across
countries and sectors. Figure (1.5) depicts the distribution of percentage changes in Herfind-
ahl index between 1995 and 2011. A sector in a country is a unit of observation. The index
is calculated according to Equation (1.22). Increasing Herfindahl index means that the input
bundles are becoming on average less diversified over time. Intuitively, this process could be
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Figure 1.5: Distribution of percentage changes in Herfindahl index for input bundles, World,
1995-2011.

observed if production chains turn from “spiders” (assembling several inputs simultaneously
into a final good) into “snakes” (assembling inputs into a final good sequentially). Another
interesting observation follows from splitting input bundles into domestic and imported. So,
concentration increases by larger amount for domestic inputs – median increase by 6.5%
from 1995 to 2011 – and doesn’t change for imported bundles – median change of 0.0%.
The resulting increase in the concentration of overall input bundle is 1.6%. The increase in
inputs concentration means that the optimally chosen frequency of price adjustments will
also increase.

1.5 Conclusion

In the current chapter I demonstrate the relation between sector price rigidity and two
characteristics of firms’ costs – the share of labor (value added) in total costs and diversifi-
cation of intermediate inputs bundle. Both, larger share of labor and higher diversification
of inputs result in less frequent price adjustments and, hence, higher overall price rigidity
in the economy. I suggest a model in which the extent of price rigidity is optimally chosen
by producers and I show that the model explains the above mentioned empirical relations.
Finally I demonstrate the changes in the structure of costs observable in the data. The latter
may have a sizable impact on total price rigidity and obtaining a precise estimate of this
impact is an important application of the model for future research.
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Chapter 2

Technological Spillovers and
Dynamics of Comparative Advantage

2.1 Introduction

Between 1980 and 1990 around $160 billion were spent by the US, Japanese, South Korean
and Taiwanese governments to establish semiconductor industry in their countries. In a new
wave of subsidies, the US and Chinese governments pledged to spend $150 billion and $400
billion respectively on the “green energy” sector1. The usual rationale for such policy empha-
sizes economies of scale and positive externalities generated by targeted sectors. To analyze
the long-run welfare implications of the above policies, we need to model these externalities
and the resulting dynamics of sectoral productivity. The key theoretical challenge here is the
possibility of multiple equilibria. If productivity of a sector depends on its size – for example,
through accumulation of best practices that become public knowledge within a country –
then any initial comparative advantage of a sector becomes self-reinforcing. Furthermore,
multiplicity of equilibria is more likely in open economies, since specialization is not thwarted
by downward sloping demand. Several theoretical works as, for instance, [31] investigated
balanced growth paths of open economies, yet, the derived long-run predictions in those
papers depend on the starting points – multiplicity is their typical feature. A large body of
empirical research documents the presence of strong technological spillovers between sectors.
Accounting for them makes it even harder to model the evolution of sector-level productivi-
ties. With cross-sector spillovers each sector can reinforce not only its own productivity but
also productivity of proximate sectors.

In this chapter I develop a dynamic model of international trade with cross-sector spillovers
which under general conditions demonstrates a unique balanced growth path. As I show, the
sufficient condition for the uniqueness is the connectedness of sectoral clusters. In addition
to the standard effect of comparative advantage on labor allocation, the model accounts for

1Source: MacKinsey Global Institute, Breakthrough Institute
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the effects of labor allocation on sector productivity and comparative advantage. The core
mechanism is a combination of an idea-generating process within each sector and technolog-
ical spillovers across sectors. I establish necessary and sufficient conditions for the existence
and uniqueness of a balanced growth path (BGP) and describe the conditions under which
a welfare-improving industrial policy is possible. I calibrate the model using the US patent
data to parametrize the strength of technological spillovers and to describe the optimal
policy.

The model builds on a multi-sector [9] model, as in [6], to link sector productivities to
labor allocation across sectors. The reverse link from labor allocation to sector productivity
is captured by assuming that employment in a particular sector exogenously generates a
mass of new (publicly available) technologies useful in the sector or in others. Specifically, a
new technology that emerges in an origin sector can be used in producing any variety in a
destination sector with some origin-destination probability. The pattern of how technologies
flow across sectors is summarized by a matrix of cross-sector spillover probabilities. The
cross-sector spillover matrix can be seen as a way to formalize the idea of proximity between
different sectors as in [15]. For instance, high values of spillover probabilities between origin
and destination sectors mean that both these sectors are using similar technologies and are
more likely to produce together in a given country. This approach allows me to describe the
dynamics of the economy by a simple system of differential equations.

For the case of frictionless trade, I show that depending on the degree of connectedness
between sectors the economy may have a unique or multiple BGPs. An important result is
that if there are no isolated clusters, (that is, there are no groups of sectors that generate
and adopt technologies only for and from members of the group), then the BGP of the model
is unique. This result comes as an outcome of interaction of two forces.

The first force, centripetal, tends to equalize productivities across sectors. To see the
workings of this force, assume that a country could buy at the same price a random sample
of technologies for any sector. It would buy this sample for the least productive sector
because in this sector a larger share of the technologies will have productivity that exceeds
the sectoral productivity frontier and, thus, will be used. Buying technologies in this example
is equivalent to directing labor to the least productive sectors. The centripetal force may
explain why we observe weakening of comparative advantage in the data, as documented in
[18].

The second force we observe is centrifugal. It comes from the fact that it is actually more
expensive to buy technologies for the least productive sectors. Namely, to allow the least
productive sectors to catch up, labor should be diverted to them from more productive sectors
and, as a result, welfare decreases. If we have isolated clusters, then these two forces can
balance each other on multiple BGPs. Under no isolated clusters the cross-sector spillovers
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provide technologies to the least productive sectors “for free”. As a result, centripetal force
becomes stronger and the economy ends up in a unique BGP where all countries have the
same relative productivities across sectors and, hence, no comparative advantage and no
cross-sector trade. The model also provides a description of the transition path and for a
2-sector 2-country case has a simple phase-diagram illustration.

The model can be used to think about the welfare effect of policies that induce a realloca-
tion of labor across sectors. If a vector of sectoral productivities is a result of sectoral labor
allocation, then a country can choose its BGP as well as a transition path to it. For exam-
ple, this choice is implemented by re-allocating labor across sectors and, thus, affecting the
process of accumulation of new technologies across sectors. Uniqueness of BGP matters for
the outcome of such policy and its information intensity. Namely, if uniqueness holds then
the BGP to which a country converges doesn’t depend on the initial distribution of produc-
tivities and all the policy-maker needs in order to predict the long-run implications of policy
is the matrix of spillovers. In contrast, if uniqueness doesn’t hold, then the policy-maker
should know not only the matrix of spillovers but also the initial distribution of productiv-
ities across all sectors and countries. I demonstrate that a policy intervention can improve
welfare if the spillover matrix has positive inter-sector spillovers, i.e. that some sectors gen-
erate technologies both for varieties inside and outside these sectors. Characteristics of such
sectors are consistent with the notion of core sectors as in [12]. That is, core sectors generate
widely applicable technologies and increase productivity of the whole economy, providing a
rationale for governments to promote and even subsidize them. I also derive the criteria for
defining optimal labor reallocation across sectors. For a symmetric 2-country 2-sector case
this criteria has an intuitive interpretation. Namely, labor should be reallocated towards
a sector that generates a larger share of technologies for destinations sectors weighted by
expenditures on varieties of the destination sectors. Thus, I provide a formal framework for
quantifying these technological spillovers and deriving the associated optimal policy.

Finally, I calibrate the model using the US patent data and compute the labor allocation
that maximizes welfare in the BGP. The calibration part of the chapter contributes to the
literature on estimating the strength of technological spillovers2 and extends it by introducing
the corrections not only for the size of the destination sector, but also for the size of the
sector of the origin. The computed optimal policy improves the country’s productivity in
the BGP by 3.5% comparing to the no-policy BGP.

The chapter is structured as follows. Section 2 outlines the model, investigates its dynamic
properties and provides the intuition for the main mechanisms. Section 3 establishes the
possibility for welfare-improving economic policy and the necessary conditions for such policy.
Section 4 describes the calibration of the model and estimation procedure for the spillover

2E.g. [11]
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parameters. Section 5 presents the optimal policy based on the calibrated model. Section 6
concludes.

2.2 Model

The mechanism that maps sector productivity to labor allocation across sectors works
through trade and comparative advantage. It is based on Ricardian models of trade as
in [6] and [10]. The mechanism that generates the feedback from labor allocation to sector
productivity is based on the exogenous process of generating new technologies and endoge-
nous spillovers of these technologies across sectors. The flow of technologies is described by a
matrix of spillover probabilities. At the aggregate level this mechanism generates equations
that describe dynamics of sectors’ productivity which are similar to the equations suggested
in [14]. More details are provided below.

Demand

There is a discrete number of sectors and a continuum of varieties of mass normalized to
1 within each sector. The set of sectors is denoted as S ≡ {1, . . . , S}. There is also a
representative household with a two-tier utility function. Varieties within each sector are
aggregated according to a constant elasticity of substitution (CES) aggregator with elasticity
parameter σ. Sectoral aggregates, in turn, enter the utility function as Cobb-Douglas with
sector specific parameters αs. Thus, the utility of a representative household in country i at
time period t is

Ui(t) =
S∏
s=1

(Cs
i (t))

αs , Cs
i (t) =

(∫ 1

0

csi (t, ω)
σ−1
σ dω

) σ
σ−1

, (2.1)

where csi (t, ω) denotes consumption of variety ω from sector s by a representative household
in country i at time t.

The representative household inelastically supplies an exogenous amount of labor Li(t)
that is allocated among S sectors:

Li(t) =
S∑
s=1

Lsi (t) (2.2)

In every period the household spends its whole income Ii(t) = wi(t)Li(t), where wi(t) is the
wage rate in country i at time t. The share αs of the income is spent on varieties from sector
s. Expenditure for each variety ω from sector s is equal to

xsi (t, ω) =

(
psi (t, ω)

psi (t)

)1−σ

αsIi(t), (2.3)
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where psi (t) =
(∫ 1

0
psi (t, ω)1−σdω

) 1
1−σ

. Each variety ω is bought from only one source – a

country that supplies it at the lowest price; the set of countries is discrete and is denoted
as N ≡ {1, . . . , N}. Perfect competition among producers results in pricing at marginal
costs. Let csij(t, ω) denote the marginal cost of supplying one unit of variety ω in sector s
from country i to country j.3 The set of goods of sector s supplied from i to j at time t is
Ωs
ij(t) =

{
ω : csij(t, ω) = mink∈N{cskj(t, ω)}

}
. Expenditure of country j for goods of sector s

that are supplied by country i at time t is

xsij(t) =
∑

ω∈Ωsij(t)

xsi (t, ω) (2.4)

Utility per capita is equal to

Ui(t)

Li(t)
=

S∏
s=1

(
αsIi(t)

psi (t)Li(t)

)αs
= wi(t)

S∏
s=1

(
αs

psi (t)

)αs
(2.5)

Supply

As it was mentioned above, free entry and perfect competition among producers is the market
setting. Production uses only one input – labor – which is transformed into output according
to the function

Y s
i (t, ω) = Zs

i (t, ω)Lsi (t, ω), (2.6)

where Zs
i (t, ω) is a productivity of technology for producing variety ω in sector s of country

i at period t. All potential entrants have access to the same technology.

Labor is homogeneous and firms take wages as given. Goods from sector s are traded
between countries i and j at cost dsij which is modelled as “iceberg” trade cost. As a result,
variety ω in sector s can be supplied from country i to country j at cost

csij(t, ω) =
wi(t)d

s
ij

Zs
i (t, ω).

(2.7)

Now let’s turn to the mechanism that defines productivity of each variety. I assume
that labor of mass 1 exogenously generates technologies4 at rate φ. Each technology is
characterized by a sector of its origin and productivity Q. All new technologies immediately
become publicly available. Productivity of each of them is drawn from a Pareto distribution:

Pr(Q ≤ q) = 1− q−θ (2.8)

3In this chapter I use the notations commonly used in input-output literature when the first subscript
denotes the country of the origin and the second one – destination.

4In what follows the words “idea” and “technology” are used interchangeably and mean an invented
process which can be used for producing varieties of goods.
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Once any idea is generated in sector s it can be applied to any variety in this sector with
probability pss and to any variety in sector r with probability psr. In this setting by time t
the number of ideas that has ever been generated for any variety in sector s of country i is
a random variable distributed as Poisson with parameter T si (t):

T si (t) =
S∑
r=1

prs
∫ t

0

φLri (ν)dν + T si (0) (2.9)

The matrix of probabilities {prs}r∈S
s∈S

summarizes the information on cross-sector spillovers.

The only restriction on its elements is 0 ≤ prs ≤ 1 ∀r, s ∈ S. Sector s with higher {psr}r∈S ’s
generates more widely-applicable technologies. Sectors r and s that are characterized by high
values of prs and psr can be viewed as technologically proximate ones: high productivity in
one of them helps increase productivity in the other. Intuitively, a country may want to
establish or retain a sector that is characterized by high proximity or, the way it is modeled
here, the one that generates more general technologies. The latter would allow the economy
in the balanced growth path (BGP) to have a higher number of ideas per capita and, thus,
higher welfare.

