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SUMMARY

Neuronal types in the central nervous system differ dramatically in their resilience to injury or 

insults. Here we studied the selective resilience of mouse retinal ganglion cells (RGCs) following 

optic nerve crush (ONC), which severs their axons and leads to death of ~80% of RGCs within 2 

weeks. To identify expression programs associated with differential resilience, we first used 

single-cell RNA-seq (scRNA-seq) to generate a comprehensive molecular atlas of 46 RGC types 

in adult retina. We then tracked their survival after ONC, characterized transcriptomic, 

physiological, and morphological changes that preceded degeneration, and identified genes 
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selectively expressed by each type. Finally, using loss- and gain-of-function assays in vivo, we 

showed that manipulating some of these genes improved neuronal survival and axon regeneration 

following ONC. This study provides a systematic framework for parsing type-specific responses to 

injury, and demonstrates that differential gene expression can be used to reveal molecular targets 

for intervention.

Graphical Abstract

eTOC blurb

High-throughput single cell RNA-seq characterizes 46 types of adult mouse retinal ganglion cells 

and documents dramatic difference among them in their ability to survive axotomy. Manipulation 

of genes differentially expressed between resilient and vulnerable types enhances survival and 

axon regeneration.

INTRODUCTION

Insults to the central nervous system (CNS), whether acute (e.g. traumatic injury) or chronic 

(e.g. neurodegenerative disease), typically lead to irreversible damage. Some neurons die, 

and those that survive generally fail to grow new axons and re-establish synaptic 

connections. A common but poorly understood characteristic of these phenomena is that 

specific neuronal types are disproportionately affected even though causative insults are 

widely shared. For example, both huntingtin (HTT) and alpha-synuclein (SNCA) are 
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broadly expressed in neurons, but mutations in HTT lead to Huntington’s disease with 

striatal GABAergic neurons as a main target, while mutations in SNCA lead to Parkinson’s 

disease with basal ganglia dopaminergic neurons as a main target (Fu et al., 2018; Saxena 

and Caroni, 2011). Similar differential effects have been documented for many other 

diseases and injuries (Conta Steencken et al., 2011; Welin et al., 2008).

We reasoned that comparing patterns of gene expression among neuronal types that are 

similar in many respects but differ in vulnerability might pinpoint pathways that contribute 

to resilience. Although seldom used (Duan et al., 2015; Kaplan et al., 2014; Bray et al., 

2019), this approach could complement strategies that involve comparing neurons from 

different ages (regenerative developing vs. nonregenerative adult neurons; Maclaren and 

Taylor, 1997), regions (regenerative peripheral vs. nonregenerative central neurons; Huebner 

and Strittmatter, 2009), or species (regenerative fish vs. nonregenerative mouse neurons; 

Kizil et al., 2012).

To explore this strategy, we analyzed the responses of mouse retinal ganglion cells (RGCs) 

to optic nerve crush (ONC), a long-studied model of traumatic axonal injury (Aguayo et al., 

1991). RGCs send their axons through the optic nerve, conveying visual information to 

retinorecipient areas in the brain (Figure 1A; Sanes and Masland, 2015). ONC transects 

RGC axons, causing the death of ~80% of RGCs within 2 weeks. Few survivors regenerate 

axons, but some can be provoked to do so by a variety of interventions, although none to 

date have proven capable of restoring useful vision (Benowitz et al., 2017).

Several features make ONC an ideal model to study differential vulnerability: (1) All and 

only RGC axons pass through the optic nerve, so injury is precisely controlled, simultaneous 

and specific. (2) RGCs that live and die share the same microenvironment. (3) Although all 

RGCs share numerous features, they comprise >40 discrete types in mice, each with distinct 

morphological and physiological features (Figure 1B, and see below). (4) Some RGC types 

were recently shown to differ in their ability to survive or regenerate axons following ONC 

(Duan et al., 2015; Norsworthy et al., 2017; Perez de Sevilla Muller et al., 2014).

To survey the resilience of RGC types, we used single-cell RNA-seq (scRNA-seq), which 

we previously applied to mouse and macaque retina (Macosko et al., 2015; Peng et al., 2019; 

Shekhar et al., 2016). We first generated an atlas of 46 molecularly distinct types, and used 

histological approaches to relate transcriptomic clusters to known and novel RGC types. 

Using this atlas as a foundation, we surveyed resilience at 6 time points after ONC. We 

determined the kinetics of loss for each RGC type, finding dramatic differences, and 

assessed physiological and morphological changes that precede death. We then analyzed 

expression differences among RGC types, identifying genes that correlated with resilience or 

susceptibility. Finally, we used loss- and gain-of-function methods in vivo to test 10 of these 

genes, identifying some that regulate RGC survival and/or axon regeneration. Taken 

together, our work provides a comprehensive molecular atlas of adult RGCs, documents 

changes preceding degeneration, and demonstrates that this approach can be leveraged to 

identify novel neuroprotective mechanisms.

Tran et al. Page 3

Neuron. Author manuscript; available in PMC 2020 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

An atlas of molecularly defined RGC types

To generate a molecular atlas of RGC types, we isolated RGCs from adult (postnatal day 

[P]56) mice by fluorescence activated cell sorting (FACS), and profiled them by droplet-

based scRNA-seq. Computational analysis of 35,699 high-quality single cell transcriptomes 

revealed 45 molecularly distinct clusters (Figure 1C), one of which was subsequently 

subdivided (see below), resulting in 46 types. They ranged in frequency from 0.15% to 8.4% 

(Figure 1D). All clusters expressed pan-RGC markers such as Slc17a6 (which encodes the 

transporter VGLUT2), Rbpms, and at least one of the three Pou4 (Brn3) transcription factors 

(Figure 1E). Some clusters could be matched 1:1 to previously characterized types based on 

differential expression (DE) of a single gene (e.g., Jam2 for J-RGCs [Kim et al., 2008] and 

Mmp17 for N-ooDSGCs [Kay et al., 2011]), but for most, unique identity was conferred 

only by two-marker combinations (Figure 1F).

Since ~3 hours elapse between enucleation and RNA capture, we considered that clustering 

could be influenced by post-mortem transcription. To test this possibility, we analyzed 

~11,800 RGCs from retinas treated with the transcription blocker actinomycinD (ActD) 

immediately after enucleation (Hrvatin et al., 2018; Wu et al., 2017). Although some 

differences were observed, such as the expected upregulation of immediate early genes 

(IEGs) in untreated retinas, the frequency of types, and their distinguishing markers were 

identical between Act-treated and untreated RGCs (Figures 1G,H and S1A,B).

Clusters were reproducible across biological replicates and computational approaches 

(Figure S1C–F). In addition, we compared the relative frequencies of RGC groups labeled 

immunohistochemically (IHC) in retinal whole mounts to their frequencies in the scRNA-

seq data and found a striking correspondence (Figure 1I). Together, these results indicate 

that our atlas is comprehensive (Table S1).

scRNA-seq clusters correspond to morphologically-defined RGC types

To assess the morphology of molecularly-defined RGCs, we applied in situ hybridization 

and IHC to retinas in which RGCs were sparsely labeled (YFP-H line; ~200 RGCs per 

retina; Samuel et al., 2011). Using genes expressed by one or a few clusters, we validated 

novel markers for known types and characterized potentially novel types. For example, novel 

RGC clusters C10 and C24, which specifically expressed Gpr88 and Fam19a4, respectively, 

possessed dendrites that were bistratified in sublaminae (S)2 and S4 of the inner plexiform 

layer (IPL), while dendrites of C25, which expressed Slc17a7 (VGLUT1), stratified 

exclusively in S5 (Figure 2A). (We divide the IPL into 5 sublaminae, S1–5; Figure 1B). 

Other examples are shown in Figure S2A–E and results are summarized in Table S2.

Transcriptome-assisted division of RGCs into subclasses

We and others have previously defined several groups of related RGC types, which we call 

subclasses. They include αRGCs, which express Spp1 (osteopontin); T- and F-RGCs, 

defined by expression of the transcription factors Tbr1 and Foxp2, respectively; ooDSGCs, 

defined by physiological properties and bistratified dendrites; and intrinsically 
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photosensitive RGCs (ipRGCs), defined by expression of Opn4 (melanopsin) (Krieger et al., 

2017; Liu et al., 2018; Rousso et al., 2016; Schmidt et al., 2011; Vaney et al., 2012) (Table 

S2). Subclasses exhibit some molecular overlap (for example ON- and OFF-sustained 

αRGCs express Opn4 and Tbr1, respectively) but are largely distinct.

By double-labeling retinas for a subclass marker and a cluster-specific marker, we validated 

gene combinations that distinguish RGC types within each of these subclasses. For αRGCs 

(C41–43,45), the novel marker combinations of the 4 types are more selective than those 

found previously by a candidate approach (Krieger et al., 2017) (Figures 2B, S2A). Our 

previous studies identified 4 T-RGC and 4 F-RGC types, but this new approach revealed a 

fifth type within each subclass (C9 and C32, respectively; Figure 2C,D,S2B). For ipRGCs, 

we discovered markers for M1 (C33 and 40), M2 (C31) and M4 (C43) types, including some 

that divide M1-RGCs (identified by high levels of Opn4 and expression of Adcyap1; 

Hannibal et al., 2002)) into two types (M1a, M1b), as well as an additional cluster (C22) that 

could correspond to the morphologically and physiologically characterized M3, M5 or M6 

types (Figure 2E) (Quattrochi et al., 2019; Schmidt et al., 2011; Stabio et al., 2018; Berg et 

al., 2019). For ooDSGCs, most of which are Cartpt+, we identified the nasal-preferring type 

(N-ooDSGC) by expression of Mmp17 but only a single cluster (C16) expressed Col25a1, a 

marker of both D- and V-ooDSGCs (Kay et al., 2011). However, supervised analysis split 

this cluster with Calb1 and Calb2 in largely nonoverlapping cells, bringing the total number 

of RGC types to 46. Labeling of a line that marks only V-ooDSGCs confirmed that CALB1-

positive cells are D-ooDSGCs and CALB2-high cells are V-ooDSGCs (Figure 2F–H).

Another potential subclass is defined by the transgene TYW3, which exhibits insertion site-

dependent expression in several types of RGCs that share dendritic lamination in the middle 

third of the IPL; one is labeled brightly (W3B) and the others dimly (W3D) (Figure S2F) 

(Kim et al., 2010; Zhang et al., 2012; Krishnaswamy et al., 2015; Laboulaye et al., 2018). 

We isolated W3-RGCs by FACS and profiled them using Smart-seq2 to obtain deeper 

coverage (Ding et al., 2019; Picelli et al., 2013). Of 341 RGCs, 97% matched to 1 of 6 types 

in the atlas: W3B (identified by high expression of Sdk2; Krishnaswamy et al., 2015), F-

mini-ON, F-mini-OFF and three others that we call W3D1–3. The remaining 3% 

corresponded to T-RGC-S2 (Figure S2G,H). Interestingly, all of these types expressed the 

integral membrane protein Tusc5/Trarg1 (Figure 2J). Two additional atlas clusters, C1 and 

C13, were transcriptionally proximate to these types and Tusc5/Trarg1-positive; we call 

them W3-like (W3L) 1 and 2 (Figure 2J). This congruence identifies 9 types as members of 

a subclass that we provisionally call T5-RGCs. It includes 5 of the 6 most abundant RGC 

types and accounts for approximately 40% of all RGCs. Collectively, these subclasses 

account for 26/46 RGC types, with each type occupying no more than two subclasses. Types 

within a subclass were usually but not always closely related molecularly: 4/5 T-RGCs 

(Tbr1+), 4/5 F-RGCs (Foxp2+), 5/9 T5-RGCs (Tusc5+), 4/5 ipRGCs (Opn4+), and 3/4 

αRGCs (Spp1+) were close relatives based on a hierarchical clustering analysis (Figure 2J). 

Our dataset also enabled the identification of a novel subclass based on transcriptional 

similarity and molecular markers: 8 closely related types co-expressed the transcription 

factors Neurod2 and Satb2 (provisionally N-RGCs; Figure 2J). Types within this group, 7/8 

of which are apparently novel, might share cellular characteristics. The remaining 11/45 

types were not assigned to a subclass due to the lack of a marker shared with proximal 
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clusters; but they do exhibit some intriguing transcriptome-wide relationships to other types 

(Figure 2J). For example, C10 and C24 are transcriptionally proximate to D/V-ooDSGCs 

(C16) and, like known ooDSGCs, are S2/S4 laminating (Figure 2A); they are candidates for 

the temporal-preferring (T) ooDSGC type.

RGC types vary dramatically in susceptibility to ONC

Using the adult RGC atlas as a foundation, we assessed the resilience of types to ONC 

(Figure 3A). To this end, we profiled ~8,500 RGCs 14 days post ONC (dpc), at which point 

~80% had died. Extensive injury-related changes in gene expression initially limited our 

ability to classify surviving RGCs to types using a “one-step” supervised classification 

framework (Figure 3C). We therefore formulated an alternative approach, leveraging data 

from RGCs collected at 5 intermediate time points. In this approach, transcriptomic 

signatures of RGC types were redefined at each time to assign cells at the next time point 

(Figure 3B). This allowed us to disambiguate gradual injury-related “state” changes from 

intrinsic type-specific signatures. RGCs were then assigned to types using a hybrid 

algorithm combining supervised classification (Chen and Guestrin, 2016) and graph-based 

voting; we call the overall approach iterative-GraphBoost (iGraphBoost; see STAR 

Methods).

iGraphBoost assigned 89% of total injured RGCs to types, including 77% at 14dpc (Figures 

3C). All types maintained expression of Rbpms (Figures S3H, I) as well as their specific 

marker genes through 14dpc (compare Figures 1F and 3D). To visualize the injured RGCs in 

a 2D representation we combined Liger, which utilizes non-negative matrix factorization 

(Welch et al., 2019), and t-SNE (Figures S3A). Encouragingly, clusters identified using the 

Liger representation were associated more strongly with type-specific identities assigned by 

iGraphBoost, than with other metadata such as time, mouse strain, or collection (Figures 

S3C). Nonetheless, some surviving RGCs could not be confidently classified. The 

proportion of “unassigned” cells increased over time, consistent with the idea that injury 

related transcriptional changes mask type-intrinsic signatures (Figures S3D–F).