As is established in [10], for any variety ω in sector s of country i productivity Zs
i (t, ω) is

a random variable distributed as Fréchet

Pr(Zs
i (t, ω) ≤ z) = e−T

s
i (t)z−θ . (2.10)

The share of country i in country j’s expenditure for goods of sector s is

πsij(t) =
xsij(t)∑
k x

s
kj(t)

=
T si (t)

(
wi(t)d

s
ij

)−θ∑
l T

s
l (t)

(
wl(t)dslj

)−θ . (2.11)

Equilibrium

Assuming that trade is balanced in each period, we obtain

wi(t)Li(t) =
N∑
j=1

S∑
s=1

πsij(t)α
swj(t)Lj(t), (2.12)

where the left-hand side is the total income of households in country i and the right-hand
side are the total expenditures of all countries for goods produced in country i. Given the
total labor supply in each country at time t, {Li(t)}i∈N , and the level of technology for
each sector-country which in the current setting is summarized by {T si (t)}i∈N

s∈S
, one can solve

Equation (2.12) for equilibrium wages, {wi(t)}i∈N .
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Since in perfect competition firms earn zero profits, total revenue of each sector in every
country is equal to total costs, i.e. to labor income earned in this sector:

wi(t)L
s
i (t) =

N∑
j=1

πsij(t)α
swj(t)Lj(t), (2.13)

Having solved Equation (2.12) for wages {wi(t)}i∈N , one can solve Equation (2.13) for sector
labor demand {Lsi (t)}i∈N

s∈S
. Notice from Equations (2.11) and (2.12) that, conditional on the

relative size of countries in terms of total labor supply, what matters for wages and labor

allocation is the relative productivity across countries within sectors,
{
T si (t)

T sj (t)

}
i,j∈N
s∈S

. Other

things being equal, countries that are relatively more productive observe larger shares of
expenditures for their goods and higher welfare.

Thus, the static part of the model tells us how the state of technology {T si (t)}i∈N
s∈S

and total

labor supply {Li(t)}i∈N affect the equilibrium allocation of labor across sectors {Lsi (t)}i∈N
s∈S

.

What the dynamic part of the model adds is the evolution of technologies: given the equi-
librium allocation of labor across sectors within each country, productivity of sectors evolves
according to Equation (2.9) or its differential counterpart

Ṫ si (t) =
dT si (t)

dt
= φ

(
S∑
r=1

prsLri (t)

)
. (2.14)

Thus, the model can be summarized by Equations (2.11), (2.12), (2.13) and (2.14), where
Equations (2.11), (2.12), (2.13) describe the static equilibria of the model, while (2.14) –
describes its dynamics. At any point in time the model is in static equilibrium.

Definition. Static equilibrium of the model at time t is a set of non-negative vectors
of total labor supply {Li(t)}i∈N , sector productivity {T si (t)}i∈N

s∈S
and sector labor allocation

{Lsi (t)}i∈N
s∈S

that satisfy Equations (2.11), (2.12) and (2.13).

Balanced growth path

The model is characterized by semi-endogenous growth. Thus, it can have an equilibrium
in which all variables are growing at a constant rate – balanced growth path – only if the
total labor supply in each country is growing at some constant rate g > 0.

Li(t) = egtLi(0) (2.15)

The state of the system is characterized by two vectors – productivities {T si (t)}i∈N
s∈S

and

total labor supply {Li(t)}i∈N . The former changes endogenously, while the latter – exoge-
nously.
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Definition. Balanced growth path (BGP) of the model is a sequence of static equi-
libria that satisfies Equation (2.14) and along which each element of the vector of sector
productivities {T si (t)}i∈N

s∈S
grows at a constant rate.

Definition. Balanced growth path is locally stable if the economy converges to it once
it starts at any point in some ε-neighborhood of it.

Since one can show that both T ’s and L’s along the BGP are growing at the same rate,

their ratios
{
T si
Li

}
i∈N
s∈S

remain constant.

One can also show that in the BGP

T si
Li
≡ tsi =

φ
∑

r p
rslri

g
=
φsi
g
, (2.16)

where lri ≡
Lri
Li
∈ [0; 1],

∑
r l
r
i = 1 and φsi ≡ φ

∑
r p

rslri . Dynamics of t··’s outside the BGP is

described by the differential equation5:

ṫsi (t) = φ
∑
r

prslri (t)− gtsi (t), ∀i = 1, ..., N, ∀s = 1, ..., S. (2.17)

Clearly, if psr = p ∀s, r then the first term on the right-hand side of Equation (2.17) turns into
φp and it is easy to see that the BGP is unique and stable: tsi = φp/g. Another observation is
that the first term on the right-hand side of Equation (2.17) is bounded both from above and
from below – with boundaries φmaxr(p

rs) ≥ 0 and φminr(p
rs) ≥ 0 correspondingly, while

gtsi (t) ∈ [0;∞), thus, the steady state level tsi ∈ [φminr(p
rs)/g;φmaxr(p

rs)/g]. The last
inequality guarantees that even if there exists an unstable steady state it has a stable steady
state in its neighborhood to which the system will converge. In other words it can not be
that tsi →∞. If all spillovers are non-zero – prs > 0 ∀r, s – then we can also exclude the cases
where tsi → 0. Graphical illustration of the latter argument is provided in Figure (2.1). Two
thick lines – one solid and one dashed – show two possible patterns of relation between φsi (t)
and tsi (t). Although gross substitutability between sectors guarantees that more productive
sectors attract more labor, the relation between t··’s and l·· is non-linear, so, potentially there
might be multiple BGPs. One observation from Figure (2.1) is that φsi is in limit approaching
φpss – as sector s in country i becomes more productive, more labor is allocated to it with
limit φsi = φpss attained when sector s employs all the labor in the country, Lsi = Li. As I
mentioned above, potentially, there is possibility for both stable (points A, B and D) and
unstable (point C) BGPs.

5To clarify notations – t without sub-/superscripts denotes time, while tsi (t) ≡
T s
i (t)
Li(t)

denotes the number

of ideas per capita in country i sector s at time t.
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tsi (t)

φs
i (t); gt

s
i (t)

φmaxr(p
rs)

φpss

φminr(p
rs)

φ

g
maxr(p

rs)φ

g
minr(p

rs)

ṫsi (t) > 0 ṫsi (t) < 0

gtsi (t)

φs
i (t)AB

C

D

Figure 2.1: Dynamics of technological endowment per capita, tsi (t)

In general it is not trivial to show that Equations (2.17) have a unique and stable solution,
thus, in what follows I will consider the above described model for some particular cases.

Autarky. Under autarky πsij = 0 ∀i 6= j ∈ N and πsii = 1 ∀s ∈ S. It follows from Equa-
tion (2.13) that labor is allocated across sectors proportional to the shares of expenditure:

Lsi (t) = αsLi(t) (2.18)

As I stated before, along the BGP all elements of {T si (t)}i=1,...,N
s=1,...,S

are growing at the same

rate g, thus, the ratios of T ’s across sectors and countries along the BGP remain the same:

T si
T ri

=

∑S
q=1 l

q
i p
qs∑S

q=1 l
q
i p
qr

=

∑S
q=1 α

qpqs∑S
q=1 α

qpqr
(2.19)

Utility per capita (under wages normalized to 1) can be expressed as

Ui(t)

Li(t)
=

1

Li(t)

S∏
s=1

(Cs
i (t))

αs =
1

Li(t)

S∏
s=1

(
αsLi(t)

psi (t)

)αs
=

∏
s α

sαs

γ

∏
s

(
T si (t)

Li(t)

)αs

θ

· Li(t)
1
θ ,

(2.20)
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where γ ≡
(
Γ
(

1−σ
θ

+ 1
)) 1

1−σ . As follows from Equations (2.16) and (2.18),
T si (t)

Li(t)
=

φ
∑
r p

rsαr

g
=

const. So, one can conclude that: 1) any economy on the BGP in autarky grows at rate g
θ
;

2) utility per capita for symmetric countries (i.e. countries with equal total labor supply)
is the same; 3) relative productivity of sectors and labor allocation doesn’t depend on the
initial conditions. As a result, autarky is characterized by a unique and stable BGP. Another
observation is that economies with more interrelated sectors (higher prs’s) have higher T/L
and, thus, higher utility per capita under the same level of total labor supply.

Costless trade. Now let’s consider another extreme – the case of costless trade: dsij =
1 ∀i, j ∈ N , ∀s ∈ S. The immediate implication of this case is that the share of country i in
expenditures for goods of sector s is the same across all destinations: πsij = πsii ≡ πsi·. Hence,
from Equation (2.13) one can obtain ratios of labor allocated across sectors r and s:

Lsi (t)

Lri (t)
=
αsπsi·(t)

αrπri·(t)
=
αsT si (t)

∑
l T

r
l (t)(wl(t))

−θ

αrT ri (t)
∑

l T
s
l (t)(wl(t))−θ

(2.21)

For any pair of countries i and j and any pair of sectors s and r

Lsi (t)

Lri (t)

T ri (t)

T si (t)
=
Lsj(t)

Lrj(t)

T rj (t)

T sj (t)
(2.22)

The second system of equations relating ratios of productivity parameters T ’s and labor
allocation is the system for the steady state (thus, time index t is omitted):

T ri
T si

=

∑
q p

qrlqi∑
q p

qslqi
, (2.23)

where lsi ≡
Lsi
Li
, s ∈ S.

Before I formulate a Proposition on uniqueness of BGP, let me introduce and briefly
explain the definitions used in the Proposition.

Definition. Sector s ∈ S is stagnant if
∑

r p
rs = 0.

A sector is defined as stagnant if it doesn’t have possibilities for growth. Namely, neither
technologies generated in other sectors, nor the ones generated in the sector itself can be
used in a stagnant sector. Note, that this definition doesn’t preclude a stagnant sector from
generating technologies for other sectors.

Definition. BGP is interior if all elements of a sequence of vectors {T si (t)}i∈N
s∈S

are positive.

BGP is corner if at least one element of this sequence of vectors is equal to zero.
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Interior equilibrium means an equilibrium in which every country has non-zero productiv-
ity in every sector. In contrast, a corner equilibrium is the one in which some country has
zero productivity in some sectors.

Definition. Matrix of spillovers {prs}r,s∈S has no isolated clusters if its digraph is con-
nected.

Absence of isolated clusters means that there are no groups of sectors that generate and
receive technologies only for and from the members of the group. A simplest example of a
spillover matrix with isolated clusters is a diagonal matrix – the case in which each sector
generates technologies only for itself. Another way to define a matrix without isolated clusters
is to say that such matrix can not be represented as a block-diagonal one by permuting rows
and columns in the same order.

Finally, Proposition 1:6

Proposition 1. Under zero trade costs, no isolated clusters and no stagnant sectors, the
model has a unique and stable interior balanced growth path in which labor allocation
vectors are the same across countries: Lsi = αsLi ∀i ∈ N , ∀s ∈ S.

To provide some intuition behind Proposition 1 let’s build a phase-diagram for a simplified
version of the model with 2 countries (i and j) and 2 sectors (s and r). For convenience I’ll
re-write the main equations of the model here. Time variable t can be omitted for brevity

because we are going to consider a BGP. First, having relative productivities ts ≡ T sj
T si
, tr ≡ T rj

T ri

and relative size of the countries
Lj
Li

one can find relative wages
wj
wi

from the trade balance
equation:

1 =

 αs

1 +
T sj
T si

(
wj
wi

)−θ +
αr

1 +
T rj
T ri

(
wj
wi

)−θ
(1 +

wj
wi

Lj
Li

)

Next, labor allocation across sectors – lri ≡
Lri
Li

– can be obtained from

lri
1− lri

=
Lri
Lsi

=
αr

αs

1 +
T sj
T si

(
wj
wi

)−θ
1 +

T rj
T ri

(
wj
wi

)−θ and
lrj

1− lrj
=
Lrj
Lsj

=
αr

αs

1 +
T si
T sj

(
wj
wi

)θ
1 +

T ri
T rj

(
wj
wi

)θ .
Finally, the dynamics and BGP level of relative productivities can be described by

ṫs = 0 : ts ≡
T sj
T si

=
φLj(p

rslrj + psslsj)

φLi(prslri + psslsi )
and ṫr = 0 : tr ≡

T rj
T ri

=
φLj(p

rrlrj + psrlsj)

φLi(prrlri + psrlsi )
.

6The proof is provided in Appendix D. A particular extension of the proposition with positive trade costs
is proved in Appendix E.
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tr

ts min{prr, pss} > max{psr, prs} > 0

ṫr = 0

ṫs = 0

t̄r

t̄s

(a) Within sectors spillovers are stronger
than between

tr

ts 0 < max{prr, pss} < min{psr, prs}

ṫr = 0

ṫs = 0

t̄r

t̄s

(b) Between sectors spillovers are stronger
than within

tr

ts prr > 0; pss > 0, psr = prs = 0

ṫr = 0
ṫs = 0

t̄r

t̄s

t̄r
′

t̄s
′

(c) Positive spillovers within sectors and
zero – between sectors.

Figure 2.2: Dynamics of relative productivity for a 2× 2 model.

If the left-hand side of the latter equations is below their right-hand side, then the current
labor allocation contributes more to relative productivity of country j than country i in a

given sector, hence,
T sj
T si

increases if
T sj
T si

<
φLj(p

rslrj+psslsj )

φLi(prslri+psslsi )
. The same holds for sector r. Now,

one can see that the BGP is characterized by two endogenous state variables – relative

productivities of countries within each sector, ts ≡ T sj
T si

and tr ≡ T rj
T ri

, which can be viewed as

measures of comparative advantage of country j in sectors s and r correspondingly.
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Figure (2.2a) illustrates Proposition 1 for this simple 2-sector 2-country case. Sub-figures
(a) and (b) depict the phase diagrams for the considered economy when all spillovers are
positive, prs > 0 ∀r, s ∈ S, i.e. there are no isolated clusters. Sub-figure (a) corresponds to
a more realistic case when intra-sector spillovers are stronger than cross-sector. Sub-figure
(b) illustrates the opposite case. As Proposition 1 states, when there are no isolated clusters
the curves ṫs = 0 and ṫr = 0 intersect only once at point (t̄r, t̄s) in such a way that (t̄r, t̄s) is
a stable BGP. If the two sectors are isolated – psr = prs = 0 – then curves ṫs = 0 and ṫr = 0
merge into one curve, any point on which is a BGP, e.g. both points (t̄r, t̄s) and (t̄r ′, t̄s′)
on Figure (2.2c) are on the BGP. Thus, there exist infinitely many equilibria and the initial
conditions define to which BGP the economy converges.

Notice that under zero cross-sectoral spillovers there also exist unstable balanced growth
paths outside the downward sloping curve ṫs = 0, ṫr = 0. If, say, country j doesn’t have
sector s, i.e. T sj = 0, then referring to Figure (2.2c) the state of the system can be described
by a point on the horizontal axis (ts = 0) that shifts over time to the right. As a result
countries’ production and trade patterns approach complete specialization: country j always
produces only goods r, while country i produces both s and r, yet, its share in sector r is
ever-shrinking. The path is unstable since any transfer of technology that turns T sj into
a positive number will bring the system to an equilibrium on the downward-sloping curve
ṫs = 0, ṫr = 0.

Now let’s consider the forces that govern the dynamics of relative productivities and, hence,
comparative advantage. The first force – let’s name it the country size force – prevents
the relative productivities of country j in both sectors from going to either (∞,∞) or (0, 0).
This force dominates in the North-East and South-West quadrants of Figures (2.2a)–(2.2c).
The explanation for it comes from the fact that each unit of labor in both countries i and j
can generate technologies at the same rate φ, hence, the ratio of productivities on the BGP
will be finite and proportional to the ratio of sizes of the two countries.

The second force – comparative advantage centripetal force – prevents the self-
reinforcing specialization and causes a decline in comparative advantage of each country.
This force dominates in the North-West and South-East quadrants of Figures (2.2a) and
(2.2b). To explain the mechanism that creates it let’s consider a country that can buy at the
same price some mass dT of technologies with productivities drawn from the same Pareto
distribution. For which sector would it buy these technologies? For the least productive one!
To see why, let’s assume that the country in this example is a small open economy with 2
sectors with equal shares in consumption expenditures, αA = αB = 0.5. If we normalize the
income of the rest of the World to 1 then the income of this country can be approximated
by wiLi ≈ 0.5πAi + 0.5πBi . The country will invest the mass of technologies dT in a sector for

which
dπ·i
dT

is the largest. One can show that the expenditure share πXi is an increasing and
concave function in the corresponding TXi . Concavity comes from the fact that the more
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productive is the sector and the larger is its share in expenditures the harder it is to come
up with a technology that would excel the existing high productivity level in this sector.
Thus, the investment in the same mass dT of technologies would have the highest return in
the least productive sector7. The comparative advantage centripetal force can explain why
we observe productivity of sectors with initial comparative disadvantage growing faster and,
as a result, decreasing comparative advantage across countries. The latter salient feature of
the data is documented in [18].

The third force that plays an important role in the described dynamics of comparative
advantage is the comparative advantage centrifugal force. This force emerges from the
fact that, using the wording of the simple example above, it actually costs more to invest
dT in the least productive sector than in the most productive. This happens because to
invest dT in the least productive sector the country should divert some mass of labor to
it from more productive sectors. Under no cross-sector spillovers there are multiple BGPs
in which the comparative advantage centrifugal and centripetal forces equalize each other
– costs or reallocating some marginal amount of labor across sectors are equal to benefits
from such reallocations. Cross-sector spillovers allow to make the “investments” in the
least productive sectors less costly, essentially providing technologies for them from the most
productive sectors “for free” – now there is no need to divert labor to least productive sectors
in order to allow them to catch up. As a result the centripetal force becomes stronger and
all economies converge to the BGP without any comparative advantage. In this chapter I
do not model international technological spillovers, but their presence would work in the
same way as domestic spillovers – they will weaken the centrifugal force and allow the least
productive sectors to catch up without diverting labor from the more productive ones; the
centripetal force will remain the same.

An alternative way to convey the intuition behind Proposition 1 is to consider a simple
example of 2 × 2 economy with and without cross-sector spillovers. Assume that we have
two countries (i and j) and two sectors (r and s) for which Li = Lj and αs = αr and
T si
T ri

=
T rj
T sj

= 10. If pss = prr = 1 and psr = prs = 0 then the equilibrium in which
Lsi
Lri

=
Lrj
Lsj

= 10

will be a BGP. Indeed, in this case sector s in i is 10 times more productive than r, it employs
10 times more labor and generates 10 times more ideas per unit of time than r. Hence, s
grows at the same rate as r (productivity of sector s in i is proportional to (T si )1/θ). So, we
have illustrated that such an equilibrium is a BGP and because number “10” can be replaced
by any other positive number, there is a continuum of such BGPs. Now let’s modify the
assumption of zero inter-sector spillovers and set psr = prs = 0.1. What will happen now is

that labor allocation
Lsi
Lri

=
Lrj
Lsj

= 10 will generate a mass of technologies equal to 2 for sector

7If sectors have different shares in final consumption expenditures then the changes in expenditure
shares dπ/dT should be weighted using the corresponding expenditure shares when defining the return on
investment in dT .
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r in country i and only 10.1 – for sector s. This will allow sector r to catch up with sector
s. The opposite will happen in country j. The international spillovers will act in the same
manner as inter-sector spillovers: even under pss = prr = 1 and psr = prs = 0 sector r in i
disproportionally more technologies than from j than s, thus, r will grow faster up until the
point when relative sizes of both sectors in both countries become the same.

2.3 Economic policy

Technology in the current model is a public good. Sectors differ in terms of how strong are
the externalities that each of them generates. So, some sectors can generate technologies that
are more widely used and, thus, such sectors can be considered core sectors as in [12]. As a
result, there may exist a room for a welfare-improving economic policy when the government
promotes the core sectors to increase productivity in the whole economy. The current section
describes the necessary conditions for such policy and also gives an example of it in a form of
sector-specific taxes. In what follows I assume zero discount rates, so that it is only welfare
on the BGP that is taken into account as a criteria for policy optimality. This assumption
allows me to provide some closed form results to describe the optimal policy.

Let’s modify the above mentioned model in the following way – the government in country
i taxes producers in sector s at rate τ si . Thus, unit costs of producers of variety ω in sector

s of country i at time t is
τsi wi(t)

Zsi (ω,t)
. Collected tax revenue is distributed among households as

a lump-sum transfer. With this modification Equation (2.11) turns into

πsij(t) =
T si (t)

(
wi(t)τ

s
i d

s
ij

)−θ∑
l T

s
l (t)

(
wl(t)τ sl d

s
lj

)−θ (2.24)

Revenue of all producers in sector s of country i now becomes Lsi (t)τ
s
i wi(t). What matters

for the allocation of labor in the current setting and, hence, for utility per capita, are the

ratios of taxes across sectors within each country,
{
τri
τsi

}
s,r∈S

, but not absolute values of taxes

{τ ri }r∈S .

There are several explanations that justify the use of namely this policy tool. First, it
is an indirect and viable tool of economic policy unlike some direct tools such as direct
labor allocation across sectors. Second, in the context of an open economy this tool seems
preferable to any trade policy instruments because it can be easily implemented and it doesn’t
discriminate between . Finally, in the context of the model, introducing sector-specific taxes
is isomorphic to introducing an exogenous component of productivity for a particular sector
in a particular country8. So, the insights obtained from modeling the impact of taxes on the

8Indeed under a country-sector specific productivity shifter Asi – exogenous component of productivity

– the unit costs becomes
wid

s
ij

As
iZ

s
i (ω)

which is equal to the unit costs under taxation
τs
i wid

s
ij

Zs
i (ω)

if τsi = 1/Asi .
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equilibrium outcomes are identical to those that would be obtained under the presence of
exogenous components in sectoral productivity and comparative advantage.

Autarky

To proceed, let’s again consider two extreme regimes of trade and start with autarky.
Countries are isolated, so country indices can be dropped. Normalizing wages in a country to
w = 1, income per capita can be written down as I(t)

L(t)
=
∑

s τ
sls(t). Because of Cobb-Douglas

utility at the level of sector aggregates we have αsI(t) = τ sLs(t) ∀s ∈ S, so the equilibrium
labor allocation depends only on the expenditure shares {αs}s∈S and taxes {τ s}s∈S . Labor
demand is homogeneous in taxes of degree zero, so one can normalize taxes in one sector to
1, say τS ≡ 1. The resulting labor allocation can be obtained as a solution of the system of
equations

τ r =
LS

Lr
αr

αS
, ∀r ∈ 1, . . . , S − 1, (2.25)

subject to the total labor supply constraint
∑

s∈S L
s = L̄.

Price level in sector r is equal to pr(t) = τ rγ (T r(t))−
1
θ , while the number of ideas per

capita along the BGP is T r

L
= φ

g

∑
q p

qrlq. Using these two expressions the BGP level of
utility per capita can be written down as

U

L
=
∏
r

(
αr

pr
I

L

)αr
=

I

γL

(
φL

g

) 1
θ ∏

r

αr
τ r

(∑
q

pqrlq

) 1
θ

αr

(2.26)

To find the optimal taxes I maximize U/L w.r.t τ ’s for any given level of L. For a 2-sector
economy one can show that under equal shares in expenditures – αs = αr = 0.5 – sector r
should be taxed at a higher rate in order to re-allocate labor to sector s if psspsr > prrprs, i.e.
if sector s generates more widely applicable technologies than sector r. Besides, the optimal
tax9 τr

τs
can not be infinitely large – which would result in a collapse of the more heavily

taxed sector r – first, because of love for variety and, second, because having “donor” sectors
that generate more general technologies makes sense only if there are “recipient” sectors that
can adopt those technologies.

An alternative way to think about industrial policy is to consider direct labor re-allocation
across sectors. In this case the social planner solves the following constrained optimization
problem

max
{Ls}s∈S

γ

(
φ

g

) 1
θ ∏
s∈S

Ls(∑
r∈S

prsLr

) 1
θ

αs

, s.t.
∑
r∈S

Lr = L̄, (2.27)

9The optimal tax in a 2-sector economy τ ≡ τs

τr solves the FOC of maximization of the BGP level of U
L

for any level of L: α
r

θ
prrαr

prrαrτ+psrαs + αs

θ
prsαr

prsαrτ+pssαs + 1−αs

τ −
(
1 + 1

θ

)
αr

αrτ+αs = 0.
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the first order conditions for which are

αr

Lr
+
∑
s∈S

αs

θ

prs∑
q∈S p

qsLq
− λ = 0 ∀r ∈ S and

∑
r∈S

Lr = L̄ (2.28)

For any pair of sectors r and v the optimality requires

1

Lr

(
αr +

1

θ

∑
s∈S

αsLrprs∑
q∈S L

qpqs

)
=

1

Lv

(
αv +

1

θ

∑
s∈S

αsLvpvs∑
q∈S L

qpqs

)
(2.29)

From Equation (2.25) one can find the schedule of taxes that results in any particular labor
allocation {Ls}s∈S , including the one described by Equation (2.29).

Equation (2.29) provides a criteria for optimal re-allocation of labor within any pair of
sectors. If under the free market labor allocation (Ls/L̄ = αs ∀s ∈ S) the right-hand side
of Equation (2.29) is larger than the left-hand side then it means that sector r under free
market generates a larger share of technologies for more important sectors than sector v and,
thus, labor should be re-allocated from v to r. Clearly, if both sectors generate technologies
of the same applicability (pvs = prs ∀s ∈ S) then labor should not be re-allocated across
these two sectors comparing to the free market outcome when Lr

Lv
= αr

αv
. One can also notice

that for a diagonal matrix of spillovers (pqs = pq if q = s and pqs = 0 if q 6= s) the first order
conditions turn into Lr = αrL̄ ∀r ∈ S which describes exactly the labor allocation that
would took place without any policy interventions. Thus, as follows from this simple 2 × 2
example, the labor re-allocating policy in autarky can be welfare-improving only if there
exist positive inter-sector spillovers – intra-sector spillovers alone are not enough to create
a room for such policy. In fact, under diagonal matrix of spillovers the described autarkic
economy is isomorphic to the one with Marshallian externalities within each sector where

output in each sector s is proportional to (Ls)1+ 1
θ . Finally, notice that asymmetry either

in expenditure shares across sectors or in spillovers is required. If αs = 1/S ∀s ∈ S and
prs = psr ∀r, s ∈ S then, again, there is no room for welfare-improving policy.

Open economy

Under costless trade the asymmetric taxation re-allocates labor in the same manner as
in autarky, yet, now this mechanism involves some additional factors. First, love for variety
no longer impedes re-allocation, so the responsiveness of labor demand to taxes should be
higher. Second, economic policy of trade partners comes into play. E.g. if country i through
taxation re-allocates labor from a sector with narrowly-applicable technologies to a sector
with widely-applicable technologies then, absent any economic policy in country j, labor
in j will be re-allocated in the opposite direction. As a result, in the BGP economy i will
have higher number of ideas per capita (T/L) in each sector than country j. So, i will be
characterized by higher welfare, though, both economies will be growing at the same rate
g/θ.
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To provide a more detailed description on the role of spillovers for the implications of the
outlined policy let’s first consider the 2×2 model with costless trade and zero inter-sector
spillovers: psr = 0, pss > 0. Zero inter-sector spillovers imply that on the BGP T si = φ

g
pssLsi

which together with sector labor demand wiτ
s
i L

s
i = αsπsi I results in either

τsi
τsj

=
τri
τrj

or some

L·· = 0 – corner solution. In order to describe the behavior of the model under different taxes
we find all {tr, ts} that characterize ṫs = 0 and ṫr = 0. For ṫs = 0 these loci are described by
ts = 0 and

ts =
Lsj
Lsi

=
Lj(A+ 1 + Ftr)− LiBFtr

Li(BFtr + 1 + Ftr)− LjA
, (2.30)

while for ṫr = 0 – by tr = 0 and

tr =
Lrj
Lri

=
Lj(C + 1 +Hts)− LiDHts

Li(DHts + 1 +Hts)− LjC
, (2.31)

where A ≡ αr

αs
τsi
τri
≡ C−1, B ≡ αr

αs
τsj
τrj
≡ D−1, F ≡

(
τrj
τsj

τsi
τri

)−θ
≡ H−1.