We next ranked RGC types by their frequency at 14dpc compared to control (Figure 3E). 

Survival rates varied continuously from ~1% to ~98%. We refer to the 7 types that showed 

an increase in relative frequency >2-fold as ‘resilient’ (resRGCs). Because some differences 

in apparent resilience could result from biases in collection, loss of particularly fragile cells, 

or misassignment by our computational approach, we also assessed survival for selected 

types using IHC (Figures S4, S4A–E, Table S3). Histologically and transcriptionally derived 

frequencies were as highly correlated (Pearson r=.97) at 14dpc (Figure 3H, Table S3), as in 

controls (Figure 1I). Together, these data provide a comprehensive catalog of type-specific 

vulnerability of RGCs to injury.

We then asked whether relative resilience of RGC types correlated with overall molecular 

relationships. In some cases, correspondence was striking. For example, all ipRGC (Opn4+) 

types were resilient, and all N-RGC types were susceptible (Figure 3F). Other 

transcriptionally defined groupings of RGCs, however, contained types that differed greatly 

in resilience. For example, among αRGCs, which had previously been characterized as a 

resilient subclass (Duan et al., 2015), the two sustained types (C42, 43) were highly resilient 
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but the two transient types (C41, 45) were relatively susceptible, despite transcriptional 

proximity (Figures 3F, S5A–B). Likewise, both rare and abundant types could be either 

resilient or vulnerable (Figure 3G). Thus, transcriptional proximity and frequency are 

imperfect predictors of resilience.

Dynamics of RGC survival after injury define three survival groups

Few RGCs die during the first 3 days after ONC, ~70% die over the next 5 days, and 

numbers then decline gradually to ~10% survival at 28dpc (Figures 3I, S5F). Based on their 

kinetics of loss, we partitioned RGC types into three groups: the 7 resilient types (8.1% of 

control RGCs) declined gradually, reaching ~50% survival at 14dpc; 11 “intermediate” types 

(27.2% of control RGCs) exhibited a striking decline between 4 and 7dpc; and 27 

susceptible types (64.7% of control RGCs) were severely reduced by 4dpc (Figures 3J–M). 

Thus, survival of the intermediate and susceptible RGCs differed dramatically at 4dpc 

(susRGCs: 39% ± 21%; intRGCs: 95% ± 25%). Unsurprisingly, these groups correlated well 

with rankings by survival at 14dpc alone (Figure S3G). As above, we validated scRNAseq-

derived survival kinetics of RGC subclasses with distinct survival rates using IHC (Figures 

S5F–H).

Physiological characteristics of resilient and susceptible RGCs

To determine whether resilient RGCs share functional properties, we monitored 

physiological characteristics of individual injured RGCs over time, using our recently 

developed method for in vivo recording (Hong et al., 2018). Briefly, a flexible mesh carrying 

32 electrodes is injected intravitreally, where it coats the inner retina without disturbing 

normal eye function; spike sorting protocols identify up to 4 cells per electrode, and provide 

wave-form signatures that allow longitudinal tracking of the same cell over multiple 

recording sessions (Figures 4A,B).

We implanted the mesh directly after ONC and recorded RGC activity every 1–2 days for 6–

14 days, obtaining data from 142 cells in 4 mice. We used full field illumination and moving 

gratings to determine whether RGCs exhibited responses that were sustained or transient; 

orientation-, direction-, or non-selective (OSGCs, DSGCs, and NSGCs, respectively; Figure 

4C); and ON, OFF, or ON/OFF (firing in response to luminance increase, decrease or both). 

At 1dpc, we detected all these functional types, indicating that the method sampled RGC 

types broadly (Figure 4D).

We then tracked RGCs to identify resilient and susceptible populations. We defined a cell as 

“dead” if its mean firing rate decreased below 0.5 Hz for at least two consecutive days. 

~60% of RGCs died between 3 and 7dpc, with ~74% dead by 14dpc (Figure 4E). In 

contrast, <10% of cells were lost over two weeks of recordings from uninjured retinas (Hong 

et al., 2018), indicating that the loss reflects ONC-related death rather than recording 

instability. Survival dynamics mirror those determined histologically (Figure 3I), suggesting 

that neurons are not silent for substantial periods prior to their death.

We used this method to ask whether surviving RGCs were enriched for specific response 

types. RGCs with sustained responses survived ~3-fold better than those with transient 

responses (Figure 4F), consistent with scRNA-seq results for sustained and transient 
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αRGCs. Because αRGCs comprise <5% of all RGCs, the physiological result suggests that 

the relationship between sustained responses and resilience is a general one. OSGCs were 

more susceptible than DSGCs or NSGCs (Figure 4G). Resilience did not differ between ON 

or OFF types but ON-OFF types were more vulnerable, independent of feature selectivity 

(Figure 4H). This vulnerability is consistent with the known susceptibility of ooDGCS, 

which have transient responses, but did not extend to other DSGCs (Figure 4I). These results 

reveal a correlation between physiological properties and resilience.

Our longitudinal measurements also enabled the assessment of physiological changes 

preceding cell death. Overall firing rate of resilient RGCs (those detectable at 14dpc) varied 

little during the measurement period (Figure 4J). Similarly, for RGCs that died between 3 

and 5dpc, the firing rate and orientation- and direction-selectivity indices were largely 

unchanged between days 1 and 3 (Figures 4K,L). These results suggest that RGCs maintain 

activity levels and presynaptic inputs, which determine response properties, until shortly 

before they die.

Morphological changes in resilient and susceptible RGCs

The observation that functional responses of RGCs were retained until at least 48hrs prior to 

death raised the question as to whether their structural integrity was similarly maintained. 

We therefore tracked changes in dendritic morphology of 3 resRGC types (ipRGC M2, 

αRGC OFF-S, and αRGC ON-S/ipRGCC M4) and 3 susRGC types (αRGC OFF-T, and 2 

ooDSGC types) after ONC. We used the YFP-H line for sparse labeling in combination with 

IHC and dendritic lamination to identify types (Figures S5A–C).

Strikingly, resRGCs maintained robust dendritic morphology through 14dpc, with no 

significant decrease in dendritic area or arbor complexity (Figures 4M,N; S6D,E). Along 

with functional results, this implies that resRGCs maintain their integrity after ONC. As 

expected, susRGC types were scarce by 7dpc. Interestingly, however, susRGCs maintained 

their dendritic area through 4dpc, though their dendrites often appeared thinner and fainter 

than those in controls and two susRGC types exhibited a significant reduction in dendritic 

complexity (Figures 4O,P; S6F,G). Together with physiological measurements, this 

morphological analysis raises the possibility that a substantial window exists during which 

surviving RGCs could be receptive to regenerative therapies.

Global gene expression changes after ONC

To ask when injury response programs are activated in RGCs, we first characterized the 

dynamics of globally regulated gene expression after ONC, identifying 771 temporally DE 

genes that were broadly shared across types (Table S4). Genes were partitioned into 8 

modules (Mod1–8) by k-means clustering (Figure 5A), identifying gene sets with distinct 

temporal dynamics that were enriched for different gene ontology (GO) biological processes 

(Table S5). For example, module 1 (Mod1), which comprised genes whose expression began 

to decline by 0.5dpc, was enriched in GO terms associated with functions carried out in 

healthy neurons such as action potential, synaptic vesicle exo/endocytosis, and retrograde 

axon transport (Figure 5B). In contrast, Mod5 and Mod6, comprising genes upregulated 

around 2dpc, were associated with apoptosis and stress pathways (Figure 5C). DE genes 
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showed few strong type-specific differences, with the notable exception of ipRGC types, 

which exhibited considerably lower upregulation of Mod5, 6 and 7 genes than other types 

(Figures 5D–E, S7A–B).

Gene expression correlating with resilience and vulnerability

Next, we next sought type-specific gene expression patterns that correlated with resilience or 

vulnerability. First, we compared baseline (control) transcriptomic profiles across the three 

survival groups (Figure 3N). Several genes were expressed in multiple resRGC types but 

showed little to no expression in susRGC or intRGC types (Figures 5F, S7C). Among them 

were two IEGs (Junb and Egr1), enriched in ipRGCs. In light of the upregulation of IEGs by 

dissociation (Figure S1F), we verified that IEG and other type-specific expression patterns 

were maintained in RGCs treated with ActD, and are therefore likely to be intrinsic 

properties (compare Figures 5F and S7D). With the exception of Igf1, we found few DE 

genes that were enriched in all resRGCs but no susRGCs or vice versa, suggesting 

heterogeneity in factors in mediating resilience or susceptibility across types.

We also asked if resilient and susceptible RGC types up- or down-regulated different sets of 

genes following injury. As was the case for the analysis at baseline, few genes were up- or 

down-regulated in all resRGC or susRGC types, but many were upregulated selectively in 

several resRGC but no susRGC types or vice versa (Figure 5G–J). Thrombospondin 1 was 

also subtly but specifically upregulated in ipRGCs beginning at 12h post-ONC, consistent 

with results of Bray et al. (2019). resRGC-enriched genes were generally maintained 

through 14dpc, suggesting they could play a role in long term survival. In contrast, 

expression of susRGC-enriched genes generally peaked at 2–4dpc, coincident with the onset 

of degeneration, suggesting that their expression could be predictive of cell death.

scRNA-seq-derived candidates promote neuroprotection of RGCs

Genes enriched in resRGCs included three previously described mediators of RGC survival 

and/or axon regeneration: Igf1 (7/7 resRGCs), Opn4 (5/7) and Spp1 (3/7) (Duan et al., 2015; 

Dupraz et al., 2013; Li et al., 2016; Zhang et al., 2019). To ask whether genes selectively 

expressed in resilient or susceptible RGC types included additional factors that affected 

survival, we tested 10 candidates (Table S6). AAV2 vectors were used to overexpress (OE) 

genes correlating with resilience or to mutate (knock-out, KO) genes correlating with 

susceptibility. For KO experiments, we infected retinas from LSL-Cas9 mice crossed to 

Vglut2-Cre mice (to express Cas9 in all RGCs) with vectors encoding a single-guide RNA 

(sgRNA). We injected AAV intravitreally 14d prior to ONC and quantified RGC survival by 

IHC at 14dpc (Figure 7A, S8A).

We began with a pair of genes that displayed intriguing expression patterns: urocortin (Ucn), 

which encodes a peptide from the corticotropin-releasing factor family, and corticotropin 

releasing hormone binding protein (Crhbp), a secreted glycoprotein that inhibits UCN-

mediated activity (Seasholtz et al., 2002). Ucn was upregulated post-ONC in the two 

sustained αRGC types but not in other RGCs, while Crhbp was selectively expressed in 

multiple susRGC types (Figure 6A,B). The CRH receptor (Crhr1), through which UCN 

signals, was broadly expressed among RGC types (Fig. S8B). We increased Ucn levels by 
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AAV2-based OE or by injection of recombinant protein, and decreased Crhbp expression by 

AAV2-CRISPR-based KO with two different sgRNAs (Figure S8A) All four treatments 

significantly increased RGC survival (Figure 6C,J, Table S6).

A second pair of related genes was Timp2, an inhibitor of matrix metalloproteinases 

(MMPs) and Mmp12, a TIMP2 target (Koppisetti et al., 2014). Timp2 was selectively 

enriched in resilient ipRGCs, whereas Mmp12 was broadly upregulated after ONC but 

upregulation was particularly modest in ipRGCs (Figure 6D,E). AAV-OE of Timp2 
enhanced survival, as did AAV-KO of Mmp12 with one of two sgRNAs (Figure 6F, J, Table 

S6). A small molecule inhibitor selective for MMP12 also improved survival. Because 

MMPs have overlapping functions, we surveyed the expression of Mmp’s in our scRNA-seq 

data and found that only Mmp9 was expressed at a detectable level in multiple RGC types 

(Figure S8C). Targeting Mmp9 with either of two sgRNAs also improved survival (Figure 

6F, J).

Of the other five genes tested, two selectively expressed by resRGCs improved survival: 

neuron-derived neurotrophic factor, Ndnf, which encodes a secretory protein (Kuang et al., 

2010), and peripherin, Prph, which encodes a neurofilament protein (Thompson and Ziff, 

1989) (Figure 6G–J, Table S6). In contrast, KO of three genes enriched in subsets of 

susRGCs (Evc2, Tac1 and Hpcal1) had no significant effect (Figure S8D,E).

Genes would be particularly useful targets if they were able to rescue neurons that do not 

express them endogenously. We asked whether overexpression of the protective genes Ucn 
and Timp2 could improve survival of susceptible RGC. To test this idea, we used two 

markers (CARTPT, NEUROD2) that label susceptible RGC subclasses (Figure 3H), neither 

of which expresses Ucn or Timp2 at high levels before or after ONC. Both OE-Ucn and OE-

Timp2 increased survival of CARTPT+ RGCs but not NEUROD2-RGCs (Figure 6K,L). 

Thus, these interventions can protect some but not all susceptible RGC types.

Factors correlating with resilience also stimulate axon regeneration

While our screen was focused on neuroprotection, the targets we identified might also 

promote axon regeneration. To test this possibility, we anterogradely labeled RGC axons by 

intravitreal injection of fluorescently conjugated cholera toxin B subunit (CTB647) at 12dpc, 

then counted labeled axons at 14dpc (Figure 7A). OE-Ucn, UCN protein, OE-Timp2, KO-

Crhbp and KO-Mmp9 all promoted significant overall regeneration (Figure 7B,C,E,F, Table 

S6), with some regenerating axons extending >1500μm. Overexpression of Ndnf and Prph 
promoted modest regeneration but only at short distances (Figure 7D,G). These results 

encourage the hope that our screen will be useful for discovery of targets for axon 

regeneration as well as neuroprotection.