It can be shown that symmetric taxes do not eliminate multiplicity of BGPs and result
in a “corner” BGP only is the economy starts with absent sectors in some countries. To be
more clear let’s consider symmetric countries Li = Lj with symmetric consumption shares

αs = αr and symmetric taxes
τsi
τri

=
τsj
τrj

= τs

τr
> 1 (w.l.o.g). Figure (2.3) illustrates a new

equilibrium – blue lines for ṫs = 0 and red lines for ṫr = 0 – and the old equilibrium – a
downward sloping gray dashed line. Both loci go through point (1,1) because symmetric
taxes do not introduce any asymmetry if initially productivities were the same. Downward
sloping curve is described by equation ts = (1+A)+tr(1−A)

tr(1+A)+(1−A)
, A ≡ αrτs

αsτr
> 1. As one can see,

there exist infinitely many interior solutions when both countries produce in both sectors.
Besides, unlike in the case of no taxes, now there exist four corner solutions – two with
complete specialization as before and two new, with incomplete specialization. The corner
solution with complete specialization emerges when country j starts without sector r; with
incomplete specialization – if j starts without s. The other two corner solutions are the
symmetric cases of the above mentioned ones but when i starts either without s or r.

When both countries start with non-zero productivity in each sector the symmetric tax
on sector s (equivalently, subsidy of r) has asymmetric impact on specialization and welfare.
First, each point on the curve ṫs = 0, ṫr = 0 is characterized by the same total utility Ui+Uj
which decreases whenever τs

τr
deviates from 1. Second, the allocation of welfare along the

curve is not the same – as the BGP point (tr, ts) moves upwards Uj increases while Ui
declines. Thus, if the economy started at point A where j specialized more in s while i –

in r and both countries had equal welfare per capita
(
Ui
Li

=
Uj
Lj

)
, the tax on s (subsidy for

r) will improve j’s relative productivity in both sectors and make it better off comparing
to i, yet, it will also shrink the total size of the “pie” so that the aggregate welfare will
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Figure 2.3: Symmetric taxes under zero inter-sector spillovers.

decline. The intuition for changes in relative productivity across countries can again be
described in terms of “returns” to an additional mass of technologies in a more versus less
productive sectors. The logic is similar to what we saw before: the same mass of technologies
will be applied to a greater number of varieties in a less productive sector than in a more
productive one. Symmetric taxes on a more productive sector s in country j re-allocate
labor towards less productive sector r, increasing productivity of r by a larger factor than
are the losses in productivity in s. On the contrary, country i re-allocates labor from a less
productive s to a more productive r, losing a significant portion of productivity in s and
gaining disproportionately less in productivity in r. As a result, relative productivity of

country j increases in both sectors. It can be shown that under zero taxes
d logUj

d log τs/τr
=

lri−lrj
2

,

thus, if country j specializes more in sector s it will gain (and country i will lose) from
some positive tax on s/subsidy for r conditional on this tax/subsidy being symmetric across
countries. Since the relation between Uj and τ s/τ r is not monotonic there exists an optimal
level of τ s/τ r after which Uj will decrease.
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Symmetric taxes across countries is a very particular case of policy10, so now we consider
a more general case of asymmetric taxes. For simplicity and w.l.o.g. assume τ ≡ τ sj > 1 =
τ si = τ ri = τ rj , yet, avoid the assumption on symmetry in sectors’ shares and country size
because depending on these characteristics the outcomes of taxation will be different. Equa-

tions (2.30) and (2.31) turn into ts = L(α+1)+tr(Lτθ−ατθ+1)
tr(τθ+ατθ+1)+1−Lα and tr = L(α−1+1)+ts(Lτ−θ−α−1τ−θ−1)

ts(τ−θ+α−1τ−θ−1)+1−Lα−1 ,

where L ≡ Lj
Li
, α ≡ αr

αs
. Figures (2.4a)-(2.4c) depict the corresponding loci for ṫs = 0 and

ṫr = 0 and the resulting patterns of specialization. Asymmetric taxes under zero cross-sector
spillovers result in corner BGPs: one sector in one country collapses. Namely, if relative size
of country j is smaller than the relative share of sector r – L < α – then taxation of s in j
will result in j’s complete specialization in r while i will produce both r and s. This BGP is
illustrated by Figure (2.4a) where the equilibrium relative productivity stabilizes at ts = 0

and tr = L(α+1)
α−L . On the contrary, if j is large enough – L > ατ – then the reallocation of

labor from s to r inside country j will be associated with more labor allocated to s in i, so
that ultimately i will produce only s while j will produce both. As Figure (2.4c) shows, in
this case the relative productivities ts and tr approach L−ατ

1+ατ
and ∞ correspondingly. In the

intermediate case – α < L < ατ – complete specialization will be observed: j will produce
only r and i – only s: in Figure (2.4b) ts → 0 and tr →∞.

Now let’s turn to the welfare implications of each of these resulting specialization patterns.
As one can show asymmetric taxes in the current setting can not make country j better off:
under

Lj
Li
< αr

αs
its utility per capita remains the same as under zero taxes, while under

Lj
Li
> αr

αs

it decreases with τ . So we can conclude that under zero cross-sector spillovers no unilateral
industrial policy can make country j better off. Coordinated symmetric policy can improve
country j welfare only at a cost of country i. To summarize this section on economic policy in
the open economy under zero inter-sector spillovers: we saw that no labor re-allocating policy
can improve the total welfare of the World and no countries have incentives to implement
such policy unilaterally. Symmetric economic policy under the diagonal matrix of spillovers
can redistribute welfare across trading partners, but will unambiguously decrease the total
welfare. Thus, positive inter-sector spillovers are necessary for the possibility of welfare-
improving policy. It follows from the latter that under zero inter-sector spillovers it really
doesn’t matter in what products the country specializes.11

10Although a particular case of policy, the symmetric taxes exemplify well the case of industrial policy
motivated as a “response to foreign targeting” as it is described in [17]. This example shows that country i
is strictly worse off under such response to the policy of j and, as we will see later, under zero inter-sector
spillovers country j would not unilaterally initiate any policy if it didn’t expect a symmetric response from
country i.

11This result, as I mentioned above, if isomorphic to the result with equal Marshallian externalities across
sectors. Yet, it crucially depends on the equality of θ across sectors. If the latter are allowed to vary across
sectors then then even under diagonal matrix of spillovers it would make sense to allocate labor to sectors
with lower θ, i.e. to those with thicker tail of distribution of productivity.
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Figure 2.4: Asymmetric taxes under zero inter-sector spillovers.
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The welfare implications of trade openness may be different in the case of positive inter-
sector spillovers. This comes from the fact that under positive spillovers labor re-allocation
can improve welfare. Trade openness also leads to labor re-allocation which is not necessarily
aligned with the optimal one. As before, let’s start with the case of symmetric taxes on sector
s, τ si = τ sj > 1. As Figure (2.5) shows, under symmetric tax both loci ṫr = 0 and ṫs = 0 will

Figure 2.5: Symmetric taxes under positive inter-sector spillovers.

rotate clockwise, yet, symmetric taxes will not introduce any asymmetry to the BGP – it will
remain on the 45-degree line meaning no comparative advantage in either of the countries
in the long-run. What will change is the allocation of labor within each country, relative
productivity between sectors within countries and, hence, intensity of spillover flows between
sectors. In the same manner as re-allocation of labor towards core sectors in the autarky
helped to increase welfare, symmetric taxes that favor core sectors in the open economy
increase the welfare in each country and the World as a whole (the whole World can be
treated as an autarky).
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For asymmetric taxes let’s again consider the case of country j taxing sector s: τ sj >
1 = τ si = τ rj = τ ri . Now sector s has a comparative disadvantage in country j, while r –
comparative advantage. This tax-wedge will shift the BGP downwards, so that in the long-
run country j has a comparative advantage in sector r, while country i – in sector s. This
outcome is illustrated by Figure (2.6). The straightforward result of taxation is that the

Figure 2.6: Asymmetric taxes under positive inter-sector spillovers.

employment in the taxed sectors decreases comparing to the no-tax scenario and this labor
allocation is preserved on the BGP. This is especially important if we think about exogenous
factors of comparative advantage (e.g. deposits of natural resources) as taxes or subsidies
on particular sectors. Trade openness without any policy interventions will result in lower
employment in sectors that are more heavily “taxed”, i.e. those that originally are at a
disadvantaged position due to exogenous factors. If the disadvantaged sectors are the core
sectors, then productivity in the whole economy will decline under trade openness comparing
to what it would be under the autarkic labor allocation. This mechanism is similar to the one
described in [12], yet, the consequences of core sectors’ shrinkage here is not a zero growth
rate of the economy (in the long-run all economies are growing at rate g/θ > 0 regardless of
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their sectoral composition), but a lower productivity and, potentially, lower welfare on the
BGP.

To illustrate the last point let’s add some more details to out 2-country 2-sector example.
For simplicity let’s consider i and j of equal size (Li = Lj) with sector r and s with equal
expenditure shares (αr = αs). Assume that sector r is a core sector, i.e. it generates
more widely applicable technologies than sector s: prr = 0.9 = pss, prs = 0.7, psr = 0.1.
Let’s also assume that country i has some exogenous comparative advantage in a non-
core sector s which is expressed by an equivalent exogenous subsidy τ si < 1. Figure (2.7)
illustrates the utility per capita of country i on the BGP under autarky and frictionless
trade depending on the magnitude of exogenous comparative advantage in s. The horizontal
axis shows the extent of exogenous comparative advantage of s: small τ si 1 means that sector
s receives a large exogenous “subsidy” comparing to sector r. In other words, exogenous
“subsidy” means that for the same number of technologies accumulated in s and r in country
i, sector s will be more productive than r by factor 1/τ si . When country i opens to trade it
observes two forces affecting its welfare. First, it observes lower prices for varieties in which
country j is more productive than i. This is a standard force of comparative advantage and
specialization in varieties with higher productivity which unambiguously leads to an increase
in welfare of i with opening to trade. Second, the labor is reallocated to the non-core sector
s with an exogenous comparative advantage: now varieties of sector r can be imported and
demand for them no longer leads to the previous relatively high employment in r. This
force results in a decreased productivity of economy i and a decrease in its welfare. For this
example the second force dominates in the interval of τ si ∈ (0.53; 0.76) which means that
country i with τ si in this interval may be better off in autarky than under frictionless trade.
An interesting observation is the non-monotonicity of gains from trade in the strength of
exogenous comparative advantage. Countries with either very low (τ si close to 1) or very
high (τ si close to 0) exogenous comparative advantage in sector s would gain from trade.
The former ones observe weak forces that pull their labor from r to s with trade openness
because the exogenous advantage of s is weak. The latter ones have a significant share of
labor allocated to s even in autarky, thus, trade openness doesn’t have that much labor to
re-allocate from r to s. It is the countries with intermediate levels of exogenous advantage
in a non-core sector that may lose from openness to trade.

Unlike for the autarky, criteria for the optimal policy in the open economy does not have a
closed form expression. To show this let’s write down the welfare maximization problem of a
social planner. Let’s define the optimal tax schedule of country i as a set of taxes {τ si }s ∈ S
that maximizes utility per capita in country i on the BGP, ui ≡ Ui

Li
.

ui ≡
Ui
Li

=
∏
r∈S

(
αr

pr
Ii
Li

)αr
, pr = γ

(∑
j∈N

T rj (wjτ
r
j )−θ

)− 1
θ

,
Ii
Li

=
∑
r∈S

τ ri l
r
iwi, (2.32)
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Figure 2.7: Exogenous sector productivity and gains from trade.

where lsi ≡ Lsi/Li. Substituting the last two expressions into the first one and taking logs of
both sides of the resulting expression we obtain

log ui =
∑
r∈S

αr logαr−γ+log
∑
r∈S

τ ri l
r
iwi+

1

θ

∑
r∈S

αr log

(∑
j∈N

Lj(wjτ
r
j )−θ

φ

g

∑
s∈S

psrlsj

)
, (2.33)

where I also made use of
T rj
Lj

= φ
g

∑
q p

qrlqj . To find the optimal taxes we need to know

the responses of wages and labor allocations across all sectors and countries to changes

in taxes in country i –
{
∂lrj
∂τsi

}
,
{
∂wj
∂τsi

}
, i, j ∈ N , r, s ∈ S. To find these derivatives

at BGP one can use the implicit function theorem for the system of equations in l’s and

w’s: τ si l
s
iwi = πsiα

sI, where I =
∑

j

∑
s τ

s
j l
s
jwj, and πsj =

T sj (wjτ
s
j )−θ∑

k T
s
k (wkτ

s
k)−θ

. This exercise of

computing the optimal policy for an open economy will be completed in the next section
using the calibrated model for the US.