DISCUSSION

We generated an atlas of adult mouse RGC types, and used it as a foundation to track type-

specific responses to injury. We identified a spectrum of resilience among RGC types, and 

documented transcriptomic, physiological and morphological changes preceding 
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degeneration. We then manipulated genes selectively expressed in resilient or vulnerable 

types, finding some that promote RGC survival and axon regeneration following ONC.

An atlas of mouse RGC types

Analysis of 35,699 adult RGC transcriptomes revealed 45 cell clusters. Several lines of 

evidence indicate that these clusters correspond to cell types: (a) The number of types is 

similar to those from recent large-scale surveys based on serial section electron microscopy 

(≥35; Bae et al., 2018), optical imaging of electrical activity (≥32; Baden et al., 2016) and 

scRNAseq of neonatal retina (40; Rheaume et al., 2018). (b) Several clusters could be 

assigned to types based on previously known markers. (c) For others, in situ hybridization 

with genes identified from scRNA-seq allowed us to assign clusters to known types or find 

morphological signatures of previously uncharacterized molecular types. Thus, RGCs join 

retinal bipolar cells (Shekhar et al., 2016) as a second neuronal class for which 

transcriptomic criteria tightly correspond to types as defined by classical criteria. This 

encourages the belief that high-throughput molecular profiling methods, which are currently 

the most scalable, represent a reliable approach to categorize cell types in the mammalian 

nervous system.

We cannot, however, be sure that we have captured all RGC types for three reasons. First, 

our sample size permitted the identification of a type that comprises ~0.15% of all RGCs, 

but rarer types may have gone undetected. Second, cell dissociation can create biases and 

fragile types could be missed. Third, V- and D-ooDSGCs formed a single cluster that we 

split by a semi-supervised analysis, yielding a total of 46 types from 45 clusters. These types 

are extremely similar; indeed, despite intensive study, no endogenous markers had been 

found that distinguish them (Kay et al., 2011). They do form separate clusters in early 

postnatal retina (I.E.W, K.S and J.R.S. in preparation), suggesting that distinguishing genes 

are downregulated in adulthood. Although supervised analysis of other clusters did not 

reveal additional subdivisions, we cannot rule out the possibility that other closely related 

types also co-clustered.

The molecular atlas provided new insights into RGC subclasses. First, for several subclasses 

previously defined by morphological, physiological or genetic criteria, we identified novel 

members; e.g., an additional T-RGC and F-RGC. Second, members of a subclass generally 

showed a global transcriptomic relationship. For example, the T5-RGC types, 6 of which 

were previously shown to share dendritic lamination, were transcriptomically proximate (5/9 

types) and shared expression of Tusc5. Neurod2 and Satb2 are co-expressed by 8 

transcriptomically proximate types, 7 of which are novel. These and other novel types 

clustering near known types may share cellular features. On the other hand, types that share 

functional or structural characteristics were not always neighbors on the dendrogram (Figure 

2J), particularly when a type was a member of multiple subclasses.

Resilience to injury varies among cell types

To characterize RGC survival after ONC, we applied three independent approaches – 

scRNA-Seq, IHC, and in vivo physiology. We found strong agreement among the criteria in 

their assessment of type-specific RGC resilience and draw four main conclusions. First, 
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survival differed dramatically among types, from 1% to 98% over two weeks. Second, types 

that differed in overall resilience also differed in the time course of death. Third, resilience 

was not “binary” but rather varied continuously across types. Fourth, in some but not all 

cases, resilience correlated with molecular or physiological properties of RGC types. For 

example all 5 ipRGC types were resilient, RGCs with sustained light responses 

outperformed those with transient responses, and all 8 N-RGC types survived poorly. 

Nonetheless, we did not find a single characteristic that predicted resilience, suggesting that 

different resilient neuronal types utilize different survival strategies.

The resilience of sustained RGCs provides an intriguing parallel to patterns of motoneuron 

survival in Amyotrophic Lateral Sclerosis: the “slow” motoneurons that innervate slow 

twitch muscle fibers exhibit tonic (~sustained) activity survive better than fast motoneurons, 

which exhibit phasic (~transient) activity (Pun et al., 2006). This correspondence suggests a 

general association between firing pattern and resilience, the basis of which remains to be 

explored.

Cellular changes in neurons with differential resilience

Knowing the kinetics of loss for each RGC type allowed us to characterize molecular, 

morphological and physiological alterations in the days prior to death. Our main result is 

that these changes were surprisingly mild up until shortly before somatic loss: dendritic 

morphology, firing rate and feature selectivity of RGCs remained at close to control levels 

until at least two days before death. This observation contrasts with models of glaucoma, 

where dendritic shrinking and functional decline prior to death is striking (Della Santina et 

al., 2013; Liu et al., 2011). They also seemingly contrast with other studies that observe 

significant dendritic shrinkage after ONC (e.g., Agostinone et al., 2018); however, those 

studies focused on broader subclasses of RGCs, so changes in dendritic area could reflect 

differential survival of RGC types within the subclass being assayed.

Genes that affect resilience and regeneration

As noted above, we found no universal gene expression programs that predicted resilience. 

We did, however, identify genes expressed selectively by multiple resilient or susceptible 

types, some of which affect RGC survival and axon regeneration. Among them were two 

intriguing pairs in which a gene and its antagonist were expressed in opposing populations.

The first pair was Ucn and Crhbp, expressed by resRGC and susRGCs, respectively. UCN 

has been shown to promote survival of hippocampal and dopaminergic neurons 

(Abuirmeileh et al., 2007; Huang et al., 2011; Pedersen et al., 2002). CRHBP binds UCN 

and prevents it from activating CRHR1 (Seasholtz et al., 2002). The second pair was 

Mmp12, expressed by susRGCs and its endogenous inhibitor, Timp2 (Dzwonek et al., 

2004), expressed by resRGCs. Administration of a soluble inhibitor of MMP12 was recently 

shown to improve RGC survival after ONC (Vinet et al., 2018), a result we replicated, and 

Mmp12 deletion improves recovery from spinal cord injury (Wells et al., 2003) and AAV-

mediated gene-transfer of Timp1 and Timp2 reduced neuronal damage in transient global 

ischemia (Magnoni et al., 2007). Overexpression of Ucn or Timp2 improved RGC survival 

as did KO of Crhbp or Mmp12.
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A guiding hypothesis for this study was that protective genes identified on the basis of their 

expression by resRGCs would protect other RGC types if expressed broadly. We tested this 

hypothesis for Ucn and Timp2, and found that they improved the survival of CARTPT+ 

RGCs, which are among the most susceptible to ONC. This result supports the idea that 

targets identified by our methods could be broadly useful. On the other hand, these genes 

had no effect on survival of another susceptible subclass (NEUROD2+), indicating that 

neuroprotective strategies may need to be tailored to particular neuronal populations.

Some of the targets identified in our screen for neuroprotection also promoted axon 

regeneration. These processes are not always linked and can sometimes be antagonistic. For 

instance, deletion of Dlk promotes broad RGC survival but blocks Pten-mediated axon 

regeneration (Watkins et al., 2013), while Sox11 overexpression promotes long distance 

axon regeneration in some RGCs but kills others (Norsworthy et al., 2017). Targets that do 

both are preferable therapeutic candidates in many neurodegenerative contexts.

Distinguishing cell types from cell states

A general question about scRNA-seq- based cell atlases is whether some clusters defined on 

the basis of transcriptional similarity represent different states of the same cell type rather 

than different cell types. Because ONC leads to a dramatic but defined change in cell state, 

our results provided an opportunity to explore this question.

Although injury-related gene expression changes were detectable at 1dpc, cells at this stage 

could be robustly assigned to type using a “one-step” classifier. At later times, however, 

classification was increasingly impacted by state-dependent changes. To reliably assign cells 

to types at late stages, we devised iGraphBoost, which iteratively assigns cells to types using 

a two-step approach that combines supervised classification and graph-based voting, while 

updating the model along the time course. We were able to map a high percentage of RGCs 

accurately even in highly degenerated retina. We expect that this approach will be effective 

when samples have sufficient temporal resolution to resolve gradual changes in molecular 

state from intrinsic programs.

In conclusion, mining type-specific molecular correlates of resilience and vulnerability to 

injury provides a rich source of genes that mediate neuronal survival and axon regeneration. 

Some of the targets we found are likely to be effective in other contexts, and the general 

approach is likely to be applicable to other neuronal populations in the CNS.

STAR Methods

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by J.R.S. (sanesj@mcb.harvard.edu). All unique/stable reagents generated in this 

study are available from the Lead Contact without restriction.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Mice—All animal experiments were approved by the Institutional Animal Care and Use 

Committees (IACUC) at Harvard University and Children’s Hospital, Boston. Mice were 
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maintained in pathogen-free facilities under standard housing conditions with continuous 

access to food and water. All experiments were carried out in adult mice from 6 to 20 weeks 

of age and include both males and females. Contribution of gender was not considered in 

primary analysis, however our meta-analysis of scRNA-Seq variation among samples within 

a given time point suggest sex-specific differences were a minimal factor (Figure S3C). The 

following mouse stains were used for both fluorescence activated cell sorting (FACS) and 

histology: Vglut2-ires-cre (Slc17a6tm2(cre)Lowl/J;(Vong et al., 2011)) crossed to the cre-

dependent reporter Thy1-stop-YFP Line#15 (B6.Cg-Tg(Thy1-EYFP)15Jrs/J (Buffelli et al., 

2003), C57Bl/6J (JAX # 000664), TWY3-YFP (Kim et al., 2010). The following mouse 

strains were used only for histology: Kcng4-cre (Duan et al., 2015) crossed to Thy1-stop-
YFP Line#1 (Buffelli et al., 2003), Jam-Creer (Kim et al., 2008) and Cck-Cre (Taniguchi et 

al., 2011) crossed to Thy1-stop-YFP Line#15, Pv-Cre (JAX #017320) and Opn4-Cre (Ecker 

et al., 2010) crossed to Rosa-lox-STOP-lox-Tomato (Madisen et al., 2010), YFP-H (Feng et 

al., 2000), B6.Cg-Tg(Hlxb9-GFP)1Tmj/J (AKA Hb9-GFP) (Kim et al., 2010), TWY7-YFP 
(Kim et al., 2010), and Penk-cre (JAX #025112). For Crispr-induced gene knockdown 

experiments Vglut2-Cre crossed to the Rosa26-LSL-Cas9 knockin (JAX #024857) was used.

METHOD DETAILS

Unless specified, experiments were not blinded for experimental condition. All experiments 

were performed on multiple biological replicates to control for natural variation. For 

scRNA-Seq experiments, appropriate retinal ganglion cell sampling was determined using a 

50% down sampling approach, which yielded comparable clustering results. Additional 

details for cell inclusion for scRNA-Seq experiments are provided in the Computational 

Methods section below.

Optic Nerve Crush—After anaesthesia with ketamine/xylazine (ketamine 100–120 mg/kg 

and xylazine 10 mg/kg), we performed optic nerve injury as previously described (Park et 

al., 2008). Briefly, the optic nerve was exposed intraorbitally and crushed with fine forceps 

(Dumont #5 FST) for 2s approximately 0.5–1mm behind the optic disc. Eye ointment was 

applied post-operatively to protect the cornea. All surgeries were performed by an 

experienced surgeon, who visually confirmed optic nerve crush during the procedure.

Cell preparation and FACS—Retinas were dissected in AMES solution (equilibrated 

with 95% O2/5% CO2). Upon dissection, eyes and lenses were visually inspected for 

damage, blood, or inflammation, which were used as criteria for exclusion. Retinas were 

digested in papain, and dissociated to single cell suspensions using manual trituration in 

ovomucoid solution. Cells were spun down at 450g for eight minutes, resuspended in AMES

+4%BSA to a concentration of 10 million cells per 100μl. 0.5μl of 2μg/μl anti-CD90 

(conjugated to various fluorophores) (Thermo Fisher Scientific) per 100μl of cells was 

incubated for 15 minutes, washed with an excess of media, spun down and resuspended 

again in AMES+4%BSA at a concentration of ~7 million cells per 1 ml. For Actinomycin-

treatment experiments, cell preparation was performed as above and 30μM ActinomycinD 

(Millipore Sigma) was added to the oxygenated AMES, papain, and ovomucoid solutions. 

Cells were then resuspended in AMES + 4%BSA + 3μM ActinomycinD. Just prior to FACS 

the live cell marker calcein blue was added. Cellular debris, doublets, and dead cells 
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(Calcein Blue negative) were excluded, and RGCs were collected based either on high CD90 

expression alone, or on CD90 and GFP co-expression. The former was used when tissue 

came from C57Bl6/J mice, and the latter when Vglut2:cre;Stp15 mice were used. Cells were 

collected into ~100ul of AMES+4%BSA per 25,000 sorted cells. Following collection cells 

were spun down and resuspended in PBS+0.1% non-acetylated BSA at a concentration 

range of 500–2000 cells/ul for droplet-based scRNAseq per manufacturer’s instructions (10x 

Chromium). YFP+ RGCs from TWY3-YFP were collected in the same way as RGCs from 

Vglut2:cre;Stp15 mice, but single cells were sorted into 96 well plates as described below.

RNA-sequencing

3’ droplet-based scRNA-seq: Single cell libraries were prepared using the Single-cell gene 

expression 3’ v2 kit on the Chromium platform (10X Genomics, Pleasanton, CA) following 

the manufacturer’s protocol. Briefly, single cells were partitioned into Gel beads in 

EMulsion (GEMs) in the Chromium instrument followed by cell lysis and barcoded reverse 

transcription of RNA, amplification, enzymatic fragmentation, 5’ adaptor attachment and 

sample indexing. On average, approximately 8,000–12,000 single cells were loaded on each 

channel and approximately 3,000–7,000 cells were recovered. Libraries were sequenced on 

NextSeq 500 or Illumina HiSeq 2500 platforms (Paired end reads: Read 1, 26 bases, Read 2, 

98 bases).

W3-YFP Smart-seq2: We profiled 768 single cells from the TYW3 mouse line (Kim et al., 

2010), in which a subset of RGCs with S3-laminating dendrites is labeled with YFP. We 

sorted single YFP+ cells from dissociated retinas into wells of 96-well plates preloaded with 

2 μl of lysis buffer containing 0.5% NP-40, 10 mM Tris-HCl, pH 7.6, 0.1 mM EDTA, 2 U/μl 

RNase Inhibitor (Clontech/TaKaRa). We generated single cell RNA-Seq libraries using a 

modified Smart-seq2 method (Ding et al., 2019; Picelli et al., 2013) with the following 

minor change: We added 3 μl instead of 4 μl of master mix containing only 1.7 μl instead of 

2.7 μl of 1 M Trehalose (Sigma-Aldrich) directly to the 2 μl cell lysate without a SPRI bead 

cleanup step. We pooled and sequenced the libraries with paired-end reads (50 bases for read 

1 and 25 bases for read 2) on two flowcells with a NextSeq 500 instrument (Illumina).

Histological Methods—Eyes were either collected from animals intracardially perfused 

with 15–50ml of 4% paraformaldehyde (PFA), and post-fixed for an additional 15 minutes, 

or dissected from an nonperfused animal and immersion fixed in 4% PFA for 30 minutes. 

Eyes were transferred to PBS until retinas were dissected, following which retinas were 

either used for wholemount IHC or sunk in 30% sucrose and embedded in tissue freezing 

media to cryosection into 20–25μm thick cross-sections. Upon dissection, eyes and lenses 

were visually inspected for damage, blood, or inflammation, which were used as criteria for 

exclusion. To immunostain retinal wholemounts, retinas were incubated in protein block 

(5% normal serum, 0.3% triton-x, 1x PBS) for 3–14 hours, followed by incubation with 

primary antibodies (in protein block) for 5–7 days in block, and secondary antibodies (in 1x 

PBS) overnight. All incubations were done at 4°C with gentle rocking. Retinal sections were 

then used for IHC or fluorescent in situ hybridization (FISH). For IHC, slides were 

incubated for 1 hour in protein block, primary antibody incubation overnight, and secondary 

antibodies for 2–3 hours. Initial block and secondary antibody incubation were done at room 
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temperature and primary antibody incubation at 4°C. Probe generation and FISH was 

performed as described previously with minor modifications (Shekhar et al., 2016), 

specifically a reduced digestion with Proteinase K (0.5ug/ml for 5 minutes) to preserve the 

integrity of the GCL. In some cases, FISH was performed using the commercially available 

RNAscope fluorescent multiplex assay according to manufacturer’s instructions, with minor 

modifications (ACDbio). Specifically, we excluded the step of boiling slides in target 

retrieval solution, which disrupted IHC staining. Analysis of IHC whole mounts for figures 

1, 3, and 4 were single-blinded for sample identity.

Intravitreal injections for manipulation experiments—For AAV-based experiments, 

mice were anaesthetized with ketamine/xylazine (ketamine 100–120 mg/kg and xylazine 10 

mg/kg) and injected intravitreally with ~2μl of volume of AAV2 (in 1x PBS) carrying the 

gene of interest driven by a CAG promoter, or an sgRNA driven by a U6 promoter, two 

weeks before crush. Concentration of viruses was adjusted to ~5 × 1012. Urocortin (rat) 

protein (Millipore Sigma, ~2μl of 40μM in 1x PBS + 0.1% acetic acid) was injected 

intravitreally at 2dpc. Mmp12 inhibitor (Mmp408) (Millipore Sigma, ~2μl of 2mM in 1x 

PBS+1:20 DMSO) was injected intravitreally at 2, 5, 8, 12dpc. For injections, we first 

removed ~2μl intravitreal fluid from the eye with a sterile micropipette glass. A sterile 

micropipette glass tip or 33-gauge Hamilton syringe was then inserted through the sclera 

about 0.5 mm posterior to the limbus and into the vitreal chamber without touching the lens 

and delivered reagent (~2μl) was injected through the same injection site. After injection, 

antibiotic ophthalmic ointment was applied and mice stayed warmed on a heating pad until 

fully awake.

Design of overexpression and knockdown vectors—Boston Children’s Hospital 

Viral Core provided AAV virus. The AAV2-based Crispr/Cas9 approach we employ here has 

been established as an effective modality for somatic knockdown in adult mouse RGCs 

(Hung et al., 2016). To account for possible off target effects, we tested two gRNAs per 

gene, and for added RGC-specificity, we delivered AAV2 single-guide RNA (sgRNA) 

expression vectors to the eyes of mice that express Cas9 specifically in RGCs (VGlut2-Cre; 

LSL-Cas9-eGFP), which lead to high infection rates as exemplified here for Crhbp sgRNA 

#2 and OE Ucn (Figure S7A). Vectors and sequences used for manipulation experiments are 

displayed in Key Resources Table and Table S7.

Anterograde tracing of regenerating axons—To assess axon regeneration, the axons 

were anterogradely labeled by injecting CTB conjugated with Alexa-647 (Life Technology) 

via an intravitreal injection 48 hours before sacrifice. After 4% PFA perfusion mice heads 

were postfixed for 3 hours in 4% PFA. Optic nerves were microdissected and meninges 

surrounding the nerve were removed. Nerves were then cleared by the protocol provided 

from Visikol®. In short, the nerves were dehydrated with 100% methanol for 4 minutes and 

then transferred into Visikol Histo-1 solution for overnight incubation at 4°C. The next day 

the nerves were inc ubated in Visikol Histo-2 solution for at least 2 hours before mounting 

them in Visikol Histo-2 solution and imaged with the LSM710 confocal microscope. Optic 

nerves showing incomplete crushes as evidenced by continuous labeling of axons through 
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the chiasm and/or a different morphology then regenerating axons (pearls on a string) were 

excluded from the analysis; they comprised <4% percent of nerves analyzed.

In vivo Electrophysiology

Implantation of mesh electrodes.: Fabrication and non-coaxial implantation of the mesh on 

the retina surface have been reported by (Hong et al., 2018) except that the mesh electronic 

probe produced for our experiments carried 32 independently addressable recording 

electrodes rather than 16 electrodes in the previous report. The mesh was loaded into a 

sterile borosilicate capillary needle Inner diameter: 200μm, outer diameter: 330μm; 

Produstrial LLC, Fredon, NJ). Mice were anesthetized by intraperitoneal injection of a 

mixture of ketamine/xylazine (ketamine 100–120 mg/kg and xylazine 10 mg/kg), the optic 

nerve of the right eye was crushed as described above and immediately after that a sterile 27-

gauge hypodermic needle (BD Technologies, Durham, NC) was used to puncture a hole for 

sclerotomy below the limbus at the lateral canthus for guiding the insertion of the capillary 

needle and at the medial canthus for draining the injected liquid to reduce intraocular 

pressure during injection. Using a stereotactic stage, the capillary needle loaded with the 

mesh was allowed to advance through the pre-punctured hole at the lateral canthus until its 

tip reached the nasal part of the retina, taking special caution to avoid damaging the lens. 

Controlled injection of the mesh electronic neural probe to achieve precise placement was 

previously reported (Fu et al., 2016; Hong et al., 2018; Hong et al., 2015). After a 2–3mm 

length of the mesh has been injected and placed on the retina surface, conventional coaxial 

injection was used while the capillary needle was withdrawn simultaneously, leaving an 

external portion of the mesh outside the eye. The exit point of the mesh probe in the lateral 

canthus was secured with a small amount of Kwik-Sil adhesive silicone elastomer (Word 

Precision Instruments, Sarasota, FL). The medial canthus of the eye was sealed with 

3M™Vetbond™Tissue Adhesive (Santa Cruz Biotechnology Inc., Dallas, TX). Antibiotic 

ointment was applied after eye injection.

The external portion of the mesh has all input/output (I/O) pads, which were unfolded onto a 

32-channel flexible flat cable (FFC, #0150200339, Molex, Lisle, IL) for individually 

addressable I/O connection (Fu et al., 2016; Hong et al., 2018; Hong et al., 2015). After I/O 

connection, the bonding region of mesh on the FFC was carefully covered with dental 

cement to the skull with METABOND®. A mouse head-plate, with an opening, for head-

fixation during retina recording and visual field stimulation was also cemented to the skull 

using METABOND®. Additional dental cement was carefully applied to cover the silicone 

previously applied at the lateral canthus of the injected mouse eye for protection of mesh 

electronics without touching any part of the mouse eye, eyelids or the mesh, resulting in a 

monolithic piece of dental cement protecting the mesh electronics and the FFC, and a 

chronically stable interface for long-term retina electrophysiology.

In vivo recording and stimulation protocol.: We obtained recordings from 4 mice (total of 

132 cells) every one or two days, starting from Day 1 following ONC and mesh injection. 

Mice were placed in a Tailveiner restrainer (Braintree Scientific LLC., Braintree, MA) with 

the head-plate secured to reduce mechanical noise during recording and fix the visual field 

of the recorded eye during visual stimulation. The FFC was connected to the signal amplifier 
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and digitizer (Intan Technologies, Los Angeles, CA) and RGC activities were recorded 

while visual stimuli were presented to the mouse on a computer screen (20.5″×12.5″), 

placed a distance of 20cm from both eyes of the mouse, covering an azimuth angle range of 

±52°, similar to previously reported protocols (Hong et al., 2018). Recordings were made 

from the following visual stimuli:

1. Full-field ON/OFF stimulation: A full-field projection of a black screen with 4s 

duration was followed by a full-field projection of a white screen, with its 

leading edge entering the screen in eight different directions. The full-field 

projection of the white screen also lasted 4s, which was followed by another 4s 

full-field projection of black screen with its leading edge moving in the same 

direction as the preceding white screen leading edge. Each direction was 

repeated 10 times.

2. Moving gratings: Gratings comprising alternating white and black bars filling the 

entire computer screen and moving in different directions were programmed in 

MATLAB. A complete moving grating test comprised 10 repetitive trials, where 

each trial comprised 8 different directions in a randomized sequence. Baseline 

was established between repetitions with full-field grey screen, which had the 

same luminous flux as the alternating white-and-black bars. Gratings moved into 

each direction for 4 seconds. Data was acquired with a 20-kHz sampling rate and 

a 60-Hz notch filter.

For recordings during both visual stimulation protocols, data was acquired with a 20-kHz 

sampling rate and a 60-Hz notch filter.

Computational Methods

Alignment and quantification of gene expression in 3’ droplet-based scRNA-seq 
data: Demultiplexing and alignment of sequencing reads to the mouse transcriptome (see 

below) was performed using the Cell Ranger software (version 2.1.0, 10X Genomics). For 

each sample (i.e. 10X channel/reaction), Cell Ranger generated a matrix of gene counts 

across cells. We used the option “--forcecells 6000” in “cellranger count” to deliberately 

extract a larger number of cell barcodes in the data, as we found that the automatic estimate 

of Cell Ranger was too conservative. Here, 6,000 represented a “loose” upper bound on the 

number of cells that could be recovered, a value that was calculated from the measured 

density of the cell suspension loaded onto every channel per the manufacturer’s guidelines.

The 10 samples that were used to assemble the adult RGC atlas (Figure 1) were profiled 

prior to ONC experiments, and were aligned to the standard mm10 mouse transcriptomic 

reference that is included in the Cell Ranger suite. For ONC-related scRNA-seq 

experiments, we aligned the sequence data to an updated transcriptomic reference (see 

below). The count matrices corresponding to the atlas and the ONC datasets were combined 

separately to generate consolidated matrices Cij representing the unique molecular identifier 

(UMI)-based transcript counts for gene i in cell j. For normalization, we first divided each 

Cij by Σi
□ Ci j representing the library size of cell j to obtain a “concentration” matrix ClJ. 

We then multiplied ClJ by the median library size M median j ∑i
□Ci j  to obtain the 
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transcripts per median (TPMij matrix. We defined the normalized expression matrix Eij = 

(TPMij + 1).

Updated transcriptome for crush experiments: We obtained high quality total RNA from 

uninjured control retinas and from a pooled sample of 1, 2, and 14dpc retinas, and processed 

these separately to generate two (Ctrl and ONC) strand-specific RNA-seq libraries using the 

TruSeq Total RNA kit (Illumina Inc.). Each library was sequenced on a NextSeq 500 system 

to obtain 75 million 100bp paired end reads. Next, we used the two datasets to assemble a 

new mouse retina-specific transcriptomic reference, beginning with the original mm10 

mouse reference as a scaffold. We followed a procedure similar to the one we used recently 

to update a macaque retina transcriptome (Peng et al., 2019). Briefly, following published 

guidelines (Pertea et al., 2016), we initially mapped the TruSeq reads onto the mm10 

transcriptome in a strand-specific manner using the Hisat2 software with command line 

options “--dta--rna-strandedness RF”. Next, we used StringTie v1.3.3 (Pertea et al., 2016) 

with command line option “--rf” to assemble a new transcriptome based only on the TruSeq 

reads. After the initial assembly, we reran StringTie with the command line option “--merge” 

to unify the assembled transcripts with the previous reference to obtain an updated 

transcriptome annotation. This resulted in modified definitions of transcripts existing in the 

original reference, as well as novel transcripts supported by the TruSeq reads. While the 

modified transcripts retained gene names from the original annotation, the novel transcripts 

were initially named according to Stringtie’s naming convention (e.g., MSTRG.7121).