To close the current section I would like to provide a numerical example that illustrates
the welfare implications of industrial policy under positive inter-sector spillovers in an open
economy. Consider the same two symmetric economies as in the example above. But now
let’s assume that both countries start with zero exogenous factors of comparative advantage
and can choose different tax rates for sector s: τ si and τ sj .12 Figures (2.8a)–(2.8b) illustrate

12Taxes on sector r in both countries can be normalized to 1.
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Figure 2.8: Utility per capita under positive inter-sector spillovers and sector-specific taxes.
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the BGP levels of utility per capita that can be attained by countries i and j depending
on taxes τ si (horizontal axis) and τ sj (vertical axis) that each of them imposes. Solid black
curves in Figure (2.8a) illustrates the optimal responses of country i to taxes imposed by
country j (blue lines denote the optimal responses of their trade partners). As follows from
Figure (2.8a), a given country, conditional on no taxes introduced by its trade partner, has
an incentive to subsidize the core sector r: given τ sj = 1 the optimal τ si > 1. Same is true
for country j. As one can see from Figure (2.8b) the total welfare is maximized at some
τ sj > 0, τ si > 0 which is similar to the prediction obtained for autarky if we consider the
whole world to be an autarky – re-allocation of labor by all countries towards the core sector
r increases the welfare globally. For this particular example one can compute that under
autarky the optimal labor allocation is lr = 52%, ls = 48% for both countries which is
attained by tax τ s = 1.0844. If both economies can trade at zero cost and only i implements
the industrial policy, then its optimal labor allocation in i turns into lri = 63% and lsi = 38%,
yet, the required tax is now smaller – τ si = 1.0622. In other words, under costless trade
country i doesn’t need to produce all varieties of the non-core sector r itself and can allocate
even more labor to the core sector s than in autarky. The labor demand is now more
responsive to industrial policy, so the larger re-allocation is achieved with smaller taxes.
One interesting question for further research is what would happen if country j can respond
to taxes introduced in i and whether this game of subsidizing the core sectors has a Nash
equilibrium. The second question is – provided that the Nash equilibrium exists, does it
result in an optimal level of global welfare or is some coordination between the countries
required for attaining the maximum of global welfare.

2.4 Calibration

In this section I quantify the matrix of spillovers and discuss calibration of other parame-
ters. As Equations (2.29) and (2.32) show, one need parameters θ, {αs}s∈S , {pqs}q,s∈S and
{Li}i∈N to characterize the optimal industrial policy (the last set is needed for the open
economy case, but not for the autarky).

The parameter that describes spillovers from sector q to sector s has a straightforward
interpretation – pqs is a probability of an event that a random technology created in sector q
is used in producing any randomly picked variety in sector s. There exists a vast literature
in urban economics and economic geography that estimates the strength of technological
spillovers. The most recent example is the paper by [11]. The authors of that paper measured
the strength of spillovers between sectors s and q as a share of citations generated by patents
in sector s that are attributed to sector q:

pqsEGK =
Cqs∑
k∈S Cks

, (2.34)
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where Cqs is the number of citations sent from s to q and, hence, flows of ideas from q to
s.13 Although this metric quantifies the importance of sector q as a source of ideas for sector
s, it also reflect the size of sector q, not only the extent of applicability of ideas from q.
As an illustration, let’s assume that sector q has 99% of all available ideas (patents) while
sector s – only 1%. Let’s also assume that ideas from q have the same probability of being
used and cited by any patent in s as ideas from s (pqs = psq). If we measure the extent of
applicability of ideas from q and from s in sector s with p·EGK we will obtain pqsEGK = 0.99
and psqEKG = 0.01.

To obtain the estimates of {pqs} that reflect only probabilities of cross-sector spillovers
but not size of sectors I derive two estimators for {pqs} which I use with the US and Japan
patents data. Referring to my model, I treat each patent as a technology – when it is cited,
and as a variety which receives a new technology – when it cites other patents. For estimation
of {pqs} I follow two approaches that use somewhat different dimensions of the patent data
and, thus, allow me to check the consistency of the estimates. The first approach – name
it a “cohort approach” – splits all patents into cohorts based on the year of issuance and
the assigned sector: patents issued in year t in sector q enter cohort (q, t). Each cohort (q, t)
is characterized by the total number of patents in it Q(q, t), by the number of citations sent
to any previous cohort (s, t′), C(sq, t′, t), and received from any subsequent cohort (r, t′′),
C(qr, t, t′′), where t′ < t < t′′. Let’s consider two cohorts (q, t) and (r, t′′) where t < t′′. Each
idea from (q, t) can be applied to any variety in (r, t′′) with probability pqr. If the total number
of ideas and varieties in q and r are Q(q, t) and Q(r, t′′) correspondingly, then the number of
citations from (r, t′′) to (q, t) will be distributed as C(qr, t, t′′) ∼ Poisson (pqrQ(q, t)Q(r, t′′)).
Figure (2.9) illustrates this example. Considering only the origin and the destination cohorts

Figure 2.9: Cohort approach to estimating the {pqs} matrix

that are separated by some constant time interval ∆t I obtain the MLE estimator for pqr

pqr =

∑
tC(qr, t, t+ ∆t)∑

tQ(q, t)Q(r, t+ ∆t)
, (2.35)

13The subscript in pEGK stands for the initials of the authors of [11].
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where C(. . . )’s and Q(. . . )’s are directly observable. When implementing this method I
consider all patent registered within one year in an origin sector q as the origin cohort and
patents registered in a destination sector r within 2-11 years after the origin cohort – as the
destination cohort. Using pairs of cohorts separated by the same time interval I disregard
some citation data, yet, it allows me to exclude the impact of time patterns of citations
arrivals on the estimates.

In the second approach, which I name a “sequence approach”, I use the information
on the order in which patents were issued (it follows immediately from the patent numbers).
Let’s consider a patent ι originating in sector q. Denote the number of patents in a destination
sector r that were issued after ι as Nι(r), out of which Kι(r) actually cited ι. One can treat
the issuance of each of the Nι(r) patents as a trial in which a positive outcome that ι is cited
has probability pqr. Then the total number of citations received by ι is a random variable
Kι(r) ∼ Poisson(pqrNι(r)). The number of total citations received by all patents in sector
q by patents in sector r is

∑
ιKι(r) ∼ Poisson(

∑
ι p

qrNι(r)) from where the MLE estimator
for pqr is equal to

pqr =

∑
ιKι(r)∑
ιNι(r)

, (2.36)

where the sums are computed across all patents ι that have ever been registered in sector
q. The sequence approach uses all the available data on citations, but is likely to give
lower estimates than cohort method because the cohort method considers only the part
of patent life-cycle in which patents receive citations at highest rates. Yet, what matters
for the optimal policy exercise is the relative size between spillover probabilities and not
their absolute values, so that the absolute values of {pqs} can be scaled either upwards or
downwards.

For calibrating the probabilities of spillovers I used the US patent data for patents issued
in 1976–2006. Out of the whole pool of patents I consider the ones that excel the 50%
threshold of citations for patents of a given age (which each patent had in 2006) and from
a given sector of origin. Although this truncation shifts absolute estimates of spillover
probabilities upwards, it allows to consider a pool of more homogeneous patents in terms
of their significance. For the estimation procedure the data is aggregated into 93 sectors
following the BLS-NAICS classification. For matching the international patent categories
(IPC) to NAICS codes I use the probabilistic concordance matrices from [19]. One obvious
downside of the existing concordance schemes is that they allow to match patents to the
fields of economic activity that employ roughly 30-40% of labor. Namely, concordances exist
for manufacturing, agriculture, utilities, mining and construction, but not for retail and
wholesale trade, transportation and all kinds of services.

As Figure (2.10) shows, both above described methods for estimating {pqs} produce very
similar results – the fitted line (black) is very close to the 45-degree line (red). As an
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Figure 2.10: Logs of estimated spillover probabilities under cohort and sequence approaches.

additional check, I compare the estimated log-probabilities of spillovers for the USA to those
of Japan. Figures (2.11a) and (2.11b) depict the estimates for the two countries. Visually, the
heat-maps look similarly, though, for Japan absolute values of estimates are on average lower.
Figure (2.12) confirms both the high correlation between the estimates and the difference
in the average values (red line is, again, a the 45-degree line, while the black one is a fitted
line). The difference in absolute values might be attributed to differences in the procedures
of patenting and citing across the two countries.

In the model what matters for spillovers is the rate at which a unit of labor in sector q
generates technologies for sector s, i.e. φpqs. In the data this rate may differ across sectors
both due to variation in the probabilities {pqs} and in intensity of idea-generating process
across sectors, {φq}. To address this issue I calibrate the vector of intensities {φq} (φq – a
number of patents generated in sector q per 1 million hours of working time) and use it to
normalize the matrix of spillovers. Namely, the correspondence between parameters in the
model and the data is φpqs = φq

maxr∈S{φr}
p̂qs, where p̂qs are the above described estimates of

spillover probabilities.

The second set of parameters that is required for the optimal policy exercise are the
expenditure shares, {αq}q∈S . I calibrate these shares using the BLS input-output tables:

αs =
Xs
i∑

q∈S X
q
i

, (2.37)
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Figure 2.11: Estimated log-probabilities of spillovers
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Figure 2.12: Estimated log-probabilities of spillovers for the USA and Japan

where Xs
i stands for total expenditures of country i for output of sector s. For calibrating

the distribution of technologies I use the estimate of θ = 8 which is in line with the estimates
suggested in [9]. Finally, for computing the optimal policy in the open economy one needs
the vector of labor force distribution across countries, {Li}i∈N . I calibrate the latter using
the data on economically active population provided by International Labour Organization
(ILO).

2.5 Optimal policy

In this section I describe the policy that maximizes country’s welfare on a balanced growth
path. The first exercise uses the calibrated model and computes the vector of optimal labor
allocation for the autarky. For the ease of computation and interpretation I aggregate the
data to 24 sectors. The first 23 sectors, results on which I report, correspond to those
for which the IPC-NAICS concordances exist. The 24th sector is a composite of services
for which there are no such concordances, hence, it is treated as a stagnant one. To solve
the optimization problem (2.27) I use the first order conditions (2.29). Taxes that result
in the optimal labor allocation are computed using Equation (2.25). The second exercise
considers a regime of frictionless trade between two countries of equal size, one of which
chooses optimal policy, while the other doesn’t implement any policy.
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The results of these exercises are presented in Table (2.1). The first column of the table
shows the actual shares of non-service labor force allocated across non-service sectors com-
puted for the US in 1990-2006, lq. The second column describes the allocation of labor across
non-service sectors in the BGP – according to Proposition 1, allocation of labor would be
proportional to shares of sectors in consumption, αq. Columns 3 and 4 contain the optimal
allocation of labor chosen by the optimizing country to maximize BGP utility in autarky
and frictionless trade correspondingly – lqaut and lqopen. Finally, columns 5 and 6 provide us
with sector-specific taxes that the optimizing country should impose to achieve the optimal
labor allocation – τ qaut and τ qopen.14 The optimizing social planner would allocate more labor

Table 2.1: Free-market and socially optimal labor allocation under autarky and frictionless
trade.

Sector lq αq lqaut lqopen τ qaut τ qopen
Agriculture,fishing and hunting 8.37% 3.93% 3.66% 3.56% 0.956 0.998
Mining 2.27% 8.63% 8.59% 9.03% 0.893 0.911
Utilities 2.34% 5.38% 5.34% 5.60% 0.895 0.909
Construction 27.06% 15.77% 14.37% 12.41% 0.975 1.032
Food manufacturing 5.43% 6.62% 6.29% 6.41% 0.935 0.955
Beverage and tobacco 0.72% 1.98% 1.98% 2.09% 0.888 0.902
Textile and leather products 4.43% 3.20% 3.28% 3.42% 0.868 0.898
Wood products 2.11% 1.57% 1.45% 1.32% 0.967 1.010
Paper products 2.21% 2.32% 2.24% 2.31% 0.921 0.937
Printing and related activities 2.79% 1.44% 1.31% 1.19% 0.976 1.051
Petroleum and coal products 0.49% 6.17% 6.44% 6.82% 0.851 0.877
Chemical manufacturing 3.56% 7.62% 8.78% 8.91% 0.772 0.839
Plastic and rubber products 3.13% 2.62% 2.54% 2.60% 0.919 0.947
Nonmetallic mineral products 1.93% 1.57% 1.66% 1.72% 0.840 0.882
Primary metal 2.22% 3.13% 3.04% 3.11% 0.916 0.933
Fabricated metal products 5.90% 3.96% 3.82% 3.88% 0.921 0.954
Machinery 4.99% 3.85% 3.95% 4.13% 0.865 0.896
Computers and electronics 5.92% 5.21% 6.33% 6.11% 0.733 0.843
Electrical equipment 2.00% 1.84% 1.87% 1.94% 0.876 0.915
Transportation equipment 7.27% 9.72% 9.52% 9.84% 0.907 0.917
Furniture and related products 2.27% 1.23% 1.18% 1.19% 0.928 0.953
Medical equipment and supplies 1.06% 0.81% 0.95% 0.95% 0.764 0.847
Other manufacturing 1.54% 1.40% 1.40% 1.45% 0.893 0.920
lq – actual labor allocation, αq – free market BGP shares of labor, lqaut – closed economy optimal labor allocation,

lqopen – open economy optimal labor allocation, τqaut – closed economy optimal taxes, τqopen – open economy optimal taxes.

to such core sectors as “Computers and electronics” (+19.3% in autarky and +15.8% in

14The taxes imposed on the service sector – which is not shown in the table – are normalized to 1.
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open economy to the share of sector employment under no policy intervention), “Medical
equipment and supplies” (+15.1% and +15.0%), “Chemical manufacturing” (+14.1% and
+15.6%). Among sectors that generate technologies for others at the lowest rates are “Con-
struction” (-9.2% and -23.9%), “Printing and related support activities” (-9.4% and -18.9%)
and “Wood products” (-8.4% and -17.1%) and “Agriculture” (-7.1% and -10.1%).