Defining a molecular atlas of mouse RGC types: Our scRNA-seq libraries consisted of 

three biological replicates (Batch 1–3). In each case, we collected CD90+GFP+ cells from 

the retinas of Vglut2-cre;Stp15 mice. Cells in Batch 1 were processed in two 10X channels, 

while cells in Batches 2–3 were processed in four channels each, with an estimated recovery 

of ~4000–5000 cells per channel. We consolidated the expression matrices, and selected 

cells where a minimum of 1200 genes were detected. This resulted in a total of 39,750 cells 

across the three biological replicates (8,091 cells from Batch 1, 17,327 cells from Batch 2 

and 14,332 cells from Batch 3).

We identified 1285 highly variable genes {gi} in the data using our previously described 

Poisson-Gamma model (Pandey et al., 2018) based on the raw count matrix Cij, and used the 

filtered expression matrix E{gi}j for further analysis. We used randomized PCA (Halko et al., 

2011) to reduce the dimensionality of the data, and identified 61 statistically significant PCs, 

identified based on comparison of the empirical eigenspectrum with a “null” spectrum based 

on the Tracy-Widom distribution, as described earlier (Peng et al., 2019). Next, we built an 

unweighted k-nearest neighbor (k-NN) graph (k=40) on the cells based on euclidean 

distance in the 61-dimensional PC space. Each edge connecting a pair of cells i and j was re-

weighted using the Jaccard-metric of neighborhood similarity,

Edge(i, j) =
Neighborhoodi ∩ NeighborhoodJ
Neighborhoodi ∪ NeighborhoodJ
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Where Neighborhoodi denotes the cells that are nearest neighbors of cell i, and |x| denotes 

the number of elements in the set denoted by x. Using the Infomap algorithm (Rosvall and 

Bergstrom, 2008), which in our previous experience over-clusters the data (Shekhar et al., 

2016), we identified 304 clusters in the data with sizes ranging from 502 cells to 6 cells. We 

scored each cluster based on cell class-specific signatures for the major retinal neuronal 

classes - RGCs, Amacrine cells, Photoreceptors, Bipolar cells, Muller glia, horizontal cells, 

pericytes and microglia (Table S1). Removal of contaminant clusters (Amacrine Cells, 

Photoreceptors, Immune Cells and Glia) resulted in 251 RGC clusters comprised of 35,699 

cells.

While the sensitivity of Infomap was beneficial in identifying, and eliminating contaminants, 

a large number of the remaining RGC clusters could not be justified based on differential 

gene expression. In particular, a hierarchical clustering analysis (not shown) revealed a 

number of instances where multiple clusters were close together in transcriptional space that 

exhibited minor and graded differences in gene expression, likely representing oversplitting 

of a single RGC type/state or batch effects. We therefore reclustered the RGCs using the 

Louvain algorithm (Blondel et al., 2008) applied on a Jaccard-weighted kNN graph (k=30), 

and applied the iterative approach described earlier (Peng et al., 2019) to identify 45 

molecularly distinct clusters (putative RGC types). Through manual inspection of a few 

Louvain clusters, we confirmed that they were supersets comprised of Infomap clusters that 

were transcriptionally proximal.

We bootstrapped on the number of genes and number of PCs to ensure that our results were 

insensitive to variations in these choices (not shown). To further assess the robustness of 

these clusters, we used the output of two alternatives to PCA to reduce the dimensionality of 

the data prior to Louvain Clustering - Independent Component Analysis (ICA; (Comon, 

1994)) and Liger (Welch et al., 2019), a recently proposed non-negative matrix factorization 

(NMF; (Lee and Seung, 1999)) based technique based data integration method. 

Encouragingly, the clusters identified in either space were highly consistent with the results 

from PCA (Figure S1C,D).

Identifying 2-marker combinations to label RGC types in the atlas: We first identified 

genes enriched in each RGC type relative to the rest using the MAST framework (Finak et 

al., 2015). In contrast to our previous study on retinal bipolar cells (Shekhar et al., 2016), we 

found that most RGC types were not specifically labeled by single genes. We therefore 

evaluated combinations of two genes on their ability to specifically label cells of a given 

type.

For each type, we first selected genes that individually showed either a >2-fold enrichment 

(“+ve markers”) or < 2-fold depletion (“-ve markers”) compared to the background of other 

types. Here, fold-enrichment or depletion of gene i was evaluated as the max(r1, r2) where,

r1 =
 Average TPMi, . across cells in cluster

Average TPMi, . across cells in background  and 
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r2 =  Fraction of  cells in cluster expressing gene i
 Fraction of  cells in background expressing gene i

Using these genes, for each RGC type we evaluated (1) all pairwise combinations of +ve 

markers, and (2) all pairwise combinations consisting of one positive and one negative 

marker for their ability to specifically label the type based on the area under the precision 

recall curve (AUCPR). AUCPR is a measure of cluster specificity as described earlier 

(Pandey et al., 2018). We specifically favored marker combinations that had a higher 

precision (low proportion of false positives) compared to recall (low proportion of false 

negatives), as false negatives could arise because of dropouts in scRNA-seq data. The top 

candidates are displayed in Figure 1F. For few types, we found that it was necessary to 

screen three marker combinations for achieving higher precision.

Assigning injured RGCs profiled following ONC to types using iGraphBoost: The ONC 

dataset consisted of cells enriched for RGCs profiled at 6 time points following crush (0.5, 1, 

2, 4, 7, and 14dpc), and a separate control dataset (0dpc) independent of the Atlas dataset. 

We first used an Infomap-based clustering procedure (see above) to remove non-RGCs from 

the data. he iGraphBoost procedure used to assign injured RGCs to types following ONC 

was as follows:

Beginning with the RGC atlas as training data, iGraphBoost proceeds by sequentially 

assigning cells to types at each time point through supervised classification followed by 

graph-based voting (see below), beginning with 0dpc. Cell type assignments at each 

timepoint in the ONC dataset are incorporated into a “time point-specific” atlas, which, 

combined with previous atlases, is used to classify cells at the next time point. This allows 

us to disambiguate changes in cell state due to injury from the intrinsic molecular 

distinctions of each RGC type.

Given RGCs atlases at times t0,t1,…,ti, we describe here the procedure to assign RGCs at 

timeti+1 to types. Here, t0may be regarded as the control RGC atlas and t1may be regarded as 

0dpc. We train decision-tree based ensemble classifiers Ωt at each time t < ti+1.We tested 

Random Forests (R package randomForest) and Gradient-boosted trees (R package 

xgboost), both yielding consistent results. Results presented were derived from Gradient-

boosted trees. Each classifier Ωt was trained on 70% of cells at time t, and validated on the 

remaining 30% “held out” cells. The classifier labels were compared to the true labels of the 

“held out” cells to compute precision and recall values for each of the 45 RGC types. In the 

assignment of cells at ti+1, a classifier Ωt’s vote for a class m (when pm
k,t ≥ 0.8 was only 

“trusted” if during the validation round both the precision and recall for class m exceeded 

0.9.

In Step 1, we begin by individually applying the classifiers Ωt to each cell k at time ti+1. 

When applied to cell k Ωt assigns a probability vector Pk,t = (pk,t
1,p2

k,t,…,p45
k,t)where pm

k,t 

is the Ωt assigned probability that cell k belongs to RGC type m. pm
k,t is the fraction of 

decision trees in Ωt that vote for class m. For the classifier Ωt, we assign cell k to class mt = 

argmaxmpm
k,t if and only if pmt

k, t ≥ 0.8, and Ωt can be trusted with regards to class mt(see 
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above). If pmt
k, t < 0.8, we regard cell k as “unassigned” from the point of view of Ωt. The 

final assignment of cell k in Step 1 is determined by collectively considering the votes from 

all the Ωt such that cell k is assigned to type m if and only if at least one classifier among Ωt 

assigns cell k to RGC type m, and the remaining classifiers deem it “unassigned”. In cases 

where two or more classifiers among Ωt assign cell k to different RGC types, it is deemed 

“unassigned”.

Step 1 resulted in a subset of RGCs at time ti+1being assigned to types with high confidence. 

In Step 2, we use these as “anchors” to propagate labels using the neighborhood 

relationships. We built a k-nearest neighbor graph on the RGCs with k=15 at ti+1 in PCA 

space, which connects cells based on their transcriptional proximity. We hypothesized that if 

an unassigned cell’s neighbors were predominantly of a single type, this can be used as 

evidence to assign the transcriptional identity of the unassigned cell. Thus, we iteratively 

loop through the unassigned cells from Step 1 and assign a cell k to type m, if > 67% of the 

k=15 nearest neighbors of cell k are of type m. Each iteration decreases the fraction of 

unassigned cells, and the procedure terminates if the fraction of unassigned cells decreases 

less than 0.5%. The results were insensitive in variations of the voting threshold between 

50% and 80%, although there was a drop in quality outside of these limits. A high voting 

thresholding (~90%) resulted in a number of unassigned cells, whereas a low voting 

threshold resulted in a number of spurious assignments, as assessed by post hoc DE analysis. 

We typically conducted 2–3 “passes” of nearest-neighbor voting, successively propagating 

labels in the data, stopping when the proportion of newly classified cells was dropped below 

1%.

Thus steps 1 and 2 assign type identities RGCs at ti+1. While unassigned cells remained, 

they were far fewer than the naive “one-step” classification approach, involving a direct 

assignment of cells based on a classifier Ωt0 trained on the atlas (Figure S3).

Finally we summarize features of iGraphBoost that buffer against the forcible assignment of 

injured RGCs into a preexisting framework. First, in Step 1, iGraphBoost learns type-

specific expression patterns from securely classified cells at a previous time point. This 

should, in principle, incorporate injury related changes that might be type specific to classify 

cells rather than relying on baseline distinctions. Second, the classification relies on multi-

dimensional expression of many markers, making it robust against injury related ectopic 

changes (loss or gain) in individual markers. Thus, unless RGCs of a given type begin to 

express a large number of genes characteristic of another type resulting from injury, we do 

not expect them to be misclassified. Third, the classification process relies on multiple 

(>1000) decision trees, each trained on a subset of markers. Furthermore, only cells that are 

assigned to a type by a large majority (>80%) of these decision trees are classified. Fourth, 

Step 2 of iGraphBoost involves an additional filter in that only cells that have >60% of 

neighbors of a single type (out of 45) are assigned to that type. Importantly, the classification 

is not forced upon every cell in that a large number of cells (~25% at 4d,7d and 14d) remain 

unclassified as their expression signatures. The fidelity of type assignments is demonstrated 

in Figure 3D, which shows that marker specificity was maintained, though some had lower 

expression.
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Clustering and visualization of atlas and injured RGC transcriptomes: As described 

previously, we used the PCA coordinates of atlas RGCs to determine clusters using the 

Louvain-Jaccard algorithm. RGCs were visualized on a 2D map using t-distributed 

stochastic neighbor embedding (tSNE)(Maaten and Hinton, 2008). We used a recently 

published scalable implementation of tSNE based on fast interpolation (FI-tSNE) 

(Linderman et al., 2019).

We initially used a similar procedure to visualize injured RGCs, but found that cells co-

clustered by time (Figure S3A), resulting from injury related changes, and to a lesser extent, 

batch effects (distinct batches from the same time point co-clustered, suggesting that batch-

effects were not predominant). We therefore aligned injured RGCs using Liger (Welch et al., 

2019), a recently proposed non-negative matrix factorization-based algorithm, to 

disambiguate shared (RGC type-specific signatures) and dataset-specific (injury related 

changes) features across the different time points. We used the reduced dimensional 

coordinates provided by Liger as input for FI-tSNE as well as Louvain-Jaccard clustering 

(Figure S3A). Compared to tSNE and clusters computed on PC scores, Liger coordinates 

and clusters were driven far less by time (days post crush or dpc; Figure S3B) compared to 

iGraphBoost-assigned cell type identity, suggesting that Liger successfully aligns cell types 

across time. Note that iGraphBoost results did not inform the Liger visualization and 

clustering).

Comparing relative frequencies of RGC subsets between scRNA-seq and 
immunohistochemistry: We quantified the frequency of multiple combinatorially labeled 

subsets of RGCs in retinal whole mounts using immunohistochemistry, and compared them 

to analogous frequencies quantified using the scRNA-seq data at 0 and 14dpc datasets (Table 

S3). Frequencies were compared to IHC results, which were quantified as described below.

To compute corresponding frequencies in scRNA-seq, we identified RGC clusters that 

expressed the genes represented in the IHC combination, and computed their relative 

frequency in the data at the same time point. For example, to calculate the frequency of 

SPP1+OPN4-cre− labeled cells in scRNA-seq at 14dpc, we identified all RGC clusters that 

expressed Spp1, but did not express Opn4 at 14dpc. A cluster was regarded as positively 

expressing a particular gene if >30% of its cells expressed that gene. For IHC combinations 

involving a transgene, we used either prior knowledge (e.g. W7) or the analysis reported in 

this paper (e.g. W3) to identify labeled types in the scRNA-seq. We included the 

“unassigned” RGCs in the background while computing relative frequencies at any time 

point. Table S3 describes for each IHC combination, the list of associated types and their 

corresponding relative frequencies in IHC and scRNA-seq. The procedure to convert 

estimates of relative frequencies to fractional survival is described below.