The described exercises also allow me to consider the welfare implications of different labor
allocations:

log

(
U

L

)∗
− log

(
U

L

)
=
∑
q

αq log

(
lq∗

lq

)
+
∑
n

αn

θ

(∑
q p

qnlq∗∑
q p

qnlq

)
(2.38)

According to this formula, shifting the employment structure from the actual to the autarky-
optimal one can raise productivity in the US in the BGP by 3.5% (the second summand).
The whole increase in welfare is estimated at 15.5%. This number is large, yet, 12.5%
out of it comes from the assumption that the labor allocation and production defines the
consumption structure. Re-allocation of labor from free market BGP to autarky-optimal
structure increases welfare by 0.3%. A more sizable is the impact of industrial policy in
an open economy. The optimizing country can increase its BGP utility by 2.2% which,
unsurprisingly, comes at the cost of non-optimizing country – the latter loses 3.7% in welfare.

2.6 Conclusion

In this chapter I build a dynamic trade model with technological spillovers and show
that under general conditions it is characterized by a unique balanced growth path. The
model provides a framework for predicting the long-run consequences of trade and industrial
policies. I derive the conditions that allow to identify the core sectors and design the optimal
industrial policy in autarky and open economy. For quantifying the probabilities of spillovers
I suggest and use two approaches consistent with the modeled mechanism of technology-
generating process. I use the calibrated model for computing the optimal vector of labor
allocation and show that in the balanced growth path such policy can provide a 3.5% increase
in productivity of the whole economy.

There are several immediate extensions for all three parts of the chapter – model, data
and the optimal policy. The first extension to the model can be a possibility of international
technological spillovers. In my intuition such spillovers will strengthen the centripetal forces
of comparative advantage and will lead to a faster convergence towards the BGP. A simple
example that supports this intuition is outlines at the end of Section 2. Presence of input-
output linkages and positive trade costs are among other interesting theoretical extensions.
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The calibration and optimal policy parts will benefit a lot from new concordance schemes
that allow to quantify the rates of flows of ideas across all fields of economic activity, including
services. Precise estimates of absolute levels of such rates would allow to talk about the speed
of convergence and take the transition paths into account when designing the optimal policy.
Finally, the strategic interaction between countries in the game of subsidizing the core sectors
brings in the question of the existence of the Nash equilibrium in this game and its optimality
for the global welfare.
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Appendix A

Log-linearization of the price setting
problem

One can write down the expression for profits of producers in sector j at period t as

πt,j =
[(
P̌t,j
)1−θ − ψt,j

(
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Capital letter denote variables in levels, X̄ denotes the steady state value of variable X,
lower case variables denote log-deviations from the steady state: xt = lnXt − ln X̄. p̌t,j
denotes the log-deviation of the price that is actually set by producers in sector j, while
{pt,i}Ji=1 denote the log-deviations of sectoral price levels from their steady states. Note,
that at the steady state π̄j = Āj − B̄j, while both functions e1(·) and e2(·) at the steady
state are equal to 1.

Using the second-order Taylor approximation around the steady state, an approximated
profit of a producer in sector j at period t that is setting price p̌t,j can be written down as:

π̂t,j (p̌t,j, pt,j, {pt,i}i 6=j, yt,j,Wt,j) ≈ π̄j + π̄1,j p̌t,j +
1

2
π̄11,j (p̌t,j)

2 + π̄12,j p̌t,jpt,j+

+
∑
i 6=j

π̄13(i),j p̌t,jpt,i + π̄14,j p̌t,jyt,j + π̄15,j p̌t,jWt,j + Θj
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where

π̄1,j = (1− θ)Āj + θB̄j ≡ 0

π̄11,j = (1− θ)2Āj − θ2B̄j = −θB̄j

π̄12,j = ξjj (1− sj)θB̄j

π̄13(i),j = ξji (1− sj)θB̄j

π̄14,j = 0

π̄15,j = (1− θ)Āj

Finally, using the above derive expressions, one can show that approximated one-period
profit loss from setting a suboptimal price p̌t,j when the optimal one is equal to p∗t,j can be
expressed as:

π̂t,j
(
p∗t,j, pt,j, {pt,i}i 6=j, yt,j,Wt,j

)
− π̂t,j (p̌t,j, pt,j, {pt,i}i 6=j, yt,j,Wt,j) ≈

|π̄11,j|
2

(p̌t,j − p∗t,j)2,

where I also make use of the log-linearized expression for the optimal price p∗t,j = −Wt,j +∑J
i=1 ξ

j
i (1− sj)pt,i.
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Appendix B

Solution of the forward-looking
system

The price-setting mechanism in the considered economy is described with the following sys-
tem of log-linearized equations:

p∗t,j = −Wt,j +
J∑
i=1

ξji (1− sj)pt,i (B.1)

p̌t,j = (1− δjβ)
∞∑
s=1

(δjβ)τEt
(
p∗t+s,j

)
(B.2)

pt,j = (1− δj)p̌t,j + δjpt−1,j (B.3)

Wt,j = Wt−1,j + ut,j, ut,j
iid∼ N(0, σju) (B.4)

Equation (B.4) can be rewritten in iterative form as

p̌t,j = (1− δjβ)p∗t,j + δjβEtp̌t+1,j (B.5)

Combining Equations (C.1) and (B.5) one can write down:

p̌t,j = δjβEtp̌t+1,j + (1− δjβ)

(
−Wt,j +

J∑
i=1

ξji (1− sj)pt,i

)
(B.6)

For every industry j out of J we have a system of 3 equations – (C.2), (B.3) and (B.6) – 3J
equations in total. In the matrix form this system of 3J equations can be written down as:1 0 0

0 1 0
α β γ


︸ ︷︷ ︸

≡A

 Wt

pt
Etp̌t+1

 =

1 0 0
0 ∆ ϕ
0 0 1


︸ ︷︷ ︸

≡B

 Wt−1

pt−1

p̌t

+

1
0
0

 [ut] , (B.7)
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where pt, Wt, p̌t and ut are J × 1 vectors, 0 denotes J × J matrix of zeros, 1 denotes J × J
identity matrix. The other elements are:

∆ =


δ1 0 . . . 0
0 δ2 . . . 0

. . . . . .
. . . . . .

0 0 . . . δJ

 , α =


(δ1β − 1) 0 . . . 0

0 (δ2β − 1) . . . 0

. . . . . .
. . . . . .

0 0 . . . (δJβ − 1)

 ,

β =


(1− δ1β)(1− s1)ξ1

1 (1− δ1β)(1− s1)ξ1
2 . . . (1− δ1β)(1− s1)ξ1

J

(1− δ2β)(1− s2)ξ2
1 (1− δ2β)(1− s2)ξ2

2 . . . (1− δ2β)(1− s2)ξ2
J

. . . . . .
. . . . . .

(1− δJβ)(1− sJ)ξJ1 (1− δJβ)(1− sJ)ξJ2 . . . (1− δJβ)(1− sJ)ξJJ

 ,

γ =


δ1β 0 . . . 0
0 δ2β . . . 0

. . . . . .
. . . . . .

0 0 . . . δJβ

 , ϕ =


(1− δ1) 0 . . . 0

0 (1− δ2) . . . 0

. . . . . .
. . . . . .

0 0 . . . (1− δJ)


The following steps make use of the solution approach for a forward looking system with
rational expectation that was first described in Blanchard and Kahn (1980). Pre-multiplying
both sides of Equation (B.7) by A−1 one can re-write it as Wt

pt
Etp̌t+1

 = A−1B

 Wt−1

pt−1

p̌t

+ A−1

1
0
0

 [ut] , (B.8)

Using the eigen-decomposition we can write A−1 · B = V −1 · L · V , where L is a diagonal
matrix of eigenvalues of A−1 ·B, eigenvalues are ordered by their absolute values in ascend-
ing order (smallest in the top left corner, largest – in the bottom right corner), V −1 is a
matrix of corresponding eigenvectors (order of eigenvectors in V −1 correspond to the order
of eigenvalues in L). Pre-multiplying both sides of Equation (B.8) by V we obtainV11 V12 V13

V21 V22 V23

V31 V32 V33

 Wt

pt
Etp̌t+1

 =

L1 0 0
0 L2 0
0 0 L3

V11 V12 V13

V21 V22 V23

V31 V32 V33

 Wt−1

pt−1

p̌t

+

+

V11 V12 V13

V21 V22 V23

V31 V32 V33

 · A−1 ·

1
0
0

 [ut]

Now, introducing new variables with ·̃ as W̃t

p̃t
Et ˜̌pt+1

 =

V11 V12 V13

V21 V22 V23

V31 V32 V33

 Wt

pt
Etp̌t+1





APPENDIX B. SOLUTION OF THE FORWARD-LOOKING SYSTEM 63

one can re-write the system above as W̃t

p̃t
Et ˜̌pt+1

 =

L1 0 0
0 L2 0
0 0 L3

 W̃t−1

p̃t−1

˜̌pt

+

C1

C2

C3

 [ut] (B.9)

From the third equation, iterating it forward, one can write down

˜̌pt = −L−1
3 C3ut + L−1

3 Et ˜̌pt+1 = −L−1
3 C3ut + lim

n→∞
L−n3 Et ˜̌pt+n = −L−1

3 C3ut,

where I make use of Et(ut+τ ) = 0 ∀τ > 0 and from Blanchard-Kahn conditions we have that
all elements of L3 are in absolute values greater than 1, thus, limn→∞ L

−n
3 Et ˜̌pt+n = 0.

Now, using the substitution formula for ˜̌pt we can write down

p̌t = −V −1
33 L

−1
3 C3ut − V −1

33 V31Wt−1 − V −1
33 V32pt−1 (B.10)

Combining this expression with pt = ∆ · pt−1 + ϕ · p̌t and Wt = Wt−1 + ut from Equation
(B.7) we can express prices pt and productivity levels Wt in terms of lagged prices pt−1 and
productivity Wt−1 and current productivity innovations ut. Again, in matrix form it can be
written down as[

pt
Wt

]
︸ ︷︷ ︸
≡Pt

=

[
∆−ϕV −1

33 V32 −ϕV −1
33 V31

0 1

]
︸ ︷︷ ︸

≡R

[
pt−1

Wt−1

]
︸ ︷︷ ︸
≡Pt−1

+

[
−ϕV −1

33 L
−1
3 C3

1

]
︸ ︷︷ ︸

≡Q

ut (B.11)

If at period t economy is at the steady state, then pt = 0 and ut = 0, so

Pt+1 = Qut+1

Pt+1 = RQut+1 +Qut+2

...

Pt+s =
s∑

τ=1

Rs−τQut+τ

It follows immediately from the equations above that if the economy is at the steady state
at period t, then Etpt+s = 0 ∀s > 0. Since ut+τ are iid, the formula for variance of Pt+s is:

var(Pt+s) =
s∑

τ=1

Rs−τQvar(u) (B.12)

Finally, from Equation (C.1) the vector of optimal flexible prices p∗t can be expressed in
terms of vector Pt:

p∗t =
[
Σ −1

]︸ ︷︷ ︸
≡M

[
pt
Wt

]
︸ ︷︷ ︸
≡Pt

, (B.13)
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where

Σ =

 (1− s1)ξ1
1 (1− s1)ξ1

2 . . . (1− s1)ξ1
J

...
...

. . .
...

(1− sJ)ξ1J (1− sJ)ξJ2 . . . (1− sJ)ξJJ


Variance of optimal prices for different sectors can be expressed as

var(p∗t+s) = var(M · Pt+s) = M · var(Pt+s) ·M ′, (B.14)

where var(Pt+s) can be expressed in terms of var(u) using Equation (B.12).
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Appendix C

Frequency and magnitude of price
adjustments

As the variables in system are expressed in logs, then the percentage change of price for a
cohort k (those that adjusted their prices last time k periods ago) in sector j will be just
p̌t,j − p̌t−k,j. The average percentage change of prices in sector j will be a weighted average
percentage change across all the cohorts in sector j:

PAt,j = (1− δj)[p̌t,j − p̌t−1,j] + (1− δj)δj[p̌t,j − p̌t−2,j] + (1− δj)δ2
j [p̌t,j − p̌t−3,j] + . . . (C.1)

Equation (C.1) can be rewritten in terms of period-by-period percentage changes in adjusted
prices:

PAt,j = δj[p̌t,j − p̌t−1,j] + δj[p̌t−1,j − p̌t−2,j] + δ2
j [p̌t−2,j − p̌t−3,j] . . . (C.2)

Now we need to obtain an expression for [p̌t+s,j− p̌t+s−1,j] ∀s. From the solution of the model
we can express current values p̌t, pt and Wt (all are J × 1 vectors) using their values at t− 1
and current vector of shocks ut: p̌tpt

Wt


︸ ︷︷ ︸
Pt

=

0 −V −1
33 V32 −V −1

33 V31

0 ∆− ϕV −1
33 V32 −ϕV −1

33 V31

0 0 1


︸ ︷︷ ︸

≡Z

 p̌t−1

pt−1

Wt−1


︸ ︷︷ ︸

Pt−1

+

 −V −1
33 L

−1
3 C3

−ϕV −1
33 L

−1
3 C3

1


︸ ︷︷ ︸

≡D

[ut] (C.3)

or in short notations Pt = Z · Pt−1 +D · ut from where

Pt − Pt−1 = (Z − I)︸ ︷︷ ︸
≡G

Pt−1 +Dut (C.4)

Equation (C.2) can be written down as

PAt+s = (GPt+s−1 +Dut+s) + δ(GPt+s−2 +Dut+s−1) + · · ·+ δs−1(GPt+1 +Dut), (C.5)
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where δ is 3J × 3J matrix with the upper left quadrant equal to
δ1 0 . . . 0
0 δ2 . . . 0
...