Quantifying the survival and kinetics of loss of each type following ONC: Following 

iGraphBoost, RGCs in the ONC dataset was either assigned to one of 45 types, or were 

labeled “unassigned”. RFm(t), the relative frequency of RGC type m amongst surviving 

RGCs at time t was defined as RFm Here, Nm(t)was the number of RGCs assigned to type m 
at time t, and U(t)was the number of unassigned RGCs at time t. RFm(t) values were used to 
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calculate the relative frequency ratio for each type m in Figure 3F as 
RFm(14dpc)
RFm(0dpc)  To compute 

the kinetics of loss of each RGC type, we multiplied the relative frequency RFm(t) of each 

type with s(t), defined as the total fraction of surviving RGCs at each time t, and was 

estimated independently using IHC (Figure 3I). This enabled us to compute the relative 

survival (RSm(t)) of each RGC type m,

RSm(t) =
f m(t)s(t)

f m(0)

Individual curves in Figures 3J–L correspond to FSm(t) for all types. For each type, we 

obtain a vector RSm = RSm(0dpc), RSm(0.5dpc), …, RSm(14dpc) , where RSm(0dpc) = 1, by 

construction. We applied k-means clustering to the vectors RSm, and determined 3 clusters 

by the elbow method. These three clusters corresponded to the survival groups (Figure 3M).

Alignment and quantification of gene expression in full length, plate-based scRNA-seq 
data: For plate-based libraries, expression levels of gene loci were quantified using RNA-

seq by Expectation Maximization (RSEM) (Li and Dewey, 2011). Raw reads were mapped 

to a mouse transcriptome index (mm10 UCSC build) using Bowtie 2 (Langmead and 

Salzberg, 2012), as required by RSEM in its default mode. On average, 88% (range 

75%-92%) of the reads mapped to the genome in every sample. and 55% (range 20%-66%) 

of the reads mapped to the transcriptome. RSEM yielded an expression matrix (genes x 

samples) of inferred gene counts, which was converted to TPM (here, defined as transcripts 

per million) values and then log-transformed after the addition of 1 to avoid zeros. After 

filtering cells with low QC metrics (< 400,000 mapped reads, transcriptomic mapping rate < 

35% and < 1500 genes detected), we selected 636 cells for further analysis.

Analysis of W3 RGCs: An initial clustering analysis using Louvain-Jaccard clustering on a 

kNN graph (k=15) in PCA space (17 significant PCs) identified 7 groups of cells comprised 

of RGCs (n=341), microglia (n=51), bipolar cells (n=9), amacrine (n=67), rods (n=73), 

doublets involving RGCs and rods (n= 77), and low quality cells (n=18). Next, we separately 

reclusterd the 341 RGCs using a similar procedure (13 significant PCs), and found 6 

clusters. Supervised classification analysis using random forests trained on the atlas data 

matched 5/6 clusters 1:1 to atlas clusters C2 (W3D1), C4 (F-mini-OFF), C3 (F-mini-ON), 

C6 (W3B), and C23 (W3D2). The 6 SS2 cluster mapped to C30 (W3D3) and C21 (Tbr1-

S2), respectively.

Definition of resRGCs, susRGCs and intRGCs: resRGCs were initially defined as those 

RGC types m for which PFRm > 2, which included 7 types (C10, C22, C31, C33, C40, C42, 

C43; see Figure 3E). Independently, as described above, we applied k-means clustering on 

the vectors FSm, which resulted in the grouping of the 45 RGC types into 3 survival groups. 

The first cluster comprised the 7 resRGC types. A second cluster comprised 27/45 

vulnerable types whose survival rapidly declined by 4dpc, and we called these “susceptible 
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RGCs” or susRGCs. The other group, consisting of 11/45 types, also exhibited poor survival 

at 14dpc, but declined more slowly, and were termed “intermediate RGCs” or intRGCs.

Identifying shared differentially expressed genes following ONC, and gene modules: To 

identify genes that changed significantly across all RGC types, we computed for each gene g 

its average expression vectorEg = Eg, 0, Eg, 0.5, …, Eg, 14 , where Eg,t represents the average 

expression strength of gene g across all RGCs at t dpc. We defined Eg,t = Pg,t avgTPMg,t, 

where Pg,t represents the fraction of RGCs at time t that express the g, and avgTPMg,t is the 

average normalized expression of gene g in t dpc RGCs. We excluded genes such that 

min(pg,t) < 0.2 and 
maxt Eg, t − mint Eg, t

mint Eg, t
< 0.4, resulting in a total of 3,231 genes.

Next, we randomized the data by shuffling the temporal identities of all RGCs (while 

maintaining proportions), and computed a randomized average expression vector, 

Eg
rand = Eg, 0

rand, …, Eg, 14
rand . We reasoned that genes with significant temporal variation 

would exhibit larger differences between Eg and Eg
rand, and therefore computed for each 

gene g a deviation score between the actual and randomized expression vectors,

Δg(Eg, Eg
rand) =

∑t Eg, t − Eg, t
rand 2

∑t Eg, t + γ
2

T

∑t Eg, t
rand + γ

2

T

Here, T=7, the total number of time points, and γrepresents a pseudocount which we set to 

0.2. Here, the denominator acts as a normalizing factor; in its absence we found that genes 

with higher expression levels were favored. To evaluate the significance of Δg values, we 

used additional randomizations where we computed Δg
rand Eg

rand1, Eg
rand2  for 10,000 

paired randomizations of the data rand1 and rand2, which yielded empirical randomized 

distributions P Δg
rand  for each gene g. We found that randomized Δg values did not exceed 

0.2 for any gene. Based on this, we selected genes g such that Δg> 0.5, which yielded 771 

genes. We partitioned these genes into 8 modules using k-means clustering on the Eg values 

(elbow method). To identify biological processes enriched in each module, we applied Gene 

Ontology (GO) analysis using the R package topGO.

Identifying genes associated with resilient types as targets for manipulation: To identify 

genes that were selectively enriched in resRGC types at baseline as well as along the time 

course, we subsampled the data to equalize the representation of each cluster. This was done 

to reduce the influence of high-frequency types.
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We first compared resRGCs vs intRGCs and susRGCs at baseline using the MAST 

framework (>2-fold, FDR < 0.0001) to identify genes that were selectively enriched in 

resRGC types at baseline (Figure 5F).

P5 to adult correspondence: To evaluate the molecular correspondence between previously 

published P5 RGC types (Rheaume et al., 2018) and our adult RGC types, we trained graph-

boosted trees on our dataset using a set of common variable genes, and assigned each P5 

RGC an adult identity. The P5 cluster labels were not used to train the classifier or inform its 

assignment. We only considered assignments with voting majoring margin > 50% as valid 

assignments. The correspondence between P5 cluster labels (as in (Rheaume et al., 2018)) 

and adult type assignments was high, as evaluated by two measures of cluster similarity, the 

Adjusted Rand Index and Normalized Mutual Information (Figure S1F).

Data analysis of in vivo recordings: The electrophysiological recording data was analyzed 

offline by two non-blinded researchers using methods described in previous reports (Fu et 

al., 2016; Hong et al., 2015). In brief, raw recording data was filtered using non-causal 

Butterworth bandpass filters (‘filtfilt’ function in MATLAB) in the 250–6000 Hz frequency 

range to extract single-unit spikes of RGCs. Single-unit spike sorting was performed by 

amplitude thresholding of the filtered traces, where the threshold was automatically 

determined the threshold based on the median of the background noise according to the 

improved noise estimation method (Quiroga et al., 2004). Sorted spikes were clustered to 

determine the number of RGCs and to assign spikes to each RGCbased on principal 

component analysis (PCA) using the WaveClus software that employs unsupervised 

superparamagnetic clustering of single-unit spikes.

For each sorted and clustered spike, a firing time was assigned and all spike firing times 

belonging to the same cluster (i.e., the same RGC) were used to compute the firing rates in 

response to different visual stimuli. Analysis of single-unit firing events was different for the 

two different visual stimulation protocols:

1. Full-field ON/OFF stimulation: Firing rate was computed by dividing the 

number of firing events of the same RGC over time segments for both ON and 

OFF phases, averaged over 10 trials. Analysis of variance (ANOVA) was 

performed using the built-in function ‘anova1’ in Matlab to evaluate the 

statistical significance between firing rates during ON and OFF phases to 

determine the light response of each recorded RGC.

2. Moving gratings: The number of firing events for a specific moving direction of 

the grating was averaged over 10 trials, divided by the duration time for each 

direction to obtain the average firing rate for all eight directions. Angular 

distribution of firing rates was plotted in the polar plots to reveal direction and 

orientation preference and selectivity of the recorded RGCs. The direction 

selectivity index (DSi) is defined as:

DSi =
rpref − ropp
rpref + ropp
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where rpref  and ropp  are defined as the average firing rates during moving 

grating of the preferred direction and that of the opposite direction, respectively. 

Similarly, the orientation selectivity index (OSi) is defined as:

OSi =
rpref − rortho
rpref + rortho

where rpref  and rortho are defined as the average firing rates during moving 

grating of the preferred orientation and that of the orthogonal orientation to the 

preferred orientation, respectively.

A DSi or OSi of greater than 0.3 is used to assign a specific single unit to DSGC 

or OSGC, and that of smaller than 0.3 to non-selective ganglion cells (NSGC).

Cross-correlation analysis of spikes trains assigned to neurons belonging to different 

channels but showing similar direction/orientation selectivity was carried out to identify 

potential overlap of recording across channels, that is, the same RGC recorded by more than 

one electrodes, which was removed from the total count of RGCs.

To determine preferential survival of certain functional types through 14dpc in Figure 4F–I, 

a one-sided Fisher’s Exact test was used in R. A p-value smaller than 0.05 were considered 

statistically significant.

QUANTIFICATION AND STATISTICAL ANALYSIS

Information for statistical analysis for all experiments are provided in figure and table 

legends. Further details on these statistical approaches are provided below.

Retinal wholemounts—Immunostained retinal whole mounts were imaged using a Zeiss 

710 confocal microscope. For RGC subset quantifications a tile scan of the entire ventral 

quadrant of the retina was taken to control for topological differences in RGC types. The 

image was processed in ImageJ (Schindelin et al., 2012) by generating a Z-stack maximum 

projection of the GCL and by applying a local contrast normalization filter (3 stdev). 

Circular regions-of-interest (ROIs) (8.3μm in diameter) were placed on >500 RGC somas 

within a longitudinal area spanning the central-peripheral axis. The centroid position and 

fluorescent intensity of each ROI was measured in ImageJ. Background intensity was 

determined by selecting a subset of visually confirmed marker negative cells and calculating 

their linear regression (marker intensity vs. RBPMS intensity). The marker intensity 

standard deviation was calculated and a linear threshold was set by adding 3x standard 

deviations to the linear regression y-intercept (Figure S4). Fluorescent intensity for each 

marker was plotted against RBPMS (total RGCs) in Matlab using customized scripts and 

thresholded (3x stdev above linear average of negative cells). Thresholded ROIs were then 

overlaid onto the wholemount images and visually inspected for accuracy and the density for 

each possible marker combination was measured. To obtain frequency measurements, the 

density of each marker was divided by the total density (RBPMS). Individual values are 

shown in Table S3. Established markers and mouse lines that label RGC types or subgroups 

were selected for quantification before and after ONC. All selected markers/lines label 
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somas or nuclei of RGC and could be easily distinguished from background signal. 

Maintenance of expression after ONC was confirmed by IHC and in scRNAseq data. 

Quantification was performed using a single-blind for sample identity.

For AAV-mediated intervention experiments the maximally infected retinal quadrant was 

imaged excluding the temporal retina, due to the higher presence of alpha RGCs in this 

region (Bleckert et al., 2014). Images were processed in ImageJ as previous. Since RGCs at 

14dpc are well spaced, it was possible to count them using automated cell segmentation. 

RGC ROIs were detected using CellProfiler (Carpenter et al., 2006) for the entire retinal 

quadrant. ROIs were then exported to ImageJ, visually inspected for accuracy, and the 

intensity and centroid position was measured. To measure marker density, image+ROI 

overlays were plotted in Matlab and a polygonal boundary region was drawn around the area 

of the retina that was accurately segmented, taking care to exclude damaged areas, edges 

where the retina was not viewed en face, and areas with high background staining e.g. blood 

vessels. Individual values are shown in Table S6. To verify the accuracy of this automated 

segmentation approach, we re-quantified images previously counted by manual ROI 

placement and found both approaches gave comparable densities. In assessing survival 

following interventions, we compared results to four sets of controls. The four were 

indistinguishable (Figure S8F), so they were averaged for Figure 6J.

Retinal ISH sections—After ISH, sagittal retinal cross sections through or proximal to 

the optic nerve (maximal width of retina) were imaged using a Zeiss 710 confocal 

microscope. To quantify markers, a tile scan image spanning the section was generated for 

≥4 sections from ≥2 mice. Marker costaining was counted using the ImageJ cell counter 

plugin. The fraction of each staining combination was recorded and significance determined 

by two-tailed student’s t-test (p<0.05).

AAV2 transfection rate—Maximum projections of images acquired also for RGC 

survival quantifications (see above) from AAV2 OE-Ucn (n=2) and AAV2 Crhbp sgRNA #2 

(n=7) were quantified via the ImageJ using the “Analyze particles” function (after applying 

a threshold for background reduction). After visual inspection to ensure accuracy of cell 

segmentation, the total number of cells labeled with RBPMS (as panRGC marker) and anti-

UCN (IHC staining) or Rbpms and mCherry (AAV2 sgRNA for Crhbp tagged with mCherry 

to allow direct visualization of virus transfection) was assessed to achieve the percentage of 

RGCs co-expressing either of them.

Axon regeneration—The cleared, whole nerve was imaged with a 20X air objective. 

From the center of the nerve, 7 single stacks (2μm stack size) were maximum projected to a 

total volume of 14μm per nerve. After defining the crush site, lines spaced equidistant from 

each other at 500-μm intervals from the crush site to where the longest axon could be 

detected were introduced for bin-by-bin axon quantification. As described previously (Duan 

et al., 2015; Park et al., 2008), we quantified the total number of regenerating axons, Σad, by 

using the following formula: Σad = πr2 x [average axons/mm]/t, where the total number of 

axons extending distance d in a nerve having a radius of r was estimated by summing over 

all sections with thickness t (in our case, 14 μm). To assess significance or regeneration, we 
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used three sets of controls. The three were indistinguishable from each other (Figure S8G), 

so they were averaged for Figures 7E–G and for statistical analysis.