...
. . .

...
0 0 . . . δJ

 (C.6)

and zeros everywhere else. So far, PAt+s can be expressed in terms of {Pt+τ}sτ=0 and, if the
system is at the steady state at time t, we can express average percentage price adjustments
in terms of sequence of TFP shocks {ut+τ}sτ=0 using the formula Pt+s =

∑s
τ=1R

s−τQut+τ
from Appendix B:

GPt+s−1 +Dut+s = Dut+s +GDut+s−1 +GCDut+s−2 +GC2Dut+s−3 + · · ·+GCs−2Dut+1

δ(GPt+s−2 +Dut+s−1) = δDut+s−1 + δGDut+s−2 + δGCDut+s−3 + · · ·+ δGCs−3Dut+1

... =
...

δ(GPt +Dut+1) = δs−1Dut+1

Finally, one can express variance of PAt+s through variances of {ut+τ}sτ=0.
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Appendix D

Proof of Proposition 1

Let’s start with proving uniqueness – under no isolated clusters of sectors there exists
a unique BGP with positive amounts of labor allocated to each sector in each country in
which sector allocation of labor is identical across countries: lsi = lsj > 0 ∀i ∈ N , ∀s ∈ S,

where N ≡ {1, . . . , N} and S ≡ {1, . . . , S}. In what follows we’ll consider only RN×S
++ , i.e.

only cases in which lsi > 0 ∀i, s. Let’s start with a system of equations that describes the
sector labor allocation and the ratio of BGP productivities across sectors:

lsi
lri

T ri
T si

=
lsj
lrj

T rj
T sj
∀i, j ∈ N , ∀s, r ∈ S∑

q

lqi = 1 ∀i ∈ N , ∀q ∈ S

T ri
T si

=

∑
q p

qrlqi∑
q p

qslqi
∀i ∈ N , ∀q ∈ S

Plugging the last equation into the left hand side and right hand side parts of the first one,
taking logs of it and combining with the log of the second equation we obtain the following
vector-valued function:

F =


F1

F2
...

FS−1

FS

 =


log l1 − log l2 + log

∑
q p

q2lq − log
∑

q p
q1lq

log l2 − log l3 + log
∑

q p
q3lq − log

∑
q p

q2lq

...
log lS−1 − log lS + log

∑
q p

q Slq − log
∑

q p
q S−1lq

log
∑

q l
q


For simplicity of the following steps we’ll treat F as a vector-valued function of {log lqi } –
since lsi > 0 ∀i, s the function is well-defined and differentiable at each point of its domain1.
In equilibrium F has the same value for each country: F ({log lqi }) = F ({log lqj}). If F is

1Function F has the same expression for each country i, thus, country subscript i can be omitted
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an injective function then F ({log lqi }) = F ({log lqj}) implies that the equilibrium vectors
{lqi } should be equalized across countries2. Thus, showing the conditions under which F is
injective we show the conditions under which the equilibrium has lqi = lqj ∀i, q.

To show injectivity of F we use the sufficient condition of injectivity stated in [5], namely,
that a differentiable function F : G→ RM on an open convex subset of G ∈ RM is injective
if a convex hull of {∇F (x) : x ∈ G} contains only non-singular matrices. Using for brevity
new notation t̄s =

∑
q p

qslq the Jacobian ∇F (derivatives w.r.t log lq) can be written down
as

∇F =


1 + p12l1

t̄2
− p11l1

t̄1
−1 + p22l2

t̄2
− p21l2

t̄1
. . . pS2lS

t̄2
− pS1lS

t̄1
p13l1

t̄3
− p12l1

t̄2
1 + p23l2

t̄3
− p22l2

t̄2
. . . pS3lS

t̄3
− pS2lS

t̄2
...

...
. . .

...
p1S l1

t̄S
− p1S−1l1

¯tS−1

p2S l2

t̄S
− p2S−1l2

¯tS−1 . . . −1 + pSS lS

t̄S
− pS S−1lS

¯tS−1

l1 l2 . . . lS

 ,

where the condition
∑

q l
q
i = 1 was used for simplifying the expression in the last row.

Considering the value of Jacobian at two different points {log lqi }i,q and {log lqi
′}i,q and taking

any value z = z ∈ [0; 1], z′ ≡ (1− z) we can write down a convex combination of Jacobians
at these two arbitrary points as z∇F + z′∇F ′. Next, we’ll describe the applied matrix
operations with mentioning if the operations can be applied to the corresponding convex
combination and if any claim about ∇F is valid for the convex combination as well. First,
notice that sum of elements by rows in ∇F is equal to zero in each row except the last one
in which it is 1. Thus, by adding all columns to the last one and using Laplace expansion
we can claim that determinant of the matrix obtained from ∇F by deleting the last row and
the last column is the same as the determinant of ∇F . The same is true for the combination
of ∇F and ∇F ′. The next operation that allows us to remove -1 from the second diagonal
of the obtained (S − 1) × (S − 1) matrix is the addition of rows: (S − 1)th to (S − 2)th,
the resulting (S − 2)th – to (S − 3)th and so on. The resulting matrix J will again have the
same determinant as ∇F . The same holds for z∇F + z′∇F ′. J :

J
(S−1)×(S−1)

=


1 + p1S l1

t̄S
− p11l1

t̄1
p2S l2

t̄S
− p21l2

t̄1
. . . pS−1,S lS−1

t̄S
− pS−1,1lS−1

t̄1
p1S l1

t̄S
− p12l1

t̄2
1 + p2S l2

t̄S
− p22l2

t̄2
. . . pS−1,S lS−1

t̄S
− pS−1,2lS−1

t̄2
...

...
. . .

...
p1S l1

t̄S
− p1S−1l1

¯tS−1

p2S l2

t̄S
− p2S−1l2

¯tS−1 . . . 1 + pS−1,S lS−1

t̄S
− pS−1,S−1lS−1

¯tS−1


For the convex combination z∇F+z′∇F ′ each entry pqS lq

t̄S
− pqilq

t̄i
in J should be replaced with

a corresponding convex combination z
(
pqS lq

t̄S
− pqilq

t̄i

)
+ z′

(
pqS lq ′

t̄S
′ − pqilq ′

t̄i
′

)
. Next, augment J

2Here I use the property of injective functions that if f ◦ g is injective then g is injective, so if F is
injective the the original system (before using logs) is also injective.
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(and it’s convex combination counterpart) to a new matrix K of size S×S by attaching one
column from the right and one row from the bottom so that the attached row and column
comply with the general pattern of entries in J . Namely,

K
S×S

=


1 + p1S l1

t̄S
− p11l1

t̄1
p2S l2

t̄S
− p21l2

t̄1
. . . pS,S lS

t̄S
− pS,1lS

t̄1
p1S l1

t̄S
− p12l1

t̄2
1 + p2S l2

t̄S
− p22l2

t̄2
. . . pS,S lS

t̄S
− pS,2lS

t̄2
...

...
. . .

...
p1S l1

t̄S
− p1S l1

t̄S
p2S l2

t̄S
− p2S l2

t̄S
. . . 1 + pS,S lS

t̄S
− pS,S lS

t̄S


Determinant of K will be the same as that of J : to see this notice that each element of the
attached row is 0 except the last one which is 1, thus, using again Laplace expansion we can
see that det(K) = det(J). Next, we represent matrix K as a sum of three matrices:

K
S×S

= I
S×S

+


p1S l1

t̄S
p2S l2

t̄S
. . . pS,S lS

t̄S
p1S l1

t̄S
p2S l2

t̄S
. . . pS,S lS

t̄S
...

...
. . .

...
p1S l1

t̄S
p2S l2

t̄S
. . . pS,S lS

t̄S


︸ ︷︷ ︸

≡A

−


p11l1

t̄1
p21l2

t̄1
. . . pS,1lS

t̄1
p12l1

t̄2
p22l2

t̄2
. . . pS,2lS

t̄2
...

...
. . .

...
p1S l1

t̄S
p2S l2

t̄S
. . . pS,S lS

t̄S


︸ ︷︷ ︸

≡B

.

Again, for the convex combination counterpart of K each entry pij li

t̄j
should be replaced

with z
(
pij li

t̄j

)
+z′

(
pij li

′

t̄j
′

)
. Now we notice several regularities about matrices A and B. First,

all rows of A are the same and equal to the last row of B. Second, rows in both A and B sum
up to 1 and each entry of them ∈ [0; 1] so that both matrices can be considered stochastic
transition matrices. The last observation allows us to use the well established fact that
spectral radius of both matrices is equal to 1. Third, since lqi ∈ (0; 1) then every entry (q, r)
of B can take a zero value only if the corresponding pqr = 0. Finally, eigenvalues of A − B
are equal to {0(= λA,1−λB,1), −λB,2, −λB,3, . . . ,−λB,S}, where λB,1 = 1, λB,2, . . . , λB,S ∈
[−1; 1] are eigenvalues of B and λA,1 = 1 λA,2 = · · · = λA,S = 0 – eigenvalues of A.

The last claim is least obvious, so here are the details. Matrix A has rank 1 so it can
have at most 1 non-zero eigenvalue, besides tr(A) = 1, so A has eigenvalues λA,1 = 1 of
multiplicity 1 and λA,2 = · · · = λA,S = 0 of multiplicity S−1. For matrix B – as a stochastic
transition matrix – we know from Perron-Frobenius theorem that all its eigenvalues belong
to the interval [−1; 1] and at least one is equal to 1. Now, we derive eigenvalues of A − B.
The first obvious eigenvalue is 0 with corresponding eigenvector (1, 1, . . . , 1)T (this follows
immediately from equal row sums in both A and B). The other S−1 eigenvalues of (A−B)
are {−λB,2, −λB,3, . . . ,−λB,S}. To see this let’s consider the matrix equation (A − B −
(−λBI))X = (A+ (IλB −B))X, where λB is one of eigenvalues {λB,2, λB,3, . . . , λB,S} of B
matrix. To show that −λB is an eigenvalue of A−B it suffices to show that det(A+ (IλB −
B)) = 0 or – which is equivalent – that rank(A+ (IλB −B)) ≤ S − 1. Here I use the result
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from [22]: if C1, C2 are column spaces of matrices U and V and R1 and R2 are row spaces,
c = dim(C1 ∩C2), d = dim(R1 ∩R2) then rank(U + V ) ≤ rank(U) + rank(V )−max(c, d).
Before proceeding, one key observation – if each row of a matrix sums up to the same
number then vector l ≡ (1, 1, . . . , 1)T belongs to the column space of this matrix (indeed,
adding up all columns and dividing the resultant vector by the row sum of the matrix we
obtain vector l). Now back to A + (IλB − B): 1) A has identical rows that sum up to
the same number, so its column space contains vector l – in fact, the whole column space
of A consists only of vectors collinear to l; 2) rank(A) = 1; 3) IλB − B is singular, so
rank(IλB − B) ≤ S − 1; 4) each row of IλB − B sums up to 1− λB, so the columns space
of this matrix also contains l. From 1) and 4) it follows that c = dim(C1 ∩ C2) ≥ 1, thus
rank(A + IλB − B) ≤ rank(A) + rank(IλB − B) − max(c, d) ≤ S − 1 which proves that
det(A + (IλB − B)) = 0 and {−λB,2, −λB,3, . . . ,−λB,S} are the other S − 1 eigenvalues of
A−B except the initially mentioned 0. So, {0,−λB,2, −λB,3, . . . ,−λB,S} are the eigenvalues
of A−B.

Before proceeding to the next step, let’s state another key observation that will be used
shortly: if a stochastic transition matrix P describes an irreducible Markov chain then it has
a unique stationary distribution vector X

1×S
that corresponds to a unique eigenvalue equal

to 1: XP = X or P TXT = XT . On the contrary, if the chain is not irreducible (has
several closed sets of states) then there exists multiple stationary distributions and matrix
P has eigenvalue 1 with multiplicity > 1. A detailed explanation of this statement can
be found in [13] on p.229. In our case matrix B is the analogy of the above mentioned
Markov chain transition matrix P – and presence of closed sets of states in P corresponds
to presence of isolated clusters of sectors in B. In essence it means that under no isolated
clusters of sectors B has only one eigenvalue equal to 1, while if there are isolated clusters
then λB = 1 has multiplicity > 1. Now, returning to matrix K = I + (A − B). Under no
isolated clusters of sectors all eigenvalues of (A−B) {0,−λB,2, −λB,3, . . . ,−λB,S} belong to
(−1; 1) (λB,1 = 1 cancels out with λA,1 = 1), hence, all eigenvalues of K = I +A−B belong
to (0; 2) and det(K) > 0. On the other hand, if matrix of spillovers has isolated clusters
then λB,1 = 1 has multiplicity greater than 1, thus, at least one eigenvalue of (A − B) –
{0,−λB,2, −λB,3, . . . ,−λB,S} – is equal to −1, which will turn into a 0-eigenvalue for K
and, hence, det(K) = 0. Thus, absence of isolated clusters in the matrix of spillovers is a
necessary and sufficient condition for non-singularity on ∇F .