To assess an effect on regeneration, we first used a definite integral analysis (= area 

underneath the curve) and then compared each of our interventions to a control injected 

samples. Significance is determined by two-tailed Student’s t-test showing p < 0.05 = *. 

Additionally, bin-by-bin axon quantification was used to assess significant differences 

between individual distances (500, 1,000, 1,500, 2,000μm), determined by a mixed effects 

analysis followed by Bonferroni’s multiple comparison test with GraphPad Prism, p < 0.05 

= *. Individual values are shown in Table S6.

Morphometric Analysis—Retinal whole mounts were imaged on an Olympus Fluoview 

1000 scanning laser confocal microscope with 20X or 40X oil immersion objectives, optical 

stacks generated with images taken ever 0.5um. Maximum projections and rotations of 

images were generated in ImageJ, while brightness and contrast were adjusted in Adobe 

Photoshop CC. Individual cells were reconstructed and analyzed using the ImageJ plugin 

Simple Neurite Tracer (SNT, (Longair et al., 2011)). Dendritic size was measured from the 

area of convex polygons. Dendritic complexity was assessed using total branch points 

derived from the Stralher analysis in SNT. Significant difference between groups was 

determined by one-way ANOVA followed by Tukey HSD with SPSS, p < 0.05 = *.

DATA AND CODE AVAILABILITY

Submission of all the raw and processed datasets reported in this study has been initiated to 

the Gene Expression Omnibus (GEO) with accession number GSE137400 (private until 

publication). The single cell data can be visualized in the Broad Institute’s Single Cell Portal 

at https://singlecell.broadinstitute.org/single_cell/study/SCP509/mouse-retinal-ganglion-

cell-adult-atlas-and-optic-nerve-crush-time-series (private until publication), and the code 

for the ONC analysis is available on https://github.com/klarman-cell-observatory/

RetinalGanglionCell-ONC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

46 transcriptionally distinct type of retinal ganglion cells (RGCs) in mice

RGC types differ dramatically in survival following axonal transection

Different genes expressed by resilient and vulnerable RGC types

Manipulation of differentially expressed genes promotes RGC survival and regeneration
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Figure 1. scRNA-seq reveals 45 molecularly distinct RGC types in adult mice
A. RGCs (green) reside within the innermost layer of the retina, the ganglion cell layer 

(GCL). Their axons bundle together to form the optic nerve. IPL, inner plexiform layer, 

GCL, ganglion cell layer.

B. Dendrites of different RGC types have distinct lamination patterns within sublaminae 

(S)1–5 of the IPL, which determines their choice of presynaptic partners. Stereotyped 

morphologies are illustrated here for several RGC subclasses and types. INL, inner nuclear 

layer.

C. t-distributed stochastic neighbor embedding (t-SNE) visualization of the transcriptional 

heterogeneity of 35,699 adult mouse RGCs. Cells are colored by cluster assignments, 

determined using graph clustering. Clusters are numbered in order of decreasing frequency.

D. Relative frequencies of RGC clusters C1–45 (mean ±SD, n=10 replicates). Clusters that 

matched to known types or subclasses are labeled.
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E. Dotplot showing the expression patterns of marker genes (rows) specific to different 

retinal classes across RGC and non-RGC clusters in the data (columns; see color bars, top 

and right). The size of each circle is proportional to the percentage of cells expressing the 

gene, and the color depicts the average normalized transcript count in expressing cells. 

GABA-AC and Gly-AC, GABAergic and glycinergic amacrine cells; HC, horizontal cells; 

BC, bipolar cells; PR, photoreceptors; Endo, endothelial cells.

F. Dotplot showing gene combinations (rows) that uniquely mark RGC clusters (columns). 

Representation as in panel E for single genes, here normalized to 1. 2- or 3- marker codes, 

always involve the presence of a marker A, and the presence (e.g. A+B+ or A+B+C+) or 

absence (e.g. A+B-, or A+B-C+) of markers B and C. In such cases, the size of the circle 

indicates the percentage of cells satisfying the expression pattern, and the color depicts the 

average transcript count of positive markers in the cells, normalized to 1 for each 

combination.

G. RGC type frequencies are highly similar between ActinomycinD (ActD)-treated (y-axis) 

and atlas (x-axis) retinas.

H. Dotplot showing gene combinations that uniquely define each RGC type in nominal 

controls (as in F), are preserved in ActD-treated retinas. Row and column order as in F.

I. Scatter plot showing tight correspondence (RPearson = 0.93) between relative frequencies 

of RGC groups found by scRNA-seq (y-axis) versus IHC (x-axis).
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Figure 2. Correspondence of scRNA-seq clusters to RGC types
A. Characterization of novel RGC types by combining FISH (magenta) and IHC on sparsely 

labeled RGCs in the YFP-H line (green). Examples of S2/S4 laminating C10 and C24 RGCs 

expressing Gpr88 (left) and Fam19a4 (middle), respectively, and an S5 laminating C25 RGC 

expressing Slc17a7 (right). IPL sublaminae are drawn based on CALB1 or CALB2 staining 

(white dashed lines). YFP-H line. Examples of S2/S4 laminating C10 and C24 RGCs 

expressing Gpr88 (left) and Fam19a4 (middle), respectively, and an S5 laminating C25 RGC 

expressing Slc17a7 (right). IPL sublaminae are drawn based on CALB1 or CALB2 staining 

(white dashed lines). Merge in “C25” panel shows labeled cell at higher gain to reveal 

dendritic morphology.

B-F Dotplots highlighting transcriptional distinctions among RGC types within subclasses. 

Dotted lines separate previously described markers (above) from novel markers identified in 
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this study (below). B: αRGC types. C: T-RGC types. D: F-RGC types. E: ipRGC types. F: 

S2/S4 laminating RGC types.

G. C16 comprising D/V-ooDSGCs can be partitioned into Calb1+ (putative D-ooDSGCs) 

and Calb1- (putative V-ooDSGCs) cells.

H. Consistent with the interpretation in panel G, GFP+ cells in the Hb9 mouse line, which 

labels V-ooDSGCs, are CALB1- and CALB2+ (magenta).

I. Dotplot showing consistent patterns of DE gene expression between W3 types (rows) 

detected in the droplet-based scRNA-seq atlas (red) and plate-based data from FACS-sorted 

W3 RGCs (green). Labeled by atlas cluster id.

J. Transcriptional relatedness of RGC clusters visualized as a dendrogram reveals subclasses 

of RGC types (annotation bar, bottom). Dotplot shows expression of key subclass-enriched 

or -defining genes (rows) in clusters (columns).

Tran et al. Page 39

Neuron. Author manuscript; available in PMC 2020 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. scRNA-seq profiling of RGCs following ONC
A. scRNA-seq was performed on RGCs collected before and at six times following ONC. 

8,456–13,619 RGCs were collected at each time point.

B. Illustration of a single step of the iGraphBoost procedure to classify RGCs collected at 

time tn+1 based on an atlas of RGC types at the previous time point tn. The procedure is 

initiated with Atlas RGCs at t0. In Step 1, gradient boosted trees trained on tn RGC types are 

used to classify tn+1 RGCs. Only high-confidence assignments are applied, and a large 

number of RGCs remain unclassified at this stage. In Step 2, a Jaccard-weighted k-nearest 

neighbor graph built on all tn+1 RGCs is used to propagate labels via nearest-neighbor voting 

to unassigned RGCs, using the classified RGCs in step 1 as anchors. Successfully classified 

tn+1 RGCs are used to classify tn+2 RGCs in the next iteration.

C. Fraction of RGCs that can be confidently assigned to types (y-axis) at each time point 

following ONC (x-axis). The “one-step” approach (grey) using the atlas RGCs as training 
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data results in a significantly lower proportion of assigned cells among late injured RGCs 

compared to iGraphBoost (black).

D. Dotplot showing that gene combinations uniquely defining each RGC type (row and 

column order as in Figure 1F) are maintained in 14dpc assigned by iGraphBoost, though 

reduction in expression level of some markers was observed.

E. RGC type-specific resilience at 14dpc relative to control (Ctrl) rank ordered based on 

decreasing values of the relative frequency ratio at 14dpc vs. Ctrl. RGC types exhibit a wide 

spectrum of survival at 14dpc ranging from 1–98%.

F. 14d survival ranking (as in E) colored by RGC subclasses. Overlapping subclasses are 

denoted by two-tone color bars.

G. 14d survival ranking (as in E) colored by relative abundance in control.

H. Scatter plot showing correspondence between the 14dpc survival rates of RGC groups as 

determined by scRNAseq and IHC (RPearson =0.97). 26 combinations of antibodies and 

transgenic lines (Table S3) were used label groups of RGC types covering a broad frequency 

range.

I. Loss of RGC somas as determined by IHC for RBPMS in this study (diamonds; see Figure 

S4F for example images) or by retrograde labeling from superior colliculus (triangles; 

redrawn from (Galindo-Romero et al., 2011)).

J. -M. Each RGC type can be assigned to one of three survival groups based on the pattern 

of cell loss across time. Individual graphs of relative survival, defined as the fraction of cells 

surviving at each time point, shown for 7 resilient types (J), 11 intermediate types (K) and 

27 susceptible types (L), (see also S3G). Fluctuations in sampling frequency resulted in 

relative survival values >1 through 2dpc (where there is little death) for rare RGC types 

(frequency < 0.5%). Error bars are not included for individual types in panel K-L for clarity 

of presentation. Grey lines, relative survival for each type within the survival group; colored 

lines, mean relative survival across types; shaded ribbons, standard deviation of relative 

survival values across types. Fluctuations observed through 2dpc were within expected error 

(colored ribbons), in contrast to later time points. Solid lines, mean relative survival across 

types within a survival group; shaded ribbons, standard deviation. Group means are 

superimposed in M.
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Figure 4. Physiological characteristics of resilient and susceptible RGCs
A. Representative recordings of two out of 32 channels in 1dpc and 14dpc mesh-implanted 

retinas.

B. Sorted spike waveforms for two individual RGCs per channel (rows) represented in A 
recorded over multiple days. Ch1 shows spike waveforms of two sorted RGCs (purple and 

green lines) on 1dpc and 3dpc; cells have died by 8dpc. Ch2 shows waveforms of two sorted 

RGCs (blue and red) on 1dpc and 3dpc, but only one RGC was still detectable at 8dpc.

C. Polar plots of responses of direction-selective (DS), orientation-selective (OS) and neither 

orientation- nor directions-selective (NS) RGCs to gratings moving in each of 8 directions. 

Each plot shows measurements from the same cell on different days.

D. Proportion of RGCs by response type within each response category (columns) at 1dpc. 

S, sustained, T, transient, ON, OFF and ON/OFF, responds to light increments, decrements 

or both.
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E. RGC survival as a function of time in physiological recordings following ONC (black 

line) compared to uncrushed control (dotted line shows data replotted from (Hong et al., 

2018))

F. Sustained RGCs survive better than transient RGCs as assessed by physiology (* = 

p<0.03 by Fisher’s Exact Test).

G. OSGCs are more susceptible than DSGCs or NSGCs (* = p<0.04 by Fisher’s Exact Test).

H. Among RGCs that are either OS or NS, ON-OFF cells are more susceptible than ON or 

OFF cells (* = p<0.03 by Fisher’s Exact Test).

I. Among DSGCs, ON-OFF cells (ooDSGCs) are susceptible than ON or OFF cells (p=0.06 

at 14dpc by Fisher’s Exact Test).

J. Average firing rates for RGCs that survive until 14dpc or die by 8dpc.

K. RGCs that are dead by 5dpc exhibit little changes in firing rate between 1–3dpc.

L. RGCs that are dead by 5dpc exhibit little change in direction/orientation selectivity index 

(DSI/OSI) between 1–3dpc.

M. En face morphology of resilient RGCs (αOFF-S, C42) at Ctrl, 4, 7, and 14dpc.

N. Quantification of C42 morphological complexity (total branch points) and size (dendritic 

area) shows no significant difference between time points for either measure (one-way 

ANOVA with post-hoc Tukey HSD test). Data are shown as mean±SD.

O. En face morphology of susceptible RGCs (αOFF-T, C45) at Ctrl, 3, and 4dpc. O’ 

showing zoomed in views of dendrites at Ctrl and 4dpc.

P. Quantification of C45 morphological complexity as in N. * = p<0.04; one-way ANOVA 

with post-hoc Tukey HSD test. Data are shown as mean ±SD.
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Figure 5. Global changes in gene expression following injury
A. Heatmap of genes showing temporal variation following ONC. Expression values of each 

gene (row) is averaged across all RGCs at a given time point (columns), and then z-scored 

across times prior to plotting. Black bars separate genes into 8 modules (Mod) based on 

temporal dynamics.

B. Mean temporal dynamics of individual genes (lines) from Module 1 that were associated 

with gene ontology (GO) biological processes related to axon and neuronal functions. Genes 

and the GO processes from which they were selected are listed in Table S4.

C. As in B, for Modules 5 and 6 for genes associated GO biological processes related to 

apoptosis or various stress pathways.

D. Expression dynamics of genes from B plotted for each RGC type (lines). Blue lines 

correspond to ipRGC types (C31, 22, 40, 33). Expression values for each type were z-scored 

to track relative changes.
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E. Same as D, for genes from C
F. Expression patterns of DE genes (rows) distinguishing the 7 resRGC types and the 10 

most susceptible RGC types (columns), based on 14dpc survival in the uninjured retina 

(Figure 3F). Values were z-scored along each row prior to plotting.