Clearly, all the above mentioned arguments are applicable to a convex combination analogy
of matrix K since the counterparts of matrices A and B have the same properties as A and
B themselves (including the property that matrix B has zero entries only if the underlying
matrix of spillovers {prs} has corresponding entries equal to 0). Thus, non-singularity of
∇F at any point of RN×S

+ is equivalent to non-singularity of z∇F + z′∇F ′ between any two
points in RN×S

+ and, hence, injectivity of F . The opposite is also true – if ∇F is singular
at each point of the domain of F then it means that at each point there exists a non-zero
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vector ∆X such that ∇F∆X = 0 – so moving along such a sequence of vectors ∆X we
obtain a sequence of different points characterized by the same value of function F , hence,
F is non-injective.

Summing up: if there are no isolated clusters of sectors then determinant of Jacobian of
function F , ∇F , is positive at each point of RN×S

+ , so is the determinant of convex hull
z∇F + z′∇F ′, which means that F is injective on this subspace. Injectivity of F , in turn,
implies that if there exists a BGP in terms of {lsi }i∈〈N〉,s∈〈S〉 on RN×S

+ then it is symmetric
across countries by sectors: lsi = lsj ∀i, j ∈ 〈N〉 ∀s ∈ 〈S〉. Translating the latter into the
language of Economics: under no isolated clusters of sectors if there exists an equilibrium in
which each country has non-zero productivity in each sector it is the equilibrium in which
the same share of labor is allocated to each sector across countries.

Having derived this important characteristic of an interior equilibrium – lsi = lsj ∀i, j, s –
we can show now that there exists only one such equilibrium. First, ratio of productivities
for a pair of countries i, j and any sector s is the same and equal to the ratio of country
labor supply:

T sj
T si

=
φLj

∑
q p

qslqj
φLi

∑
q p

qslqi
= {lqi = lqj} =

Lj
Li
.

From the last equality it follows immediately that shares of expenditures on coutry i’s

products is the same in each sector: πsi =
T si (wi)

−θ∑
j T

s
j (wj)−θ

= πri ∀r, s. Considering ratio of

sector labor demand we obtain that actual equilibrium labor allocation is lsi = αs ∀i, s:
wiL

q
i

wiLri
=

lqi
lri

=
αqπqi
αrπri

= αq

αr
. Clearly, there exists only one BGP along which labor in each

country is allocated across sectors proportional to consumption shares α’s. Finally, the con-
sidered interior equilibrium is characterized by equal wages across countries – from sector
labor demand for the same sector and different countries:

Lqiwi
Lqjwj

=
πqi
∑

k Lkwk
πqj
∑

k Lkwk
=
Liwi
Ljwj

=
T qi (wi)

−θ

T qj (wj)−θ
⇒ wi

wj
=

(
wi
wj

)−θ
⇒ wi

wj
= 1

Now we proceed to demonstrate stability of the above derived unique interior equilibrium.
An easy way to demonstrate it is to refer to Figure (2.1). As it was proved above, the bounded
curve φsi (t) intersects gtsi (t) in the region with tsi > 0 at only one point. On Figure (2.1) this
case corresponds to the solid upward sloping curve φsi (t) and intersection at point A, which
should be a stable equilibrium. For the sake of rigorousness let’s mention that Proposition
1 makes a statement only about the uniqueness of the interior equilibrium, yet, there may
exist multiple boundary equilibria even under the conditions of Proposition 1 (no isolated
clusters). Figure (2.1) admits a possibility of another unstable equilibrium on the boundary
– if φminr(p

rs) = 0 (sector s doesn’t receive any technologies from sector r), tsi = 0 (sector
s starts with zero productivity) and all labor at the beginning is allocated to such sector r,
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then an upward sloping curve φsi (t) intersects line gtsi (t) both at 0 and at A. To elaborate
this intuition on stability let’s replicate the same argument that was used for the 2× 2 case
and show that all eigenvalues of Jacobian of G : ṫsi = G(t) = φ

∑
q p

qslqi − gtsi , t ≡ {tsi}i∈〈N〉
s∈〈S〉

are negative at the considered interior equilibrium. The Jacobian can be written down in a
matrix form as:

G(t) =



G1
1(t)

G2
1(t)
...

GS
1 (t)

G1
2(t)
...

GS
S(t)


⇒ ∇G =

[{
∂Gs

i

∂trj

}]
NS×NS

= φ

[
I

N×N
⊗ P T

S×S

] [{
∂lqi
trj

}]
NS×NS

− g I
NS×NS

,

where P T is a transposed matrix of cross-sectoral spillovers (reminder: in P sectors in rows
are donors and in columns – recipients of ideas). For each pair of countries (i, j) and sectors
(s, r) it can be re-written as

∂Gs
i

∂trj
= φ

∑
q

pqs
∂lqi
∂trj
− g∂t

s
i

∂trj
.

The set of derivatives
{
∂Gsi
∂trj

}
need to be calculated at the equilibrium. As a reminder, in

equilibrium we have πqi = Li
L̄
≡ li ∀q ∈ 〈S〉, where L̄ =

∑
j Lj is total population in all

countries; wi = 1 ∀i ∈ 〈N〉, lqi =
Lqi
Li

= αq ∀i ∈ 〈N〉; q ∈ 〈S〉; tsi = φ
g

∑
q p

qsαq = ts ∀i ∈ 〈N〉.
The difficulty is that each lsi is a non-linear function of the whole vector t and can not be
expressed explicitly.

To obtain the derivative of labor shares employed w.r.t. the level of technology –
∂lsi
∂trj

– we

use the equations for sector labor demand.

F s
i : lsiwi

[∑
k

tsk
Lk
Li

(wk)
−θ

]
− αstsi (w−θi )

[∑
k

Lk
Li
wk

]
= 0

and the implicit differentiation to obtain
∂lsi
∂trj

= −
∂Fsi
∂tr
j

∂Fs
i

∂ls
i

. While the expression for denominator

can be obtained immediately as
∂F si
∂lsi

= ts

Li
L̄, the expression for the numerator requires some

additional steps since it also contains the derivatives of wages w.r.t. the level of technology,
∂w·
∂trj

. In the considered version of the model wages are defined as a solution to the system of
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trade balance equations

Bi : Liwi −
∑
q

πqiα
q

(∑
k

Lkwk

)
= 0 ∀i ∈ 〈N〉.

Treating w’s as variables and t’s as parameters we differentiate each of these equations w.r.t.
some trj –

∑
k
∂Bi
∂wk

∂wk
∂trj

+ ∂Bi
∂trj

= 0 – we obtain the system which can be solved for ∂w·
∂trj

:
∂w1

∂trj
...

∂wN−1

∂trj

 = −


∂B1

∂w1
. . . ∂B1

∂wN−1

...
. . .

...
∂BN−1

∂w1
. . . ∂BN−1

∂wN−1


−1


∂B1

∂trj
...

∂BN−1

∂trj


Since the model has only N − 1 independent wages, so we normalized wN ≡ 1. Here we
will skip some algebra, but mention that for finding the inverse of matrix with ∂B·

w·
we used

the result from [23]: if matrices G and G + E are non-singular and E is of rank one then
(G+ E)−1 = G−1 − 1

1+g
G−1EG−1, where g = tr(EG−1). To summarize this part:

∂wi
∂trj

=


0, if i 6= j < N or i = j = N
αr

(1+θ)tr
, if i = j < N

−αr
(1+θ)tr

, if i 6= j = N

,

where, again, wN is normalized to 1, thus, remains constant.

Now we can return to the expressions for
∂F si
∂trj

and
∂lsi
∂trj

. Again, skipping some tedious, yet,

uninvolved algebra, we’ll report the derived expressions for
∂lsi
∂trj

:

∂lsi
∂trj

=


αs(1−αs)

tr
(1− li), if i = j, r = s

−αsαr
tr

(1− li), if i = j, r 6= s
−αs(1−αs)

tr
lj, if i 6= j, r = s

αsαr

tr
lj, if i 6= j, r = s

,

Next, we can write down the matrix of partial derivatives of labor shares lsi w.r.t. the level
of technology trj using Kronecker product as[{

∂lsi
∂trj

}]
= (1N l − IN)⊗

(
(α1S − IS)αt−1

)
,

where IS is the identity matrix of dimensionality S × S and

1S =

 1 . . . 1
...

. . .
...

1 . . . 1


S×S

, α =

 α1 . . . 0
...

. . .
...

0 . . . αS


S×S

, t =

 t1 . . . 0
...

. . .
...

0 . . . tS


S×S

, l =

 l1 . . . 0
...

. . .
...

0 . . . lN


N×N

.
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Finally, we can assemble the matrix for the Jacobian of the non-linear dynamic system:

∇G = g [1N l − IN ]⊗
[
P T (α1S − IS)ατ−1

]
− gINS,

where τ
S×S

= g
φ
t. We need to show that all eigenvalues of∇G are negative under the condition

of no isolated clusters. Let’s consider the first term of Kronecker product in the expression
above. One can easily see that eigenvalues of 1N l – matrix all repeated rows that sum
up to 1 – are 0 and 1 with multiplicity N − 1 and 1 correspondingly. Thus, eigenvalues
of 1N l − IN are correspondingly -1 and 0 with multiplicity N − 1 and 1. Now, to the
second term – using simple matrix operations one can obtain the following expression for it[
P T (α1S − IS)ατ−1

]
=

=

 τ 1 . . . 0
...

. . .
...

0 . . . τS



α1 α2 . . . αS

α1 α2 . . . αS

...
...

. . .
...

α1 α2 . . . αS︸ ︷︷ ︸
≡M

−

p11α1

τ1
p21α2

τ1
. . . pS1αS

τ1
p12α1

τ2
p22α2

τ2
. . . pS2αS

τ2
...

...
. . .

...
p1Sα1

τS
p2Sα2

τS
. . . pSSαS

τS︸ ︷︷ ︸
≡N




1
τ1

. . . 0
...

. . .
...

0 . . . 1
τS



The last expression has a form τ(M −N)τ−1, where τ is an invertible matrix, thus, τ(M −
N)τ−1 is similar to (M−N) and has same eigenvalues as (M−N). Now if we recall that τ s =∑

q p
qsαq we can see that (M−N) has exactly same properties as matrix (A−B) in the part

of the proof devoted to uniqueness: M as well as A consists of repeated rows that sum up to 1
while matrixN sums up to 1 by rows, yet, has different rows and can be treated as a stochastic
transition matrix. In exactly the same manner as for A – elements of N can be zero only it the
corresponding elements of P -matrix are zero. So, in the same way as for A−B above, we can
claim that eigenvalues of M−N are {0,−λN,1, . . . ,−λN,S−1}. If matrix P is characterized by
absent isolated clusters, all eigenvalues of M−N (and of

[
P T (α1S − IS)ατ−1

]
) are in (−1, 1)

interval (the eigenvalue equal to 1 that corresponds to the only stationary distribution of
Markov chain represented by N is canceled out with eigenvalue equal to 1 of M). Same is true
for the eigenvalues of [1N l − IN ] ⊗

[
P T (α1S − IS)ατ−1

]
(since those are cross products of

eigenvalues of M−N and eigenvalue of [1N l − IN ] which are {0,−1}) and, hence, eigenvalues
of ∇G are in (−2g; 0) interval – strictly negative – so, the considered internal equilibrium
is locally stable! On the contrary, if P has isolated clusters then N has eigenvalue 1 of
multiplicity larger than 1, thus, at least one of eigenvalues of M − N is equal to -1 and at
least one of eigenvalues of ∇G is equal to zero – in this case stability of equilibrium can not
be guaranteed.



75

Appendix E

Extension of Proposition 1 to the case
of positive trade costs

This appendix outlines a proof of Proposition 1 for a 2×2 economy with trade costs and a
diagonal matrix of spillovers, i.e. under intra-sector but not inter-sector spillovers: pAB = 0

if A 6= B and pAB > 0 if A = B. In this case it is easy to see that
TAi
TBi

=
pAALAi
pBBLBi

and, hence,

LAi T
B
i

TAi L
B
i

=
LAj T

B
j

TAj L
B
j

. Plugging the expressions for labor demand wiL
A
i = αA

∑
k π

A
ikLkwk (and

similar for sector B and country j) into this ratio and substituting the the corresponding
expressions for π’s, one obtains

Liwi
(
TAi (dwi)

−θ + TAj (wj)
−θ)+ Ljwj

(
TAi (wi)

−θ + TAj (dwj)
−θ) d−θ

Liwi
(
TBi (dwi)−θ + TBj (wj)−θ

)
+ Ljwj

(
TBi (wi)−θ + TBj (dwj)−θ

)
d−θ

=

Liwi
(
TAi (dwi)

−θ + TAj (wj)
−θ) d−θ + Ljwj

(
TAi (wi)

−θ + TAj (dwj)
−θ)

Liwi
(
TBi (dwi)−θ + TBj (wj)−θ

)
d−θ + Ljwj

(
TBi (wi)−θ + TBj (dwj)−θ

)
from where, taking into account d > 1, one can derive TAi T

B
j (wiwj)

−θ = TBi T
A
j (wiwj)

−θ and,

as a result,
TAi
TAj

=
TBi
TBj

. Combining the last expression with the above mentioned
LAi T

B
i

TAi L
B
i

=
LAj T

B
j

TAj L
B
j

one obtains
LAi
LBi

=
LAj
LBj

which means that the interior BGP (with positive output in each

country-sector) is characterized by the same sectoral labor allocation within each country.

From
TAi
TAj

=
TBi
TBj

it follows that πAii = πBii , π
A
ij = πBij and same for country j from where

LAi
lBi

=
LAj
lBj

= αA

αB
, hence, unique interior BGP.