G. -J. Averaged temporal dynamics of candidate genes selectively upregulated in resRGC or 

susRGC types (lines). Blue lines correspond the 7 resRGC types, including types that 

upregulate Ucn (C42, 43) or Nppb (C22, 31, 33, 40, 43) (left panels), which were not 

enriched for Tac1 or Cidea (right panels).
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Figure 6. Genes that affect RGC survival
A. Ucn is selectively upregulated in sustained αRGC’s (α-RGC-S; C42, 43) and Crhbp is 

selectively expressed in a subset of susRGC types (C14, 15, 17, 24, 26, 28, 39). Violin plots 

show merged expression for indicated clusters at 0 and 7dpc. The number above the violins 

indicates the percentage of cells expressing the marker within each subset. Box plots depict 

the median and interquartile range.

B. FISH of retinal sections shows Ucn upregulation at 7dpc in Spp1+ RGCs (α-RGCs 

marker): white circles. Crhbp is expressed in a set of Spp1- RGCs (non-α-RGCs) before and 

after ONC: green circles.

C. IHC in retinal whole mounts for RBPMS shows increased survival of RGCs at 14dpc 

following OE-Ucn, KO-Crhbp, or injection of UCN protein.

D. Timp2 is selectively expressed in the resilient ipRGCs (C22, 31, 33, 40, 43) before and 

after ONC. Mmp12 is upregulated in a broad subset of susRGCs (C7, 8, 11, 12, 14, 17, 18, 
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23, 24, 27, 28, 43, 37, 39, 41) after crush but is low in ipRGCs in scRNAseq data. Violin 

plots as in A.

E. FISH of retinal sections as in B.

F. IHC in retinal whole mounts as in C.

G. Expression in resRGC subsets at 0 and 7dpc of Ndnf (C22, 31, 43) and Prph (C31, 43). 

Violin plots as in panel A.

H. FISH of retinal sections as in B.

I. IHC of retinal whole mounts as in C.

J. Total RGC survival (RBPMS+ cells; mean ± SEM) in whole mounts following 

interventions shown in C, F, and I. Red line and ribbon, mean RBPMS density ±SEM 

averaged from four sets of controls, which did not differ significantly from each other: no 

injection, PBS, UCN vehicle, and MMP12 inhibitor vehicle. n=18; details in STAR methods. 

*adjusted p-value <.05 (Bonferroni).

K. IHC showing increased survival of CARTPT+ RGCs (circles) at 14dpc following OE-

Ucn and OE-Timp2 compared to vehicle. Top row, CARTPT+ RGCs at 0dpc.

L. IHC quantification showing selective survival of CARTPT+ RGCs (C12, 14, 16, 36) 

compared to NEUROD2+ RGCs (C12, 19, 20, 25, 26, 29, 35, 39) at 14dpc following 

indicated treatments. y-axis, #positive per section RGCs at 14dpc/control. Performed on 

retinal sagittal sections through the optic nerve. * p-value <.05 (FDR adjusted).

Scale bar: 25μm for B,D,H,K; 100μm for C,F,I
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Figure 7. Genes that promote RGC axon regeneration
A. In vivo OE and KO. An AAV2 carrying the OE gene or KO sgRNA is injected 

intravitreally 14 days before the crush. At 12dpc regenerating axons are anterogradely 

labeled via CTB647 injection. UCN protein was injected at 2dpc.

B. Maximum projections of cleared optic nerves showing anterograde-labeled RGC axons at 

14dpc following vehicle injection or indicated treatment of Ucn (OE or protein) and KO-

Crhbp (g1 and g2).

C. Same as B, following OE-Timp2 and KO-Mmp9 (g1 and g2).

D. Same as B, following OE-Ndnf and OE-Prph.

E. -G. Quantification of axon regeneration. Control line represents mean±SEM from three 

groups, which did not differ significantly from each other: PBS only, UCN vehicle and AAV-

Cre with no sgRNA; n=14; details in STAR methods. * p < 0.05 two-tailed Student’s t-test 
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of area under the curve evaluated using numerical integration. Mixed effects analysis with 

Bonferroni correction for individual distances are shown in Table S6.

In B-D, Scale bar, 250μm; X = crush site; red lines - 500, 1000, 1500μm distances from 

crush site.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-Brn3c (Pou4f3) Santa Cruz Cat#sc-81980;RRID:AB_2167543

Rabbit polyclonal anti-Calbindin Swant Cat#CB-38a

Rabbit polyclonal anti-Calretinin Millipore Cat#AB5054;RRID:AB_2068506

Goat polyclonal anti-Chat Millipore Cat#AB144P;RRID:AB_2079751

Goat polyclonal anti-Foxp2 Abcam Cat#ab1307;RRID:AB_1268914

Chicken polyclonal anti-GFP Abcam Cat#ab13970;RRID:AB_300798

Rabbit polyclonal anti-DsRed Takara Cat#632496;RRID:AB_10013483

Mouse monoclonal anti-Mmp12 Santa Cruz Cat#sc-390863

Rabbit polyclonal anti-Mmp9 Abcam Cat#ab38898;RRID:AB_776512

Rabbit polyclonal anti-Neurod2 Abcam Cat#Ab104430;RRID:AB_10975628

Rabbit polyclonal anti-Opn4 Thermo Scientific Cat#PA1–780;RRID:AB_2267547

Guinea pig polyclonal anti-Prdm8 Kind gift from Sarah E. Ross 
lab

Ross et al., 2012

Guinea pig polyclonal anti-Rbpms PhosphoSolutions Cat#1832-RBPMS;RRID:AB_2492226

Rabbit polyclonal anti-Rbpms Abcam Cat#ab194213

Rabbit polyclonal anti-Satb1 Epitomics Cat#2938–1;RRID:AB_2184447

Mouse monoclonal anti-Satb2 Abcam Cat#Ab51502;RRID:AB_882455

Mouse monoclonal anti-SMI32 Covance Cat#SMI-32P;RRID:AB_2314912

Goat polyclonal anti- Spp1 (Osteopontin) R&D Systems Cat#AF808;RRID:AB_2194992

Rabbit polyclonal anti-Tbr2 (Eomes) Abcam Cat#Ab183991;RRID:AB_2721040

Rabbit polyclonal anti-Tbx20 Boster Bio (discontinued) Cat#A04704

Rabbit polyclonal anti-Urocortin (Ucn) Sigma Aldrich Cat#SAB4300830

Goat polyclonal anti-Vacht Progema (discontinued) Cat#G4481;RRID:AB_430859

Chemicals, Peptides, and Recombinant Proteins

Alexa-conjugated cholera toxin subunit B (CTB647) Thermo Fisher Cat#C34778

AMES’ Medium Sigma Cat#A1420

Papain Worthington Cat#LS003126

Ovomucoid Worthington Cat#130042202

Fluoromount-G Southern Biotech Cat#0100–20

Visikol® HISTO-1™ and Visikol® HISTO-2™ Combo Visikol Cat#HH10

Anti-Fluorescin-POD, Fab fragments Roche Cat#11426346910

Anti-Digoxigenin-POD, Fab fragments Roche Cat#11207733910

Anti-DNP-HRP Perkin Elmer Cat#FP1129

TSA Cyanine 3 Plus Evaluation Kit Perkin Elmer Cat#NEL744E001KT (FP1170)

TSA Cyanine 5 Plus Evaluation Kit Perkin Elmer Cat#NEL745E001KT (FP1171)

TSA Fluorescein Plus Evaluation Kit Perkin Elmer Cat#NEL741E001KT (FP1168)

ActinomycinD Sigma-Aldrich Cat#A1410
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Poly-D-lysine Sigma-Aldrich Cat#P6407

Urocortin (rat) small peptide Millipore Sigma Cat#U6631

Mmp12 Inhibitor Millipore Sigma Cat#444291

Critical Commercial Assays

Chromium Single Cell 3’Library & Gel Bead Kit v2, 
16rxns

10X Genomics Cat#120237

Chromium Single Cell A Chip Kit, 16rxns 10X Genomics Cat#1000009

Chromium i7 Multiplex Kit 96 rxns 10X Genomics Cat#120262

TruSeq Total RNA Illumina

RNAscope Fluorescent Multiplex Reagent Kit Advanced Cell Diagnostics Cat#320850

RNAscope® Probe Diluent Advanced Cell Diagnostics Cat#300041

Deposited Data

Raw data files for RNA-sequencing This manuscript GEO: https://singlecell.broadinstitute.org/
single_cell/study/SCP509/mouse-retinal-
ganglion-cell-adult-atlas-and-optic-nerve-
crush-time-series

Experimental Models: Organisms/Strains

Mouse: C57Bl/6 Charles River or Jackson Labs Cat#JAX000664;RRID:IMSR_JAX:000664

Mouse: Slc17a6tm2(cre)Lowl/J Jackson Labs Cat#JAX016963;RRID:IMSR_JAX:016963

Mouse: B6.Cg-Tg(Thy1-EYFP)15Jrs/J Joshua Sanes (Buffelli et al., 
2003)

Cat#JAX005630;RRID:IMSR_JAX:005630

Mouse: B6.Cg-Tg(Thy1-YFP)W3Jrs/J Joshua Sanes (Kim et al., 
2010)

Cat#JAX033114;RRID:IMSR_JAX:033114

Mouse: B6.129(SJL)-Kcng4tm1.1(cre)Jrs/J Joshua Sanes (Duan et al., 
2014)

Cat#JAX029414;RRID:IMSR_JAX:029414

Mouse: Thy1-stop-YFP Line#1 Joshua Sanes (Buffelli et al., 
2003)

N/A

Mouse: Tg(Jam2-cre/ERT2)2Jrs/J Joshua Sanes (Kim et al. 
2008)

Cat#JAX029417;RRID:IMSR_JAX:029417

Mouse: Ccktm1.1(cre)Zjh/J Jackson Labs Cat#JAX012706;RRID:IMSR_JAX:012706

Mouse: B6.129P2-Pvalbtm1(cre)Arbr/J Jackson Labs Cat#JAX017320;RRID:IMSR_JAX:017320

Mouse: Opn4-Cre Ecker et al. 2010 N/A

Mouse:Rosa-lox-STOP-lox-Tomato Zhigang He (Madisen et al., 
2010)

N/A

Mouse: B6;129-Gt(ROSA)26Sortm1(CAG-cas9*,-EGFP)Fezh/J Jackson Labs Cat#JAX024857;RRID:IMSR_JAX:024857

Mouse: B6.Cg-Tg(Thy1-YFP)HJrs/J Joshua Sanes (Feng et al., 
2000)

Cat#JAX003782;RRID:IMSR_JAX:003782

Mouse: B6.Cg-Tg(Hlxb9-GFP)1Tmj/J Joshua Sanes (Trenholm et al., 
2011)

Cat#JAX005029;RRID:IMSR_JAX:005029

Mouse: TYW7 (Thy1-lox-YFP-STOP-lox_WGA-ires-
LacZ)

Joshua Sanes (Kim et al. 
2010)

N/A

Mouse: B6;129S-Penktm2(cre)Hze/J Jackson Labs Cat#JAX025112;RRID:IMSR_JAX:025112

Oligonucleotides

Primer used to generate ISH probes IDT Table S8

RNAScope probes A.D.T. Table S8
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Primer for overexpression cloning IDT Table S8

Primer for sgRNA cloning IDT Table S8

Recombinant DNA

pAAV2-hSyn-hChR2(H134R)-EYFP Gift from Karl Deisseroth Addgene plasmid Cat#26793; 
RRID:Addgene_26973

AAV-U6-sgRNA-hSyn-mCherry Gift from Alex Hewitt Addgene plasmid Cat#87916; RRID: 
Addgene_87916

pAAV2-hSyn-Ucn-WPRE BCH Viral Core N/A

pAAV2-hSyn-Timp2-WPRE BCH Viral Core N/A

pAAV2-hSyn-Ndnf-WPRE BCH Viral Core N/A

pAAV2-hSyn-Prph-WPRE BCH Viral Core N/A

pAAV2-U6-Crhbp g1-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Crhbp g2-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Mmp12 g1-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Mmp12 g2-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Mmp9 g1-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Mmp9 g2-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Tac1 g1-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Tac1 g2-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Hpcal1 g1-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Hpcal1 g2-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Evc2 g1-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Evc2 g2-hSyn-mCherry BCH Viral Core N/A

pAAV2-CAG-Cre-WPRE-hGH BCH Viral Core Belin et al., 2015

Software and Algorithms

ImageJ (Fiji) Schindelin et al., 2012 https://imagej.net/Fiji

SNT Longair et al., 2011 https://imagej.net/Simple_Neurite_Tracer

Cell Profiler Carpenter et al., 2006 https://cellprofiler.org

Prism 8.0 GraphPad Software https://www.graphpad.com/

SPSS IBM Corp. Released 2017. 
IBM SPSS Statistics for 
Windows, Version 25.0. 
Armonk, NY: IBM Corp.

https://www.ibm.com/products/spss-statistics

StringTie v1.3.3 Pertea et al., 2016 https://ccb.jhu.edu/software/stringtie/

Cell Ranger v2.1.0 10X Genomics https://support.10xgenomics.com/single-cell-
gene-expression/software/downloads/latest

Hisat2 Kim et al., 2019 https://ccb.jhu.edu/software/hisat2/index.shtml

R for statistical computing version 3.6.0 N/A https://cran.r-project.org/

Bioconductor software packages Gentleman et al.,2004 http://bioconductor.org/

Mathworks custom written codes https://www.mathworks.com/

Custom R scripts This manuscript https://github.com/klarman-cell-observatory/
RetinalGanglionCell-ONC

Other
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LSM 710 scanning confocal microscope Zeiss N/A

Olympus FV-1000 confocal microscope Olympus N/A

HiSeq 2500 System Illumina N/A

NextSeq 500 System Illumina N/A

Chromium controller 10x Genomics N/A

Mesh electronics (Hong et al., 2018) N/A
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